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Kristian Gustafsson
Department of Physics
University of Gothenburg
SE-412 96 Goteborg, Sweden

Abstract

In nature, suspensions of small particles in fluids are common. An
important example are rain droplets suspended in turbulent clouds. Such
clouds can start to rain very quickly and the reason for this is still not
fully explained, but it is believed that the turbulent motion in the cloud
plays an important role. This thesis gives an introduction to the model
we use to describe inertial particles suspended in such systems and some
results coming from this model.

We identify a general behavior of the particle motion which is asymp-
totically correct independent of how the fluid velocity is generated and
on the equation of motion of the suspended particles. This asymptotic
behavior can be matched to other limiting cases where the details of the
system are important. This allows us to calculate an asymptotically cor-
rect distribution of particle separations and relative velocities in a form
which is universally valid. The form of the distribution depends on the
phase-space fractal dimension, which describes the degree upon which
particles cluster in phase-space, and on d scales at which the asymp-
totes are matched, where d is the spatial dimension. If the fluid velocity
gradients consist of white-noise, the phase-space fractal dimension and
the single matching scale can be calculated analytically in one spatial
dimension.

We introduce a new series expansion around deterministic particle
trajectories. The expansion is done in terms of the magnitude of typical
fluctuations of the fluid velocity at a fixed position. If typical fluctuations
are small, we can calculate statistical quantities averaged along particle
trajectories. In particular, we can calculate the degree of clustering for
particles of general inertia in this limit.
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Introduction

This thesis concerns the motion of small solid particles or liquid droplets
suspended in turbulent gases, so called ‘turbulent aerosols’. In order to
calculate the typical rate at which the suspended particles collide, one
needs to understand the relative motion between pairs of such particles.
This ‘collision rate’ determines the distribution of particle sizes in the
aerosol. This quantifies how the aerosol interacts with its surroundings.
An example is the interaction between atmospheric aerosols with light
which is needed in climate models ﬂa] It can also be found that the
particle-size distribution widens, particles ‘rain out’ from the aerosol.

One important example is a turbulent rain cloud. In so called ‘Cumu-

lus clouds’ small water droplets are suspended in turbulent air currents
, ] It is not understood how micrometer size droplets grow millions
of times to form millimeter size rain drops within just some ten minutes,
as is empirically observed ﬂé] Small water droplets form and grow by
condensation of water vapor on preexisting aerosol particles. Due to the
increasing volume to area ratio of the droplet and due to depletion of
local moisture, the growth of droplet radii slows down as droplets grow
larger ﬂ, ] Droplets much larger than ~20 pm are affected by gravity
and fall through the cloud, merging with smaller particles on the way, so
called ‘gravitational coalescence’. If the distribution of particle sizes is
wide, many collisions occur as the large droplets fall. Gravitational coa-
lescence is believed to be the most important mechanism for the growth
of rain droplets ﬂg] But to grow droplets to large sizes by condensation
takes long time and gives a narrow droplet size distribution which makes
gravitational coalescence inefficient. Rain formation due to condensa-
tion takes many hours in contrast to what is observed. It is argued that
the resolution of this contradiction is that turbulence-induced collisions
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between small droplets increase their growth rate and make their size
distribution broad enough to make gravitation coalescence efficient. Our
aim is to increase the understanding of how the water droplets collide
in turbulent clouds. This problem is the main focus of this thesis, but
the model we use applies to other systems of similar character. Some
examples are chemical reactions in chaotic flows ﬂg], plankton dynamics
@, ], optimization of combustion processes and formation of planets
in accretion discs around young stars @@] All these systems have in
common that they regard the motion and collisions between small par-
ticles with motion driven by a complicated forcing. However, as shown
in this thesis it is in certain limits possible to find general mechanisms
which are valid independently of the nature of the forcing.

This thesis gives an introduction to the attached papers [I-VI] which
all consider the motion and collisions of inertial particles suspended in
turbulent or random flows. A separate Licentiate thesis ﬂ] gives an in-
troduction to the papers E@] which mainly consider collisions between
non-inertial particles that follow the streamlines of a flow, so called ‘ad-
vected particles’. A detailed introduction to turbulent systems and the
‘random-flow model” we use to analyze such systems is given in @] To
make this thesis self contained, the key concepts used in this thesis are
summarized in Chapter ] Random-flow model.

In Chapter B General principles, we compare the random-flow
model with turbulent flows. Even though dissimilarities exist some mech-
anisms are expected to be valid in both random flows and turbulent flows.
We introduce the content of the papers [[-VI] by putting them in the
contexts of such mechanisms. First, the analytical results used in [V,VI]
rely on the assumption that the flow fluctuates rapidly in time, a limit
which is expected to be valid also for very inertial particles suspended
in turbulent flows. Second, analytical results derived in [I-III] use the
fact that the relative motion between particles of large relative speed is
independent of how the flow is generated. These universal results can be
matched to model specific results valid for smaller relative speeds ﬂﬂ, m]
Finally, in the cases where the motion is system-dependent, a systematic
expansion in terms of the dimensionless flow speed (the so called ‘Kubo
number’) can be performed ﬂﬁ[ﬂ By knowledge of the flow statistics at
a fixed spatial position, it is possible to calculate statistical quantities
along particle trajectories for small Kubo numbers.

Finally, to understand rain formation in turbulent clouds it is nec-
essary to understand how the water droplets collide. In @] the rate of
collisions between advected particles in random flows was studied. By
use of the new results in [I-VI] this analysis is extended to the case of
inertial particles in Chapter @], Collisions.



Random-flow model

For rain drops to form in turbulent rain clouds or for planets to form in
interstellar accretion disks, small particles must merge in a turbulent en-
vironment. Our aim is to model the motion and collisions between small
particles suspended in turbulent aerosols to increase the understanding
of how the particles grow millions or billions of times to form rain drops
or even planets. The model we use is simplified to the degree that it is
possible to make analytical predictions but still (hopefully) incorporates
the essence of the true system. In this chapter we briefly introduce a
model for the motion of and for collisions between small particles sus-
pended in turbulent flows. This model was first studied by Deutsch in
one spatial dimension ] where he discovered a phase transition, the
‘path-coalescence transition’, later analytically studied in @ For a
more thorough introduction of the model, see Chapters 2-4 in h]

2.1 Deutsch’s model

We assume small spherical particles of radius a are suspended in a spa-
tially and temporally fluctuating velocity field w(r,t). Each particle is
centered at a time dependent position 7(¢) with velocity v(¢). The motion
of the particles is assumed to be described by ‘Stokes’ law’ (in rain-cloud
turbulence this law is valid for particle sizes of 2 pm to 30 pm ﬂﬁ, ])

r=v, ©=v(u(r(t)t)—v). (2.1)
Here 7 (v) denote time derivative of r (v) and v ~ a2 is the particle
‘damping rate’, which quantifies the particle inertia. In the limit v — oo,
particles are ‘advected’; i.e. they immediately align to changes in w and
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. In this thesis we extend the focus to include particles with inertia.
A finite value of 7 implies a delay between fluctuations of u and changes
in v, particles are no longer bound to follow the fluid streamlines. This
has several interesting consequences which are discussed in Chapter
It should be noted that the fluid velocity w(r(t),t) in (21]) is evaluated
at the particle position, which makes (2.1]) nonlinear and difficult to solve
analytically for general w. For a turbulent aerosol, w satisfies the fluid
dynamical ‘Navier-Stokes equations’. These equations are hard to solve
both analytically and numerically for large turbulent systems. Instead
of obeying the Navier-Stokes equations, we choose the velocity field u to
be a random function that in a statistical sense mimics some (but by no
means all) characteristic properties of real turbulence. We assume that
u is statistically homogeneous, isotropic, time invariant and that there
is no net drift, (u(r,t)) = 0. Second order correlation functions of w can
be matched to statistical properties of turbulent flows as presented next.

