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Abstract
This thesis consists of three overlapping parts, where the first one centers
around the possibility of defining a measure of the power of arithmetical the-
ories. In this part a partial measure of the power of arithmetical theories is
constructed, where “power” is understood as capability to prove theorems.
It is also shown that other suggestions in the literature for such a measure do
not satisfy natural conditions on a measure. In the second part a theory of
concept formation in mathematics is developed. This is inspired by Aristo-
tle’s conception of mathematical objects as abstractions, and it uses Carnap’s
method of explication as a means to formulate these abstractions in an onto-
logically neutral way. Finally, in the third part some problems of philosophy
of mathematics are discussed. In the light of this idea of concept formation it
is discussed how the relation between formal and informal proof can be un-
derstood, how mathematical theories are tested, how to characterize mathe-
matics, and some questions about realism and indispensability.
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Preface

This project started as a logic project, and then gradually evolved into a
project in philosophy of mathematics. While logic, at least in its modern
technical form, is a fairly young discipline, although it all started with Aris-
totle, philosophy of mathematics traces its origin well back to Pythagoras. It
is not without hesitation that I have entered into these disciplines; logic with
modern giants as Hilbert, Gödel, etc. has become an advanced part of math-
ematics, and philosophy of mathematics with contributors as Plato, Kant,
etc. has had a prominent share throughout all of western philosophy from
ancient times till now. To think I would be able to contribute anything in
these connections may seem both presumptuous and in vain. In case I have
accomplished something, and not nothing, this is due among other things to
people surrounding me, and above all to my supervisors Christian Bennet
and Dag Westerståhl. The moral support and the intellectual guidance by
Christian Bennet has been of utmost importance. He has always encouraged
me to go on with my ideas, and been a source of inspiration in discussions.
The experience and expertise of Dag Westerståhl has of course been unvalu-
able. Another source of inspiration has been the discussions at the seminars
with the logic group at (the former) dept. of philosophy. The same goes for
the people at the department of philosophy where I once began my studies
in philosophy when it was located at Korsvägen. The persons I have met at
the department ever since have always been extremely helpful.

Of course there are many friends and colleagues that in one way or an-
other have helped me make this possible. To name but a few, my son Mar-
tin Sjögren introduced me to LATEX, and my colleagues Stefan Karlsson and
Yosief Wondmagegne often helped me when things went wrong. Kerstin Pet-
tersson gave me moral support, and helped me get some economic support
from University of Skövde that made it easier to finish the work. My old
friend Leif Segelström helped me make my English less unreadable in my
thesis for the licentiate degree. The late Torkel Franzén, my opponent at the
licentiate seminar, came up with many suggestions that improved that the-
sis. I, furthermore, admire my wife Barbro who, among other things, has
had patience with me when I have been working on the problems treated



in the thesis almost every evening during a decade or so. Last but not least
my discussions about mysteries of the universe with Lennart Jönsson when
we were young roving the woods surrounding Vaggeryd made an ineffacable
impression on me. It was these walks and talks that aroused my intellectual
curiosity!
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INTRODUCTION

1. Introduction
The main aim of this thesis is to contribute to understanding concept for-
mation in mathematics. When the project started this was however not the
goal. The original problem concerned Chaitin’s incompleteness theorem,
originally announced in the early 1970’s, and a suggestion formulated by him
later on of how to use this result to construct a measure of the power of an
arithmetical theory. Michiel van Lambalgen and Panu Raatikainen had ar-
gued, convincingly in my opinion, that the suggestion was untenable.1 A
natural question is then, if there are any other ideas that can be used to con-
struct such a measure. A partial solution to this problem is provided in Mea-
suring the Power of Arithmetical Theories.2 The introduction to that essay
also contains a discussion of the applicability of logic, and in a wider sense,
of mathematics, motivated by Chaitin’s suggestion of an application of a the-
orem in logic. A preliminary discussion of the problem of applicability was
presented in (Sjögren, 2006).3 These ideas are developed and elaborated in
this thesis.

The suggestion in the thesis is that concept formation in mathematics
takes place via abstractions, and that the process of refining abstractions can
be described as sequences of explications. While talk about abstract objects
naturally involves ontological standpoints, formulating explications need not
have any ontological implications. To regard mathematical objects as abstract
ones is of course not new. For my purposes, Aristotle’s view on mathematical
objects is more useful than Plato’s in relation to the problem of the applica-
bility of mathematics. He is of the opinion that mathematical objects are
abstract, but they do not exist as separated forms, like Plato’s ideas. They
are embodied in matter and can be separated in thought only. In this process
of separation we can decide under which point of view we want to regard a
substance. The process of separation can be analysed as a sequence of expli-
cations, a technique described and used by Carnap from 1945 onwards.4

1See (Chaitin, 1971), (Chaitin, 1974), (van Lambalgen, 1989), (Raatikainen, 1998), and (Raatikainen, 2000).
2(Sjögren, 2004), thesis for the licentiate degree.
3This paper, in Swedish, is not included in the thesis.
4(Carnap, 1945), (Carnap, 1947), (Carnap, 1950), (Carnap, 1963a), and (Carnap, 1963b).
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CONCEPT FORMATION IN MATHEMATICS

One consequence of this analysis of concept formation is that mathemat-
ical concepts are partly empirical; they have an empirical origin, and partly
logical; they have a position in a deductive system. Since mathematical con-
cepts have an empirical origin, the applicability of mathematics can be ex-
plained. But mathematics is not an empirical science. Mathematical propo-
sitions relate concepts to each other, and are parts of more or less well devel-
oped deductive systems; this is its logical, or analytic, component. Mathemat-
ical propositions are tested for consistency, fruitfulness, simplicity, elegance,
etc., not against an empirical ‘reality’. If propositions, containing new con-
cepts, are considered to be consistent with a relevant part of mathematics,
they can in principle be incorporated into this body. If fruitful, the concepts
may survive. Compare this with the situation in physics, where the main
judge is empirical reality.

Another consequence is that mathematical concepts, when mature, seem
to have unique explications; they are robust.5 The paradigm example is
Church-Turing’s thesis; the explication of effectively computable function as
Turing computable function. There are several alternative explications, using
different ideas, but in the most general case they all determine, extensionally,
the same set of functions. This points to a difference between e.g. physics
and mathematics; a difference hinted at by Aristotle when he states that the
objects of mathematics are more separable than those of physics.6

Included in this thesis is my thesis for the licentiate degree. It consists of
three parts; an introduction, a pre-study of Kolmogorov complexity result-
ing in a slight generalization of Chaitin’s incompleteness theorem, and the
construction of a partial measure of the power of arithmetical theories. The
remainder of the thesis consists of four papers dealing with different aspects
of concept formation in above all mathematics and logic, but also in empirical
sciences. The papers are separately written, and some overlap is inevitable.
One purpose of this introductory chapter is to present a more detailed back-
ground to concepts and ideas used than was possible in the articles. Another
purpose is to provide the reader with a brief outline of the ideas in the thesis.

This chapter thus contains a more elaborate exposition of the ideas of

5This idea was suggested by Christian Bennet.
6Physics B. 2. 193b-194a.
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ON EXPLICATIONS

Carnap and Aristotle. It also makes some comments on abstract objects, and
the related notion of idealization. Finally, there are some remarks on struc-
turalism, and how structuralist ideas may be related to results in the papers.
There is also a summary of the papers, and some suggestions for further
work.7

2. On Explications
2.1 Carnap and Explications

The papers in the thesis center around explication as a means to generate more
exact concepts in science and mathematics. In this section I give a rather de-
tailed survey of Carnap’s way of using explications as an instrument to gen-
erate exact concepts, as well as some critical comments on some of Carnap’s
positions. There is also an overview of the explications discussed in the pa-
pers.

It is customary to regard the thinking of Carnap as taking place in four,
partly overlapping, phases. The first one culminates with Aufbau, and the
second with Logische Syntax.8 Influenced by among others Tarski, Carnap’s
semantic period starts after the publication of Logische Syntax, and lasts well
into the 1950’s, when he had already been working on problems concerning
the concept probability.9 Although these phases in Carnap’s thinking obvi-
ously exist, some philosophers emphasise the continuity in his development
with regard to both problems and method.10 One problem that occupied
Carnap throughout the years was e.g. how to distinguish the factual (syn-
thetic, empirical) from the logical (analytic, tautological); a distinction sub-
jected to, as it seemed, devastating criticism by Quine in “Two Dogmas of

7For reference the following abbreviations will be used; MPAT, Measuring the Power of an Arithmetical Theory, and
MPAT1, MPAT2, and MPAT3 refers to the different sections in MPAT; EPAT: On Explicating the Concept The Power of an
Arithmetical Theory ; FIP: A Note on the Relation between Formal and Informal Proof; ITR: Indispensability, the Testing of
Mathematical Theories, and Provisional Realism; CUE: Mathematical Concepts as Unique Explications (jointly written with
Christian Bennet).

8(Carnap, 1928), (Carnap, 1934).
9 Important books in the semantic phase are (Carnap, 1942), (Carnap, 1943), and (Carnap, 1947), and his main work

on probability is (Carnap, 1950). Carnap also published several papers, and for a more complete bibliography the reader could
consult e.g. (Carus, 2007) or (Schilpp, 1963).

10See e.g. (Creath, 1991), and (Carus, 2007).
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CONCEPT FORMATION IN MATHEMATICS

Empiricism”.11 There is, however, a current revaluation of Carnap’s philo-
sophical ideas, as when, for example, A. W. Carus sees in Carnap a defender
of Enlightenment, and the tools Carnap developed, above all explication, as
a means in this defence.12

The conceptual framework he created is still the most promis-
ing instrument, I will argue, for the very purpose he invented it
to serve, in the somewhat utopian Vienna Circle context of the
1920s and the early 1930s: it is still the best basis for a compre-
hensive and internally consistent Enlightenment world view.13

Carnap’s interest was, furthermore, not only in technical details, but in an
overall view.

It has come to be realized that there was a good deal more to
Carnap than his particular contributions to various specialized
fields. There was also a vision that held all these parts together
and motivated them, a vision whose importance transcends and
outlasts the parts.

