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FABIO SANTANDREA
Condensed Matter Theory
Department of Physics
University of Gothenburg

ABSTRACT

“Nanoelectromechanical systems” (NEMS) are nanometer-sized mechanical
structures coupled to electronic devices of comparable size. The coupling
between mechanical and electronic degrees of freedom, combined with their
mesoscopic size, provide these systems with some unique properties that make
them interesting from both the fundamental and technological point of view.

In this thesis, we present theoretical work about a specific kind of NEMS,
that is a suspended doubly clamped carbon nanotube in which extra charge
is locally injected through the DC voltage-biased tip of a scanning tunneling
microscope (STM).

The analysis presented here indicates that, in the classical regime, under
the conditions of weak dissipation or sufficiently strong electromechanical
coupling, the equilibrium configuration of the suspended nanotube becomes
unstable and the system evolves towards a state of self-sustained periodic os-
cillations that is reminescent of the single-electron “shuttle” regime in Coulomb
blockade nanostructures. Furthermore, combining the conditions for the on-
set of the electromechanical instability with the local character of the charge
injection provided by the STM, it seems possible to generate a selective exci-
tation of the bending vibrational modes of the nanotube.

Instead of pumping energy into the suspended nanotube, the electrome-
chanical coupling can be also exploited to remove energy from it. Even though
the tunneling electrons represent a strongly nonequilibrium environment in-
teracting with the mechanical subsystem, the analysis presented in this thesis
shows that the dynamics of the nanotube in the regime of weak coupling is for-
mally equivalent to that one of a quantum harmonic oscillator coupled to an
equilibrium thermal bath characterized by an effective temperature that can
be much lower than the environmental (i.e. thermodynamic) temperature.

This nonequilibrium cooling effect studied here has an intrinsic quantum
mechanical nature, since it is based on the (bias voltage controlled-) destruc-
tive interference between the probability amplitudes associated to those in-
elastic tunneling processes characterized by the emission of quantized vibra-
tional excitations. When the transport of charge is thermally activated, this
mechanism provides a simple procedure to drive the oscillating nanotube to
nearly its quantum ground state.

Keywords: NEMS, carbon nanotubes, Coulomb blockade shuttle instability,
ground-state cooling, nonequilibrium thermodynamics.
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I have seen all the works that are done under the sun; and, behold,
all is vanity and vexation of spirit.

That which is crooked cannot be straight: and that which is want-
ing cannot be numbered.

I communed with mine own heart, saying, Lo, I am come to great
estate, and have gotten more wisdom than all they that have been
before me in Jerusalem: yea, my heart had great experience of wis-
dom and knowledge.

And I gave my heart to know wisdom, and to know madness and
folly: I perceived that this also is vexation of spirit.

For in much wisdom is much grief: and he that increaseth knowl-
edge increaseth sorrow.

Ecclesiastes, chap. 1

Je voudrais pas crever / Avant d ‘avoir connu / Les chiens noirs
du Mexique / Qui dorment sans réver / Les singes a cul nu /
Dévoureurs de tropiques / Les araignées d’argent / Au nid truffé

de bulles [...]

Je voudrais pas crever / Sans savoir si la lune / Sous son faux air
de thune / Aun c6té pointu / Si le soleil est froid / Si les quatre
saisons / Ne sont vraiment que quatre

Je voudrais pas mourir / Sans qu On ait inventé / Les rosés éter-
nelles / La journée de deux heures / La mer a la montagne / La
montagne a la mer / La fin de la douleur / Les journeaux en coleur
/ Tous les enfants contents / Et tant de trucs encore / Qui dorment
dans les cranes / Des géniaux ingénieurs / Des jardin iers joviaux
/ Des soucieux socialistes / Des urbains urbanistes /Et des pensifs
penseurs [...]

Je voudrais pas crever, Boris Vian'

Preface
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Since the autumn of 2006 I have been working as a Ph. D. student in the
Condensed Matter Theory group at the department of Physics of the Univer-
sity of Gothenburg. The material presented in this Ph. D. thesis is based on
the results of my research work, which in general has been focused on the
physical properties of nanoelectromechanical systems (NEMS). The thesis is
organized in four chapters and an appendix which consists of four scientific
papers, referred to as Paper I, II, Il and IV.

The first chapter is a “not-so-general” introduction to the field of NEMS.
The reason why it cannot be defined as “general” is that, even though this
area of research is rather new, the pace at which its development proceeds
is so fast and the spectrum of competencies involved (in physics as well as
in engineering) is so broad that it is clearly impossible to condense all the
interesting material in a single chapter. Rephrasing a very often quoted sen-
tence by R. Feynman, we can say that there is much work to do “both at the
top and at the bottom”. The topics have been chosen consistently with the
directions along which my research work as Ph. D. student has developed.
Therefore, the material presented in the first two introductory chapters turns
out to be the most closely related to the analyses presented in the appended
research papers, e.g. energy dissipation in nanometer-sized mechanical sys-
tems, single-electron transport, physical properties of carbon nanotubes and
quantum limit of NEMS).

If any claim of exhaustivity must be abandoned a priori, on the other hand,
the viewpoint from which the whole work hs been conceived can be stated
without ambiguity. In this thesis, as well as in the appended papers, the fun-
damental physical aspects of NEMS have been considered, rather than the tech-
nological reasons that make them interesting and challenging at the same time.

The third and fourth chapters are conceived specifically to provide the
background underlying the works presented in Paper I and II and Paper III
and IV, respectively. Some effort has been put in order to avoid unnecessary
repetitions wherever possible. Finally, in chapter (5) the results contained in
the papers are summarized.

VI






CHAPTER 1

NEMS

“Nanoelectromechanical systems” (NEMS) are a class of nanometer-sized me-
chanical structures (for instance beams, cantilevers, gears, membranes) cou-
pled to an electronic device of comparable dimensions. For a number of rea-
sons, they can be considered as the natural result of scaling down to the nanome-
ter scale the currently well developed technology of “micro-electromechanical
systems” (MEMS), which concerns devices whose typical sizes range from 10
pm to 1 mm.

In this chapter we will review some of the general physical properties of
NEMS. The viewpoint adopted here focuses more on the fundamental rather
than the technological aspects. The material presented here is very far from
being an exhaustive review of the field of NEMS. The criterion that has guided
the selection of the topics treated here is their relevance in connection to the
research activity of the author, whose main results are presented in the papers
appended to the thesis. More detailed overviews of the field of NEMS can be
found in the reviews by Blencowe [1,2] and Ekinci and Roukes [3].

1.1 General remarks

The application of fabrication techniques originally developed for semicon-
ductor electronic devices (such as photolithography, electron beam lithogra-
phy and reactive ion etching) has been decisive for the large-scale manifactur-
ing of MEMS and the growth of the industry related to them. Part of these
technologies constitutes also the bulk of one of the main methodologies elab-
orated for the fabrication of NEMS (the so-called top-down approach). Nowa-
days different categories of MEMS have found vast application in commer-
cial products, for example as accelerometers, pressure sensors, components of
displays and sensors for the detection and analysis of biological and chemical
samples. The general structure and performance of NEMS is not in principle
dissimilar from that of MEMS and it can be understood theoretically from the
scheme shown in Fig. (1.1), which is taken from [3]. Typically, a nanoeletrome-
chanical device comprises one or more movable elements, such as suspended
beams, cantilevers or membranes, with at least one characteristic length in
the nanometer range. The vibrational modes of this mechanical structure can

1



Chapter 1. NEMS
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Figure 1.1: General scheme of a NEMS device [3].

excited through electrical signals, which are converted to mechanical pertur-
bations through some suitable transducer device.

The readout of the NEMS mechanical response (i.e. the displacement of
the movable element) is achieved through another transducer, that is respon-
sible to transform the mechanical state back to an electrical signal. The signal
produced by the output transducer can be eventually amplified for further
elaboration. Additional electrical/mechanical perturbations can be included
in order to modify some of the NEMS properties or for measurement pur-
poses.

However, even though the scheme in Fig. (1.1) is appropriate to delin-
eate the common traits of MEMS and NEMS functioning, the simple picture
of NEMS as miniaturized versions of MEMS does not correspond exactly to
reality. The possibility to control the motion of nano-sized objects and the
charge transport through them allows to envisage a rich variety of novel ap-
plications, but at the same time the development of NEMS poses several fun-
damental and technical problems that can be safely considered irrelevant in
the field of MEMS. As examples of such issues that need to be reconsidered at
the nanometer scale, we mention: the dissipation of mechanical energy (and
therefore the heat flow), the effects of charge quantization on the electronic
transport, the role of nonlinear mechanical effects and the conditions under
which the dynamics of mechanical systems comprising several thousands of
atoms obeys quantum mechanical instead of classical rules.

From a technical point of view, the problem of transduction in nanoelec-
tromechanical devices is still critical, since the sensitivity required to detect
the mechanical displacement increases as the size of the movable part is re-
duced. Furthermore, the actuation and transduction processes, i.e. the input
and output operations should be performed by devices that are coupled to
the mechanical part of the NEMS in such a way that the interaction produces
a readable signal without perturbing excessively the dynamics.

2



1.1. General remarks

Most of the techniques developed to handle this kind of problems in the
tield of MEMS cannot be straightforwardly scaled down to the nanometer-
scale. For instance, electronic and optical transduction methods, that are widely
employed in MEMS, become unpractical at the nanometer scale because of the
presence of parasitic capacitances and the diffraction limit.

The most promising approach, in order to overcome these difficulties, con-
sists in coupling the nanomechanical element to some electronic device of
comparable size such as a single-electron transistor (SET) [4, 5] or a super-
conducting Cooper-pair box [6]. The interest in studying this kind of coupled
systems goes beyond what could be motivated by their being a potential solu-
tion to a technical problem. The coupling between mechanical and electronic
degrees of freedom at the nanometer scale gives raise to a variety of pecu-
liar physical effects, some of which have been investigated theoretically in the
papers included in this thesis.

The most common geometries considered for NEMS both in theoretical
and experimental works are characterized by a vibrating structure such as a
cantilever or a doubly clamped beam. The typical frequencies of this nano-
sized mechanical oscillators can be estimated through simple models based
on classical elasticity theory. For example, the frequency of the fundamen-
tal flexural mode of doubly clamped beams with rectangular cross section is
given by [7]:

t |E

w

=g =105 ; (1.1)
where L is the length of the beam, ¢ its thickness, F is the Young modulus of
the material, p its mass density and the numerical prefactor depends on the
specific geometry. For some realistic choices of the values of the parameters
E, p and typical lengths L, ¢ ranging from the micro- to the nanometer scale,
Eq. (1.1) suggests that NEMS vibrational frequencies fall between the MHz
and the GHz scale, that is the interval of radio frequencies. A natural ques-
tion that arises is then: to what extent theoretical predictions derived from
“macroscopic” theories such as Eq. (1.1) can be considered accurate or even
only meaningful for nanometer-sized mechanical systems?

Models based on classical elasticity theory are used extensively in the liter-
ature about NEMS and the predictions based on them turn out in a (perhaps
surprisingly) good agreement with the experimental results. Simulations [8]
and some experimental work [9] indicate that the breakdown of continuum
mechanics should occur for structures on the order of a few tenths of lattice
constants in cross section.

It is worth to remark that for real nanomechanical resonators expressions
like Eq. (1.1) provide only an order-of-magnitude estimate of the frequency
of their vibrational modes. Vibrating systems at the nanometer scale are par-
ticularly sensitive to the mechanical stresses that can result from the coupling
with the external environment (including the mesoscopic electronic devices

3



Chapter 1. NEMS

which could be used for actuation or detection of their motion) or the pres-
ence of structural defects (particularly in multi-layered structures). In some
cases the shift of the eigenfrequencies introduced by these perturbations can
be controlled experimentally and provide a practical tool to gain information
about the motion of the mechanical system, as it has been demonstrated for
suspended carbon nanotubes-based NEMS.

Another relevant property that contributes to increase the vibrational fre-
quencies of NEMS is the smallness of their masses, which are generally charac-
terized in terms of effective values determined partly by material properties
and partly by the geometry of the device. The possibility to combine high
resonance frequencies and low masses (< 107 g) makes the NEMS ideally
suited to work as extremely sensitive mass sensing devices. Some rather im-
pressive experimental results [10] suggest that the sensitivity of such devices
could reach the level that would allow the detection of fews small molecules,
which means masses of the order of ~ 107* g. However, from the practical
point of view the small effective mass of NEMS represent also a serious in-
convenience to large scale manufacturing of devices, since it compromises the
reproducibility of the results of the fabrication procedures.

Many of the envisaged applications involving NEMS depend crucially on
the robustness of the nanomechanical oscillations against the damping in-
duced by all the possible dissipative mechanisms which can play a significant
role in a real device. The parameter which characterizes the resistance of an
oscillator against any possible internal or external source of damping is the
quality factor (usually denoted as ()), that is defined as the ratio between the
maximum energy stored and the energy dissipated over one cycle.