(IQ% may be approximated by 7 = w(r(t),t). This is the limit studied
in [1]

Turbulent motion typically has a length scale Ly at which some
macroscopic force (convection currents in turbulent rain clouds) stirs
the fluid, continuously adding kinetic energy at a rate per unit mass
e. At a much smaller length scale 7, energy is dissipated into heat at the
same rate € as energy is put in at the scale Ly. The energy at scale L
is transported to the dissipation scale n through the ‘inertial range’ by
successive breakdowns of eddies. An eddy of size Ly breaks down into
smaller eddies which together take on the kinetic energy of the larger
eddy. These smaller eddies in turn break down into even smaller eddies
which take on the kinetic energy. In the end, the kinetic energy of the
initial eddy is distributed among many small eddies of size 1, where the
kinetic energy dissipates into heat. Since new large scale eddies are con-
tinuously produced, a turbulent system consists of a hierarchy of eddies
of different sizes ranging from Ly down to 7, where larger eddies sweeps
smaller eddies around |19, ]

Distances R between pairs of points such that n < R < Ly define
the inertial range. It may span several decades, e.g. a turbulent rain
cloud has n ~ 107*m and Ly ~ 10*m B] As realized by Kolmogorov in
1941 , é] a single parameter € determines all dynamical quantities in
the inertial range. By dimensional analysis ([e] = L?/T?) it is possible
to show that in the inertial range (Au?) ~ (¢R)?3, where (...) denotes
an expectation value over a statistical ensemble, Au = u(R,0) —u(0,0)
and R is the separation between two points ﬂﬂ, @] Thus, for R in the
inertial range we choose the random velocity field w in (2.I]) to satisfy
(Au?) ~ R?*/®. We denote a model with an inertial range a ‘multi-scale
flow model’.
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In the dissipation range, R < 1, energy is dissipated into heat due to
viscous forces in the fluid. In addition to e, the fluid-dynamic viscosity v
is relevant , ] Using dimensional analysis on ¢ and v (of dimension
[v] = L?/T), it is possible to find typical dimensions of the smallest ed-
dies in turbulent flows, the ‘Kolmogorov length’ n oc (v /)14, the ‘Kol-
mogorov time’ 7 oc (v/e)!/? and the ‘Kolmogorov speed’ uy o (ve)'/4.
Eddies of length scales much smaller than 1 can not form due to dissi-
pation @, @% When we are only interested in what happens at small
scales, R < n, we approximate the turbulent flow by the Kolmogorov size
eddies, a ‘single-scale flow model’. For a single-scale flow we let Ly = n
to make it consistent with the notation of multi-scale flows.

The dynamics of a fluid is smooth, meaning that for R < n the
velocity field Aw can be series expanded as, Au = AR, where A;; = 0;u;
is the ‘strain rate’ of the flow. Using this property, the small R statistics
of w in (ZJ]) must be chosen such that (Au?) o R?. This is a property
shared by the multi-scale and single-scale models.

The details of how the single-scale random velocity fields are con-
structed are given in @, , ] To construct a single-scale flow describ-
ing Kolmogorov scale eddies, we choose in d = 1,2, 3 spatial dimensions

u(r, t) = ugVa(r, t) (2.2)
w(r,t) = ug (8,0(r,t), —d.6(r, 1)) /V2 (2.3)
u(r,t) =uV x A(r,t)/V6, (2.4)

where each of ¥, ¢, A;, Ay, A3 is an independent Gaussian distributed
random function with statistics chosen to be

C(R,T) = (Y(R, T)(0,0)) = ugye /=11 (2.5)

in this thesis. Eqs. (Z2HZ4) are normalized so that (u(0,0)?) = u2. Most
turbulent flows are incompressible, i.e. their fluid density is constant.
Eqgs. ([232.4) are constructed to make w incompressible, non-trivial one-
dimensional flows are always compressible though.

2.2 Model parameters

To keep the model as simple as possible we identify the most important
model parameters. They are obtained by forming independent dimen-
sionless combinations of the dimensionful parameters. The single scale
velocity field is governed by the parameters 1, 7 and uy which can be
combined into the ‘Kubo number’ ﬂﬁ, ], Ku = wy7/n. Turbulent flows
have Ku = ug7/n ~ 1, but the exact value is not known. In randomly
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stirred fluids, the Kubo number can be small. It might also be possi-
ble to generate velocity fields with large values of Ku from e.g. random
electromagnetic fields.

The interaction between the fluid and suspended particles are gov-
erned by the damping rate, v, which can be combined with 7 into the
‘Stokes number’, St = 1/(y7). Turbulent rain clouds typically have
St ~ 10%2 [8] which ranges from ~ 1073 to ~ 10® for coalescing rain
droplets. However, Eq. (2]) is not expected to be valid for this full
range of Stokes numbers. As St is increased, the model (ZI)) must be
modified to take into account effects of gravity and additional interac-
tions between particles and the fluid.

Collisions between particles depend upon the particle radius a and
number density ng of suspended particles. These can be made dimen-
sionless as @ = 2a/n and ny = ngn?. Here a is a dimensionless collision
distance, two spherical particles of the same size collide when their sepa-
ration becomes smaller than 2a. ng is the typical number of particles per
Kolmogorov scale eddy. For Stokes’ law (2.1) to be valid @ must be small
and for the particles not to affect the flow, the packing fraction nga? must
be small [27]. Both these conditions are satisfied for microscopic water
droplets suspended in rain clouds @, @]

2.3 Motion of particle separations

In order to calculate the rate at which particles collide it is useful to
consider the relative motion of a particle pair. Two trajectories (r,v)
and (r’,v") have a spatial separation R = 7 — r and a relative velocity
V = v’ — v which are determined by subtraction of (2Z1]) for the two
particles

R=V, V =~(Au(r,R,t)-V). (2.6)
Here Au(r,R,t) = u(r + R,t) — u(r,t). As argued in Section 2.]
(Au) =0, and (Au?) scales as
R? for R <

(Au?) ~{ R?B forn< R Ly . (2.7)

const. for R > L
We remark that when time correlations are included in ([2.7]), an addi-
tional R-dependence enter the inertial-range scaling because larger eddies

have larger time correlations @]
At small separations, R < n, Eq. (20) simplifies to

R=V, V=vArt)R-V). (2.8)



General principles

In Chapter 2] we introduced Deutsch’s model in which we approximate
the particle motion by Stokes’ law (2.1]) and the fully developed turbulent
velocity field by a Gaussian distributed random velocity field (Z2HZ4]).
But are these really appropriate approximations? Several known compli-
cations concerning the particle motion in turbulent flows are overlooked
in this model. One example is ‘intermittency’, the time signal of a turbu-
lent velocity component subjected to a high-pass frequency filter shows a
signal with occasional large bursts @, @] This is an example of inter-
mittent behavior, the signal is only active during a fraction of the time.
Intermittency results in a fluid velocity distribution which is wider than
the fluid velocity distribution of a non-intermittent Gaussian random
flow (which is normalized such that the second order moment equal that
of the turbulent flow) @] Another example is that the droplet motion
is more complicated than Stokes’ law (2.1]) due to gravitational effects,
buoyancy effects, ‘added mass’ from the surrounding fluid etc. ﬂﬁ] Is it
adequate to completely neglect such complications?

In this chapter we investigate what properties of real fully devel-
oped turbulent motion are expected to be described by our model and
which properties lie outside the scope of the model. This is done by first
stating some observed similarities and differences between the random-
flow model and numerical simulations of turbulent flows, see Section B.11
Then we identify some universal principles which apply to a great vari-
ety of systems, including random and turbulent flows, see Section B.2
Finally, in Section we discuss the regions in parameter space where
the particle motion is system specific and how this limit can be treated
analytically, provided we know the stream correlation functions of the
random or turbulent flow.
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3.1 Comparison to turbulent flows

In addition to the intermittency effect discussed in the previous section,
there exist several differences between the characteristic behavior of tur-
bulent and random flows. A full review of all differences and similarities
lies outside of the scope of this text. One similarity is that suspended
particles in both types of flows cluster on ‘fractals’, see cover image.
This means that instead of being evenly distributed in space, particles
form a structure whose shape changes with time. The fractal structure is
scale invariant, upon enlargement the enlarged picture is identical to the
original image in a statistical sense (for the cover image this is true for
subimages of side length one tenth the full size). Depending on how well
the fractal fills space, the structure can be assigned a ‘fractal dimension’.
One way to define the fractal dimension is the ‘Lyapunov dimension’,
dy first studied by Kaplan and Yorke M] It is defined in terms of the
‘Lyapunov exponents’, \;, where ¢ = 1,...,2d and \; are ordered as
A1 > Xy > ... X\yy. These determine the exponential rates at which in-
finitesimal separations (A1), areas (A1 + A2), volumes (A; + Ay + A3), etc.
spanned between suspended particles grow or shrink at large times [32].
If e.g. areas grow but volumes shrink at large times, particles cluster on a
structure which fills space better than an area of dimension two but worse
than a volume of dimension three, the Lyapunov dimension takes values
between two and three. For incompressible flows in three spatial dimen-
sions, the Lyapunov dimension is defined as d; = 3 — (A1 + Ao + A3) /| A3].
Lyapunov exponents and fractal dimensions are discussed in detail in ﬂ]

