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ABSTRACT 

The formation of an epithelial organ requires a set of organ-specific gene 
programs that instruct parallel and successive developmental events. Still, 
it is unclear what are the core regulatory programs and how such programs 
are timely coordinated within the organ. We use mainly the Drosophila 
trachea (respiratory system) as a model to understand epithelial organ 
development. The trachea is a network of epithelial tubes, and its 
morphology is sensitive to mutations in genes whose products participate 
in consecutive steps of branching morphogenesis and tube size maturation. 
In paper I, we identified two gene functions required for tracheal tube 
elongation. We show that tracheal cells, at a specific time in development, 
acquire an ability to elongate that is mediated by a protein involved in actin 
organization. A luminal matrix holds back this elongation, and temporal 
expression of an anion channel appears required to modify the luminal 
matrix and thereby permit a controlled extent of elongation. In paper II, we 
show that a mucin-like protein is temporally expressed in the trachea and is 
required for tube elongation. The protein also drives diameter expansion of 
the hindgut, where it fills the growing lumen and appears to act as an 
expanding mucin to mechanically dilate the tube. The work demonstrates 
that regulated expression of a single protein can model epithelial tube 
diameter. In papers III and IV, we focused on the temporal regulation of 
tracheal gene expression, and uncovered an important function for the mid-
embryonic ecdysone hormone pulse in progression of organ development. 
In paper III, we analysed the mechanism of embryonic ecdysone signalling 
and found that the hormone causes pan-embryonic activation of Ecdysone 
Receptor (EcR). EcR acts tissue-autonomously together with Ultraspiracle 
to promote concurrent progression of organ development. In paper IV, we 
show that ecdysone, via EcR and a downstream cascade of gene regulators 
is needed to advance parallel tracheal-specific gene programs. Together, 
the results reveal novel gene functions during epithelial tube formation, 
and show that correct temporal unfolding of the tracheal gene network 
relies on gene-regulatory input from an external cue in form of a hormone 
pulse.  

Key words: Drosophila, trachea, hindgut, tubulogenesis, luminal matrix, 
ecdysteroid, EcR:USP. 
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ABBREVIATIONS   
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BDGP Berkley Drosophila genome project  
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CBP Chitin binding protein 
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INTRODUCTION 

 Organogenesis includes distinct phases of cell determination, 

differentiation, shape changes and specialization. It commences when the 

body plan is set and continues until the end of embryogenesis, accordingly 

occupying a major period of development. Specific gene programs 

(temporal and spatial) regulate the different developmental steps. 

Development of multi-cellular organisms has been exponentially explored 

at the molecular level over the last 30 years. Drosophila Melanogaster was 

recognized as a model organism in genetic studies and developmental 

biology in 1910, owing to Thomas Hunt Morgan and his colleagues. Due 

to the possibility of performing large-scale genetic screens in the fly, 

accumulating advanced methods and a large pool of useful tools for 

investigating developmental processes, Drosophila has today become an 

important model organism for analyzing different molecular and cellular 

mechanisms in biological events, such as organogenesis, cellular signaling 

and immunological and behavioral responses. The developing respiratory 

organ of Drosophila (trachea) is a well-studied model system, and was 

used here to gain further understanding of gene regulation that steer organ 

development. The trachea is a network of plain epithelial tubes that extend 

throughout the organism, and leads oxygen from the exterior through 

gradually narrower tubes to fine branches, where gas-exchange with target 

tissues occurs. Formation of the tracheal network proceeds through several 

distinct phases that are relatively simple to study, as they are highly 

stereotype and do not involve cell proliferation, and has been applied to 

dissect mechanisms of branching morphogenesis and formation and growth 

of epithelial tubes.  
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Drosophila as a model system for embryonic organ development  

The Drosophila life cycle includes two periods of organ development, 

embryogenesis and metamorphosis. During embryogenesis, the fertilized 

egg develops into a larva and, after two rounds of molting, the larva 

pupariates and undergoes metamorphosis, when most larval tissues brake 

down and the adult fly forms. The fertilized Drosophila egg requires less 

than 24 hours to build a larva. Despite its apparently simple external shape, 

the hatching larva has multiple internal organs that have developed in a 

reproducible and highly genetically regulated manner to form the 

functional organism. Here, I will highlight the main organs in the larva to 

underline the complexity of Drosophila embryonic development.  

 

Tubular organs  

Biological tubes most commonly consist of a single-cell-layered 

epithelium with the apical surface facing the tubular lumen. They are 

important to carry out numerous essential physiological functions in 

molecular absorption and secretion and in transport of gases and liquids. 

