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ABSTRACT. The comparison of primary interest in a 2 x 2 crossover trial
typically concerns the effect of the treatments, say A and B, on the mean
response level. This article deals with another important aspect, namely the
within-subject response variability under A and B. Differences in drug
formulation and/or administration may lead to considerable differences in within-
subject variability, whatever is the difference in terms of mean level; and
consideration of both these aspects may therefore be of considerable importance
for the judgement of the treatments. It is shown that, although there are no
within-subject treatment replications, it is possible to make various exact
inferences about the A/B ratio of within-subject variances and about the (A - B)-
difference in mean level, simultaneously and marginally. These inferences are
semiparametric in that no distributional assumption is made about the between-
subject variability, whereas a normality assumption is used for the within-subject
variability. The inferences include tests, confidence regions, and a multiple test

procedure. A power approximation is also given. The results are illustrated

numerically.
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made concerning this ratio. These inferences are exact in that significance
probabilities, test sizes and confidence coefficients are exact. Moreover, the
inferences are semiparametric in that no distributional assumption is made about the
"between" random effects, whereas the "within" random effects are assumed to be
normally distributed. The within-subject variability considered here can in principle
be thought of as being composed of several components of interest (Ekbohm and
Melander 1989, 1990), but such components are of course not identifiable with a 2
X 2 crossover design.

Recently Cornell (1991) proposed a nonparametric test of the particular
hypothesis 02, = 623 based on Kendall's tau applied to within-subject sums and
differences of responses in each group. The test is asymptotically distribution-free,
not exact; and no corresponding nonparametric confidence region for 62,/6% is
available. In contrast, the various semiparametric inferences proposed in this article
are exact, and they include tests of more general hypotheses than 62,/0% =1, as
well as confidence regions for 62,/6%. These inferences are also based on
Kendall's tau, but more general linear combinations of the responses are
considered. It is an open problem whether/how exact inferences can be made under
essentially weaker distributional assumptions for the within-subject variability. For
some results on related problems concerning differences between the marginal
distributions of a bivariate distribution, see Kepner and Randles (1982) with
references.

‘The assumptions, the notation, and some basic results are given in sec. 2
and 3. Various inferences are then given in sec. 4, including: exact tests and
confidence regions for ¢2,/62%, a related point estimate, and certain exact
simultaneous confidence regions and multiple test procedures concerning
differences both in mean level and in within-subject variability. An illustration is
given in sec. 5. In sec. 6, some concluding remarks are made, and some additional

results are briefly mentioned, including a power approximation. The Appendix

contains some technical details.



2. ASSUMPTIONS AND NOTATION

Let Yip and Yiz denote the response observations from period 1 and period 2,
respectively, for subject j = 1, ..., n; in sequence group i = 1, 2; with each n; = 2.
Moreover, let n. = n,; + n,, and let group 1 correspond to treatment sequence AB,
and group 2 to BA. For convenience, no notational distinction is made between
random quantities and the corresponding realizations in this article. The normal
distribution with mean a and variance b is denoted N(a, b) and @ denotes the
distribution function of N(0, 1). The t-distribution with f degrees of freedom and
noncentrality parameter & (Owen 1985) is denoted T(f, ).

It is assumed that the response vector (Yi, Yi2) for subjectj =1, ..., n; in

group i = 1, 2 can be represented as
(Y, Yiz) = (s M) + G+ €515 & + &) (2.1)

where: (a) (W, M) is @ nonrandom vector reflecting fixed effects such as direct
treatment effects, period effects and indirect treatment effects; (b) &; is a random
variable reflecting the between-subject variability; and (c) (g, &) is a random
vector reflecting the within-subject variability in each period. No restriction is put
on the two vectors (b, Myip), i = 1, 2, in (2.1), and no assumption is made about
the functional relationship between these vectors and the fixed effects that they
reflect. Moreover, no assumption is made about the joint distribution of the n.
"between" variables €; in (2.1). In particular, they are not assumed to be
independent or identically distributed.

The essential distributional assumption in this article concerns the n.
"within" vectors (g, &) in (2.1). These vectors are assumed to be mutually
independent and independent of the n. "between" variables &;. Moreover, with =,

denoting equality in distribution, it is assumed that, fori=1,2andj=1, ..., n;,

(&1, &) =a¢ (Ea, Ep), i=1
=4 (g, €a)s i=2, 2.2)



where €, ~ N(0, 02,) and &3 ~ N(0, 62) are independent with 0 < 62, <ecand 0 <
0% < 0. Here the index , or g indicates the treatment in the relevant period. In terms

of these within-subject variances, define
0 = 6%/6% O%p = 0% + 0% (2.3)

Thus, the ratio 0 is a measure of the relative variability within subjects under the
two treatments. The problem is to make exact inferences about 6, or, equivalently,

about
Y = (0%, -0%)/6%p5 = (0-1)/(0+1) (2.4)

under these assumptions. Clearly, Y is an increasing function of >0, and -1 <y <
1.

The inferences about y proposed in this article are based on the within-

subject sums and crossover (A - B)-differences,
Y. = Yi + Y, 2.5)

Yi. = Y- Yip, i=1,
= Yiz - Yij, i=2; (2.6)

which are basic also for inferences about fixed effects. For instance, the ordinary t-
based inferences (Jones and Kenward 1989, chap. 2) about additive fixed period
effects and direct treatment effects are based on the differences (2.6) through

Yi- = ZJ Yij./ni, Szi_ = Zj (Yij— - ?i_)2/(ni' 1), (2.7)



i=1, 2; with s2,_and s?, usually combined into a pooled estimate of Var(Yj). Note
that Var(Y;;) equals 62,5 in (2.3), and that these ordinary inferences about fixed

effects do not require that © in (2.3) is equal to 1 as is commonly assumed.

