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ABSTRACT: Multivariate surveillance is of interest in industrial production as it enables the 

monitoring of several components. Recently there has been an increased interest also in other 

areas such as detection of bioterrorism, spatial surveillance and transaction strategies in 

finance. Multivariate counterparts to the univariate Shewhart, EWMA and CUSUM methods 

have earlier been proposed. A review of general approaches to multivariate surveillance is 

given with respect to how suggested methods relate to general statistical inference principles. 

Multivariate on-line surveillance problems can be complex. The sufficiency principle can be 

of great use to find simplifications without loss of information. We will use this to clarify the 

structure of some problems. This will be of help to find relevant metrics for evaluations of 

multivariate surveillance and to find optimal methods. The sufficiency principle will be used 

to determine efficient methods to combine data from sources with different time lag. 

Surveillance of spatial data is one example. Illustrations will be given of surveillance of 

outbreaks of influenza. 
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1. INTRODUCTION 

The Seventh International Triennial Calcutta Symposium on Probability & Statistics, 

December 28-31, 2009 was organized jointly by: Department of Statistics, University of 

Calcutta and Calcutta Statistical Association. The department, established in 1941, with Prof. 

P.C. Mahalanobis as Head, is the oldest post-graduate Department in Asia offering a course in 

statistics. It has produced many eminent statisticians who have distinguished themselves both 

in India and abroad. One of the very distinguished scientists was Samarendra Nath Roy 1906-

1964. I was honored to deliver the "S N Roy Memorial Lecture" at the symposium. This paper 

is based on that talk. The life and work of professor Roy has earlier been described e.g. in a 

special issue of the Journal of Statistical Planning and Inference. Multivariate analysis has 

since long been developed in Calcutta. Professor S N Roy developed multiple hypotheses 

testing and is famous for “Roy´s Union-Intersection Principle. His results will here be used 

for multivariate surveillance. 

The aim of surveillance is on-line detection of an important change in an underlying 

process as soon as possible after the change has occurred. Already at birth surveillance is 

used, as described by Frisén (2007). The baby might get the umbilical cord around the neck at 

any time during labor. This will cause a lack of oxygen, and a Caesarean section is urgent. 

The electrical signal of the heart of the baby during labor is the base for the surveillance 

system. Detection has to be made as soon as possible to ensure that the baby is rescued 

without brain damage.  

Often several variables are of interest. Multivariate surveillance is of interest in industrial 

production, for example in order to monitor several sources of variation in assembled 

products. Wärmefjord (2004) described the multivariate problem for the assembly process of 

the Saab automobile. Tsung et al. (2008) described the need for multivariate control charts at 

manufacturing and service processes. The first versions of modern control charts Shewhart 

(1931) were made for industrial use. Surveillance of several parameters (such as the mean and 

the variance) of a distribution is multivariate surveillance (see for example Knoth and Schmid 

(2002)). A common way is dealing with both the mean and the variance is to use Capability 

index but the theory of multivariate surveillance can suggest alternatives. 

In recent years, there has been an increased interest in statistical surveillance also in other 

areas than industrial production. There is an increased interest in surveillance methodology in 

the US following the 9/11 terrorist attack. The monitoring of incidences of different diseases 

and symptoms is carried out by international, national, and local authorities to detect 

outbreaks of infectious diseases.Transaction strategies based on financial data are of great 

interest, and in finance, the timeliness of transactions is important. Most theory of stochastic 

finance is based on the assumption of an efficient market. When the stochastic model is 

assumed to be completely known, we can use probability theory to calculate the optimal 

transaction conditions. The support for the efficient market hypothesis depends on the 

complete knowledge about the model. When the information about the process is incomplete, 

as for example when a change can occur in the process, there may be an arbitrage opportunity, 

as demonstrated by Shiryaev (2002). Different aspects of the subject of financial surveillance 

is described in the book edited by Frisén (2007). 

When the collected data involve several related variables, this calls for multivariate 

surveillance techniques. Spatial surveillance is multivariate since several locations are 

involved. Multivariate surveillance for financial decision strategies are suggested by for 

example Okhrin and Schmid (2007) and Golosnoy et al. (2007).The construction of 

multivariate surveillance methods is based on interesting statistical theory. It also involves 

practical issues as to the collection of new types of data, and computational ones such as the 

implementation of automated methods in large scale surveillance data bases. Here the focus 
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will be on the statistical inference aspects of the multivariate surveillance problem. We will 

focus on some general approaches for the construction of multivariate control chart methods. 

