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Abstract

With an increasing rate of protein expressions the need for fast protein 

characterization has become more important. Protein NMR has long been an 

important contributor for protein characterization; being one of a few techniques 

that can study proteins at atomic resolution in their native state. Whitin recent 

years faster experimental and processing methods have emerged that are now 

becoming routine. This thesis describes algorithms for automatic backbone 

assignment and validation of structure information by using projection 

experiments together with a decomposition method. Projection experiments 

reduce measurement time for multidimensional spectra thus making it possible to 

obtain very high dimensional spectral information in a fraction of the time 

required for a conventional experiment. By combining different experiments 

backbone, side chain and NOE information can be obtained. A set of software 

tools for automatic backbone characterization where developed from the 

implementation of different algorithms in conjunction with different proteins and 

projection experiments. Testing and refinement of the different tools resulted in a 

robust characterization method well suited for different proteins. Possible future 

projects are expanding the methods to side chain and structure determination 

making the characterization more complete. 

KEYWORDS: NMR, projection experiments, decomposition, algorithm, automatic 

assignment, proteins, NOESY, reduced dimensionality, peak picking.
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Introduction

NMR is a versatile method for protein characterization1,2. With an arsenal of 

various experimental methods it is possible to explore different properties of a 

protein, and with disordered proteins NMR is sometimes the only possibility. 

There is a wide array of different NMR experiments that focus on different parts of 

protein properties. Two of the most important properties is structure 

determination and drug discovery, and protein research depends heavily on 

structure information about proteins3. Three methods exists for protein structure 

determination, X-ray crystallography, NMR and Electron Microscopy. Of these 

three methods is X-ray crystallography the dominant method which represent 

86.9% of the structures deposited in the PDB4. Structures deposited from NMR 

experiments in PDB stands for 12.4% and electron microscopy for less than 1%. 

Prerequisites to get structural information from X-ray crystallography are 

obtaining crystals that diffract at high resolution, which can be a challenge in 

several cases. Further, membrane proteins pose great challenge for crystallization 

and the crystallized protein may not be in their native state5. Electron microscopy 

does not require crystals but suffers from low atomic resolution making it more 

suitable for obtaining larger overall structure information of different biological 

species. Solution NMR on the other hand, provides an excellent way to obtain not 

only structure at atomic resolution, but also dynamics of proteins in solution, 

which can be used to study ligand interaction and kinetics behavior to name a few 

examples. However, applications of experimental NMR methods for protein 

structure determination are limited by protein size and spectral dispersion/

resolution although continuous development is done to extend the maximum size 

of measurable proteins6. Processing multidimensional NMR experiments can be 

very time consuming and expensive 13C and 15N isotopes for protein labeling are 

also required to obtain individual assignments. With the advent of high-

throughput methods, for bacterial over expression of proteins and cell free 

expression systems, large scale production of labeled proteins at a shorter time 

period have been enabled and in conjunction with this have high throughput 
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methods been developed7. Still the need for rapid protein characterization has 

become urgent8. 

Protein NMR

 

For characterization of proteins with NMR, a series of multidimensional spectra 

are recorded to obtain assignments of different spin systems. These assignments 

form the basis for further analysis like structure calculation and dynamic studies. 

2 dimensional experiments are divided into 4 parts: (i) preparation of the sample 

where all spins are returned to their equilibrium state (ii) evolution where 

chemical shifts are encoded (iii) mixing time, where magnetization is transferred 

from one spin to another and (iv) detection of the final FID. This is extended to  

higher dimensional experiments by adding more evolution and mixing time steps.  

Magnetization is transferred through chemical bonds by scalar J couplings over 

one or more bonds or by dipolar couplings through space. During the evolution 

period of the indirect dimension, the evolution time t1 is increased with Δt steps 

altogether sampled with m points. Increased number of indirect dimensions also 

increases the number of m points that have to be recorded for every indirect 

dimension. This gives a measurement of 2N-1*mN-1 complex points for a N-

dimensional experiment9. Increasing dimensionality in experiment can solve some 

of the overlapping problems that exists for larger proteins but longer experiment 

times put an upper limit for higher dimensionality experiments. In traditional 

multidimensional experiments, evolution periods are varied by a time delay. This 

time delay is increased by ∆t steps and varied independently for every added 

dimension10. This creates long experimental time for higher dimensional 

experiments and puts a practical limit on the number of dimensions that can be 

recorded. Multidimensional experiments are required for almost all proteins due 

to the high overlap of proton peaks in a 1D spectra. By increasing the 

dimensionality of the experiments, the resonance frequencies of 1H, 13C and 15N 

can be separately determined. For unlabeled protein samples 2 dimensional 

experiments are recorded to obtain individual protein assignments. For 13C and 

15N labeled samples, 3-dimensional experiments are routinely used for resolving 
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spectral overlap11. However for larger proteins and proteins with severe overlap 

(such as sequence repetition, molten globule and partially unfolded) it is essential 

to increase the resolution further or add different experiments to obtain more 

complete assignments and thus prolong measurement time. Examples of 

multidimensional experiments are HNCA, HN(CO)CA, HNCO, HN(CA)CO, HN(CA)

HA and HCACO all used for obtaining assignments of backbone residues12  and 

HCCH-TOCSY to obtain assignments of side chains. NOESY experiments are used 

for obtaining structure information and together with backbone and side chain 

assignments it can be used for a structure determination. Higher dimensional 

experiments are usually built from lower dimensionality experiments by adding a 

magnetization path for the added nuclei. In projection experiments additional 

magnetization paths are added to an existing experiment and linear dependencies 

are set between selected evolution periods creating high dimensional experiments 

that uses a fraction of the time taken to measure the original experiment. An 

example of this is the HBHACBCACONH experiment where a HAHB magnetization 

path are added to the 4D experiment. This was then used as a projection 

experiment in one of the two backbone experiments used in this study. The time 

taken for measurement of protein depend on the number of indirect points 

measured and the number of scans for increasing signal to noise ratio and the 

duration of one scan. With an absolute lower theoretical threshold for signal to 

noise of one scan for signal detection and a duration time of one second per scan, 

a 2D experiment with 60 complex points would take 120 seconds to acquire i.e 

2N-1*mN-1 where m is the number of complex points in the indirect dimension, N is 

the dimension of the experiment and 2N-1 is for quadrature detection. Therefore a 

5D experiment with 30 complex points would take 16*304 seconds which 

correspond to 5 month and an experiment with N>5D would take several years 

which is not practical. If the number of points in the indirect dimension is 

increased, time required to collect data for higher dimensional experiment 

increases even more dramatically13. This creates a conflict between the need for 

fast experimental time on one hand and better resolution on the other hand. 

Different methods have been developed for overcoming this problems as outlined 

below 14 ,15,16.
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Fast NMR

Fast NMR refers here to NMR techniques that significantly reduces measurement 

time in protein NMR experiments17,18 ,19. Several different experimental and 

processing methods have been developed to reduce measurement time. Examples 

these are non-uniform data sampling20,21 , single scan spectroscopy22,23, HIFI 

NMR24, projection reconstruction25, Hadamard spectroscopy26, GFT27,28, Filter 

Diagonalization Method29,30 , APSY31 , maximum entropy32  and multiway 

decomposition. There has also been improvement in hardware to decrease 

measurement time33. Non uniform sampling is a method where the number of 

points sampled in time domain are much less than with uniform sampling thus 

reducing measurement time considerably. This is a somewhat general term and 

includes nonlinear sampling as well as projection experiments. Non linear 

sampling is a method that records a small optimally selected fraction of the 

experimental data points. The data is then used for reconstructing the spectra. 