... Carnap is a much more subtler and sophisticated philosopher
[...] than was generally suspected a few years ago.14

This thesis is also a contribution to this revaluation, and this renewed interest.
Carnap introduces the concept explication in a paper on probability in

1945.15 In explicating a concept the question is not, as is often the case in
science and mathematics,

one of defining a new concept but rather of redefining an old
one. Thus we have here an instance of that kind of problem
[...] where a concept already in use is to be made more exact or,
rather, is to be replaced by a more exact new concept.16

11Originally published in Philosophical Review 1951; reprinted in (Quine, 1953).
12For the revaluation of the philosophy of Carnap, see e.g. (Carus, 2007), and (Awodey and Klein, 2004). See also (Stein,

1992), and (Gregory, 2003) on Carnap and Quine, and the relation between the analytic and the synthetic.
13(Carus, 2007), p. 8.
14Gottfried Gabriel; Both quotations are from the Introduction to (Awodey and Klein, 2004), p. 3.
15(Carnap, 1945).
16 Ibid.
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ON EXPLICATIONS

In an explication the explicandum is the more or less vague concept, and the
new, more exact one, is the explicatum.17 As an example Carnap mentions
Frege’s and Russell’s explication of the cardinal number three as the class of
all triplets. His concern in this paper is to clarify explicanda concerning two
concepts of probability; probability as degree of confirmation, and as relative
frequency in the long run.

In Meaning and Necessity Carnap describes the concept explication in the
following manner.

The task of making more exact a vague or not quite exact con-
cept used in every day life or in an earlier stage of scientific or
logical development, or rather of replacing it by a newly con-
structed, more exact concept, belongs among the most impor-
tant tasks of logical analysis and logical construction. We call
this the task of explicating, or of giving an explication for, the
earlier concept; this earlier concept, or sometimes the term used
for it, is called the explicandum; and the new concept, or its
term, is called an explicatum of the old one.18

As before Carnap exemplifies with cardinal number, but he now adds truth,
his own efforts to handle concepts like L-truth (logical truth, analytic), and
phrases of the form the so-and-so, etc. He also briefly mentions how the mean-
ing relation between explicandum and explicatum ought to be understood.

Generally speaking, it is not required that an explicatum have,
as nearly as possible, the same meaning as the explicandum; it
should, however, correspond to the explicandum in such a way
that it can be used instead of the latter.19

Concerning the possible correctness of an explication, Carnap states that

17For the terminology Carnap refers to Kant and Husserl, although the use they make of the term “explication” differs to
a great extent from Carnap’s (Beaney, 2004).

18(Carnap, 1947), pp. 7f.
19 Ibid., p. 8.
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CONCEPT FORMATION IN MATHEMATICS

there is no theoretical issue of right or wrong between the vari-
ous conceptions, but only the practical question of the compar-
ative convenience of different methods.20

Finally, Carnap devotes chapter one of Logical Foundations of Probability
to the concept explication.21 The main problem in this book is to construct
explications of concepts like degree of confirmation, induction, and probabil-
ity. The process of making explications is described as above, and now Car-
nap emphasises the need to clarify explicanda in order to make clear which
sense of a vague and unclear explicandum it is that needs to be explicated. It
was a clarification of this type the 1945 paper discussed. Now he exemplifies
with the concept salt where one meaning is the way it is used in chemistry,
and another as it is used in household language. The latter can be explicated
as NaCl, and the former as a substance formed by the union of an anion of
an acid and a cation of a base. Carnap did not present, except in some vague
phrases, any criteria the explicatum must fulfil in the 1945 paper or in Mean-
ing and Necessity, but in Logical Foundations of Probability this is taken care
of.

1. The explicatum is to be similar to the explicandum in such
a way that, in most cases in which the explicandum has so far
been used, the explicatum can be used; however close similarity
is not required, and considerable differences are permitted.
2. The characterization of the explicatum, that is the rules of its
use [...], is to be given in an exact form, so as to introduce the
explication into a well-connected system of scientific concepts.
3. The explicatum is to be a fruitful concept, that is, useful for
the formulation of many universal statements (empirical laws
in the case of a nonlogical concept, logical theorems in the case
of a logical concept).
4. The explicatum should be as simple as possible; this means
as simple as the more important requirements (1), (2), and (3)
permit.22

20 Ibid., p. 33.
21(Carnap, 1950).
22 Ibid, p. 7.
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ON EXPLICATIONS

Concerning the possible correctness, or truth, of an explication, Carnap re-
inforces the statement from Meaning and Necessity that there is no question of
right or wrong. Since the explicandum is not an exact concept, the problem
of explication is not stated in exact terms, so

the question whether the solution is right or wrong makes no
good sense because there is no clear-cut answer. The question
should rather be whether the proposed solution is satisfactory,
whether it is more satisfactory than another one, and the like.23

One example Carnap discusses in some detail in Logical Foundations of
Probability is the explication of the pre-scientific concept fish (animal living
in water) as pisces (in biological taxonomy). It can be, and has been, main-
tained that pisces is not more precise than fish. It is more narrow, but still
vague, and considering the frequent changing of borders between different
taxa in taxonomical systems, this seems correct. Still, by creating a taxonom-
ical system, the concept pisces gets a position in a well-connected system of
concepts, even though the system is provisional, and will change. Concepts
in biology are difficult to handle because of the diversity of biological phe-
nomena. A concept such as species is an extremely fundamental concept, but
there is no unequivocal explication of it.24

This process of making vague or pre-scientific concepts more exact so
that they may be used in science or mathematics fits well into the totality of
Carnap’s thinking. Carus traces the idea back to the principle of tolerance,
formulated in Logische Syntax, a principle Carnap describes in the following
way in his intellectual autobiography.

I wished to show that everyone is free to choose the rules of
his language and thereby his logic in any way he wishes. This
I called the “principle of tolerance”; it might perhaps be called
more exactly the “principle of the conventionality of language
forms”.25

23 Ibid, p. 4.
24See (Kuipers, 2007) on explications in empirical sciences, CUE for some comments on the concept pisces, and FIP on

species.
25(Carnap, 1963a), p. 55.
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CONCEPT FORMATION IN MATHEMATICS

In Logische Syntax Carnap states that

[i]t is not our business to set up prohibitions, but to arrive at con-
ventions.26

And a little bit further down in the text the principle is formulated:

In logic, there are no morals. Everyone is at liberty to build up
his own logic, i.e. his own form of language, as he wishes. All
that is required of him is that, if he wishes to discuss it, he must
state his methods clearly, and give syntactical rules instead of
philosophical arguments.27

Carnap himself takes this principle to be implicit already in Aufbau, where
he allows different languages in the project of rational reconstruction.28 Seen
in this way, the process of making explications permeates all of Carnap’s phi-
losophy.29

In papers subsequent to Logical Foundations of Probability Carnap uses
the concept of explication as a well-known idea, and does not bother to ex-
plain it.30 The concept was also almost immediately introduced into the sec-
ondary literature.31

In Word & Object Quine sees the method of explication as paradigmatic,
and illustrates its use with the concept ordered pair.32 The noun “ordered
pair” is, according to Quine, a defective one like e.g. the geometrical noun
“line”. It is, however, much more easy to come to grips with how to treat two
objects as one via explications in the case of “ordered pair”, than it is with
“line” as denoting an ideal or abstract object. Quine starts with an analysis
of the explicandum resulting in the usual criterion of identity between two
ordered pairs, i.e.

〈x, y〉= 〈z, w〉 iff x = z and y = w.

26(Carnap, 1937), p. 51.
27 Ibid., p. 52.
28(Carnap, 1963a), pp. 17 f., and p. 44.
29As mentioned above this is in line with Carus’s view on Carnap (Carus, 2007). This is also Michael Beaney’s position

in (Beaney, 2004).
30See e.g. papers added in the supplement to the second edition (1957) of (Carnap, 1947).
31See e.g. (Hempel, 1952), pp. 11-13.
32(Quine, 1960), §§53, 54.
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ON EXPLICATIONS

He then formulates several explicata like Kuratowski’s well-known sugges-
tion

{{x},{x, y}}.

Using the explicatum instead of the explicandum is called “elimination” by
Quine.

Quine points to an important aspect of explications which is a conse-
quence of Carnap’s ideas, but not so much discussed by Carnap himself. It is
that this process of making explications is not affected by the so-called para-
dox of analysis, since there is no demand for synonymy between explicandum
and explicatum. The paradox of analysis concerns how an analysis could be
both correct and informative. If correct, the two concepts, or terms, have
the same meaning, and no information is conveyed. If the two terms differ in
meaning, the analysis is incorrect.33

The criteria that an explicatum ought to satisfy are (deliberately?) vague.
This has the advantage that there are no (or few) formal obstacles to the pro-
cess of explication. The scientist or philosopher can concentrate on the con-
tent and not on whether he is formally doing the right thing. One possible
disadvantage might be that disagreements concerning a proposed explication
will focus on whether it really is an explication, and not on whether it is
fruitful, etc.34

2.2 Some Problems with Carnap’s Position

Not much was written on Carnap and explications after the 1960’s, perhaps
due to the decline of logical positivism, until the renewed interest in recent
times. This subsection presents some critical views centering on problems
of provability, exactness, and vagueness concerning explication. I begin with
provability. In his contribution to the International Colloquium in the Phi-
losophy of Science in London 1965, Kreisel discusses informal rigour and
how intuitive notions are made precise as follows.

33(Quine, 1960), p. 258. See also (Beaney, 2004) for a fuller account for the paradox of analysis in relation to Carnap.
34Compare the view on the relation between formal and informal proof in FIP with Leitgeb’s in (Leitgeb, 2009). In FIP it

is suggested that the former is explicatum of the latter, while Leitgeb denies this on the ground that the two concepts are too
different in meaning (p. 272). There is no disagreement on how to regard the two concepts. In FIP the focus is on fruitfulness,
and in (Leitgeb, 2009) on difference in meaning.
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CONCEPT FORMATION IN MATHEMATICS

The ‘old fashioned’ idea is that one obtains rules and definitions
by analyzing intuitive notions and putting down their proper-
ties. This is certainly what mathematicians thought they were
doing when defining length or area, or for that matter, logicians
when finding rules of inference or axioms (properties) of math-
ematical structures such as the continuum.35

Kreisel tries to show how intuitive notions can figure in exact proofs. He ex-
emplifies with the intuitive concept logical validity, and argues that it can be
strictly related to formal derivability and truth in all set-theoretic structures (via
the completeness theorem for first-order logic).36 On a direct question from
Bar-Hillel in the following discussion on the relation between informal rigour
vs. formal rigour, and Carnap’s notions of clarification of the explicandum
vs. formulation of the explicatum, Kreisel elaborates his point.37 He opposes
Carnap’s idea of the impossibility of correctness of informal concepts, and
argues that he has proved that Carnap is wrong in the above-mentioned ex-
ample. Kreisel sees a danger with Carnap’s position in that people will not
bother to look for proofs since they believe there are none. Carnap would
presumably deny the possibility of informal rigour as well as the possibility
of finding the correct explication together with a proof of its correctnes.

To reinforce Kreisel’s argument against Carnap, consider the possible
truth, or even provability, of Church’s thesis.38 Joseph Shoenfield argues that
it may be possible to find a proof of the thesis in spite of the vagueness of the
explicandum.

