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Imaging mass spectrometry enables the creation of molecule specific images from 

the surface of a solid sample in vacuum. To solve the issue of bringing single cells 

into vacuum without altering their native distribution of molecules, a freeze 

fracture device that fits the time of flight secondary ion mass spectrometry (TOF-

SIMS) IV instrument has been developed. This makes it possible to get a snapshot 

of the chemical distribution across frozen hydrated single cells that are only 10-20 

µm in diameter. The cells of interest in this thesis are rat pheochromocytoma 

(PC12) cells. PC12 cells resemble and act like neurons in the sense that upon 

stimulation they release dopamine, which is a substance used for communication 

between neurons. In previous studies using these model cells, the rate of this 

release has been shown to change after the cells have been incubated with 

different phospholipids. To investigate the amount of phospholipids that have 

accumulated in the plasma membrane of PC12 cells after an overnight incubation, 

the combination of the freeze fracture device and the TOF-SIMS IV instrument 

was utilized. Relative to the endogenous phospholipid the results show that 0.5% 

of phosphatidylcholine (PC) and 1.3% of phosphatidylethanolamine (PE) had 

accumulated in the plasma membrane. Together with previous results on changes 

in the release of dopamine in PC12 cells, this suggests that the phospholipid 

composition of the plasma membrane of neurons is highly regulated. This gives a 

hint as to the importance of phospholipids during this highly important cellular 

process. 

The technique of liquid chromatography (LC) mass spectrometry (MS) does not 

provide molecular information in images but has the ability to separate similar 

molecules in a sample. This is of high importance when analyzing a specific 

molecule in a complex sample. Anaerobic ammonium oxidizing (anammox) 

bacteria reside in sediment on the ocean floor. These bacteria are highly important 

to the environment because they convert biologically available nitrogen into 

dinitrogen gas (N2), which is returned to the atmosphere. By denitrifying 

biologically available nitrogen they limit the risk of over fertilization in the ocean. 

They are also believed to contribute greatly to the global N2 production. By 

combining LCMS with an extensive sample clean up procedure a phospholipid 

biomarker for viable anammox bacteria has been used to detect the location of 

anammox bacteria in a sediment core sample. 
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Enskilda mänskliga celler är små, endast en eller två hundradels millimeter breda. 

Det gör att det krävs speciell mätutrustning för att kunna urskilja olika delar inuti 

cellen. Vanligtvis används ett mikroskop som förstorar cellen och visar dess 

konturer, men ett mikroskop ger ingen information om de kemiska molekyler som 

finns i cellen och på dess yta. I denna avhandling presenteras en provhållare som 

tillsammans med ett speciellt mätinstrument kan avbilda de kemiska molekyler 

som finns på ytan av en enskild cell. Provhållaren laddas med celler i lösning och 

fryses sedan snabbt ner till -196°C. Den snabba nedfrysningen av cellerna och 

deras innehåll gör att man får en ögonblicksbild av var de olika kemiska 

molekylerna befann sig i cellen vid tidpunkten för nedfrysning. Med den här 

tekniken kan man skapa bilder där man inte bara ser cellens konturer utan även 

vilka molekyler som finns och var de befinner sig i cellen.  

Varför vill man då veta vilka kemiska molekyler som finns var i en cell? Jo, för att 

cellen är den minsta levande komponent som finns och de kemiska processer som 

sker där har stor betydelse för hur cellen fungerar i vår kropp. Som exempel 

behöver vår hjärna särskilda celler som kan kommunicera med varandra genom 

kemiska processer. Denna livsnödvändiga kommunikation har visat sig vara 

beroende av de kemiska molekyler som finns i cellens membran. Genom att 

avbilda av de kemiska molekylerna i en enskild cells membran kan man mäta 

förändringar. Resultat i denna avhandling, tillsammans med tidigare resultat, visar 

att kommunikationshastigheten hos de studerade cellerna påverkas av att en viss 

molekyl i membranet förändras med knappt en procent. Det antyder att 

kommunikationen mellan celler i hjärnan är starkt beroende av den kemiska 

sammansättningen i den enskilda cellens membran. Detta resultat kan vara en del i  

pusslet för vidare forskning om att förstå mekanismerna bakom hur vi lär oss och 

hur vi minns. 

I avhandlingen beskrivs också en ny metod för hur särskilda kemiska molekyler i 

kombination med speciell mätutrustning används för att hitta bakterier som lever 

på havsbotten. De eftersökta bakterierna är viktiga för naturen eftersom de 

motverkar både döda havsbottnar och övergödning i havet. Den framtagna 

metoden gör det möjligt att följa på vilket djup och var på havsbotten dessa 

bakterier lever.  
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In this thesis mass spectrometry is used to analyze phospholipids originating from 

cellular membranes in eukaryotic and prokaryotic cells. The first step in mass 

spectrometry analysis is to convert molecules in the sample to ions. This can be 

done in several ways and in Papers I-III the impact of primary ions is used while 

electrospray ionization is used in Paper IV. The ions created from the sample are 

then brought into a mass analyzer where they are separated based on their mass to 

charge ratio, m/z. Mass spectrometry enables the analysis of ionized sample 

molecules with almost identical masses. This ability to detect similar ions is a key 

feature when complex biological samples are analyzed. The work in this thesis has 

had two main aims that are briefly described below; 

A) The chemical processes within a single cell are many and highly important 

for the function of the cell. The ability to perform single cell analysis is 

therefore desirable to further understand the organization of individual 

molecules and parts within the cell. Cellular interactions also create 

functions in the body, organs and tissue making them vital in health and 

disease. Despite the complexity of the chemical processes within and 

between single cells, every cell is also more or less affected by the 

molecules surrounding it. An aim of this thesis was to enable a snapshot 

analysis of the chemical distribution within a single cell using imaging 

mass spectrometry and to further use this to quantify the accumulation of 

exogenous phospholipids in the plasma membrane of single cells. 

 

B) A second aim in the thesis involved the marine environment. Many 

molecules such as decomposition products from dead biological material 

and manmade molecules from waste water end up in the ocean sediment. 

These sediments are also the home of many living organisms and bacteria, 

making the number of available molecules for analysis extraordinarily 

large. Thus, the specific aim of this part of the thesis was to develop a 

method using the specificity of a combined liquid chromatography (LC) 

and mass spectrometry (MS) method to identify a specific bacterium in 

ocean sediment with a phospholipid biomarker. 
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The cell is the basic unit of life and the body of a full grown human consists of 

about 100 000 billion eukaryotic cells. For the human body to work properly there 

is also 1-2.2 kg of prokaryotic cells, bacteria, mostly working in the large 

intestine. Prokaryotic cells are small, only between 1 and 2 µm in diameter, and 

they usually have all their molecular content free floating in the cytoplasm. The 

cell body of a eukaryotic cell is larger, about 10-30 µm in diameter. Inside the 

cytoplasm of the eukaryotic cell there are many different kinds of organelles as 

shown in the schematic in Figure 1A. These organelles perform specific tasks 

making it possible for the cell to survive, procreate and communicate. Some 

organelles shown in Figure 1A are a) the mitochondria which is responsible for the 

energy production of the cell; c) the endoplasmatic reticulum which is a site for 

protein and lipid synthesis and; d) the nucleus which contains the cell’s genetic 

information, its DNA; e) the golgi apparatus which packages and transports 

synthesized proteins to the appropriate site within the cell. This schematic figure 

might give the impression that a large part of the cell is empty, consisting only of 

water. However, this is not the case. The cytosol surrounding the organelles in the 

cell body is filled with macromolecules, small molecules and metabolites. It has a 

highly complex structure and processes such as transport, synthesis and 

metabolomics of molecules readily take place. 
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Figure 1. A) Schematic of a cross section of a cell: a) mitochondria, b) 

plasma membrane, c) endoplasmatic reticulum, d) nucleus, e) golgi 

apparatus. B) Schematic of a neuron: a) cell body, b) dendrites, c) 

myelinated axon, d) axon terminal with synapses. 

