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ABSTRACT 

STATISTICAL RANK METHODS 
FOR ORDINAL CATEGORICAL DATA 

The aim of this paper is to present a new rank. method for 
analysing ordinal scale problems, and to give some of its basic 
properties. The method is suitable for the assessment of validity 
and reliability of health measurement instruments. We will be 
able to separate systematic and random differences between 
judges or scales and also. in a suitable way. measure the size of 
these two types of differences. 
Some methods for estimating systematic differences between 
raters will be given. 
The model is illustrated in a worked example. 
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1. INTRODUCTION 

Measurement 

Measurements in clinical research have traditionally been based on 

mortality and objective criteria like laboratory measurement values 

in order to record symptoms as the basis of judgements focused 

upon the presence or absence of disease. Nowadays. in clinical 

and other sociomedical research as well. there is a development of 

measuring techniques aimed at qualitatively assessing the health 

status or the quality of life of an individual before and after medical 

or surgical treatment. Many health care researchers have devel­

oped instruments consisting of subjective judgements obtained 

from questionnaires or rating scales. An excellent guide written by 

McDowell and Newell describe 50 sociomedical measurement 

methods [1]. The difficulty in developing health measuring 

instruments lies in assessing their validity. reliability and repro­

ducibility and Teeling Smith [2] points out that still much research 

is needed to produce universally accepted and validated instru­

ments. 

Traditionally. it has been assessed that measurement is the assign­

ment of numerals to objects or events according to rules classify­

ing measurement data into different kind of scales [3]. The lowest 

level of scaling is assignments restricted to distinguish between 

two or more different categories.The scale is called nominal or 

categorical. A classification of individuals into different diagnoses 

is an example of nominal measure. Labelling ordered categorical 

data creates an ordinal scale. The numerals in the ordinal scale 

remain invariant under all order-preserving transformations, which 

means that the numerical codes do not represent any mathematical 
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value except indicating the rank. order between categories. The fact 

that one succession of numerals of an ordinal scale can be replaced 

by another and that there are unequal. unmeasurable. distances 

between adjacent categories. scale codes. restricts the application 

of common mathematical and statistical methods. 

An example of an ordinal scaling is the measuring of satisfaction 

used in a Social Support Questionnaire: "very satisfied. fairly 

satisfied. a little satisfied, a little dissatisfied. fairly dissatisfied • 

very dissatisfied " [1] 

Qualitative measures differ from the quantitative measures in the 

interval and ratio scales by the former's unstandardized way of 

constructing the scale and by the means of translating the 

categorical variables into a numerical form suitable for statistical 

analysis. 

Measuring instruments record abstract and subjective phenomena 

formulated as items. a common concept for measuring instruments. 

often consisting of questions to be answered in rating scales or 

statements with which the rater has to agree or disagree. 

Different approaches have been used in developing health indices. 

Some efforts are made to create health measurement scales that can 

be treated as interval scales, which simplifies the statistical treat­

ment. The most common type is however still the ordinal 

scale.[ 1.2.3] 
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Quality of measurement 

There will usually be a lot of tests made. when developing a new 

scale based on qualitative measures in order to assess its validity 

and reliability. This is also necessary when a measuring scale, 

originally designed for another kind of population. is to be used. 

Validity can be defined as the extent to which an instrument meas­

ures what it is intended to measure. Validity is based on an interpre­

tation of the instrument on a special set of data, that means that it is 

valid for a particular purpose depending on the definitions of the 

variables and the population. In this context we will mention some 

of the many different concepts of validity. Content validity 

expresses to what extent the chosen items reflect the aim of the 

measurement. Criterion validity is traditionally defined as the as­

sociation of a new scale to the true state. If the criterion is availa­

ble simultaneous the concurrent validity is assessed. On the other 

hand if the agreement of the new scale is assessed to outcomes in 

the future the concept is predictive validity [1] The construct 

validity indicates how well an instrument correlate to other. 

The usefulness of a measurement scale depends also on the degree 

to which it can be replicated. Reliability is concerned with the 

extent to which repeated measurements on the same subject yield 

similar results. [ 1,4,5] 
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The main difference between assessing validity and reliability is 

formulated in the following practical definitions of the concepts: 

Validity refers to agreement between the true state and a fallible 

rater. This agreement will reflect the conformity of the rater and the 

true state. It is however quite impossible to find a "true state" in a 

health measuring scale - the closest you can get is agreement with a 

"gold standard", for instance a very qualified rater. 