The refinement of the nanofabrication procedures has made possible to
observe, in the relatively short time interval of a few years, a remarkable trend
of growth of the () factors achievable for nanomechanical oscillators (from
~ 10% to ~ 10°). From the theoretical point of view, there are no arguments that
suggests the existence of some fundamental limit to the maximum () factor of
a nanomechanical resonator.

Large () factors affect the NEMS dynamical behavior in several ways that
are desirable for applications. For example, NEMS with large () necessitate
of lower power consumption to operate. The minimum operation power for
a NEMS, P,,;,, can be estimated as the energy (per unit time) that has to be
pumped into the system in order to drive it to oscillate with amplitudes of
the same order of thermal fluctuations of the displacement, that is P,;, =~
kpTw/Q ~ 107" W at room temperature for w ~ 100 MHz and @ ~ 10*. This
estimated power is much smaller than the typical power dissipated in digital
circuits, which is of the order of ~ W. That might be of particular interest
for electronic applications of NEMS, since the requirements of efficiency and
sustainability in energy management is becoming more and more urgent for
novel technologies.

Another useful feature related to the possibility of large () factors is that,



1.2. Dissipation in micro- and nano-mechanical systems

in the linear regime, they sharpen the response of the device resonant external
perturbations, which makes possible to resolve small shifts in the vibrational
frequency that can carry useful information about the system and therefore
provide the basic ingredient for highly performant sensing devices. Besides
the interests for applications, dissipation in nanometer-sized mechanical sys-
tems is an interesting problem in itself from the fundamental point of view
(see Sec. 1.2).

1.2 Dissipation in micro- and nano-mechanical
systems

The question of energy dissipation and heat transport at the nanometer scale
is extremely relevant for all the fundamental and practical application involv-
ing NEMS. In this section we describe briefly some of the physical processes
which can be responsible for the dissipation of energy in NEMS and review a
general method (Zener’s theory of anelasticity) which can be used to include
dissipative effects in mechanical models.

A natural question that arises is: what are the most relevant dissipative
processes that limit the quality factor of nanomechanical oscillators? Perhaps
it is impossible to answer this question in general, because all the geomet-
ric, structural and material (and, in some circumstances, even the dynamical)
properties of the devices contribute to the irreversible exchange of energy be-
tween the mechanical degrees of freedom of the NEMS and the surrounding
environment (that is, all the other internal and external degrees of freedom).

Furthermore, the quantitative agreement between theoretical models and
experimental data is hindered by the fact that some physical properties at the
nanometer-scale differ dramatically from the corresponding bulk values and
even their definition itself is somewhat questionable because of the nearly-
molecular or even atomic scale of many characteristic lengths of many NEMS.
In other terms, the scaling of many physical properties with the size can be
non monotonous as a consequence of the non negligible surface-to-volume
ratio that is a distinctive feature of systems at the nanometer scale.

The damping of the vibrations of a nanomechanical oscillator originates
from a variety of physical processes. Some of them can be significantly sup-
pressed by clever design and careful manifacturing of the device. For exam-
ple, the losses of energy due to clamping to the lateral supports in NEMS with
suspended parts as movable elements are a major limitation to the mechanical
Q factor [11,12].

Among the dissipative effects related to the coupling of the oscillator with
the external environment, we can mention the damping that could be intro-
duced by a nearby electrical system used as a transducer [13] and the friction
due to the pressure of the surrounding gas, if the NEMS does not operate in
vacuum [14, 15]. In addition to these external sources of damping, the dis-
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Chapter 1. NEMS

sipation of mechanical energy occur also through several processes that de-
pend on the internal structure of the resonator (for example because of the
presence of impurities and defects in the crystall lattice [16]) and/or on fun-
damental processes such as thermoelasticity [17,18] and phonon-phonon [19]
and electron-phonon interactions [7].

The analytical modeling of these dissipative mechanisms leads to different
approximate expressions for the () factor, which in general is some function
of the geometric and material properties of the oscillator, as well as of some
environmental parameter such as pressure and temperature. If more than one
mechanism contributes to the damping of the oscillations, the total quality
factor by summing up the various contributions in the following way:

1 1 1
QtOt:@+@+““ (].2)

1.2.1 Zener theory of anelasticity

The theory of anelasticity introduced by Zener [20] is an attempt to formulate
a general phenomenological model for the description of the large variety of
dissipative processes that take place in solids. In this section we briefly discuss
Zener’s approach since it has been applied in the analysis of the STM-carbon
nanotube system presented in Paper II.

The “elastic solid” is a model for the mechanical behavior of solid-state
systems based on the celebrated Hooke’s “law”, that is a linear relationship
between the stress o affecting a deformed body and its strain «, which reads:

o= Mu (1.3)

or equivalently, v = Jo, where J = 1/M is the modulus of compliance, while
M is the modulus of elasticity of the material [21]. For an arbitrary deforma-
tion, the stress and strain are expressed as second-rank tensors and Eq. (1.3)
must be intended as a set of linear equations expressing each component of the
stress tensor in terms of all the components of the strain tensor (or vice versa).
The physical picture of solid bodies underlying Eq. (1.3) can be summarized
by the following properties:

1. the strain that results from any applied stress (and vice versa) has a
unique equilibrium value;

2. within the natural limits imposed by the finite velocity of sound in the
material, the strain (stress) is assumed to equilibrate instantaneously in

response to an applied stress (strain);

3. the response to an applied stress (strain) is linear.



1.2. Dissipation in micro- and nano-mechanical systems

The uniqueness of the equilibrium values of stress and strain guarantees
the possibility to consider these two physical quantities as suitable variables
to describe the thermodynamic state of the system. Most important for the is-
sue of dissipation in NEMS is property (2), since the istantaneous character of
the mechanical response of an elastic solid implies that it behaves as a conser-
vative system. The dissipation of mechanical energy is not taken into account
in theoretical models based exclusively on Eq. (1.3).

Relaxing one or more of the three conditions underlying the theory of elas-
ticity, it becomes possible to describe systems whose behavior deviates from
the predictions of the simple elastic model. For example, some materials are
characterized by the presence of multiple equilibrium values for stress and
strain, which means that a certain initial state cannot be completely recovered
by simply releasing the applied stress or strain (plastic or viscoelastic behavior).

Zener instead focused his attention on property (2), which is clearly an ap-
proximation since the mechanical response of a system to an applied stress (or
strain) cannot be istantaneous. The physical origin of this retardation effect
is the coupling of the mechanical system (which is described by the « and o)
with a large number of microscopic degrees of freedom (which could charac-
terize, for example, impurities and defects in the crystal lattice of the system,
or the molecules of a surrounding fluid). When the macroscopic variables u
and o are perturbed from their equilibrium values, the mechanical energy is
transferred to these microscopic degrees of freedom, which, by means of irre-
versible kinetic processes such as diffusion, evolve towards the configuration
of local equilibrium imposed by the new equilibrium values of v and o. It
is clear then that the dissipation of mechanical energy is fundamentally de-
pendent on the time needed for the microscopic degrees of freedom to adjust
themselves to the new equilibrium situation. The longer it takes, the more
energy is transferred to them from the mechanical system.

Zener introduced the term “anelasticity” to indicate the behavior of solid-
state systems which manifest retardation in the response to mechanical stim-
uli. It should be remarked that this retarded response does not replace com-
pletely “instantaneous” elastic behaviour described by Eq. (1.3), because ev-
ery solid can be considered elastic to some (and often large) degree. The pres-
ence of anelasticity adds a small time-dependent contribution to the response
of the system to mechanical perturbations.

In order to formulate a quantitative description of anelasticity, Zener con-
sidered the most general first-order linear differential equation with constant
coefficients involving stress and strain:

o+ 1.0 = Mg(e + 7,€) (1.4)

The physical meaning of the three parameters 7, 7., My in Eq. (1.4) can be
understood as follows. If a constant stress is applied to the solid, the strain
relaxes exponentially to its equilibrium value and the characteristic time in
which this process occurs is given by 7,. The same behaviour is found for

7



Chapter 1. NEMS

the stress and 7, is the stress relaxation time for a constant strain imposed to
the solid. The parameter Mp, is the proper elastic modulus associated to the
deformation when all the relaxation processes have concluded.

In a typical experimental situation, the movable part of NEMS is a mechan-
ical element vibrating at some frequency w, that corresponds to the situation
in which stress and strain are periodic functions of time, o = gpe™?, ¢ = gpe™*,
where 0y and ¢, are constant. In order to understand how the damping of
nanomechanical oscillations is taken into account in Eq. (1.4), it is convenient
to discuss qualitatively two limiting cases, that are defined by different val-
ues of the ratio between the mechanical frequency and the stress and strain
relaxation times (supposed to be independent of frequency).

First we consider the case of “fast” relaxation, that occurs if the vibrational
frequency is much lower than the rates of stress and strain relaxation, i.e.
w < 1/7,, 1/7.). In this situation the stress and strain are basically at their
equilibrium values at all times (at least with the time resolution determined
by the period of the oscillations, ~ 1/w) and the system behaves basically like
an elastic solid, o =~ Mpe and the energy dissipated per cycle is negligible.

On the other hand, if the frequency of oscillations is much larger than the
effective relaxation rates, w > 1/7,, 1/7., then the stress and strain have no
time to relax, that is the kinetic processes that would realize the removal of
energy from the mechanical system are basically “frozen” over the time scale
defined by the period of the oscillations (adiabatic vibrations). On the basis
of these considerations, the dissipation of energy turns out to be small also in
this regime, which can be formally expressed by a relationship between stress
and strain that is the same as for the elastic (i.e. non dissipative) solid, except
for the elastic modulus that in this case assumes an “effective” or “unrelaxed”
value, 0 ~ Mye, where My # Mpg.

In the intermediate regime, w ~ 1/7,, 1/7., the relationship between stress
and strain is frequency-dependent and it can be found from Eq. (1.4) by
Fourier transform. Eq. (1.4) becomes o(w) = E(w)e(w), where the response
function E(w) is given by:

B(w) = (1 twir AE) Er = By(w) + iBs(w). (1.5)

1+ w?r? 1 + w?r?
In Eq. (1.5) the mean relaxation time 7 = /7,7, and the “relaxation strength”
of the elastic modulus, Ay = (Ey — Eg)/Eg, where Ery = 1/Mp have been
defined. Depending on the specific context in which Zener model is applied,
these parameters can be expressed as functions of temperature and material
and geometric properties of the system.

A general form to parametrize the effective relaxation time can be found if
the rate at which the relaxation occurs is limited by the probability to over-
come an energy barrier or an energy gap between two microscopic states
(transitions between the states can be activated by absorbing energy from the
mechanical vibrations, see [16]). In this case the relaxation rate 1/7 can be

8



1.3. Single electron shuttle transport

expressed by an Arrhenius-like form: 77! = vgexp(—w/kpT), where v is a

frequency factor intrinsic to the process, 1" is the temperature and w is the
height of the energy barrier.

The expression for F(w) in Eq. (1.5) indicates that the stress has a compo-
nent that is 7/2 out of phase with respect to the strain. The work done by the
stress over one period of oscillation, which corresponds to the energy dissi-
pated in one cycle, is given be the time integral of the real part of ode/dt and
the only non-zero contribution to it is proportional to Esey.

The ratio between the energy dissipated and the energy stored over one
cycle defines the quality factor of an oscillating system, a dimensionless pa-
rameter which is useful to evaluate the robustness of the oscillator against the
damping induced by all the possible sources of dissipation. In the case of
Zener model this quantity is equivalent (up to a factor 7) to the ratio between
the imaginary and real parts of £(w). Therefore, from Eq. (1.5) and assuming
A < 1, we can derive the Zener quality factor:

Qz(w) ' = %EZ; = AE# (1.6)

The inverse quality factor defined in Eq. (1.6) has a Lorentzian dependence
on the quantity wr. That is consistent with the physical considerations pre-
sented above, for which the dissipation is expected to be small in the limits
wT < 1 and wt > 1. The peaks expected from Eq. (1.6) for wr ~ 1 have been
actually bserved in a number of experimental situations, characterized by dif-
ferent relaxation processes, involving for example point-defects (in this are
the peaks are known in the literature as “Snoek peaks”), reorientaton of defect
pairs (“Zener peaks”), dislocations (“Bordoni peaks”), grain boundaries and
thermoelasticity (for a comprehensive review see [21]).

We conclude this section by pointing out that the structure of Eq. (1.5) im-
plies that Zener model of anelasticity can be easily included in the mechani-
cal models derived from elasticity theory in order to describe the motion of
nanomechanical systems. For example, in the theory of linear flexural os-
cillations of a doubly clamped beam, the effect of dissipation can be taken
into account by replacing the ordinary Young modulus of the beam (that cor-
responds to the “relaxed” value in the terminology introduced above) with
the complex-valued function shown in Eq. (1.5), that can be re-written as
E(w) = Ei(w) = [1 +i/Qz(w)]. This approach has been followed in the work
on the STM-carbon nanotube system described in Paper IL

1.3 Single electron shuttle transport
The phenomenon of Coulomb blockade is a remarkable example of how the

electronic transport in tunneling nanostructures is crucially affected by the
accumulation of charge in small parts of the devices. However, the presence of
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Chapter 1. NEMS

uncompensated electric charges characterizes also other aspects of the physics
of nanometer-sized devices. The electrostatic forces among such accumulated
charges can induce significant mechanical deformations of the movable parts
of the systems. This issue is not adressed in the standard theory of Coulomb
blockade, however that is a central problem in the physics of NEMS.