 

In the central nervous system of the human body the neurons, nerve cells, are 

responsible for receiving, transmitting and sending nerve impulses. A nerve 

impulse consists of a wave of electrical excitation, action potential, which travels 

along the cell by depolarization of the plasma membrane (b in Figure 1A). A 

typical neuron can be divided into three parts; cell body, dendrite and axon (a, b 

and c in Figure 1B). In the simplest models, nerve cells have receptors on their 

dendrites that receive a signal in the form of a neurotransmitter. This signal is then 

converted into an action potential which is transmitted by the axon to the axon 

terminal (d in Figure 1B). At the axon terminal a cascade of molecular events 

occurs leading the synaptic vesicles to release their neurotransmitters outside the 

cell. Receptors at the dendrite of the next cell in the communication chain will 

then recognize these neurotransmitters and the signal can be passed on further. 

The release of neurotransmitters, to carry out chemical signaling at the axon 

terminals, is generally thought to occur by a process called exocytosis and will be 

discussed further in section 3.1.1. An axon can be up to 1 meter long and transmit 

the signal at a speed of 100 m/s [1]. In order to pass the signal through the axon at 

this high speed most axons, at least in higher systems, are insulated with a myelin 

sheath. Myelination is performed by glial cells, called oligodendrocytes, which 

wrap themselves around the axon in several layers (c in Figure 1B). 
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Every cell is surrounded by a plasma membrane that encloses and separates the 

cell’s interior from the surrounding environment (b in Figure 1A). The plasma 

membrane is constructed mostly from lipids and proteins in a thin, about 5 nm, 

and fluid film, as shown in the schematic in Figure 2. Molecules can be 

transported from the outside to the inside of the cell, and vice versa, either by 

indirect transport through the plasma membrane or by protein mediated transport 

using channels (c in Figure 2) or carriers (d in Figure 2). A typical plasma 

membrane has an approximately 50:50 relationship in mass between lipids and 

proteins, although this can vary substantially. Some proteins in the plasma 

membrane are thought to require specific lipids to function properly and lipid rafts 

or domains of about 70 nm in diameter of certain lipids have been predicted to be 

embedded in the plasma membrane [1]. 

 

Figure 2. Schematic of the plasma membrane a) phospholipids in the 

outer leaflet b) phospholipids in the inner leaflet c) protein channel d) 

protein carrier 

 

The most abundant lipids in the membrane are phospholipids (section 2.2.1). 

Phospholipids are organized in a bilayer in the membrane with the polar head 

groups facing the water phase and the hydrophobic tail groups facing each other 

(Figure 2). This organization minimizes the cost of free energy. The two leaflets in 

the phospholipid bilayer are asymmetric and the outer leaflet (a in Figure 2) has 

been shown to be comprised mainly of phosphatidylcholine (PC) and 

sphingomyelin (SM) while phosphatidylethanolamine (PE) and phosphatidylserine 

(PS) are almost exclusively located in the inner leaflet (b in Figure 2). This reflects 

the different functions of the two leaflets [2].  
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Membranes are also used as boundaries for organelles in the cytoplasm separating 

the interior of the organelle from the cytosol. Depending on the task of the 

organelle the membrane proteins and the composition of phospholipids are altered. 

In eukaryotic membranes there are also large amounts of cholesterol that can 

change the fluidity of the membrane and glycolipids with sugar residues that are 

located on the outside of the membrane. Prokaryotic membranes are often 

composed of one main type of phospholipid. 

The processes of the membrane and the importance of specific lipids and proteins 

are largely unknown and are subject to many studies. To visualize the distribution 

of lipids in a single cell, fluorescent lipids have been developed. These can then be 

specifically followed using fluorescent microscopy. However, even though these 

fluorescent lipids mimic native lipids the cellular metabolism recognizes and treats 

them as if they are unique [3]. To study the abundance of certain native lipids in 

cells liquid chromatography (LC) combined with mass spectrometry (MS) is often 

used. However, in such studies the molecules in the cell are mixed together before 

analysis causing the localization in the cell to be unknown [4]. By instead using 

imaging mass spectrometry, Ostrowski et al were able to image the distribution of 

native phospholipids in mating Tetrahymena cells [5]. They discovered that as the 

pores formed during mating, the abundance of PC was decreased relative to the 

rest of the cell body. Further studies concluded that the change in phospholipid 

distribution occurred after the cells had started to mate, hence the change in 

composition was caused by structural changes brought about by the mating 

process [6]. 
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Phospholipids are amphiphilic molecules, meaning that the molecule has both a 

hydrophilic and a hydrophobic part. As shown in Figure 3 a phospholipid 

molecule is divided into three parts; a head group, a glycerol backbone and two 

fatty acid tail groups. The most common phospholipid head groups in the plasma 

membrane of eukaryotic cells are; PC, PE and PS. 

 

Figure 3. Schematic structure of the three parts in a phospholipid 

molecule, here shown as PC. 

 

The polar head group is the hydrophilic part of the molecule and the two 

hydrocarbon tail groups comprise the hydrophobic part. By combining tail groups, 

with a variety in length and number of unsaturated bonds, with different head 

groups, an almost endless number of phospholipid molecules with different 

properties can be formed. This diversity in phospholipids might be a way for the 

cell to regulate membrane shape, fluidity and permeability which can be important 

in specific cellular processes.  
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Rat pheochromocytoma (PC12) cells originate from a tumor in the adrenal 

medulla of a rat [7]. The adrenal medulla is the core of the adrenal gland which is 

located on top of the kidney. The cells in the gland are in direct contact with the 

central nervous system and they release epinephrine and norepinephrine directly 

into the blood upon physiological, emotional or psychological stimulation [8]. The 

immortalized PC12 cells are easily cultured. They synthesize, store and release 

dopamine upon stimulation with potassium, but they lack the cellular machinery to 

make epinephrine and norepinephrine efficiently. The release of dopamine from 

single PC12 cells can be studied using amperometry [9]. In amperometry a carbon 

fiber electrode, which is held at a potential of 700 mV versus an Ag/AgCl 

reference electrode, is placed on top of a cell. When the cell releases the 

electroactive substance dopamine it is oxidized to orthoquinone at the carbon fiber 

electrode. This oxidation reaction results in two electrons being transferred for 

each molecule oxidized. The electrons create a current through the carbon fiber 

and as a result a peak will be seen in the amperometric trace. Due to the PC12 

cells ability to release dopamine they are suitable to use as model cells to study the 

neurobiological process called exocytosis [10]. 
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Exocytosis is a process that enables chemical communication between neuronal 

cells. Figure 4A shows a schematic of an axon releasing dopamine to a receiving 

dendrite. This release is generally caused by a nerve impulse. Vesicles filled with 

dopamine, secretory vesicles, will fuse with the plasma membrane of the axon and 

release dopamine molecules into the junction between the axon and the dendrite. 

Receptors located on the dendrite will bind the dopamine molecules, resulting in a 

change of membrane potential and a modification of the signals in the cell. These 

can propagate the signal forward through the cell by depolarization of the cell 

membrane or can inhibit the cell from spontaneous or other stimulated signaling. 

The high content of phospholipids in both the plasma membrane (section 2.2) and 

in the secretory vesicles raises the question of the role phospholipids play in 

exocytosis. In Figure 4B a schematic is shown of the presumed orientation of 

phospholipids during vesicle fusion with the plasma membrane. During the fusion 

process regions of high curvature are being formed. Phospholipids can have 

different shapes depending on the size of the head group in relation to the size of 

the tail groups. Depending on the overall shape of the phospholipid molecule it 

might have a better or worse fit in these high curvature regions. Comparing PC 

and PE, PE has a more conical shape due to the smaller head group. PC can 

instead be said to have a more cylindrical shape, as shown in Figure 4C [3]. 