The most common paired measuring situation is however the one 

with two equivalent judges. The concept reliability refers to the 

agreement or consistency between two fallible raters [6,7] judging 

the same individual. 

Note that the definitions of validity and reliability are based on 

agreement and that there is a big difference between agreement and 

association. H two raters petfectly agree in judging individuals, all 

observations will lie in the diagonal of the matrix of the categories. 

The association between the paired observations is also complete 

and positive in this situation. As an index of association, the coeffi­

cient of correlation is sometimes used to determine the reliability. 

This is however not suitable, since an inter-observer association 

may be very strong despite a weak. inter-observer agreement in, 

the judgements [7,9]. 
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Random and systematic error of a measurement 

An observed score can be considered to consist of two main parts: 

an underlying true score and error components. The amount of 

systematic error is connected with the validity concept. The ran­

dom error component depends on the ability of the instrument to 

measure in a reproducible and consistent way [8]. 

The concept of reliability is commonly used for measurements in 

the nominal and ordinal scale .The corresponding term for asses­

sing the random variabilty of measurements in interval and ratio 

scales, for instance in the calibration of laboratory instruments, is 

precision or reproducibility. The standard deviation is a measure 

of the imprecision of a measurement instrument in the interval or 

ratio scale. Since this parameter has no real meaning for nominal 

and ordinal scalest other methods are used to assess the reliability 

of measuring instruments in these scales. 

The aim of measurement is to get information about the true level of 

the variable of an individual. According to traditional definitions: 

reliability is the proportion of observed variation in scores that is 

due to the true subject-to-subject variation. The unreliability is the 

proportion of variation that is due to random error in measure­

ments~ [1,8] 
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There are two main sources of inconsistency with repeated mea­

surements depending on how they are obtained; internally for an 

observer and externally between observers. The agreement of an 

observer with himself is usually called intra-observer agreement 

but also test-retest-reliability. This measurement assumes 

stability, that is no change over time in stable subjects. A serious 

problem with estimating test-retest-reliability is the fact that the 

observer will remember the previous judgement. The repeated 

measurements are not independent in this case. 

The agreement of two or more observers judging the same 

individual using the same measurement scale is termed inter­

observer agreement or inter-rater reIiabiIity[1,3,5]. 

Assessing agreement 

There are different approaches to assessing the inter-observer 

agreement or concordance between the two measurements on the 

same individual. One measure of agreement is the proportion of 

agreement among the total number of judgements [3.9]. This index 

does not take into account the amount of agreement expected by 

chance and it also ignores partial agreement and disagreement. It is 

possible to improve it by defining weights to the judgements of 

partial agreement. But not even the weighted percentage agreement 

corrects for agreement expected by chance. [3,9] 
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Probably the most popular measure for summarizing degree of 

agreement between two raters is the coefficient kappa introduced 

by Cohen in 1960. There exist many reports on kappa statistics. An 

extensive and careful treatment is given in the thesis by Schouten 

[9] Kappa is the degree of agreement above the expected random 

agreement divided by the maximum possible excess agreement. 

i e K. = (Po -Pe)/(l-Pe)' 

The observed proportion agreement is here denoted Po. while Pe 

is the chance expected proportion agreement. In the calculation of 

Pe it is supposed that the two observers are independent .. 

In spite of the popularity of kappa, several authors have pointed 

out some unsatisfactory features. For instance kappa is a summari­

zed index of agreement. not distinguishing between systematic and 

random deviations. There are different approaches in calculating 

weighted kappa values [10.11.12.13] which may complicate the 

interpretation. Furthermore. kappa values from different samples 

are not comparable if the number of response categories is not the 

same or if the samples do not represent the same underlying 

population [9]. 

McCullagh [14] and Agresti [lS] propose log -linear models for 

agreement analysis as well as for analysis of ordered categorical 

data for each judge. These are parametric models of a particular 

type. 
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The aim of the present paper is to present a new rank method for 

analysing ordinal scale problems, and to give some of its basic 

properties. We will be able to separate systematic and random dif­

ferences between judges or scales and also in a suitable way 

measure the sizes of these two types of differences. 

We will illustrate our method in a worked example on a material 

used in the thesis by Schouten 1985 [9]. 
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2. A STATISTICAL RANK METHOD FOR ORDiNAl SCALES 

The model 

Suppose there are two judgements in ordinal scales with m 1 and m2 

categories respectively. This first general discussion allows for different 

categorical scales with unequal number of categories. Later on the special 

case, mt = m2 and the case of inter-rater reliability will be treated. 