The investigation of the consequences of adding mechanical degrees of
freedom in a nanostructure in which the transport of charge is heavily in-
fluenced by Coulomb repulsion led Gorelik et al. to predict that, under cer-
tain conditions, the mechanical equilibrium state can be unstable [22]. The
analysis that they performed on the system sketched in Fig. (1.2), that is a
movable metallic grain situated between two voltage-biased bulk electrodes,
showed that if the conditions for the electromechanical instability are attained
the system dynamics evolves towards a steady regime characterized by self-
sustained (since no external periodic driving is present) oscillations. During
each cycle electrons are transferred from the left to the right electrode by the
movable island and that supported the authors of [22] to introduce the terms
“shuttle instability” and “shuttle transport of charge”.

The physics of the shuttle instability has been theoretically explored in sev-
eral regimes (e.g. quantum/classical and coherent/stochastic for what con-
cerns the mechanical motion and the tunneling process, respectively) and both
in normal and superconducting systems. For a thorough introduction and a
guide to the vast literature on this subject, the reader is refered to the review
papers [23,24].

In this section we discuss the main features of the shuttle instability and
the related regime of charge transport. The presentation is oriented towards
the physical aspects of the mechanism (including some experimental results)
rather than on the details of its theoretical description and it is thought to serve
as introduction to the analysis of the electromechanical instability in NEMS,
which is the main theme of the first part of this thesis.

The idea of the shuttle instability emerged originally from the theoretical
study of nanostructures containing metallic grains or molecular clusters em-
bedded in a self-assembled dielectric substrate of organic molecules between
two DC-voltage biased electrodes. The model on which Gorelik et al. based
their analysis is depicted in Fig. (1.2).

One of the reasons of interest in this kind of devices is the fact that they
manifest Coulomb blockade effects at room temperature. Moreover, the di-
electric layer of organic molecules between the leads is mechanically compli-
ant, which implies that the metallic island can move under the effect of an
external force. The combination of large Coulomb repulsion and mechani-
cal compliance of the embedding substrate implies that the transfer of charge
from one lead to the other across the central island can give rise to a significant
deformation of these structures in response to the electrostatic force caused by
the bias voltage. For what concerns the electronic transport properties, the
system can be thought as a double tunnel junction. We consider first the usual
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Figure 1.2: (a) Simple model of a soft Coulomb blockade system in which a metal-
lic grain (center) is linked to two bulk electrodes by elastically deformable organic
molecular links. (b) The static equilibrium state for the grain becomes unstable if the
bias voltage is sufficiently large. When the grain is slightly shifted from the center of
the system, it receives some extra charge of the same sign of the closest electrode and
then it is accelerated towards the other electrode by the electrostatic force. The sign
of the net grain charge alternates leading to an oscillatory grain motion and a novel
“electron shuttle” mechanism for charge transport [22].

static situation, in which the motion of the center of mass of the grain is totally
suppressed (or, more precisely, restricted to thermal fluctuations) and a con-
stant bias voltage V' is applied between the leads. In this case the net charge
@ of the grain would be determined only by the current balance between the
grain and the leads.

The possibility for the grain to move perturbs the current balance and
hence the net charge of the island varies in time. The crucial observation is
that whenever the grain is close to one of the leads, the charge exchange with
the other electrode is almost completely suppressed, because the tunnel re-
sistance of each junction depends exponentially on the distance between the
grain and the corresponding lead. Therefore the value of the extra charge on
the grain when it approaches one of the electrodes is determined by the po-
larization of the nearest lead at that moment. In other words, the extra charge
on the grain at any given time ¢ depends on which electrode the island has
been close to at recent times ¢’ < ¢. It turns out from these considerations that
the extra charge that appears on the grain as a consequence of its center of
mass motion, ()(¢), responds with some retardation to the variation in time of
the grain position, x(t). Within the framework of linear response theory, the
non-instantaneous nature of the charge response can be expressed in the form:
Q) = [ x(t —t)x(t')dt', where x(t) is a suitable response function, which is
appreciably different from zero within a certain characteristic time interval.

Once that the grain is charged by electron tunneling at one of the leads,
the electrostatic force due to the bias voltage pulls it towards the opposite
lead. If the bias is simmetrically distributed as shown in Fig. (1.2), the extra
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Figure 1.3: Charge response to a cyclic grain motion. The dashed lines describe a sim-
ple trajectory in the charge-position plane for which the work done on the grain by the
electrostatic field can be easily calculated and shown to be positive. The electrostatic
force always acts along the same direction of the grain displacement, hence pump-
ing energy into the mechanical vibrations and leading to an instability (see text). The
solid lines describe more realistically the charge response at large oscillation ampli-
tudes [22].

charge is positive at the turning point near the positively charged electrode
and negative at the turning point near the negatively charged electrode. The
sign change of the grain charge occurs mainly in the proximity of the turning
points, while for most of the trajectory between the leads the sign of the extra
charge remains constant.

If we now consider the simple trajectory in the (z, ) plane shown in the
middle of Fig. (1.3) it becomes clear that the work W, performed by the elec-
trostatic force during one cycle is positive, which means that some energy is
transferred from the electrostatic field to the moving island.

In other words, the charged grain is accelerated by the electrostatic force
and, moreover, it finds itself in the right place at the right time to be acceler-
ated since the electrostatic force is always applied along the same direction of
the grain displacement (instead of the opposite one).

By virtue of the general properties of response functions [25] the sign of
the electrostatic work done on the island does not depend on the trajectory,
therefore the result W,; > 0 has a general validity (even for the more real-
istic trajectory represented by solid lines in Fig. (1.3). As a consequence of
the pumping of energy from the electrostatic field, the metallic island starts
to perform oscillations around the static equilibrium position with increasing
amplitude. In absence of any form of dissipation of the mechanical energy, this
increase would occur at arbitrarily low voltages and would continue without
limits.

However, in any real system mechanical oscillations are actually damped
by a variety o mechanisms (see Sec. (1.2)), therefore the positive electrostatic
work performed on the grain is balanced by the negative work done by all the
dissipative forces that can play a role in the system. If the net energy balance
We — Waiss per cycle turns out to be positive then the energy of the mechanical
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Figure 1.4: The total time-averaged current through the system sketched in Fig. (1.2)
consists of two contributions, the shuttle current and the tunneling current. As the
dissipation of mechanical energy (expressed through the damping rate ) decreases,
the shuttle current saturates to a constant value that is proportional to the frequency
of the oscillations. At the same time, the tunneling current is proportional to the
fraction of the oscillation period that the grain spends in the middle region, defined
by |z| < A. This fraction is inversely proportional to the oscillation amplitude, and
hence the tunneling current decreases as v~ ! increases (from [22]).

vibrations increases and the static equilibrium position of the grain (defined
by x = 0, @ = 0) becomes unstable. The necessary conditions for the onset
of this electromechanical instability can be expressed equivalently in terms of
a maximum value of dissipation that can be tolerated or a threshold value
for the bias voltage (more generally, for the coupling between mechanical and
electronic degrees of freedom) that needs to be overcome.

The analysis performed by Isacsson et al. in Ref. [26] elucidates the dy-
namics of the system once that the conditions for the instability are attained.
After a transient regime, the moving island reaches a steady state character-
ized by finite-amplitude periodic motion (so called limit cycle oscillations [27]).
During each cycle electrons are transferred from the left to the right lead by
the oscillating island. This “shuttle-like” mechanism performs the transport
of charge across the system in a radically different way from the sequence of
tunneling process that characterize a static double junction system, as can be
seen from Fig. (1.4).

The hallmarks of the shuttle mechanism of charge transfer has been inves-
tigated in several NEMS and molecular electronic devices. However, in most
of the cases the experimental set-up presents striking differences from that
usually considered in the theoretical works.

A variety of movable elements has been considered to play the role of
the oscillating island: a macroscopic (radius ~ 2 mm) metallic sphere [28],
colloidal Au particles attached to a vibrating probe [29,30], a metallic grain
supported by a metallic or silicon cantilever (a sort of nanomechanical pen-
dulum, [31-33]). Furthermore, all these devices were driven by an AC volt-
age, instead of DC as in the theoretical model. An alternative example of
mechanical single-electron transistor has been fabricated and characterized in
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the experiment of Koenig et al., where a gold nanoparticle attached to a doubly
clamped silicon nitride beam can act as an electron “shuttle” when the beam
is actuated by piezoelectrically-generated ultrasonic waves [34].

Some effects due to the mechanical degrees of freedom appeared in the
measured current-voltage characteristics of all these systems. However, no
direct evidence for the development of the shuttle instability was found.

The “shuttle-like” transport of charge has also been considered as possi-
ble mechanism for explaining the current-voltage curve measured for the Cg
single-electron transistor fabricated by Park [35]. In this device, a single Cg
molecule was deposited in a gap 1 nm wide between two gold electrodes and
a bias voltage was applied between them. The Cg, molecule is trapped in the
gap by van der Waals and electrostatic interactions with the gold electrodes.
The current flowing across the molecule was found to increase sharply for cer-
tain values of the bias voltage. The step-like behaviour can be interpreted in
terms of promotion of the tunneling (which implies that the current increases)
due to the excitation of some quantized vibrational modes of the molecules.

In order to attribute this feature to the shuttle mechanism, it ought to be
proved that the center-of-mass motion of the Cg is more involved in the trans-
port of charge than the other vibrational modes. The peculiar shape of the
current-voltage characteristic in Park’s experiment can be interpreted also on
the basis of the quantum mechanical theory of phonon-assisted tunneling and
therefore the experimental evidence for the shuttle instability Park’s experi-
ment is not at all conclusive.

The results of a recent experiment performed by Moskalenko et al. [36]
have been consistently interpreted according to the theoretical predictions of
the single-electron shuttle model. The geometry of the device fabricated in this
work is similar to that one considered in Park’s experiment, but the material
and the size of the components are different.

In the work of Moskalenko et al., a gold nanoparticle with diameter of
about 20 nm is embedded in the gap between two electrodes and attached to
them through a monolayer of flexible organic molecules (octanedithiol). The
electrodes are fabricated with rounded edges in order to reduce the difficul-
ties that could arise because of small variations in the nanoparticle diameter.
The whole device is realized on top of a silicon wafer coated with a ~ 1 ym
Si0O; layer. Planar 30-nm-thick gold electrodes separated by a gap of 10-20 nm
are produced using electron-beam lithography followed by lift-off. Then the
electrodes are covered with a monolayer of organic molecules, which have
a length of about 1.2 nm each. Finally the gold nanoparticle is adsorbed by
immersion of the device into acqueous gold solution.

Current-voltage characteristics are measured at room temperature after
putting the device in a shielded dry box in order to protect it from moisture
and decrease the electromagnetic noise.

The experimental current-voltage curves are shown in figure (1.6). The
sharp rise in the current is attributed by Moskalenko et al. to the onset of
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(b)

Figure 1.5: (Left) Sketch of the experimental realization of the shuttle junction. The
device consists of a 20 nm gold nanoparticle attached to two gold electrodes through
monolayers of octanedithiol molecules acting as springs. The inset shows how the
nanoparticle is attached to the monolayer; due to the curvatures of the nanoparticle
and the electrode, some molecules are overstretched within the gap. (Right) (a) A
pseudo-three-dimensional atomic force microscope (AFM) image of electrodes used
for fabrication of a shuttle junction; (b) and (c) images of fabricated shuttle junctions;
and (d) sequence of AFM images taken during manipulation of a 20 nm nanoparticle
into the gap between two electrodes. Scale bars are (a) 100 and (b)-(d) 200 nm [36].

shuttle oscillations. In order to check that the transfer of charge across the
device is really due to the nanoparticle, the current measured in presence of
the nanoparticle has been compared to that one measured after removing it
with an AFM tip, see Fig. (1.7). The qualitative features of the dynamics of the
gold nanoparticle and its effects on the transport properties of the device are
captured by the theoretical model reviewed in this section. However, the mea-
sured threshold voltage at which the instability develops is much higher than
that one predicted by the theory. That has been explained with the tendency
of the nanoparticle to get pinned somewhere between the leads, which can be
due, for example, to van der Waals forces, whose effect on the shuttle mech-
anism has been investigated in [37]. At low voltages, the gold nanoparticle
is trapped and the current through the device is due to sequential tunneling
from one electrode to the other one, as in an ordinary double tunnel junction.
The nanoparticle can escape from its locked position and start to oscillate if
the electrostatic force (i.e. the bias voltage) is sufficiently strong. The am-
plitude of the vibrations initially increases and then saturates at some finite
value determined by the balance between the energy adsorbed from the elec-
trostatic field and the energy dissipated to the environment. The damping can
prevent the island to get close enough to the electrodes in order to be loaded
with the maximum number of electrons allowed by electrostatic repulsion,
Nmax = [CV /e + 0.5], therefore the effective electrostatic force acting on the is-
land fluctuates and the measured current can be lower than the one expected
from the simplest model. Furthermore, if the electrostatic force is not strong
enough, the nanoparticle which succeeds to escape from the pinning trap, is
immediately re-trapped and the oscillations are quickly suppressed.
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Figure 1.6: Experimental (symbols) and simulated (dotted and dashed lines) current-
voltage characteristics of shuttle junctions. The dotted line corresponds to oscillations
in the case of zero pinning and the dashed lines to the case of finite pinning in the
system. The insets show the displacement of the gold nanoparticle as a function of
time in two different bias voltages: one smaller and one larger than the threshold
value that characterizes the transition into the shuttle regime. The leakage current
through the monolayer of octanedithiol molecules is shown by dashed-dotted line
(from [36]).