Considering the cylindrical shape of PC and the conical shape of PE it is likely 

that the conical shape would fit better into the high curvature regions of the 

membrane. In Figure 4D this is shown by the green and blue structures 

representing PC and PE respectively. 

  



9 

 

 

 

Figure 4. The role of phospholipids in exocytosis. A) Schematic of an axon 

with secretory vesicle filled with dopamine and an exocytosis event 

releasing dopamine to be bound to receptors on the dendrite. B) The 

orientation of phospholipids during the exocytosis event. C) The molecular 

shape of PE is shown on top and PC on the bottom. D) The orientation of 

cylindrical and conical phospholipids during the event of exocytosis. 
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The importance of specific lipids present during exocytosis has been studied using 

PC12 cells [11] and chromaffin cells [12]. Amatore et al. incubated chromaffin 

cells with the inverted conically shaped lysophosphatidylcholine and the 

cylindrically shaped arachidonic acid prior to monitoring the exocytosis events 

using amperometry. Their study concluded that both the shape of the lipid 

molecule and its place in the membrane were of high importance for the dynamics 

of exocytosis [12]. Uchiyama et al. incubated PC12 cells with different 

phospholipids prior to monitoring the exocytosis events using amperometry.  They 

concluded that the PC12 cells incubated with PE had a faster release of dopamine 

than non incubated cells and that PC12 cells incubated with PC had a slower 

release [11]. These results indicate that the conically shaped PE would have a 

better fit than PC in the high curvature regions formed during the exocytosis 

event. Both studies concluded that specific lipids are important in the membrane 

during exocytosis. However, the actual amount of exogenous lipid present in the 

plasma membrane of the cells after incubation was not known. For the purpose of 

better understanding the result of these studies it is important to know the 

concentration of exogenous lipid in the membrane after incubation. A high 

concentration in the membrane would indicate that the change in lipid composition 

in biological systems has to be extreme in order to change the dynamics of 

exocytosis. On the other hand a low concentration would indicate that the 

composition of phospholipids in the plasma membrane is of high importance for 

the process of exocytosis. A small change might be more biologically relevant and 

might indicate that the change in composition of phospholipids could be a way for 

the cell to control communication to other cells. It is therefore crucial to know the 

actual concentration of exogenous lipid in the plasma membrane post incubation. 

The quantification of exogenous phospholipids incorporated into the plasma 

membrane of PC12 cells using TOF-SIMS (section 3.2) is performed and 

discussed in Paper III. It shows that the accumulation of exogenous phospholipids 

in the plasma membrane of PC12 cells is small, only 0.5 % for PC and 1.3 % for 

PE at 100 µM concentration during incubation. This is the same concentration that 

was used in the studies by Uchiyama et al. and this suggests that the composition 

of phospholipids in the plasma membrane is of high importance to the exocytosis 

events.  
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How the cells incorporate exogenous phospholipids from solution-phase 

liposomes has previously been investigated. Depending on the size and structure 

of the liposome there can be an exchange between the plasma membrane and the 

liposome or the liposome can fuse with the plasma membrane [13]. The uptake of 

phospholipids into the plasma membrane can also be facilitated by specific 

proteins in the cell membrane [14], which could provide insight into differences 

between phospholipid uptake in different cell lines. After incubation, exogenous 

phospholipids could also be directed to other parts within the cell due to the 

dynamic state of cell membranes [14, 15]. 
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Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS) enables the 

analysis of the upper most molecular layer of a solid sample in vacuum. TOF-

SIMS involves bombarding the surface of the sample with a beam of primary ions, 

as shown in Figure 5A (red circles). As the primary ions hit the surface, secondary 

ions (shown as light red lines) will be created from the molecules present at the 

site of impact. The secondary ions are then electrostatically extracted into a TOF 

mass analyzer where they are detected based on their mass to charge (m/z) ratio. 

By rastering the primary ion beam over the sample surface, a mass spectrum 

(Figure 4B) is recorded from each impact, pixel. This results in the creation of ion 

images (Figure 4C) displaying the molecular distribution on the sample surface. In 

papers I-III a TOF-SIMS IV instrument from ION-TOF (GmbH) was used and the 

following sections will describe the technique in more detail. 

 

Figure 5. A) The schematic process of TOF-SIMS. Primary ions (circles) are 

focused on to a solid sample. The secondary ions (lines) are extracted into 

a TOF mass analyzer. B) A mass spectrum from a PC standard, ranging 

from 10 to 105 Da. The y-axis displays intensity and the x-axis displays 

m/z. C) An ion image of m/z 184 (PC head group fragment ion) showing 

three freeze fractured PC12 cells. 
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Secondary ion mass spectrometry (SIMS) utilizes the detection of secondary ions 

formed at a sample surface after bombardment with primary ions and can be 

operated in dynamic or static mode. Dynamic SIMS involves the analysis of the 

elemental composition of a sample as a function of depth and it has been widely 

used in the semiconductor industry [16]. In static SIMS the primary ion dose is 

low, less than 1 x 10
-13

 ions/cm
2
, ensuring that less than 1 % of the sample surface 

is damaged during analysis [17]. With such a low primary ion dose the primary 

ions will only hit each spot on the sample once, resulting in the creation of 

secondary ions from the upper most molecular layer of the sample surface and not 

from a damaged spot. Static SIMS was first developed and named by 

Benninghoven in Münster [18, 19], even though the techniques enabling this 

development started in the 1950’s [19-25]. The mass analyzer used in SIMS was 

originally a magnetic sector and later a quadrupole. It was not until 1981 that 

TOF-SIMS was first described [26]. The advantage of using a TOF as a mass 

analyzer is that it constantly detects and records all ions that enter the mass 

analyzer. Both the magnetic sector and the quadrupole focus on a selected m/z for 

detection, which means that the ions not detected are discarded leading to a 

decreased sensitivity. The quadrupole analyzer can, however, scan over a m/z 

interval, but will only spend milliseconds (ms) detecting each m/z. Another 

advantage of using the TOF mass analyzer in SIMS is that it is a pulsed technique, 

meaning that all the ions are collected and pushed through the flight tube at the 

same time. This is consistent with many primary ion guns used in SIMS as the 

primary ions are pulsed, creating a pulse of secondary ions from the sample. 

 

Several atomic species can be used as primary ions in TOF-SIMS. The choice of 

primary ion source directly correlates to; the amount of secondary ions being 

formed from the surface (secondary ion yield); the damage caused to the surface; 

the amount of fragment ions formed; the acquisition time and; the spatial 

resolution obtained. Cluster ions, such as Aun
+
, Bin

+
, SFn

+
, and C60

+
 generally 

generate secondary ions at a higher yield than monoatomic ions such as Ar
+
, Ga

+
, 

Cs
+
 etc. Cluster ions also cause less damage to the sample since the energy of the 

cluster will be divided among the atoms within the cluster, resulting in less direct 

energy to the surface upon impact. Monoatomic ions will therefore penetrate the 

sample deeper and give more fragment ions than the cluster ions.  
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In Papers I-III a 25 kV bismuth cluster primary ion source is used. The primary 

ions used are Bi3
+
 which enable a spatial resolution of about 200 nm. This makes it 

possible to image the molecular distribution in single PC12 cells that are only 

about 10 – 20 µm in diameter. 

 

Bismuth, together with gallium, indium and gold, belongs to the class of liquid 

metal ion sources (LMIG) and is set up as shown in the schematic in Figure 6 [17]. 