Since the notion of a computable function has not been defined
precisely, it may seem that it is impossible to give a proof of
Church’s thesis. However, this is not necessarily the case. We
understand the notion of a computable function well enough to
make some statements about it. In other words, we can write
down some axioms about computable functions which most

35(Kreisel, 1967a), p. 138.
36 Ibid., pp. 152-157. See also FIP.
37See (Bar-Hillel, 1967), p. 172, and Kreisel’s reply in (Kreisel, 1967b), pp. 175-177.
38Robert Black reviews possible ways of proving the thesis (Black, 2000).
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ON EXPLICATIONS

people would agree are evidently true. It might be possible to
prove Church’s thesis from such axioms.39

Recently a proof of Church’s thesis along these lines has been presented by
Nacum Dershowitz and Yuri Gurevich via an axiomatization of the explican-
dum.40 These arguments are strong ones against Carnap’s idea that there is
never any question of right or wrong in the process of making explications.
In some cases an explication may be provably correct, but note that this pos-
sibility also can depend on what is accepted as a proof.

As mentioned above, Carnap identifies two steps in the construction of
an explication where the first concerns the clarification of the explicandum,
and the second is to make the explicandum more precise, i.e. constructing the
explicatum. Looking at Carnap’s examples, the clarification of the explican-
dum often consists in removing ambiguities, and these are in several examples
related to paradoxes.41 Concerning the meaning relation between the expli-
candum and the explicatum Carnap is of the opinion that the meanings can
differ considerably, while others, Tarski e.g., think they must coincide.42

Joseph Hanna takes as his goal to make clear this meaning relation be-
tween the explicandum and the explicatum.43 In his analysis of explications
he distinguishes two types of explications exemplified by the explication of
effectively computable function and ordered pair, respectively. Concerning the
first the “categorial domain” is according to Hanna clear; there is no question
about what constitutes a function, and the choice of domain is unproblem-
atic. He thus takes for granted that the functions are partial functions on the
natural numbers, and also that the function concept is determined. Given
all this, we want to provide a sharp dividing line between the computable
and the non-computable functions via an explication. This type of explica-
tion, Hanna calls “explication1”, and he calls its vagueness “external”.44 In

39(Shoenfield, 1993), p. 26.
40(Dershowitz and Gurevich, 2008).
41See (Hanna, 1968).
42On Carnap, see above, on Tarski see (Tarski, 1944).
43(Hanna, 1968). Giovanni Boniolo points out that Hanna’s paper is one of few relevant texts on Carnap and explications.

He does this in a paper critical to what he conceives of as ideal-language-philosophy in Carnap (Boniolo, 2003). See also below
on this issue.

44As to terminology he refers to Kaplan. For references see (Hanna, 1968).
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CONCEPT FORMATION IN MATHEMATICS

the second example the vagueness is of a different kind. Given the ordinary
criterion for ordered pair there is never any question of ordinary vagueness,
i.e. whether an object is an ordered pair or not. It is more a question of which
entities we want to regard as ordered pairs, i.e. the categorial domain is not
clear. We can, with Kuratowski, explicate ordered pair as certain classes of
classes, and in this way determine the categorial domain, but other choices
are possible.45 Hanna calls this type of explication “explication2”, and the
vagueness “internal”. These two types of explications are not independent.
Determining a categorial domain may produce external vagueness. Consider
once again the concept effectively computable function. It is of course possi-
ble to choose categorial domain in other ways than suggested above, but this
will not remove external vagueness. With ordered pair no external vagueness
is introduced; Kuratowski’s explication determines both the categorial do-
main and the explicatum. Hanna also gives a technical analysis of external
vagueness, but these details are not relevant here. The distinction between
these two types of explications is informative. It parallels in a way, but is not
identical with, the two steps Carnap points out. In the clarification of the ex-
plicandum a categorial domain may be determined, and in the construction
of the explicatum external vagueness may be removed.

Critical voices against the demand of exactness were raised early on from
what is usually called “ordinary-language philosophy”. In the Carnap vol-
ume of Schilpp’s Library of Living Philosophers, Strawson compares his own
method of natural linguistics with Carnap’s method of rational reconstruc-
tion.46 Strawson emphasises that the introduction of an explication is to take
place in an exact scientific or logico-mathematical language, and draws a sharp
dividing line between scientific and non-scientific discourse. And, according
to Strawson, philosophical problems normally arise using non-scientific lan-
guage, so

it seems prima facie evident that to offer formal explanations of
key terms of scientific theories to one who seeks philosophical
illumination of essential concepts of non-scientific discourse, is

45Quine gives examples of explications where the categorial domain is the natural numbers, coding pairs of natural
numbers as a natural number; (Quine, 1960), §§53, 54.

46(Strawson, 1963), pp. 503-518.
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to do something utterly irrelevant ...47

He also states that the

use of scientific language could not replace the use of non-scientific
language for non-scientific purposes.48

Introducing a scientific vocabulary changes the subject, and does not lead to
an illumination of the philosophical problem.49 The clarification of problems
using explications cannot be achieved

unless extra-systematic points of contact are made [...] at every
point where the relevant problems and difficulties concerning
the unconstructed concepts arise.50

In Carnap’s reply to Strawson he clarifies his view on the exactness demand
explicata are to satisfy.51 His first objection to Strawson is that it is not totally
clear what he means by explication as “clarification”: whether it concerns the
clarification of the explicandum, or the formulation of the explicatum. Car-
nap then states that he sees no sharp dividing line between scientific and non-
scientific language. Scientific languages arise from non-scientific ones, and
scientific vocabulary works its way into non-scientific languages. Strawson’s
interpretation of Carnap’s position, that explications are to be formulated in
an exact, formal language, may seem straightforward, since explications are
“to be given in an exact form”.52 But in the chapter containing the quotation,
Carnap also introduces the above-mentioned explication of fish as pisces; an
example that ought to cast doubt on the belief that explications always must
be formulated exactly, and in an exact context. In his answer to Strawson,
Carnap claimes that an

47 Ibid., p. 505.
48 Ibid.
49 Ibid., p. 506.
50 Ibid., p. 513.
51(Carnap, 1963b), pp. 933-940.
52See above, and (Carnap, 1950), p. 7.
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explication replaces the imprecise explicandum by a more pre-
cise explicatum. Therefore, whenever greater precision in com-
munication is desired, it will be advisable to use the explicatum
instead of the explicandum. The explicatum may belong to the
ordinary language, although perhaps to a more exact part of
it.53

And

[t]he only essential requirement is that the explicatum be more
precise than the explicandum; it is unimportant to which part
of the language it belongs.54

Not surprisingly Carnap feels that the method of rational reconstruction
(explication) has greater possibility of casting light on philosophical issues
than ordinary-language philosophy, and he objects to Strawson’s opinion that
his analyses are “utterly irrelevant”. Carnap also means that it is, among other
things, the solving of philosophical problems he has devoted his career to. Of
course, the spirits of these two philosophers are very different.

In conclusion, Carnap’s position concerning the possible correctness of
an explication may be too defensive. It may sometimes be possible to prove
the correctness of an explication. Furthermore, an explication need not take
place in an exact setting. The requirement is that greater exactness, or less
vagueness, is accomplished by the explication. Finally, there are, over and
above Carnap’s way of describing the process, two kinds of processes going
on in making explications; determining a categorial domain, and removing
or diminishing vagueness.

2.3 On the Use of Explications in the Thesis

In the papers included here not so much attention is paid to the second item
in Carnap’s list of properties that the explicata ought to satisfy. Some of

53(Carnap, 1963b), p. 935.
54 Ibid., p. 936. Other philosophers who protest against what they take as a strict demand of exactness are Frank A.

Tillman and Giovanni Boniolo. Tillman, in a paper comparing the methods of Carnap and Strawson, makes the same mistake
as Strawson when he declares that the explicatum must be “constructed with the help of a formalized language” (Tillman, 1965).
So does Boniolo when he believes that explicatum must be exact, fit into a formal system, and that the mathematical method
must not enter into philosophical analysis (Boniolo, 2003).
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the explications discussed take place in an exact context, others in a more
informal setting. Support for this being in accordance with Carnap’s ideas
can be found, as we just saw, in his reply to Strawson.

Mathematical concepts, being abstractions of more concrete ones, some-
times have a distant empirical origin, but there are differences between physics,
or science in a wider sense, and mathematics in how the respective concepts
are used.55 While mathematical concepts, at least mature ones, are robust,
physical concepts change with theory (r)evolution. Mature mathematical
concepts have unique explications. Furthermore, mathematical concepts,
when introduced into a theory, must fit into that theory in a consistent way,
while concepts of physics (science) are tested with ordinary, empirical means.
Even though it may seem that e.g. the concept continuity, in its topological
sense, is far removed from an empirical origin, it can be traced back to the idea
that movements do not take place in jumps. In this way many mathematical
concepts have a more or less distant origin in empirical reality, and this can
be more or less obvious. This means that empirical science is important for
the development of mathematics. I will argue that the relationship between
mathematics and science can be partly understood via ideas presented in this
thesis, in which several examples of explications are presented and discussed.
There are also situations where it seems to be impossible to make a vague
or unclear concept precise. In these cases it seems impossible to produce an
explication, and thus to mathematize the discipline in question.

In the papers included in this thesis, one (EPAT) contains a negative
claim. In this paper it is argued that the concept the power of an arithmeti-
cal theory is impossible to explicate. The other three papers provide several
positive instances of explications. FIP focuses on the long discussed relation
between formal and informal proof in mathematics, while ITR and CUE treat
problems of a more philosophical kind. In ITR a strengthened version of
the indispensability argument is used to argue for realism in mathematics,
a strengthening that is possible due to the ideas of concept formation pre-
sented. In CUE a characterization of mathematics is formulated, founded on
the special character of mathematical concepts .

The setting in this thesis is that of classical mathematics, although there

55This idea is developed in CUE.
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are some occasional comments on constructive proofs in FIP. A study of
the development and robustness within constructivist traditions of e.g. the
function concept would certainly be worthwhile, but that must be left for
another occasion.

2.4 An Overview of Treated Explications

Here is a brief survey of some of the explications discussed in the papers.

• The concept set has an informal origin in the concept collection of
objects. The first systematic effort to explicate the concept is due to
Cantor. Via Frege’s use of the concept, involving the principle of ab-
straction, and the discovery of Russell’s paradox, a new explication
was called for. The dominant explication is the axiomatization of set
theory by Zermelo, Fraenkel, and Skolem (ZF , or ZF C with the ax-
iom of choice included). These axioms express one view what is to be
regarded as a set. Discussions of alternative axiomatizations are still
going on (ITR, CUE).