These general approaches do not depend on the distributional properties of the process in 

focus, even though the implementation does. Reviews on multivariate surveillance methods 

can be found for example in Basseville and Nikiforov (1993), Lowry and Montgomery 

(1995), Ryan (2000), Woodall and Amiriparian (2002), Frisén (2003), and Sonesson and 

Frisén (2005).  

In Section 2 a review of the univariate case is given. It is demonstrated in Section 3.3 that 

this is relevant also for multivariate surveillance with simultaneous change. Evaluations in 

genuinely multivariate cases in treated in Section 3.1. In Section 3.2, different approaches to 

the construction of multivariate surveillance methods are described and exemplified. Methods 

for changes with a time lag are treated in Section 3.4. In Section3.5 , we apply a multivariate 

technique to the detection of influenza outbreaks based on spatial data. Concluding remarks 

are made in Section 4. 

 

2. UNIVARIATE AND SIMPLE MULTIVARIATE SURVEILLANCE  

Complex problems of multivariate surveillance connected will be treated in Section 3. Here 

we treat the basic problems which are present as soon as on-line surveillance is used in order 

to detect an important change in the underlying process. This is relevant also for simple 

multivariate cases as described in Section 3.3.  

2.1 Specifications and notations 

We denote a univariate process by X = {X(t): t = 1, 2, . .}, where X(t) is the observation 

(vector) made at time t, which here is discrete. The purpose of the monitoring is to detect a 

possible change, for example the change in distribution of the observations due to the baby’s 

lack of oxygen. The time for the change is denoted by τ. In this section, we consider only one 

change while more complex cases are treated in Section 3. Before the change, the distribution 

belongs to the family f
D
, and after the time τ, the distribution belongs to the family f

C
. At each 

decision time s, we want to discriminate between two events, C(s) and D(s). For most 

applications, these can be further specified as C(s)={τ s}  (at the decision time, there has 

been a change) and D(s)={τ>s}  (at the decision time, no change has occurred yet), 

respectively. We use the observations s = {X(t);t s}X  to form an alarm criterion which, when 

fulfilled, is an indication that the process is in state C(s) , and an alarm is triggered. The 

change point τ can be regarded either as a random variable or as a deterministic but unknown 

value, depending on what is most relevant for the application.  

The statistical inference in surveillance differs from that of hypothesis testing. The decision 

concerning whether, for example, the baby is at risk has to be made sequentially, based on the 

data collected so far. Each new time demands a new decision. Thus, there is no fixed data set 

but an increasing number of observations. We can never accept any null hypotheses and turn 

our backs on the mother, since the baby might get the umbilical cord around the neck in the 

next minute.  

2.2 Evaluations 

Quick detection and few false alarms are desired properties of methods for surveillance. 

Evaluations are needed in order to choose which surveillance method to use for a specific 

aim. Evaluation by significance level, power, specificity, sensitivity, or other well-known 

metrics may seem convenient. However, these are not easily interpreted in a surveillance 

situation. 
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2.3 False alarms 

The false alarm tendency is more complicated to control in surveillance than in hypothesis 

testing since it increases with the number of decisions. The most commonly used measure for 

surveillance is the Average Run Length when there is no change, ARL
0
=E(tA|D). A variant of 

the ARL is the Median Run Length, MRL.  

2.4 Delay of the alarm 

The most commonly used measure of the delay is the ARL
1
, which is the Average Run 

Length until the detection of a change (in the situation where the change occurred at the same 

time as the surveillance started). The part of the definition within parentheses is not always 

spelled out but generally used. 

Shiryaev (1963) suggested that the expected value of the delay from the time of change, 

τ=t, to the time of alarm, tA, should be used. It is here denoted by  

ED(t) = E[max (0, tA-t) | τ=t].  

The value of ED(t) will typically tend to zero as t increases. Thus, it may be preferred to 

use the conditional expected delay  

 

CED(t) = E[tA-τ | tA τ=t ] = ED(t) / P(tA  t). 

 

Sometimes, like when a baby is delivered, the time available for rescuing action is limited. 

The Probability of Successful Detection, suggested by Frisén (1992), measures the probability 

of detection with a delay time no longer than a constant d  

 

A APSD(d, t) P(t d | t t)      . 