It is convenient to introduce the function

G =0 ifc<-1,
= (1+c)/(l-¢) if-l<c<],
= oo ifc>1 2.8)

which, for -1 < ¢ < 1, equals the inverse of the function y=Y(8) given by (2.4).

3. BASIC RESULTS

3.1 Linear Combinations of Response Observations

For any given real c, let Yy, be defined in terms of (2.5) - (2.6) by

Yij[c] = Yij+ -C Yij- . (3° 1)

The association between Y and Y;;. depends on the value of ¢, and the idea is to
use this dependence on ¢ to make inferences about . A key result in this context is

that the vector (Y., Yy can be expressed in terms of quantities in (2.1) - (2.4) as

(Yi Yie) = Wiy Mig) + Oasl Uy, (Y- YUy + (1 - )27,
+ (0,2 &y, (3.2)

i=1,..,n,i=1,2 Here J; and W are constants defined formally as Y;;. and
Y through (2.5), (2.6) and (3.1) with Yj; and Y, replaced by W; and p, in
(2.1), respectively; whereas the vector (Uy;, Z;) equals (€;/Ca, €;/0s)M fori= 1,
and equals (€;;,/Ca, &;/05)M for i = 2, where M is the 2 x 2 orthogonal matrix with

elements (my;, my,, m,;, my,) equal to (1 + 0)12 (012, 1, -1, 6¥/2), This implies that,



in the right hand side of (3.2), the 2n. variables U; and Z;are: (a) each N(0, 1)
distributed; (b) mutually independent; and (c) independent of the n. "between"
variables &;.

It is now evident from (3.2) that the n. variables Y;. are mutually
independent, with Y;. ~ N(l,, 024p); and that, if ¢ = v, these n. variables are
independent of the n. variables Yj;,;. It is also evident that, if ¢ #, the Yj;'s are not
independent of the Yj's. Actually it follows from (3.2) that if ¢ <y (c > V) then,
marginally, each Y;;, is positively (negatively) regression dependent on Yj;; that is
(Lehmann 1966), the conditional distribution of Yy, given Y; =y increases
(decreases) stochastically as y increases. The joint behavior of the n« variables Yy
depends of course on the joint behavior of the "between" &;'s, about which no

assumption has been made.

3.2 Kendall tau Statistics
Fori=1, 2, let Ti(c) denote Kendall's tau statistic (Kendall and Gibbons 1990)

based on the n; vectors (Yj;., Yy for a given c. That is, Ti(c) = S;(c)/N;, where
Sic) = 22, sign[(Y. - Yie ) (Yigrg - Yir[c])] (3.3)

and N; =ny(n; - 1)/2,i =1, 2. In (3.3), the double sum is over the N; distinct pairs

(r, s) of indices satisfying 1 <r <s <n,, and sign[x] equals -1,0, 1 as x <0,x =

0, x > 0, respectively.

Fori=1,2and 1 <r<s<n,

Cy = (Y - Yir+)/ (Vi - Yir) (3-4)
equals the slope of the straight line connecting the two points (Y;., Yi.) and (Y,
Y;.) in group i. There are thus N;= ny(n; - 1)/2 slopes (3.4) in group i, and it is

easily shown using (3.1) that the right hand side of (3.3) equals that of

Si(c) = XX, sign[Cy - c] (3.5)



with probability one. The N; + N, slopes (3.4) from the two groups are basic for
the exact confidence regions and the point estimate considered in sec. 4.2 and 4.3.
For i = 1, 2, the tau statistic Ti(c) = S;(c)/N; has a discrete distribution

concentrated on the set

Qi = {t = S/Ni; §= 'Nia ‘Ni + 2s vesy Ni" 2, Nl} (3°6)

of N;+ 1 values in [-1, 1], and the random vector (T;(c), T»(c)) can assume any
given value (t;, t,) in Q, x Q, with positive probability. The distribution of (T,(c),
T,(c)) depends only on n; and n, if ¢ = y; whereas if ¢ # v, it depends also on ¢, ¥,
o and on the joint distribution of the n. "between" &;'s.

The distribution of (T;(Y), Ta(})) is particulary simple because: (a) T,(y) and
T,(y) are independent; and (b) for i = 1, 2, Ty(y) is distributed according to the
ordinary Kendall's tau null distribution which is completely determined by the
group size n;. The distributional results (a) and (b) just mentioned hold
conditionally, given the (untied) ranks of the Yy 's in (3.3) within each group,
which is actually why (a) and (b) hold unconditionally. The T;(y) distribution is

symmetric about zero with variance

v; = (2n; + 5)/(ON); 3.7

and T;(y)/vi? —4 N(0, 1) as n; — oo, Further details about this null distribution of

Kendall“s tau are given in Kendall and Gibbons (1990).

3.3 A Combined tau Statistic

It is then natural to combine the tau statistics from the two groups into a single

statistic for inferences about . The combination T.(c) considered here is a weighted

sum with weights inversely proportional to the variances v;; that is

Tdc) = Z w; Ty(c), (3.8)



where w; = v;1/(v;! + vy1) and Ti(c) = Si(c)/N;, with v; given by (3.7) and S;(c)
given by (3.3) or (3.5), i = 1, 2. Such a weighted sum of tau statistics was
considered by Korn (1984) and Taylor (1987) to combine information from
independent blocks.