The Lyapunov exponents from numerical simulations of the random-
flow model are compared to the Lyapunov exponents from numerical
simulations of turbulent flows ﬂﬁ] in Fig. B.Jl For small St, the particles
almost follow the flow and are thus sensitive to the exact flow dynamics.
Depending on the correlation function of the flow, the Lyapunov expo-
nents show different behavior as shown in Fig.B.Il This is a ‘non-ergodic
effect’ discussed in Section B3l For St much larger than the maximal
value plotted in Fig. Bl the dynamics is universal (see Subsec. B2
and all curves in Fig. Bl would show the same behavior for large St.
Particles in random flows with intermediate Ku show almost as large
degree of clustering as particles in simulated turbulent flows. This is
also true for random flows with 7 — 0, a surprising fact because rapidly
fluctuating flows cannot support the non-ergodic effects @] One signif-
icant difference between random and turbulent flows is that the second
Lyapunov exponent Ay goes to a finite value as St — 0 in turbulent flows
whereas Ay goes to zero in random flows. This is a consequence of the
time irreversibility of the turbulent motion ﬂﬁ, .
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Figure 3.1: Comparison of the Lyapunov exponents for a random flow
to the Lyapunov exponents for simulations of turbulent flows in three
spatial dimensions ﬂ%] Left: Lyapunov exponents A; (o), Ay (¢) and
Az (O) from direct numerical simulations of turbulent flows (black), for
random flows with Ku = 0.4 (red), Ku = 0.6 (green) and Ku = 0.8
(blue). Right: Lyapunov dimension d; with same color coding as in left
panel. The correlation times of the random flow and in the turbulent
simulation are expected to differ by an unknown factor, meaning St and
;7 of the turbulent simulation data should be rescaled to be comparable
to the random flow data. Data for turbulent flows reproduced from ﬂﬁ]
with kind permission from J. Bec.

3.2 Universal principles

Although the random velocity field shows some differences to turbulent
flows there are general principles that are expected to apply for the mo-
tion of particles independent of the exact nature of the background flow.
In this section we present several such principles.

3.2.1 The 7 — 0 ergodic limit

If the velocity field u(r(t),t) fluctuates very rapidly along the particle
trajectory 7(t), its fluctuations are almost indistinguishable from the
fluctuations of a position independent velocity field, w(r,t) ~ u(t). Here
‘very rapidly’ means that r(¢) & const. during the time it takes for
u(r(t),t) to decorrelate. This can be accomplished by letting 7 be much
smaller than all other time scales of the system, i.e. St =1/(y7) > 1 and
Ku = uy7/n < 1. For a Gaussian random flow in one spatial dimension,
a more exact analysis yields the conditions St > 1 and Ku < /St
M].We call the approximation u(r,t) = wu(t) the ‘7 — 0 ergodic limit’
because the fluctuations of w sampled along a particle trajectory are
indistinguishable from the fluctuations at a fixed position. An alternative
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ergodic limit is used in @, @], where the velocity field has finite 7 but
is evaluated at a fixed position to avoid non-ergodic effects.

A suitable choice of dimensionless coordinates (t — ¢/, r — 7,
v — vy and w — uny) shows that if Ku — 0 and St — oo such that
Ku?St = const., the dynamics is described by one single parameter, the
radial diffusion coefficient for small separations €2 = D/y = C;Ku?St
with Cl =3 and Cg = 1/2

The 7 — 0 ergodic limit can also be employed to describe the motion
of small particle separations (2.8]). In this case the strain matrix in
Eq. ([28) is approximated by A(r(t),t) = A(¢). In the 7 — 0 ergodic
limit various quantities defining the droplet motion in random flows have
been successfully calculated. One example is the Lyapunov exponents
discussed in Section B.I] which have been calculated in all three spatial
dimensions @, @, @] In one spatial dimension the maximal Lyapunov
exponent changes sign from negative to positive as € becomes larger than
a critical value €.. This means that an initially small separation between
two particles either approaches zero exponentially for large times if € < €,
so called ‘path coalescence’, or increase exponentially for large times if
€ > €.. This phase transition was first noted in numerical simulations

| and was later calculated analytically, €. = 1.33. .. NE]

According to the Lyapunov dimension, the fractal dimension in the
one-dimensional model is either zero (path coalescence) or unity (paths
diverge). In M] we show that even though the particle separation must
grow, a finite system may still exhibit clustering. The reason is that
even though particles diverge at large times, they may stay together for
long times until this happens, the ‘finite-time Lyapunov exponent’ is
negative. This clustering is confirmed by an alternative measure of the
fractal dimension, the so called ‘correlation dimension’, d,. It is defined
as the scaling of the number of particles within a sphere of radius
around a test particle as d tends to zero, P(R < §) = f(f dRp(R) ~ §%.
For values of ¢ slightly larger than the critical value €., the correlation
dimension takes fractional values between zero and unity which quantifies
the fractal clustering, see Fig. As e passes a second critical value e,
the spatial correlation dimension saturates at unity. But the ‘phase-
space correlation dimension’ Dy (defined in the same way as the spatial
correlation dimension but with spatial separations R replaced by phase

space separations w = /|R|? + |V /7|?) continues to grow towards two
as € — oo [H].

In one spatial dimension, ds and D, can be calculated analytically in
the 7 — 0 ergodic limit ﬂﬂ] In higher dimensions they can be obtained
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dy

Figure 3.2: Correlation dimension in one (red,o), two (green,[J) and
three (blue,o) spatial dimensions as functions of €. Numerical simula-
tions are data markers and theory are solid lines from [ILIII], ([B1]) and
(B2). The theory in one spatial dimension is extended to include the
phase-space correlation dimension (gray). Simulations and theory are
according to the 7 — 0 ergodic limit as described in the text. The two-
and three-dimensional models are incompressible, the correlation dimen-
sion approaches the spatial dimension as ¢ — 0. This is in contrast
to the one-dimensional compressible model which show path coalescence
(dy =0) for all € < €. ~ 1.33.

from a series expansion in €

dy = 2 — 24€® + 528¢* — 28800€° + . .. (3.1)
for two spatial dimensions NL_Z'] and

dy = 3 — 20€® + 180€* — 9640¢° + . . . (3.2)

for three spatial dimensions, see Fig.

A lowest-order correction to the correlation dimension in general di-
mension was found in ﬂﬁ] It agrees to the lowest order correction in
B but disagrees to the lowest order correction in (3.2) by a factor of
two. The reason for this discrepancy is not known.

3.2.2 Caustics and variable-range projection

In the previous subsection the universality of the motion in the 7 — 0
limit was discussed. In this and the next subsections we study the motion
of particle pairs with relative velocities which are large compared to their
separations. It turns out that this motion show universal characteristics.
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Advected particles (St = 0) follow the fluid perfectly, each particle
position corresponds to a single value of velocity, that of the fluid. When
St > 0 by contrast, particles may detach from the fluid flow lines. The
particle velocity becomes multivalued, non-colliding particles may occupy
the same position in space with different velocities . An example
of this phenomenon in one spatial dimension is shown in Fig. B3l A
density of particles is initially uniformly distributed with all particles at
rest. As the particles are dragged by the velocity field, the phase-space
manifold containing the particle density smoothly changes shape (Fig.
b). As time increases it may happen that fast particles overtake slower
particles, the phase-space manifold folds over as shown in Fig. c and

2 ' [ ' [ ' l
S T b - d -
< 0 N
) L _ _
L . |

1 2 2

Figure 3.3: Panel a shows trajectories of particles in one spatial dimen-
sion following Eq. (21]). At ¢ ~ 0.7 a caustic occurs. Panels b-d show
particle velocities against their positions at three different times. At the
caustic, this function develops a fold.

