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ABSTRACT. The comparison of primary interest in a 2 x 2 crossover trial 

typically concerns the effect of the treatments, say A and B, on the mean 

response level. This article deals with another important aspect, namely the 

within-subject response variability under A and B. Differences in drug 

formulation and/or administration may lead to considerable differences in within­

subject variability, whatever is the difference in terms of mean level; and 

consideration of both these aspects may therefore be of considerable importance 

for the judgement of the treatments. It is shown that, although there are no 

within-subject treatment replications, it is possible to make various exact 

inferences about the AlB ratio of within-subject variances and about the (A - B)­

difference in mean level, simultaneously and marginally. These inferences are 

semiparametric in that no distributional assumption is made about the between­

subject variability, whereas a normality assumption is used for the within-subject 

variability. The inferences include tests, confidence regions, and a multiple test 

procedure. A power approximation is also given. The results are illustrated 

numerically. 
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made concerning this ratio. These inferences are exact in that significance 

probabilities, test sizes and confidence coefficients are exact. Moreover, the 

inferences are semiparametric in that no distributional assumption is made about the 

"between" random effects, whereas the "within" random effects are assumed to be 

normally distributed. The within-subject variability considered here can in principle 

be thought of as being composed of several components of interest (Ekbohm and 

Melander 1989, 1990), but such components are of course not identifiable with a 2 

x 2 crossover design. 

Recently Cornell (1991) proposed a nonparametric test of the particular 

hypothesis cr2A = cr2B based on Kendall's tau applied to within-subject sums and 

differences of responses in each group. The test is asymptotically distribution-free, 

not exact; and no corresponding nonparametric confidence region for cr2A/cr2B is 

available. In contrast, the various semiparametric inferences proposed in this article 

are exact, and they include tests of more general hypotheses than crZA/cr2B = 1, as 

well as confidence regions for cr2A/cr2B' These inferences are also based on 

Kendall's tau, but more general linear combinations of the responses are 

considered. It is an open problem whether/how exact inferences can be made under 

essentially weaker distributional assumptions for the within-subject variability. For 

some results on related problems concerning differences between the marginal 

distributions of a bivariate distribution, see Kepner and Randles (1982) with 

references. 

The assumptions, the notation, and some basic results are given in sec. 2 

and 3. Various inferences are then given in sec. 4, including: exact tests and 

confidence regions for cr2A/cr2B' a related point estimate, and certain exact 

simultaneous confidence regions and multiple test procedures concerning 

differences both in mean level and in within-subject variability. An illustration is 

given in sec. 5. In sec. 6, some concluding remarks are made, and some additional 

results are briefly mentioned, including a power approximation. The Appendix 

contains some technical details. 
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2 • ASSUMPTIONS AND NOT A TION 

Let Yij1 and Yij2 denote the response observations from period 1 and period 2, 

respectively, for subject j = 1, ... , ni in sequence group i = 1,2; with each ni;;:: 2. 

Moreover, let n. = n1 + n2, and let group 1 correspond to treatment sequence AB, 

and group 2 to BA. For convenience, no notational distinction is made between 

random quantities and the corresponding realizations in this article. The normal 

distribution with mean a and variance b is denoted N(a, b) and <l> denotes the 

distribution function of N(O, 1). The t-distribution with f degrees of freedom and 

noncentrality parameter B (Owen 1985) is denoted T(f, B). 

It is assumed that the response vector (Yij1, Yij2) for subject j = 1, ... , ni in 

group i = 1,2 can be represented as 

(2.1) 

where: (a) (/lil' /li2) is a nonrandom vector reflecting fixed effects such as direct 

treatment effects, period effects and indirect treatment effects; (b) ~ij is a random 

variable reflecting the between-subject variability; and (c) (E;.jh c;'j2) is a random 

vector reflecting the within-subject variability in each period. No restriction is put 

on the two vectors (/lil' 1li2)' i = 1,2, in (2.1), and no assumption is made about 

the functional relationship between these vectors and the fixed effects that they 

reflect. Moreover, no assumption is made about the joint distribution of the n. 

"between" variables ~ij in (2.1). In particular, they are not assumed to be 

independent or identically distributed. 

The essential distributional assumption in this article concerns the n. 

"within" vectors (Eijh Eij2) in (2.1). These vectors are assumed to be mutually 

independent and independent of the n. "between" variables ~ij. Moreover, with =d 

denoting equality in distribution, it is assumed that, for i = 1, 2 and j = 1, ... , nb 

(E;.jh c;'j2) =d (EA, EB), 

=d (EB, EA), 

i = 1, 

i = 2, 
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where £A - N(O, crZA ) and £B - N(O, a2B) are independent with 0 < crZA < co and 0 < 

a2B < O. Here the index A or B indicates the treatment in the relevant period. In tenns 

of these within-subject variances, defme 

(2.3) 

Thus, the ratio 9 is a measure of the relative variability within subjects under the 

two treatments. The problem is to make exact inferences about 9, or, equivalently, 

about 

(2.4) 

under these assumptions. Clearly, 'Y is an increasing function of 9 > 0, and -1 < 'Y < 

1. 

The inferences about 'Y proposed in this article are based on the within­

subject sums and crossover (A - B)-differences, 

Y ij+ = Yijl + Yij2, (2.5) 

Yij_ = Yijl - Yij2, i = 1, 

= Yij2 - Yijl, i= 2; (2.6) 

which are basic also for inferences about fixed effects. For instance, the ordinary t­

based inferences (Jones and Kenward 1989, chap. 2) about additive fixed period 

effects and direct treatment effects are based on the differences (2.6) through 

S2. = 1:,. (Y .. - y. )2J(n· - 1) 1- J 1J- 1- 1 , (2.7) 
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i = 1,2; with S21_ and S22_ usually combined into a pooled estimate ofVar(Yij_). Note 

that Var(Yij_) equals 0'2AB in (2.3), and that these ordinary inferences about fixed 

effects do not require that e in (2.3) is equal to 1 as is commonly assumed 

It is convenient to introduce the function 

G(c) = 0 

= (1 + c)/(l - c) 

= 00 

ifc::;;-l, 

if-1<c<1, 

ifc~l (2.8) 

which, for -1 < c < 1, equals the inverse of the function 'Y= "ICe) given by (2.4). 