2.5 Predicted value 

If a method calls an alarm, it is important to know whether this alarm is a strong indication of 

a change or just a weak one. If τ is regarded as a random variable, this can be done by one 

summarizing measure. The predictive value of an alarm was suggested by Frisén (1992) as 

 

          A APV(t) P( t | t t)    . 

 

This is the probability that a change has occurred when the surveillance method gives an 

alarm.  

2.6 Optimality 

2.6.1 ARL Optimality 

Optimality is often stated as a minimal ARL
1
 for a fixed ARL

0
. This leads to a concentration 

on early changes. ARL
1
 is the expected run length under the assumption that τ=1 and that the 

observations at all time points have distributions which belong to f
C
. ARL

0
 is the expected 

value of the run length given that no change has occurred and all observations have 

distributions which belong to f
D
. To use efficient methods and evaluate them by the ARL 

criterion is in conflict with the ancillary principle. 
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2.6.2 SADT Optimality 

An opposite of the ARL criterion is to put emphasis on late changes. The steady state delay 

time, SADT, measures the delay asymptotically when τ tends to infinity. 

2.6.3 Minimal Expected Delay 

Since the expected delay depends on τ (the time of the change), it is natural to evaluate by an 

average of these values Σw(t)CED(t). If τ is regarded as a random variable, then the weights 

may be chosen proportional to the density π(t) of a change. The average delay is then the 

expected delay ED=E(ED(i)) with respect to the distribution of both τ and tA. The minimizing 

of this average, for a fixed false alarm probability, is termed the ED criterion (the minimal 

expected delay criterion).  

2.6.4 Minimax Optimality 

A minimax solution, with respect to τ, avoids the requirements of information about the 

distribution of τ. Moustakides (1986) uses an even more pessimistic criterion, the “worst 

possible case”, by using not only the least favorable value of the change time, τ, but also the 

least favorable outcome of Xτ-1 before the change occurs. The minimax criterion usually used 

is the minimum of:  

 

1
1

supesssup {[ 1] | },AE t X 


 




    

 

for a fixed ARL
0
. 

2.7 Methods 

Many methods for surveillance can be expressed by a combination of partial likelihood ratios. 

The likelihood ratio for a fixed value of τ is  

 

        L(s, t) = fXs(xs |τ=t) /fXs(xs | D).  

 

The exact formula for these likelihood components will vary between situations. Commonly 

used methods are often expressed for simple settings like independent Gaussian observations 

with a step shift. Here, we describe generalized versions by the likelihood expression. 

The full likelihood ratio method (LR) is optimal with respect to the criterion of minimal 

expected delay and also to a wider class of utility functions, as demonstrated by Frisén and de 

Maré (1991). The alarm set consists of those values of X for which the full likelihood ratio 

exceeds a limit.  

 

s

s

s

A

s

f (x |C(s)) P(τ>s) K
t =min s; > ,

f (x |D(s)) P(τ s) 1-K

X

X

  
 

  

 

 

where K is a constant.  

The simplest way to aggregate the likelihood components is to add them. Shiryaev (1963) 

and Roberts (1966) suggested the method, now called the Shiryaev-Roberts method, in which 

an alarm is triggered at the first time s, for which 

 
s

t 1

L(s, t) G


 , 
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where G is a constant alarm limit. 

The method by Shewhart (1931), is simple and the most commonly used method for 

surveillance. An alarm is given as soon as an observation deviates too much from the target. 

Thus, only the last observation is considered. The alarm criterion can be expressed by the 

condition  

 

L(s, s) > G, 

 

where G is a constant.  

The CUSUM method was first suggested by Page (1954) and is reviewed for example in 

the book by Hawkins and Olwell (1998). The alarm condition of the method can be expressed 

by the partial likelihood ratios as 

 

tA = min{s; max(L(s, t); t=1, 2,.., s) > G}, 

 

where G is a constant. 

The alarm statistic of the EWMA method is an exponentially weighted moving average,  

 

Zs = (1-)Zs-1+X(s), s=1, 2, ... 

 

where 0<<1 and Z0  is the target value, which can be normalized to zero. 
 