There exists different sampling schemes but sampling only a fraction of the 

points substantially decreased measurement time. An iterative procedure is used 

to increase the number of points until the reconstruction of the spectra is the 

same as the original34. The resulting spectra can then be peak picked35. Random 

sampling36  are also used in time domain data acquisition and processed with 

multidimensional Fourier transform. These data are used in an iterative algorithm 

for artifact suppression. Peak picking are then done with statistical methods37. In 

single scan spectroscopy the indirect time variable is replaced by spatial encoding 

of the spin interactions using gradient pulses. The gradient pulses creates 

different excitation in different slices of the sample. This gives different evolution 

times in the sample that can be detected with a single scan in the 2D case. The 2D 

data set can then be reconstructed38. The HIFI NMR method uses two measured 

orthogonal 2D planes as starting planes and then measures tilted angles of planes 

adaptively until the model dose not improve. Peak picking is done using a 

statistical algorithm on the planes avoiding reconstruction of the 3D spectra. 

Maximum entropy is a reconstruction tool that can transform non uniform 
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sampled data without loosing too much information. Hadamard spectroscopy tries 

to record only narrow  frequency intervals instead of the whole spectral width. This 

can then be used for several regions and then get the same information as in the 

full spectra, at least for smaller proteins and a decrease of measurement time is 

also gained. Filter diagonalization is a method that analysis time domain signals 

and give frequencies, amplitudes and line width, making it a suitable replacement 

for Fourier Transformation. Projection reconstruction techniques uses projection 

angles when recording spectra instead of recording the whole time domain grid 

thus reducing the dimensionality of the experiment. These can then be analyzed 

in different ways. In APSY several projections are recorded and peak picked 

iteratively using combinatorial procedures. Another approach is to make 

decompositions of the projections and make peak picking on the resulting 

shapes, thus avoiding peak picking in the projections. Finally, GFT is a method 

used in conjunction with reduced dimensionality spectra and was one of the first 

methods in projection NMR. Reduced dimensionality is achieved by coupling 

evolution steps in the indirect dimension together and making them dependent 

instead of independent. Frequencies in the indirect dimension are then not 

consisting of one nucleus but instead of a linear combination of these. By 

multiplying time domain data with a G-matrix and then Fourier Transform the 

result is a number of lower dimensional spectra that contains different linear 

combinations of nucleus in the indirect dimension. These are often redundant in 

information and are used to determine the different frequencies of the nuclei in 

the indirect dimension.   

Presentation of the thesis

The following thesis will describe methods developed in this project and 

applications to a selected number of proteins. For completeness the following 

description covers all algorithms relevant to this project and therefore 

contributions from Daniel Malmodin, Wolfgang Bermel (BRUKER company) 

Doroteya Staykova are in part included. 
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Methods

Reduced dimensionality experiments are usually derived from traditional NMR 

experiments39,40. In traditional experiments incremental time steps in the 

independent dimensions are varied independently. In reduced dimensionality 

experiment the evolution periods in two or more dimensions are sampled jointly. 

This is achieved by using a linear dependency between selected evolution periods 

expressed as a ratio between two delays. This ratio between fixed evolution 

periods determines the projection angle which can be set from -90 to 90 degree 

angles41. In figure 1 is a projection shown in the shaded plane. The blue peak at 

position ω1, ω2, ωHN is projected 45 degrees to both ω1 and ω2. This gives a 

frequency of ω=ω1+ω2 in the indirect dimension with a projection coordinate of 

(ω,ωNH) in the projection plane. 

Depending on the experiment, projection angles 

used in this study where either 0, ±45 or 90 

degrees. 0 or 90 degrees correspond to a 2D 

projection with one nuclei in the indirect 

dimension while ±45 degrees projections gives 

linear combinations between two or more nucleus 

in the indirect dimension with either positive or 

negative combinations. Coupling of the different 

evolution periods reduces measurement time 

drastically for multidimensional experiments. 

Measurement time for a corresponding 3D 

experiment with 100 complex points in the 

indirect dimension would take approximately 11 

h assuming 1 second for every scan. With a projection from 3D to 2D keeping a 

minimal of 4 planes, ω1, ω2, ω1+ω2 and ω1-ω2, would take 13 minutes. This time 

saving becomes even more enhanced for projected 4D and 5D experiments. The 

output from these experiments are 2D projection planes, where one peak 

corresponds to either a single nucleus in indirect dimension or several different 

nucleus expressed as different linear combinations. The number of planes 

!!"#

!$#

!%#

!#!1 

!2 

!HN 

!#

Figure 1. A projection of 45 

degrees gives a linear projection 

of ω=ω1+ω2 in the 2D plane.   
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recorded depends of the number of indirect dimensions: 13 planes for a 4D 

experiment and 40 planes for a 5D experiment. All planes are not necessary for 

the analysis, planes that provide additional information but not unique 

information can be omitted to save additional measurement time and 

computational time. 

  

Projection experiments 

DIfferent types of projection experiments where developed from conventional 

higher dimensional protein experiments. All pulses was developed in 

collaboration with Wolfgang Bermel and was tested and developed on different 

spectrometers at BRUKER and at the Swedish NMR center. The projection 

experiments can be grouped into three categories: backbone, TOCSY and NOESY 

types where various 4D or 5D magnetization paths exists within every group. For 

backbone characterization mainly two projection experiments have been used in 

this study based on the following conventional experiments: HAHBCACBCONNH42 

and HAHBCACBNNH43. These are referred as backbone experiments. For the first 

experiment, magnetization transfer path is from residue i-1, while the second 

experiment transfer magnetization from residue i. The first experiment 

corresponds to a 5D and the second to a 4D. They complement each other giving 

frequencies from both the previous residue i-1 and the current residue i. Common 

nuclei for both residues are N and NH as shown in figure 2. The magnetization 

path of the two backbone experiments are marked with green and brown. Also 

shown in the figure are two NOESY experiments, 13C-HSQC-NOESY-15N-HSQC, and 

15N-HSQC-NOESY-15N-HSQC, marked by red and orange dotted lines. Backbone 

magnetization from i-1 starts at the Hα/β nuclei on the previous residue i-1. Then 

it’s transferred via coupling constants to Cα/β nuclei and CO nuclei. Nitrogen is 

the last nuclei in the indirect dimension and detection is done on the amid proton. 

The other backbone experiment transfer magnetization from Hα/β on residue i 

over Cα/β to N and with a final detection on the amid proton as shown as brown 

lines in figure 2. The two NOSEY experiments shown in figure 2 starts at the 
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n i t r o g e n a t o m t r a n s f e r r i n g 

magnetization to the amid proton. Then 

magnetization is transferred through 

space with dipolar coupling to either 

amid protons or protons bound to 

carbon atoms. 5D NOESY variants also 

exists where magnetization includes  

either the carbonyl carbon or the Cα 

carbon. 

All projection experiments can be 

combined in different ways giving the 

possibility to use combinations that 

gives the best result on the given 

protein depending on what type of 

information that is required. An 

example of such combinations has been 

demonstrated on a Histone domain 

where five different experiments were 

used to cover backbone, HCCH-TOCSY and 13C-HSQC-NOESY-15N-HSQC, and 15N-

HSQC-NOESY-15N-HSQC. The resulting decomposition of the projections gives 

components that contains shapes. The decomposition of these five experiments 

gave 15 dimensional components. One component is shown in figure 3. The left 

panel show  nine shapes that correspond to both backbone experiments. Shape C’, 

Cα/β and Hα/β correspond to residue i-1, in this case D102. The rest of the 

shapes in the left panel are from residue i, F103. This gives connection 

information later used by the correlation program for correlating components. 

The right panel shows TOCSY and NOESY shapes. The TOCSY shapes are from 

residue i-1. The four remaining shapes comes from the two types of NOESY 

experiments mentioned above. These experiments have a NOE peak for the amid 

proton to either HCnoesy or HNnoesy and these are either  bound to C aliphatic or N 

atoms.

H

N

HO

C

H

H

HH

H H

i-1 i

N

N C

C

C C

C O

C

Figure 2. Magnetization paths for two 

projection backbone experiments and two 

projection NOESY experiments. The gray 

and the brown lines describe backbone 

magnetization from residue i and i-1. Dotted 

red and orange lines describes N-edited 

NOESY and C-edited NOESY.  