Suppose further that n individuals from the same population are used in 

the two judgements and that the judgements of different individuals are 

independent. 

The probability of rating a randomly chosen individual to the i:th category 

by judgement 1 and to the j:th category by judgement 2 is denoted by 

Pij . The numbers of judgements in cell (ij), Xij i=1, .... ,m1 and j = 1, .... , m2 

, have a multinomial distribution with parameters n and Pij, i=1, ... ,m1 and 

j=l, ... ,mz· 

A valid scale with reliable judgements will have high probability for 

scores close to the diagonal of agreement. 



A particular ranking 

We will now introduce a rank transformation. common in non parametric 

statistics and related to the ROC curve (Relative operating characteristic) 

used in some medical statistical problems [16] 

The number of observations obtained in category i of rater 1 equals 

m2 

Xi. = LXjj 
j=l 

The ranking of judgement 1 gives the observations in category (i) the 

following ranks 

i-I i 

LX;v. + 1, .....• LXv. 
lJ=1 V=l 

In ranking the observations of judgement 1 we use the convention of 

making the internal ranking of category (i) according to the ranks of 

judgement 2. Thus the observations in cell (ij ) get the following ranks 

from judgement 1: 

to 

and the mean rank. 

(1) 
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In the same way we can define mean judgement 2 rank. 

for cell (ij) as 

() ~ i-1 1 
R.? = Lx· + LY' . +-(l+x") 

I) . '11 . '''1 ) 2 IJ 
1t=1 11=1 

(2) 

m1 

where X.j =I~j 
i=l 

Observe that R~,l) and R~~) are defined only if Xi)' > O. 
IJ IJ 

Definition: 

Two sets of judgements of the same n individuals are called rank 

transformable if R(l) = R~~) for all (iJ') such that X" > 1 
IJ 1) 1) - • 

Remark 1: 

When two sets of judgements are rank. transformable. there wm a 

common ranking for the two sets of ranking. Our convention to rank the 

individuals in cell (ij) in the same order in both ranking gives this 

common ranking if it exists. 

Remark 2: 

H there exists some very clear ordering among the individuals the 

judgements will be exactly or approximately rank. transformable and the 

rates will essentially describe the individual interpretation of the 

measuring scale by the two raters. 

H on the other hand. there is no definite ordering among the individuals. 

there will appear random differences between the two judgements. 

resulting in different mean ranks R~1) and R~2) for the cells (ij). 

12 



Assessing random differences 

H two judgements are not rank. transformable, the difference R~l) - R~) 

indicates locally a deviation from the rank transformable case, which 

means that there is a random error in the two judgements. 

Our convention to rank the individuals within a cell (ij) in the same 

order for both judgements means that each observation in the cell has the 

-(1) -(2) 
same rank difference R· - R· IJ IJ 

According to formulas (1) and (2) this difference can be written 

(3) 

Given that one particular out of n observations appears in cell (ij) , its 

expected rank difference can be written 

(4) 

where q~UI) is the upper left probability ,L, ,L, Pi
1
h of cell (ij) 

11<1 h>J 

and q~lr) is the lower right probability ~, ~,Pi1h of cell (ij), 
. 11>1 h<J 

related to the diagonal of agreement. 
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Lemma 1: 

The expected rank. difference of a randomly chosen observation is 

~ . ~ (ul) (Ie) 
~ ~ (n-1) (qij -qij) Pij = 0 
i=l j=l 

Proof: 

For each il< i and il> j the product Pi
1
h Pij appear twice, 

once with a plus sign and once with a minus sign in the calculation 
QED 

Given the event that one particular observation occurs in cell (ij). the 

conditional variance of the rank difference (~)1) _~)2» associated with 

that single observation is 

(ul) (ul) (lr) (Ir) (ul) (Ir) 
(n-1) [qij (1 - qij ) + qij (1 - qij ) + 2 qij qij ] = 

(ul) (lr) (uI) (Ir) 
(n-1) [qij + qij - ( qij -qij )2] (5) 

The variance (VR) of the rank. difference associated with a randomly 

placed observation equals: 

m1 m 
~ ~ (uI) (Ir) 

VR = ~ ~ Pij (n-1)2 (qij -qij)2 + 
i=l j=l 

m mz 
~ ~ (ul) (Ir) (ul) (\r) 
~ ~ Pij (n-1) [qij + qij - (qij -qij )2] = 
i=l j=l 

m1 mz ml m2 

~ ~ Pij (n-1) (n-2) (q~UI) -qW»2 + ~ ~ Pij (n-1) [q~UI) + q~r)] (6) 
i=l j=l i=l j=l 

This formula (6) is obtained by conditioning on the place of the random 

observation. 
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The variance of the rank difference is a measure of the random error in 

the two judgements of the same individuals. Its value increases with the 

number of observations. 