3. BASIC RESULTS 

3.1 Linear Combinations of Response Observations 

For any given real c, let Yij[cl be defined in terms of (2.5) - (2.6) by 

(3.1) 

The association between Yij[cl and Yij- depends on the value of c, and the idea is to 

use this dependence on c to make inferences about 'Y. A key result in this context is 

that the vector (Yij-, Yij[cl) can be expressed in terms of quantities in (2.1) - (2.4) as 

(Yij-, Yij[cl) = (Jl;.-, Jl;.[cl) + O'AB[ Uij, ('Y - c)Uij + (1 - "f)11221j] 

+ (0, 2 ~ij)' (3.2) 

j = 1, ... , nb i = 1, 2. Here Jli- and Jli[cl are constants defined formally as Yij- and 

Yij[cl through (2.5), (2.6) and (3.1) with Yij1 and Yij2 replaced by Jlil and JliZ in 

(2.1), respectively; whereas the vector (Uij' 21j) equals (eijtiO'A, qj/O'B)M for i = 1, 

and equals (qP/O'A' qjtiO'B)M for i = 2, where M is the 2 x 2 orthogonal matrix with 

elements (mH, m12, m21> m22) equal to (1 + e)-l12 (e l12, 1, -1, e1l2). This implies that, 
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in the right hand side of (3.2), the 2n. variables Uij and 4j are: (a) each N(O, 1) 

distributed; (b) mutually independent; and (c) independent of the n. "between" 

variables ~j. 

It is now evident from (3.2) that the n. variables Yij- are mutually 

independent, with Yij- - N(Jli-, cr2AB); and that, if c = y, these n. variables are 

independent of the n. variables Yij[cj' It is also evident that, if c '¢: y, the Yij-'s are not 

independent of the Yij[c/S. Actually it follows from (3.2) that if c < y (c > y) then, 

marginally, each Yij[cj is positively (negatively) regression dependent on Yij-; that is 

(Lehmann 1966), the conditional distribution of Yij[cj given Yij- = Y increases 

(decreases) stochastically as y increases. The joint behavior of the n. variables Yij[cj 

depends of course on the joint behavior of the "between" ~i/S, about which no 

assumption has been made. 

3.2 Kendall tau Statistics 

For i = 1,2, let TJc) denote Kendall's tau statistic (Kendall and Gibbons 1990) 

based on the nivectors (Yij-, Yij[cj) for a given c. That is, Ti(c) = SJc)/Ni> where 

(3.3) 

and Ni = ~(ni - 1)/2, i = 1,2. In (3.3), the double sum is over the Ni distinct pairs 

(r, s) of indices satisfying 1 ~ r < s ~ ni> and sign[x] equals -1, 0, 1 as x < 0, x = 

0, x > 0, respectively. 

For i = 1, 2 and 1 ~ r < s ~ ~, 

roo = (Y. - Y. )/(Y. - y. ) ~ lS+ rr+ lS- If- (3.4) 

equals the slope of the straight line connecting the two points (Y ir-, Y ir+) and (Y is-, 

Yis+) in group i. There are thus Ni = ni(ni - 1)/2 slopes (3.4) in group i, and it is 

easily shown using (3.1) that the right hand side of (3.3) equals that of 

(3.5) 
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with probability one. The N1 + Nz slopes (3.4) from the two groups are basic for 

the exact confidence regions and the point estimate considered in sec. 4.2 and 4.3. 

For i = 1, 2, the tau statistic Ti(c) = Si(C)INi has a discrete distribution 

concentrated on the set 

(3.6) 

of Ni + 1 values in [-1, 1], and the random vector (T1(c), Tz(c)) can assume any 

given value (t1> tz) in Q1 X Qz with positive probability. The distribution of (T1(c), 

Tz(c)) depends only on n1 and nz if c = y, whereas if c :¢: y, it depends also on c, y, 

(JAB and on the joint distribution of the n. "between" ~ij 'So 

The distribution of (T1(y), Tz(y)) is particulary simple because: (a) T1(y) and 

Tz(y) are independent; and (b) for i = 1,2, Ti(y) is distributed according to the 

ordinary Kendall's tau null distribution which is completely determined by the 

group size ni' The distributional results (a) and (b) just mentioned hold 

conditionally, given the (untied) ranks of the Yij[cl 's in (3.3) within each group, 

which is actually why (a) and (b) hold unconditionally. The Ti(y) distribution is 

symmetric about zero with variance 

Vi = (2ni + 5)J(9N0; (3.7) 

and Ti(y)JvF2 ~d NCO, 1) as ni ~ 00. Further details about this null distribution of 

Kendall's tau are given in Kendall and Gibbons (1990). 

3.3 A Combined tau Statistic 

It is then natural to combine the tau statistics from the two groups into a single 

statistic for inferences about y. The combination T.( c) considered here is a weighted 

sum with weights inversely proportional to the variances Vi; that is 

(3.8) 
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where Wi = V(1/(V1-1 + vz-1) and Ti(c) = Si(C)INi, with Vi given by (3.7) and Si(C) 

given by (3.3) or (3.5), i = 1, 2. Such a weighted sum of tau statistics was 

considered by Korn (1984) and Taylor (1987) to combine information from 

independent blocks. 

The T.(c) distribution is concentrated on the set Q. = Q.(nh nz) of values in 

[-1, 1] defmed in terms of (3.6) by 

(3.9) 

and T.(c) can assume any given value q E Q* with positive probability. This set Q. 

may consist of relatively few values. For instance, in the important balanced case 

with nl = nz = nand Nl = Nz = N = n(n - 1)/2, each weight Wi equals 1/2, and 

Q.(n, n) then consists of the 2N + 1 values q = sIN, s = -N, -N + 1, ... , N - 1, N. 