The T.(c) distribution is concentrated on the set Q. = Q.(ny, n,) of values in
[-1, 1] defined in terms of (3.6) by

Q« = {q=wit; + Woby; (11, ) € Q X Q,}), (3.9)

and T.(c) can assume any given value q € Q. with positive probability. This set Q«
may consist of relatively few values. For instance, in the important balanced case
with n; =n, =n and N; = N, = N = n(n - 1)/2, each weight w; equals 1/2, and
Q.(n, n) then consists of the 2N + 1 valuesq =s/N,s=-N,-N+1,.., N- 1, N.
The Tx(c) distribution depends only on n, and n, if ¢ =7y; whereas if c # v, it
depends also on ¢, ¥, Oxp and on the joint distribution of the n. "between" &;'s
about which no assumption has been made. An important property of the T.(c)-
distribution is however evident from (3.5) and (3.8), namely that T.(c) strictly
decreases stochastically as c¢ increases. This monotonicity result implies in
particular that, if ¢ <1y (c > ), then T.(c) is strictly larger (smaller) stochastically
than if ¢ = v, which is important for the exact inferences considered in sec. 4.

In the sequel, the distribution of T.(y) is denoted Ky(n;, ny), and Ty(n;, n,)
denotes a random variable distributed according to Ko(n,;, n,). Of course, the
distributions Ky(n,;, n,) and Ky(n,, n,) are equal. It is also convenient to introduce

the set Py = Py(ny, ny) of upper tail probabilities of Ky(n;, n,) defined by

Py = {p="Pr[To(n;, n;) 2ql; q € Q.}. (3.10)

The distribution K(n,, n,) is symmetric about zero with variance

Ve = (ZiVi'l)'l, (3.11)



where v; is given by (3.7); and Ty(n;, ny)/v«l2 =4 N(0, 1) as n« —> oo,

Exact upper tail probabilities p € Py(n;, n,) are given in Table 1 for the
balanced case with n; = n, < 10, and in Table 2 for the unbalanced case with n, - 2
<1n; <n, < 10. The algorithm described in Kendall and Gibbons (1990, sec. 5.4)
was used for the distribution of each tau component of T«(y) to compute these upper
tail probabilities. Corresponding lower tail probabilities are obtained using the
symmetry about zero of Ky(n,, n,). A direct application of the normal
approximation N(O, v.) for Ky(n,;, n,) leads to the approximation 1 - ®(q/v.?) for
Pr [T.(n;, ny) 2 ql, q € Q.. In the balanced case withn; =ny,=nand N; =N, =N
= n(n - 1)/2, it is preferable to use a continuity correction; which leads to the
approximation 1 - ®((q - (2N)1)/v.'2) for Pr[T.(n, n) 2 q}, q € Q.(n, n). This
normal approximation with continuity correction is excellent even for small group

sizes.

4. EXACT INFERENCES

The inferences proposed in this section are exact in the validity sense: significance
probabilities, test sizes and confidence coefficients are exact. This holds without
any distributional assumption about the "between" variables &; in (2.1), which is
rather appealing. Moreover, it can be verified that the proposed tests, confidence
regions and point estimate have the desirable invariance property of leading to
equivalent results, given observed data, if the labels A and B for the two compared

treatments are exchanged. An illustration is given in sec. 5.

4.1 Exact Tests
The tests about y considered here are specified by a null hypothesis, an alternative

hypothesis, and a rejection event, respectively, of one of the following three forms,

Ho: Y% Hy: ¥>% R = [T 2q,), 4.1)



Ho: Y2%, HyP: ¥Y<% R© = [T«(Y0) £-q,], 4.2)
I{OY: Y = YO’ Hl'y: 77& YO9 RT = [ IT*('YO)‘ 2 qp], (43)

Here v, € (-1, 1) is a given value, the test statistic T«(y) is given by (3.8) with ¢ =
Yo and the critical value g, equals the value q € Q. in (3.9) that satisfies Pr[To(n;,
ny) = q] = p for a given upper tail probability p < 1/2 in (3.10). The distribution
Ko(ny, ny) of Te(ny, ny) required in this context is described in sec. 3.3 and tabulated
in Table 1 and Table 2. The test (4.1) consists in rejecting Ho,* in favor of H;® if
the event Ry™ occurs, and to accept Hy, otherwise (Lehmann 1986); and similarly
for (4.2) and (4.3).

From the results in sec. 3.3 it follows that the power of the test (4.1), as
well as that of the test (4.2), is > pr under the alternative hypothesis, and is < p
under the null hypothesis, with equality in this inequality if and only if Y=, In
particular, each of these two one-sided tests has size equal to p, that is the
maximum power under the null hypothesis is equal to p; and these two tests are
strictly unbiased. The two-sided test (4.3) has size 2p, because Ry equals the union
of the two disjoint rejection events in (4.1) and (4.2).

To illustrate the use of Table 1 and the accuracy of the normal
approximation, suppose that the two-sided test (4.3) is to be used, and that the
problem is to determine the critical value g, that corresponds to the size 2p that is
the closest possible to 0.05 in the balanced case with n; =n, =5 and N; =N, = 10.
According to Table 1, the upper tail probability p € Py(5, 5) that is the closest to
0.025 is p = 0.0268, which is attained with q = 6/10 € Q.(5, 5) in (3.9). This leads
to the critical value g, = 6/10 in (4.3), and the size of this exact test is then 2p =
0.054. If instead the normal approximation with continuity correction is used, the
problem is to find the value closest to 0.025 that can be assumed by 1 - ©((s/10 -
1/20)/v.12), where s € [-10, 10] is an integer and v. = 1/12. This value is 0.0284,

which is attained with s = 6. The normal approximation thus leads to the critical

10



value 6/10 and the (approximate) size 0.057; that is to the same critical value and
almost the same size as when Table 1 is used.

Given an observed value T.(Y,), the significance probability, that is the
prob-value, corresponding to the tests (4.1) - (4.3) is equal to Pr[To(n,;, ny) 2
Tu(Yo)], Pr{To(ny, ny) £ Tu(Yp)], and Pr[ [To(n;, n,y)| 2 [Tu(Yo)l], respectively; where as
in sec. 3.3, To(n,, ny) has distribution Ky(n;, ny). It is evident how such prob-
values can be calculated, either exactly using Table 1 and Table 2, or approximately
using the normal approximation.