Malformation of each one of these tubular structures can result in failure of 

organ functions that are essential for the animal. Their morphogenesis is 

dynamic and is set by cell division, cell growth, cell shape changes and 

migration, as well as apoptosis. Any error when plumbing tubular 

compartments can lead to serious pathological abnormalities, such as 

polycystic kidney disease (PKD) and stenotic tubes, causing a block in 

tubular organs (Lurie et al., 1995; Boletta and Germino, 2003; Lubarsky 

and Krasnow, 2003). Characterization of the mechanisms involved in 

tubular organ development is therefore of significant importance to 
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understand the pathogenesis of diseases. Tubular organ development, 

which sets exceptionally high demands on cell behavior to form the precise 

organ shape, is also valuable in studies of basic mechanisms that regulate 

epithelial morphogenesis.  

 

Salivary gland 

The Drosophila salivary gland (sg) consists of two unbranched elongated 

secretory tubes that are attached to each other via a “Y”-shaped salivary 

duct (Demerec, 1950). The salivary gland is connected to the larval mouth, 

and the columnar cells of the secretory tubes synthesize high levels of 

proteins to produce secretions (saliva) that are mixed with the food during 

feeding and ingested along with the food. 

 

Alimentary tract  

This comprises three regions; foregut, midgut and hindgut. The midgut 

(mg) originates from the endoderm, while the foregut (fg) and hindgut (hg) 

derive from the ectoderm (Campos-Ortega, 1997). Unlike the salivary 

glands, the epithelial tubes of the alimentary tract are covered by 

mesodermal cells at their basal surface. The hindgut is divided into three 

compartments; the small intestine, the large intestine and the rectum 

(Lengyel and Iwaki, 2002). The foregut consists of four parts; atrium, 

pharynx, esophagus and the proventriculus (pv) at the most posterior part 

of foregut, which connects with the anterior part of the midgut. The 

proventriculus is a multilayered organ that controls entrance of food into 

the midgut (Demerec, 1950). The malpighian tubules (mt) are long two-

cell-wide tubes located at the junction between the midgut and the hindgut. 



Embryonic ecdysone-induced gene expression and progression of organ morphogenesis 

 

12 

 

The tubules are proposed to have similar properties to vertebrate kidney 

(Denholm et al., 2003).  

 

Trachea  

The trachea (tr), described in details later, is a branched tubular organ. It 

consists of elongated epithelial tubes with different cellular architecture, 

and carries air through the entire embryo. 

 

Dorsal vessel 

In Drosophila, a heart-like organ, called the dorsal vessel, is an open tube. 

The vessel is composed of two major cell types: cardioblasts that form the 

simple contractile tube of the heart, and pericardial cells that lie around the 

cardioblasts (Perrin et al., 2004).  

 

Epidermis  

The epidermis is a sheet of epithelial cells that line the body. This 

organ produces an apical culticular lining that gives stability to the 

organism and also protects the animal from dehydration, infection and 

mechanical damage. The epidermis has a complex task in generating 

different types of cuticular structures at specific anatomical positions.   

 

The nervous system 

The Nervous System derives from the neuroectoderm and controls the 

body. The central nervous system (CNS) includes the brain and the ventral 

nerve cord (vnc), the peripheral nervous system (PNS) that connects the 
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CNS to organs, and the stomatogastric nervous system (SNS) that controls 

gut movements (Marder and Bucher, 2001). Sensory axons in the PNS 

reach their targets in the CNS and motor axons connect with the 

musculature before hatching, enabling late embryonic movement within 

the eggshell. 

 

Musculature and fat body 

The somatic and visceral musculature and the fatbody derive from the 

mesoderm. The somatic musculature makes up the body wall muscles and 

muscles in the cephalic region. These muscles enable the larvae to move 

and retract the head skeleton. At the end of embryogenesis the muscle 

pattern is fully developed (Bate, 1990). The visceral musculature that lines 

the basal surface of the alimentary tract is responsible for the peristaltic 

movements. Some segments of the foregut (which form the inner part of 

the proventriculus) and hindgut (where malpighian tubules attach) lack 

visceral mesoderm attachments (Hartenstein et al., 1992). The insect fat 

body plays an essential role in energy storage and ingestion. It is the central 

storage place for extra nutrients. In addition, it is an organ of great 

biosynthetic and metabolic activity (Law and Wells, 1989). The fat body is 

an elongated sheet of cells that becomes inserted between the developing 

visceral musculature and the body wall. A group of fat body cells form 

horizontal plates of fat body under the foregut and hindgut (Demerec, 

1950).  

 

Hormones are temporal signals in animal development 

 Although many processes of organ development rely on intrinsic feed-
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forward mechanisms of gene expression, temporal signals arising from 

hormones, have the potential to induce global changes in gene expression 

to affect organ development. One example is Retinoic acid (RA), a 

signaling molecule synthesized from vitamin A that controls gene 

expression at the transcriptional level by functioning as a ligand for nuclear 

RA receptors (RAR). The RA signal itself is a prerequisite for 

morphogenesis past day 9 of gestation and is transduced by functionally 

overlapping isotypes and isoforms of RXR/RAR heterodimers, whose 

single or combinatorial loss demonstrates their requirement in many organs 

at different stages. These include segmentation and closure of the 

hindbrain, development of pharyngeal arches and forelimb buds, closure of 

the primitive gut, histogenesis of the retina, epithelial-mesenchymal 

interactions in the kidney, lung branching morphogenesis and lung alveoli 

septation (Mark et al., 2006). 