 

3. MULTIVARIATE SURVEILLANCE  

Multivariate surveillance is of interest in many areas, for example in financial problems, as 

described by Okhrin and Schmid (2007), and in public health surveillance, as described by 

Sonesson and Frisén (2005). After discussing evaluations, we will first, in Section 3.2, 

describe some commonly used stepwise reductions of the multivariate problem and then in 

Sections 3.3 and 3.4 derive methods from inference principles. An application is given in 

Section 3.5 

3.1 Evaluations 

The special problem of evaluation of multivariate surveillance is the topic of the paper by 

Frisén et al. (2010). In hypothesis testing, the false rejection is considered most important. It 

is important to control the error in multiple testing since the rejection of a null hypothesis is 

considered as a proof that the null hypothesis is false. Hochberg and Tamhane (1987) 

described important methods for controlling the risk of an erroneous rejection in multiple 

comparison procedures. The False Discover Rate, FDR, suggested by Benjamini and 

Hochberg (1995) is relevant in situations more like a screening than as hypothesis testing. In 

surveillance this is further stressed as all methods with a fair power to detect a change have a 

false alarm rate that tends to one (see Bock (2008)). The problem with adopting FDR is that it 

uses a probability that is not constant in surveillance. Marshall et al. (2004) solved this 

problem by monitoring over a short period of time and they use only the properties of the 

early part of the run length distribution. FDR in surveillance has been advocated for example 

by Rolka et al. (2007). However, the question is whether control of FDR is necessary when 

surveillance is used as a screening instrument, which indicates that further examination should 

be made. Often, the ARL
0
 of the combined procedure may be informative enough since it 

gives information about the expected time until (an erronous) alarm. It will sometimes be 
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easier to judge the practical burden with a too low alarm limit by the ARL
0 

than by the FDR 

for that situation. 

The detection ability depends on when the change occurs. The conditional expected delay 

 ( ) E |A ACED t t t t      is a component in many measures, which avoids the dependency on 

τ either by concentrating on just one value of τ (e.g. one, infinity or the worst value). Frisén 

(2003) advocated that the whole function of τ should be studied. This measure can be 

generalized by considering the delay from the first change 

 

min 1min{ ,... }p    

1 min min( ,... ) ( | )p A ACED E t t      . 

 

The Probability of Successful Detection suggested by Frisén (1992) measures the 

probability of detection with a delay time shorter than d. In the multivariate case it can be 

defined as  

1 min min( , ,... ) ( | )p A APSD d P t d t       . 

 

Since the above measures of delay are complex, it is tempting to use the simple ARL 

measure. The ARL
1
 is the most commonly used measure of the detection ability also in the 

multivariate case. It is assumed that all variables change immediately (τ=1). However, the 

result in Section 3.3 is that univariate surveillance is always the best method for simultaneous 

changes. Thus, for genuinely multivariate situations with different change points, ARL
1
 is not 

recommended other as a rough indicator. 

3.2 Commonly used approaches 

3.2.1 Reduction of Dimension 

One way to reduce dimensionality is to consider the principal components instead of the 

original variables as proposed for example by Jackson (1985), Mastrangelo et al. (1996) and 

Kourti and MacGregor (1996). In Runger (1996) an alternative transformation, using so-

called U
2
 statistics, was introduced to allow the practitioner to choose the subspace of interest, 

and this is used for fault patterns in Runger et al. (2007). Projection pursuit was used by Ngai 

and Zhang (2001) and Chan and Zhang (2001). Rosolowski and Schmid (2003) use the 

Mahalanobis distance to reduce the dimensionality of the statistic. After reducing the 

dimensionality, any of the approaches for multivariate surveillance described below can be 

used.  

3.2.2 Scalar Statistics  

The most far going reduction of the dimension is to summarize the components for each time 

point into one statistic. This is a common way to handle multivariate surveillance problems. 