The T.(c) distribution depends only on nl and nz if c = y; whereas if c :¢: y, it 

depends also on c, y, (JAB and on the joint distribution of the n. "between" ~ij'S 

about which no assumption has been made. An important property of the T.(c)­

distribution is however evident from (3.5) and (3.8), namely that T.(c) strictly 

decreases stochastically as c increases. This mono tonicity result implies in 

particular that, if c < y (c > y), then T.(c) is strictly larger (smaller) stochastically 

than if c = y, which is important for the exact inferences considered in sec. 4. 

In the sequel, the distribution of T.(y) is denoted Ko(nh nz), and TO(nh nz) 

denotes a random variable distributed according to Ko(nh nz). Of course, the 

distributions Ko(nh nz) and Ko(nz, nl) are equal. It is also convenient to introduce 

the set Po = PO(nh nz) of upper tail probabilities of Ko(nh nz) defmed by 

(3.10) 

The distribution Ko(nl> nz) is symmetric about zero with variance 

(3.11) 
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where Vi is given by (3.7); and To(nh n0/v*l/2 --7d N(O, 1) as n* --700. 

Exact upper tail probabilities p E PO(nh n2) are given in Table 1 for the 

balanced case with nl = n2 ~ 10, and in Table 2 for the unbalanced case with n2 - 2 

~ nl < n2 ~ 10. The algorithm described in Kendall and Gibbons (1990, sec. 5.4) 

was used for the distribution of each tau component of T*(y) to compute these upper 

tail probabilities. Corresponding lower tail probabilities are obtained using the 

symmetry about zero of Ko(nl> n2). A direct application of the normal 

approximation N(O, v .. ) for Ko(nh n2) leads to the approximation 1 - <I>(q!V .. l/2) for 

Pr [T .. (nh n2) ~ q], q E Q ... In the balanced case with nl = n2= nand Nl = N2 = N 

= n(n - 1)/2, it is preferable to use a continuity correction; which leads to the 

approximation 1 - <I>«q - (2N)-l)/V .. 1I2) for Pr[T .. (n, n) ~ q], q E Q .. (n, n). This 

normal approximation with continuity correction is excellent even for small group 

sizes. 

4 • EXACT INFERENCES 

The inferences proposed in this section are exact in the validity sense: significance 

probabilities, test sizes and confidence coefficients are exact. This holds without 

any distributional assumption about the "between" variables ~ij in (2.1), which is 

rather appealing. Moreover, it can be verified that the proposed tests, confidence 

regions and point estimate have the desirable invariance property of leading to 

equivalent results, given observed data, if the labels A and B for the two compared 

treatments are exchanged. An illustration is given in sec. 5. 

4.1 Exact Tests 

The tests about y considered here are specified by a null hypothesis, an alternative 

hypothesis, and a rejection event, respectively, of one of the following three forms, 

(4.1) 
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(4.2) 

(4.3) 

Here Yo E (-1, 1) is a given value, the test statistic T.(yo) is given by (3.8) with c = 

Yo, and the critical value qp equals the value q E Q. in (3.9) that satisfies Pr[To(nl> 

n2) ;;:: q] = p for a given upper tail probability p < 1/2 in (3.10). The distribution 

1<o(n1o n2) of To(nl> n2) required in this context is described in sec. 3.3 and tabulated 

in Table 1 and Table 2. The test (4.1) consists in rejecting Hoy<-) in favor ofH1.y<+) if 

the event RT<+) occurs, and to accept Hoy<-) otherwise (Lehmann 1986); and similarly 

for (4.2) and (4.3). 

From the results in sec. 3.3 it follows that the power of the test (4.1), as 

well as that of the test (4.2), is > p under the alternative hypothesis, and is ~ p 

under the null hypothesis, with equality in this inequality if and only if y = Yo. In 

particular, each of these two one-sided tests has size equal to p, that is the 

maximum power under the null hypothesis is equal to p; and these two tests are 

strictly unbiased. The two-sided test (4.3) has size 2p, because RT equals the union 

of the two disjoint rejection events in (4.1) and (4.2). 

To illustrate the use of Table 1 and the accuracy of the normal 

approximation, suppose that the two-sided test (4.3) is to be used, and that the 

problem is to determine the critical value qp that corresponds to the size 2p that is 

the closest possible to 0.05 in the balanced case with n1 = n2 = 5 and N1 = N2 = 10. 

According to Table 1, the upper tail probability p E Po(5, 5) that is the closest to 

0.025 is p = 0.0268, which is attained with q = 6/10 E Q.(5, 5) in (3.9). This leads 

to the critical value qp = 6/10 in (4.3), and the size of this exact test is then 2p = 

0.054. If instead the normal approximation with continuity correction is used, the 

problem is to find the value closest to 0.025 that can be assumed by 1 - <1>«s/10 -

1/20)/v.1/2), where s E [-10, 10] is an integer and v. = 1/12. This value is 0.0284, 

which is attained with s = 6. The normal approximation thus leads to the critical 
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value 6/10 and the (approximate) size 0.057; that is to the same critical value and 

almost the same size as when Table 1 is used. 

Given an observed value T .. (yo), the significance probability, that is the 

prob-value, corresponding to the tests (4.1) - (4.3) is equal to Pr[TO(nh n2) ~ 

T .. (yo)], Pr[TO(nh n0 ~ T .. (yo)], and Pr[ \TO(nh n2)\ ~ \T .. (Yo)l1, respectively; where as 

in sec. 3.3, TO(nh n2) has distribution KO(nh n2)' It is evident how such prob­

values can be calculated, either exactly using Table 1 and Table 2, or approximately 

using the normal approximation. 

In case the null and alternative hypotheses of interest are formulated in terms 

of e, these hypotheses should of course be reformulated into equivalent hypotheses 

in terms of y using (2.4) before the tests just described are applied. 