A standardized variance, (= the variance of the relative rank difference) 

is obtained by dividing by (n-1 )2. An estimate of the standardized 

variance can be obtained by replacing the probabilities in VR by the 

corresponding relative frequencies. The standardized variance can also be 

estimated by the mean of the squares of the obtained rank differences. 

Note that the expectation of the rank difference is 0 and so is also the 

mean of all obtained rank differences. The mean of the squares of rank 

differences equals 

Assessing systematic differences 

Consider next the systematic difference between two raters using the 

same scale, with m categories, independently judging n subjects. There is 

no systematic empirical disagreement between the two raters if 

11 m m 11 

L L Xij = L L Xij for 11 = 1,2, .... ,m-1 
i=lj=l i=lj=l 
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A reasonable empirical measure of the systematic difference at the upper 

boundary of category v is the difference 

Vm mV V m m V 

L L Xi' - L L Xi' = L L Xi' - L L xi' 
"1"1 J "1"1 J"1 J "J 1= J= 1= ]= 1= j=V+l i=V+1 J=1 

(7) 

which we denote by Y v. The expectation of this difference equals 

V m m V (ul) (Ir) 
n (.L L Pij - L ~ Pij ) = n( qv,v+l - qv+l,v) (8) 

1=1 j=V+l i=V+l J=1 

By considering the multinomial distribution of the parts constituting 

this difference, we easily find its variance to be 

n [q~~~+l+ q~11,v - (q~~+l - q~11,v)2] (9) 

The variance can be estimated by replacing the probabilities by the 

corresponding relative frequencies. 

The random variables Yv for different v:s are not independent. 

(ul) (Ir) (ul) (lr) (ul) (Ir) 
n[ QV1,V2+1 + qV2+1,V1 - ( qVl'V1+l - qV1+l,V1)(qv2,Vz+l - QVz+l,Vz )] 

(10) 

The covariances can also easily be estimated by substituting 

probabilities by their corresponding relative frequencies. 

Thus for the variables Y v ' v = 1, .... , m-l we have now the whole 

covariance matrix as well as a basic estimate of that matrix. 

16 



The statistics Y]) , ]) = 1, .... , m-l can be used to estimate the detailed 

behaviour of a possible systematic difference between two judges, that is 

the systematic difference in the determination of the inter-rater reliability. 

y 
For increasing sample size n, the normalized statistics Z]) = 7 converge 

with probability 1 to the parameters ( q~I~+1 - q~:'1']) which describe the 

detailed systematic inter-rater behaviour. 

A simple parametric model for systematic differences 

The systematic inter-rater difference is exhaustively described in a 

nonparametric way by all the category probabilities p~A) ])=1, ••• , m for 

the two raters A = 1,2 or the two corresponding sets of cumulative 

pro babilities 

q(A) = f p~A) 
]) . 1 

1=1 
]) = 1,2, .... ,m-1 

It might however be reasonable to use some simple model with a few 

parameters, e g two parameters describing a tendency for one rater to be 

shifted in some direction relative to the other or being more or less 

concentrated in the categories compared to the other. 
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Let 

1 
g2{ q) = 4q (q-l){ q -:2) = 4q3 - 6q2 + 2q 

and let q{l) and q(2) be two probabilities. 

Then the equation 

determines a curve in the rectangle [0,1] x [0,1]. 

The values of the parameters 9 1 ,92 should satisfy 1911 ~ 1 , 

I 9 z1 < 1, I 9 1 + 9 z I ~ 1 and I 9 1 - 9 2 I < 1 . 

The following figures show the two cases 9 1 = ~, 9 2 = 0 

and 9 1 =0 and 92 =~. 

In the first case, figurela. if q(l) and q(2) represent cumulative 

distribution functions in the same point. the distribution corresponding to 

q(1) is shifted to the right compared to the distribution of q(2). This means 

that there is a systematic difference in position of the two distributions. 
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Analogously in the second case, figure 1 b, There is a difference in 

concentration between the distribution functions of q(l) and q(2). 