• As to the concept function, it has an origin in a vague idea of a (causal?)
dependency between two entities. The development of this concept
took a long time, and Euler’s idea of a function as an analytic expres-
sion was an early attempt. With Dirichlet the modern logical (or set-
theoretical) concept is almost arrived at, and this concept has in turn
been generalized to other function-like concepts (FIP, ITR, CUE).

• Closely related to the function concept is that of continuity. The origin
of the idea is, that changes do not take place in jumps. Euler and his con-
temporaries regarded continuity as a property of functions. Functions
were in the seventeenth and the early eighteenth century associated
with geometrical curves. It gradually became evident that this concep-
tion of continuity was untenable, and with Cauchy a new approach to
continuity, via the concept limit, appeared. This idea was later made
precise with the ε−δ definition of Weierstraß. The concept of con-
tinuity then split into the concepts pointwise and uniform continuity.
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Still later the topological concept of continuity was formulated (FIP,
CUE).

• As to the concept speed, or rate of change, and the geometrical coun-
terpart inclination, Newton and Leibniz independently found fruitful
explications via the concepts fluxion and infinitesimal. The inconsis-
tencies in Newton’s use of fluxions were pointed out by Berkeley, but
mathematicians and scientists continued to use these new, fruitful con-
cepts. The precise notion of limit enabled mathematicians to eliminate
these concepts, so their use, from a mathematical point of view, be-
came more a way of speaking. With the development of nonstandard
analysis, we know how to handle infinitesimals in a consistent way
(ITR).

• The concept effectively computable function received several explica-
tions from the 1930’s onward by the work of Church, Turing, Post,
et al. This case is illuminating, since all these explicata are provably
equivalent, and the example is paradigmatic in the proposal that (many)
fruitful mathematical concepts are uniquely explicable, or, as in CUE,
that a concept is mathematical if it is uniquely explicable.

• The historical origin of the concept (natural) number seems impossible
to trace, but it may very well be that it is still most natural to regard
numbers as a qualitative concept, assigning a property to collections
of objects as pair or many.56 The route to a comparative concept like
more than or larger than is then rather direct. Seeing numbers as quan-
titative concepts involves introducing operations on numbers, and pos-
sibly speaking of the numbers themselves, thus raising problems of ex-
istence, etc. In ancient Greece philosophers like Plato ‘defined’ num-
bers via a generating unit, and the concept was exact enough to satisfy
mathematicians well into the nineteenth century, when Frege defined
numbers as the extension (Wertverlauf) of certain properties. With

56See the contribution of Cappelletti and Giardino (Cappelletti and Giardino, 2007), and Maddy ((Maddy, 2007), pp. 318-
328) on a competence of numerosity, a competence to see groups of objects as having a certain size, in children and animals.
See also (Devlin, 2000) for a more full account on these matters.
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the development of set theory natural numbers are, in foundational
studies, identified with e.g. von Neumann ordinals (CUE).

• The concept formal proof can be regarded as an explication of infor-
mal proof, where “informal proof” is understood as proofs used in
all their diversity in mathematics. Its distant origin is the ancient
observation that reasoning could be more or less precise. The first
known and worked out codification (or explication) of correct reason-
ing is due to Aristotle in his logic. Euclid, in his compilation of the
mathematics of his time in the Elements, sets the standard of mathe-
matical reasoning for a long time, and thus indirectly defines correct
reasoning. Not much happened, related to this type of problems, until
the nineteenth century with the development of non-Euclidean geom-
etry (changing the view of the role of the axioms), the axiomatization
of arithmetic (Dedekind, Peano), and the new logic of Frege. In the
twentieth century, the effort to provably avoid inconsistency required
an even deeper understanding of the concept mathematical proof. It
will be argued that formal proof as it is defined in a first-order context
is an adequate explication in this project (FIP, CUE).

To point to the difference between the use of concepts in mathematics
and science, and to highlight the process of mathematization in science, some
fundamental concepts of empirical science are mentioned in the papers.

• The classificatory concept species as it is used in biology has many dif-
ferent explications, both historically, and at present. This may be due
to the diversity of biological phenomena, but also to an unclear con-
ception of what it is that constitutes a species (ITR, CUE).

• The concept element in chemistry, on the other hand, is also a clas-
sificatory concept, but it is quite precise, having a history develop-
ing from the atomism and theory of the elements of ancient Greek
philosophers. With the periodic table, originally based on valency
and atomic weight, the elements were systematized. The discovery
of Germanium by Winkler 1886 after Mendelejeff’s prediction of its
existence and properties in 1871 was a scientific triumph in the same
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category as the discovery of Neptune. With the work on Brownian
motion of Einstein and Perrin, atomism was fully accepted by (almost)
all scientists (ITR).

• Gravitation found its first fruitful explication with Newton using the
problematic concept force. This concept was ‘replaced’ by the geo-
metrical conception of Einstein’s general theory of relativity. This
theory is also problematic, since it is classical, i.e. not quantized, and
scientists are searching for a new concept of gravitation unifying quan-
tum mechanics and gravitation. This new theory, if developed, may
be something completely different from both Newton’s and Einstein’s
conceptions.

Examples like these point to a difference between mathematics and sci-
ence. Concepts of mathematics, when mature, have robust, unique explicata.
Their development is normally towards more precise and more general con-
cepts. They have a central place in mathematical theories. These theories
may be fruitful in developing mathematics, or in scientific applications; alter-
natively they are interesting in there own right. They can remain a central
theme in mathematics for a long time, or they can lose their force of attrac-
tion, and be left without further notice by the mathematical society. Never-
theless, the theories are, as it seems, consistent, and part of the mathematical
architecture.

Explicated concepts in empirical science, on the other hand, tend to be
of a more temporary kind. They change when theories change, just as the
concepts species, element, and gravitation mentioned above. Furthermore, a
fruitful mathematization of a theory is almost always necessary for the rapid
development of the theory, and here the ideal is to reach quantitative, mea-
surable explicata. Carnap illustrates with the classificatory concept warmth,
specified as the comparative concept warmer, and finally explicated as the
quantitative concept temperature.
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3. Philosophy of Mathematics in Aristotle
As indicated in section 1, Aristotle’s philosophy of mathematics can be a
starting-point for understanding both the applicability of mathematics, and
how mathematical concepts are separable in thought in abstracting processes.
In this section I will make some comments on Aristotle’s views on mathemat-
ical objects as abstractions, on the existence of mathematical objects, and on
mathematical truth.

3.1 Mathematical Objects as Abstractions

Aristotle’s philosophy of mathematics is part of his general philosophy, and
consequently he has to relate concepts of mathematics to his distinction be-
tween form and matter, genus and differentia specifica, essential and non-essential
attributes, etc., and this may make it difficult to extract just what is rele-
vant in the context of philosophy of mathematics. There is, furthermore, no
(known) treatise on the philosophy of mathematics by Aristotle. His remarks
on mathematics and philosophy of mathematics are scattered throughout all
of his texts. Concerning the first distinction, mathematical objects are not
pure forms, and they are not sensible objects, but they are separable from sen-
sible objects in thought. This process of separation is described as a process of
abstraction. In this activity the mathematician, or metaphysician, eliminates
non-essential attributes, or attributes not to be taken into consideration.57

The mathematician

investigates abstractions (for in his investigation he eliminates
all the sensible qualities, e.g. weight and lightness, hardness and
its contrary, and also heat and cold and the other sensible con-
traries, and leaves only the quantitative and continuous [...] and
the attributes of things qua quantitative and continuous, and
does not consider them in any other respect ...)58

57(Heath, 1998), pp. 42, 220, 224. In this book Heath has collected and commented on most of the writings of Aristotle
on mathematics and philosophy of mathematics.

58Metaph. K. 3. 1061a28− 35. I use (Barnes, 1984) when quoting Aristotle.
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Thomas Heath illustrates the process of abstraction vs. the process of adding
elements or conditions by the contrast between a unit, a substance without
position, and a point, a substance having position.59 The process of abstract-
ing in Aristotle is not a process of finding common properties among indi-
viduals, but rather a process of subtracting.60 According to John J. Cleary it
is not an epistemological theory, but a logical theory with ontological conse-
quences. He furthermore maintains that clarifying the ‘qua’ locution in the
quotation above is the crucial point in understanding Aristotle’s mathemati-
cal ontology.61 This is exactly the strategy of Jonathan Lear, who introduces
a “qua-operator” to analyse the abstraction process in Aristotle’s philosophy
of mathematics. My focus will be on Lear’s analysis.62

To consider b as an F , b qua F , is to consider a substance, in Aristotle’s
sense, in a certain aspect. For an object b qua F to be true of a predicate G,
it is required that F (b ) is true, and that an object’s having the property G
follows of necessity from its being an F ; in symbols

G(b qua F )↔ F (b )∧ (F (x) `G(x)),

where the turnstile signifies the relation follows of necessity. This qua-operator
generates a kind of filtering process. Consider a bronze, isosceles triangle b ;

B(b )∧ I (b )∧T (b ).

The operator b qua T filters out as inessential the other properties, and we
are allowed to conclude whatever is possible for the substance b considered
as a triangle. This filtering process determines in what aspect, or under what
description, a substance or object is being considered. And it is in this aspect a
property may be essential or not. The substance b may have other properties,
but it is the qua-operator that determines under what description the object
is to be considered; which properties are to be regarded as essential. This is
the reason for writing “F (x) ` G(x)” and not “F (b ) ` G(b )” in the above

59(Heath, 1998), p. 66.
60(Halper, 1989).
61(Cleary, 1989).
62(Lear, 1982). Lear holds that the analysis via the qua operator is relevant not only with regard to mathematical concepts;

it concerns the whole of Aristotle’s metaphysics.
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definition of G(b qua F); the result must not depend on any other properties
of b than its being an F.

Since mathematical objects are not pure forms they must inhere in some
kind of matter, called intelligible matter, as distinct from sensible matter.

Even the straight line ... may be analysed into its matter, conti-
nuity (more precisely continuity in space, extension, or length),
and its form. ‘Though the geometer’s line is length without
breadth or thickness, and therefore abstract, yet extension is
a sort of geometrical matter which enables the conception of
mathematics to be after all concrete’.63

If mathematical objects are not separable from sensible objects, and if
they, in some way, are inherent in sensible objects, how are they related to
the objects of physics and metaphysics? Physical objects have attributes in
addition to mathematical ones. They can be moving, for example, but math-
ematics abstracts from movement. Physical objects, like mathematical, con-
tain planes, etc., but the mathematician does not treat planes and points qua
attributes of physical bodies, and he does not study them qua limits or bound-
aries of physical bodies, as the physicist does.64 The relation between the ob-
jects of mathematics, physics, and metaphysics are described in the following
way by Aristotle.