The singular points where the phase-space manifold acquire infinite
slope Ov/0x — +oo are referred to as ‘caustics’. As shown in Fig. d,
caustics in one spatial dimension are always formed in pairs. Between a
pair of caustics the particle velocity field is multi-valued, particles that
come from far away tend to cross the caustics at large relative velocity,
Fig. a. If particles were allowed to collide, they would do so at high
rate and with large relative velocities ] Collisions due to caustics
is discussed in Section .3l
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Consider the relative motion between pairs of particles in one spatial
dimension. The aim is to find the distribution of large relative velocities,
|[V| > nv, at small separations, | X| < 7, where collisions occur, i.e.
to find p(|X| < n,|V| > nv). As caustics form, particle pairs of ini-
tially large separations and large relative velocities of opposite sign are
projected to (and past) small separations. Given a distribution of large
|X| and large |V], how does this distribution change as particles are pro-
jected by caustics to small | X|? This question was answered in @] using
a ‘variable-range projection’ model [, In @], the motion of particles with
large values of St suspended in a multi-scale velocity field was consid-
ered. For the particles to gain large relative velocity, they typically start
at large separations because (Au?) ~ |X|?/3 in the inertial range (27).
At large separations, the relative velocity V' of the particles is argued to
be Gaussian distributed with variance ~ | X%/ @] If |V] is assumed to
be large compared to typical fluctuations of the flow, the relative mo-
tion (ZB) can be approximated by X = V,V = —yV. The solution to
this equation is a linear phase-space trajectory V = Vj + v(Xy — X),
where X and Vj are the initial separation and relative velocity. A par-
ticle pair that starts with relative velocity Vy =V — v.X, reaches X =0
with relative velocity V. The distribution of initially large separations
Xy and large relative velocities Vp, p(Xo,Vp), is a Gaussian distribu-
tion in V with variance ~ |X,|*®. To find the distribution of large |V|
at X = 0, Xy is chosen as the value which gives the largest contribu-
tion to the distribution at X = 0. This is accomplished by maximizing
p(Xo, Vo) = p(Xo,V — vXp) with respect to X,. The optimal starting
point is X = —V/(27v), which gives the distribution of large relative ve-
locities up to a prefactor, p(X = 0,V) ~ exp(—C|V [*/342/3 /c2/3)  where
C is a constant [I]. This result can be reproduced by a microscopic model

|, it is also expected to be correct for turbulent flows for large St.

The variable-range projection is a general method that can be used
to match distributions at different separations with |V| large enough
so that the noise can be neglected. In the next section we consider a
similar but more detailed matching of the distribution p(X,V’) between
large |V/(vX)| where caustics are important and small |V/(vX)| where
diffusion due to the velocity field u is important.

3.2.3 Matching caustics to diffusion

The rate and velocity of collisions of a particle pair is determined by
the relative motion of the two particles in the pair. To understand this

!The name comes from the similarity to the ‘variable-range hopping’ model used
to calculate electrical conduction in low temperature semiconductors [41].
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motion one must study the distribution p(R, V') of spatial separations
R and relative velocities V ﬂa, 1, ] Because of the isotropicity of
the flow, p is expected to be independent of spatial angles, i.e. it is
sufficient to analyze p(R, V'). For simplicity, we consider the distribution
of identical particles which are allowed to overlap, they do not collide.
This distribution is relevant for collisions if St is large as we demonstrate
in Chapter 4l Throughout this subsection we adopt dimensionless units
t—t/y, X - nX,V = nyV and u — nyu.

For separations much larger than L, the distribution p(R, V') is ex-
pected to be independent of R. A second boundary condition for the
distribution is given by ‘particle interchange symmetry’. As the iden-
tical particles in a pair are interchanged, R - —R and V — — V|
the distribution must remain unchanged, i.e. p(R,V) = p(R,—V). In
particular this condition is true as R — 0. This gives rise to a bound-
ary condition needed to determine p(R,V’). In contrast, for colliding
particles which are removed after collision, a vanishing distribution for
separations smaller than the sum of particle radii, p(R = 2a,V) =0, is
an appropriate second boundary condition. The distributions of collid-
ing and non-colliding particles are in general not equivalent. We argue
however that they are similar at scales R > a if the current of particles
absorbed at R = 2a is small. This is the case for the distribution of
advected particles ﬂﬂ, ]

As shown in ﬂﬂ, ] the distribution of separations between non-
colliding particles has generic features. This is most easily illustrated in
one spatial dimension. The distribution of one-dimensional separations
X and relative velocities V', p(X, V'), can be approximated by a matching
between two asymptotic limits, the cases |V| > | X| and |V| < | X]|.

First, it may happen that the particle pair reaches the regime |V| >
|X|. In this regime, the particle motion is deterministic and universal.
The lowest order approximation is simply uniform relative motion with
constant V', see Fig. B4l a. A particle separation X of opposite sign of
V' shrinks until zero separation is passed at finite V', that is caustics are
formed. As the separation grows, | X | eventually becomes comparable to
|V| and the system specific stochastic-and deterministic forces becomes
relevant. Because V' is approximately constant when |V| > |X]|, we
expect that for a given V, all |X| <« |V are equally probable. Thus
p(X, V) is roughly independent of X in this limit.

Second, if |V| <« |X| the particle position X remains approximately
constant while the magnitude of V' fluctuates significantly compared to its
typical size. Thus, in this limit we approximate the motion by X ~ X, =
const., see Fig. B4 a. The equation of motion (Z38) then becomes V =
v(Au(z, Xo,t) — V). In the 7 — 0 ergodic limit u(x, Xo,t) = u(Xo, 1)
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Figure 3.4: Left: A typical trajectory in one spatial dimension following
Eq. (21I). The color corresponds to running time, starting with red at
t = 0 and ending with blue at t = 15007. When |V| > | X, the motion
can be approximated by V =~ const. and when |V| < |X|, the motion
can be approximated by X & const.. Dashed lines show the matching
curves |V| = 2*|X]|. Right: Distribution p(X, V) plotted against V at
X =107 (0), 1072 (O), 0.01 (¢), 0.1 (A) and 1 (V). Markers are results
of numerical simulations and solid lines are the asymptotic theory (B.3)).
The distribution is asymptotic to |V|”272 independent of X for [V] > |X|
and to | X|P27? independent of V for |[V] < |X|. Parameters: Ku = 0.1,
St = 100 giving 2* = 1.26.

which turns the equation of motion into an Ornstein-Uhlenbeck process
@] This is a standard diffusion equation and the solution is a Gaussian
in V with variance D(Xy) = [ dt(Au(Xo, t)Au(Xo,0)) (c.f. Eq. 7))
and with a prefactor that is some function of Xy. If |X,| is small, the
smoothness of the flow gives D(|Xy| < 1) ~ ¢2X? and because |Xo| >
|V| in the limit considered, the distribution is roughly independent of V'
for small | Xo|. The Gaussian solution is specific for the 7 — 0 ergodic
limit where the dynamics is described by an Ornstein-Uhlenbeck process.
However, the fact that the distribution is independent of V' for | X| < n
is expected to be true for most smooth flows.

In conclusion we have the asymptotic behaviors p(X, V) ~ f;(V) if
V| > |X|and p(X,V) ~ fr1(X)if |V| < | X|, where f; and f;; are arbi-
trary functions. These behaviors are clearly visible in Fig.3.4lb. They are
also consistent with results of numerical simulations of a one-dimensional
Kraichnan model ﬂﬁ] An asymptotically correct distribution for all X
and V can be formed by matching the asymptotes of the distribution
along some curve. As long as we are far from the system boundary, we
expect a line to be a reasonable matching curve, i.e. V = 2*X where
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z* > (0 is a parameter-dependent matching scale.

The functions f; and f;; can be determined from the distribution
of separations p(R) = [ dVp(X,V) and from the distribution of phase-
space separations p(w) = [ dVp(w,V), where w = VX2 + V2. For R
and w much larger than Ly, these must be constant and for R and w much
smaller than 7, these must scale as p(R) ~ R%~! and p(w) ~ wP?71,
where dy and Dy are the space and phase-space correlation dimensions,
both defined in Section B2l A natural interpolant between these limits
is D(X) and we find f;(V) ~ D(V/2*)P2/2=V and f;;(X) ~ D(X)P2/2-L,
Ihconclusion, the asymptotic distribution in the 7 — 0 ergodic limit is
111

D(X)P2/2=1e=V2/D(X) V] < 2*|X|

D(V/Z*)D2/2—1€—V2/(2D(V/z*)) ‘V‘>Z*‘X| ) (3'3)

px. ) =7+
where A is a normalization constant. This distribution is compared to
numerical simulations of random flows in Fig. B.4] b. The distribution
has clear power law tails with slope Dy — 2 which are cut-off for both
large values of | X| and for large values of |V|. The reason for the Gaus-
sian cut-off of the power law tails in V' is that particles are unlikely to
acquire relative speeds much larger than the typical size of the fluctua-
tions of the velocity field. The parameters Dy and 2* can be determined
analytically as functions of the diffusion coefficient €2 by a matching to
an exact series solution of the distribution valid for small | X| ﬂﬂ, ﬁﬂ]
It should be noted that unlike the asymptotic form (B3], the numerical
distribution in Fig. B4l b is asymmetric, i.e. p(X, V) # p(X,—V). This
slight asymmetry determines the Lyapunov exponent ﬂﬁj

In higher spatial dimensions it is possible to achieve similar matchings
between the caustic contribution for |V/| > R to the diffusion in V' at
constant Ry for |[V| < R ﬂﬂ] In these cases D, has been determined for
small ¢ (BI3.2)) but we have not been able to determine the matching
scales z* analytically yet.