Figure 1a: An illustration of 

systematic difference in position 

between two distributions. 
1 

8 1 ='2,82 =0 

g1(q) = 2( q_qZ) 

Figure 1 b: An illustration of 

systematic difference in 

concentration between two 

distributions. 
1 

8 1 =0 and 8 2= 2' 

gz(q) = 4q3 - 6q2 +2q 

In the previous section we have also determined the variances and 

covariances for the differences of the ranks constituting the coordinate 

estimates of the curves. 
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Estimation 

A 

This estimated covariance matrix C could be used as a weight when 

estimating the parameters 8 1 and 8 2, We denote by Q the (m-1)x2 matrix 

with following elements 

QVk = gk (qv) J) = 1. ..... m-l k = 1.2 

where qJ) is the estimate of the mean cumulative probability after 

category J) I.e. 

A 1 J) m m J) 

qi = 2n ( ! ! Xjj + ! ! Xjj ) 
i=1 j=1 i=1 j=1 

Then a suitable estimate of e = [::J is obtained by minimizing 

A 

(Z -Q8) , C-l (Z-Q8). where Z is the (m-l )-dimensional observation 

vector with components Zv v = 1 ...... m-l. 

• • A A A 

The solubon IS 8 = ( Q' C-1 Qtl Q' C-1 Z (12) 

Beside the computational force needed. there arises a practical problem in 

this context. In particular. for small sample sizes it might happen that 

J) m m V 

~ ! Xij = ! ~ Xij = 0 
1=1 j=V+l i=V+l1=1 

i.e. the estimate of VarY J) equals zero. 

In order to get a fully valid method. the above one needs some revision. 
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Distribution free measures of relative position and concentration 

An attractive alternative in measuring relative position and con­

centration of two distributions of judgements would be the use of 

some kind of general parameter not related to any particular mo­

del. 

Consider first two continuous distributions with cumulative dis-

tribution functions F(x) and G(x) respectively. Then a possible 

measure of their positions relative to each other is 

fF(x) dG(x) - fG(x) dF(x). 

H X and Y are independent random variables with these distribu­

tions. the measure can be interpreted in terms of probabilities as 

P(X~Y) - P(Y ~X). 

Obviously the inequality -1 < P(X ~ Y) - P(Y ~ X) < 1 is appli­

cable and both bounds can be attained. 

An analogous measure of the relative position for discrete 

distributions. for example from inter-rater comparisons of the 

same scale with m categories. is obtained by 

L P(X ~v) P(Y = v) - L P(Y ~ v) P(X =v) 
v u 
= L [P(X < v) P(Y= v) - P(Y< v) P(X = v)] (13) 

/I 

A positive value of the relative position indicates that the 

distribution function of the X-values is shifted to the left relative 

the distribution function of Y. 
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For continuous cumulative distribution functions F and G the 

difference 

fF(x) [l-F(x)] dG(x) - fG(x) [l-G(x)] dF(x) can be interpreted 

probabilistica1lyas P(Xl :::; Y1 < X2 ) - P(Yl:::; Xl < Y2 ) for inde­

pendent random variables Xl' X2 and Y l , Y2 with cumulative 

distribution functions F and G respectively. This difference mea­

sures a difference of concentration between the two 

distributions. 

It can be shown that 

-p(l-p):::; P(Xl < Yl < X2 ) - P(Yl:::; Xl < Y2 ):::; p(1-p) 

where p= P(Xl :::; Yl). 

Analogously for the discrete case with the same set of outcomes 

inX and Y: 

P(Xl < Y 1 < X2 ) - P(Y 1 < Xl < Y2 ) 

= L [P(Y= lJ) P(X < lJ) P(X> lJ) - P(X = lJ) P(Y< lJ ) P(Y> lJ)] 
v 

where lJ = 1,2, ... , m. 

Bounds of this difference are determined according to the 

following lemma: 

Lemma 2: 

(14) 

-min (Po - p;, p( p~):::; P(Xl < Y1 < X2 ) - P(Yl < Xl < Y z ):::; 

Po =P( Yl :::; Xl) = L P (Yl:::; lJ) P(X = lJ) and 
v 

Pl = P(Yl < Xl) = L P(Yl < lJ) P(X=lJ) (15) 
v 
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Proof: 

Consider the event (Y 1 < X < Y 2 ) for independent X. Y 1 • Y 2 with 

cumulative distribution functions F(X) and G(X) for X and Y 

respectively. Further, let f(v) and g(v) denote the corresponding 

probabilities for possible outcomes v = 1.2, ... , m. 