Figure 1.7: The current flowing through the device in presence of the gold nanoparti-
cle in the shuttling regime (curve 1) and after removing the nanoparticle with an AFM
tip (curve 2). The inset shows the hysteretic behaviour of the current-voltage curves
obtained for a working shuttle junction in regimes of increasing and decreasing the
applied voltage (from [36]).
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1.4. Quantum limit of macroscopic mechanical systems

Before ending this section, it is worth to mention the possible connection of
the shuttle mechanism to something completely different, which is suggested
by the very recent experimental results reported by Ristenpart et al. in [38].

They investigated the motion of charged water drops in a container filled
half with water and half with oil unnder the effect of an applied DC voltage.
What is usually expected is that once the drops (which are injected in the part
tilled with oil and charged by one of the two electrodes inserted in the con-
tainer) reach the oil/water interface, they merge into the water. That is what
actually happens for a large range of the applied voltage.

However, if the voltage is increased over a certain threshold value, then
instead of merging, the water drops bounce on oil/water interface and re-
verse their velocity. They move back to the electrode, get charged and the turn
again towards the oil/water interface. A steady periodic motion is established
by applying a DC bias voltage, the same phenomenon that should character-
ize the single-electron shuttle. The mechanism of charge transfer is evidently
different in the two cases (ionic transport for the liquid system and electron
tunneling for the solid-state one), however the dynamics of the movable part
of the system is qualitatively the same in the two systems.

1.4 Quantum limit of macroscopic mechanical
systems

A considerable effort in the research field on NEMS has been recently devoted
to explore the theoretical and experimental conditions to observe quantum
(i.e. coherent) features in NEMS dynamics. At first sight, NEMS are quite
different from the physical systems that we are accustomed to describe as
“quantum mechanical”, like for example atoms, molecules (microscopic) or
superconductors and superfluids (macroscopic).

Under which conditions NEMS dynamics is expected to manifest quantum
features? From a certain point of view, it is not immediate to address this
point, since that would require to answer the following more general question:
what physical conditions define the transition between classical and quantum
physics? We know that it is not just a matter of length scale or number of
constituents of a given system (see [39] for a thorough discussion of this point).
What is usually indicated as “classical” or “semiclassical” limit in textbooks
on quantum mechanics, that is letting /2 go to zero in order to recover some
classical expressions from their quantum counterparts seems nothing more
than a formal procedure.

In many circumstances classical mechanics is an adequate theoretical frame
work to explain the experimental results regarding nanometer-sized mechan-
ical resonators. A possible attitude towards the problem of defining the con-
ditions under which the classical description is expected to be no longer valid
consists in focusing the attention on the precision of the measurement that is
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performed on the resonator to detect its displacement. When this precision
reaches the so-called “standard quantum limit” [40], then the dynamics of the
resonator should present quantum instead of classical features. In general,
any apparatus that can be used to measure the position of a movable object
produces some perturbation on the motion of the system that is under mea-
surement. That is what is intended as the “back-action” related to the mea-
surement process. The measured root-mean-square fluctuations of the center-
of-mass position of a mechanical oscillator, Az = (2%)1/2, which represent the
spread of the measurements of the center-of-mass position around the equilib-
rium value, contains always some contributions due to the back-action caused
by the measurement system. They can be of fundamental or technical nature.

Quantum mechanics imposes a fundamental lower bound to the effect of
the measurement-induced back-action, which can be expressed through the
so-called “zero-point amplitude”, Az, = (h/2Mw)Y?, where M is the os-
cillator mass and w its angular frequency. According to the experimentally-
oriented epistemological attitude expressed in, for example, Ref. [40] (which
is closely related to the so-called “Copenaghen interpretation” or “non-inter-
pretation” of quantum mechanics), if it turns out that Az ~ Az, then the
quantum-mechanical nature of the oscillator is manifested (see [41] and refer-
ences therein).

In recent years, the investigation of the “standard quantum limit” of me-
chanical resonators has attracted a considerable amount of theoretical and ex-
perimental work nanoelectromechanical (and also optomechanical) systems.
In general, the experimental detection of the zero-point motion of a mechani-
cal oscillator must face two types of problems:

1. the development of a procedure through which it is possible to drive the
oscillator to its vibrational ground state;

2. the need for a sensitive displacement detection scheme.

In the context of NEMS, point (2) is a general problem which is encountered
in many circumstances, as we already mentioned in Sec. (1.1). The design of
a sufficiently accurate position detection scheme is one of the main challenges
in NEMS fabrication. The essential difficulty is based on the fact that, for
a variety of reasons, most of the methods developed for MEMS cannot be
straightforwardly applied to NEMS.

For example, optical techniques cannot be used because the diffraction of
light cannot be avoided in nanostructures which are of the comparable size
or even smaller than the wavelength of visible light. Piezoelectric methods
typically heat the device so that it becomes impossible to work below a cer-
tain temperature, that, on the other hand, is requested for many applications.
Moreover, as the oscillator frequency approaches the GHz range, the perfor-
mance of magnetomotive detection deteriorates significantly because of par-
asitic capacitances. Finally, the efficiency of most of the microwave-based
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transduction schemes is not sufficient to overcome the noise introduced by
the amplification system that follows the transducer.

For all these reasons, the possibility to exploit parametric amplification or
to couple the nanomechanical resonator to mesoscopic devices such as quan-
tum dots, quantum point contacts and single-electron transistors, represent
promising alternatives to the conventional, more “macroscopic”. approaches
to the problem of measuring the displacement of mechanical objects with high
precision.

Regarding point (1), a common way to estimate how far a mechanical os-
cillator is from the quantum limit consists is based on the evaluation of the
average number of quantized vibrational excitations (phonons) are expected
to be in the system when it is in thermal equilibrium with the surrounding en-
vironment at a certain temperature 7. It is known from statistical mechanics
that this number is given by: ny, = [exp(hw/kpT) — 1]71.

Therefore, when kpT" < hw, then ny, < 1, which means that the only
populated state is the ground state. For w ~ 1 GHz the quantum limit is
reached for 7' < 50 mK, a temperature that is attainable with current dilution
refrigerators. A quite sophisticated experiment, in which the ground-state
cooling of an high-frequency (and quite big) mechanical resonator has been
demonstrated by using a superconductive qubit, has been reported in [42].

However, apart from the technical difficulties related to the control of high-
frequency resonators, there is a fundamental issue that limits in principle the
performance of the passive (or thermodynamic) approach to cooling.

In the regime in which the populations of the excited vibrational states are
smaller than the ground-state population (and quantum effects are expected
to emerge), thermal conductance turns out to be quantized and that limits the
rate at which a nanometer-sized system can reach thermal equilibrium with
the environment [43]. In principle one could think of possible ways to opti-
mize the heat transfer preserving the quantum nature of the vibrations, how-
ever a much simpler way to overcome this difficulty is offered by those meth-
ods that allow a systematic removal of the energy from the oscillator, based
on the exploitation of experimentally controllable interactions active cooling.

In spite of the impressive variety of elecro- and opto-mechanical systems
in which the problem of active cooling of mechanical degrees of freedom has
been investigated, we can extrapolate the general features that are common to
all the proposed schemes.

The basic ingredients of any scheme for active cooling can be summarized
as follows:

e a two level system;
e some mechanical degrees of freedom coupled to the two level system;

e an environment inducing transitions between the two levels that involve
the irreversible transfer of energy to/from the mechanical subsystem.
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A comprehensive review of all the mechanisms that have been designed is too
far beyond the scope of this thesis, however we will present here some general
considerations that turn out to be useful in order to clarify the differences and
the similarities between the cooling mechanism described in Paper III and IV
and those ones proposed in the vast literature on the subject.

Several proposals [44] for ground-state cooling are based on the same phys-
ical principles underlying the laser-based methods developed for the cooling
of trapped ions (illustrated, for example in [45]).

Other schemes strive to reproduce the electromagnetically-induced cool-
ing by means of inelastic electronic transitions occurring in mesoscopic device
coupled to the oscillator, such as tunnel junctions [46] quantum dots [47—49]
or superconducting Cooper-pair boxes [50,51]. The results about the cooling
mechanism described in Paper III and IV can be collocated within this area of
research.

In this context, cooling the mechanical degrees of freedom (being them
the center-of-mass motion of ions confined in electromagnetic traps or of ex-
tended mechanical structures such as beams and cantilevers) is understood
as the removal of energy from the mechanical system by means of another
system (which we will often refer to as “the environment”) which is far from
thermodynamic equilibrium. Clearly, this definition deviates from the ther-
modynamic concept of cooling, which is based on the possibility for the sys-
tem to reach thermal equilibrium (i.e. the same temperature) with a heat bath at
lower temperature.

The removal of mechanical energy in active cooling scheme is performed
by electronic transitions driven by coherent electromagnetic radiation (i.e. laser)
in the optomechanical systems (including trapped ions) and by inelastic tun-
neling processes in the electromechanical devices. In both cases, the absorp-
tion of mechanical energy by the nonequilibrium environment (which can be
the bosonic bath represented by the laser field or the fermionic (electronic) cur-
rent flowing through a conducting movable structure) takes place because of
the energy conservation constraint that governs the transitions between dis-
crete, sharply defined electronic states.

The general features of the mechanism through which effective cooling
can be achieved are well captured by the diagram shown in Fig. (1.8), which
actually is taken from a review on laser cooling of atoms.

The “refrigerator” is represented as a quantum system with two electronic
states, |0) (ground) and |1) (excited), separated by an energy gap given by
E, — Ey = hwy. Transitions between the two levels are promoted by an external
time-varying field. When the frequency of the external field, w;, matches the
gap between the electronic states (resonance condition), the electron “jumps”
from the ground to the excited state, from which it decays (coming back to
the ground) because of spontaneous emission (or analogous mechanisms in
optomechanical and solid-state systems), that occurs at rate I'.

In laser cooling of ions, this sequence of transitions manifests itself experi-
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Figure 1.8: Electronic transitions leading to effective cooling (|0n) — |0n — 1)) and
heating (|0n) — |On + 1)) of the mechanical system. The processes that preserve the
number of vibrons are not shown.

mentally as a Lorentzian curve centered at wy with half width I' in the dipole
absorption spectrum of the ion, which shows the intensity of the light ab-
sorbed by the trapped ion as a function of the frequency of the driving laser.

The spatial confinement provided by the harmonic trap (or, in general,
the mechanical degrees of freedom) generates a series of additional peaks in
the dipole absorption spectrum, which are simmetrically located around wy.
These peaks are centered at frequencies w; = wy =+ jwy, j = 0,1,2... where
hwyy is the quantum of vibrational energy. These additional lines due to the
motion of the ion inside the trap form the so-called motional “sideband” spec-
trum. Analogous signatures of elastic and inelastic electronic transitions are
detected experimentally also in solid-state systems, for example through scan-
ning tunneling spectroscopy of suspended carbon nanotubes (see Sec. (2.3)).

The dynamics of electronic and mechanical degrees of freedom of the sys-
tem is characterized by two sequences of states, |0n) and |1n), where n is the
number of quantized vibrational excitations (vibrons). The external electro-
magnetic field induces transitions between the ground and excited states that
can both preserve the number of vibrational excitations (elastic processes) and
increase or reduce it (inelastic processes).

The mechanical degrees of freedom are effectively cooled if the rate that
characterizes the cooling process (i.e. |0n) — |0n — 1)), is larger than the rate
at which the heating processes (i.e. |0n) — |0n + 1)) occur. At leading order
in the coupling constant, only single-vibron processes have to be considered
and the cooling/heating rates can be written as - = nA_ and R, = (n +
1)A. (heating) where the rate coefficients A, depend on the parameters of the
system. The effective cooling /heating dynamics can be characterized through
a sequence of electronic transitions like: |0n) — [In+£0,1) — [On — 1).

In many cases, the performance of the cooling mechanism can be analysed
in terms of rate equations for the populations of the vibronic states, P(n,t),
that express the probability to have n (vibrons) at time ¢. Under some condi-
tions, these equations can be simply written down by considering the balance
between the heating and cooling processes that make increase or decrease the
number of vibrons by one, respectively.
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Alternatively, the dynamics of the system can be analyzed in terms of the
time-evolution of the average number of vibrons, (n) = >/~ , kP (k,t), which
is determined by the following equation of motion:

d

dt
A steady state solution of Eq. (1.7), m = A, /(A_ — A}), exists if the condition
A_ > A, is fulfilled, that is when, per unit time, there are more processes
leading to cooling rather than to heating.