 Hormones are also known to act as inducers of major developmental 

transitions from one stage to another. One example from humans is the 

hormonally triggered changes that occur during puberty and adolescence to 

promote maturation of a non-reproductive juvenile to a mature adult form. 

In the amphibian larva, a complex interaction of hormones precipitates 

metamorphosis, where two major classes of hormones act together: the

thyroid hormones (made by the thyroid gland) and prolactin (made by the 

pituitary gland) (Brown and Cai, 2007). In insects, including Drosophila 

melanogaster, the steroid hormone 20-hydroxyecdysone (hereafter called 

ecdysone) functions as a molting hormone and to trigger metamorphosis, 

transforming the larvae into the adult fly (Baehrecke, 1996).  
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Ecdysone is also essential during embryogenesis (Figure 2). The level of 

the hormone rises when gastrulation is completed and organ 

morphogenesis has just commenced (eight hours after egg laying AEL). 

This corresponds to stage 12 of embryogenesis, also referred to as the mid-

embryonic stage. Mutants that lack enzymes required for ecdysone 

biosynthesis fail to complete major developmental processes, such as head 

involution, dorsal closure, midgut constriction, nervous system formation, 

and late cuticle production (Chavez et al., 2000; Giesen et al., 2003; 

Kozlova and Thummel, 2003). The rise in ecdysone-levels is therefore 

essential for organ developmental past mid-embryogenesis. 

 

Ecdysone biosynthesis  

 Ecdysteroids are molting hormones in insects, and 20-

hydroxyecdysone is the main active form of the hormone in these animals. 

Thus, insects utilize the same active ecdysteroid, synthesized from 

cholesterol through the same series of sterol modifications (Rewitz et al., 

2006). Four P450 enzymes have been found to be required for ecdysone 

biosynthesis in Drosophila: phantom (phm), disembodied (dib), shadow 

(sad) and shade (shd). phm, dib, sad and shd belong to a group of mutant 

called the Halloween mutants, due to their faint and ghost-like cuticle. 

Recently, it was shown that shroud, a fifth member of the Halloween gene 

family, encodes an enzyme required for the conversion of 7-

dehydrocholesterol to 5β-ketodiol (Niwa et al., 2010). Mutants for any of 

the five genes are embryonic lethal.  
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Ecdysone signaling via nuclear receptors  

Ecdysone mainly exerts its effects by binding to a nuclear receptor 

heterodimer, consisting of the Ecdysone receptor (EcR) and the RXR 

homologue Ultraspiracle (Usp). Nuclear receptors consist of a DNA-

binding domain (DBD) and a ligand-binding domain (LBD). 

EcR and Usp associate with each other and localize to the nucleus, even in 

the absence of ligand. A model for the transcriptional activating and 

repressing functions of EcR:Usp is illustrated in Figure 4. In the absence of 

ligand, the receptor complex can act as repressors, while ligand-binding to 

EcR:Usp causes changes in protein interactions, leading to transcriptional 

activation. For Usp, the repressor function, but not the activating function, 

is shown to require its DNA-binding domain (Ghbeish et al., 2001). 

 During larval molting and metamorphosis, ligand-bound EcR:Usp 

induces a series of ordered gene activities that lasts long after the actual 

Figure 1. EcR:Usp heterodimers bind co-repressors and 
actively shut down target-gene transcription in the absence 
of ligand. In the presence of ligand, the receptor recruits 
co-activators that replaces the co-repressors, which leads to 
activation of a hierarchy of ecdysone- induced early and 
late genes in order to complete developmental events even 
long after actual hormone peak. 
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hormone pulse. Among the ecdysone-induced genes are activators and 

repressors, which interact to cause a temporal profile of gene activities. It is 

thus believed that ecdysone sets off a cascade of global events that 

promotes molting and the transition from larvae to flies (King-Jones and 

Thummel, 2005) (Figure 1). 

 

Ecdysone-function during larval molts and metamorphosis 

 Pulses of ecdysone organize many features of Drosophila 

development. These occur at major post-embryonic transitions such as 

molting, larval-prepupal and pupal transitions. Ecdysone is the direct 

initiator of molting, the periodical shedding of the cuticle that occurs twice 

during larval life (Riddiford, 1993). At the end of the third larval instar, 

comprehensive changes appear across the whole insect and promote the 

transition to prepupal development. The high titer of ecdysone is involved 

in initiation of glue molecule secretion by larval salivary glands for 

attachment of the larva to a hard surface, body length shortening and 

darkening and solidification of the larval cuticle to form a protective pupa. 

Ten to twelve hours later, a second ecdysone pulse drives the prepupal to 

pupal transition. During metamorphosis, ecdysone induces programmed 

cell death to destruct the “old” larval tissues and the differentiation and 

metamorphosis of new adult structures (Baehrecke, 1996; Truman et al., 

1996).  