In case the null and alternative hypotheses of interest are formulated in terms
of 6, these hypotheses should of course be reformulated into equivélent hypotheses

in terms of 1y using (2.4) before the tests just described are applied.

4.2 Exact Confidence Regions

Let Cyy < Cpy < --- denote the N, + N, order statistics corresponding to the slopes
(3.4) from the two groups. It is then clear from (3.5) and (3.8) that, as ¢ varies
from - to oo, the value of T.(c) changes from 1 to -1 in a series of steps
downward which occur at the ordered slopes. More precisely, with #{C,, <c} and
#{Cy, < c} denoting the number of slopes in_group i that are <cand <c

respectively, T«(c) in (3.8) can be represented as
Tdc) = 1-% (W/N) [#{Cix <c} +#{Cy <c}]; (4.4)

whereas the limits from the left and from the right of ¢, T.(c - 0) and T.«(c + 0), can
be represented by the right hand side of (4.4) with [ +] replaced by 2#{C,; <c} and
2#{C;, < c} respectively. The N; + N,order statistics C, are distinct with
probability one, and the jump downward, T«(c - 0) - T«(c + 0), of the step function
(4.4) at each c equal to a slope from group i then equals 2w;/N;.

For any given p € Py(n,, ny) in (3.10) with p < 1/2, let q, € Q. be defined
as in (4.1) - (4.3), and let L = L(p) and U = U(p) be the integer-valued random

variables

11



L= min{k; T*(C(k) + 0) < qp}’ (4.5)

U = max{k; T«(Cqy-0)>-q,}. (4.6)

These variables satisfy L < U with probability one and, for any givenc €

(o0, e0), the following relations among events hold,

[c2Cqyl D [Tuc) <q,] D [c>Cqyl, @.7

[c £ Cay] D [Tuc) > -q,] 2 [c < Cyl. 4.8)

The three events in (4.7), as well as the three events in (4.8), have equal
probability, because the events [Cq, = c] and [Cg, = c] have zero probability .

Now, the relations (4.7) and (4.8) hold in particular with ¢ =¥, in which
case the two middle events each have probability 1 - p by the definition of q,. It
follows that with ¢ =1, each of the six events in (4.7) and (4.8) has probability 1 -
p, which implies that the events [Cy, < V], [Y € Crl, and [Cqy €7 £ Cqpy] have
probability 1 - p, 1 - p, and 1 - 2p, respectively. Thus, given observed data, the
confidence coefficient associated with the confidence regions [Cg,, o), (-o0, Cyl,
and [Cq,, Cp] foryis 1 -p, 1 - p, and 1 - 2p, respectively.

In the balanced case with n; =n, =n and N; = N, = N = n(n - 1)/2, the
jump T«(c - 0) - T«(c + 0) equals 1/N at each of the ordered slopes C;y < Cpy <++-,
and ¢, € Q«(n, n) in (3.9) is of the form q, = s,/N for some integer s, € [-N, N].
Therefore, in this balanced case, T{Cy, +0) = (N - k)/N and T:(Cgy - 0) = (N -
k+1)/Nfork=1,2, .. 2N, and the integers L and U defined by (4.5) and (4.6)
with q, = s,/N € Qu«(n, n) are given by L=N -5, +1 and U = N + s,. Thus, Cg,
and Cg;, are symmetrically placed in the sequence of ordered slopes if n; = n,,
whereas this is not necessarily the case if n; # n,.

Continuing the illustration with n, =n, =5 and N = 10 in sec. 4.1, suppose

that a confidence interval for 1y is to be determined so that the associated confidence

coefficient 1 - 2p is as close to 0.95 as possible. Then, as shown previously, Table

12



1 leads to the exact value p = 0.0268 and g, = s,/N = 6/10 € Q.(5, 5), whereas the
normal approximation with continuity correction leads to the approximate value p =
0.0284 and the same q, = 6/10. Thus, according to both Table 1 and the normal
approximation, q, in (4.5) and (4.6) should be equal to s,/N = 6/10, which implies
L=N-s,+1=5andU=N +s, = 16. The confidence interval for Y then equals
[Cesys Cugl- The e7;act confidence coefficient associated with this intervalis 1 - 2 x
0.0268 = 0.946, whereas the normal approximation gives almost the same value, 1
- 2x0.0284 = 0.943.

From (2.4) it is known apriori that y e (-1, 1). Nevertheless, the endpoints
Cq, and/or Cg, of the confidence regions for ¥ described may not belong to this
open interval (-1, 1), although the confidence coefficient associated with such a
region is exact and the ordinary coverage interpretation in repeated sampling holds.
Such disturbing phenomena are not unusual when confidence regions for ratios of
variances in random-effects models are considered, see for instance Lehmann
(1986, p. 421).

Confidence regions in terms of 0 are obtained through the transformation
(2.8). That is, the confidence regions [Cy,, ©0), (-00, Cqp] and [Cg,y, Cqyl for 7y are
transformed into the regions [G(Cy,), *], [0, G(Cg,] and [G(Cg,), G(Cwy)] for 6
with the same exact confidence coefficient as the original y-regions. If Cy, and/or

Cw) do not belong to (-1, 1), then of course the corresponding transformed bounds

for O are zero or infinite.

4.3 A Point Estimator
Following Hodges and Lehmann (1963), the point estimate of y considered here

equals a value c that makes T.(c) as close as possible to the mean zero of the
symmetric distribution Ky(n;, ny) of T«(y). Let Ly and U, be the integer-valued
random variables defined by the right-hand side of (4.5) and (4.6), respectively,

with g, replaced by zero. Moreover, define the estimator

Y= (Caoyr Co)/2 (4.9

13



of y. The two order statistics in (4.9) satisfy Cuo) < C(Lo). In the balanced case
with n, = n,, '?equals the median of the N; + N, slopes (3.4); whereas if n; #n,
then this is not necessarily the case.