Regarding the issue of what limits the efficiency of laser-based-like schemes
for effective cooling (that is what prevents to reach an arbitrarily low number
of vibrons), it should be stressed that the “sharpness” of the electronic levels
plays a crucial role, especially to reach ground-state cooling (corresponding to
(n) < 1). If the broadening of the excited states I (i.e. the rate of spontaneous
emission in the trapped ions cooling case) is of the same order or larger than
the mechanical frequency (which determines the difference in energy between
different sidebands), i.e. I' 2 wy,, then the cooling procedure is intrinsically
less efficient, since some of the blue sidebands (corresponding to vibron emis-
sion processes) are excited together with the red sideband (that correspond to
the one-vibron absorption process). In different contexts, this case is known as
“Doppler cooling”, “weak confinement” or “bad cavity” regime. On the other
hand, if I' < wy, and the driving external field is “red-detuned”, that is the
condition wy, — wy = —wyy, then the cooling process is resonantly enhanced,
whereas the heating is well off resonance. In this situation, known as “re-
solved sideband”, “strong confinement” or “good cavity” regime, the average
number of vibrons turns out to be 7 ~ (I'/wy)? < 1, therefore ground-state
cooling can be achieved.

As a final remark, we would like to point out that the theoretical frame-
work outilined here has been applied to characterize active cooling schemes
proposed for a broad variety of physical systems, including the nanoelec-
tromechanical system considered in this thesis, as it will be illustrated in Chap.
(4). For example, the expression of the average number of vibrons in the sta-
tionary state that results from Eq. (1.7) has the same structure of that one
presented in Eq. (4.25) in Chap. (4).

In conclusion to this section, we would like to mention that, once that the
quantum regime of NEMS could be readily accessible, a rich variety of ap-
plications are envisaged. For example, the control of the coherent motion of
nanomechanical oscillators and the combination with devices that work effec-
tively as quantum two-level systems (i.e. qubits), suggests the possibility to
perform experiments that could help to shed new light (or new darkness) on
the many questions related to the foundations of quantum mechanics (most
of which originated by its linear character, that in principle does not prevent
the superposition of states of “micro-” and “macroscopic” systems, such as in
the celebrated case of “Schrodinger’s cat paradox’) [52].

(n) = ((n) + 1) Ay — (W)A_. (1.7)
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CHAPTER 2

Carbon nanotube-based NEMS

In this section we will briefly present some general features of carbon nan-
otubes and outline the main motivations that make them a promising mate-
rial for the realization of many applications involving NEMS. A comprehen-
sive discussion of the physical properties of carbon nanotubes and their pos-
sible applications can be found in the vast literature existing on this subject,
that nowadays amounts to a large number of review papers [53] and several
books [54].

2.1 Carbon nanotubes

The choice of materials in the fabrication of NEMS plays a decisive role to
determine the properties of the device. The most widely used materials for
NEMS are those for which the fabrication methods in semiconductor technol-
ogy are better developed, for example silicon, gallium arsenide/ aluminium
arsenide (GaAs/AlGaAs) and silicon carbide (SiC).

However, alternative materials are constantly under study in order to im-
prove the NEMS performances and explore new phenomena at the nanome-
ter scale. Among the most promising materials for the development of NEMS
are carbon nanotubes. Carbon nanotubes are quasi 1-dimensional (due to the
large aspect ratio) cylindrical structures with diameters that range from half
to a few nanometers. They can be seen as the result of rolling up one (for the
single walled) or more (for the multi walled) 2-dimensional atomic layers of
graphite (graphene) around a certain direction.

The orientation of the hexagonal carbon ring in the honeycomb lattice with
respect to the axis can be taken almost arbitrarily, without any distortion of the
hexagons except for that one due to the curvature of the nanotube. This geo-
metric feature (named “chirality”) of the carbon nanotube structure is related
to the electronic properties of the nanotube, that is its being metallic or semi-
conducting.

Carbon nanotubes have been the subject of a remarkable research effort
along many directions, since a paper by lijima in 1991 ! reported on their syn-

'Experimental observations of carbon nanotubes appeared even before lijima’s paper and
that has generated some controversy to establish the priority in their discovery [55]
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Chapter 2. Carbon nanotube-based NEMS

thesis during electric arc experiments to produce fullerenes [56].

As a result of their extraordinary mechanical and electronic properties, car-
bon nanotubes are expected to find use in a wide range of applications in
material reinforcement, chemical sensing, drug delivery, solar cells, hydro-
gen storage and nanoelectronics. While most of research activities on carbon
nanotubes are still at the fundamental level, there is an increasing number
of commercial products which take benefit of the peculiar properties of these
nanostructures. The industrial applications of carbon nanotubes are expected
to increase after the development of practical methods for the large scale pro-
duction of carbon nanotubes which make feasible to control some relevant
properties, such as diameter and chirality.

The combination of peculiar mechanical and electronic properties make
carbon nanotubes ideally suited for the realization of NEMS. Their high stiff-
ness (Young modulus ~ 10 Pa), small cross-section, low density and de-
fect concentration are all relevant characteristics for the fabrication of high-
frequency mechanical oscillators. Furthermore, semiconducting carbon nan-
otubes can behave as transistors and that can be efficiently exploited for sens-
ing the nanotube motion.

Experimental fitting to mechanical measurements of the Young modulus
and elastic constants of nanotubes have been mostly made by modeling the
nanotubes as elastic beams. The nanotube diameter is only a few times larger
than the length of the bond between carbon atoms, therefore it is not evident
that physical concepts and models developed for bulk systems should be valid
to describe these nanostructures. However, continuum models of carbon nan-
otubes (such as beam theory for small deformations and shell theory in the
case of larger and more complicated distortions) have been proven to provide
a good description of their mechanical properties under many circumstances.

Due to their small size and typically low concentration of impurities and
lattice defects, carbon nanotubes are ideal systems in order to investigate how
atomic structure gives rise to the properties predicted by continuum elastic-
ity theory which is usually applied to macroscopic objects. In many works
the results of numerical methods based on an “atomic” perspective, such as
molecular dynamics, density functional theory and tight-binding have been
compared to those obtained by continuum models.

The remarkable mechanical and electronic properties of carbon nanotubes
are a direct consequence of the peculiar electronic configuration of carbon and
with its capability to combine with other elements in many different configu-
rations. The electronic configuration of carbon in terms of atomic (hydrogen-
like) orbitals is: 1s?2s*2p®. The two electrons in the 1s* orbital are strongly
bound and they do not significantly contribute to determine the properties of
carbon in the crystalline phase.

The bond structure in graphite, that coincides with that in carbon nan-
otubes, can be explained in terms of the mechanism of sp® hybridization of
atomic orbitals [54].
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m bond

o bond

Figure 2.1: Basic hexagonal bonding structure for one graphite layer (the graphene
sheet); carbon nuclei are shown as filled circles, out-of-plane 7-bonds are represented
as delocalized (dotted line), and o-bonds connect the C nuclei in-plane [53].

In sp* hybridization one 2s orbital and two 2p orbitals combine to form
three hybrid sp? orbitals at 120 °to each other within a plane (see Fig. (2.1)).
The overlap of these in-plane states associated with neighbouring atoms de-
termines the chemical bond between them and it is referred to as a o-bond.
This is a strong covalent bond that binds the atoms in the plane, and gives rise
to the high stiffness and high strength of carbon nanotubes.

The remaining 2p orbital is perpendicular to the plane of the o-bonds. In
graphite the superposition of these out-of-plane orbitals associated with dif-
ferent layers results in a chemical bond between neighbouring layers which is
referred to as m-bond. The 7-bonds provide a very small contribution to the
elastic properties of carbon nanotubes, which are mainly determined by the
much stronger o-bonds, however they play a decisive role to determine the
electronic properties.

2.2 Electromechanics of carbon nanotubes

The considerations on the chemical bonds in carbon nanotubes are useful in
order to understand the stability of the honeycomb lattice, however they pro-
vide only a static picture of these nanostructures. In reality, carbon atoms are
not rigidly fixed at the lattice sites, but they can move to some degree in re-
sponse to inter-atomic forces as well as to external perturbations.

The study of the lattice dynamics makes possible to understand the dy-
namical behaviour of the carbon nanotubes and it can be performed through
standard methods of solid state physics (see [57] and [54] for the application to
carbon nanotubes). The information obtained by this analysis are complemen-
tary to the predictions of macroscopic models derived from continuum elastic-
ity theory. The mechanical state of the 2V atoms in the lattice unit cell can be
represented as a linear combination of 6N normal modes of vibration, each of
which represent a certain way of collective periodic motion of the atoms in the
lattice. All the possible vibrational modes are characterized by a certain dis-
persion relation, w;(k), that is the function that describes how their frequency
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Figure 2.2: The calculated phonon dispersion relations of a carbon nanotube with
chirality (10,10). The number of degrees of freedom is 120 and the number of distinct

phonon branches is reduced to 66 after taking into account the simmetries of the unit
cell [54].

depends on the wavevector (or wavelength).

An example of theoretical vibrational spectrum for carbon nanotubes is
shown in Fig. (2.2) where, in the lowest part, four acoustic modes, defined by
the condition w;(k = 0) are visible. They represent ways of atomic oscillations
occuring along the same direction of the nanotube axis (longitudinal mode),
perpendicular to it (transverse mode, which is doubly degenerate) and around
it (twisting mode).

All the other 6N — 4 curves in the vibrational spectrum of carbon nan-
otubes correspond to optical modes, such as the “radial breathing mode”, in
which the carbon atoms oscillate along the radial direction. The application of
different experimental techniques makes it possible to detect many of the car-
bon nanotube vibrational modes. The radial breathing mode, corresponding
to optical phonon branches, has been extensively studied by means of Raman
spectroscopy [59]. In addition to this optical method, the local injection of ex-
tra electrons into a suspended nanotube from the tip of a scanning tunneling
microscope has been shown to work as an effective probe for the radial breath-
ing mode [60]. Longitudinal vibrations, corresponding to stretching modes of
a bulk beam, have been detected through low-temperature transport spectro-
scopic methods [61].

The lowest energy part of the nanotube vibrational spectrum consists in the
transverse (or bending or flexural) modes [61-66]. They have been experimen-
tally investigated in several ways. Treacy et al. reconstructed their presence
from the analysis of the blurring of images taken with a tunneling electron
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Figure 2.3: Side-view sketch (a) and scanning electron micrograph (b) of the geometry
of a typical three-terminal nanoelectromechanical suspended single carbon nanotube
device. (c) Schematic drawing of the vibrational modes and (d) predicted correspond-
ing oscillator energy scales hw of suspended nanotube segments, taking into account
the characteristic material properties of single-walled carbon nanotubes. The radial
breathing mode scales with 1/d (d being the nanotube diameter), and the transversal
bending mode is both diameter and tension dependent. Data points indicate obser-
vations of harmonic excitation spectra, i.e. quantized vibration modes, in low-energy
transport spectroscopy experiments [58].

microscope (TEM) [67]. In the work of Garcia-Sanchez et al. instead, their
dynamics was investigated by analyzing the motion induced on the tip of an
atomic force microscope [68]. Besides these approaches, flexural oscillations
of nanotube have been probed experimentally also by techniques based exclu-

sively on electronic transport measurements, exploiting the set up sketched in
Fig. (2.3) [62, 64].

In this device a carbon nanotube is doubly clamped between two metal-
lic leads (i.e. “source” and “drain”) and suspended above a third electrode
situated on the substrate (the “gate”). When a potential difference is applied
over the nanotube, the system resembles the configuration of a Single Elec-
tron Transistor, with the nanotube playing the role of the central island. The
reference to the SET has a concrete physical reason, since several works have
reported the observation of the signatures of charging effects (the so-called
Coulomb diamonds) in the transport characteristics of this system.

However, the mechanical degrees of freedom of the suspended nanotube
add a further ingredient to the physics of this device, which has been demon-
strated to be a quite suitable system to test the theoretical predictions about
the effects generated by the coupling between motion and charge transport in
nanostructures [69,70].
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Chapter 2. Carbon nanotube-based NEMS

2.3 Scanning Tunneling Spectroscopy of carbon
nanotubes

In this section we describe briefly the experimental results known about the
nanoelectromechanical system that inspired the formulation of the theoretical
model analyzed in this thesis.

In several works, LeRoy et al. have reported the results of transport mea-
surements on suspended carbon nanotubes performed by the local injection
of current from the tip of a scanning tunneling microscope (STM) [60]. This
experimental technique turns out to be particularly effective in revealing the
fingerprints of the mechanical degrees of freedom on the transport character-
istics of the nanotube. The choice to study freely hanging carbon nanotubes
combined with the atomic-scale spatial resolution of the STM make possible to
accurately investigate such effects as Coulomb blockade and Luttinger liquid
behaviour that are usually not observable in proximity of an highly conduc-
tive substrate (required by the STM). The fabrication procedure can be sum-
marized as follows:

1. dry etching of 200 nm deep and 100 nm wide trenches on a substrate of
Si0,; the spacing between trenches is about 1pm;

2. deposition of a 100 nm thick film of Pt by evaporation over the whole
sample in order to make it conductive;

3. deposition of square areas (5 m side) of Fe:Mo catalyst;

4. chemical vapour deposition (CVD) at 100 °C for ten minutes in order to
make the carbon nanotubes grow.