Liquid bismuth is created by warming the bismuth coated reservoir and needle (a 

and b in Figure 6). An extraction field (d in Figure 6) at the tip of the needle 

causes the ions to move forward and at the end of the tip they form a cone, known 

as a Taylor cone. Ions, Bin
q+

 (n= 1-7, q = 1-2 [27, 28]), are then emitted from the 

cone and form the primary ion beam. As the Bin
q+

 ions travel down the ion column 

they are focused, chopped up into pulses and mass selected through different 

electrostatic lenses. 

 

Figure 6. Schematic of a liquid metal ion source. Parts include: a) coated 

reservoir, b) coated needle, c) heater filament, d) extractor, e) insulating 

disc, f) support leg and electrical contact.  
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The 25 kV bismuth primary ion source can be operated in two modes; burst 

alignment and bunched mode. In burst alignment mode the primary ion pulses are 

narrow but long (100 ns). This gives high spatial resolution but a severely limited 

mass resolution (m/Δm about 300). The bunched mode creates pulses that are 

short and wide, which will only give about 4-µm spatial resolution but a better 

mass resolution (m/Δm) of about 7000.  

Studies comparing bismuth and gold clusters conclude that the bismuth ion 

emission is more intense which allows for better spatial and mass resolution [27, 

28]. 

 

Secondary ions are created by the impact of primary ions with the surface. The 

collision of primary ions with the surface transfers particle energy to the atoms 

within the solid sample. The atoms within the sample will collide until finally 

some molecules are sputtered into the gas phase [17]. It is believed that the 

transformation of molecules to ions takes place right at the solid phase surface. 

The surrounding molecules in the sample, the matrix, will have an impact on how 

many analyte molecules that become ions, the secondary ion yield. For example it 

has been shown that water has an enhanced effect of the secondary ion yield of 

hydrocarbons [29-31]. This is also seen and discussed in Papers I and II where 

PC12 cells are embedded in an ice matrix. 
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In a TOF mass analyzer the ions are separated based on the time it takes them to 

fly through a flight tube, typically being 1-2 m long. Ions are simultaneously 

accelerated into the low pressure flight tube by an electrical field. This gives all of 

the ions the same kinetic energy but the velocity will depend on the m/z of the ion. 

The lighter ions fly faster than the heavier ions and will reach the detector first, 

giving them a shorter fly time. The m/z is then calculated by the velocity squared 

times twice the acceleration pulse potential. Even though all ions get the same 

acceleration pulse the spatial distribution between the ions will give them slightly 

different velocities. This causes broadening of the peaks in the mass spectrum 

which decreases the mass resolution. However this broadening can be minimized 

by the use of an electrostatic reflector called a reflectron. Figure 7 shows a 

schematic of a TOF mass analyzer with a reflectron. 

 

Figure 7. Schematics of A TOF mass analyzer with a reflectron illustrating 

the path of two ions with the same m/z but slightly different velocity. 

 

A reflectron consists of several ring electrodes with increasing potentials. The ions 

will travel into the reflectron and their velocity will decrease the deeper they 

penetrate it, until they are repelled into the flight tube and to the detector. An ion 

with a higher velocity will penetrate the reflectron deeper giving it a longer flying 

path which equals a longer flight time. If two ions with the same m/z have 

different velocities the use of a reflectron will compensate for the differences in 

kinetic energy. This will cause them to end up at the detector closer to the same 

time, which increases the mass resolution. 
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When using a LMIG, a flood gun is necessary to provide surface charge 

stabilization for samples that are insulating, for example samples with an ice 

matrix. Every Bin
+
 ion that hits the sample surface does not create a positively 

charged secondary ion. The sample will therefore end up with a higher surface 

charge during analysis which will affect the spatial resolution. This can be dealt 

with using a flood gun that emits low energy electrons over the sample to counter 

this charge build up.  
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TOF-SIMS is a high vacuum technique requiring transfer of samples into low 

pressure (10
-6

-10
-9

 mbar). For single cell analysis in TOF-SIMS this can be 

accomplished in several ways. Samples can be freeze dried, freeze fractured, 

fixed, or imprinted on silver prior to analysis [32-37]. In Papers I, II and III single 

PC12 cells have been imaged after freeze fracture in order to analyze the cells 

frozen and hydrated. There are several advantages in analyzing freeze fractured 

single cells. These include; 1) the cell morphology stays preserved, 2) the low 

temperature limits the diffusion of molecules in the cell keeping the molecular 

distribution intact, 3) the risk for atmospheric contamination is low since the cells 

are fractured in the low pressure vacuum chamber, and 4) the water matrix has 

been shown to increase the secondary ion yield of organic fragments. The 

following sections will describe the in situ freeze fracture device that was 

developed to enable the analysis of freeze fractured single cells using the TOF-

SIMS IV instrument (ION-TOF GmbH). 

 

To enable freeze fracture of cell samples inside the analysis chamber of the TOF-

SIMS IV instrument a new strategy to create a sandwich of the cell sample that 

can be broken open in situ has been employed. This basic strategy has previously 

been successfully used to study single cells with TOF-SIMS. Cells were then 

placed between two silicon shards and the assembly was quickly frozen in liquid 

propane [33]. The sample package was then brought into vacuum and the freeze 

fracture was performed using a liquid nitrogen cooled cold knife. This removed 

the top shard and the cells on the bottom shard were analyzed. By performing the 

fracture in low pressure the risk of atmospheric contamination was limited since 

the surface for analysis was not exposed until it was in vacuum. The TOF-SIMS 

IV instrument does not have such a cold knife making it necessary to design a 

freeze fracture device to fit the instrument.   
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The freeze fracture device developed for the TOF SIMS IV instrument has been 

manufactured to fit the dimensions of the temperature controlled cold stage for the 

instrument. The ability to control the temperature of the cold stage enables 

monitoring and adjusting the temperature while the sample is inside the analysis 

chamber. Figure 8 shows the schematic of the freeze fracture device in open 

conformation. The device is made of copper which, being highly thermally 

conductive, allows rapid temperature control of the sample. The two silicon shards 

holding the cell sample are shown in black in Figure 8. These are held in place by 

stainless steel tabs. The device also features two mounting holes used to mount the 

device onto the temperature-controlled stage under liquid nitrogen (LN2). Further, 

a spring is attached to the device in order to increase the reproducibility of the 

fracture. Since both shards stay on the device after fracture, cells on both shards 

can be analyzed. This doubles the analysis area compared to the previous system 

[33]. This also enables mirror analysis since part of a fractured cell can be found 

on each side. This is discussed in Paper I. 

 

 

Figure 8. Schematic of the in situ freeze fracture device  

developed for the TOF SIMS IV instrument. 

 

To create a sandwich about 1-2 µL of the cell-solution is placed onto the smaller 

shard. The device is then closed, which sandwiches the cells in between the 

shards, and quickly frozen by plunging it into liquid propane at LN2 temperature 

(-196°C). When cells are frozen the crystallization of water within the cell can 

destroy cellular structures. In order to keep the cell water crystallization from 

being lethal to the cells the freezing rate must be very high. A rate of 1-10°C/s will 

destroy the cell while a rate of 1000°C/s will keep all structures within the cell 

completely intact [38].  
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Samples frozen in the freeze fracture device can be stored for a long period of time 

(weeks) in LN2. When it is time for analysis, the device is mounted onto the 

temperature controlled cold stage under LN2 and the assembly is then quickly 

entered into the load lock of the instrument. It is important that the device and cold 

stage are loaded into the LN2-cooled load-lock quickly. At these low temperatures 

the water in the air rapidly condenses onto the stage and inside the load lock. This 

makes it difficult to create the low pressure needed in the load lock and it will 

transfer ice into the analysis chamber increasing the pressure. Once the assembly 

has been entered into the analysis chamber the temperature is set to -110 degrees 

centigrade. The sample is then fractured manually using a fracturing device 

mounted onto the sample entry arm in the load lock. This is done by applying a 

moderate force to the top of the device which will force it to open, facilitated by 

the spring on the device. Once fractured the temperature of the assembly is raised 

to -105 degrees centigrade, which at this pressure is the temperature where the 

sample is in ice but there is no ice condensing onto the sample [38]. 