8



Shown in the HCnoesy and Cnoesy shapes are two NOE peaks and the corresponding 

carbon atoms from the 13C-HSQC-NOESY-15N-HSQC experiment marked with two 

arrows. The last two shapes in the right pane shows the connection from the 

previous residue D102 with F103 from the 15N-HSQC-NOESY-15N-HSQC marked 

with an arrow. The strongest peak in the HNnoesy shape is from the same residue 

as expected while the second strongest comes from the previous residue in the 

chain. Both NOESY experiments together with side chain and backbone 

assignment can be used for structure calculation.

F103 HN 

D102 C!/" 

D102 HN 

V98 H! 
A116 H" 

F103 N 

D102 C’ 

D102 H!/" 

F103 C! 

F103 C" 

F103 H! 

F103 H" 

HCnoesy 

Tocsy (i-1) D102 Htocsy 

D102 Ctocsy 

Noesy H-C 

Noesy H-N 

Cnoesy 

HNnoesy 

Nnoesy 

Figure 3. Example of a 15D component resulting from decomposition of projections 

selected form five different experiments: two experiments targeting the backbone with 

scalar couplings, one experiment involving TOCSY transfers for side-chain assignments, 

and two involving NOESY transfers. The left pane shows shapes for the neighbouring 

backbone nuclei; the top two shapes on the right provide information on HCCH-TOCSY. 

The last four shapes provide NOEs to spatially neighbouring H-C and H-N groups, 

respectively. The blue and green arrows in the third and fourth shapes on the right identify 

long-range NOE.
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Materials

In this study four proteins where mainly used: Ubiquitin, Histone, Azurin and 

MMP20. Ubiquitin44 is a 76 residue (8.6 kDa) protein found in many tissues where  

It is responsible for protein degradation in the cell. Measuring temperature was 

303K conducted on a 600 MHz BRUKER magnet. Two projection experiments 

where used (paper 1). The Histone domain contains 93 residues45. All 

experiments for histone was conducted on a 600MHz magnet with a temperature 

of 298 Kelvin. Note that this temperature was 10 Kelvin over the recommended 

temperature which created a partly unfolding state resulting in shift degeneracy. 

This behavior was already present at room temperature and was enhanced when 

measured with higher temperature (paper 5). Several projection experiments 

where done including backbone, TOCSY and NOESY type experiments. Azurin is a 

128 residue blue copper protein that transports electrons and it is found in many 

bacteria46. All experiments on Azurin was conducted on a BRUKER 600MHz 

magnet with a measurement temperature of 303K. Several different pulse 

sequences was tested and developed on Azurin at the Swedish NMR center and at 

BRUKER. MMP20 is a 160 residue protein that regulates tooth enamel formation47. 

All experiments for MMP20 where done on a 900MHz cryoprobe magnet with a 

measurement temperature of 298K at the CERM lab (www.cerm.unifi.it/home/). All 

programing development and implementation was done on a Linux workstation 

with two dual core opteron AMD processors and with 6 GB memory. 
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Results and discussion

The overall goal of this project was to implement and develop software tools for 

analyzing projection experiments on different proteins. Different projection 

experiments where tried on different proteins for experimental development and 

to investigate how different proteins affected the analysis of the decomposition. 

The different projection experiments where mainly done on ubiquitin, azurin, 

histone and MMP20, four proteins with increased complexity. The projection 

experiments that was used where combined in different ways to obtain optimal 

experimental results depending on the type of protein used and the type of 

experiment suitable for the analysis. The analysis and development part of the 

project resulted in various algorithms that where implemented providing an set of 

software tools. The result was PRODECOMP-SHABBA, two sets of programs for 

automated backbone assignments of projection experiments. One  of the first 

implementation of the decomposition algorithm was tried on two 5 dimensional 

projection experiments characterizing CβHn-CαH-C’-NH-CαH-CβHn on double 

labeled ubiquitin. For the analysis of the projections, the first version of SHABBA 

was implemented. SHABBA correlated the resulting components from the 

decomposition by using Cαi/Cβi, Cαi-1/Cβi-1 and Hαi/Hβi, Hαi-1/Hβi-1 shifts from 

current (i) and previous residue (i-1). These resulting chains where then used on 

statistical shift data to make a sequential assignment. A final peak picking 

resulted in a complete and correct backbone assignment (paper 1). To be able to 

use the software on larger datasets an improved implementation of PRODECOMP 

was done that reduced the amount of memory needed and decreased 

computational time. This version of PRODECOMP was implemented in python and 

a graphical user interface was added (paper 2). The mathematical background for 

PRODECOMP was presented in paper 3 together with a flowchart describing the 

algorithm and an application example. In paper 4 the 2D LS-ESPRIT method was 

tried together with projection data to estimate frequencies and damping factors in 

time domain data. The method was tested and verified on a 15N-HSQC projection 

plane. In paper 5 four different proteins where used for further improvement of 

the SHABBA algorithm. The result was an improved version with a novel 
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assignment procedure and improved peak pickers for backbone characterization. 

The previous results for ubiquitin could be reproduced and also result from the 

three other proteins where presented. NOESY type projection experiments on the 

histone protein domain where tried and the resulting decompositions contained 

enough information to be comparable to a published histone structure (paper 6).
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Overall algorithm

The overall algorithm from recording experiments to the final output of a 

backbone assignment or distance list is described in figure 1. Protein experiments 

are recorded first with coupled evolution periods to reduce measurement time.  

The resulting time domain data are then 

preprocessed resulting in 2D data sets. 

These are then Fourier transformed 

resulting in a number of 2D projection 

planes each with different l inear 

combinations of frequencies from the 

nuclei in the indirect dimension. All or a 

selection of the planes are then used as 

input for PRODECOMP. An interval list 

defining the number of residues is also 

required and it can be either done 

manually or with the help of a program. 

The interval list is defined from a 15N-

HSQC spectra where every interval 

should contain one peak from the 15N-

HSQC spectra that correspond to a 

residue and should be as small as 

possible. The selected projections 

spectra together with the interval list are 

then used for the s imul taneous 

d e c o m p o s i t i o n c a l c u l a t i o n b y 

PRODECOMP resulting in components 

containing shapes. Every component 

correspond to the residue defined in the 

interval list and contains different 

shapes describing the frequencies of the 

nucleus involved in the experiment. The 

time 
domain 

data

2D projections 

Recording projection 
experiments

splitting and 
fourier transform data

PRODECOMP

Components 
with shapes

SHABBA

Backbone 
assignment

NOESY

Distance 
list

Figure 1. Flowchart for the overall 

algorithm for backbone characterization or 

distance list output.
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resulting shapes are then used for either backbone characterization or NOESY 

analysis. The backbone analysis is done with the SHABBA software package that 

correlates the components and make a final backbone assignment. The NOESY 

analysis uses a program together with a short distance list that assign and verifies 

that enough information is contained in the shapes for a structure elucidation. 

Projection decomposition approach

Time domain data in a multidimensional NMR experiment can be expressed as48:                             

Here the time domain signal in different dimensions are expressed as the sum 

over all components. Every component k contains Kronecker products of functions 

describing the time signal. Fourier transform over all signals in eq. 1 gives the 

corresponding spectra in frequency domain49: 

                                               

Here the N-dimensional spectra is described as a sum of Kronecker products 

between the components of the spectra. This equation is an extension of a 

method called three-way decomposition (TWD)50  and have been implemented in 

NMR51. Components are one or several peaks present in the experiment. Here 

every component k consists of the Kronecker product of different one dimensional 

vectors describing the different resonance frequencies in the left side of equation 

2. These vectors are called shapes and they correspond to the different 

resonances of the different nuclei in the experiment. In projection experiments 

indirect evolution periods are coupled, meaning that time increments in the 

indirect dimensions are dependent. This means that an experiment with M 

indirect dimensions can be projected from N dimensions to N-M+1 dimensions. 