Sullivan and Jones (2002) referred to this as “scalar accumulation”. In spatial surveillance it is 

common to start by a purely spatial analysis for each time point as in Rogerson (1997). A 

natural reduction is to use the Hotelling T
2
 statistic (Hotelling (1947)). Scalars based on 

regression and other linear weighting are suggested for example by Healy (1987), Kourti and 

MacGregor (1996) and Lu et al. (1998).  Originally, the Hotelling T
2
 statistic was used in a 

Shewhart method, and this is often referred to as the Hotelling T
2
 control chart. An alarm is 

triggered as soon as the statistic 2 ( )T t  is large enough. The reduction to a univariate variable 

can be followed by univariate monitoring of any kind. Note that, there is no accumulation of 

information over time of the observation vectors if the Shewhart method is used. In order to 

achieve a more efficient method, all previous observations should be used in the alarm 

statistic. There are several suggestions of combinations where reduction to a scalar statistic is 
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combined with different monitoring methods. Crosier (1988) suggested to first calculate the 

Hotelling T variable (the square root of 2 ( )T t ) and then use this as the variable in a univariate 

CUSUM method, making it a scalar accumulation method. Liu (1995) used a non-parametric 

scalar accumulation approach, where the observation vector for a specific time point was 

reduced to a rank in order to remove the dependency on the distributional properties of the 

observation vector. Several methods were discussed for the surveillance step, including the 

CUSUM method. Yeh et al. (2003) suggested a transformation of multivariate data at each 

time to a distribution percentile, and the EWMA method was suggested for the detection of 

changes in the mean as well as in the covariance.  

3.2.3 Parallel Surveillance 

By this commonly used approach, a univariate surveillance method is used for each of the 

individual components in parallel. This approach can be referred to as combined univariate 

methods or parallel methods. One can combine the univariate methods into a single 

surveillance procedure in several ways. The most common is to signal an alarm if any of the 

univariate methods signals. This is a use of Roy´s union-intersection principle for multiple 

inference problems. Sometimes the Bonferroni method is used to control a false alarm error, 

see Alt (1985). General references about parallel methods include Woodall and Ncube (1985), 

Hawkins (1991), Pignatiello and Runger (1990), Yashchin (1994) and Timm (1996).  

Parallel methods suitable for different kinds of data have been suggested. Skinner et al. 

(2003) used a generalized linear model to model independent multivariate Poisson counts. 

Deviations from the model were monitored with parallel Shewhart methods. In Steiner et al. 

(1999) binary results were monitored using a parallel method of two individual CUSUM 

methods. However, to be able to detect also small simultaneous changes in both outcome 

variables, the method was complemented with a third alternative, which signals an alarm if 

both individual CUSUM statistics are above a lower alarm limit at the same time. The 

addition of the combined rule is in the same spirit as the vector accumulation methods 

presented below. Parallel CUSUM methods were used also by Marshall et al. (2004).  

3.2.4 Vector Accumulation  

By this approach, the accumulated information on each component is utilised by a 

transformation of the vector of component-wise alarm statistics into a scalar alarm statistic. 

An alarm is triggered if this statistic exceeds a limit. This is referred to as “vector 

accumulation”.  

Lowry et al. (1992) proposed a multivariate extension of the univariate EWMA method, 

which is referred to as MEWMA. This method uses a vector of univariate EWMA statistics 

( ) ( ) ( ) ( 1)t t t   Z ΛX I Λ Z  where (0) Z 0  and 1 2diag( , ,..., )p  Λ . An alarm is triggered at 
1

( )min{ ; ( ) ( ) }T

A tt t t t L ZZ Σ Z  for the alarm limit, L . The MEWMA method can be seen as the 

Hotelling T
2
 control chart applied to EWMA statistics instead of the original data and is thus a 

vector accumulation method.  

One natural way to construct a multivariate version of the CUSUM method would be to 

proceed as for EWMA and construct the Hotelling T
2
 control chart applied to univariate 

CUSUM statistics for the individual variables. One important feature of such a method is the 

lower barrier (assuming we are interested in a positive change) of each of the univariate 

CUSUM statistics. This kind of multivariate CUSUM was suggested by Bodnar and Schmid 

(2004) and Sonesson and Frisén (2005). Other approaches to construct a multivariate CUSUM 

have also been suggested. Crosier (1988) suggested the MCUSUM method, and Pignatiello 

and Runger (1990) had another suggestion. Both these methods use a statistic consisting of 

univariate CUSUMs for each component and are thus vector accumulation methods. 

However, the components are used in a different way as compared with the MEWMA 
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construction. One important feature of these two methods is that the characteristic zero-return 

of the CUSUM technique is constructed in a way suitable when all the components change at 

the same time point. However, if all components change at the same time, a univariate 

reduction is optimal. 