The nanotubes grow in random directions, some of them turn out to be
suspended over the trenches for a distance of about 100 nm. Further details
about the fabrication procedure can be found in [71].

LeRoy et al. performed low temperature transport measurements on the
suspended carbon nanotubes, e.g. current-voltage characteristic and differen-
tial conductance curve. As a result of their measurements, sharp peaks appear
in the differential conductance curve, which can be interpreted as the signa-
tures of elastic electron tunneling events, in which the energy of the electronic
state of the nanotube involved in the transport of charge matches the electro-
chemical potential in the STM tip. The difference in the energies correspond-
ing to the peaks provides a measurement of the energy required to add one
electron to the nanotube.

Furthermore, increasing the tunneling current across the nanotube, a num-
ber of less pronounced peaks appeared on the sides of the Coulomb peaks.
This additional features of the differential curve can be attributed to inelastic
tunneling processes, that take place when the transfer of charge is accompa-
nied by the emission or absorption of quanta of mechanical energy (phonons).
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Figure 2.4: STM topography of a nanotube crossing a trench showing the freely sus-
pended portion of the tube; STM current image showing current spikes on the sus-
pended portion of the nanotube; high-resolution topography on a suspended por-
tion of the nanotube showing the atomic structure. (Fig. from [71]) (a) Normalized
differential conductance of a metallic single-wall carbon nanotube as a function of
sample voltage taken with a low setpoint current I,.; at -0.6 V. The tip is located at
the centre of the suspended nanotube. A series of sharp peaks is visible due to the
Coulomb staircase as the Fermi level of the substrate aligns with unoccupied states
of the SWCNT. (b,c), Same as (a) with increasing setpoint current. A series of side
peaks has appeared near the main Coulomb staircase peaks due to absorption and
emission of phonons. (d) Zoom-in on one of the peaks showing side peaks corre-
sponding to the emission (E) and absorption (G) of phonons. (e) Energy diagram for
emission of a single phonon showing that an increased energy is needed for electron
tunnelling. The distance between the solid black line and the top of the black box rep-
resents the Coulomb charging energy. (f) Energy diagram for elastic tunneling where
a level in the nanotube is aligned with the leads. (g) Energy diagram for absorption of
a phonon, which decreases the energy needed for tunneling. (h) Plot of the energy of
the side peaks as a function of inverse diameter, showing a linear relationship. (Fig.
from [60])
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The peaks at energies above that one of the main peaks are due to electrons
emitting a phonon during tunneling, while peaks at energies below are due to
electrons absorbing a phonon during tunneling.

This interpretation is strongly supported by the fact that the side peaks
appear at the same distance (in energy) from the main peaks. If this energy
difference is interpreted as the energy carried by a single phonon, Aw, where
w is the mechanical frequency, LeRoy et al. identify the vibrational mode in-
volved in the transport of charge as the radial breathing mode.

The presence of strong absorption peaks in the differential conductance
curves shown in [60] is particularly surprising because at equilibrium, when
no current is injected into the carbon nanotube, the thermal population of
phonons at such low temperatures (~ 5 K) is expected to be very small. This
observation indicates that the tunneling current induces a nonequilibrium
phonon distribution in the suspended carbon nanotube.
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CHAPTER 3

Electromechanical instability in suspended
nanowire-based NEMS

In section (1.3) we reviewed the main features of the electromechanical in-
stability known as “shuttle instability” and the related mechanism of charge
transport. The nanoelectromechanical system in which this phenomenon has
been originally investigated consists of a small (i.e. nanometer-sized) metallic
particle embedded in soft dielectric layer between two electrodes. The only
relevant mechanical degrees of freedom in this nanostructure are the center of
mass position and velocity. All the dynamical variables related to the structure
of the particle were ignored.

Hence, a natural question now arises: does the “shuttle” instability per-
sist in mechanical systems whose dynamics is characterized by several me-
chanical degrees? The results presented in Paper I and II (together with some
related works by other authors) that are discussed in this chapter address pre-
cisely this issue. The NEMS that is investigated for this purpose is a sus-
pended carbon nanotube in which extra charge is injected from the tip of a
scanning tunneling microscope (STM). The general description and some rel-
evant experimental results regarding this system have been presented in Sec.
(2.3).

The movable element in this NEMS is a doubly clamped metallic single
wall carbon nanotube. The tip of the STM is positioned at some point along
the nanotube axis. Extra charge is then locally injected into the nanotube by
applying a bias voltage between the STM and the supporting leads. The nan-
otube can perform transverse oscillations over the trench between the leads
and these mechanical oscillations are coupled to the tunneling current across
the system because the width of the potential barrier that characterizes the
STM-nanotube junction depends on the time-varying distance between the
nanotube and the STM.

A number of theoretical studies performed on this system [72-75] indi-
cate that an electromechanical instability, similar to the “shuttle-instability”
predicted in mechanically-compliant Coulomb blockade nanostructures, can
take place also in suspended nanowire-based NEMS.

In this chapter we will describe in detail the model analyzed to obtain the
results presented in Paper I and II. The dynamics of the oscillating nanotube
is assumed to be classical here, however some features of the model will be
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retained also in the analysis of the quantum dynamics, which is presented in
the next chapter.

Before introducing any model, we would like to discuss briefly some phys-
ical arguments on the basis of which it is possible to understand the onset of
the electromechanical instability as plausible effect.

The tunneling of electrons to and from the nanotube is responsible for the
time variation of the net charge on the nanotube, ()(¢), which is necessarily
quantized, i.e. Q(t) = —N(t)e, where N(¢) denotes the number of extra elec-
trons on the nanotube at time ¢. At any given time, the probability of electron
tunneling through the STM tip-nanotube junction is strongly (exponentially)
affected by the distance between the nanotube and the tip, whereas the proba-
bility of tunneling from the nanotube to the leads is constant. If the nanotube
could be “frozen” very close or very far from the tip, the amount of net charge
on it would be basically determined by the charge exchange with only the tip
or the electrodes, respectively, and therefore it would depend uniquely on its
position.

However, if we now consider the nanotube oscillating at some frequency w,
then, since the net charge on the nanotube cannot adjust itself instantaneously
to the equilibrium value determined by the nanotube position, it follows that
the amount of net charge of the nanotube at any time depends on its distance
from the STM tip at earlier times. This effect of retardaded response has been
already discussed in Sec. (1.3) for the shuttle system and it is particularly
prononunced if the charge exchange rates between the nanotube and STM and
the nanotube and the leads are comparable to the frequency of the mechanical
oscillations.

Furthermore, when a bias voltage is applied between the STM and the
electrodes, the nanotube is affected by an electrostatic force F' which depends
on the bias voltage, the extra charge that has tunneled to the nanotube and the
position of the nanotube relative to the tip of the STM. The retardation that
characterizes the response of the electronic degrees of freedom of the nanotube
to the mechanical displacement implies that the electrostatic force performs a
nonvanishing work on the nanotube.

If this work over one period of oscillation is positive, a net amount of en-
ergy is pumped into the mechanical system every cycle, which means that the
amplitude of the oscillations increases. On the other hand, if the work turns
out to be negative, some energy is removed from the nanotube, making the
amplitude of the oscillations decrease. If the retardation is negligible, then the
total work done during one cycle would be zero, since the electrostatic field is
conservative.

In this chapter we will focus on the case of positive work, that resembles
the situation of the ordinary point-like shuttle system. As a consequence of the
pumping of energy into the mechanical vibrations, the equilibrium configura-
tion of the nanotube becomes unstable. Because of the inevitable presence of
dissipative processes that compete with the pumping mechanism and tend to
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Figure 3.1: Sketch of the NEMS studied in this thesis. A metallic doubly clamped
single wall carbon nanotube is suspended between two metallic electrodes and any
deviation from the equilibrium configuration is described by the displacement along
the x—axis, u(z,t). An STM tip is put over the point (0,0, zy) along the nanotube axis
and a bias voltage V' > 0 is applied between the STM tip and the supporting leads.
The distance between the nanotube and the STM tip at equilibrium is d, while R is the
effective radius of the STM tip and L is the length of the nanotube.

bring the system to thermal equilibrium the, a finite threshold value for the
electromechanical coupling is required for the instability to develop.

3.1 Nanotube dynamics in the classical regime

We already pointed out in section (2.1 that the application of continuum elas-
ticity theory to describe the mechanical properties of carbon nanotubes has
turned out to be successful in many cases. We will follow this approach here
and model the suspended carbon nanotube as an elastic beam with clamped
ends. Unless otherwise stated, we will use hereafter the notation defined in
figure (3.1) '. The nanotube is modeled as an homogeneuos beam, with the
origin of the reference frame at the midpoint and the z coordinate along the
neutral axis (i.e. the line that undergoes nor compression neither extension
during the flexure of the beam). The cross section is supposed to be uniform
and situated in the zy plane. We indicate with (0, 0, 2;) the position of the STM
tip, while d is the distance between the nanotube and the STM tip at equilib-
rium.

Suppose that the nanotube is deformed from its static equilibrium config-
uration by a bending force perpendicular to the z—axis. After that the force
ceases to be applied, the nanotube starts to oscillates in the zz plane. In the
limit of small amplitudes of oscillation, the deformation of the cross section
can be neglected and the nanotube dynamics is fully described by the dis-
placement of the neutral axis along the z direction, which in the following

lin which the z—axis points “downwards”, which is the same orientation of the x—axis
chosen in Paper I and II. However, in Chapter (4) the z—axis will be assumed to point up-
wards, consistently with the notation used in Paper Il and IV.
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3.1. Nanotube dynamics in the classical regime

will be denoted as u(z,t).

Within the framework of elasticity theory, the simplest model through which
we can describe the dynamics of the nanotube mechanical degrees of freedom
is the Euler-Bernoulli equation [7]

0*u u
/)Sﬁ + E]@ = F[Q(t),u, z, 2] 3.1)

where E is the Young modulus of the nanotube (~ 1 TPa), I is the cross-
sectional area moment of inertia, p is the mass density and S is the cross sec-
tion area. At the right-hand-side of Eq. (3.1) there is the bending force per
unit lenght, F, that in general varies along the nanotube axis and depends on
many factors: the time-varying extra charge on the nanotube, (), the dis-
tance between the nanotube and the STM tip and on the position of the STM
tip. The boundary conditions corresponding to the case of a beam clamped at
both ends are: u(—L/2,:) = u(L/2,-) = 0u/0z(—L/2,-) = du/0z(L/2,-) = 0,
where L is the length of the suspended part of the nanotube.

It can be shown [7] that Eq. (3.1) can be derived from the balance of the
internal and external forces acting on each element of the beam when this is
slightly bent. Alternatively, Eq. 3.1 (in absence of the force at the right-hand-
side) results through the variational approach, which looks for the extremal
condition of the action based on the lagrangian

@  EI (%)’

Defining the momentum density canonically conjugated to the displacement
in the standard way 7(z,t) = §£/du and performing the Legendre transfor-

L)2

Llu, 0u, 1] = / dz

—L)2

mation H[u, 0*u, 7] = ffﬁz dzmi, — L, we can obtain the Hamiltonian corre-
sponding to the lagrangian (3.2), that is

L)2

Hu, O%u, 71 = / dz

—L)2

r  EI (0>
555 + = (@) ] . (3.3)

The considerations developed in this thesis are based on the analysis of the
beam dynamics (that is, of Eq. (3.1)) in terms of its normal modes. This ap-
proach amounts to expand the displacement field and the force per unit length
over a complete set of orthogonal functions. A convenient choice of such a set
is provided by {¢;(2)}, i.e. the eigenfunctions of the differential operator %
which is Hermitian if supplied with the clamped-clamped boundary condi-
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tions. The normal-modes decomposition of u(z,t), 7(z,t) and F reads

u(z,t) = Z z;(t)p;(2) (3.4a)

m(zt) = i 7i()0;(2) (3.4b)

FIQ(t),u, 2, 20] = i filQE), %, ..., 7, 20lp;(2) (3.40)

where z, (1), ..., z;(t),... = x and {f;[Q(t),x, z, |} are time-dependent coef-

ticients with the dimensions of length and force per unit length, respectively.
The eigenfunctions {,(z)} define the spatial profiles of the normal modes of
oscillation for the doubly clamped beam and they are given by:

z

a6 = o (7)o (7)€ 0 () s v )

where Cy = (cos,/¢; — cosh,/c;)/(sin/¢; — sinh ,/¢;), and C) is a constant
determined by the normalization of the eigenfunctions (which is arbitrary).
Here we choose to have dimensionless eigenfunctions, so that C; is fixed by
the condition fOL dzp;(2)pr(z) = L1, *. The numerical coefficients {c;} in Eq.
(3.5) can be calculated by solving the equation cos ,/cj cosh ,/¢; = 1, which is
derived by imposing the boundary conditions, and their values for the first
few modes are: ¢; = 22.4,61.7,120.9,199.9, 298.6 (they increase roughly as n if
n is the mode number).