The estimator (4.9) is exactly or approximately median unbiased in the

sense that the probabilities of '? overestimating and underestimating 7 satisfy

(1-e/2 <Prly<yl < (1 +&0)/2, (4.10)
(1-e2 <Py <yl < (1 +&0)/2, (4.11)

where €, = Pr[Ty(n;, ny) = 0] is the probability mass of Ky(n;, n,) at the point zero;

see the Appendix. Thus, if €, is equal to or close to zero, then {y\ is exactly or
approximately median unbiased. Actually, ? may be exactly or approximately
median unbiased even if g, > 0 is large, but this then depends on the joint
distribution of the slopes (3.4) and, in particular, on the joint distribution of the n.
"between" &;'s in (2.1) about which no assumption has been made. For large n., &

is close to zero, if not equal to zero, because Ky(n;, n,) tends to a normal

distribution as n« — ee,

As is the case for the confidence regions for y considered in sec. 4.2, '/y\may
not belong to the open interval (-1, 1). The corresponding point estimator G(/y\) of 0
in terms of (2.8) is exactly or approximately median unbiased in the sense that

A
(4.10) and (4.11) hold with 6 and G(Y) substituted for y and '\\(, respectively.

4.4 Simultaneous Inferences

The comparison of primary interest in a 2 x 2 crossover trial typically concerns the
effect of the treatments on the level of the response variable. A crucial assumption
usually made (Jones and Kenward 1989 chap. 2) in this context is that the period
effects and the direct treatment effects are fixed and additive, with no other
disturbing fixed effects being present, that is no carry-over or aliased effects. In

terms of (2.1) this assumption implies

14
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where the constant A equals the (A - B)-difference of the fixed direct treatment
effects, and the constant & equals the (period 1 - period 2)-difference of the fixed

period effects, with A typically being of primary interest. In addition to the

assumptions made in sec. 2, it is assumed throughout the subsequent part of this
article that (4.12) holds. so that inferences about A and (A, v) can also be

considered. The additional assumption that (4.12) holds does not influence
marginal inferences about y based on (3.8) because, as can be seen from (3.2) and
(3.3), (3.8) is not influenced by the p;'s in (2.1).

Exact inferences about A can be made (Jones and Kenward 1989 chap. 2)
using essentially a two-sample t-statistic based on (2.7) as follows. Let 2 =(Y,. +
Y,)/2, 82 =[(n; - 1) 82+ (0, - 1) 82 1/(n« - 2), s% = s2 [1/n, + 1/n,)/4 and 0% =

02,5 1/n; + 1/n,)/4. Moreover, for any given d € (-eo, o), let
A
t(d) = [A - d)fss, (4.13)

which is T(n. - 2, d) distributed with noncentrality parameter 8 = (A - d)/o.. The

basic tests about A, similar to (4.1) - (4.3), are of one of the following three forms

Huot ASA, Hy®: A>A, R = (A 21,], (4.14)
HOA(+): A2 Ao, HIA(-): A< Ao, Rt(.) = [t(Ao) < -tp,v]’ (4. 15)
Host A=A,  Hja: A#A, R = [[((Ag) | 2 t,]. (4.16)

Here t(Ao) is given by (4.13) with d equal to the value A, and t,, denotes the upper
p point (0 < p < 1/2) of the central t-distribution T(v, 0) with v = n. - 2 degrees of

freedom. The size of the tests (4.14) - (4.16) equals p, p and 2p, respectively; and

(Lehmann 1986) these three tests are strictly unbiased. The confidence coefficient
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associated with the corresponding confidence regions [2- toy Se, ), (-o0, 2 + ty
s.] and [3 -ty e s ﬁ +t,,sJisequaltol-p,1-pand1-2p,respectively.

It is then of interest to know how these exact inferences about A are related
to the exact inferences about Y considered in sec. 4.1 and 4.2, and in particular
whether it is possible to make exact simultaneous inferences. It turns out that such
inferences can easily be made as follows.

Define a "rectangular” confidence region for (A, ¥) as the direct product of
two marginal regions: (a) a given A-region of the form [3 - toy Sk, ©0), (~oo, 2 +ty
S+], or [X - tonS+ 2 + t,,8+], as just described; and (b) a given y-region of the form
[Cays 22)s (-0, Cpl, o1 [Cqy, Cany], as described in sec 4.2; with the tw'o given
associated marginal confidence coefficients possibly distinct. The exact confidence
coefficient associated with such a "rectangular” confidence region for (A, V) is
simply equal to the product of the two marginal confidence coefficients; that is, as if
the two random regions (a) and (b) used in the direct product were independent.
The confidence coefficient of the "rectangular" confidence region can thus be made
equal to a desired value by choosing the two marginal confidence coefficients
appropriately.

Intuitively it may be somewhat surprising that the confidence coefficient of
the "rectangular” confidence region can be factorized as described, because actually
the marginal random regions (a) and (b) are not independent. To show the
factorization result, note first that by (4.7) and (4.8), the event of 'y being covered
by the random region (b) is equal with probability one to a certain event C defined
in terms of T.(y). Now, it can be shown using the results in sec. A.2 in the
Appendix that T.«(y) is independent of 2 and s. in (4.13). Thus, the event D of A
being covered by the random region (a) is independent of the event C, that is Pr{C
N D] = Pr[C] Pr[D] holds as required.