3.3 Optimal methods at simultaneous changes 

Consider the case where all processes have the same change point so that τ1 = τ2 =…τp = τ. An 

example could be when all variables are indicators of the same phenomena. In most 

evaluations of multivariate surveillance it is assumed that all changes are simultaneous. It now 

becomes possible to identify the separate factors in the likelihood: the part that depends on the 

data (but not the value of τ) as well as the part that depends on the s-dimentional vector of 

partial likelihood ratios. From this it follows that the sequence of the s likelihood ratios is a 

sufficient sequence. This was proven by Wessman (1998) both for a fixed unknown value of τ 

and for a stochastic time of change. When the aim is to detect a fully specified, simultaneous 

change in a multivariate process and the distributions before and after the change are fully 

specified, it is possible to construct a univariate surveillance procedure based on the sufficient 

sequence of likelihood ratios. The use of the sufficient statistic implies that no information is 

lost.  

Since a sufficient reduction to univariate surveillance is available, the theory of Section 2 

can be applied and optimal methods determined. Healy (1987) derived the CUSUM method 

for the case of simultaneous change in a specified way for all the variables. The results are 

univariate CUSUMs for a function of the variables. Since the CUSUM method is minimax 

optimal, the multivariate methods by Healy (1987) are simultaneously minimax optimal for 

the specified direction when all variables change at the same time.  

3.4 Changes with time lags 

We will also consider the case where there are known time lags between the changes of the p 

processes. There may in some cases be one source of information of good quality that is 

available after a delay and another source with worse quality that is available early. The 

multivariate utilization of these data sets might benefit from information on how large the 

time lag is. Another example is the spatial spread of a disease as will be described in Section 

3.5. Sufficient reduction for a step change is derived in Frisén et al. (2011) and for a 

semiparametric model in Schiöler and Frisén (2010). 

3.5 Multivariate outbreak detection 

On-line monitoring is needed to detect outbreaks of diseases like influenza. Surveillance is 

also needed for other kinds of outbreaks, in the sense of an increasing expected value after a 

constant period. Information on spatial location or other variables might be available and may 

be utilized.  A robust method for outbreak detection by Frisén and Andersson (2009) was 

adapted to a multivariate case by Schiöler and Frisén (2010).  

The relation between the times of the onsets of the outbreaks at different locations was 

used to determine the sufficient statistic for surveillance. In Schiöler (2011) analyses are made 

of Swedish influenza data and it is shown that the influenza spreads from the larger cities to 

the rest of the country with a lag of approximately 1-2 weeks. 

The derived maximum likelihood estimator of the outbreak regression was semi-parametric 

in the sense that the baseline and the slope were non-parametric while the distribution 

belonged to the one-parameter exponential family. The estimator was used in a generalized 

likelihood ratio surveillance method. The method was evaluated by Schiöler and Frisén 

(2010) with respect to robustness and efficiency in a simulation study and applied to spatial 

data for detection of influenza outbreaks in Sweden . 
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4. DISCUSSION 

Optimality is hard to achieve and even hard to define for all multivariate problems. This is so 

also in the surveillance case. We have a spectrum of problems where one extreme is that there 

are hardly any relations between the multiple surveillance components. The other extreme is 

that we can reduce the problem to a univariate one by considering the relation between the 

components. Consider, for example, the case when we measure several components of an 

assembled item. If we restrict our attention to a general change in the factory, changes will be 

expected to occur for all variables at the same time. Then, the multivariate situation is easily 

reduced to a univariate one Wessman (1998) and we can easily derive optimal methods. For 

many applications, however, the specification of one general change is too restrictive. It is 

important to determine which type of change to focus on. The method derived according to 

the specification of a general change will not be capable of detecting a change in only one of 

many components. On the other hand, if we focus on detecting all kinds of changes, the 

detection ability of the surveillance method for each specific type of change will be small. 

The more clearly the aim is stated, the better the possibilities of the surveillance to meet this 

aim. Preferably, the specification should be governed by the application. 

The question of which multivariate surveillance method is the best has no simple answer. 

Different methods are suitable for different problems. Some causes may lead to a 

simultaneous increase in several variables, and then one should use a reduction to a univariate 

surveillance method. If the changes occur independently, one does not expect simultaneous 

changes and may instead prefer to use parallel methods. All knowledge on which component 

to concentrate on is useful.  

The evaluations of multivariate control charts are considerately more complex than for 

univariate ones. However, the effort to specify the problem is rewarding. Simple measures 

might be misleading. 
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