The physicist is he who concerns himself with all the properties
active and passive of bodies or materials thus or thus defined;
attributes not considered as being of this character he leaves to
others, in certain cases it may be to a specialist, e.g. a carpen-
ter or a physician, in others (a) where they are inseparable in
fact, but are separable from any particular kind of body by an
effort of abstraction, to the mathematician, (b) where they are
separate, to the First Philosopher.65

63(Heath, 1998), p. 67. Heath refers to Hicks and De Anima, but the references in Heath’s book are incomplete.
64 Ibid., pp. 10f, 98.
65De An. A. 1. 403b 12− 16.
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Note that Aristotle’s process of abstraction does not give rise to abstract
ideas, and it is in that way not affected by e.g. Berkeley’s attack on abstract
ideas, or Frege’s attack on psychologism.66

3.2 On the Existence of Mathematical Objects

The above analysis is relevant for the question of the existence of mathemati-
cal objects, and Lear’s conclusion, in the light of his analysis, is as follows.

Thus, for Aristotle, one can say truly that separable objects and
mathematical objects exist, but all this statement amounts to -
when properly analyzed - is that mathematical properties are
truly instantiated in physical objects and, by applying a predi-
cate filter, we can consider these objects as solely instantiating
the appropriate properties.67

Other commentators on Aristotle’s view on the existence of mathematical
objects give similar accounts. Edward Halper means that mathematical ob-
jects exist as attributes of sensible things; they exist potentially in bodies. This
existence is real, and mathematicians treat the objects as separated.68 Taking
this for granted, Halper’s main concern is how mathematical objects, being
attributes, can have attributes. This is close to the position of H. G. Apostle,
who maintains that mathematical objects exist as potentialities in a secondary
way.69 According to Edward Hussey, Aristotle takes it for granted that there
are mathematical objects, and that mathematical objects

(A) do not exist ‘apart from’ sensible objects; (B) are prior to
sensible objects in definition, but (C) posterior to them in be-
ing/substance.70

66(Lear, 1982). Berkeley’s criticism is in the introduction to (Berkeley, 1710), and Frege’s of abstractions, or psychologism,
appears e.g. in his review of Husserl’s Philosophie der Arithmetik, 1891; see (Frege, 1894).

67(Lear, 1982).
68(Halper, 1989).
69(Apostle, 1952), ch. 1, sec. 5
70(Hussey, 1991).
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Alfred E. Taylor states that mathematical objects are inherent in matter, and
Heath that they subsist in matter.71 Finally, according to Aristotle himself,

... some parts of mathematics deal with things which are im-
movable, but probably not separable, but embodied in matter;
...72

Clearly, commentators agree that mathematical objects exist. What they pos-
sibly disagree about is the manner of existence, and it is also worth mention-
ing that, since mathematical objects are separated in thought, some take it
that mathematical objects exist in thought. That they only exist in thought
is a neo-Platonist idea; an idea that modern commentators usually do not
accept.73

Aristotle’s strategy does not say much about arithmetic. The only result
reached is that substances can be singled out as units in which to count.74 But
note that Halper, for example, focuses on number when he discusses how the
attribute number in turn can have an attribute such as even.75

3.3 Questions of Truth

Concerning questions of truth and falsity, Aristotle remarks in a couple of
places that no falsehoods enter into the argument in the process of abstrac-
tion.

Now, the mathematician, though he too treats of these things,
nevertheless does not treat of them as the limits of a natural
body; nor does he consider the attributes indicated as the at-
tributes of such bodies. That is why he separates them; for in
thought they are separable from motion, and it makes no differ-
ence, nor does any falsity result, if they are separated.76

71(Taylor, 1912), p. 17, and (Heath, 1998), p. 66.
72Metaph. E. 1. 1026a14− 16.
73See e.g. (Mendell, 2004), (Halper, 1989), and (Cleary, 1989).
74(Lear, 1982).
75(Halper, 1989).
76Phys. B. 2. 193b 31− 35.
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Thus if we suppose things separated from their attributes and
make any inquiry concerning them as such, we shall not for
this reason be in error, any more than when one draws a line on
the ground and calls it a foot long when it is not; for the error
is not included in the proposition.77

First, since a separated triangle does not exist, it is to be regarded as a fiction,
but this will not result in falsities. Furthermore, drawing a line and saying
it is one foot long is only for heuristic purposes. The figure is not part of
the argument. Though the drawn line is not really one foot, we never use
this. According to Lear, it does not matter if we use a separated triangle c ,
or use c considered as a triangle in an argument. His argument is as follows.
Let c be a separated triangle that have properties only because it is a triangle;
i.e. G(c)↔ G(c qua T ). Suppose we prove, as in the Elements I:32, that
c has the sum of its interior angles equal to two right angles, 2R(c). Since
we have concluded that 2R(c) only because c is a triangle, it follows that
∀x(T (x) → 2R(x)), and so for any triangle b , that 2R(b ). No falsity thus
results in considering c as a separated triangle, if we only use what can be
proved of it as a triangle.

Lear raises two issues related to Hartry Field’s efforts to show that math-
ematics is not necessary to physics.78 These issues are related to topics dis-
cussed in ITR, and I will make some brief comments on them here. Con-
cerning the first issue, Aristotle argues for the truth of mathematics, while
Field is of the opinion that only the consistency of mathematics is needed
for it to be a conservative extension of physics. In this case Lear does not
refer explicitly to Aristotle, but takes his ideas to be Aristotelian in spirit.
The key to the truth of mathematics, he says, is not a referential question
since separated mathematical objects do not exist, but lies in the usefulness of
mathematics. To understand this usefulness, bridges are needed between the
physical world and the world of mathematical objects, and one way to under-
stand these bridges is via the qua-operator that reveals structural features.

That there must exist bridges between the physical world and

77Metaph. M. 3. 1078a16− 21.
78(Field, 1980), (Lear, 1982).
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those portions of mathematics which are applicable to it im-
plies that the mathematics must reproduce (to a certain degree
of accuracy) certain structural features of the physical world.
It is in virtue of this accurate structural representation of the
physical world that applicable mathematics can fairly be said to
be true.79

3.4 On the Relation between Sciences

The other issue, also in relation to Field’s ideas, is that mathematics, accord-
ing to Aristotle, is a conservative extension of physics. This means that if
M is a mathematical theory, P a physical theory, and S a sentence that does
not contain any terms from the language of M , then S can be proved from
P alone, if it can be proved from M + P . Lear uses his qua-operator to argue
that, in Aristotle, geometry is a conservative extension of physics. When we
prove that a physical triangle c has the 2R property, we can either make use
of an abstract triangle, or consider, with the help of the qua-operator, c as a
triangle.

In my opinion this argument is not a convincing account of Aristotle’s
views on the relation between science and applied mathematics. Consider the
following example from Aristotle. It is

for the empirical scientists to know the fact and for the mathe-
matical to know the reason why; for the latter have the demon-
strations of the explanations, and often they do not know the
fact ...80

... it is for the doctor to know the fact that circular wounds heal
more slowly, and for the geometer to know the reason why.81

In the context where these quotations occur Aristotle discusses relations and
subordinations between sciences. A result in one science can be used in an-
other if it subordinates the other, as when e.g. facts about the rainbow can

79(Lear, 1982). See below on structuralism, and the relation between mathematics and the physical world. See also ITR,
and Donald Gillies (Gillies, 2000) for an example of an empiricist philosophy of mathematics inspired by Aristotle.

80An. Post. B. 13. 79a3− 6.
81An. Post. B. 13. 79a13− 16.
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be explained in (mathematical) optics, and still more generally in geometry.
Concerning the example above some of the properties are geometrical, and
even though medicine is not subordinated to geometry, it is still possible to
use mathematics in this case.82 To know “the reason why” is to know the
formal cause, and this may be an example where mathematics enter into an
explanation of a physical fact in an essential way.83 In this and similar cases
mathematics may enter essentially into explanations. To know both the hows
and the whys both insights are needed.84 Lear might think that it should be
possible to prove the relevant theorem with the “qua strategy”, but it is also
possible that Aristotle’s philosophy of mathematics contains more aspects
than can be seen wearing Lear’s glasses. Thus, when Lear states that

Aristotle treated geometry as though it were a conservative ex-
tension of physical science85

I believe he exaggerates the force of his own explanation of parts of Aristotle’s
philosophy of mathematics via the qua-operator. Aristotle is not only inter-
ested in how, but also in why; that is, he is interested in formal causes. Also,
at that time geometry was considered as intimately connected with, indeed a
description of, physical space.

3.5 Concluding Remarks

Aristotle is of the opinion that mathematical objects do not exist as separated;
they can be separated in thought via a process of abstraction or subtraction.
Lear uses the qua operator to analyse this process. No falsehoods enter into
an argument, because we do not use the special properties e.g. a figure may
have. It is just a heuristic device. Mathematics may enter into explanations in

82(Mendell, 2004).
83 It is a theorem, probably proved by Zenodorus some time between 200 B.C. and A.D. 100, that the circle is the geomet-

rical object, bounded by a curve of a fixed length, that has maximum area, and Aristotle ought to have been aquainted with this
intuitively very plausible result. See (Kline, 1972), p. 126 on Zenodorus and isoperimetric problems, and chapter 24 for details
on the development of the calculus of variations. See also ITR on the applicability of mathematics.

84Apostle means that the definitions of mathematics are formal causes and the starting point of demonstrations ((Apostle,
1952), p. 50). See also Hussey, who finds it puzzling when Aristotle says that mathematics is concerned with forms; i.e. formal
causes (Hussey, 1991).

85(Lear, 1982).
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an essential way, since mathematics may provide the whys, the formal cause,
of a phenomenon. Finally, mathematical propositions are true or false, and
their truth is related to the applicability of mathematics; it is not a referential
issue since mathematical objects do not exist as separated.

In Aristotle definitions are made via genus and differentia specifica using
essential attributes or attributes we want to pay attention to. An explication
can be seen as a device to accomplish something analogous. A mathematician
may try to isolate aspects of objects or problems to arrive at the essential
ones, and “essential” must not be taken in any metaphysical meaning, but just
referring to aspects that may make it possible to analyse the problem, aspects
to pay attention to. This can be seen as a process of abstraction, or as a process
of idealization. But before entering into this discussion some comments on
the difference between abstract and concrete objects are in place.

4. Abstract Objects and Idealizations
4.1 Abstract Objects versus Concrete Objects

In ITR it is remarked in passim that there is no sharp dividing line between
abstract and concrete objects. Also, since the proposal is that mathematical
entities are abstractions, the distinction needs to be defused. In our ontologies
we, implicitly or explicitly, presuppose entities that are more or less abstract,
more or less concrete. It is fairly easy to display examples of both kinds but
every effort to provide a dividing line has failed, and the main argument that
there is no sharp dividing line is just the failure to produce one.