Consider now two given tests: (i) a test about A of the form (4.14), (4.15)
or (4.16); and (ii) a test about 7y of the form (4.1), (4.2) or (4.3); with the two given
marginal sizes, o, and o respectively, possibly distinct. An exact multiple test
procedure can be based on these two tests (i) and (ii), viewed as a family of tests,

with each test either rejecting or accepting its null hypothesis Hy according to
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whether its rejection event occurs or not. Thus, briefly, the four possible decisions
with this family are: to reject H in (i) and reject H, in (ii); to reject Hy in (i) and
accept Hy in (ii); to accept Hy in (i) and reject Hyin (ii); or to accept H, in (i) and
accept Hy in (ii). The corresponding type I familywise error rate (FWE) equals the
probability of making a type I error with at least one of the two tests (i) and (ii).
This FWE depends on the unknown A and 7y configuration. It is therefore desirable
to be able to control this FWE in the strong sense (Hochberg and Tamhane 1987)
through an upper bound that is valid for any A and y. Now, define otp =1 - (1 -
o)(1 - ap) in terms of the marginal sizes o, and o of the tests (i) and (i). It can be
shown using the results in sec. A.2 that the FWE is < o, for any A and v, with
equality in this inequality for A and ¥ equal to the boundary values A, and 7,
specifying the null hypotheses of the tests (i) and (ii). Thus this simple bound oy is
the best possible upper bound that controls the type I FWE in the strong sense, and
it can be made equal to a desired value by choosing the two marginal sizes o, and
Oip appropriately.

One or both of the given tests (i) and (ii) just considered may be two-sided,
that is of the form (4.3) or/and (4.16). Suppose now that whenever such a two-
sided test rejects its null hypothesis, a supplementary directional decision is made
stating on which side of the null value the unknown parameter lies. For instance, if
the rejection event Ry occurs, the supplementary decision is to decide y >y, or y <
Yo if the subevent R™ or RO, respectively, occurs in (4.1)-(4.3); and similarly for
(4.14)-(4.16). In addition to the possibility of making a type I error, there is then
the possibility of making a type III error (Hochberg and Tamhane 1987), that is a
directional decision in the wrong direction. Now, it can be shown using the results
in sec. A.2 that the probability of making a type I or/and type III error with at least
one of the two tests (i) and (ii) is bounded from above by the bound o derived
previously considering errors of type I only. Thus, in this sense, natural and
informative directional decisions can be made without additional cost. This
appealing result parallels that in Hochberg and Tamhane (1987, theorem 2.2, p. 41)

for fixed-effects linear models.
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5. AN ILLUSTRATION

Koch (1972) reported the following data from a 2 x 2 crossover trial where 10
children were randomly assigned to the two sequence groups, with n; =n, = 5.
Briefly, the two treatments A and B applied in the two periods to each child were A:
to drink first 100 ml of grapefruit juice and then an elixir of Pentobarbital; and B: to
drink first 100 ml of water and then an elixir of 'Pentobarbital; with the two
treatment periods separated by one week. The amount of ;Pentobarbital: elixir given
in each period was proportional to the child's body weight, and the corresponding
response observation consisted of a measurement of the amount of drug (in pg/ml)
in a 10 ml sample of blood taken 15 minutes after the elixir administration. The
measurements (Y, Y;pp) from period 1 and period 2 for the children are, in group i
= 1 with treatment sequence AB: (1.75, 0.55), (0.30, 1.05), (0.35, 0.63), (0.20,
1.55), (0.30, 8.20); and in group i = 2 with BA: (7.20, 0.35), (7.10, 1.55), (0.75,
0.25), (2.15, 0.35), (3.35, 1.50). In what follows only point estimates and
confidence regions based on these data are considered; it should be evident how the
tests and the multiple test procedure described in sec. 4.1 and 4.4 are performed.

The estimates required for the inferences about A in (4.12) based on (4.13)
with n. - 2 = 8 degrees of freedom are: 2 = -2.595 and s. = 0.998. For instance,
the 95 % confidence interval for A, with endpoints -2.595 + 2.306 x 0.998, is
equal to [-4.90, -0.29]. This gives a clear indication that A < 0, which means that
the mean response level is lower under A than under B.

Suppose now that it is also of interest to compare A and B with respect to
the within-subject variability of the response measurement. The confidence regions
for vy and the point estimate of y described in sec. 4.2 and 4.3 are based on the N; +
N, =20 order statistics Cg, corresponding to the slopes (3.4) from the two groups.
Since the crossover trial considered is balanced, the selection of the relevant order
statistics to be used in this context is very simple: the point estimate /y\equals the
median (Cgq + Cuyy)/2; and, as shown in sec. 4.2, the interval [C, Cys)] is a

confidence interval for y with exact confidence coefficient 0.946. With the present
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data, ? =-0.993 and [C), Cus] = [-1.031. -0.667]. This gives a clear indication
that y is much smaller than zero, which means that the within-subject response
variability is much smaller under A than under B. As mentioned in sec. 4.2 and
4.3, the endpoints of the confidence interval for ¥ and the point estimate /'y\do not
always lie within (-1, 1), although this interval is known apriori to contain Y. In the
present case, /'y\is very close to the lower endpoint of (-1, 1), whereas Cg, actually
is below it. Results in terms of 0 = 02,/0%; are obtained by using the tranformation
(2.8): the point estimate of 0 equals 0.003, and the confidence interval for © with
exact confidence coefficient 0.946 equals (0, 0.200]; which indicates the relative
smallness of 62, compared to 6%;.

The two confidence intervals for A and v just considered can also be viewed
simultaneously. As shown in sec. 4.4, the confidence rectangle [-4.90, -0.29] X [-
1.031, -0.667] for (A, v) based on these two marginal intervals has an exact
confidence coefficient simply equal to the product of the two marginal confidence
coefficients 0.95 and 0.946, that is equal to 0.899.

Cornell (1991) also considered these data, and his asymptotically
distribution-free test of the hypothesis 62, = 6% based on Kendall's tau leads to a

prob-value < 0.01. No corresponding nonparametric confidence interval for 62,/6%

is available.