 

Ecdysone-response genes  

 Binding to EcR leads to activation of characteristic sets of target 

genes, such as Broad-Complex (BR-C), E74 (Eip74EF), E75B (Eip75B), 
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DHR4, DHR39, E78 (Eip78C) and Hr46 during larval phases and 

metamorphosis. These genes encode transcription factors that, in turn, 

activate or repress the expression of later response genes, such as β-ftz-f1, 

and transduce the hormone signal into developmental responses (Woodard 

et al., 1994; Thummel, 1996).  

 

Ecdysone activity during embryogenesis  

 In contrast to the extensive studies of ecdysone functions during larval 

molts and metamorphosis of Drosophila, the cellular and genetic pathways 

regulated by embryonic ecdysone have not been well characterized. A 

main reason for this is that the requirements for EcR and Usp during 

embryogenesis have been difficult to assess.  Both EcR and Usp gene 

products are maternally deposited in the egg, and zygotic mutants of either 

EcR or Usp develop past stage 14 and fail to reproduce the phenotypes 

seen upon loss of ecdysone. Removal of maternal EcR to generate embryos 

that completely lack EcR function causes arrest in oocyte development, 

and no eggs are produced (Buszczak et al., 1999). Germ line clones mutant 

for usp alleles with mutations within the DBD, have been generated, but 

produce embryos with little morphological defects, showing that at least 

the Usp DBD activity is not necessary for ecdysone-dependent embryonic 

morphogenesis (Ghbeish et al., 2001). Thus, it is speculated that EcR might 

have partner other than Usp during embryogenesis. 

 In previous studies on embryonic ecdysone, it has been suggested that 

the source of active ecdysteroids resides in a tissue called the amnioserosa 

(Kozlova and Thummel, 2003). The amnioserosa is an extra-embryonic, 
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epithelial tissue that covers the dorsal side of the Drosophila embryo. This 

conclusion is based on two observations: First, EcR-activities were 

selectively detected in the amnioserosa from stage 12, using either a ligand 

sensor system or an EcR reporter gene (EcRElacZ) containing 7 

multimerized EcR binding sites upstream of the lacZ coding region 

(Kozlova and Thummel, 2003; Palanker et al., 2006). Second, incubation 

of whole embryo in 20E caused broad EcRElacZ expression. 

Consequently, it was suggested that ecdysone is confined to the 

amnioserosa at the time of its peak, a situation that parallels the production 

of mammalian placental hormones during pregnancy (Kozlova and 

Thummel, 2003). In addition, it was shown that inhibition of EcR activities 

in the amnioserosa, by expression of a dominant negative EcR (DNEcR) 

specifically in the amnioserosa cells, caused defects in germ band 

retraction and head involution (Kozlova and Thummel, 2003). As mutants 

lacking zygotic ecdysone production do not show defect in germ band 

retraction, the early role of EcR in this process was believed to depend on 

maternal ecdysone. A later study (Palanker et al., 2006), however, 

dismissed this conclusion after observing the fact that mutants for 

disembodied (i.e. lacking zygotic ecdysone) show no EcR activity in the 

amnioserosa, but still carry out germ band retraction successfully. The way 

that ecdysone signals to effect embryonic morphogenetic movements has 

thereby been unclear.  
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The respiratory organ of Drosophila as a model system for 

epithelial organ development 

 To explore the importance of ecdysone for embryonic organ 

formation, we began by analyzing its role in the developing respiratory 

organ (trachea). The trachea is formed when tracheal precursor cells 

undergo genetic specification from the ectoderm. The cells then invaginate 

to form 20 pockets, and prior to or during invagination they become 

patterned within each pocket. Tracheal branching morphogenesis is a 

highly stereotyped process and is invariable from embryo to embryo 

(Samakovlis et al., 1996a; Uv et al., 2003). During branching 

morphogenesis, each metamere connects with its neighboring metameres, 

both on the same side and on the contra-lateral side of the embryo, to form 

a continuous tracheal network, similar to the formation of vertebrate 

capillary anastomoses (Samakovlis et al., 1996b; Gerhardt et al., 2003). 

The tubes continue to sprout and mature in size and length. Cuticle 

differentiation and air filling are terminal events of tracheal developmental. 

These developmental steps are described below.  