The three bending modes with the lowest frequencies are plotted in fig-
ure (3.2), from which it is evident that they can be well approximated by the
functions {sin jmz/L}. This remark is useful to realize that these vibrational
modes have definite symmetry properties related to the operation of spatial
inversion along z with respect to the midpoint of the nanotube. The mode
profiles ¢;(z) whose index j is even turn out to be antisymmetric with respect
to the nanotube midpoint, ¢;(—z) = —p,(z), while those ones labeled by odd
numbers are symmetric, ¢;(—z) = ¢;(z). For the moment, we assume that the
STM tip is positioned over the midpoint of the nanotube (i.e. 2y = 0). In this
way, the electromechanical coupling between the STM and the odd modes is
negligible. The role played by the position of the STM tip in optimizing the
coupling for different modes has been considered in Paper II and it will be
discussed below.

Inserting the normal-modes expansions of u(z,t) and F (3.4) into Eq. (3.1),
it turns out that the beam dynamics is equivalent to the dynamics of a set of

’The eigenfunctions shown in Eq. (3.5) and Fig. (3.2) are actually obtained by imposing
the double-clamping boundary conditions at z = 0 and z = L rather than at 2 = —L/2 and
z = L/2. That might be confusing, however it does not affect the results presented here. A
similar inconvenience in the notation occurs in Figs. 2 and 3 of Paper II, in which the values
of zy/L on the horizontal axis should range between —1/2 and 1/2 instead of 0 and 1.
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Eigenmode 2

Figure 3.2: The first three bending modes of a doubly clamped beam.

coupled harmonic oscillators x = {1, s, ...} with frequencies {w;}, where
w; = % (Y1/pS)"/?, under the effect of the forces {f;}

Zj + 25 + wj?:cj = Lf;[Q(t),x, z, 2] (3.6)

We introduced in equation (3.6) a phenomenological damping force for each
mode amplitude, —v;%;, where 7; has the dimension of inverse time and rep-
resents the rate at which the mechanical energy is dissipated to the environ-
ment. The general aspects of the problem of dissipation in nanomechani-
cal resonators have been introduced in section (1.2). In Paper I and II both
a frequency-independent and Zener model-based damping coefficients have
been considered.

In order to study the dynamics of the suspended carbon nanotube, an ex-
pression for the electrostatic force F' must be specified. Furthermore, the ex-
tra charge on the nanotube varies in time because of tunneling and therefore
an equation of motion for )(t) (which takes into account the variation of the
width of the STM tip-nanotube tunneling barrier with the nanotube displace-
ment) is needed to characterize the coupled dynamics of the mechanical and
electronic degrees of freedom.

We will discuss the charge transport through the system in section (3.2)
and derive an expression for the force in Sec. (3.3).

3.2 Charge transport in the Coulomb blockade
regime

The quantization of the electron charge turns out to play a crucial role in the
transport characteristics of small circuits containing tunnel junctions. The ad-
dition of one extra electron to a charged metallic body requires a finite amount
of energy in order to overcome the electrostatic repulsion of the electrons that
are already present. For systems whose size is between the nanometer and
the micrometer scale this “charging energy” can be of the same order or even
larger than the average thermal energy, which means that the transport of
charge at low temperatures and low bias voltages is blocked. This suppres-
sion of the current due to electrostatic interactions is known as “Coulomb
blockade” and it has been the subject of an intense stream of theoretical and
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experimental research since the 70s ( [76] and see [77] for a comprehensive
review). It is worth to stress that a necessary condition for the manifestation
of Coulomb blockade is that the electrical circuit under consideration contains
tunnel junctions. While in an ordinary metal the polarization charge can as-
sume any value (even fraction of the elementary charge e), since it is related
to the displacement of the cloud of conduction electrons with respect to the
positive background charge of the ions in the crystalline lattice, the tunneling
through a potential barrier requires the transfer of one charged particle at the
time.

Furthermore, the picture presented above is qualitatively correct to explain
Coulomb blockade effects only in metallic systems that are not “too small”.
When the typical size of the system is in the range of few tenths of nanome-
ters or below, the quantization of the electronic energy spectrum (which is
not taken into account in metallic systems) is no longer negligible . As it can
be readily understood by a simple “particle-in-the-box” calculation, the differ-
ence in energy between two electronic states scales with the size of the system.
In general, the scale of the energy needed to add one extra electron, £,, can be
estimated as the sum of two contributions [78]:

Ea ~ Ek + Ec, (37)

where ¢ is usually denoted as the “charging energy” and its order of magni-
tude is given by E¢ ~ €?/C, C being the total capacitance of the body, while
Ej, is the kinetic energy of the added electron. For a free electron gas in three
dimensions, E; = V/g(Er), where V is the volume within which the gas is
enclosed and ¢(Er) the density of states at the Fermi energy.

In the case of carbon nanotubes, which can be considered as quasi-one
dimensional structures, the difference between the energies of the electronic
states can be estimated as A, ~ hvp/2L, where h is Planck’s constant and vp
the Fermi velocity. For realistic values of the parameters, this estimate gives
Ay ~ 1.7 meV/um, which shows that the quantization of the electronic spec-
trum can play a decisive role in the transport properties of carbon nanotubes.

In this chapter and, partially in the next one as well, we will however
consider the case in which the metallic behavior is dominant and the nan-
otube can be basically treated as a long and thin conductive cylinder. This
approximation is appropriate for nanotubes that are not too short (~ 1um)
and allows to describe the electron-electron interaction in the system through
a simple model based on classical electrostatics. In section (last) we will con-
cerned instead with the limit in which the quantization of the electronic spec-
trum is most relevant and analyze the dynamics of the system through a fully
quantum-mechanical treatment.

The transport of charge through the STM-nanotube system will be treated
here within the framework of the so-called “orthodox theory” of Coulomb
blockade [76,79], which has been successfully applied to describe a variety of
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experiments. Within this theoretical framework, given an arbitrary arrange-
ment of conducting bodies, the transfer of charge through the barrier between
the two sides of a tunnel junction is considered as a stochastic process which
occurs at a certain rate I'. The amount of extra charge that can be found on
an isolated body connected to the rest of the system by tunnel junction (a so-
called “island”) is always an integer multiple of the elementary charge ¢, i.e.
the quantum wave-like nature of the charge carriers is ignored.

This theory describes correctly the physics of charge transport in small cir-
cuits provided that the following conditions are fulfilled:

e The electron energy quantization inside the conductors is ignored, i.e.
the electron energy spectrum is treated as continuous. This approxima-
tion is valid only if £ < E¢, kgT.

e The time of electron tunneling through the barrier is assumed to be the
smallest among all the time scales that characterize the system, includ-
ing the average time interval between two consecutive tunneling events.
Furthermore, when a tunnel event takes place, the state of the electrons
in every part of the circuit is supposed to relax to a local equilibrium
distribution (i.e. a Fermi function) within a time interval that is much
shorter than the time that elapses between two consecutive tunneling
events.

e The phenomenon of cotunneling, that is the simultaneous tunneling of
several electrons due to the coherent superposition of electronic wave-
functions is not taken into account. This approximation is plausible as
long as the transparency of the tunnel junctions is well below unity. In
other terms, the “tunnel resistance” of all the junctions (see below for the
definition) must be larger than the quantum unit of resistance, which is
given by von Klitzig’s constant, Ry = h/4e? ~ 6.5 kQ.

For what concerns the transport properties, the STM-nanotube system con-
sidered in this thesis is equivalent (if we neglect the effects related to the me-
chanical degrees of freedom) to two tunnel junctions connected in series, with
a central conducting “island” (the carbon nanotube) located between two bulk
electrodes (the STM tip on one side and the supporting leads on the other). In
this type of circuits, if the orthodox theory presented above is applicable, the
net charge on the island is unambiguosly determined at any time and, if we
neglect any offset possibly introduced by charged defects, ? it is quantized in

3This offset charge that would shift the net charge of the island and therefore mask the
quantization effect can be removed by adding a third electrode (the “gate”) capacitively cou-
pled to the island. The circuit would assume then the configuration known as “single-electron
transistor”. If island mechanical degrees of freedom affects the transport of charge, such as
in the case of the STM-nanotube system, the coupling to the gate can have also interesting
dynamical effects, as discussed in Sec. (4).
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units of the electron charge, ) = —Ne, where N takes integer values. Ac-
cording to the physical picture suggested by the orhodox theory of Coulomb
blockade, N (t) can be seen as a discrete random variable (see [80] as an exam-
ple of analysis along these lines). Instead of looking for a suitable stochastic
differential equation to describe the dynamics of N(¢), it is more straightfor-
ward to introduce probability distribution function, Py(t), which gives the
probability to have N extra charges on the island at time ¢. The transport
of charge through double tunnel junction circuits (such as the STM-nanotube
system considered here) can be analyzed through a deterministic master equa-
tion which reads

dPy

T Fnvi1Prvir + v v—1Pvo1 — Ovpanv + Do n) Pae (3.8)

InEq. (3.8), I'y n is the rate for a transition from state IV to state N/, where | N —
N’| = 1 since the charge of the island varies by units of e. The change of the
island charge can take place because of tunneling through one junction (that
is, in our case, the STM-nanotube junction) or the other (i.e. the nanotube-
leads junction). The rates that appear in Eq. (3.8) take into account the two
possibilities and therefore are given by the sum of two contributions:

Py =T (N, ) + T (N, ) (3.9)
Tyan=Tg(N,) + T (N,), (3.10)

The notation I'; ) in Eq. (3.9) indicates that the charge tunnels through the
STM tip-nanotube junction (o« = S) or the nanotube-leads junction (o« = L),
from the electrode to the nanotube (—) or from the nanotube to the electrode
(«<-). The - in Eq. (3.9) stands for all the physical quantities that contribute
to determine the rate of the tunneling processes. The rest of this section is
devoted to clarify which form can be derived for the tunneling rates within
the framework of the orthodox theory and how Eq. (3.8) should be modified
in order to account for the effects due to the electromechanical coupling in the
STM-nanotube system.

The condition of low transparency of the tunnel junctions can be exploited
as a starting point for a perturbative calculation of the tunneling rates. The
two sides of the junction are modeled as reservoirs of non-interacting elec-
tronic quasiparticles. According to standard perturbation theory, the rate of
transition through a given junction « from the state characterized by (quasi)-
momentum 7k to the state with (quasi)momentum hq, is given by

2
D5 = S [t P8(Ex — B, — AEL), (3.11)
where E , are the energies of the initial and final electronic states and |tx,|?
is (quantum-mechanical) probability of transmission from the state k local-

ized at one side of the junction to the state q localized at the other side, and
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AE, is the difference between them. The —function in Eq. (3.11) enforces the
constraint of energy conservation that must be fulfilled by the transition. The
total rate of tunneling through the junction can be obtained from the sum of
the rates between every pair of states (i.e. Eq. (3.11) weighted with a statisti-
cal factor that gives the probability of occupation of the states (that is, Fermi-
Dirac distributions, since in the orthodox theory the electronic reservoirs are
assumed to be at equilibrium). If the electronic spectra of the sides of the junc-
tion can be treated as continuous, the sums over the quasi-momenta k, q can
be turned into integrals. If the transmission probability can be approximated
as independent of the electron energy, so that the total rate of tunneling reads
eventually
2
[y — ALG (3.12)
¢ Ryl —exp(—AEl/kgT,)

where the indexes a and 7 run over the junctions and the “forward” (—) and
“backward” (<) processes, respectively. According to Eq. (3.12), the tem-
perature of the electronic reservoirs in the two sides of the junction is as-
sumed to be the same, T,,. In spite of the name, the tunnel resistance, R,,
must not be interpreted as an ohmic resistance. It encloses the quantum fea-
tures of the tunneling processes and it is defined as R, = (27/Rh)|t.|*g:9/,
where g,  is the density of states in the two sides of the junction evaluated
at the respective Fermi energies. In the case of the STM tip-nanotube junc-
tion, the probability amplitude of tunneling through the barrier depends ex-
ponentially on the distance between the nanotube and the STM tip, that is
ts = tslu(zo,t)] = tsexp[—)_,; 7;(t)p;(20)], where t5 is a constant and A is
the tunneling length of the junction, that is the characteristic distance within
which the rate of electron tunneling is appreciably different from zero.

The difference in energy between the initial and final state, AF, can be
taken from several sources. For example, it could come from the mechanical
system coupled to the tunnel junction (this would be the case of vibron-assisted
tunneling) or from the electrostatic energy stored in the capacitance associated
to the junction. Here we focus on the latter situation, and come back to the
former in Chapter (4), in connection with the results presented in Paper III
and IV.

The transport of charge across a tunnel junction can be considered as an ir-
reversible thermodynamic process. The electrostatic energy that the tunneling
electron takes in order to overcome the potential barrier is dissipated as heat
once it has reached the other side of the junction. That can induce an effec-
tive heating or cooling of the electronic reservoirs in the two sides of a tunnel
junction, see [81]).