4.2 Exact Confidence Regions 

Let C(l) ~ C(2) ~ .•• denote the Nl + N2 order statistics corresponding to the slopes 

(3.4) from the two groups. It is then clear from (3.5) and (3.8) that, as c varies 

from -00 to 00, the value of T .. (c) changes from 1 to -1 in a series of steps 

downward which occur at the ordered slopes. More precisely, with #{Cim < c} and 

# {Cirs ~ c} denoting the number of slopes in group i that are < c and ~ c 

respectively, T .. (c) in (3.8) can be represented as 

T .. (c) = l-~(wjNJ[#{Cim<c}+#{Cm~c}]; (4.4) 

whereas the limits from the left and from the right of c, T .. (c - 0) and T .. (c + 0), can 

be represented by the right hand side of (4.4) with [+] replaced by 2#{Cim < c} and 

2#{ C irs ~ c} respectively. The Nl + N2 order statistics C(k) are distinct with 

probability one, and the jump downward, T .. (c - 0) - T .. (c + 0), of the step function 

(4.4) at each c equal to a slope from group i then equals 2WjNi' 

For any given p E PO(nh n2) in (3.10) with p < 1/2, let qp E Q .. be defined 

as in (4.1) - (4.3), and let L = L(p) and U = U(p) be the integer-valued random 

variables 
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These variables satisfy L ::::;; U with probability one and, for any given c E 

(-00, 00), the following relations among events hold, 

[c ~ C(d :::> [T.(c) < Clp] :::> [c > C(L)]' 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

The three events in (4.7), as well as the three events in (4.8), have equal 

probability, because the events [C(L) = c] and [C(U) = c] have zero probability . 

Now, the relations (4.7) and (4.8) hold in particular with c = y, in which 

case the two middle events each have probability 1 - p by the definition of qp' It 

follows that with c = y, each of the six events in (4.7) and (4.8) has probability 1 -

p, which implies that the events [C(L) ::::;; y], [y::::;; C(U)]' and [C(L) ::::;; Y ::::;; C(U)] have 

probability 1 - p, 1 - p, and 1 - 2p, respectively. Thus, given observed data, the 

confidence coefficient associated with the confidence regions [C(L)' 00), (-00, C(U)]' 

and [C(L), C(U)] foryis 1 - p, 1 - p, and 1- 2p, respectively. 

In the balanced case with nl = n2 = nand Nl = N2 = N = n(n - 1)/2, the 

jump T.(c - 0) - T.(c + 0) equals lIN at each of the ordered slopes C(1) < C(2) < ... , 

and qp E Q.(n, n) in (3.9) is of the form qp = spIN for some integer sp E [-N, N]. 

Therefore, in this balanced case, T.(C(k) + 0) = (N - k)IN and T.(C(k) - 0) = (N -

k + l)IN for k = 1,2, ... , 2N, and the integers L and U defined by (4.5) and (4.6) 

with Clp = spIN E Q.(n, n) are given by L = N - sp + 1 and U = N + sp' Thus, C(L) 

and C(U) are symmetrically placed in the sequence of ordered slopes if nl = n2, 

whereas this is not necessarily the case if nl '* n2' 

Continuing the illustration with nl = n2 = 5 and N = 10 in sec. 4.1, suppose 

that a confidence interval for y is to be determined so that the associated confidence 

coefficient 1 - 2p is as close to 0.95 as possible. Then, as shown previously, Table 
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1 leads to the exact value p = 0.0268 and qp = spIN = 6/10 E Q*(5, 5), whereas the 

normal approximation with continuity correction leads to the approximate value p = 

0.0284 and the same ~ = 6/10. Thus, according to both Table 1 and the normal 

approximation, qp in (4.5) and (4.6) should be equal to spIN = 6/10, which implies 

L = N - sp + 1 = 5 and U = N + sp = 16. The confidence interval for 'Y then equals 

[C(S), C(l6)]. The exact confidence coefficient associated with this interval is 1 - 2 x 

0.0268 = 0.946, whereas the normal approximation gives almost the same value, 1 

- 2 x 0.0284 = 0.943. 

From (2.4) it is known apriori that 'Y E (-1, 1). Nevertheless, the endpoints 

C(L) and/or C(U) of the confidence regions for 'Y described may not belong to this 

open interval (-1, 1), although the confidence coefficient associated with such a 

region is exact and the ordinary coverage interpretation in repeated sampling holds. 

Such disturbing phenomena are not unusual when confidence regions for ratios of 

variances in random-effects models are considered, see for instance Lehmann 

(1986, p. 421). 

Confidence regions in terms of e are obtained through the transformation 

(2.8). That is, the confidence regions [C(L)' 00), (-00, C(U)] and [C(L)' C(U)] for 'Y are 

transformed into the regions [G(C(L»)' 00], [0, G(C(U)] and [G(C(L»)' G(C(U))] for e 
with the same exact confidence coefficient as the original 'Y-regions. If C(L) and/or 

C(U) do not belong to (-1, 1), then of course the corresponding transformed bounds 

for e are zero or infinite. 

4.3 A Point Estimator 

Following Hodges and Lehmann (1963), the point estimate of 'Y considered here 

equals a value c that makes T.(c) as close as possible to the mean zero of the 

symmetric distribution Ko(nh nz) of T.('Y). Let Lo and Uo be the integer-valued 

random variables defined by the right-hand side of (4.5) and (4.6), respectively, 

with qp replaced by zero. Moreover, define the estimator 

(4.9) 

13 



of y. The two order statistics in (4.9) satisfy C(Uo) ~ C(Lo). In the balanced case 

with n1 = nz, yequals the median of the Nl + Nz slopes (3.4); whereas if nl :;: nz 

then this is not necessarily the case. 

The estimator (4.9) is exactly or approximately median unbiased in the 

sense that the probabilities of yoverestimating and underestimating y satisfy 

A 
(1 - Eo)/2 ~ Pr[y < y] ~ (1 + Eo)/2, (4.10) 

A 
(1 - Eo)/2 ~ Pr[y < y] ~ (1 + Eo)/2, (4.11) 

where Eo = Pr[To(nb nz) = 0] is the probability mass of Ko(nb nz) at the point zero; 
/\ 

see the Appendix. Thus, if Eo is equal to or close to zero, then y is exactly or 
A 

approximately median unbiased. Actually, y may be exactly or approximately 

median unbiased even if Eo > 0 is large, but this then depends on the joint 

distribution of the slopes (3.4) and, in particular, on the joint distribution of the n. 