 

Tracheal formation and branching morphogenesis 

 The tracheal precursor cells (1600 cells) are genetically specified from 

the ectodermal tissue. Specification occurs at stage 10 at twenty sites, ten 

on each side of the embryo, and is mediated by transcription factors, 

mainly Trachealess (Trh) and Ventral veinless (Vvl) (Anderson et al., 

1995; Wilk et al., 1996) (Zelzer and Shilo, 2000). Soon after, these clusters 

of cells invaginate to form 20 pockets. During invagination, the tracheal 
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cells undergo their last cell division, which result in 80 cells per pocket 

(Samakovlis et al., 1996a). Once the tracheal cells are specified they 

become patterned. Such patterning is thought to confer branch-specific 

properties to the tracheal cells, so that they later form correct size and 

migrate in the correct orientation. This is mediated by Wingless (Wnl), 

Decapentapledic (Dpp), Epidermal growth factor (EGF) and Hedgehog 

(Hgg) (Chihara and Hayashi, 2000; Llimargas, 2000). Thus the 

invagination process involves different domains with different gene 

expression. After invagination, the cells in each pocket begin to form six 

primary branches with different types of tube architecture), called the 

Dorsal trunk anterior (DTa), dorsal trunk posterior (DTp) and transverse 

connectives (TC), lateral trunk anterior (LTa), lateral trunk posterior (LTp), 

dorsal branch and ganglionic branch (GB). 

 Initially, all these branches are type-I tubes that contain several 

wedge-shaped cells around the lumen. Later, the dorsal branch, lateral 

trunk anterior, lateral trunk posterior and ganglionic branch form type-II 

tubes, where the lumen edge is surrounded by a single cell that folds over 

its’ own axis and is sealed by autocellular junctions, thereby forming a 

small lumen. Branchless (Bnl, an FGF homologue) is expressed in tissues 

surrounding the tracheal cells and acts as a chemo-attractant for branch 

migration. Bnl binds its receptor Breathless (Btl), which is expressed in 

tracheal cells (Sutherland et al., 1996). Branch migration continues until 

the branch arrives at the signal sources. At stage 14, secondary branching 

commences. Bnl and Btl are involved also in this process, but here, Bnl-

signaling causes differentiation of the tip cells by inducing gene expression 

(Samakovlis et al., 1996a). One such gene is pointed (pnt), which encodes 
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an ETS transcription factor. Pnt plays at least two roles in the tip cells. 

First, it induces a gene, pruned, which encodes Drosophila Serum 

Response Factor (SRF) and second, it inhibits the expression of a fusion 

gene, escargot, found in the terminal cells, which induces expression of 

later fusion genes and suppresses terminal branching in the fusion cells 

(Affolter et al., 1994; Samakovlis et al., 1996b). 

Bnl also induces expression of sprouty, which is inhibits bnl signaling 

and is needed to limit cell tip identity in tip cell differentiation (Hacohen et 

al., 1998). The two tip cells in the dorsal branch specialize to one fusion 

cell and one terminal cells via lateral inhibition. To form fusion 

anastomoses, two cells positioned at the tip of the two fusing branches 

connect and form unicellular doughnut shaped seamless cells (type-III). DT 

branch fusion occurs during stage 14, LT branch fusion at stage 15 and DB 

fusion at stage 16. Finally, the terminal cells form hollow intracellular 

extensions to build the type-IV seamless capillaries to supply the 

surrounding tissues with oxygen (Uv et al., 2003). 

 

Tracheal tube size regulation 

 Each branch of the tracheal network initially has a narrow lumen, and 

grows in lumen size to attain specific dimensions in order to become 

functional. The dorsal trunks (DT) are the main tracheal tubes, and extend 

through the body from the anterior to the posterior part of the animal. After 

fusions of branches, the DT lumen grows in diameter and length to achieve 

correct size. Tube diameter expansion occurs over a narrow three-hour 

period resulting in a 3-fold increase in lumen diameter (Beitel and 
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Krasnow, 2000). Such dilation is associated with elevated levels of apical 

secretion into the lumen, and mutants with impaired secretion show 

reduced diameter expansion (Samakovlis et al., 1996a; Jayaram et al., 

2008; Forster et al., 2010). Lumen dilation also requires the deposition and 

organization of chitin filaments, which lie lengthwise inside the tubular 

lumen interacting with other molecules. The filament is not a requirement 

for increased lumen volume, but is necessary for uniform diameter 

expansion upon increase in lumen volume (Devine et al., 2005; Tonning et 

al., 2005). After diameter expansion, which occurs at stage 15, the lumen 

continues to grow through tube elongation.  

 

Genes involved in tube dilation and elongation 

Many genes are involved in manufacturing tracheal tubes with correct size 

(diameter and length) and shape. Of these are two transcription factors, 

Grainy head (Grh) and Ribbon. Mutants for grh display excessive growth 

of apical membrane resulting in convoluted lumens (Hemphala et al., 

2003), whereas rib mutants present restricted apical membrane growth 

(Shim et al., 2001). Similar phenotype is attained when overexpressing grh 

in the trachea, as is seen in rib mutants, arguing that grh is a prerequisite 

for correct apical membrane expansion. krotzkopf verkehrt (kkv) is another 

gene encoding for Chitin synthase-1 (CS-1) that generates chitin chains in 

the lumen, a requirement for a uniformed lumen expantion (Devine et al., 

2005; Tonning et al., 2005). Mutants for retraactive (rtv) and knickkopf 

(knk) have defective chitin filament organization and exhibit uneven 

tracheal tube diameter, similar to those seen upon loss of kkv (Devine et al., 

2005; Tonning et al., 2005; Moussian et al., 2006). Two other genes, 

serpentine (serp) and vermiform, encode proteins with chitin binding 
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domains that associate with the intraluminal chitin matrix and are required 