These projection experiments can then be described as in equation 3: 

(1)

 (2)
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Here Pm represent one 2D projection spectra with frequencies ω representing the 

indirect dimension and ωN representing the direct dimension. For every projection 

m there exists a specific linear combination of nuclei and this linear combination 

is represented as shapes F1,F2...FN-1 in the right side of equation 3. The 

summation goes over all components k where one component now consists of 

N-1 shapes describing the indirect frequencies and one direct shape FN normally 

represented by the amid proton. The indirect dimension consists of convolutions 

between the different shapes marked with the convolution operator ’*’. Different 

convolutions can be combined and described in equation 3. In every projection 

spectrum one peak corresponds to either one nuclei or a linear combination of 

two or more nuclei in the indirect dimension. Peaks in the indirect dimension can 

be folded because of limited spectral width. Decomposition can resolve folded 

peaks correctly thus avoiding the need for larger spectral width that would reduce 

resolution. By using equation 3 it is also possible to reconstruct the projection 

and therefore check for consistency between the calculated spectra and the 

measured spectra. The reconstruction is a part of the iterative procedure to obtain 

the closest solution to the optimization problem by finding the minimal difference 

between the calculated projection and the measured projection: 

The minimization procedure calculates first F1 keeping all other indirect shapes 

fixed. Then F2 is calculated with the rest of the shapes are fixed. The whole 

minimization procedure is repeated for all shapes thus minimizing all shapes 

simultaneously for all projections. This will in effect distribute all signals over all 

projections and also increase the possibility to resolve peaks that are very weak 

which is important in projection experiments. To improve the convergence a 

Tikhonov regulation factor52,53  can be added to eq. 4. 

(3)

(4)
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PRODECOMP

PRODECOMP, Projection Decomposition, decomposes projection experiments 

described in eq. 3. The output are vectors called shapes describing the different 

frequencies in the experiment. The algorithm (paper 3) is described in figure 2 on 

the next page. The flowchart shows the decomposition of one interval consisting 

of three loops and where every pair of components are optimized. When all three 

loops have finished the output consists of shapes from one component. The 

algorithm is then repeated for the next interval until all components have been 

calculated. Input to the algorithm consists of projection experiments and an 

interval list. Individual projection planes can also be excluded from the analysis, 

to reduce computational time. This was done for the backbone analysis in paper 1 

and in paper 6. 

The interval list contains an interval for every residue present in the experiment 

and can either be determined manually or by a peak picker from a normal 15N-

HSQC and compared to a projection 15N-HSQC to remove side chains and to see 

wether there exists weak peaks. The intervals are defined in points from the direct 
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Figure 2. Flowchart for the PRODECOMP algorithm. 

Input are different projections from experiments and 

a list of intervals from an HSQC spectra. 

Components are defined from the interval list. Every 

shape in a component is initialized with random 

values as starting values. The first loop defines a set 

A of active Fi shapes starting with the first shape 

and then adding more to A as i increases until all 

shapes for component k are added. The direct 

dimension is always active. The next loop includes 

the next active shape. The third loop selects the 

current shape and defines a set of active spectra 

that contains the active shape. A square matrix D is 

defined as the row shifted shapes that correspond to 

the convoluted nucleus in the experiment except 

shape Fi that is going to be determined. The D 

matrix together with shape Fi and P is now used as 

input for the FNNLS algorithm. After determination 

of shape Fi all the previous shapes are optimized 

the same way. Then m is increased and another 

shape is added and optimized against all others. In 

the optimization step the every shape is optimized 

against every relevant spectra thus drastically 

decreasing the chance for a false positive. After the 

third loop another interval is calculated until all 

intervals have been decomposed. The resulting set 

of shapes can then be used for further analysis 

depending on the experiment.  



dimension and should be as small as possible to avoid overlap. Ideally, every 

interval defined in the direct dimension should represent one peak in a 15N-HSQC 

spectra. This is normally achievable in less dense regions of the spectra but can 

be more challenging in crowded regions depending on the protein. Every interval 

has a number of components that is set equal to the number of peaks in the 

interval. Additional components can be added if there is a lot of noise in the 

interval or if there is a lot of overlap in the direct dimension therefore making it 

hard to distinguish between two or more peaks. This was more frequent for the 

azurin, histone and MMP20 proteins than for ubiquitin. The reason for this was 

that these spectra contained more overlap and different signal intensities that 

required more components in the analysis (paper 5). The intervals are then used 

for calculation of the corresponding shapes from the selected components. An 

example of an interval list can be seen in figure 3. Those projections that have 

more than one nuclei in their indirect dimension are convoluted which means that 

every single peak in those spectra correspond two or more convoluted 

frequencies as described in formula 3. When all shapes are known a 

reconstruction can be done to compare with the original spectra and then 

calculate a residual. This residual is then used as an optimization criteria and it is 

used for minimizing the differences between the reconstructed spectra and the 

measured. 

In projection experiments the signal intensity for one nucleus is usually spread 

over all spectra containing the nucleus giving a low signal to noise in the 

projections. By simultaneously analyzing all spectra the signal intensity can be 

preserved. This can be illustrated from the following example: consider 15 

projections from a 5D projection experiment with 100 points in each projection. 

Every projection corresponds to one equation in a system of linear equations. 

Each signal is represented by one point. Let signal to noise be close to one and 

lets consider only 20% largest positive points as potential signals, that is 10 

points for every projection. If we would consider only the first four equations 

there would be 104 solutions. However a solution is only valid if it is satisfies also 

the other 11 equations. For each equation there is a 10% chance that one of the 
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random solutions of the first four equations is satisfied. Thus the chance for large 

noise points to give a consistent signal in all 15 equations is 104/1011=10-7. With 

several experiment optimized simultaneously the chance for a false peak 

identification is very low as shown above because all signals has to be matched in 

every projection in the optimization. 

A user interface was developed for the prodecomp algorithm (paper 2). The 

interface was written in TCL/TK and it’s available at www.lundberg.gu.se/nmr/. 

Figure 3 shows an example of the input intervals for azurin. All intervals are 

defined by points in the direct dimension and every interval has a number of 

components. The number of iterations can be changed and the regularization 

factor. 

 

Figure 3. Graphical input for decomposition 

calculations. Every peak in a 15N-HSQC 

corresponds to an interval defined points in 

the direct dimension, defined in the first two 

columns. the next columns indicates how 

many components that should be used for 

the calculation. When the calculation is done 

one component is selected that represent the 

residue as seen in the last column. One 

interval at the time can be calculated or the 

whole list can be sequentially calculated. 

Every interval can be plotted and an interval 

can be added or deleted.
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Backbone analysis

The resulting components from a decomposition of backbone experiments are 

used in several steps before a final backbone assignment can be done. All 

correlations and assignments are based on the shapes in the components. The 

resulting decomposition from a projection experiment contains shapes describing 

different frequencies of the nuclei involved. An example of two components S66 

and G67 of azurin resulting from decomposition of two backbone experiments 

described earlier with magnetization transfer CβHn-CαH-C’-NH-CαH-CβHn are 

shown in figure 4. Every component contains 9 shapes describing the involved 

nuclei. Note that in figure 4 the shape describing the direct dimension NH is 

omitted. The shapes Cα/βi-1 and Hα/βi-1 are shifts from the previous residue in the 

sequence. The arrows in figure 4 between S66(i-1) and G67(i) shows how  shapes 

Cα/βi-1 and Hα/βi-1 in G67 have the same shifts as the Cα, Cβ and Hα, Hβ shapes 

of S66. This indicates a correlation between the two sequentially connected 

residues that can be used for a sequential assignment. The Cα/βi-1 and Hα/βi-1 

shifts can also be present in the same component as indicated with dotted lines in 

the left pane. In the right pane shifts for Cα and Hα are missing in the 

corresponding shape. This is because glycine lacks Cβ and Hβ signals and the Cα 

and Hα signals in glycine have the same phase as resonances involving Cβ and Hβ 

in all other residues. This is common in many triple resonance experiments. 
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SHABBA

SHABBA, Shape Backbone Analysis, uses shapes from PRODECOMP as input to 

make a backbone assignment. Several intermediate steps are required using 

different programs. All steps described are implemented in different python 

programs except the sliding part which was implemented in the Fortran language. 