One of the most authoritative discussion on abstract and concrete objects
later on is David Lewis’s. His discussion is followed up by John P. Burgess and
Gideon Rosen.86 What will follow here is an account of their analyses of the
problem. Lewis recognizes four ways to explain the distinction between the
abstract and the concrete, where the first one is the way of example. Concrete
entities are things like donkeys, protons, and stars, whereas abstract entities
are things like numbers. The idea is that everybody knows how to distinguish
between abstract and concrete objects, so all that is needed is to hint at it.

86(Lewis, 1986), (Burgess and Rosen, 1997).
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The second way is the way of conflation; the distinction between abstract and
concrete is thought to be the same one as that between sets and individuals,
or between universals and particulars, etc. The third way is the negative way;
abstract entities have no spatiotemporal location, and they do not enter into
causal interaction. Finally, the fourth way is the way of abstraction; abstract
entities are abstractions from concrete ones.87

Lewis’s interest in the distinction is related to the existence of possi-
ble worlds and entities in them, and whether these worlds, and the objects
therein, are abstract or concrete, but this is not the issue at stake here. How-
ever, he notes that these four ways do not necessarily produce a clearcut de-
marcation between abstract and concrete entities, and that the demarcations
they generate are not necessarily the same. The first way, the way of example,
is not specific enough.

... there are just too many ways that numbers differ from don-
keys et al. and we still are none the wiser about where to put
the border between donkey-like and number-like.88

But Lewis sees no opposition between this way and the second way, the way
of conflation. There is e.g. no conception of number agreed upon, but if
numbers are (abstract) sets, they are abstract according to both ways. He
sees, however, a conflict between the way of conflation and the way of nega-
tion. It seems, according to Lewis, that at least some sets and universals might
be located, and according to the way of negation they should not be classified
as abstract. Sets of concrete objects, e.g. the singleton set containing David
Lewis, is located where David Lewis is.89 Similarly, universals are located
where the corresponding particulars are located. Furthermore, Lewis thinks
that abstract entities can enter into causal interactions. Something can, for ex-
ample, cause a set of effects, and a set of causes can cause something. Finally,
concerning the fourth way, the way of abstraction, we cannot just identify
abstractions with universals. In making abstractions we focus on some suit-
able aspect or aspects, and all these aspects need not be suitable candidates for

87(Lewis, 1986), pp. 81-86.
88 Ibid., p. 82.
89Penelope Maddy has a similar argument for the reality of some sets in (Maddy, 1990).

39



CONCEPT FORMATION IN MATHEMATICS

genuine universals.90

Burgess and Rosen develop Lewis’s analysis further.91 They take depar-
ture in Lewis’s four ways, and see the way of example as the most common
one, used by e.g. Goodman and Quine, as the introducers of modern nom-
inalism, and Hartry Field, as one of the most prominent defender of nom-
inalism later on.92 The distinction between abstract and concrete is to be a
distinction of kinds, not of degrees.93 Within the category of abstract enti-
ties Burgess and Rosen distinguish several levels, where mathematical objects,
mathematicalia, like sets and numbers, are the most paradigmatic abstract
ones.94 At the next level are metaphysicalia, objects postulated in metaphysi-
cal speculations like universals and possibilia. If Platonic forms are identified
with universals, Burgess and Rosen reverse the order of ideas in Plato’s world
of ideas. Further down the list come what they call characters, entities that
are equivalent in some way, sharing some common trait. Burgess and Rosen
mention biological species, geometric shapes, meanings, and expression types
as examples from this level. At the lowest level are e.g. institutions of differ-
ent kinds.

Concrete objects can be divided into physicalia, observable physical ob-
jects, and events. Further down the list are theoretical objects like quarks and
black holes, and even further down things like mentalia and physical objects
postulated by metaphysicians such as arbitrary conglomerates.

The way of example has, according to Burgess and Rosen, lead to suffi-
cient concensus among nominalist philosophers for them to be able to pursue
their projects. But if one is to get a better understanding of the distinction be-
tween abstracta and concreta one has to rely on something else, e.g. the three
other ways described by Lewis. One might say that we have to use the way
af abstraction to see the common traits of the entities on the list of abstracta.
Burgess and Rosen see the same problems with the additional ways as Lewis
does, and they add some more. However, they think the understanding of

90(Lewis, 1986), pp. 83-85. This is also in line with the discussion of mathematical objects as abstractions, as it is
presented in the section on Aristotle above.

91See (Burgess and Rosen, 1997), especially pp. 13-25.
92(Goodman and Quine, 1947) and (Field, 1980), pp. 1f.
93(Lewis, 1986), p. 81, (Burgess and Rosen, 1997), p. 14.
94(Burgess and Rosen, 1997), pp. 14f.
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the dividing line between the abstract and the concrete is clear enough for
themselves to go on with their own project, i.e. analysing nominalist strate-
gies.

Concerning the degrees of abstraction discussed by Burgess and Rosen,
we may note that the most paradigmatically abstract objects, according to
them, are mathematicalia, whereas e.g. geometrical forms are on a lower level
together with characters, as they call objects at that level. But it is not clear,
it seems to me, why e.g. mathematical circles should be on another level of
abstraction than functions and relations. After all, the relation x2+y2 = 1 ‘is’
a circle. Furthermore, if some mathematical entities are abstractions specified
via explications, then these entities ought to be on the level of characters.
Thus, there is room for regarding at least some mathematical objects as less
abstract than they are according to Burgess and Rosen.

4.2 Abstractions and Idealizations

Closely related to the process of abstraction is the process of idealization.
Speaking in the language of Aristotle, the process of abstraction can be seen
as an elimination of non-essential properties; properties that we do not want
to pay attention to. Triangles can be e.g. isosceles, right-angled, etc., and
in a process of abstraction we may disregard features such as these. When
studying composition of functions we may leave out of account traits such as
whether the functions are odd or even and arrive at e.g. the group structure.
In a process of idealization the mathematician or empirical scientist may dis-
regard properties such as friction when studying mechanical systems. In cases
such as these the aim is rather to arrive at a problem description that can be
analysed using mathematics at some suitable level.

One way to understand the difference between abstraction and idealiza-
tion is implicit in Lewis’s ideas of possible worlds.

Idealizations are unactualized things to which it is useful to
compare actual things. An idealized theory is a theory known
to be false at our world, but true at worlds thought to be close to
ours. The frictionless planes, the ideal gases, the ideally rational
belief systems - one and all, these are things that exists as parts
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of other worlds than our own. The scientific utility of talking
of idealizations is among the theoretical benefits to be found in
the paradise of possibilia.95

These ideal objects thus exist in possible worlds close to ours, but not in our
world. Abstract objects on the other hand, at least mathematicalia, are to be
applicable in every possible world. Someone taking possible worlds seriously
may find that this casts some light on the distinction.

When a mathematician or scientist makes an idealization, he is aware of
the introduction of falsehoods, so there is no risk of jumping to ontological
conclusions in this case.96 In making abstractions, on the other hand, the
focus is on arriving at essential traits of the objects studied. The realistically
inclined mathematician might think he has analysed some existing object, as
when numbers are explicated as properties of classes. The non-realist mathe-
matician can make the same abstraction, without taking the abstract objects
to have independent existence.

Still another way of looking at the difference between idealization and
abstraction is that, when already developed mathematical theories are used
in applications, we try to idealize (simplify) the physical situation so that it
fits the mathematics. In a first approximation we think of frictionless planes,
non-elastic collisions, etc. These appoximations are often taken as limits of
existing states. We can imagine surfaces of less and less degree of friction, and
ideally we can imagine frictionless surfaces. But, as was noted above, Aristo-
tle does not regard mathematical planes as limits of physical bodies. The case
with abstraction, at least when trying to find new concepts, is different. Here
we try to see what is essential in the given problem situation, or to see pat-
terns in structures that can be developed into fruitful mathematics, as when
Newton discovered (defined, explicated) that velocity is a time derivative, or
that force is proportional to the second derivative of position.

ITR argues for a provisional realism with the help of an indispensability
argument. The fruitfully explicated object is thought to correspond to some

95(Lewis, 1986), p. 27.
96One of Maddy’s arguments against the indispensability argument is that the use of idealizations in applications of

mathematics involves no ontological commitments. But this misses the point, since everybody knows, to mention one exemple
Maddy discusses, that there are no infinitely deep oceans, so one would not use this type of examples in an indispensability
argument to argue for the existence of infinities anyway. See (Maddy, 1992), and ITR.
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kind of reality. But, as Wittgenstein puts it, denying as well as affirming that
mathematical propositions are about a mathematical reality leads to peculiar-
ities.97

5. Structuralism
Lear ends the paper mentioned earlier (section 3.1) with a discussion of how
the truth of mathematics can be understood when mathematics in a way re-
flects the structure of the physical world. To oversimplify, the forms of Aris-
totle exist in the substances as non-separated, while the forms of Plato exist
in a separated world of ideas. In both versions the forms give the world its
structure, and both versions are versions of realism. ITR and CUE contain
brief remarks on structuralism related to this issue. Here I will give an ac-
count of various structuralist ideas, ending with some remarks on how these
ideas relate to conceptions formulated in the included papers.

Structuralism has developed in several directions and is an influential phi-
losophy of mathematics in the twentieth century. In an authoritative survey
Erick H. Reck and Michael P. Price analyse different versions of structural-
ism, without taking a definitive standpoint for or against specific versions.98

I will use this paper as an appropriate starting-point.

5.1 General Remarks

Structuralism in recent philosophy of mathematics is thus not one single
school of thought. Reck and Price identify three intuitive ideas behind struc-
turalism.

(1) that mathematics is primarily concerned with “the investi-
gation of structures”; (2) that this involves an “abstraction from
the nature of individual objects”; or even (3) that mathematical
objects “have no more to them than can be expressed in terms

97(Wittgenstein, 1989), p. 141.
98(Reck and Price, 2000)
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of the basic relations of the structure”.99

They then distinguish between at least four versions of structuralism, classi-
fied as follows:

• Formalist structuralism

• Relativist structuralism

• Absolutist structuralism, including modal variants

• Pattern structuralism

Before the essence of three of these versions of structuralism is sketched
a word on the evolution of modern structuralism is in place. Reck and Price
see one of the beginnings in the study of what has become known as abstract
algebra.100 Another source is the interest in the development of axiomatic
systems such as Dedekind’s and Peano’s axiomatizations of arithmetic, and
Hilbert’s of geometry. Important steps in the development of structural-
ist ideas are also the development of axiomatic set theory, and Bourbaki’s
idea that set theory can form the basis of all of mathematics via “mother-
stuctures”, such as algebraic and topological structures.