The asymptotic distribution of relative velocities ([B.3]) and the equiv-
alent distributions in higher dimensions enable us to calculate the statis-
tics of relative velocities needed to determine the collision rate. This is
further considered in Chapter [4]

We conclude this section by a comparison of the matching that led
to Eq. (B3] to the variable-range projection used for particles with large
enough St to be affected by the inertial range discussed in Subsec. B.2.2
In the inertial range, D(X) ~ | X |3 which gives rise to a velocity cut-off
e=CV"* instead of the Gaussian cut-off in the dissipation range. This is
consistent with the result of the variable-range projection. The method
presented here is equivalent to a variable-range projection with the linear
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trajectories V' = Vi + v(Xo — X)) approximated by V' = 1} for large ;.
The matching of the functions f;(V') and f;;(X) to obtain an asymptot-
ically correct body of the distribution remains to be done for the inertial
range model.

3.3 Model specific non-ergodic effects

In the 7 — 0 ergodic limit of the parameter space discussed in Sub-
sec. B.2.1] it is possible to neglect the coordinate dependence of the ve-
locity field w(r(t),t) along the particle trajectory. This simplifies the
analysis of the particle motion significantly. For most of the parameter
space though, this is not an appropriate simplification. A standard ex-
ample where the coordinate dependence in the velocity field cannot be
neglected is the so-called ‘Maxey centrifuge effect’ HE] Weakly inertial
particles in incompressible flows tend to be centrifuged away from small
scale vortices with the result that they avoid regions of high vorticity
and gather in regions of high strain. Thus, particles are more likely to
be found on trajectories r(t) such that the vorticity of w(r(t),t) is low.
This gives rise to non-ergodic clustering of the suspended particles, also
called ‘preferential concentration’. Statistical quantities (e.g. the vortic-
ity) evaluated along particle trajectories are expected to be different from
statistical quantities evaluated at a fixed position, the fluctuations are
non-ergodic. Non-ergodic effects tend to be more significant the longer
the particles are influenced by the same flow structure, i.e. they are ex-
pected to be most important for large values of Ku and not too large
values of St. Maxey showed that the motion for small St can be approx-
imated by advection in an effective velocity field with a compressibility
proportional to Tr(A?). Here A is the strain matrix along an advected
trajectory [18].

To quantify non-ergodic effects we distinguish between two different
averaging methods. First, the Eulerian average is an average at a fixed
position in space. We denote an Eulerian average of a quantity X by (X).
This is how the statistics of the velocity field is given. Second, we denote
an average of a quantity X (r(t)) following a particle trajectory () by
X(r(t)) . A statistical quantity is called ergodic if its Eulerian statistics
is identical to the statistics along particle trajectories. Otherwise the
quantity is called non-ergodic.

In the parts of the parameter space where non-ergodic effects are im-

2A third commonly used average is the Lagrangian average following a fluid ele-
ment. For a trajectory with St = 0, the particle-trajectory average equals the La-
grangian average.
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in small values of Ku of averages along particle trajectories shows
that such averages depend on gradients and higher derivatives of all or-
ders (up to the expansion order in Ku) of the fluid potential correlation
function, C”(0,t), C""(0,t), .... This is in contrast to the ergodic case
where the dynamics only depends on C”(0,t) (or C""(0,t) for particle
separations). The dependence on the nature of the fluid flow also shows
in numerical simulations for large values of Ku where e.g. the Lyapunov
exponents depend sensitively upon the correlation function @], whereas
they are universal functions of C"”(0,¢) in the ergodic limit. Thus, in the
regions of parameter space where non-ergodic effects are strong, we do
not expect Gaussian random flows to provide a quantitative description
of for example the Lyapunov exponents or the correlation dimension, c.f.
Fig. Bl Still, universal principles such as those discussed in Subsecs.
and are expected to apply (although actual numerical values
of e.g. Dy and z* depend on the nature of the flow).

portant, the exact nature of the fluid flow is important. An expansion
_Im]

3.3.1 Non-ergodic clustering

Non-ergodic statistics along particle trajectories are in general hard to
calculate. In @] we introduce a systematic way to calculate trajectory
averages by an expansion in powers of Ku. When Ku = 0, particles
following Eq. (21 move on deterministic trajectories r = r¢ + (1 —
e "My /7, where ry and vq are the initial position and velocity of the
particle. As Ku is increased the deterministic trajectory is modified by
addition of ‘memory terms’, which incorporates the effect of the velocity
field u along the trajectory in terms of the initial position rq. That u
is only evaluated at the fixed position ry makes it possible to calculate
statistical quantities along the trajectory assuming the statistics of w is
given for a fixed position.

In ﬂﬁ[ﬂ we use such expansions to calculate the Lyapunov exponents
for two-dimensional random flows with small values of Ku and general
values of St. In the limit of small St, these can be used to explicitly
calculate clustering due to the Maxey centrifuge effect. The result is
consistent with that of the Maxey picture where particles are argued to
be advected in an effective compressible flow with compressibility pro-
portional to Tr(A?). In the limit of large St, our results are consistent
with the results of the 7 — 0 ergodic limit @] The expansion along
trajectories is valid also for intermediate values of St, connecting these
two limits of dissimilar character. An expansion up to sixth order in Ku
turns out to be valid up to Ku =~ 0.2. However, higher-order expan-
sions indicate that the series is asymptotically divergent, resummation is
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needed to produce results valid for Ku larger than 0.2. This is also the
case for expansions in powers of epsilon in the 7 — 0 ergodic limit @] A
second limitation is that non-analytic effects coming from e.g. the mul-
tivaluedness in v due to caustics are not included in a series expansion
in Ku.

In m] we also compare the clustering coming from non-ergodic effects
such as the Maxey centrifuge mechanism to clustering resulting from the
effect of many small independent accelerations in the finite 7 ergodic
limit. For random flows we find that the contribution to the clustering
coming from a purely ergodic model is larger than the contribution from
non-ergodic effects for small and intermediate Ku. This is contrary to of
what is generally believed: in @] for example it is argued that since the
probability to be in straining regions in turbulent flows exhibit the same
St-dependence as the correlation dimension deficit, the Maxey centrifuge
mechanism alone explains clustering.

The expansion along trajectories m] allows to calculate many differ-
ent statistical quantities in the limit of small values of Ku. It also makes
it possible to treat more general equations of motion than (2.1), such as
the ‘Maxey-Riley equations’ ﬂﬁ]

As a simple illustration of a problem that can be treated by the
expansion in powers of Ku, consider particles in a one-dimensional ran-
dom flow according to (22)) and (ZI) with dimensionless coordinates
T =x/n, u = u/ug. The distributions of the fluid velocity u and strain
rate A = 0;u at a fixed position are independent Gaussians, P(i, A) =
e~ " /2=4/6 /(27r1/3).  One-dimensional random flows are compressible,
which means that particles tend to gather in regions of the flow with
high compressibility, i.e. regions where A is negative. Thus, A(r(t),t) is
expected to be negative, a non-ergodic effect because <f_1> = 0.

By expanding all moments @(r(t),t)™A(r(t), t)" along trajectories for
small Ku like ingm], it is possible to construct the distribution of @ and
A along trajectories

~ AKu | (A’ -3a°)Ku®(1+3St)
1+St 2(14St)2(1+2St)

where P(u, A) is the ergodic distribution stated above. This shows how
non-ergodic effects deform the distributions of % and A compared to the
ergodic distribution by narrowing the distribution of u and shifting the
distribution of A in the negative direction. It should also be noted that
along trajectories, @ and A are no longer independent variables. The
distribution (3.4)) is compared to numerics in Fig. As seen here the
magnitude of non-ergodic effects is small for small values of Ku, but as
Ku becomes larger they can be significantly larger.

+... | P(@ A), (34)

P(u, A) = {1
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Figure 3.5: Left: Deformation of distribution of A, P,(A4;)/P(A) — 1
for Ku = 0.1 and St = 0.1 (red,o), St = 1 (green,{) and St = 10
(blue,0d). Data from numerical simulations are displayed as data markers
and data from the theory (B4 are displayed as solid lines. Black dashed
line corresponds to the ergodic distribution. Middle: Same but for the
distribution of %. The curve does not fit as well as the distribution of A.
This could either be a numerical problem (very small time step is needed
for the u-distribution) or due to the fact that (3.4]) is only the lowest order
correction in Ku for u. According to the numerics, the distribution of @
widens when St = 10, a fact that is not consistent with the second order
expansion ([3.4). Right: Average strain of A for Ku = 0.1. Numerical
data (o) is compared to the theory obtained from ([3.4]). As St approaches
zero, the strain approaches the one-dimensional Lyapunov exponent —e>
[1] (black dashed).