The overall procedure is to correlate components from PRODECOMP resulting in 

chains of components and then slide them over the sequence comparing peak 

picked Cβ values with statistical values. Different length of the chain is compared 

and the position with the lowest RMSD is a candidate for sequence assignment.  

When all chains have been assigned a final peak picking procedure gives the final 

assignment. 

N 

C’ 

C!/"i-1 

H!/"i-1 

H" 

H! 

C" 

C! 

S66 N 

C’ 

C!/"i-1 

H!/"i-1 

H" 

H! 

C" 

C! 

G67 

C!"

H!"

 138  118  98 

 183  175  167 

 92  50  9 

 8.9  4.7  0.5 

 92  50  9 

 92  50  9 

 8.9  4.7  0.5 

 8.9  4.7  0.5 

 138  118  98 

 183  175  167 

 92  50  9 

 8.9  4.7  0.5 

 92  50  9 

 92  50  9 

 8.9  4.7  0.5 

 8.9  4.7  0.5 

glycine 

glycine 

Figure 4. Two 9 dimensional components from decomposition of azurin showing residue 

S66 and G67. The arrow shows the same shifts for and Cα/βi-1 Hα/βi-1 in residue G67 to 

Cαi, Cβi and Hαi, Hβi in S66. Note that the HN shape is omitted in this figure and that 

glycine lacks peaks in the Cα and Hα shape.
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The first version of SHABBA was used in paper 1 to make a backbone assignment 

of ubiquitin. This version used a correlation procedure that gave chains as an 

output. These chains where then peak picked with respect to Cβ and Cα. The 

result was then used for comparison with statistical data making a sequential 

assignment. A final peak picker was then used to give a complete assignment. 

This first version gave good results for Ubiquitin (paper 1) but for larger or 

otherwise more challenging 

proteins an improved version 

had to be developed (paper 6). 

T h e a l g o r i t h m f o r t h e 

improved version is described 

i n f i g u r e 5 . I n p u t a r e 

components from decomposed 

projection experiments that 

d e s c r i b e s  b a c k b o n e 

frequencies. An automatic 

glycine detection is done on 

the components by identifying 

missing Cβ and Hβ signals in 

the shapes. The user has also 

the option to manually inspect 

the shapes and add or remove 

suggested glycines. The loop 

in figure 5 that follow after the 

initialization step describes 

how  the chains are calculated 

and slided with different 

parameters. Every iteration in 

the loop is indicated by a 

iteration variable which is initialized to zero. When the loop starts all components 

are used for a correlation calculation. The correlation calculation is done by 

correlations

peak pick Cα, Cβ 
shapes

output: 
chemical 

shifts

sliding: full and 
shortened chains

21
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iteration=iteration+1
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protein sequence
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sliding

complete 
assignment: peak 

pick all shapes

input: 
components
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Figure 5: Flowchart for backbone assignment using 

decomposed projections. Output is a chemical shift 

list. 
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comparing all pairs of components with regard to common Cα, Cβ and Hα, Hβ 

shapes from the i residue and shapes Cα/β and Hα/β from the i-1 residue as 

described previously. These shapes can then be used to correlate two neighboring 

components. All component correlation pairs form a square matrix where all 

column entries are from the i-1 component and all row  entries are from the i 

component. Every element in the matrix has a correlation value. The correlation 

value is calculated by adding Cα and Cβ shapes together for the component. The 

resulting shape is then compared to the Cα/β shapes of the other component and 

the same is done for Hα and Hβ. This repeated for all of the rest of the 

components. When all correlation values have been calculated in the matrix four 

rules are applied on the resulting correlation matrix: 

1. Set all correlations that are negative to zero. Correlations are defined to be 

positive.

2. Set diagonal values to zero. Diagonal values represent a correlation from a 

component to itself which is not realistic. 

3. Remove one of the entries that have the lowest value of pairs that are 

symmetric with respect to the diagonal. This avoids circular connections

4. Set all elements on row y and column x to zero that are lower than the 

maximum value. The highest correlation is assumed to be the correct one. If 

only one element is left for the row and column then its unique and considered 

a correlation.

The final step is to remove all correlations that are under 20%. This means that if 

the correlation was below  this value the correlation was to weak to be considered 

as a candidate for sequential assignment. When all rules have been applied a set 

of chains are returned that are used in the sliding step. Ideally the chain should  

only be broken by a proline, giving a minimum number of chains from the 

correlation. The correlation procedure is repeated two more times with different 
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pre set values for different element in the matrix. These values are coming from 

the next sliding procedure. 

Sliding

The resulting chains from the correlation calculation have their Cα and Cβ shapes 

peak picked before the sliding step. This peak picker uses information from the 

current residue and the previous one. The peak picker removes intensities from 

the shapes that are under a noise level. It then removes all peaks in the Cα and Cβ 

shapes that correspond to the previous residue indicated by dotted lines in 

residue S66 in figure 4 to avoid false positives. Then all shifts that are not whitin a 

statistical range are removed. The final peak is then peak picked using a three 

step procedure. The resulting shift list is then used for a sliding procedure where 

all chains are slided over the protein sequence. Every residue in the sequence has 

a statistical value for the Cα and Cβ collected from the BMRB47 database witch is 

compared to the value of the peak picked values in the chain by calculating a 

RMSD value for all shifts in the chain. The loop in the flowchart of figure 5 

consists of three iterations. In the first step every chain with more than five 

components is slided over the sequence. For every position a RMSD value is 

calculated separately for Cα and for Cβ. Normally Cβ shifts have a wider spread 

than Cα shifts making them more suitable for RMSD comparison. Cα values are 

nevertheless used for supporting information. Prolines have a penalty factor 

added which will increase RMSD when a chain is slided over to detect where a 

chain should be stopped. This is then repeated for the same chain but with the 

end component removed. This procedure is repeated until the length of the chain 

is 6 residues. All Cβ RMSD values for every length of the selected chain is 

compared and ordered. The position that gives the lowest RMSD value for the 

specific length of chain is then recorded. If the position is directly after a proline 

or the N-terminus or directly before a proline or a C-terminus the correlation is 

zeroed to indicate that a component cannot have a correlation to a proline or the 

terminal ends of the sequence. This procedure is then done for all of the rest of 

the chains that have a length over 5 components.   
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When entering iteration 2 the correlation calculation is repeated again now with 

the added cuts in iteration 1. After the correlation calculation the sliding step is 

repeated with the same parameters as before using the resulting chains from the 

correlation calculation. After the sliding and RMSD comparison new chains are 

now  fixed internally by setting the correlation between them to one. This means 

that no other components are able to replace a component within a chain, i.e the 

chains are ‘fixed’. What is left now are chains with a length under 6 that have to 

be placed in the sequence. 

In step 3 a final correlation calculation is done and the rest of the chains are 

slided over the sequence. These last chains have a short length that give them a 

high probability to be placed in many positions because less unique RMSD values. 

By assigning all other chains this probability will decrease giving only a few 

positions left to position them. The resulting small chains are then placed in the 

right position on the sequence. The final step is then to do a final peak picking 

over the sequence, giving a final peak list. The peak picker uses both residue i 

and residue i-1 for peak picking. It also uses residue specific statistics to increase 

the chance for a correct assignment.  