The fracture of the device produces a clean surface for analysis where the cells are 

embedded in the sample solution. Some cells are fractured through the cytoplasm, 

some expose the plasma membrane, and some are hidden underneath a layer of 

ice. Figure 9 shows a Scanning Electron Microscopy (SEM) image of HeLa cells 

(human cervical cancer cells) that have been dislodged, centrifuged, placed in 10 

mM HEPES solution, and freeze fractured using the freeze fracture device. Even 

though these cells originally were embedded in an ice matrix frozen and hydrated, 

the sample was dried (down to -90°C) in situ prior to SEM analysis. Freeze 

fracture of cells produces several different fracture planes as shown in Figure 9. 

Some cells are completely intact while others loose part of their plasma 

membrane. The smaller image in Figure 9 shows cells that have been fractured 

through the interior of the cell and exposing intracellular structures such as the 

nucleus. These fracture planes are also observed with TOF SIMS. In Figure 10 a 

TOF SIMS image of a cluster of cells that have been fractured through different 

planes of the cell is shown. This has been determined by the use of diagnostic 

ions. High potassium (K
+
), shown in red, reveals the cells that have been fractured 

through the cytoplasm. High levels of PC, shown in green, reveals cells where the 

outer leaflet of the plasma membrane has been exposed and high levels of PE, 

shown in blue, reveals the exposure of the inner leaflet of the plasma membrane 

[39]. 
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Figure 9. SEM image of dried freeze fractured HeLa cells: a) an 

intact cell with exposed plasma membrane, b) a cell with 

partially ruptured plasma membrane, c) a cell that has been 

fractured exposing the nucleus, d) a cell that has been 

fractured not exposing the nucleus, e) part of the plasma 

membrane from a cell on the opposite shard. Inset shows two 

cells that have been fractured exposing the nucleus. 

 

 

Figure 10. A TOF SIMS image of two clusters of PC12 cells 

showing K
+ 

in red, PC in green, and PE in blue. 
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The matrix embedding the cells is highly important for a successful freeze fracture 

using the freeze fracture device. A successful freeze fracture splits the sample in 

two, leaving part of the sample on either shard as shown in Figure 11A. An 

unsuccessful fracture will instead fracture between the shard and the sample as 

shown in Figure 11B and C.  

 

Figure 11. Different ways of fracturing the sample: A) the sample is 

fractured through the ice, successful fracture, B) the sample is fractured 

by the shard and the ice, C) the sample is fractured by the shard and the 

ice. 

 

A solution containing 10 mM HEPES at pH 7.4 (adjusted with ammonium 

hydroxide) produces a successful fracture when clean shards that have been kept 

in normal atmosphere are used. However, a shard that has become contaminated 

making it more hydrophobic produces unsuccessful fractures. Upon visual 

observation of the shape of the drop loaded onto the shard, the fractures success 

rate can be predicted by the contact angle. Figure 12 shows a schematic of a drop 

on a shard with a desired contact angle (Ѳ). In the case of a hydrophobic shard the 

contact angle will be larger and the solution will not wet the shard to the same 

degree. When the shards are treated with ozone, making them very hydrophilic, 

there is no visual contact angle when loading the sample. This results in solution 

all over the shard and underneath the stainless steel tabs making the device unable 

to freeze and store in a closed configuration.  
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That the contact angle is of high importance can be seen in Young’s equation, 

equation 1. According to Young’s equation a more hydrophilic surface will have a 

higher surface energy. 

    (1) 

The equation states that the surface free energy of the solid equals the free energy 

of the solid/liquid interface plus the surface free energy of the liquid times cosine 

of the contact angle. 

 

Figure 12. Contact angle. 

 

The amount of sample loaded onto the shard is also important. If too much is 

loaded, the solution will spill over to the copper surface and the spring when the 

device is closed. This will cause ice formation both on the shard and on the 

copper. In these instances the opening of the device will not create a successful 

fracture. Instead, all the ice will be on the side where it is in contact with the 

copper surface. In order to get a successful fracture it is also important to keep the 

cell solution as clean as possible. When the cell sample is prepared it is important 

to remove any lipids or other contaminants that might be in the solution before 

loading the sample. This is preferentially done by repeated centrifugations and 

resuspensions of the cells. Too much lipid in the sample solution will counteract a 

successful fracture. 
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ANaerobic AMMonium OXidizing (Anammox) bacteria were first found in waste 

water in the 1990’s and have since then been found in lakes, ocean water and 

ocean sediments [40-44]. They are about 1 µm in diameter and have a doubling 

rate of approximately 2 weeks, which is extremely long comparing to E. coli 

bacteria with a doubling rate of 20 min. Anammox bacteria have specialized in 

performing anaerobic denitrification. In this process biologically available 

nitrogen, such as ammonia and nitrate, is converted into dinitrogen gas (N2) which 

is returned to the atmosphere. The overall reaction of this conversion is shown in 

Formula 1 [45]. This process is environmentally advantageous since too high 

levels of biologically available nitrogen in oceans or lakes can cause 

eutrophication (over fertilization). 

 

NH4
+
 + NO2

-
  N2 + 2H2O 

Formula 1.  The conversion of ammonia and nitrite to  

dinitrogen gas and water. 

 

Since the discovery of anammox bacteria, scientists have been trying to 

understand the role anammox bacteria play in the global nitrogen cycle. It is 

estimated that anammox bacteria are responsible for 25 - 50 % of the total global 

marine N2 production [46, 47], indicating that the bacteria are crucial for the 

environment. This has led to anammox research in two branches; 1) use of 

anammox bacteria in treatment of human waste water and 2) further exploration of 

the anammox bacteria’s whereabouts in the environment. 
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Two waste water treatment plants in Sweden are currently using anammox 

bacteria for removal of biologically active nitrogen; Himmerfjärdsverket in 

Stockholm and Ryaverket in Göteborg. The anammox bacteria are kept in big 

tanks growing in biofilms on small, about 1 cm in diameter, plastic wheels called 

caldnes. As waste water passes through the tanks biologically active nitrogen is 

removed, converted into N2 and returned to the atmosphere by the anammox 

bacteria. This purification process prevents the biologically active nitrogen from 

being released into oceans and lakes. 

To explore the whereabouts of anammox bacteria in oceans and lakes many 

methods have been developed and used. Examples are; Fluorescent In Situ 

Hybridization (FISH), real time quantitative Polymerase Chain Reaction (qPCR), 

Gas Chromatography (GC) coupled to FID or MS, and LCMS [40, 41, 43, 47-50]. 

Unfortunately, neither one of these methods specifically detects viable anammox 

bacteria. This makes it hard to distinguish between live bacteria and residues from 

dead bacteria during data analysis. In order to reflect viable bacteria phospholipids 

used as biomarkers need to be intact, not degraded or derivatized in any way [51-

57]. Phospholipids used as biomarkers also need to have unique molecular 

structures that will separate them from phospholipids commonly found in cells. 

Such phospholipids are found in the membrane of an organelle inside the 

anammox bacteria, called the anammoxosome. 