Collisions

To understand how aggregates of particles in turbulent aerosols form, it
is necessary to study how particles collide in turbulent flows. This is the
main question addressed in this thesis. It is important for a wide ra e of
problems; e.g. the formation of rain in turbulent clouds . @

and the formation of planets in stellar accretion discs

In our model we neglect collisions due to ‘Brownian motlon , in which
pairs of particles collide due to thermal fluctuations of their trajectories.
In turbulent rain clouds, Brownian motion is estimated to be of secondary
importance to all other transport processes for particles larger than about
1 pm ﬂﬁ, @], the case considered here (see however [14]).

We do not consider collisions due to gravity. As mentioned in Chap-
ter [l gravitational coalescence is the most important collision mechanism
in turbulent rain clouds B] However, we want to investigate how microm-
eter size droplets with narrow size distribution (coming from condensa-
tion on nuclei) may grow sufficiently quickly to widen the particle-size dis-
tribution to render the gravitational coalescence efficient. Gravitational
coalescence starts as some droplets become larger than ~20 pm ﬂﬂ]

Results from simulations of the steady-state collision ratd] between
particles moving according to Stokes’ law (2.]) in a two-dimensional in-
compressible random flow (Z3)) is displayed in Fig. [l This figure shows
the rate at which one particle collides with a number of other particles.
This collision rate scales linearly with the particle density ng (the total
rate of collisions in the system is proportional to the number of particle
pairs ~ n2). Simulations of particle trajectories and counting of collisions

1By ‘steady-state collision rate’ we intend the rate of collisions for times large
enough that all initial transients vanish, but with times small enough so only a small
fraction of the particles collide.

21
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are performed according to the scheme outlined in Chapter 4 and Chap-
ter 7 in @] For simplicity, all particles are assumed to have the same
size, i.e. they form a ‘mono-disperse’ system. The only interaction be-
tween particles is when they collide, i.e. when their separation becomes
less than 2a. Upon collision we consider two possibilities. FEither, the
particle pair is removed from the system, i.e. the particles merge and
move to a larger size class (blue data in Fig. 1)). We do not consider
injection of particles from smaller size classes since the total number of
collisions in the simulations is small during the total simulation time.
Alternatively, upon collision the particles in the colliding pair continue
to move unaffected (but overlapping) with the chance of one or multi-
ple recollisions once their separation grows larger than 2a (green data in
Fig. 7). These two cases can be seen as approximations of collisions
with unit collision efficiency (blue data) or zero collision efficiency (green
data). Of course, real collision processes are much more complicated, as
the particles touch there are numerous different outcomes as the parti-
cles interact (collision, fragmentation, scattering into different directions
etc.). The collision efficiency of rain droplets depends on their relative
size and velocity in a complicated way [47].

As seen in Fig. [4.1] the collision rate is roughly constant for small
values of St. As St passes a threshold the collision rate increases by
orders of magnitude. This activation behavior of the collision rate as the
particles grow gives a possible explanation of the rapid formation of rain
in turbulent rain clouds [38, @] The activation behavior was argued to
be caused by caustics ] In the following we discuss the collision rate
in random and turbulent flows (Fig. [4.]) in parameter regions where the
particle trajectories are well approximated by Stokes’ law (2.1]).

4.1 The collision rate

We define the collision rate R(t) as the sum of all particles entering the
collision distance 2a of a test particle in its rest frame during a short
time interval. The radial current of particles towards the test particle is

jR(Rv Vv t) = _nOVd(L/2)p(R7 V7 t)VR(Rv t)@(_VR(Rv t))X(Rv Vv t) .
(4.1)

Here nyg is the particle number density and V;(L/2) is the volume of a
d-dimensional sphere of radius L/2, e.g. Va(r) = mr?. p(R,V,t) is the
probability distribution of separations R and relative velocities V' to the
test particle at time t. p is normalized to unity over the d-dimensional
sphere of radius L/2, which means that noVy(L/2)p is normalized to
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Figure 4.1: Steady state collision rates as functions of St for Ku = 0.02
(o), Ku=10.1 () and Ku =1 (¢) in two spatial dimensions. Data point
markers are connected with lines. Blue data corresponds to the collision
rate (£.2)) and green data corresponds to the recollision rate (4.3]). At St =
0 the recollision rate is given by the theory due to Saffman and Turner
(@1) (dashed red) and if also Ku is small, the collision rate approaches
the advective collisions theory ([£I0) (dash-dotted magenta). For small
St and small Ku the recollision rate (9) is shown (solid red) with ds
taken from (B.I)) (for Ku = 0.1 the finite Ku result dy = 2 — 12Ku®St? is
used) and numerical data for € > 0.1. The ansatz (£I2)) with R, from
([EI0) for St < St* = 4SKu? and R, = 0 for St > St*, where St* gives
maximum of e~/ 627€g is plotted as (dotted magenta). Parameters are
ng = 10 and a = 0.02.
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the total number of particles inside the sphere. Further, Vyx = R =
V- R in [{@1J) is the relative radial velocity between the test particle and
incoming particles and the Heaviside step function © selects particles
moving inward. Particles which have collided with the test particle at
any time during their history are absorbed and cannot contribute to the
particle current. This is ensured by the indicator function x(R, V', t) in
([#1). Particles at the position (R, V,t) at time ¢t can be identified with
their trajectories (R(t'), V(¥'),t') for all 0 < ¢’ <t. y indicates whether
particles identified with a specific trajectory have collided with the test
particle in the past. y is unity at t = 0 and it is set to zero for particles
that have collided with the test particle, i.e. have had a separation
smaller than the collision radius R < 2a at any time throughout their
history.

The collision rate is given by the total flux of particles entering the
collision sphere of radius R = 2a is

R(t) = [V [ 40(R) RV 1) e, (4.2

where dQ2(R) is the surface element of spherical coordinates at R = 2a
and jg is the ingoing radial current (A.T]). In this work (with the exception
@]I ) we only consider steady-state collision rates, R = limy_, R ().
The indicator function y avoids overcounting of the collision rate, if y
is replaced by unity, all recollisions between a given particle and the test
particle contribute to Eq. ([@2]). But, if the collision efficiency is unity,
only the first collision should be counted. It should be noted that the
coordinates for which x is zero changes with time as the particles move
around. Because y depends on the history of the particle trajectories
the collision rate (A2 is generally hard to evaluate analytically. Luckily,
inertial particles tend to avoid recollisions as seen in Fig. 1l For large
values of St (how large depends on a) the curve with recollisions (x = 1)
approaches the actual collision rate up to a reasonably small residual
factor. Thus, when constructing a theory valid for large St it is sufficient
to consider the ‘recollision rate’, R, defined by Eq. ([£2) with x = 11

R = —noVa(L)2) / AViz p(R, Vi, )WV (R)O(—Via(R))| g

= —nVa(L/2)p(R = 20) (Va(R)O(~Va R s, - (43)

In Eq. (£3) we have assumed that the flow is isotropic and integrated
out all angular dependencies. If p(R) is uniformly distributed for R <

2Approximating y = 1 is also reasonable if one is only interested in the collision
rate for short times, before recollisions have had time to occur, or if the collision
efficiency is small.
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L/2,ie. p(R) = d2?R* /L% the recollision rate [3) can be further
simplified

R = ngAq(2a)(—VaO(=Vi))| r2a , (4.4)

where A4(2a) is the area of a d-dimensional sphere of radius 2a, e.g.
As(r) = 4mr?. The recollision rate (A3]) is commonly used to calculate
the collision rate.However, the approximation (£3)) is not valid for small
values of St and certainly not when also Ku is small, as seen in Fig. L]

4.2 Smooth collisions

The collision rate in random flows has been calculated for advected par-
ticles in the special cases of small times (the recollision rate) E, ] and
for small values of Ku @, ] These cases of ‘advective collisions’ are
discussed in detail in @] In this thesis we extend the scope to collisions
between particles with arbitrary St. The finite inertia allows the particles
to detach from the fluid stream lines giving rise to clustering (see Sec-
tion and caustics (see Section B.2)) as a consequence. As was argued
by Maxey NE], particles with small value of St may appear as if advected
in an effective compressible velocity field. It is thus expected that the
theory developed for the advective collisions in a compressible velocity
field should apply also to the case of small St with a few modifications.
This case is considered in this section, collisions between particles where
caustics are dominant is considered in Section 4.3

4.2.1 Recollision rate at small values of St

For small values of St, caustics are rare and can be neglected. Still, finite-
size particles may gain negative relative speed and collide even when St =
0 due to smooth deformations of nearby fluid elements @, @] The radial
projection of the relative velocity, Aur = Au - R, for small separations
in incompressible random flows can be found from the potentials defined

in Section 2.1

d—
3

1
(Auf) ~ NJ C"(0,0)R? = 22— (4.5)
For advected particles in incompressible Gaussian random flows, the dis-
tribution of Aug is Gaussian (as opposed to compressible Gaussian ran-
dom flows which have modified statistics when St = 0, c.f. Eq. (34)).