"between" l;ij's in (2.1) about which no assumption has been made. For large n., Eo 

is close to zero, if not equal to zero, because Ko(n h nz) tends to a normal 

distribution as n. ~ 00. 

/\. 
As is the case for the confidence regions for y considered in sec. 4.2, y may 

A 
not belong to the open interval (-1, 1). The corresponding point estimator O(y) of e 
in terms of (2.8) is exactly or approximately median unbiased in the sense that 

(4.10) and (4.11) hold with e and OCr) substituted foryand y, respectively. 

4.4 Simultaneous Inferences 

The comparison of primary interest in a 2 x 2 crossover trial typically concerns the 

effect of the treatments on the level of the response variable. A crucial assumption 

usually made (Jones and Kenward 1989 chap. 2) in this context is that the period 

effects and the direct treatment effects are fixed and additive, with no other 

disturbing fixed effects being present, that is no carry-over or aliased effects. In 

terms of (2.1) this assumption implies 
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Jl;.1 - Jl;.z = 1t + ~, i = 1, 

= 1t-~, i=2; (4.12) 

where the constant ~ equals the (A - B)-difference of the fixed direct treatment 

effects, and the constant 1t equals the (period 1 - period 2)-difference of the fixed 

period effects, with ~ typically being of primary interest. In addition to the 

assumptions made in sec. 2, it is assumed throu&hout the subse<JJ.lent part of this 

article that (4.12) holds. so that inferences about ~ and (~, 1) can also be 

considered. The additional assumption that (4.12) holds does not influence 

marginal inferences about 1 based on (3.8) because, as can be seen from (3.2) and 

(3.3), (3.8) is not influenced by the Jl;./s in (2.1). 

Exact inferences about ~ can be made (Jones and Kenward 1989 chap. 2) 
1\ -

using essentially a two-sample t-statistic based on (2.7) as follows. Let ~ = (Y 1- + 

Y 2)/2, S2_ = [(n1 - 1) S21_ + (n2 - 1) s22J/(n .. - 2), S2 .. = S2_ [1/n1 + 1/nzJ/4 and 0'2 .. = 

O'2AB[1/n1 + 1/nzJ/4. Moreover, for any given d E (-00,00), let 

1\ 
t(d) = [~- d]/s .. , (4.13) 

which is T(n .. - 2, 0) distributed with noncentrality parameter 0 = (~ - d)/O' ... The 

basic tests about~, similar to (4.1) - (4.3), are of one of the following three forms 

U <-)0 A < A 
.I..l()Ll • 0 - 00, (4.14) 

(4.15) 

(4.16) 

Here t(~) is given by (4.13) with d equal to the value~, and tp,v denotes the upper 

p point (0 < p < 1/2) of the central t-distribution T(v, 0) with v = n .. - 2 degrees of 

freedom. The size of the tests (4.14) - (4.16) equals p, p and 2p, respectively; and 

(Lehmann 1986) these three tests are strictly unbiased. The confidence coefficient 
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A A 
associated with the corresponding confidence regions [A - tp,v s., co), (-co, A + tp,v 

s.] and [~- tp,v s. ,~+ tp,v s.] is equal to 1 - p, 1 - p and 1 - 2p, respectively. 

It is then of interest to know how these exact inferences about A are related 

to the exact inferences about y considered in sec. 4.1 and 4.2, and in particular 

whether it is possible to make exact simultaneous inferences. It turns out that such 

inferences can easily be made as follows. 

Define a "rectangular" confidence region for (A, y) as the direct product of 
A 1\ 

two marginal regions: (a) a given A-region of the form [A - tp,v s., co), (-co, A + tp,v 
A 1\ 

s.], or [A - tp,vs., A + tp,vs.], as just described; and (b) a given y-region of the form 

[C(L), co), (-co, C(U)]' or [C(L), C(U)], as described in sec 4.2; with the two given 

associated marginal confidence coefficients possibly distinct. The exact confidence 

coefficient associated with such a "rectangular" confidence region for (A, y) is 

simply equal to the product of the two marginal confidence coefficients; that is, as if 

the two random regions (a) and (b) used in the direct product were independent. 

The confidence coefficient of the "rectangular" confidence region can thus be made 

equal to a desired value by choosing the two marginal confidence coefficients 

appropriately. 

Intuitively it may be somewhat surprising that the confidence coefficient of 

the "rectangular" confidence region can be factorized as described, because actually 

the marginal random regions (a) and (b) are not independent. To show the 

factorization result, note first that by (4.7) and (4.8), the event of y being covered 

by the random region (b) is equal with probability one to a certain event C defined 

in terms of T.(y). Now, it can be shown using the results in sec. A.2 in the 
1\ 

Appendix that T.(y) is independent of A and s. in (4.13). Thus, the event D of A 

being covered by the random region (a) is independent of the event C, that is Pr[C 

(\ D] = Pr[C] Pr[D] holds as required. 

Consider now two given tests: (i) a test about A of the form (4.14), (4.15) 

or (4.16); and (ii) a test about y of the form (4.1), (4.2) or (4.3); with the two given 

marginal sizes, at and aT respectively, possibly distinct. An exact multiple test 

procedure can be based on these two tests (i) and (ii), viewed as a family of tests, 

with each test either rejecting or accepting its null hypothesis Ho according to 
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whether its rejection event occurs or not Thus, briefly, the four possible decisions 

with this family are: to reject Ho in (i) and reject Ho in (ii); to reject Ho in (i) and 

accept Ho in (ii); to accept Ho in (i) and reject Hoin (ii); or to accept Ho in (i) and 

accept Ho in (ii). The corresponding type I familywise error rate (FWE) equals the 

probability of making a type I error with at least one of the two tests (i) and (ii). 