 



27 

 

 

The anammox bacteria have a unique inner organelle quite contrary to normal 

bacterial cells, Figure 13. The organelle is called the anammoxosome and its 

membrane is believed to be the site where the anammox process takes place. This 

hypothesis is supported by the finding of specific membrane proteins involved in 

the process [58]. During the anammox process a proton gradient is thought to be 

formed across the membrane and toxic intermediates, including hydrazine, are 

believed to be enclosed inside the anammoxosome. This puts high demands on the 

anammoxosome membrane to maintain the proton gradient and to protect the 

cell’s DNA from contact with the toxic intermediates. The membrane therefore 

needs to be extremely dense. This could be the reason why it is built up by 

phospholipids with unique tail group structures, called ladderane lipids. 

 

 

 

Figure 13. Electron microscopy image of an anammox bacterium to the 

left and a schematic to the right. The different parts of the cell are 

marked.  

 

 

http://tyda.se/search/quite%20contrary%20to
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The head groups of ladderane lipids can consist of PC, PE, or 

phosphatidylglycerol (PG) but it is the tail groups that are special [59-61]. At the 

end of the tail group there is either five cyclobutanes or three cyclobutanes and 

one cyclohexane connected to each other as shown in Figure 14. The linked cyclic 

hydrocarbons make the tail groups extremely hydrophobic and cause the ladderane 

lipids to pack tightly, which leads to a very dense membrane [60]. The ladderane 

tail groups are connected to the glycerol back-bone either by an ester bond or an 

ether bond.  

 

Figure 14. Two examples of ladderane PC lipids, the top example has two 

ether bonds to the glycerol backbone and the bottom has both an ether 

and an ester bond.  

 

To date, the ladderane lipids have only been found in anammox bacteria and 

because of their unique molecular structure they can be used as biomarkers for 

anammox bacteria. This means that it is highly likely that where-ever ladderane 

lipids are found there are anammox bacteria. However, this statement has to be 

modified a little bit. In order to conclude that anammox bacteria are alive at the 

sampling site, the ladderane lipids have to be intact phospholipids [51-57]. If only 

a part of the ladderane phospholipid is found, such as the ladderane fatty acids or 

the head group and one tail group (lysophospholipid), it is probable that the 

molecule has been degraded after cell death. 
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Finding a specific molecule, such as a ladderane lipid, in ocean sediment is not an 

easy task. There are plenty of molecules in ocean sediment which can originate 

from nature, be manmade, or be degradation products from either of the two. The 

sediment sample therefore has to be subjected to an extensive clean up procedure 

to remove unwanted molecules but to still keep the ladderane lipids. In Paper IV 

several methods have been explored in order to get the cleanest ladderane lipid 

extract with the highest yield. 

Cultured anammox bacteria have been shown to grow in clusters most likely 

covered with a protein polysaccharide matrix [62]. It is also believed that 

anammox bacteria in sediment grow in similar clusters. The first step in the 

sample clean up procedure therefore involves lysing the cells in order to get the 

ladderane lipids in solution. In Paper IV the sediment samples are treated with 5 % 

sodium (meta) periodate to break up large clusters of cells making it possible to 

extract the ladderane lipids. In order to investigate the result of the periodate 

treatment, samples of cultured anammox were imaged before (Figure 15A) and 

after (Figure 15B) treatment with periodate. The fluorescence images in Figure 15 

have been taken using DAPI to stain bacteria DNA. In Figure 15A the DNA is 

visible as half moons, because the anammox DNA is outside the anammoxosome 

in the cell, whereas the DNA in Figure 15B is spread out, indicating that the cells 

are lysed.  
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Figure 15. Fluorescence image of cultured anammox bacteria where the 

DNA is dyed with DAPI. A) cultured anammox bacteria in clusters. B) 

cultured anammox bacteria in clusters after treatment with periodate. 

 

After lysing the cells the ladderane lipids have to be extracted from the sediment 

into solution. Repeated extraction procedures ensure that the majority of the 

ladderane lipids will be removed from the sediment to the solution. However, the 

extraction procedure is not specific and many unwanted compounds are also 

extracted to the solution. In Paper IV the sample is further cleaned up by liquid-

liquid extraction (LLE) and solid phase extraction (SPE). 
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In LLE at least two liquids that are immiscible are mixed with the sample, as 

shown in Figure 16, left. The molecules within the sample will then partition into 

the solvent where they are soluble, separating the sample in two phases as shown 

in Figure 16, right. The phase that contains the molecule of interest is saved and 

the other phase is re-extracted to increase the yield. By changing the properties of 

the solvents used in LLE the molecule of interest can be recovered with small 

amounts of contaminations. In Paper IV a mixture of DCM:MeOH: NH4Ac (10 

mM) (2:1:0.8) was used to extract lipids out from the sediment sample. In order to 

enable a two phase separation the LLE was performed using DCM:MeOH:NH4Ac 

(10 mM) (2:1:0.9) [63]. With this procedure the phospholipids partition into the 

lower phase, mostly containing DCM, and the more hydrophilic molecules stay in 

the upper phase. The lower phase was kept and most of the liquid was evaporated 

in order to perform the next step in the sample clean up procedure – SPE. 

 

Figure 16. Schematic of liquid liquid extraction, left – immisciable liquids 

are mixed with the sample, right – the two liquids and the molecules in the 

sample have separated into two phases. 
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SPE is performed with a packed dried stationary phase in a plastic column. The 

columns are typically used only once and have a low efficiency, meaning that the 

analytes are either adsorbed to the column or not. In Figure 17 the procedure for 

SPE clean up is shown. From left to right; the dry column has to be activated in 

order for the functional groups to open up and contamination from manufacturing 

to be removed. The next step is to condition the column, which is performed to 

remove the activating agent and get the column ready for the sample. The sample 

is then loaded onto the column. The analytes of interest together with other 

contaminants will be adsorbed while some contaminants will pass right through 

the column. After loading the sample one or several washing steps will remove 

unwanted adsorbed contaminants. Finally the analyte is eluted. Some remaining 

contaminants will stay adsorbed in the column. By carefully choosing solvents to 

use and functional groups on the column, the analyte of interest will be eluted 

without too much contamination at a high yield. Unfortunately there are no 

commercial standards available for ladderane lipids, so the yield after sample 

clean up using LLE and SPE in Paper IV is unknown. The lack of standards is 

unfortunate since it makes the development of the sample preparation difficult and 

the final results cannot be related to the actual amount in the sediment. However, 

to overcome this issue during sample clean up development, triplicate samples of 

carefully weighted cultured anammox bacteria, even though not a pure culture, 

were used. 

 

Figure 17. Schematic of SPE. From left to right: Activation of functional 

groups, conditioning of the column, sample loading, washing, analyte 

elution. 
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The separation technique used in Paper IV is liquid chromatography (LC) coupled 

to a triple quadrupole (QqQ) mass analyzer with an electrospray (ESI) interface or 

coupled to a quadrupole – time of flight (QTOF) mass analyzer with an ESI 

interface. These techniques are discussed in more detail below. 

 

The principle of LC is based on the interaction of the analytes with the stationary 

phase and the mobile phase. Due to discrimination effects (section 4.3.4) it is 

important that the analyte of interest is separated from the other analytes. LC can 

be run in different modes that are classified depending on the functional groups on 

the stationary phase (polarity) and the mobile phase. Paper IV uses reversed phase 

(RP) LC, which has a hydrophobic stationary phase that retards the analytes based 

on hydrophobicity. This means that the most hydrophobic analyte will have the 

longest retention time. The column used is a C18 column for which the stationary 

phase functional groups consist of chains with 18 hydrocarbons attached to the 

silica beads as support. The mobile phase used to migrate the analytes through this 

jungle consists of 4 % H2O in MeOH, which has a high elution power. The elution 

power of isopropanol (IPA) is even stronger and it is therefore used to clean the 

column from any residual contaminants after sample analysis. 