6. CONCLUDING REMARKS

A 2 x 2 crossover trial is of course not primarily designed to compare the two
treatments with respect to the within-subject response variability, but such a
comparison may nevertheless provide additional information of considerable
importance for the overall judgement of the two treatments. It has been shown in
this article that it is possible to make various exact inferences of interest in this
context, without any assumption about the joint distribution of the between-subject

random effects &; in (2.1), which is rather appealing. It is also appealing that no
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assumption is required about fixed effects that may influence the mean response
level, unless the inferences considered concern such fixed effects. An open
problem is whether/how exact inferences can be made under essentially weaker
distributional assumptions for the within-subject random effects than those used in
this article.

A decision problem related to the directional decisions described in sec. 4.4
concerns the position of ¥ and A relative to given intervals (Y, Y"o) and (A'y, A").
For instance, in the context of bioequivalence trials, these intervals may consist of
v-values and of A-values that are considered to be essentially equivalent to zero.
Following Lehmann (1957, sec. 10), decision rules can be based on intersections
of "one-sided" rejection events of the form (4.1) - (4.2) with v, and ", substituted
for v,, and of the form (4.14) - (4.15) with A'y and A", substituted for Ay; with the
possible decisions reflecting various degrees of inconclusiveness. A very simple
decision rule of this kind is to make the decision D: Y € (Yo, Y') and A € (A'y, A"y)
if the intersection of the following four rejection events occurs: R{™(Yo), RrO(Y"o),
R&(A'), RO(A",), with obvious notation; and to make no decision otherwise. The
probability of deciding D if actually D is not true is then bounded from above by the
maximum of the four sizes. This can easily be shown by using the fact that the
probability of an intersection is at most as large as that of each of the intersected
events. Thus, if each of the four one-sided tests has a size < 0.05, then the
probability of deciding D erroneously is < 0.05. The corresponding decision rule
concerning A only was proposed in the context of bioequivalence trials by Westlake
(1981) in terms of confidence intervals and by Schuirmann (1981) in terms of two
one-sided tests.

If the n. "between" &;'s in (2.1) are assumed to be independent and
distributed according to a common parent &-distribution with variance 0 < 6% <
oo, it is possible to derive a normal approximation for the power of the tests
(4.1)-(4.3) along the lines in Konijn (1956), using (3.2) and Hoeffding's (1948)
representation of Kendall's tau as a U-statistic. The asymptotic result supporting
the approximation assumes that 'y becomes close to ¥, as n. becomes large. More

precisely it is assumed, with v, € (-1, 1) and o € (0, 1/2) given, that the
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sequence of situations considered in such that: (a) n; & n, — eo; (b) p tends to .
at the rate p = o + o(n«12); (c) the &-distribution remains fixed; and (d) the
"within" variances 62, and 6% vary in such a way that 62,3 in (2.3) tends to
some limit 62, € (0, =) and 7y in (2.4) tends to Y, at the rate Y =Y, + h/n.'2 +
o(n.12) for some h € (-e¢, ). No assumption about the shape of the &-
distribution is necessary.

Briefly, the approximation in question is Pr(Ry*) = ®(k - z,), Pr(R®) =
D(-x - z,), and Pr(Ry) = ®( K] - ;) + D(- K] - z,); with z,=P!(1-p)and k=K
n.2(y - v,) for a certain K which depends on the &-distribution and which
satisfies Ko € K € K., with K., = 3/[®(1 - v,0)'2] and K;, = Kiox €xp {-
26%/[62,5(1-Y,»)]}. The bound K,,, is of particular interest for planning
purposes. If estimates s2, and s2. of Var(Y;;,) and Var(Y;;) are available, an
estimate K", of K, is easily obtained by substituting the estimate max (0,
s2,/s2. - 1) for the unknown quantity 26%/02,5 = Var(Y;;,)/Var(Yy.) - 1. This
estimate K*;, can then be substituted for K in the definition of ¥ to get an
approximate lower bound for the power of (4.1)-(4.3) under the alternative
hypothesis. Useful additional relations and approximations concerning A and Y
simultaneously can be obtained through (A.3). These results could be used for
planning purposes, including the determination of the number n.. A more detailed
description of these results and applications is however beyond the scope of this
article.
A problem that has not been considered in this article is how ties among

observations should be handled. This requires further investigations.

APPENDIX

A.l Proof of (4.10) and (4.11)
The proof parallells that of Hodges and Lehmann (1963) for estimates of location
and translation parameters. More precisely, the relations (4.7) and (4.8) hold

with Lo, Ug, Y and zero substituted for L, U, ¢ and q,, respectively; with the two
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middle events (and thus all six events) each having probability (1 - €,)/2. The

inequalities (4.10) and (4.11) then follow easily using the fact that Cqyg) < /y\ <
Cwo)-

A.2 A Representation and Some Related Results

For i = 1, 2, define U; = Z; Uy/n,, s%y = (U - U)/(n; - 1) and U = (U - T/siw,
j=1, .., n, in terms of the Uy's in (3.2); and let U*; denote the vector with
components U*;, j = 1, ..., n;. It then follows from (3.2) that fori=1, 2, Y. and
s%.in (2.7), and S;(c) in (3.3), can be represented as

Yi— = M + GABﬁiy Szi_ = GZAB s? iUs (Al)
Si(c) = ZZ sign[(U* - U {(Y - €)si(U" - U') + Vi }] (A.2)

with Vi, = (1 - )12 (Z; - Z,) + 2(€;, - &.)/Oas. By well known properties of
random samples from normal distributions, ﬁl, i—Jz, S1u, Sou, U¥ and U*, are
independent; and these random variables and vectors are independent of the Vs in
(A.2), because the Uy's are independent of the Z's and of the &;'s in (3.2).