to restrict excess tube elongation (Luschnig et al., 2006; Wang et al., 

2006). A member of the Halloween gene family, mummy (mmy), encodes 

an intracellular enzyme required to produce UDP-GlcNAc, the substrate 

for CS-1. Mutants for mmy lack the intraluminal chitin matrix and develop 

severely irregular lumen diameter (Tonning et al., 2006). ghost (gho) and 

haunted (hau), two other members of the Halloween gene family, have 

recently been shown to play a key role in cell secretion, and mutants for 

these genes display narrow tracheal tubes, arguing that secretion is 

fundamental to tube growth (Norum et al., 2010). Genes encoding septate 

junction (SJ) components are another group of tracheal tube size genes that 

are required to restrict tube elongation, and include megatrachea (Mega), 

boudin (bou), Lachesin (Banerjee and Slack), Na+/K+ ATPase, sinuous 

(sin) and varicose (vari) (Behr et al., 2003; Paul et al., 2003; Llimargas et 

al., 2004; Wu et al., 2004; Wu et al., 2007; Hijazi et al., 2009). The two 

polarity genes, crumbs and yurt, also affect DT length, and the antagonistic 

mechanisms of the two of them seem to regulate the extent of apical 

surface expansion and tube elongation (Laprise et al., 2006). Although 

these findings illuminate our understanding about some of the actors 

involved in tube size regulation, they do not fully explain the mechanism 

that control tube size, and it is not clear how their activity is temporally 

regulated during the different phases of tube growth.  

 

Gas-filling and cuticle differentiation  

 The developing trachea is liquid-filled and, at the end of 

embryogenesis, the liquid is cleared and the tube becomes gas-filled 
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(Manning and Krasnow, 1993). At this time the cuticle, an apical 

extracellular matrix, has formed to prevent collapse of the tubes. Its rigid 

form offers structural stability and support to the tubes. The cuticle is 

composed of three defined layers, an outer envelope containing lipids and 

waxes, an epicuticlar network of proteins and a procuticle layer, which is 

closest to the apical side of the epidermis and is composed of sheets of 

highly ordered protein-chitin network (Moussian et al., 2005). Facing the 

lumen are ridges that lie perpendicular to tube length, called taenidia. The 

structure of the taenidia is thought to prevent the collapse of tracheal tubes, 

while allowing the tubes to expand and contract along their length. 
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AIMS OF THIS THESIS 
 

The main aims of the presented thesis are to elucidate the impact of 

ecdysone on embryonic organ development, and to attain further 

understanding of the genetic and molecular mechanisms that control 

tube size, using the developing respiratory system (trachea) as a 

model system.  
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RESULTS AND DISCUSSION  

 The work for paper I and II was initiated with the aim of 

characterizing the onset of tracheal tube elongation after completion 

of diameter expansion at stage 15. We were interested in the 

molecular mechanisms that underlie this switch in growth mode. In 

paper I, we show that tube elongation requires two simultaneous 

events. First, the tracheal cells acquire an intrinsic ability to 

elongate, presumably mediated by subapical actin rearrangements. 

Second, the luminal matrix, which at this stage serves to hold back 

elongation, undergoes a modification, which appears required to 

permit a controlled extent of elongation. We conclude that 

successive morphogenic steps can be regulated through the timely 

modification of apical matrix properties. In Paper II, we identify 

another protein that is required for tracheal tube elongation. 

However, we noted the protein has an even more striking effect on 

tube size regulation of the hindgut, which became the focus of this 

article. Papers III and IV describe a role for ecdysone in the 

temporal progression of tracheal developmental events. In paper III, 

we characterize the gene regulatory mechanism of embryonic 

ecdysone receptor. In paper IV, we show that ecdysone is required 

for the temporal unfolding of tracheal gene programs, including the 

expression of genes required for tracheal tube elongation. Since 

ecdysone is required for the progression of parallel tracheal gene 

programs, the hormone pulse appears to be important to schedule 

and synchronize organogenic events. 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Paper III: Tissue-autonomous EcR functions are required 

for concurrent organ morphogenesis in the Drosophila 

embryo 

 

Here, we investigated the embryonic ecdysone-signaling 

mechanism. Vi show that both EcR and Usp are essential to mediate 

the effects of ecdysone on organ morphogenesis, indicating that 

embryonic ecdysone signals via EcR:Usp. We also uncover that EcR 

mediates the effects on organ morphogenesis in a tissue-autonomous 

manner, and that embryonic ecdysone via EcR instructs the temporal 

and tissue-specific expression of at least four transcription factors 

that are needed for embryogenesis and are common to the 

metamorphic ecdysone- response.  
 