Then P(Yl < X < Y2 ) 

= L G(v-1) f(v) [1- G(v)] ~L G(v) f(v) [1 - G(v)] 
II II 

Denoting L G(v) f(v) = P( Y 1 ~ X) = Po' we get 
11 

P(Y 1 < X < Y 2) ~ Po - L G2 (v) f( v ) 
II 

= Po - L (G(v) - Po)2 f(v) - p; ~ Po - P; 
11 

In the same way 
P(Y1 < X < Y2 ) = L G(v-l) f(v) [1 - G(v)] 

11 

~ 2 G(v-l) f(v) [1 - G(v-1 )] ~ P1 - p; 
11 

where P1 = 2 G(v-l) f(v) = P(Y1 < X). 
II 

The corresponding proofs for P(X1 < Y1 < X2 ) are literally the 

same. 

F or a given Po or P1 the bounds is attained when one distribution 

is completely concentrated between the parts Po and (1- Po ) or P1 

and (i-PI) respectively of the other. QED 
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Remark. 1: 

The property in this lemma is related to the maximum variance of a 

Wilcoxon statistic for continuous distributions, obtained by Birn­

baum and Klose,1957 [17] Our principle technique of proof 

would also apply to that problem and it is somewhat simpler than 

their technique. 

Remark 2: 

The boundaries of the difference in the lemma are given by the 

probability Po or PI depending on their distance from Yz • The pro-

bability value with the greatest absolute difference to Yz applies. 

We can now make a suitably normalized measure of relative con­

centration for two judgers using the same scale. Denoting the upper 

bound M we will use the expression 

1 
M [P(Xl < Y 1 < Xz ) - P(Y 1 < Xl < Yz )] = 

~ [! F(v-1) g(v) (1 - F(v» - ! G(v-1) f(v) (1 - G(v)] (16) 
v v 

which always has a value in the interval [-1, 1]. The two extreme 

values correspond to one distribution entirely concentrated in 

relation to the other. 
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The values of the relative position and the relative concentration 

of two judgements in a total agreement are both zero, while 

disagreement will result in nonzero values of one or both of the 

measures. 

The case of equal distributions of X and Y is one example of zero 

relative concentration. Another example is obtained by having three 

possible outcomes, e g VI < V2 < V3 and 

g(v t ) = PI' g(v2 ) = I-Pi' g(v3 ) = 0 

f(v l ) = 0 f(v2 ) = I-pi' f(v3 ) = Pi for some Pi' 0 < Pi<1. 

Intuitively these two distributions also have the same concentration 

relative to each other. Note that the values of Vi' v2 and V3 have no 

influence on the measure. 

Suitable empirical measures are obtained by substituting relative 

frequencies for the corresponding probabilities in the theoretical 

measure. 
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3. EXAMPLE 

Inter-rater agreement 

. In his dissertation 1985 Schouten [9] demonstrated the kappa statistics 

using results from a study designed to investigate the inter-rater reliability 

in a histological classification of carcinoma in situ. We will give a worked 

example of our rank model using parts of the same material and compare 

our measures with corresponding kappa value. 

Two pathologists separately classified 118 biopsy slides into one of five 

ordered categories ranged from 1 = no signs of carcinoma to 5 = invasive 

carcmoma. 

Figure 2 shows the result of the paired independent judgements of the 118 

biopsy slides [ 9.pp6]. 

category by 
pathologist 1 

5 

4 

3 

2 5 

22 

1 

1 

2 

7 

2 

2 

3 

14 

36 

14 

2 

3 

7 

4 

3 

5 category by 
pathologist 2 

Figure 2. Observed frequencies Xjj of biopsy slides classified 
by two pathologist, the same material as in the thesis by 
Schouten [9]. 