It follows immediately from (A.1), (A.2) and the definition (3.8) of
T.«(c) that: (a) T.(y) is independent of (?1_, ?2_, $1., S2.); whereas (b) for ¢ # v,
T.(c) is independent of (Y,., Y,) but not of (s., s,.). Thus, t(d) in (4.13) is
independent of T.«(c) if ¢ =7, but not necessarily otherwise. Some useful
relations concerning the case c #y can be derived using the fact that t(d) and T.«(c)
are conditionally independent given (s,., s,). By a straight forward application of
the generalized Kimball (1951) inequality (Esary, Proschan and Walkup 1967), it
follows from this conditional independence that, for any given-e0c<a<0<b<
oo and q € Q. in (3.9),

Pr[a <t(d) <b, T«(c) <q] ~ Pr[a < t(d) < b] Pr[T.«(c) <q], (A.3)
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where ~ denotes <, =, 2, if ¢ <Y, ¢ =1, ¢ > v, respectively. The fact that t(d) is
independent of T.(Y) is thus contained in this more general result. Note also that

each side of (A.3) is a nonincreasing function of c.
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Table 1. Upper Tail Probabilities of Ky(n,, n,) for Equally Large Groups.

n in each group

$ 3 4 5 6 7 8 9 10

0 .6389 .5920 .5670 5517 5415 5343 5290 .5249
1 3611 .4080 .4330 4483 4585 4657 4710 4751
2 1389 .2413  .3059 3481 3772 3981 4137 4257
3 .0278 .1181  .1977 2572 .3008 3333 3581 3774
4 0451  .1153 1798 2320 2730  .3053 .3310
5 0122 .0597 1184 1727 2185 2562 .2869
6 0017  .0268 0729  .1236 1706 2113 2457
7 .0101 0416 0850 1299 1714 2079
8 .0030 0218  .0558 0962 .1364 .1736
9 .0006 0104  .0349 0692 1066  .1431

10 .0001 0044  .0208 .0483  .0816  .1163
11 0016 .0116 0326 .0612  .0932
12 0005  .0061 0213 .0449  .0736
13 .0001 0030 0134  .0322  .0572
14 0000 .0013 0081  .0226  .0438
15 .0000  .0005 .0047 0154  .0330
16 .0002 0026 .0103  .0244
17 .0001 .0013  .0066 .0177
18 .0000 .0007 .0042  .0127
19 .0000 .0003 .0025  .0089
20 .0000 0001 .0015  .0061
21 .0000 .0001  .0008  .0041

NOTE: For n; =n, = n < 10, the table gives values of Pr{T,(n,, n,) = s/N] for s = 0,
1, 2, ... ; where N = n(n-1)/2, and Ty(n,;, n,) has distribution Ky(n,, n,). Correspon-
ding lower tail probabilities are obtained by using the symmetry about zero of Kq(n,,
ny). If ¢ = v, then the random variable (3.8) has distribution Ky(n;, ny).



Table 2. Upper Tail Probabilities of Ky(n,;, n,) Close to 0.10, 0.05, 0.025, 0.010, 0.005 for Unequally Large Groups.

n n t P(t) n; ny t P) m ny t P(t) n n t P(t) n n t P(t) n n t P()
3 4 5429 1181 4 6 .3670 .1015 5 7 3267 .1024 6 8 .2920 .1007 7 9 2614 1042 8§10 2426 .1006
5810 .0764 3872 0975 3307  .0962 2946 0989 2631 .0997 2438  .0989
7524 0417 A747 0534 4178 .0513 3679 0526 3350  .0500 + 3094 0501
7905  .0278 A815 0482 4297 0448 3704 0496 3368  .0497 3106 .0499
1.0000 .0069 5623 0262 4931 .0255 4336 .0268 3985 0256 3690 0251
5690 .0220 5050 .0216 4362 .0245 4002 .0241 3702 0239
3 5 4323 .1208 6498 0112 5683 .0110 5095 .0103 4704 0100 + 4310 .0102
4710  .0931 6566 .0084 5802  .0093 5171 .0098 4721 0092 4322 0100~
5742 .0569 7104 0066 6277 .0053 5626 .0051 5150  .0051 4760 .0051
6129 0361 7374 .0042 6396 0042 5702 .0047 5167  .0050 — 4772 .0048
6645 .0333
7161 .0222 5 6 .3519 .1077 6 7 .3053 .1007 7 8 2724 1027 8 9 2514 1027 910 2341 .1018
8065 .0097 3620 .0963 3084 .0999 2744 0983 2529 0990 2351 0992
8581 .0069 4380 .0572 3925 0502 3505 .0514 3200 0510 3013 .0501
1.0000 .0014 4481 0487 3988 .0454 3525 .0482 3214 .0494 3023 0491
5241 0261 4517 .0274 4203 .0256 3800 .0255 3550 .0257
4 5 3909 .1122 5342 0210 4579  .0245 4245 0243 3814  .0244 3561 .0248
4091  .0913 6000 .0129 5452  .0108 4841 0102 4457  .0103 4160 .0100 +
5091 .0580 6101  .0098 5514  .0099 4861 .0099 4471 .0099 4171 .0100—
5273 0424 6759  .0057 5981 .0054 5416 0052 4971 0051 4584 0052
6273 0264 .6861 .0042 .6044  .0050 -~ 5457  .0049 5000 .0047 4594 .0049
6455 0171
7455 0101
7637  .0059
8638 .0028

NOTE: For n, - 2 <1y < ny < 10, the (ny, ny)-subtable gives, for each target value p = 0.10, 0.05, 0.025, 0.010, 0.005: (a) the largest P(t)-value < p, if there is such a value; and (b) the
smallest P(f)-value > p. Here P(t) = Pr [To(ny, ny) > t], t € Qu, where Ty(ny, np) has distribution Ko(ny, ny). Corresponding lower tail probabilities are obtained by using the symmetry about zero
of Ky(ny, ny). If ¢ = 7, then the random variable (3.8) has distribution Ko(ny, ny).
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