Figure 18A shows five PC molecules with different tail groups. All PC molecules, 

but #3, have two ester bonds linking the hydrocarbon tail groups to the glycerol 

backbone. By instead having two ether bonds #3 is more hydrophobic than #2 

even though they have the same tail length. This can be seen in the chromatogram 

in Figure 18B where #3 has a longer retention time than #2. The longer tail group 

in #4 and the substituted tail group in #5, however, have a larger impact on the 

retention causing both of them to elute after #3. Phospholipid #1 with the shortest 

tailgroup is the least hydrophobic of the five molecules and elutes first in the 

beginning of the chromatogram.  

Figure 18C shows a chromatogram of the PC molecules from cultured anammox 

bacteria, analyzed using LCQqQ scanning for parents of m/z 184. Intact ladderane 

lipids coelute in pairs and are found in the two last peaks designated III, IV and in 

I, II. The molecular structures of I, II, III and IV are shown in Figure 18D. The 

long retention time, which is due to the extremely hydrophobic tail groups of the 
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ladderane lipids, separates the ladderane phospholipids from other phospholipids 

in the sample.  

An interesting feature that is evident when comparing the two chromatograms in 

Figure 18B and C is the lower signal from PC molecules linked with two ether 

bonds to the glycerol backbone. In Figure 18B the concentration of the five 

molecules is equal, however, the peak from #3 much less intense. This is most 

likely due to a lower proton affinity in the ether-ether molecules compared to the 

ether-ester molecules, resulting in a higher detection limit. 

 

Figure 18. A) Molecular structures of four PC species, B) LC trace of 

molecules in A, C) LC trace of phospholipids extracted from cultured 

anammox bacteria, D) Molecular structures of ladderane PC species 

detected in C. 
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A quadrupole is set up with four metal rods that are operated in pairs at low 

pressure. By altering the polarity of the potential applied to the rods, ions passing 

through can be separated based on their m/z. The direct potential and the 

amplitude of the frequency applied to the rods determine the m/z that will have a 

stable trajectory through the quadrupole. An ion that does not have a stable 

trajectory will hit a rod and become discharged, which will keep it from being 

detected [64]. A quadrupole can be operated in both negative and positive mode 

and can be used to either select a single m/z or scan over a mass interval with a 

scan speed of up to 1000 Da/s, stopping at each m/z for a short period of time 

(ms). A quadrupole runs continuously, which makes it suitable to use in 

combination with separation techniques like LC, GC or capillary electrophoresis 

(CE). However, the stepwise scanning of the instrument limits the use of 

separation techniques having high separation efficiency, with narrow peaks. 

Further, quadrupoles are limited by having only unit mass resolution and can 

therefore not be used in applications that need high mass resolution or high mass 

accuracy. 

A quadrupole can be coupled to another mass analyzer, for example another 

quadrupole or a TOF to enable MSMS analysis. Figure 19 shows the schematics 

of a QqQ operated in single reaction monitoring (srm) mode. From left to right; 

several ions are approaching Q1, which only allows ions with a specific m/z to 

pass through. The selected ions are subjected to collision-induced dissociation 

(CID), which takes place in an rf only hexapole (not shown in the schematics) by 

the addition of an inert gas (Ar or N2) to the ions. The ions will collide with the 

gas, which will cause them to fragment and produce fragment ions (daughter 

ions). In the hexapole all ions are kept in a stable trajectory since no direct 

potential is applied. The fragments will then enter Q3, which is set to keep a 

specific m/z stable passing through the quadrupole. The fragment ions with a 

stable trajectory in Q3 are then detected at the detector (not shown in schematics). 

By performing an srm experiment the selectivity of an analyte is high since both 

the molecular ion and the fragment ion are singled out. 
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Figure 19. Schematics of a triple quadrupole operated in positive SRM 

mode, Q1 and Q3 are visible. 

 

There are also other modes to operate a triple quadrupole in MSMS mode and all 

are summarized in Table 1. 

 Q1 Q3 

Selected reaction monitoring Select Select  

Parent ion scanning Scan Select  

Daughter ion scanning Select  Scan 

Neutral loss Scan Scan minus loss 
 

Table 1.  Summary of MSMS modes in QqQ. 

 

During method development in Paper IV, PC species were analyzed using parent 

ion scanning. PC species are easily recognized in MSMS mode by monitoring the 

parent ions of the head group fragment at m/z 184, which is stable and readily 

formed. 

 

Due to limited mass resolution and higher detection limits in the QqQ a QTOF 

was used for sample analysis in Paper IV. The molecular ion of the biomarker for 

anammox bacteria was formed at m/z 816 at relatively high intensity. The 

retention time of this biomarker in the LC method described in Paper IV was very 

specific and the peak is well separated from other non-ladderane peaks in the 

chromatogram. The additional selectivity of MSMS analysis was therefore not 

needed and the QTOF was used in positive MS mode. TOF uses a pulsed 

technique to accelerate the ions and therefore a pusher, which collects ion 

packages, must be used when coupling TOF to a quadrupole (Section 3.2.4). 
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In order to separate and detect molecules in a sample using mass spectrometry the 

molecules must be ionized and brought into gas phase. There are several ways of 

doing this depending on the sample introduction method and the mass analyzer 

that will be used. Both instruments used in Paper IV are equipped with an 

electrospray ionization (ESI) source, which is a good choice when coupling LC to 

MS. In ESI the molecules in the sample are ionized in the liquid phase and then 

brought into the gas phase. Figure 20 shows a schematic of ESI in positive mode. 

 

Figure 20. Schematic of electrospray ionization in the positive mode,  

not scaled to size. 

 

In order to create ions a high potential (2-4 kV) is place over the capillary. This 

causes oxidation processes to occur in the liquid and positive ions are created. N2 

assists the formation of a Taylor cone at the end of the capillary and a fine mist 

with droplets is sprayed into the chamber at atmospheric pressure. One theory of 

the formation of single ions in gas phase is that the droplets shrink due to solvent 

evaporation and concentrate the ions within them. When the ions then get close 

enough they repel each other causing smaller droplets and single ions to be formed 

in the gas phase.  
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Ions formed from high mass molecules with several ionization sites, like proteins, 

are created with multiple charges. This is advantageous since it enables analysis of 

large compounds without the need of high range instruments since the mass 

analyzer detects ions based on their m/z.  

Not all molecules are ionized to the same degree in electrospray ionization. There 

are some discrimination effects that can take place if several molecules are ionized 

simultaneously. The molecule with the higher proton affinity (in positive mode) 

will be ionized to a higher degree. There is also a discrimination effect which 

depends on the hydrophobicity of the ion. A more hydrophobic ion will partition 

to the surface of the ESI droplet whereas the more hydrophilic molecule will more 

easily be dissolved inside the droplet. During the evaporation process the ions on 

the surface of the droplet are more easily transformed into the gas phase causing 

them to enter the mass analyzer to a larger extent.  
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Mass spectrometry is a good method to choose for analysis of  complex biological 

samples since it can be used to separate similar ions based on their mass to charge 

ratio. There are, however, some limitations to the technique. The basics of the 

strengths and weaknesses of this method for phospholipid investigations has been 

presented here. 

In TOF SIMS the sample must be brought into vacuum before it can be analyzed. 