Clearly, some mathematical theories, like abstract algebra and topology,
study structures, but it does not follow that all mathematics do. Mathemati-
cians also study rather specific and concrete problems. Saunders Mac Lane
exemplifies with problems related to analytic functions (holomorphic func-
tions), questions of numbers (whether e is transcendental e.g.), studies of spe-
cial partial differential equations and their solutions, and argues that issues
such as these can hardly be regarded as structural.101

Another observation is that while Bourbaki tries to define what a struc-
ture is via set theory, and states that mathematics is the study of structures,
this is just a declaration. Bourbaki does not bother to treat mathematics
structurally to any greater extent. According to Leo Corry, the informal

99(Reck and Price, 2000). The qoutations in the quotation are from Geoffrey Hellman (Hellman, 1989), and Charles
Parsons (Parsons, 1990).

100See (Corry, 2004) on the development of abstract algebra, and (Maddy, 2008) on the development of pure mathematics.
101(Mac Lane, 1996).
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structuralist thesis has an ideological function in the writings of Bourbaki,
but is not really used at all.102

Structuralist methodologies have grown along the historical lines sketched
above. Philosophically, but not necessarily mathematically, these methodolo-
gies have certain semantical and metaphysical consequences that need to be
analysed. Note also that structuralist positions are compatible with several
different ontological standpoints. Structuralists often start from a second-
order axiomatizations of arithmetic, a categorical theory, and so do Reck and
Price, as well as Shapiro. But different kinds of axiom systems play different
roles in mathematics. By axiom systems for arithmetic, mathematicians try
to describe a definite structure, while e.g. the group axioms are definitional
in character.103 This choice of example as a starting-point in the analysis is of
course important, but one should be aware of that this is not the only type
of mathematical theory.

5.2 Relativist Structuralism

Initially Reck and Price make a distinction between formalist and more sub-
stantive versions of structuralism. Formalist structuralism denies that math-
ematical terms refer, and that mathematical propositions have truth-values.
Metaphysical questions are dispensed with. From the perspective of this the-
sis these ideas are not so relevant. The more substantive versions, the thicker
ones to speak with Reck and Price, answer, however, questions about refer-
ence and truth in different ways.

According to relativist structuralism, the axioms of e.g. PA2 are true in
different models. The non-logical constants in the language of PA2 refer to
elements in these models. We can pick any model we want as long as we are
consistent, i.e. stick to the chosen one. We could pick any other model, and
the non-logical constants would have other referents. Since all models are
isomorphic, any proposition has the same truth-value in each model. This
idea works for categorical theories like PA2, but not for, say, group theory.
It is true of every group that the inverse element is unique, but we cannot

102Boubaki’s structuralist program is presented in the last chapter of (Bourbaki, 1968). See also (Corry, 1992) on Bour-
baki’s program.

103See also (Oliveri, 2007), pp. 122f.
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study just one group to come to this conclusion. This must be proved from
the group axioms. Since the group axioms are definitional in character, their
roles is rather to exhibit similarities in different structures, and these axioms
are best regarded as a unique explication of the required properties.104

5.3 Universalist Structuralism

So, along relativist structuralist lines referents of terms are relative to the
chosen model; the reference is not fixed. If ϕ is a sentence of arithmetic, for-
mulated in the language of PA2 with non-logical symbols 0 for zero and s for
successor, then in ϕ, 0 refers to different elements in the different models.
The idea with universalist structuralism is to let 0 and s refer to their interpre-
tations in every model at the same time. The non-logical constant N , with
the intended interpretation of N (x) as “x is a natural number”, is introduced,
and the axioms of PA2 are relativized to N (x). The conjunction of these ax-
ioms is written PA2(0, s ,N ). An arithmetical sentence ϕ, translated so that
it only contains the non-logical constants 0, s , and N , is denoted ϕ(0, s ,N ).
Starting from

PA2(0, s ,N )→ ϕ(0, s ,N ),

the non-logical constants are quantified out to get

∀x∀ f ∀X (PA2(x, f ,X )→ ϕ(x, f ,X )).

This sentence, call it ψ, thus abstracts away from what is peculiar about spe-
cial models, and is about all relevant objects. According to this analysis a
mathematician really means ψ, when he states ϕ, and Reck and Price suggest
that ψ is to be regarded, not as an analysis, but as an explication of ϕ.

One common problem for universalist and relativist structuralism, is
what the range of the variables is supposed to be. An axiom of infinity seems
to be needed not to get into the situation where sentences are vacuously true
since PA2(0, s ,N ) would be false. Other ways to try solve this problem is to
modalize and to quantify over possible objects, or to add a necessity operator

104Compare this with axiomatizations of set theory. In this case it is not at all clear which structure we ought to aim at, and
different axiom systems can be seen as different ways to explicate the set concept. See ITR and CUE.
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to ψ. This last version is Geoffrey Hellman’s suggestion, but it leads to the
same vacuity problems according to Reck and Price.105

Both relativist and universalist structuralism are consistent with versions
of eliminativism. This means that it is possible to appeal to space-time points
or quasi-abstract objects like strokes, as well as to use set theory and an on-
tology associated with sets. What then about semantics and ontology so
far? Formalist structuralism is deflationary concerning both semantics and
ontology. According to relativist structuralism mathematical terms refer to
their interpretations in chosen models, while, according to universalist struc-
turalism terms refer to their interpretation in all models at once. Both are
compatible with ontologies ranging from set-theoretic Platonism to physical
nominalism.

Reck and Price distinguish particular and universal structures. A partic-
ular structure may be e.g. the cyclical group of order four, while a universal
structure is what particular structures share, e.g. the group properties as de-
scribed in the group axioms. In relativist structuralism the structure is more
of a particular, and in absolute structuralism more of a universal; hence the
terminology.

5.4 Pattern Structuralism

To get a grasp of pattern structuralism, imagine different models of PA2 lay-
ing, as it were, alongside each other. Since all models are isomorphic there
will be a total correspondence between objects. The pattern that all these
models share is fundamental in this form of structuralism.106 The patterns
are fundamental, not the ‘points’, ‘positions’, or ‘roles’ that make up the pat-
terns. An element of a model of PA2 can be said to occupy a ‘position’ or to
play a ‘role’. Numbers, on this view, are not objects at all and Shapiro talks of
the positions or places in either of two ways; “places-as-offices”, meaning that
the slots could be filled by objects, and “places-as-objects”, where we treat the
positions themselves as objects. For arithmetic, there is a unique entity, the
natural number pattern, and then reference can be explained; the symbol 0

105(Hellman, 1989).
106Essential contributions are made by e.g. Stewart Shapiro and Michael D. Resnik in (Shapiro, 1997) and (Resnik, 1997).
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refers to the first position in the pattern, etc. Truth can be understood along
the same lines in the usual Tarskian way. According to Reck and Price there
are three basic aspects to these patterns. A pattern has many instantiations or
exemplifications, it has an internal composition, and there is nothing more
to the positions than that they are just positions in a pattern.

Pattern structuralism is not one single idea. Shapiro distinguishes be-
tween ante rem structuralism, where the objects in the places-are-objects are
independent of physical structures and which is not eliminative, and in re
structuralism, which he considers as an eliminative, realist variant. Accord-
ing to Reck and Price, pattern structuralism is, however, not eliminativist at
all since it is not trying to get rid of abstract objects, because the patterns
are in themselves abstract. Shapiro’s terminology has its origin in discussions
of the ontological status of universals, where the universals are ante rem in
Platonistic variants, and in re in Aristotelian ones.107 He writes:

A structure is like a universal, a one over many of sorts, and
we conceive of mathematical structures as freestanding and ante
rem.108

One reason for Shapiro to prefer ante rem structuralism is that eliminative,
in re structuralism demands a robust background ontology to fill the places
in the places-as-offices positions.109 The in re structuralist is in need of an
infinite number of objects when dealing with e.g. arithmetic, to avoid the
vacuity problem discussed above. Another solution, also presented above, is
to go modal and presuppose infinitely many possible objects. In contrast to
these options, Shapiro

avoids the eliminative program altogether and adopts an ante
rem realism towards structures. Structures exist whether they
are exemplified in a nonstructural realm or not. On this option,
statements in the places-are-object mode are taken literally, at
face value.110

107See also (Oliveri, 2007), p. 119.
108(Shapiro, 1997), p. 132.
109 Ibid., p. 86.
110 Ibid., p. 89.
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Nevertheless, the options discussed by Shapiro are “definitionally equiva-
lent, and neither is to be preferred to any other on ontological/ideological
grounds”.111 He maintains that his ante rem structuralism fits mathematical
practice better, but there is thus no fact of the matter in choosing between in
re and ante rem structuralism.

There are of course problems with these ideas too. What does it mean
that two patterns are identical? Resnick and Shapiro come up with different
strategies to meet this problem. The idea of placing models of PA2 alongside
each other might work, but the picture is hard to use discussing groups, i.e.
models of the group axioms. The idea might work for particular structures,
but not for universal ones using the above terminology. It fits second-order
arithmetic well, but the proposals made by Reck, Price, Shapiro, et al are not
at all obvious, perhaps not even reasonable, in other mathematical contexts;
a point they also recognize.

According to Reck and Price, spokesmen for formalist or relativist struc-
turalism are seldom seen in debates on the philosohy of mathematics, al-
though relativist structuralism seems to be rather common among mathe-
maticians. As mentioned above modalized structuralism is proposed by Hell-
man, and pattern structuralism by Resnik and Shapiro among others.

5.5 Structuralism in the Thesis

ITR uses the idea of concept formation in mathematics sketched above. It
contains a rather detailed discussion of in what way mathematical theories
are tested, and in what way it can reasonably be said that a mathematical
theory has an empirical support. There is in addition a case for realism via
an indispensability argument. Since several mathematical concepts have an
origin in a physical reality, revealing structures or patterns via abstractions
mediated by explications, the position in the paper is a version of pattern
structuralism. In Shapiro’s terminology, it is best regarded as a version of
in re structuralism, since it, in an Aristotelian way, argues that mathemati-
cal patterns inhere in physical reality.112 The place-holders in the offices are

111 Ibid., p. 242.
112Cf. the last quotation in section 3.3.
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not physical objects, but explicated entities, sets in model-theoretic versions,
or objects isolated in thought. To avoid vacuity problems one needs an in-
finite number of objects, at least potentially, but this is not a very strong or
controversial assumption.

An advantage of speaking of in re structuralism in this way, is that it
is then possible to have an embryo of an epistemology. We cannot perceive
abstract objects, but we can recognize patterns and properties among physical
objects.113,114

6. Summaries of the papers
6.1 Measuring the Power of an Arithmetical Theory

This thesis for the licentiate degree centers around how to measure the power
of an arithmetical theory. It consists of three parts; an introduction, and
two separately written sections where the first contains generalizations of
Chaitin’s incompleteness theorem, and the second the construction of a par-
tial measure of the power of arithmetical theories.