If the distribution of Vi and R is Gaussian at R = 2a it is possible to
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simplify Eq. (£4) by use of

(=VeO(=VR))|r=2a = \/ (V&) /(27) | R=2a - (4.6)

For advected particles, Vg = Aug and thus by use of in (£Q) the
recollision rate ([€.4]) for advected particles becomes ﬂa, |

Rt = % Ay a)aKu. (4.7)

This recollision rate is equivalent to the expression found by Saffman &
Turner @] It has for a long time been widely accepted as being correct in
the advected limit of turbulent flows. However, as we showed in ﬂﬂ, ], in
a fluctuating flow where particle pairs are not allowed to collide multiple
times, the Saffman-Turner collision rate is incorrect. This fact (R # R
at St = 0) is clearly visible in Fig. 1]

The recollision rate (A1) can be generalized to finite values of St and
small values of Ku by an expansion along trajectories, as in @] We
find that to lowest order in Ku, the variance of the relative radial speed
is (VZ) = (Au%) /(1 + St). When St is finite we have fractal clustering,
p(R) ~ R%7! for small separations R, with correlation dimension dy
given by ([B.J]) for small values of Ku and e. This distribution is matched
to uniform probability density p(R) ~ R?! for large R at the matching
scale R* of the radial diffusion coefficient in (1) (R* = +/2/3ind =1
dimension and R* = v/2 in d = 2 dimensions for the velocity fields used
in this thesis). Normalization gives

PR=0) = L2+ R (d—dy)

ddy R*4=42 Rd2—1 if R< R*
RI-1Rxd=d  {f R > R*
(4.8)

to be used in Eq. ([A3). Assuming that the distribution of Vg is close
to a Gaussian, we obtain to lowest order in Ku (using (4.6]) in Eq. (4.3)
with a < n < L)

. = —do xd—d2
o noAq(l)a™ R Ku ‘ (4.9)
2dn (1 + St)

This expression is different from the St = 0 expression (A7) in two re-
spects. First, its radial dependence scales with the correlation dimension,
a®, as expected in a system with spatial clustering. This gives a larger
contribution than the equivalent factor, a? in Eq. (&77). Second, the re-

duction of typical relative speeds gives the factor (14 St)™"/2 ~ 1 —St/2.
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Unless a is very small, this factor is the main modification of (A7) for
small values of Ku and the recollision rate actually decreases as a func-
tion of small values of St if Ku is small, as seen in Fig. .1l This shows
that in this case, the Maxey picture - which suggests that particles are
advected in an effective compressible velocity field (giving a second order
correction in St) - is an oversimplification.

4.2.2 Collision rate for small values of St

Recollisions are in general important in regions where the smooth con-
tribution is dominant, i.e. we cannot neglect x in ([@L2]). For advected
particles in flows with small Ku, the collision rate can be calculated an-
alytically by solving a diffusion equation for the particle distribution of
separations, p(R) |2, ] The effect of y is taken into account by an ab-
sorbing boundary condition at R = 2a, i.e p(2a) =0 H. The steady-state
collision rate for advected particles in a flow with small Ku becomes E, ]

Rao = o Ag(1)Ma™ . (4.10)

Here, A\; is the maximal Lyapunov exponent and ds is the spatial cor-
relation dimension. These can be calculated explicitly in the small-Ku
advective limit @, @], for incompressible flows we have dy = d and
A =dD.

In the Maxey centrifuge picture, particles with small Stokes numbers
are advected in an effective compressible velocity field v. If this was the
complete picture, the collision rate for small St could be obtained from
Eq. (£I0) with A\; and dy being the Lyapunov exponent and correlation
dimension of particles advected in a flow with compressibility given by
the average V - v, a quantity which has second order corrections in St.
However, as (4.1I0]) suggests, the average collision speed is also related to
the maximal Lyapunov exponent A;, which gives first order corrections in
St. It is thus expected that the leading order change in the collision rate
({10) is of first order in St in contrast to the Maxey effect. To calculate
the leading order correction in St is work left to be done.

4.3 Collisions due to caustics

In the previous section we studied the collision rate due to smooth de-
formations of the fluid. The smooth deformations caused the particles to

3We expect it is possible to treat a fractional collision efficiency by looking at a
superposition of the solution with absorbing boundary condition, p(2a) = 0, and a ‘no
current’ solution which has as boundary condition that p is integrable at the origin.
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cluster which increased the rate of collisions for small particles but also
decreased the typical collision speeds by a factor (1 4 St)~'/2. This lead
to a decrease of the recollision rate as particles cluster in a field with
small Ku. The collision rate on the other hand increases with St in the
example shown in Fig. {.1]

If the St-dependence of the collision rate was determined by clustering
only, it would peak at St of order unity and drop as the clustering is
decreased as St — oo. Instead, the collision rate (see Fig.[d.T]) is increased
by orders of magnitude when St passes a threshold and then it decreases
only slowly as St is further increased. In this section we explain this
behavior by analyzing collisions due to caustics. Such an analysis was first
attempted in @i Here we refine the results in @] and compare them
to the results from the distribution of separations and relative velocities
in Subsec. .23

When caustics occur, particle velocities become multivalued as illus-
trated in Fig.B.3l As the pair of singularities continues to move, particles
between the caustics collide with large relative velocities, independent of
the particle size, Fig. d. This is in contrast to smooth collisions.
In this case, the relative velocity scales as a/+/1 + St for small a. Since
collisions due to caustics occur with large relative velocities, recollisions
are few if the total number of collisions are few, which allows us to ap-
proximate y = 1 and thus to use the recollision rate (4.4]).

4.3.1 Caustic collision rate

Caustics form when a component R; of particle separations passes zero
with finite V;. The frequency at which this happens has been calculated
analytically in the 7 — 0 ergodic limit @, , ] For small values of
e the caustic formation rate J behaves as J ~ e /<, where S depends
on the spatial dimension and, as numerical simulations show, the Kubo
number. The rate of caustic formation J shows an activated behaviorﬂ,
it is close to zero for €2 < S and increases exponentially as € passes S.
Because the collision rate due to caustics is expected to be proportional to
the rate at which the caustics form, the activated behavior of J explains
the sudden increases in the collision rate in Fig. 1] @]

In the limit of large St and e it is possible to calculate the recollision
rate analytically. When St is large, the spatial information in Stokes’
law for particle separations (2.6 is quickly lost. The equation of mo-
tion for the relative radial velocity becomes Vi ~ ~v(Au(t) - R — Vi)

4The activated formation of caustics is similar to Arrhenius chemical reaction rate
e~ To/T which behaves similarly when the temperature T' passes a critical value Tj.
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independent of the particle position and separation. This is an Ornstein-
Uhlenbeck process which is solved by a Gaussian in Vz with variance
approximated by the large R radial diffusion matrix (Eq. (B.26) in @]),
(V3) ~ 2u?/(dSt). Since Vg is Gaussian distributed we may use (0] in
(#4) to obtain the large-St collision rate @]

Rym = g Aq(a)Ku/VdrSt . (4.11)

This result is equivalent to that of kinetic gas theory @] For turbulent
flows the corresponding kinetic gas theory valid for large St has been
calculated by Abrahamson ]

Multiplying the large-St asymptote ﬁ,g with the caustic formation
rate J ~ e 5/¢ approximates the caustic contribution to the collision
rate @] An approximate expression for the collision rate for general St
then becomes ﬂlﬁ]

R=R,+eR,. (4.12)

Here R, is the smooth collision rate discussed in Section In @]
the Saffman-Turner estimate (A7) with fitted proportionality coefficient
was used for R,. As seen in Section this is in general not a good
approximation. In Fig. [L1] we show the collision rate ([ALI2) with R
from the advective collision rate ([EI0).