An example of an sliding result is shown in figure 6 for azurin (paper 5). The first 

three rows display a component chain of length 16 and a possible position on the 

protein sequence (residue numbers and names). Row 4 lists the Cβ chemical shifts 

peak picked in the components. Row  5 contains the statistical Cβ values from 

BMRB for the protein sequence. For each component-residue pair the shift 

difference is used to calculate the RMSD value for the chain. As can be seen in 

figure 6, the first 10 pairs yield small differences resulting in a small RMSD (0.9)

for this partial chain.  However, adding the following 6 pairs increases the RMSD 

to 18.3. complete chain is fitted over the right position up to residue 72. The 

whole chain has a RMSD of 18.3  By removing one component at the time and 

calculating new RMSD values for every new length until the length is 6 a better
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NOESY

Structure determination of proteins are in many cases the final goal of a protein 

characterization. The type of experiment can be either 4D or 5D NOESY or both 

with different magnetization paths. The decomposition is done with PRODECOMP 

and the resulting shapes from these experiments provide information about HN 

and CH NOE distances in the protein and can be used for an structural analysis 

together with additional assignments. An example of two shapes from the  

Figure 6. Example of fitting a chain from azurin into the sequence. Cβ 

shifts from components 68, 57 and 58 have not been detected and do not 

contribute to the RMSD calculation. Residue 75 is a proline giving a high 

penalty to the RMSD calculation. Zero ppm is given for glycine. 
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decomposition of two NOESY experiments is shown in figure 7 for azurin. Shown 

in the two shapes in figure 7 are all assigned NOE signals with some signals very 

close to the noise level. Long distance NOE are also present. The shapes in the 

figure where assigned using a reference list55  and using distances from a 

published56  PDB (4azu) structure. The assigned distances are marked in the 

structure with lines. The mean backbone RMSD to the x-ray structure was 1.3 Å 

and with side chain 1.5 Å. This shows that the structure information given from 

the two NOESY projection experiments were consistent with the known PDB 

structure. 

Another approach involving NOESY projection experiments is to use a 

combination of NOESY experiments and backbone experiments to obtain 

sequential correlation. This is illustrated in figure 8 where two components from 

three experiments are shown. The left component shows shapes from two 

backbone experiments,  while the right component shows shapes from one of the 

backbone experiments together with a projection HSQC-NOSEY-HSQC experiment.
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Figure 7. Two shapes from two 4D NOESY experiments containing NOE 

distances from amid protons to protons. All distances are marked in the structure. 
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The two arrows in figure 8 indicates that the CNOE signal and the HNOE signal in the 

NOESY shapes are from the same residue. The CNOE shape has the second largest 

intensity while the largest intensity comes from the i-1 residue which can be seen 

in the i-1 Cα/β shape. With this information a possible sequential assignment can 

be done thus making it possible to replace one backbone experiment with a 

projection HSQC-NOESY-HSQC experiment. 

Papers

As described in paper 1, the first version of PRODECOMP and SHABBA was applied 

on the ubiquitin protein. Here the algorithm was used for analyzing the backbone 

projections and the resulting correlated components was sequentially assigned 

using a comparison with statistical data for every residue in the sequence. The 

complete backbone assignment was done using 30 projections from two 

backbone experiments covering spins CβHn-1-CαH-C’-NH-CαH-CβHn. Figure 9 

shows two projections planes from the ubiquitin experiments showing linear 
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Figure 8. Sequential NOE connectivities in azurin indicated by two arrows from CNOE and 

HNOE to the Cα and Cβ shape. With this a sequential assignment can be done.
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combinations N-CO-Cα/βi-1 and N+CO+Cα/βi where i is the current residue and i-1 

the preceding. The resulting shapes from decomposition of these experiments 

corresponded to a 9 dimensional experiment. 

The left projection shows N-CO-Cα/βi-1 combination in the indirect dimension. The 

right projection shows N+CO+Cα/βi combination. The green peaks corresponds to 

negative peaks coming from Cβ in the same residue. Because the fast-NNLS 

algorithm cannot use negative values as input, projections containing negative 

peaks are sign inverted and therefore adding an additional 16 projections to the 

decomposition. 

The correlation procedure calculates all correlations and fill the corresponding 

entry in the correlation table. An example of the correlation calculation are shown 

In figure 10 where all correlations are displayed for a fragment of size 17. The 

columns show the i-1 components and the row show  the i component. For 

example, component 5 correlate with component 4 with 92% correlation. To 

achieve this number, all correlations have been calculated for all components 
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Figure 9. Two projection planes from the Ubiquitin backbone experiments. Green peaks 

in the right pane correspond to negative Cβ peaks.
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pairs. A fraction of these are shown in figure 10. First all entries  that have a 

negative number are replaced with zeros, and all numbers on the diagonal are 

replaced with zeros. Then all numbers on row  5 and column 4 (component 

ordering) that are under the maximum correlation value are replaced with zeros, 

in this case all values on row  5 and column 4 except the maximum value 92. The 

next step is to remove mirror values to avoid circular connections, in this case the 

correlation on row 4 and column 5, with a value of 17 which is less than the 

maximum value. The lower threshold for finally accepting a correlation was 20%, 

correlations under this value are considered to weak. For ubiquitin the average 

correct correlation was 79.67% and the average correlation was 5.94% indicating 

that most correct correlations were strong. This was also seen in paper 5 were the 

sequential assignment only required one step in the sliding procedure, also an 

indication of strong correlations. 

In paper 2 the PRODECOMP algorithm was translated to python and improved with 

respect to memory consumption and speed improvement. A large part of the 

memory consumption was due to large matrixes handling. This was replaced by a 

tracing method that reduced memory consumption. Normalization of the input 
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  5    5  51  11    3   -1  10    0   -4   -4   -4   -3  92    5    6   -3    2    0 
  8  17  59  15  27  13   -3  48  18  16   -1    0    0    1  35   -2    3   -3 
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15  18   -3    3   -3    0   -3  12  13  50    1  33   -2    0    0   -2  15    0 
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Figure 10. Correlation table for Ubiquitin showing one chain 2-18 before any application 

of rules. Bold numbers are final correlations between components. 
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data also reduced computational time making it possible to analyze more 

projections and also to decompose projections with higher resolution which can 

be especially important in TOCSY and NOESY projection experiments. As 

mentioned previous, a graphical user interface was also implemented. 

Paper 3 gives the mathematical formulas behind PRODECOMP and a flowchart 

describing the algorithm. Also an application example is given in the form of a 

projection decomposition of projections spectra from ubiquitin. The flowchart is 

described in detail in the PRODECOMP section. The resulting shape in the example 

contains 15 points in the direct dimension in the NH shape. This illustrates one 

approach to use broad intervals containing several peaks in the direct dimension. 

Another approach is to use small intervals covering only one peak. This approach 

was subsequently used for the rest of the proteins studied. 

Paper 4 described how a signal processing method can be used on time domain 

NMR data for signal parameter estimation. The method was used on a selected 

projection corresponding to a 15N-HSQC spectra measured from two 5D backbone 

projection experiments on ubiquitin. By using 2D sub band filters and 2D LS-

ESPRIT methods on time domain data the signal estimation showed a clear 

agreement with the Fourier transformed spectra, se figure 11. The method is 

promising but needs to be investigated with more proteins. One drawback is that 

the number of indirect points must be larger than the number of sinusoids 

describing the signals making it necessary to introduce sub band filters to reduce 

the spectra into regions where the number of indirect points are larger than the 

number of peaks. 
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R × L (rank L), describing linear relations according to the
selected projections and their angles. Due to the presence of
noise, the number of projections should exceed the theoretical
minimum, i.e. R > L, and determination of ω according to
(9) is an over-determined problem. Since the matrixA cannot
be inverted, a pseudo inverse A− is obtained from the SVD
ofA (i.e.,A = UDVT ),A− = VD−1UT . It can be shown
that the optimal estimation of Ω̂ in (9) is

Ω̂ = A−ω (10)

5. SIMULATION AND EXPERIMENTAL RESULTS
Tests on simulated data: The 2D ESPRIT algorithm was
first tested on several synthetic data. As an example, Fig.2
shows the the ground truth frequencies, the estimated fre-
quencies from 2D ESPRIT, and the equal energy contours
from 2D FFT spectrum for a synthetic signal consisting of
33 sinusoids in white noise. From Fig.2 one can see that 2D
ESPRIT has yielded more accurate frequency estimation with
higher frequency resolution as compared with that in the FFT.