Even though the sample does not need any specific sample pre treatment it can be 

tricky to bring it into vacuum without changing the molecular distribution within 

the sample. In TOF SIMS there is also a concern regarding the secondary ion yield 

of molecules in the sample. In order for the technique to be successful for a large 

variety of analytes and samples these issues must be dealt with. The development 

of the in situ freeze fracture device addresses both the issue of sample entry and 

secondary ion yield. By entering the cells frozen in a sandwich configuration the 

sample can easily be placed into vacuum and the in situ fracture produces a clean 

surface for analysis. The ice matrix around the molecules in the sample facilitates 

the formation of secondary ions to some degree, which has made it possible to 

image low abundant species like PE. The rapid freezing of the cells, followed by 

analysis of them frozen and hydrated, has enabled the quantification of exogenous 

phospholipids in the plasma membrane. The results show that when PC12 cells 

were incubated with different concentrations of PC and PE the exogenous 

phospholipid was accumulated in the plasma membrane. The accumulation, 

relative to endogenous phosphocholine, was between 0.5 and 2.1 % for exogenous 

PC and between 1.3 and 9.4 % for exogenous PE. This clearly shows that the 

accumulation of exogenous phospholipids in PC12 cells is dependent on the 

concentration in the surrounding media. In combination with previous studies on 

exocytosis from incubated PC12 cells these results suggests that the process of 

exocytosis in PC12 cells is influenced by the composition of phospholipids in the 

plasma membrane. In future research this “plasticity” in neuron model cells might 

be shown to be important in brain functions such as learning and memory. 
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When very complex samples, such as marine sediment samples, are analyzed it is 

extremely useful to use LC before MS analysis. Under the right conditions, LC 

can be used to separate analytes from contaminants. This provides a cleaner 

sample with less discrimination effects for MS analysis. In this thesis sample clean 

up combined with LCMS enables the detection of ladderane lipids in ocean 

sediment. The results concerning the location of anammox bacteria are in 

agreement with previous findings. 

The work that has been presented in this thesis clearly shows the capacity of mass 

spectrometry to analyze phospholipids in complex biological samples. It also 

provides some new methods. These methods are; 1) the ability to introduce a 

frozen cell sample into the analysis chamber for imaging mass spectrometry and 

2) the extensive sample clean up combined with a LC method for ladderane lipid 

analysis in sediment samples with ESI-MS. 
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To my knowledge, there is no such thing as a perfect technique for analysis of 

complex biological samples. All techniques have limitations. However, in order to 

understand the importance of chemistry in biological and environmental processes 

we need to develop new methods and techniques to overcome these limitations. I 

believe that this can be achieved by combining several analytical techniques which 

each can provide a piece of the puzzle. Some research using mass spectromety that 

would be interesting to do to follow up the results presented in this thesis include 

the following. 

A) To further understand what happens in the cell when it is incubated with 

exogenous phospholipids there are some questions that come to mind. What 

happens with the deuterated phospholipids that are accumulated in the cell, 

do they only stay at the plasma membrane or does the increase in a certain 

phospholipid in the plasma membrane cause some of them to be transported 

to other places in the cell? Is the observed accumulation due to an exchange 

of phospholipids or only an uptake of additional lipids? Is it the changed 

phospholipid composition in the plasma membrane that affects exocytosis 

or is there also a change in the composition of phospholipids in the synaptic 

vesicles? 

These questions can be answered by combining TOF-SIMS and LC-ESI-

MS. For TOF-SIMS, the freeze fracture device can be used to reveal the 

localization and accumulation of deuterated phospholipids in the cytoplasm 

of single cells. For LC-ESI-MS, all phospholipid species in different parts 

of the cell can be analyzed revealing an increase or decrease of certain 

species after incubation. 

 

B) To increase the knowledge of anammox bacteria, ladderane lipid analysis 

can be performed together with complementary anammox bacteria and 

nutrition analysis. Samples can be collected at different water and sediment 

depths on a yearly time dependent basis. Such studies will contribute to a 

greater understanding of the role of anammox bacteria in the nitrogen cycle 

on the ocean floor. 
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C) Another thing that would be interesting to study is the accumulation and 

distribution of other substances within single cells. These substances could 

be drugs, peptides, signaling molecules or metabolites which can be 

analyzed in single cells using the freeze fracture device and TOF-SIMS. To 

make this possible, the molecule of interest needs to have a high secondary 

ion yield and a unique m/z without overlap in the mass spectrum. If there is 

no unique m/z isotopic labeling could be used. 

 

D) Single cell analysis with imaging mass spectrometry can also be used to 

find molecular changes in a cell over its life-time. It has for example been 

noted that PC12 cells that have been cultured for several generations (one 

generation typically lasts one week) have a decreased exocytosis activity. If 

there is a molecular reason behind this, it could be detected by imaging 

mass spectrometry. Unfortunately TOF-SIMS causes fragmentation of most 

molecules during ionization, which makes it hard to know the molecule of 

origin. However, there are ways to limit this fragmentation and get more 

molecular ions. By using a C60 ion beam instead of a Bi cluster ion beam 

there is less fragmentation. The loss of spatial resolution that comes with 

that change will not be so important in this case since it is an eventual 

molecular change in the cell that is monitored. 

 

There are also other methods for imaging mass spectrometry that can help in 

finding answers to biological questions. There are mass analyzers that trap the ion 

giving high mass resolution and high mass accuracy, which enables molecular 

assignment of unknown peaks. The assignment of unknown peaks can further be 

utilized by the ability to do MS
n
, which provides additional structural information 

based on the fragmentation pattern. By switching to other ion sources for imaging, 

such as MALDI and DESI, high molecular mass ions can be detected. However, 

as of today, these sources have limited spatial resolution for imaging making them 

unsuitable for single cell analysis. Another interesting aspect in imaging mass 

spectrometry using a C60 ion source is that it has the ability to remove molecules 

on the surface of the sample. This makes it possible to get molecular information 

from layers down through the sample. By doing so, molecular 3D images of the 

sample, for example a single cell, can be created. 
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These papers describe and characterize the freeze fracture device that was 

developed to enable mass spectrometry imaging of frozen hydrated single cells 

using the TOF-SIMS IV instrument. The papers discuss how the device functions 

and show ion images of freeze fractured single PC12 cells. The plane of fracture 

through the cells as well as an increased secondary ion yield due to the water 

matrix is also discussed. In Paper I ion images of a frozen hydrated cell before and 

after in situ freeze drying are shown indicating that the phospholipids can be 

spread out when the temperature of the sample is rapidly increased. Paper II shows 

the ability to do mirror images of freeze fractured PC12 cells with the device as 

well as some results from sub cellular localization of phospholipids in a single 

PC12 cell. The new freeze fracture device increases the ease by which one can 

analyze single cells in the frozen and hydrated state with imaging mass 

spectrometry instruments since no special sample entry chamber is necessary 

using the device. 

 

This paper presents the relative quantification of incorporated exogenous 

phospholipids into the membrane of single PC12 cells. Deuterated phospholipids, 

which create fragment ions with a specific m/z, are used to incubate the cells. The 

counts from the deuterated phospholipids are then related to the endogenous 

phospholipid counts in the cell, which gives the relative amount of exogenous 

phospholipid that is accumulated in the plasma membrane. The results show that 

after an overnight incubation with a 100 µM deuterated phospholipid the amount 

of deuterated phospholipids present in the plasma membrane of PC12 cells are 0.5 

% for PC and 1.3 % for PE. In combination with previous studies on exocytosis in 

PC12 cells these results indicate that the phospholipid composition of the plasma 

membrane is of high importance for the process of exocytosis. 
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This paper describes a new method to detect and relatively quantify the abundance 

of anammox bacteria in sediment samples using an intact ladderane phospholipid 

as a biomarker. Besides evaluating different incubation and extraction methods the 

paper provides a RPLC method to separate PC species based on tail group 

hydrophobicity. Finally the paper provides information on anammox abundance in 

a sediment sample depending on depth. The selected phospholipid biomarker was 

found in the upper sediment layer in agreement with previous nutrition profiles 

and expectations, whereas another ladderane phospholipid is not that specific. The 

development of this method can potentially contribute highly to research of 

anammox bacteria in natural environments. In the future this can lead to an 

increased understanding of the importance and vulnerability of these bacteria on 

earth. 
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