This FWE depends on the unknown !l. and 'Y configuration. It is therefore desirable 

to be able to control this FWE in the strong sense (Hochberg and Tamhane 1987) 

through an upper bound that is valid for any !l. and 'Y. Now, defme (ltT = 1 - (1 -

~)(1 - ~) in terms of the marginal sizes ~ and ~ of the tests (i) and (ii). It can be 

shown using the results in sec. A.2 that the FWE is ::;;; (ltT for any !l. and 'Y, with 

equality in this inequality for !l. and 'Y equal to the boundary values !l.o and 'Yo 

specifying the null hypotheses of the tests (i) and (ii). Thus this simple bound ~T is 

the best possible upper bound that controls the type I FWE in the strong sense, and 

it can be made equal to a desired value by choosing the two marginal sizes <It and 

~ appropriately. 

One or both of the given tests (i) and (ii) just considered may be two-sided, 

that is of the form (4.3) or/and (4.16). Suppose now that whenever such a two­

sided test rejects its null hypothesis, a supplementary directional decision is made 

stating on which side of the null value the unknown parameter lies. For instance, if 

the rejection event RT occurs, the supplementary decision is to decide 'Y> 'Yo or Y < 

'Yo if the subevent RT(+) or RT(-), respectively, occurs in (4.1)-(4.3); and similarly for 

(4.14)-(4.16). In addition to the possibility of making a type I error, there is then 

the possibility of making a type III error (Hochberg and Tamhane 1987), that is a 

directional decision in the wrong direction. Now, it can be shown using the results 

in sec. A.2 that the probability of making a type lor/and type III error with at least 

one of the two tests (i) and (ii) is bounded from above by the bound (ltT derived 

previously considering errors of type I only. Thus, in this sense, natural and 

informative directional decisions can be made without additional cost. This 

appealing result parallels that in Hochberg and Tamhane (1987, theorem 2.2, p. 41) 

for fixed-effects linear models. 
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5 . AN ILLUSTRATION 

Koch (1972) reported the following data from a 2 x 2 crossover trial where 10 

children were randomly assigned to the two sequence groups, with n1 = n2 = 5. 

Briefly, the two treatments A and B applied in the two periods to each child were A: 

to drink first 100 ml of grapefruit juice and then an elixir of Pentobarbital; and B: to 

drink: first 100 ml of water and then an elixir of 'Pentobarbital; with the two 

treatment periods separated by one week. The amount of Pentobarbital elixir given 

in each period was proportional to the child's body weight, and the corresponding 

response observation consisted of a measurement of the amount of drug (in J.l.g/ml) 

in a 10 ml sample of blood taken 15 minutes after the elixir administration. The 

measurements (Yijh Yij2) from period 1 and period 2 for the children are, in group i 

= 1 with treatment sequence AB: (1.75, 0.55), (0.30, 1.05), (0.35, 0.63), (0.20, 

1.55), (0.30, 8.20); and in group i = 2 with BA: (7.20,0.35), (7.10, 1.55), (0.75, 

0.25), (2.15, 0.35), (3.35, 1.50). In what follows only point estimates and 

confIdence regions based on these data are considered; it should be evident how the 

tests and the multiple test procedure described in sec. 4.1 and 4.4 are performed. 

The estimates required for the inferences about Il. in (4.12) based on (4.13) 
1\ 

with n .. - 2 = 8 degrees of freedom are: Il. = -2.595 and s .. = 0.998. For instance, 

the 95 % confidence interval for Il., with endpoints -2.595 ± 2.306 x 0.998, is 

equal to [-4.90, -0.29]. This gives a clear indication that Il. < 0, which means that 

the mean response level is lower under A than under B. 

Suppose now that it is also of interest to compare A and B with respect to 

the within-subject variability of the response measurement. The confidence regions 

for "{ and the point estimate of "( described in sec. 4.2 and 4.3 are based on the N 1 + 

N2 = 20 order statistics C(k) corresponding to the slopes (3.4) from the two groups. 

Since the crossover trial considered is balanced, the selection of the relevant order 

statistics to be used in this context is very simple: the point estimate 'Yequals the 

median (C(10) + C(ll))/2; and, as shown in sec. 4.2, the interval [C(6), C(15)] is a 

confidence interval for "{with exact confIdence coefficient 0.946. With the present 
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data, Y = -0.993 and [C(6), C(lS)] = [-1.031. -0.667]. This gives a clear indication 

that y is much smaller than zero, which means that the within-subject response 

variability is much smaller under A than under B. As mentioned in sec. 4.2 and 
A 

4.3, the endpoints of the confidence interval for yand the point estimate y do not 

always lie within (-1, 1), although this interval is known apriori to contain y. In the 

present case, ris very close to the lower endpoint of (-1, 1), whereas C(6) actually 

is below it. Results in terms of e = a2 A/a2B are obtained by using the tranformation 

(2.8): the point estimate of e equals 0.003, and the confidence interval for e with 

exact confidence coefficient 0.946 equals (0,0.200]; which indicates the relative 

smallness of a2
A compared to (J2B' 

The two confidence intervals for L\ and y just considered can also be viewed 

simultaneously. As shown in sec. 4.4, the confidence rectangle [-4.90, -0.29] x [-

1.031, -0.667] for (L\, y) based on these two marginal intervals has an exact 

confidence coefficient simply equal to the product of the two marginal confidence 

coefficients 0.95 and 0.946, that is equal to 0.899. 

Cornell (1991) also considered these data, and his asymptotically 

distribution-free test of the hypothesis a 2A = a\ based on Kendal1's tau leads to a 

prob-value < 0.01. No corresponding nonparametric confidence interval for a2A1a\ 

is available. 

6. CONCLUDING REMARKS 

A 2 x 2 crossover trial is of course not primarily designed to compare the two 

treatments with respect to the within-subject response variability, but such a 

comparison may nevertheless provide additional information of considerable 

importance for the overall judgement of the two treatments. It has been shown in 

this article that it is possible to make various exact inferences of interest in this 

context, without any assumption about the joint distribution of the between-subject 

random effects ~ij in (2.1), which is rather appealing. It is also appealing that no 
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assumption is required about fixed effects that may influence the mean response 

level, unless the inferences considered concern such fixed effects. An open 

problem is whether/how exact inferences can be made under essentially weaker 

distributional assumptions for the within-subject random effects than those used in 

this article. 