Fig. 2. 2D ESPRIT vs. 2D FFT: estimation of the frequencies from syn-
thetic 2D signals with 33 damped sinusoids in white noise. Red: ground
truth; Green +: from 2D ESPRIT; Blue: equal energy contours from 2D FFT.

Analysis of experimental 2D projections: From a set of 30
projections, resulting from two 5D experiments, the spectrum
corresponding to a 15N-HSQC was chosen as a test example.
The data were collected for a 2mM solution of the protein
ubiquitin on a 600 MHz instrument at 303 K [3]. Each pro-
jection requires about 30 minutes of measurement time. For
the parameter estimation, the data file is arranged as a matrix
of size M=60 and N=955. The estimated number of sinu-
soids isK=76 (derived from the protein size). SinceM = 60
is too short, which limits the use of the 2D ESPRIT, subband
filters are used to split the 2D signal into subbands, each of
which containing a smaller number of sinusoids. After that, a
2D ESPRIT is applied to each subband filtered signal. Fig.3
shows the estimated frequencies from a lowpass filtered 2D
NMR projected signal, where a 1D lowpass filter was applied
along the direction of the first frequency axis ω1. For compar-
isons, the equal energy peak contours of the corresponding
FFT-spectrum are also included. Observing the results ob-
tained from the measured data in Fig.3, one can see that 2D

ESPRIT has resulted in estimated frequencies agreeing well
the FFT spectral peak contours. Further, the former clearly
shows high frequency resolution hence able to resolve fre-
quencies that a conventional FFT spectrum cannot separate.

Fig. 3. Estimated frequencies from the lowpass filtered signal of a 2D NMR
projection data set. Red +: the estimated frequencies from the 2D ESPRIT;
Blue curves: equal energy contours of the peaks in the FFT spectrum.

6. CONCLUSION
This paper employed a combination of methods for improving
the estimation of resonance frequencies of 5D NMR through
the use of projection spectroscopy, where the most commonly
used analysis methods are still FFT-based. Multiple 2D pro-
jections of a 5D NMR signal from a protein were measured
and analyzed. Tests have been conducted on synthetic data
as well as projected NMR measurements by applying sub-
band filters and 2D parametric estimation. Results showed
clear improvement of estimation accuracy with enhanced fre-
quency resolution. Mathematical formulations for reconstruct-
ing the desired frequencies (i.e., the chemical shifts) of atomic
nuclei from the estimated frequencies in multiple 2D projec-
tions are also given. Further NMR measurements are planned
for extensively testing the proposed method and evaluating
the performance.
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In paper 5 four proteins of varying characteristics, ubiquitin, azurin, histone and 

MMP20, where used for investigating the limits of the PRODECOMP approach. Two 

backbone experiments with the following magnetization paths CβHn-CαH-C’-NH-

CαH-CβHn where used on all four proteins. One result of this study was that the 

correlation and assignment program SHABBA was improved to handle a wider 

range of proteins. For ubiquitin the previous result obtained in paper 1 could be 

reproduced and improved due to the improved software with a 99% complete and 

correct backbone assignment. The correlations calculation gave 5 chains and 

these chains needed only one iteration to be sequentially assigned because a high 

correlation between the components. Only one of the chains had a length that was 

under six residues thus making it eligible for a second round in the sliding 

procedure. With just one chain left after the first sliding step a second round was 

not necessary because it could be assigned directly. 30 backbone projections 

where used for the ubiquitin analysis and 72 components where the result from 

the decomposition. One peak was missing in the 15N-HSQC experiment, Glu 24 

but was found shifted in the decomposition analysis. An additional glycine was 

also detected due to partial degradation.  

The correlation step presented in paper 1 was sufficient for ubiquitin but it had to 

be developed further for larger proteins, partly because larger proteins gives 

Figure 11. Part of a corresponding 
1 5 N H S Q C p r o j e c t i o n w h e r e 

frequency estimated peaks are 

marked with a cross, showing good 

a g r e e m e n t w i t h t h e F o u r i e r 

transformed peaks. This area was 95 

pts in the direct dimension and 60 pts 

in the indirect dimension with 26 

signals. The number of signals where 

less than the number of indirect 

points, a criteria for the algorithm.  

32



closer correlations increasing the chance for a false correlation. Also the peak 

picker used where sufficient for ubiquitin but had to be improved to handle 

different proteins by introducing statistical shifts limits for every residue. As seen 

in figure 10, most correlations for the ubiquitin fragment is well over 50%. This is 

a promising result for ubiquitin sized proteins and a future goal is to investigate 

more proteins whitin this size range.

For azurin, three sliding steps where required because the correlation calculation 

gave 3 chains that were smaller than 6 residues out of a total of 9 chains. These 3 

chains where not considered in the first sliding step. The result of the 3 sliding 

iterations for azurin are shown in figure 12. 

The number of residues in azurin are 128 with 4 prolines and 11 glycines. The N-

terminus residue is not visible in a 15N-HSQC. The remaining 123 residues where 

used for correlation after the PRODECOMP and glycine detection step. In iteration 

one 6 chains out of 9 chains where slided over the sequence. These had a length 

over 5 components while the rest where less than 6 components and therefore 

not used in this first iteration. In figure 12, all chains with an arrow  are chains 

that have a sequence that are not sequential with the rest of the of the chain. The 

leftmost chain is flanked by two additional chains that have the wrong correlation 

and therefore the total chain have a higher RMSD than the correct chain. 

Therefore a cut can be placed there. A cut means that the corresponding 

correlation row  or column is set to zero to indicate that no correlation should be 

accepted i.e that no component can come directly after or before this component. 

iteration 3

iteration 2

iteration 1

AECSVDIQGNDQMQFNTNAITVDKSCKQFTVNLSHPGNLPKNVMGHNWVLSTAADMQGVVTDGMASGLDKDYLKPDDSRVIAHTKLIGSGEKDSVTFDVSKLKEGEQYMFFCTFPGHSALMKGTLTLK
1       10        20        30        40        50        60        70        80        90       100       110       120     128                                                                                                                                                                                                                                                                                           

Figure 12. Result of Backbone the assignment of azurin. The three lines illustrate 

the results of the three iterations with chains positioned on the sequence by low 

RMSD marked red. Arrows indicate positions for cutting the chain and vertical 

lines mark zero correlations. 
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This cut is then used for the next iteration. Four other components have also one 

part of the chain that is not correlated correctly, as indicated by the tilting arrows. 

The second and last chain was correctly assigned. The vertical bars in the line 

indicate a cut. Five cuts have been added for five of the components. The first cut 

is from the N-terminus of the chain, indicating that the left part of the chain is 

wrongly correlated, extended beyond the N-terminus. The remaining cuts come 

from proline positions and finally the C-terminus position. Chain 3 and 4 came 

from one chain that contained two low RMSD and therefore both where accepted 

since they did not overlap. 

In the second iteration the modified correlation table was recalculated and the 

resulting 8 chains that had a length over 5 where peak picked and slided again. 

As can be seen in figure 12, the third chain have a part that is overlapping the 

fourth. An additional cut is placed between chains 3 and 4 to avoid the overlap. 

The result of this iteration was that all 8 chains where assigned to the sequence 

and locked, meaning that the internal correlation is set to one. No other 

components can be assigned whitin these chains. 