4.3.2 Relative velocities

In @] it was argued that the collision rate should be on the form ({LI12),
but it was not deduced by an explicit calculation. Here we show that
the form (412)) follows from the asymptotic distribution of spatial sepa-
rations and relative velocities discussed in Subsec. In one spatial
dimension it is possible to calculate z* and Dj in the 7 — 0 ergodic limit
to determine all parameters in the asymptotic distribution (B.3]). This
allows us to calculate the recollision rate explicitly in one spatial dimen-
sion [I1I]. The result is shown in Fig. In two spatial dimensions we
have so far not been able to determine the matching scales 2y and z}.

For clarity we use dimensionless variables R — nR and V. — vV
throughout this section. In one and two spatial dimensions the moments
my(R) = [7°_dVg|Va[Pp(R, Vi) are on the form

my(R) ~ B,RFP271 4 €, R (4.13)

for R < R*, where R* is the matching scale defined in Subsec. .2.11
We note that m(X) = 2p(X = 2a) (V(X)O(=V(X)))|x_s, if the
distribution is approximately symmetric in V' at R = 2a. Thus, the
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recollision rate (@3] can easily be calculated from m;(X) (note that
p(R) = 2p(X) should be used in ([£3])). In one spatial dimension we
have the following coefficients for m;(X) in ([@I3), where p(X) is the
distribution given in (B.3)) ﬂﬂ]

By = 2N 72 — (& + 2*° /D)™ /)]
Cy = 2N eP22R* P2 (&2 4 z*z/Dg)e_Z*z/(26 ) (4.14)

with

D!

R _
N7t =Vor(Re)P1L + 4z*eD2_2—D o226
2

— (Dy — Vet ( fe)] (4.15)

The recollision rate calculated by the moments (£I4]) inserted in (L3 is
ﬁrel. = ngLm,(X) and is plotted in Fig.

For large values of € we find the scalings z* ~ €'/° and Dy ~ const.
according to ] Using (@3] this gives the recollision rate for large
values of € and L > R* as ﬁT ~ np2Kuy/St/7, identical to the kinetic
gas limit (ZIT]).

In two spatial dimensions it is possible to construct an asymptotic
distribution just as in the one-dimensional case in Subsec. ]. For
this distribution the coefficients of the first moment are ]

D
Dz l\/_R* :

1/3

2e N . 26
By = Dy 1 [— 2ez;(1 — e‘zrg/(zez))e 5°1/(6)
. . 2z
FV6m((Dy — 1)e2(1 — 75/ 572720/ yorf <—¢> }
V6e
2 R*Dz—l . §
C = 6/[\)/71 [\/ 6 (Dy — 1)€* + 2z (1 — 6_27'2/(252))6_%2/(662)
) —
Z*
—V6r((Dy — 1)eX(1 — e~/ z*ze_z* /2e*)orf (—¢)]
VO (D2 — 1)e*( ) — ) N
(4.16)
with
L? Dy —2
NV =V3eaRr 222 _ 32222 R PD2erf ( ) erf ( o )
4 D2 2€

v o232 (662 erf( Z )Jr\/—z*e_zr /(2€2) <ﬁ }
l ¢ V2€ Ge
(417)
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R7, Rt
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Figure 4.2: Steady state collision rate (£.2)) (blue,o) and recollision rate
([E3) (green,0) in one spatial dimension as a function of e = 3Ku®St
with Ku = 0.01. The theory for the recollision rate according to the
moments (LI3HATT) is plotted as solid red. These data indicates that the
recollision rate overcounts collisions with a non-negligible factor even for
large St in one spatial dimension. The recollision rate is hard to evaluate
numerically close to the path coalescence transition, St = €2/(3Ku?) ~
5900 (dashed black).

Just as in the one-dimensional case, the moment defined by (ZI0) give
the kinetic gas recollision rate ([LII)) for large € (assuming z; and 2}
grow slower than €'/2 as e grows). To lowest order in ¢ we expect that
the moment (£.10]) give a collision rate which is equivalent to the large St
limit of Eq. (£3)) (the 7 — 0 ergodic limit). This is indeed what we find,

for small values of € the recollision rate (using (4.I10) in (4I3])) becomes

R = noa”? R** P2Kuy/7 /St . (4.18)

which is equivalent to Eq. ([A9]) because Dy = dy for small values of e.
Thus, the recollision rate calculated from the distribution of relative
separations interpolates the correct limiting cases for small and large
values of €. To find the correct behavior in between we must determine
the free parameters z; and zj. This is work to be done, but the fact

that coefficients of the type e 5¢)/¢ occurs in ([@I6) gives hope that
the caustic activation rate comes out as a prefactor as expected from the

ansatz (L12).
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Conclusions

I think that the main result of the work described by this thesis is the
observation and application of the universality of caustic motion. General
systems with inertial particles may have the ability to form caustics, the
phase-space manifold of possible particle trajectories folds over. If this
happens, particles approach at separations that are much smaller than
their relative speed (see Fig. B3], the motion is approximately uniform
independent of the system in question.

This fact can be used to estimate the distribution of large relative
velocities at small separations where particles collide. One example is
particles inertial enough to be affected by the inertial range in turbulent
flows @] We find that in one spatial dimension the distribution behaves
as exp(—|V[*3) for large relative velocities V at zero separation [I].

The universal behavior of the caustics can also be used to construct
asymptotically correct distributions of particle separations and relative
velocities. This is done by matching of the universal caustic motion to
the motion at separations much larger than the relative velocity. In this
limit the relative velocity between particles undergoes diffusion while the
particle separation remains approximately constant [ILIII]. The exact
properties of this matching is system dependent, but some facts seem to
be common by the systems we have studied. The tails of the distribution
of both separations and relative velocities between particles show power
law scalings with power D, —2d, where d is the spatial dimension and D,
is the phase-space correlation dimension, see Fig. 3.4l These power law
scalings are cut off at separations comparable to the correlation length
of the flow and at the scale of maximal relative velocities that can be
induced by the driving force of the system.

Integration of the asymptotic distribution gives the moments (ELI3))

33
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needed to calculate the recollision rate ([A3]), a quantity which is approx-
imately equal to the collision rate for particles with large enough values
of St. The found recollision rate is consistent with a sum over a smooth
contribution and a caustic contribution as suggested in @] We can ex-
plicitly calculate the smooth contribution for small values of Ku. The
caustic contribution depends on the matching scales z*, which can be
analytically calculated in one spatial dimension and matched to numer-
ical data in two spatial dimensions. We aim to calculate z* in higher
dimensions in the near future.

A second important accomplishment is the expansion along trajecto-
ries m] This allows for quantification of non-ergodic effects for particles
suspended in flows with small but finite Kubo numbers. The expansion
is valid for general particle inertia and it thus connects preexisting results
valid for particles of low inertia to results valid for very inertial particles.

Finally, a method to calculate the spatial correlation dimension for
rapidly fluctuating flows in terms of a series expansion in the noise level
has been developed N], see Fig. The spatial correlation dimension
describes the degree at which particles suspended in the flow cluster.
This is an important quantity in the context of particle collisions, because
collisions at small relative velocities is enhanced if particles are close in
space. The surprising result that particles may cluster even though all
the Lyapunov exponents in the system are positive is noted in M]

The main results of the work leading to the Licentiate thesis @] is
summarized in Chapter 9, Conclusions in @]

In the time to come, we plan to compare the forms of the asymptotic
distributions ﬂﬂ, ﬂ] to data from direct numerical simulations of tur-
bulent flows and to experiments. The predictions that the distribution
shows power laws in both R and Vi determined by a single parameter
Dy, eg. p(R < |Vg|,Vg) ~ |Vg|P274"t for Dy < d + 1 and not too
large Vg, should be straightforward to check. Further, we plan to do
more calculations (both numerical and analytical) for multi-scale flows
by generalizing the results in [[I-IV]. For the inertial range we predict
(VZ) ~ St ﬂﬂ, m], which is a result we want to compare to experiments.
We also want to use the expansion in ﬂﬁ[ﬂ to study the Maxey-Riley
equation of motion ﬂﬁ] which is more exact than Eq. (2. The expan-
sion in m] allows us to incorporate effects like gravity and interactions
between the particles and the fluid for small values of Ku. Finally, we
want to study collisions in multi-disperse systems, where particles have
different radii. In such systems, particles have different Stokes numbers
which complicates the motion. It is also interesting to study the motion
of non-spherical particles, but I will be busy with the points stated above
so I leave this to Jonas.
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