A decision problem related to the directional decisions described in sec. 4.4 

concerns the position of"( and tl. relative to given intervals (Yo, "("0) and (tl.'o, S'o)· 

For instance, in the context of bioequivalence trials, these intervals may consist of 

,,(-values and of tl.-values that are considered to be essentially equivalent to zero. 

Following Lehmann (1957, sec. 10), decision rules can be based on intersections 

of "one-sided" rejection events of the form (4.1) - (4.2) with Yo and y'o substituted 

for "(0, and of the form (4.14) - (4.15) with So and tl."o substituted for t1o; with the 

possible decisions reflecting various degrees of inconclusiveness. A very simple 

decision rule of this kind is to make the decision D: "( E (Yo, "("0) and tl. E (So, tl."o) 

if the intersection of the following four rejection events occurs: RT(+)(yo), RT(-)(y'o), 

Rt(+)(tl.'o), Rt(-)(tl."o), with obvious notation; and to make no decision otherwise. The 

probability of deciding D if actually D is not true is then bounded from above by the 

maximum of the four sizes. This can easily be shown by using the fact that the 

probability of an intersection is at most as large as that of each of the intersected 

events. Thus, if each of the four one-sided tests has a size ~ 0.05, then the 

probability of deciding D erroneously is ~ 0.05. The corresponding decision rule 

concerning tl. only was proposed in the context of bioequivalence trials by Westlake 

(1981) in terms of confidence intervals and by Schuirmann (1981) in terms of two 

one-sided tests. 

If the n .. "between" ~i/S in (2.1) are assumed to be independent and 

distributed according to a common parent ~-distribution with variance 0 ~ 0'21; < 

00, it is possible to derive a normal approximation for the power of the tests 

(4.1)-(4.3) along the lines in Konijn (1956), using (3.2) and Hoeffding's (1948) 

representation of Kendall's tau as a U-statistic. The asymptotic result supporting 

the approximation assumes that "( becomes close to "(0 as n .. becomes large. More 

precisely it is assumed, with "(0 E (-1, 1) and ex. E (0, 1/2) given, that the 
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sequence of situations considered in such that: (a) n1 & nz ~ 00; (b) P tends to ex 

at the rate p = ex + 0(n.-1/Z); (c) the ~-distribution remains fixed; and (d) the 

"within" variances crZA and crZB vary in such a way that crZAB in (2.3) tends to 

some limit crzoo E (0,00) and y in (2.4) tends to Yo at the rate y = Yo + h!n.l/Z + 

0(n.-1/Z) for some h E (-00, 00). No assumption about the shape of the ~­

distribution is necessary. 

Briefly, the approximation in question is Pr(RT(+») "" <1>(K - zp), Pr(RT(-») "" 

<1>( -K - Zp), and Pr(RT) "" <1>( \K\ - Zp) + <1>(- \K\ - Zp); with Zp = ctH (l-p) and K = K 

n.l12(y - Yo) for a certain K which depends on the ~-distribution and which 

satisfies Kmin ~ K ~ Kmax with Kmax = 3/[1t(1 - YoZ)l12] and Kmin = Kmax exp {-

2crZ!;/[crZAB(1-yOZ)]}. The bound Kmin is of particular interest for planning 

purposes. If estimates sZ + and sZ _ of Var(Yij+) and Var(Yij_) are available, an 

estimate K* min of Kwn is easily obtained by substituting the estimate max (0, 

SZ)SZ_ - 1) for the unknown quantity 2cr\lcrZAB = Var(Yij+)Nar(Yij_) - 1. This 

estimate K* min can then be substituted for K in the definition of K to get an 

approximate lower bound for the power of (4.1)-(4.3) under the alternative 

hypothesis. Vseful additional relations and approximations concerning jj. and y 

simultaneously can be obtained through (A.3). These results could be used for 

planning purposes, including the determination of the number n •. A more detailed 

description of these results and applications is however beyond the scope of this 

article. 

A problem that has not been considered in this article is how ties among 

observations should be handled. This requires further investigations. 

APPENDIX 

A.l Proof of (4.10) and (4.11) 

The proof parallells that of Hodges and Lehmann (1963) for estimates of location 

and translation parameters. More precisely, the relations (4.7) and (4.8) hold 

with Lo, Vo, yand zero substituted for L, V, c and qp' respectively; with the two 
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middle events (and thus all six events) each having probability (1 - Eo)/2. The 
1\ 

inequalities (4.10) and (4.11) then follow easily using the fact that CCUo) ~ Y ~ 

C(Lo). 

A.2 A Representation and Some Related Results 

For i = 1,2, define Ui = Lj Ui/ni> s2m = Lj(Uij - UJ/(ni - 1) and U·ij = (Uij - UJ/sm, 

j = 1, ... , nb in terms of the Ui/s in (3.2); and let U\ denote the vector with 

components U\j' j = 1, ... , ni' It then follows from (3.2) that for i = 1,2, Yi- and 

S2i_ in (2.7), and Si(C) in (3.3), can be represented as 

- -Yi- = Ili- + O'ABUi> S2i_ = ()2AB s2m, (A.l) 

with V irs = (1 - y2)112 (Zu - Zu) + 2(~is - ~ir)/O'AB' By well known properties of 

random samples from normal distributions, U h U2, SW, S2U, U·1 and U·2 are 

independent; and these random variables and vectors are independent of the V irs'S in 

(A.2), because the Ui/s are independent of the 21/s and of the ~i/S in (3.2). 