In the introduction three natural conditions such a measure ought to ful-
fil are formulated. It is shown that these cannot be simultaneously satisfied,
and discussed how they can be modified. There is also an account of Michiel
van Lambalgen’s and Panu Raatikainen’s criticism of Chaitin’s extra-logical
interpretation of his own incompleteness theorem. Finally, there are some
remarks on the applicability of mathematics and logic, and a brief discussion
on the use and misuse of results in logic, especially Gödel’s incompleteness
theorems.

In the second section two versions of Chaitin’s incompleteness theorem
are described and generalized. Both versions use the Kolmogorov complexity
of a string defined as e.g.

K(s) =min{l (p) : U (p) ↓= s},

113See (Shapiro, 1997), part II:4, and (Jenkins, 2005) on this issue.
114 In CUE it is stated without arguments that mathematics is about structures. The same idea of concept formation is

used, and the same version of structuralism is implicit in CUE.
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i.e. the length of the shortest ‘program’ p which causes the universal Turing
machine U to stop with output s . One version of Chaitin’s incompleteness
theorem then reads:

Theorem There is a constant c such that for every formal program p, if U (p)
generates a sentence of the form K(s) > n only if it is true, and U (p)
outputs K(s)> n, then n < l (p)+ c.

In the theorem U (p) can be regarded as a formal system, and the content
of the theorem can then be stated: If n ≥ l (p) + c , then the formal system
cannot prove that K(s)> n.

The generalization consists in using a more general function than l in
the above definition of Kolmogorov complexity, and a more general pairing
function than Chaitin uses in his proof of the theorem. It then follows that
the constant c also depends on the choice of these functions, and this is a
strengthening of the criticism by van Lambalgen and Raatikainen of Chaitin’s
purported interpretation of the constant c as depending on the associated
theory only.

The other version of Chaitin’s incompleteness theorem is a consequence
of the set B = {x : K(x)≤ f (x)} being simple for suitable choices of f . Also
in this case the generalization consists in using a more general function than
l in the definition of K(s) thus giving rise to different simple sets B .

In the third section, the main part of the thesis, a partial measure of the
power of extensions of Peano Arithmetic is defined. In order to do this, a
fragment of the modal logic GL, the letterless modal sentences, and its Lin-
denbaum algebra are used. A probability-like measure on certain finite parts
of this fragment is defined, and numbers are thus assigned to the equivalence
classes of this part of the Lindenbaum algebra of GL, or rather to representa-
tives of the equivalence classes. Via a translation this structure is uniquely em-
bedded into the Lindenbaum algebra of Peano Arithmetic. The translation
of a letterless sentence is called a constant sentence. Using the same measure
a measure on the equivalence classes of the corresponding finite fragment of
the Lindenbaum algebra of Peano Arithmetic is generated. This measure can
then be extended to certain non-constant sentences. Finally, the measure is
extended to some extensions of Peano Arithmetic of the type PA+Φ, where
Φ is a set of constant sentences.
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There is also a discussion of problems that must be dealt with if one tries
to extend our measure to a larger class of extensions.

One conclusion of this part, then, is that it is possible to design a par-
tial measure m on certain extensions of PA. The constructed measure takes
rational numbers as values, and the measure is such that m(S) ≤ m(T ), if
S a T .

6.2 On Explicating the Concept The Power of an Arith-
metical Theory

This paper can be seen as a continuation of MPAT, but the perspective is
different. In focus here is the possibility of formulating a quantitative expli-
cation of the concept The Power of an Arithmetical Theory. The paper begins
with a clarification of the explicandum similar to the one in MPAT1. The
best we can arrive at, if m is a measure on extensions Ti of Peano Arithmetic,
is that m(T1) ≤ m(T2), if T1 a T2, m is a partial recursive function, and the
range of m is some dense subset of R.

Chaitin has suggested four ways to construct a measure: using Kolmogo-
rov complexity, the Halting probability, simple sets, and ordinal numbers, re-
spectively. Concerning the first two suggestions, van Lambalgen and Raatikai-
nen showed the impossibility of using these. As to the other two suggestions,
it is shown that these too are impossible to use in the construction of a mea-
sure.

There is, finally, a review of the measure constructed in MPAT3. One
difference between this measure and the others is that it takes a ‘bird’s eye
view’ on extensions of Peano Arithmetic, and considers the theories from
the ‘outside’ via the Lindenbaum algebra, while Chaitin looks at them from
the ‘inside’, and suggests measures that depend on what is provable in the
respective theories. It is indicated how the measure could be extended to a
vector-valued one in order to cope with a larger fragment of the Lindenbaum
algebra of extensions of Peano Arithmetic.

The conclusion of the paper is that it seems impossible to construct an
explication of The Power of an Arithmetical Theory. The argument is prag-
matical; none of the suggested measures, with the possible exception of the
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one constructed in MPAT3, a measure that also has some shortcomings, fulfil
the natural conditions laid down in the introduction of the paper.

6.3 A Note on the Relation Between Formal and Informal
Proof

While the result in EPAT is essentially negative, rejecting the possibility of
explicating The Power of an Arithmetical Theory, this paper presents a positive
result formulating an explication of informal (mathematical) proof, proof as
used in mathematics.

The paper starts with presenting Carnap’s idea of explication as a means
to construct more exact concepts. There follow several examples of explica-
tions from mathematics as well as from empirical sciences. These examples
illustrate different ways explications are used in mathematics and science to
arrive at fruitful concepts, thus suggesting that this is the way to form con-
cepts in these contexts. Most of the examples are briefly described in Section
2.3 of this introduction.

The main thesis of the paper is that formal proof in first order logic is an
explicatum for informal proof. To be able to prove results concerning infor-
mal, mathematical proofs an exact counterpart is needed and this explication
is the most fruitful one. The relation between formal and informal proof
is a widely discussed one, and the suggestion in the paper is meant as part
of an answer to this question. There are also some comments on whether
weaker versions such as constructive proof, or stronger ones such as proof in
second-order logic, are to be preferred as explicata for informal proof, with
the conclusion that proof as analysed in first-order logic is preferred, since
this makes metamathematics a fruitful part of logic or really of mathematics.

6.4 Indispensability, The Testing of Mathematical Theo-
ries, and Provisional Realism

In this paper the idea of concept formation in mathematics as abstractions
from vague, intuitive empirical concepts formulated via explications is put
on trial in a more philosophical setting. I argue for a provisional realism
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concerning the existence of mathematical objects based on a strengthened
version of the indispensability argument.

By way of introduction an account of the indispensability argument is
given, and its weak point is identified as the use of the thesis of confirma-
tional holism. This problem is in turn due to an erroneous conception of
how mathematical theories are tested, how they are related to an empirical
‘reality’. To analyse this, three different kinds of examples are discussed. It is
argued that when the mathematical theories or concepts are representational
in character, they are intimately connected with empirical theories. In this
case the mathematical theories are tested together with the empirical ones.

So-called quasi-empirical views of mathematics are also discussed, and it
is argued that they do not provide an empirical ground for mathematics. In
this connection the possible empirical character of computer-assisted proofs
and numerical examples is discussed, but in neither of these cases anything
empirical is involved.

Then, the above-mentioned model of concept formation in mathematics
is described and illustrated with some examples. An empirical and a deductive
component are identified and I illustrate how the deductive component is
logically tested by the development of set theory, and different explications
of the set concept. The empirical component is connected to fruitfulness, and
tested together with empirical theories in applications as when e.g. velocity
is explicated as a time derivative

So far no ontological commitments are made. One feature in this pro-
cess of concept formation is that it seems that mature, mathematical concepts
are robust; they are uniquely explicable, as illustrated with the concept effec-
tively computable function. These robust concepts are regarded as ‘mathe-
matical kinds’. If these concepts, or rather the theories involving them, are
confirmed in test situations together with empirical theories, claims of exis-
tence concerning these concepts are confirmed.

The strengthening of the indispensability argument is thus a weakening
of the use of confirmational holism. It is just the empirical parts of math-
ematics that are tested together with empirical theories, but precisely these
parts are of interest for making ontological claims.
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6.5 Mathematical Concepts as Unique Explications

In this note, jointly written with Christian Bennet, a characterization of
mathematics in terms of the tools discussed in the previous papers is made. It
is suggested that a concept is mathematical if and only if it is uniquely expli-
cable, or has emerged within the study of such concepts. Mathematical con-
cepts are compared with concepts from empirical sciences. The latter change
with the development of the theories in which they are used, while mature
mathematical concepts normally have received a stable, unique explication.
To support the claim a number of examples are discussed.

The suggested explication of mathematics is that it is the study of uniquely
explicable concepts. In this way mathematics is analytic, but it is also syn-
thetic since these explicata have an empirical origin.

There are also some comments on educational issues related to this char-
acterization of mathematics.

7. Future Work - Some Ideas
The ideas in this thesis can be developed and extended in several ways, and
below are some suggestions for further work.

• According to the indispensability argument, metaphysical assumptions
in mathematics get empirical support when physical theories, using
the mathematics, are verified.115 In the sharpening of the indispens-
ability argument, an empirical and a logical component in the concept
formation process in mathematics were identified. This study of the
empirical component in mathematics could be continued, and possi-
bly cast some light on the distinction between the synthetic and the
analytic.

• Closely related to the suggestion above is the problem of the appli-
cability of mathematics.116 The ideas in the thesis provide means to
analyse this problem further.

115See e.g. Colyvan’s contribution (Colyvan, 2007) in (Leng et al., 2007).
116This is a problem that e.g. Steiner has studied in great detail. See (Steiner, 1998), and (Steiner, 2005).
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• Concept formation in mathematics is related to concept aquisition in
mathematics education. It could be fruitful to investigate if and how
the ideas of concept formation in this thesis can help to understand
the process of concept aquisition by students of mathematics. This
also involves investigating the relevance of the history of mathematics
in mathematics education.

• To further support the idea of concept formation in mathematics in
the thesis, a thoroughgoing historical study of a central, concept for-
mation process in mathematics, e.g. the concept area, would be both
desirable and valuable.

• Another possible field of study is the mathematization of science; e.g.
biology. What is needed for a fruitful mathematization? Are concepts,
well suited to describe physical phenomena, well suited for the study of
biological phenomena, or is it necessary to try to develop new mathe-
matical concepts? Are biological phenomena too complex to make the
relevant abstractions and necessary idealizations?

• In the thesis an epistemology of mathematics is missing. The ideas in
the thesis could be relevant in understanding the context of discovery,
but hardly in the context of justification (to speak in terms of philoso-
phy of science).117

117One idea to follow up may be Jenkin’s idea of concept grounding as presented in (Jenkins, 2005), and see also e.g.
(Leng et al., 2007).
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