Organ morphogenesis is inhibited upon loss of ecdysone 

We had previously noted a defective trachea of embryos that 

lack embryonic ecdysone biosynthesis, and started these studies by 

reinvestigating the requirement for ecdysone on epithelial organ 

morphogenesis. Mutants for shadow (sad) and shade (shd) lack the 

last two enzymes essential for embryonic ecdysone biosynthesis, 

respectively. Both mutants have major defects in dorsal closure, 

head involution and midgut constrictions. In addition, their tracheal 

branching morphogenesis stall at stage 14. However, the embryos 

continue to develop until the end of embryogenesis, since late sad 

and shd mutant embryos displayed movements within their eggshell 

and produced chitin in the epidermis during stages 16 and 17. We 

analyzed sad and shd mutants in parallel for all further studies, and 
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the mutants showed indistinguishable phenotypes.  
 

EcR and Usp are required for embryonic organ development 

Although EcR:Usp heterodimers mediate the response to ecdysone 

during larval moulting and metamorphosis, the embryonic ecdysone 

signaling mechanism has been unclear. First, we analyzed embryos 

homozygous for loss of function alleles of EcR (EcRM554fs and 

EcRV559fs) (Bender et al., 1997). We could show that these embryos 

had incomplete head involution and abnormal midgut 

morphogenesis at late stage 16, and a majority of the embryos had 

incomplete dorsal closure. In addition, their trachea stained only 

weakly for 2A12 and commonly had a bloated appearance. Thus, 

EcR is required for morphogenesis of different epithelial organ, and 

the milder phenotypes of EcR mutants compared to those of sad and 

shd mutants, is likely to be due to the maternal contribution of EcR 

mRNA and protein (Talbot et al., 1993). Both EcR and Usp are 

present in the embryo (Sedkov et al., 2003), but it has been unclear 

whether Usp is required for embryonic organ development; usp 

mutants generated from a usp mutant germ line (maternal-, zygotic- 

m-/z-) die around hatching with few morphological defects (Perrimon 

et al., 1985; Oro et al., 1992), but the usp alleles used in these 

studies (usp3 and usp4) encode stable proteins with impaired DNA-

binding domains (Henrich et al., 1994) and are hypomorphic alleles. 

We instead investigated the requirement for embryonic Usp by using 

the uspActΔ148 allele (Wahlstrom et al., 2006), in which the 5’ region 

of the gene is deleted. Zygotic uspActΔ14 mutant animals die at the 
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molt between 1st and 2nd instar larvae, while embryos derived from 

homozygous uspActΔ14 germ cells (uspActΔ14 m-/z-) die before hatching. 

The latter had organ morphogenetic defects, including incomplete 

head involution and dorsal closure, aberrant midgut morphology and 

bloated tracheal tubes with reduced 2A12-levels. The phenotypes of 

uspActΔ14 m-/ z- embryos imitate those of zygotic EcR mutants, but are 

less severe than those seen upon loss of zygotic ecdysone, probably 

because the uspActΔ14 mutation is not a null allele. Thus, it appears 

that Usp functions together with EcR to mediate the effects of 

ecdysone on embryonic organ morphogenesis, like in other stages of 

the Drosophila life cycle. 

 

 

Embryonic organ formation requires tissue-autonomous EcR 
activity 

Both EcR and Usp have been reported to active in the 

amnioserosa at the time of the ecdysone pulse (Kozlova and 

Thummel, 2003). However, when re-examining embryonic EcR:Usp 

activities using EcRE-LacZ (Koelle et al., 1991), which supposedly 

reflects in vivo EcR:Usp activity (White et al., 1999), we found that 

the reporter gene is expressed in the visceral mesoderm and head-

region from stage 12, and later (stage 13/14) in the amnioserosa. No 

expression was seen in the trachea and other epidermal tissues. We 

also confirmed that the expression of EcRE-LacZ strictly depends on 

ecdysone. Moreover, when incubating young embryos (0–5 h) for 2 

h in ecdysone (20E), we detected premature EcRE-LacZ expression, 

but still, the expression was confined to the visceral mesoderm. We 
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therefore concluded that detectable levels of EcRE-LacZ expression 