It follows immediately from (A.l), (A.2) and the definition (3.8) of 

T.(c) that: (a) T.(y) is independent of (Y1-, Y2-, Sl_, S2-); whereas (b) for c '* y, 

T.(c) is independent of (Y1-, Y2-) but not of (Sl-, S2-)' Thus, t(d) in (4.13) is 

independent of T.(c) if c = y, but not necessarily otherwise. Some useful 

relations concerning the case c '* y can be derived using the fact that t( d) and T.( c) 

are conditionally independent given (Sl-, S2-)' By a straight forward application of 

the generalized Kimball (1951) inequality (Esary, Proschan and Walkup 1967), it 

follows from this conditional independence that, for any given - 00 ~ a < 0 < b ~ 

00 and q E Q. in (3.9), 

Pr[a ~ t(d) ~ b, T.(c) ~ q] -- Pr[a ~ t(d) ~ b] Pr[T.(c) ~ q], (A.3) 
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where,.., denotes ::;;, =, ::::, if c < y, c = y, c > y, respectively. The fact that t(d) is 

independent of T.( y) is thus contained in this more general result. Note also that 

each side of (A.3) is a nonincreasing function of c. 
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Table 1. Upper Tail Probabilities of Ko(n1o n2) for Equally Large Groups. 

n in each group 

s 3 4 5 6 7 8 9 10 

0 .6389 .5920 .5670 .5517 .5415 .5343 .5290 .5249 

1 .3611 .4080 .4330 .4483 .4585 .4657 .4710 .4751 

2 .1389 .2413 .3059 .3481 .3772 .3981 .4137 .4257 

3 .0278 .1181 .1977 .2572 .3008 .3333 .3581 .3774 

4 .0451 .1153 .1798 .2320 .2730 .3053 .3310 

5 .0122 .0597 .1184 .1727 .2185 .2562 .2869 

6 .0017 .0268 .0729 .1236 .1706 .2113 .2457 

7 .0101 .0416 .0850 .1299 .1714 .2079 

8 .0030 .0218 .0558 .0962 .1364 .1736 

9 .0006 .0104 .0349 .0692 .1066 .1431 

10 .0001 .0044 .0208 .0483 .0816 .1163 

11 .0016 .0116 .0326 .0612 .0932 

12 .0005 .0061 .0213 .0449 .0736 

13 .0001 .0030 .0134 .0322 .0572 

14 .0000 .0013 .0081 .0226 .0438 

15 .0000 .0005 .0047 .0154 .0330 

16 .0002 .0026 .0103 .0244 

17 .0001 .0013 .0066 .0177 

18 .0000 .0007 .0042 .0127 

19 .0000 .0003 .0025 .0089 

20 .0000 .0001 .0015 .0061 

21 .0000 .0001 .0008 .0041 

NOTE: For n1 = n2 = n::;;; 10, the table gives values of Pr[To(nb n2);;::: sIN] for s = 0, 

1, 2, ... ; where N = n(n-1)/2, and To(nb n2) has distribution KO(nb n2)' Correspon­

ding lower tail probabilities are obtained by using the symmetry about zero of Ko(n1o 

n2)' If c = y, then the random variable (3.8) has distribution Ko(n1; n2)' 



Table 2. Upper Tail Probabilities of Ko(nh n2) Close to 0.10,0.05,0.025,0.010,0.005 for Unequally Large Groups. 

n1 ~ t P(t) n1 n2 t P(t) n1 n2 t P(t) n1 ~ t P(t) n1 ~ P(t) n1 ~ P(t) 

3 4 .5429 .1181 4 6 .3670 .1015 5 7 .3267 .1024 6 8 .2920 .1007 7 9 .2614 .1042 810 .2426 .1006 
.5810 .0764 .3872 .0975 .3307 .0962 .2946 .0989 .2631 .0997 .2438 .0989 

.7524 .0417 .4747 .0534 .4178 .0513 . 3679 .0526 .3350 .0500 .... .3094 .0501 

.7905 .0278 .4815 .0482 .4297 .0448 .3704 .0496 .3368 .0497 .3106 .0499 
1.0000 .0069 .5623 .0262 .4931 .0255 .4336 .0268 .3985 .0256 .3690 .0251 

.5690 .0220 .5050 .0216 .4362 .0245 .4002 .0241 .3702 .0239 

3 5 .4323 .1208 .6498 .0112 .5683 .0110 .5095 .0103 .4704 .0100 .f. .4310 .0102 

.4710 .0931 .6566 .0084 .5802 .0093 .5171 .0098 .4721 .0092 .4322 .0100-

.5742 .0569 .7104 .0066 .6277 .0053 .5626 .0051 .5150 .0051 .4760 .0051 

.6129 .0361 .7374 .0042 .6396 .0042 .5702 .0047 .5167 .0050- .4772 .0048 

.6645 .0333 

.7161 .0222 5 6 .3519 .1077 6 7 .3053 .1007 7 8 .2724 .1027 8 9 .2514 .1027 910 .2341 .1018 

.8065 .0097 .3620 .0963 .3084 .0999 .2744 .0983 .2529 .0990 .2351 .0992 

.8581 .0069 .4380 .0572 .3925 .0502 .3505 .0514 .3200 .0510 .3013 .0501 

1.0000 .0014 .4481 .0487 .3988 .0454 .3525 .0482 .3214 .0494 .3023 .0491 

.5241 .0261 .4517 .0274 .4203 .0256 .3800 .0255 .3550 .0257 

4 5 .3909 .1122 .5342 .0210 .4579 .0245 .4245 .0243 .3814 .0244 .3561 .0248 

.4091 .0913 .6000 .0129 .5452 .0108 .4841 .0102 .4457 .0103 .4160 .0100+ 

.5091 .0580 .6101 .0098 .5514 .0099 .4861 .0099 .4471 .0099 .4171 .0100-

.5273 .0424 .6759 .0057 .5981 .0054 .5416 .0052 .4971 .0051 .4584 .0052 

.6273 .0264 .6861 .0042 .6044 .0050- .5457 .0049 .5000 .0047 .4594 .0049 

.6455 .0171 

.7455 .0101 

.7637 .0059 

.8638 .0028 

NOTE: For n2 - 2::;; n1 < n2 ::;; 10, the (n1> n~-subtable gives, for each target value p = 0.10, 0.05, 0.025, 0.010, 0.005: (a) the largest P(t)-value ::;; p, if there is such a value; and (b) the 

smallest P(t)-value ~ p. Here P(t) = Pr [To(nl> n~ ~ t], t E Q., where To(nl> n~ has distribution Ko(nl> n:J. Corresponding lower tail probabilities are obtained by using the symmetry about zero 

of Ko(n1, n:J. If c = 'Y, then the random variable (3.8) has distribution Ko(n1> n:J. 
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