The observed proportion of agreement between both pathologists is 64 

percent since 75 of the 118 biopsy slides were equally classified by the 

two pathologists. 
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There are two main sources of disagreement of the pathologists; random 

misclassification on one hand and systematic error on the other . 
• 

Random differences 

In order to assess the random differences of the paire~~lassifications. the 

mean ranks were calculated and shown in figure 3. The observations in all 

cells but (1;1). (3;4) and (5;5) - provided observations - contribute to the 

random differences between the two classifications. The variance of the 

rank differences according to formula (6) is 36.299. The estimate of the 

standardized variance is 0.00265. 

pathologist 1 

5 1 18 
107/114 117/117 

4 1 12 
39191 98.5/98.5 112/109 

3 90 
37.5/53.5 73.5172.5 

2 52 
25/29 33/35 48.5/45.5 

1 26 
11.5/11.5 28.5/23.5 40.5/25.5 

1 2 3 4 5 pathologist 2 

27 39 108 115 118 

Figure 3: Mean ranks for the 118 biopsy slides independently 
classified to cell (ij) by pathologists (1) and (2). written in following 

way: R1f) I R1jl) 
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Systematic differences 

IT the two pathologists do not agree on the item descriptions of the five 

categories there will be a systematic difference between the two 

judgements of the biopsy slides. Occurrence of systematic differences 

between two raters attenuates the validity of the measuring instrument. The 

two sets of cumulative frequencies for the five categories, also shown in 

figure 3, determine the relative lengths of the categories for the two judges. 

Consequently, these different lengths visualize the systematic differences as 

shown in figure 4. 

pathol . t 1 OglS 

/ 

4 
./ V 

./ 

3 
./ 

./ 

/ 
./ 

2 

1 / 
1 2 3 4 5 

pathologist 2 

Figure 4: The systematic differences between the two pathologists appears 
as different lengths between categories, determined by Y v . 
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The pathologists differ essentially in opinion about the categories 2,3 and 

4. The items in the measuring instrument of the histological classification of 

carcinoma may be ambiguously described. This means that the biopsy 

slides have the risk of getting different classifications from the two 

pathologists. 

The systematic differences between the two pathologists can be divided 

into the relative position and the relative concentration of the paired 

classifications. 

Table 1 shows the distributions of the classifications made by the 

pathologists. 

total 
118 
118 

Table 1: The observed frequency distributions of the classifications into 

five categories made by two pathologists. 

Thus the relative position according to formula (13) is 0,0276. The positive 

sign indicates that a greater part of the distribution function of the 

classifications made by the pathologist named 2 is shifted to the left 

relative the distribution function of the classifications made by pathologist 

named 1. 

Further we have Po = 0.573 and P1 = 0.349 giving following differences 

I Po - 0.51 = 0.073 and I Pi - 0.51 = 0.151. Thus the norming constant in this 

example is: M = 0.349(1-0.349) = 0.227. 
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According to formulas (14) and (16) the estimated relative concentration 

is -0.0286 and the estimate of the normalized relative concentration of the 

paired classifications equals -0.126 . 

Table 2 summarizes the different measures of agreement for the example. 

measure of agreement observed the value 
value for total 

~eement 

The random error: 
standardized variance of the rank 0.00265 0 
differences 

The systematic error: 
* the value of relative position 0.0276 0 
* the value of relative concentration -0.126 0 

The coefficient kappa 0.499 +1 

The weighted kappa 0.650 +1 
(disagreement weights) 

The proportion of agreement 64% 100% 

The weighted proportion of 90% 100% 
~eement 

Table 2: Different agreement measures of the example. 
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4 DISCUSSION 

Today health measurement scales are important complements to the 

measurements made by laboratory methods. The problem, though. 

with a measurement based on categorical data is to ensure its 

validity and reliability. A common approach is to use the correlation 

coefficient i order to assess the validity of a measuring instrument 

and coefficient kappa to assess its reliability. Those methods cannot 

separate the different sources of unreliability and unvalidity. 

We suggest here non parametric measures which enables relevant 

descriptions of validity and reliability properties of ordinal scales. 

The worked example shows the behaviour of the method in practice. 

It is possible to visualize the systematic difference between two 

observers or two methods and directly point out those categories 

who have the greatest systematic difference. The systematic error 

between the two measurements will be calculated by using a relative 

position measure and a relative concentration measure of the two 

distribution functions. 

Our metod is useful in developing instruments. It gives a possibility 

to validate the discriminant quality in different scale categories. which 

is important in the process of developing descriptions of items used in 

the scales. 

In this paper we have not developed all relevant statistical properties 

for the suggested measures. Such a development is needed in order 

to get a full understanding of the meaning of the suggested measures. 

These supplementary properties of the method will be presented in a 

forthcoming paper. 
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