do not fully reflect the spatial distribution of ecdysone, or the 

developing organs that depend on EcR-activtiy. To test whether EcR 

activity in the amnioserosa or the visceral mesoderm could act 

indirectly to affect epithelial organ development, we expressed 

Dominant Negative (DN) EcR, EcR-DN (UAS-EcR-W650A, 

(Cherbas et al., 2003)) in the two tissues using the UAS-GAL4 

system. We did not find that amnioserosal expression of DN-EcR 

caused any defects on embryonic development. EcR-DN expression 

in the mesoderm did, however, produce defects in midgut 

morphogenesis. The visceral mesoderm lines the midgut 

endothelium and is required for midgut closure and constriction 

(Tepass and Hartenstein, 1994). Strikingly, all embryos showed 

arrested midgut constrictions, but other ecdysone-dependent 

processes, such as dorsal closure, tracheal dorsal branch fusions and 

head involution were not affected. The midgut phenotype could be 

rescued upon co-expression of EcR, arguing that mesodermal EcR 

activity is required for midgut development. Based on these results, 

we speculated that EcRE-LacZ expression does not reflect all EcR 

activities within embryo, and tested whether EcR-DN expression in 

tracheal cells had any effect on tracheal development. Such embryos 

developed to hatching larvae, but all had a defective trachea similar 

to those of seen upon loss of ecdysone. The tracheal phenotypes 

were rescued by the simultaneous expression of EcR, arguing that 

they were due to loss of EcR function. We finally asked whether 

EcR is required tissue-autonomously for head involution, dorsal 
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closure and cuticle deposition, by expressing EcR-DN in the 

ectoderm. Most embryos showed stalled head involution and dorsal 

closure, as well as reduced cuticular structures. The phenotypes were 

rescued upon co-expression of EcR. Together, the results imply that 

ecdysone causes pan-embryonic EcR activity, and that EcR is 

needed in individual tissues for concurrent morphogenetic 

progression. 
 
 

Tissue-specific induction of 20E-response genes via EcR 

The zygotic functions of two primary ecdysone response genes 

in larvae, the nuclear receptors Eip75B (E75) and Hr46 (DHR3), are 

required for embryonic viability (Bilder and Scott, 1995; Carney et 

al., 1997). We therefore tested if the expression of these genes is 

induced also by embryonic ecdysone. The mRNA expression of 

Eip75B and Hr46 is evident in wild type embryos from stage 12, 

correlating in time with the peak of the ecdysone pulse. The 

transcripts are first seen in the midgut, and later in the trachea and 

epidermis. Eip75B and Hr46 mRNA were not detected in sad 

mutants. In addition, when young wild type embryos were incubated 

with exogenous 20E, Eip75B and Hr46 transcripts were detected 

prematurely in the midgut, showing that 20E regulates their temporal 

onset of expression. Blimp-1, which encodes a SET-domain protein, 

is another ecdysone-response gene in larval cells, and Blimp-1 

mutants develop bloated tracheal tubes during embryogenesis (Ng et 

al., 2006), similar to those of embryos with reduced EcR and Usp 

functions. Blimp-1 is expressed from stage 12 in the trachea and 

epidermis, and we found that this expression depends on ecdysone, 
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arguing that Blimp-1 is another embryonic ecdysone-response gene. 

We were also able to show that the expression of Eip75B, Hr46 and 

Blimp-1 depends on EcR, since the expression was severely reduced 

in the trachea of embryos that express EcR-DN in the trachea. A 

fourth potential embryonic ecdysone response gene that we analyzed 

was bftz-f1. This gene encodes another nuclear receptor that is 

induced by post-embryonic ecdysone pulses as a late response-gene. 

In the embryo, expression of bftz-f1 increases towards the end of 

embryogenesis and is known to be required for embryonic viability 

(Yamada et al., 2000). We showed that the late bftz-f1 expression 

also depends on ecdysone. Hence, Eip75B, Hr46 and Blimp-1 are 

early ecdysone-response genes, while bftz-f1 appears to be a late 

response gene in the embryo, much like they act during larval 

moulting and metamorphosis. Together, the results imply that the 

pulse of embryonic ecdysone adds a temporal aspect to the gene 

regulatory networks that drives organ morphogenesis ahead.   
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CONCLUSIONS 
 

I. Tracheal tubes undergo successive phases of tube growth 
that are associated with distinct tracheal gene expression. At 
the end of diameter expansion, tracheal cells acquire an 
ability to elongate that depends on an actin-organizing 
factor. A luminal matrix holds back elongation and a timely 
anion-dependent matrix modification permits a limited 
extent of elongation.  
 

II. A third factor required for tracheal tube elongation is a 
mucin-like protein. The protein also drives hindgut lumen 
diameter expansion and appears to do so in a dose-
dependent manner. This work provides an example where 
tube diameter is modeled by the regulated expression of a 
single protein.  

 

III. Ecdysone is essential for epithelial organ morphogenesis 
past mid-embryogenesis and mediates its effects on organ 
development by tissue-autonomous EcR functions and Usp. 
The temporal pan-embryonic activation of EcR and its 
requirement for continued organ development implies an 
essential role for ecdysone in concurrent organ 
development. Embryonic ecdysone, via EcR also activates a 
gene regulatory hierarchy, similar to that of post-embryonic 
stages. 
  

IV. Ecdysone advances tracheal development by allowing the 
temporal progression of tracheal gene programs that control 
morphogenesis and terminal differentiation. A hierarchy of 
embryonic ecdysone response genes interferes with late 
tracheal development, including tube elongation. Ecdysone 
therefore adds a temporal aspect to the spatially defined 
tracheal gene network.  
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