In iteration 3 the last 4 chains had a length of 3 components except one that had 

a length of 2 components. The final sliding step positioned two of these chains 

with low RMSD. The remaining two had a length of 2 and 3 and could then be 

assigned because of their different length in the sequence. The final result of the 

correlation calculation and the sliding positioned all chains in place and a final 

peak picking could take place, giving almost complete backbone assignment. The 

analysis of Azurin showed the importance of a quality criteria giving the user an 

option to chose to either discard or keep a calculated component. Components 

with partly wrong shapes can give correlations that are wrong but with a high 

correlation making these hard to resolve and creating problems in the later sliding 

procedure. While most components could be used without any further refinement 

some had to be recalculated after visual inspection to improve the individual 

shapes. The correlation for some of the difficult shapes was close to 20%, showing 

the importance to have good and correct shapes for the analysis. The next 
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protein, Histone, had been measured with a temperature of 298 kelvin which was 

ten kelvin over the recommended measurement temperature. This condition 

resulted in shift degeneracy for several peaks reducing the detectable peaks to 74 

in a 15N-HSQC. Correlation and sliding iterations of the 74 components that 

resulted from the decomposition resulted in a final sequence assignment of 7 

residue chains. Between these were 7 gaps: 2, 14-16, 24-25, 42-43, 47-48, 67-68 

and 81-83 from the missing components. Still 97% of the rest of the observable 

residues could be assigned. The last protein, MMP20 proved to be the most 

difficult protein to resolve. With missing residues from convectional NMR 

experiments several peaks had to be excluded from the analysis. 102 components 

could be extracted from a selected 127 peaks from a 15N-HSQC. This created gaps 

that made the assignment difficult. Nevertheless three component chains with a 

unique Cβ pattern could be identified in the whole sequence. A restricted region 

of residues 11-60 was also tested resulting in a near complete sequential 

assignment. The result of this study proved that PRODECOMP-SHABBA is a 

versatile tool for automated backbone assignment. 

In paper 6 results from two types of 4D projection NOESY experiments, 15N-HSQC-

NOESY-15N-HSQC and 13C-HSQC-NOESY-15N-HSQC, on histone where used two 

verify that enough distance information was contained in these two experiment. 

This information was then used for a structure calculation that was compared to 

the published structure. When examining projections from both 4D NOSEY 

experiments on histone it was clear that these two experiments alone could not 

resolve unique components from only N and NH shifts, especially with a high 

degree of degraded peaks in histone. Therefore the projections from the two 

35



NOESY experiments where used 

together with projection from the  two 

b a c k b o n e e x p e r i m e n t s , 5 D 

H B H A C B C A C O N H a n d 4 D 

HBHACBCANH, used in paper 5 for 

a d d i t i o n a l s u p p o r t o f t h e 

decomposition. The decomposition 

used also the same 74 intervals that 

where used in the previous backbone 

study. A selection of 60 components 

had to be chosen because of severe 

overlap. The rest of the intervals 

considered of flexible N and C 

terminus ends that had a lot of 

overlap. Figure 13 describes the 

algorithm used for calculating an upl 

list that was used in cyana for a 

structure calculation. 

The input list consist of selected 

intervals from PRODECOMP containing 

NOESY shapes and a distance and a 

reference list. The first step was to 

assign all PDB distances less that 4.5 Å. A noise threshold was determined for 

every shape. The next step was to match PDB distances with both HNnoesy and 

HCnoesy shapes and the corresponding heavy atom shapes. For the matching, 

residues 44-116 was used. Those shapes that had less than 50% assignment 

where then discarded. This test was to remove components that had mostly noise 

in them. The remaining distances was then written to a distance list. 80% of the 

points in the HCnosey shapes could be matched to a short distance while 94% of the 

points in the HNnoesy shapes could be matched against a short distance. 64% of the 

HC short distances could be matched to non noise intensities in both the HCnosey 

and Cnosey shapes, the corresponding for HN short distances was 85%. The upl list 

Figure 13: Algorithm for calculating a restraint 

list from an input of NOESY shapes and an 

assigned PDB list. 
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was then used for a CYANA57  structure calculation using residues 44-116. 200 

calculations where performed. Residues 44-49 formed a disordered region. The 

mean structure compared to the 10 calculated structures had a RMSD of 0.7 Å for 

residues 50-116. The RMSD for the mean calculated structure compared to the 

published mean structure was 0.9 Å. The result can be seen in figure 14. Here the 

blue structure is the calculated mean structure and the red structure is the 

published structure. Three α-helices and a two-stranded β-sheet are visible.   

Future improvements 

One of the most common sources for wrong components in the interval list is 

when a strong peak partly overlaps a weaker one. When resolving the weak peak, 

the strong peak signal intensity will influence the weak peak giving contribution in 

the shapes. This can partly be avoided by increasing the number of components 

but it cannot completely solve the problem. Weak peaks have weak signals in all 

S44 

L50 

A57 

E75 
S84 

V98 

A110 

A116 P106 
E104 K62 

Figure 14: Calculated structure of the histone domain in blue compared to published 

structure in red. 

37



projections and therefore are hard to resolve. Still, weak signals can give 

reasonable shapes that can be used for correlation and give correct result by 

selecting the right interval and the right number of components in the 

decomposition step. An algorithm for stepwise elimination of signals in the 

projections thereby eliminating overlapping peaks is an idea that have been 

discussed and partly implemented. 

One of the highest priorities are to implement a quality check that gives 

information how well the component was resolved. An idea is to have a 

preliminary peak picker that checks number of peaks in each shape to give an 

estimation about the correctness of the selected interval. This could also be 

expanded to remove intervals that are to hard to resolve. These intervals could 

create problems in the later correlation step giving wrong correlations. 

Another source for improvement is to reduce the number of parameters when 

selecting intervals and number of components for that interval. With 3 degrees of 

freedom the number of available options for an interval of 5 points with a 

maximum of 12 components for each interval are 60. Clearly, this is to many 

options for selecting a suitable interval and components. One approach that is in 

a developing stage is to reduce the number of points for selecting interval to one, 

thereby eliminating two degrees of freedom. Then the number of components 

could be resolved in an iterative manner. Another approach would be to start with 

a number of points and then reduce them iteratively and together with a peak 

picker select the interval that has the best result. 

There is also need for improvement in the speed for the calculation to reduce the 

time for the calculation of all intervals. One option would be to replace some 

python functions with C functions using a cType interface between them, thus 

reducing memory consumption and cpu time. Replacement of in house 

implementations like fast-nnls with existing functions from different python 

libraries would also affect performance. 
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A future development could also be to set up a protocol for fast analysis and 

assignment of small protein for quick structure determination. This could increase 

the throughput in structure determination and drug discovery. The user interface 

could be ported to a web solution making the software suit operating system 

independent enabling more people to use it and remove the need for software 

installations. In conjunction with this could a database be connected for saving 

and handling different data. The following figure describes how  a user could 

submit projection planes to a server that would iteratively calculate different 

assignment  depending on type of experiment and display the result in the same 

web interface: 

Another area of development would be to use experiments that can correlate 

more than Cα,Cβ and Hα,Hβ peaks between components. This would increase the 

correlation reliability making it more error prone and thus making the correlation 

more simple, opening up for a wider range of proteins that can be investigated.

processed 
projeciton 

experiment

web interface

decomposition

meta 
information in 

database

analysis of 
components

result stored  in 
database

converged?

display resullt

no yes

Figure 15: Flowchart for a future web 

based projection analysis portal
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Conclusions

This study showed that projection experiments decomposed with PRODECOMP 

and analyzed with SHABBA gives an almost complete backbone assignment for 

small to medium sized well behaved proteins. The algorithm is stable and the 

method is flexible in the sense that experiments can be custom designed to be 

used for different protein and there exists a range of different experiments that 

together can give full characterization information about the protein. A NOESY 

based study proved that projection experiments contain sufficient structural 

information to characterize the 3D fold of a protein. 
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