As a consequence of the second law of thermodynamics, the process occurs
spontaneously if it leads to a decrease of a suitable thermodynamic potential,
or “free energy” GG. Which thermodynamic potential is appropriate to describe
the tunneling process? That in general depends on the physical constraints
imposed to the system [82]. The set of conductors which make up the circuit is
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not isolated, since it is able to exchange heat and particles (i.e. electrons) with
the surroundings. A typical experiment takes place at constant temperature,
therefore we can imagine that the whole circuit is in contact with a thermal
bath in equilibrium at temperature 7'. Furthermore, the electrostatic potentials
of some of the metallic bodies in the circuit are held fixed by voltage sources,
which amounts to say that they are connected to large reservoirs of particles
with constant chemical potential .

Given these constraints, the possibility for a given tunnel process is deter-
mined by the variation of the generalized Gibbs free energy:

Giin — Gin = AG = AU — W, (3.13)

where AU is the variation of the electrostatic energy, which can be expressed
equivalently in terms of the net charges on the conductors, ¢;, or the potentials,¢;,
whereas W, is the work done by the voltage sources in order to keep constant
the potentials of the conductors connected to them. In the works presented in
this thesis, we consider only voltage sources that do not vary in time, therefore
their work can be simply expressed as AW,; = > . ¢;¢;, where the sum runs
over all the conductors which are held to constant potential.

According to the considerations presented above, a tunneling process that
changes the electrostatic energy from U; to U; takes place spontaneously if
AG < 0. The variation of the electrostatic energy for an arbitrary set of metallic
bodies can be calculated as

1 -1
U=32 Cudits = 3 Cjla; (3.14)
1) 1)

C,; are the elements of “Maxwell’s capacitance matrix” (C~! being its inverse),
which relates the charges and the potentials: ¢; = Zj\il Cij¢; [83]. The possi-
bility to characterize the relationship between charges and potentials through
a matrix is a direct consequence of the linear nature of Maxwell equations.
The coefficients C;; depend essentially on the geometry of the system, in a
way that needs to be evaluated numerically or modeled analitically on the
basis of some simplifying approximation.

In the following, we adopt a slightly different and more simplified ap-
proach in order to describe the electrostatics of the system. Our considerations
are based on the circuit model shown in Fig. (3.3), rather than on Maxwell’s
capacitance matrix. That amounts to model the system as a network of capac-
itors and tunnel junctions instead of separated metallic bodies.

Regarding the difference between the two descriptions, we can point out
that, by definition, the C;; coefficients depend not only on the position of the
i—th body with respect to the j—th, since they are calculated by solving Pois-
son equation for electrostatic potential in the geometry of the whole system.
Therefore, even if the £—th body is grounded (k # i, j), its position affects the
value of C;; through the boundary conditions.
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Figure 3.3: Circuit model for the STM-carbon nanotube system.

On the other hand, the circuit model simplifies the description, since it
reduces the physical system to a set of junctions characterized by effective ca-
pacitances which depend only by the local geometry, that is on the area and
relative distance of the model capacitors associated to the junctions. Now, we
can look at the STM-nanotube system as a system of two tunnel junctions, one
between the STM tip and the suspended beam and the other between the beam
and the supporting leads, which are characterized by capacitances C's(x) and
C', and resistances Rg[x] = Ryexp|— Y. zipi(20)/ A (Ro being the value for the
nanotube at the equilibrium distance d from the STM tip) and R, respectively.
Both the capacitance and the resistance of the STM tip-nanotube junction are
modulated by the motion of the nanotube.

The capacitance Cj in Fig. (3.3) represents the possible capacitive coupling
between the nanotube and all the (metallic) bodies in the universe other than
the STM tip and the leads. In contrast to what happens in the systems in
which the central island is a metallic particle, here Cjy can be not negligible
due to the extended structure of the nanotube. For example, if the substrate
over which the nanotube is suspended contains metallic parts, there could
be some accumulation of charge in those regions of the nanotube that are far
from both the STM tip and the leads. Furthermore, the capacitance C; would
depend on the spatial configuration of the nanotube, that is, Cy = Cy[(x)].

In order to simplify the model, here we assume that the supporting leads
and every other body except the STM tip are grounded, so that the capacitance
Cy = Cy + C}, can be interpreted as the effective capacitance of the suspended
nanotube with respect to the ground. Furthermore, the x—dependence of C
is neglected and the STM tip is supposed to be connected to an ideal voltage
source that holds its electrical potential to a constant negative value —V'.

One can then use Kirchhoff’s laws in order to express the charges stored
in the three capacitors, s, 1, Qo as functions of the (quantized) extra charge
on the nanotube, ) = Qs — Q. — Qo = —Ne, and the STM tip potential, —V'.
The electrostatic energy of the system that results from this calculation reads:

g @ CsxC,V
QCE[X] QCE[X]

(3.15)

43



Chapter 3. Electromechanical instability in suspended nanowire-based
NEMS

where Cx[x] = Cg[x]+C+Cy. We remark that the structure of the electrostatic
energy in Eq. (3.15), that shows U as the sum of a charge-dependent and a
charge-independent contribution, is not affected by the particular choice of
the voltages across the capacitors. For an arbitrary choice of the voltages the
variation of the generalized Gibbs free energy associated to a tunneling event
that transfers one elementary charge through a junction ¢ held at voltage V;,
can be written as

(QF 6)2 Q? C; C;V;
AG; = — —eVill—— ) — —, 3.16
2Cs, 2Cs, ¢ Cx, ‘ ; Cx, ( )

The ()—independent terms in Eq. (3.16) represent the work done by the volt-
age sources in order to keep the voltages constant. In particular, the :—th volt-
age source performs work to replace the charge that has tunneled through the
junction (i.e. eV;) and, like the other voltage source, to compensate the polar-
ization charge induced by the charge tunneled on the island (i.e. ¢ > _; C;V; /Cy).

The expression for AG; in Eq. (3.16) might look identical to that one for
an ordinary double tunnel junction (i.e. without mechanical degrees of free-
dom). However, it is worth to remark that since U depends on the nanotube
displacement x, the electrostatic energies of the initial and final states in Eq.
(3.16) should be evaluated at the equilibrium values of x corresponding to the
charge states () and @) F e, which in principle are different. In the following,
we will neglect the correction due to this mechanical effect.

Now we can evaluate AG; for several tunneling processes in order to re-
alize which ones play a significant role in the transport of charge across the
system. For example, the probability of tunneling of one electron from the
STM tip to the (initially neutral) nanotube is determined by the difference

AGS = C% E _ cgv] , (3.17)

where Cy is evaluated at the equilibrium values of x for the neutral nanotube.
Eq. (3.17) implies that the free energy decreases after the tunneling if the bias
voltage is larger than the threshold value Vi = ¢/2C,. For the tunneling of
one electron from the (initially charged) nanotube to the leads, the variation
of the generalized Gibbs energy is given by

- _ _©
AGT = (V+ 5 CS) (3.18)

It can be easily checked that if the bias voltage is in the interval defined by
e/2C, <V < e/2Cs (Where Cy is assumed to be smaller than C', for any value
of x) then the only two processes involved in electron transport through the
system are the charging of the nanotube from the STM tip and its discharging
through the nanotube-leads tunnel junction.
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As mentioned at the beginning of this section, in spite of its genuinely
quantum-mechanical origin, within the orthodox theory of Coulomb block-
ade, the tunneling of electrons is considered as a stochastic, rather than coher-
ent process. According to this approach, the dynamics of the charge state of
the nanotube is described by the distribution function Py (t), whose evolution
in time is determined by the master equation (3.8).

In NEMS the coupling between mechanical and electronic degrees of free-
dom is typically not negligible, therefore a more general description is re-
quired to characterize the physical state of the system. For this purpose, it
is convenient to introduce the function Py (x,7,t), which represents the joint
probability density of finding /N extra electrons on the nanotube when its me-
chanical state is described by the normal-mode amplitudes and conjugated
momenta (x, ) at time ¢. The joint probability density Py(x,7,t) obeys a gen-
eralized Boltzmann equation, in which the collisional integral is replaced by a
term describing the tunneling processes (see section (3.4)).

However, in the limit in which the rate of tunneling is much larger than the
mechanical frequency (w < I's,I';), that corresponds to the usual experimen-
tal situation for NEMS, it is only the “average” number of extra electrons that
actually affects the (comparatively slow) motion of the nanotube. The time
evolution of Py(t) can then be analyzed in terms of a simple kinetic equation
that differs from the master equation of the orthodox theory (that is, Eq. (3.8))
only for the x—dependence of the rate of tunneling between the STM tip and
the nanotube. In the regime of strong Coulomb blockade (i.e. N = 0,1 are the
only possible charge states), this equation reduces to

dP
d—tl =TI P+ Tsx|(1 - Py) (3.19)
which is the equation used in Paper I to describe the transport of charge

through the STM-nanotube system.

3.3 Electrostatic interaction

Consistently with the conditions of validity of the “orthodox theory” of Coulomb
blockade for metallic systems, we assume that the electron-electron interac-
tion in our case can be adequately included through the classical concept of
capacitance. The dependence of the electrostatic force on the net charge of
the nanotube () can then be determined from general considerations on the
electrostatics of the system.

For a system of conductors characterized by electrostatic energy U, the
force along a given direction z acting on a conductor is —(0U/0x),, where the
derivative represents the rate of change of the energy when the body moves
along the direction x and the suffix g indicates that the charges on the conduc-
tors are supposed to be constant.
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On the other hand, if some of the conductors are supposed to be held at
constant potential while changing their relative positions, then they must be
connected to voltage sources and the work performed by them in order to
keep the potentials constant must be taken into account. In this case, the role
of U is played by the function U -}, qr¢x, where the sum over k is extended to
all the conductors connected to the voltage sources [83]. This issue is usually
discussed in textbooks for the simple case of a parallel plates capacitor. If
one does not take into account the constraint of fixed voltage, the resulting
force between the oppositely charged plates of the capacitor turns out to be
repulsive instead of attractive (and, besides that, a factor 1/2 off the correct
value).

According to these considerations, the electrostatic force that affects the
nanotube when it moves along the = — direction under the condition that the
bias voltage V' is fixed, turns out to be

Q — C,V]? 9Cs
2C% ox’

0
F= ~ 5 (U—-QsV)y x(z,2) = (3.20)

where x(z, 2p) is a function with the dimensions of an inverse length that de-
scribes the distribution of the force along the z—axis. It is worth to remark
that the force (3.20) is always attractive, as expected for the electrostatic force
between two oppositely charged plates of a capacitor.

The possibility to factorize the dependencies of the force on the x and 2
coordinates relies on the circuit model introduced in section (3.2), where the
only the x—dependence of the capacitance C is taken into account.

Regarding the distribution of the electrostatic force along the nanotube
axis, we specify that, throughout this thesis and the Papers I-1V, the force is
considered to be strongly localized around the position of the STM tip, i.e.
x(2,20) ~ 0(z — 2p). This is clearly an approximation, since it is known that
the electrostatic force between charged bodies must decay as some negative
power of their relative distance. However, it is possible to show that the
“delta” form for the electrostatic force is a reasonable approximation if the
size of the STM tip is much shorter than the length of the nanotube, a condi-
tion that can be readily fulfilled in the geometry of the STM-carbon nanotube
system. A detailed proof of the validity of this approximation can be found in
Appendix A.

If a gate electrode would be inserted rode in the trench between the leads,
it would coupled capacitively to the nanotube through the x—dependent ca-
pacitance C[x]. The possible effects related to this additional electrode are
briefly discussed in Sec. (4.1), whereas the generalization of Eq. (3.20) that
would be required in that case is presented in Appendix B.
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3.4 Multimode shuttling of single electrons

The description of the STM-nanotube system that takes into account only the
coupling to the fundamental bending mode of the nanotube does not intro-
duce qualitatively new features to the physical picture that emerges from the
analysis of the point-like shuttle system [72].

However, the results presented in Paper I and II indicate that this is not
the case if the contributions of all the bending modes to the nanotube dis-
placement are taken into account. The STM tip is assumed to be put over the
midpoint of the nanotube (z, = 0), and this implies that all the “even” modes
do not contribute to the motion of the nanotube, since the mode profiles ¢;(z)
have a node for j even.

Furthermore, the system is assumed to be in the regime of strong Coulomb
blockade and that makes possible to express the electrostatic force per unit
length (3.20) in the simple form F' = e£ Py (t)0(z — 2p), since N? = N if the only
possible values for N are 0 and 1. The coupling between mechanical and elec-
tronic degrees of freedom originates from the dependence of the force on P (¢)
that is the average probability to have one extra electron on the nanotube at
time ¢, while the “effective electrostatic field” £ is a positive constant with the
dimensions of Volt/meter that can be calculated from Eq. (3.20) by expand-
ing the right-hand-side around the equilibrium position and retaining only
the zero-th order term in x. Within this approximation, even though the force
does not depend explicitly on the nanotube displacement, there is an implicit
dependence on x through P (t), because of the form of the rate of tunneling
across the STM tip-nanotube junction.

We would like to point out that £ > 0 implies that the condition e/2C, <
V' < e/2Cs which, according to the considerations developed in Sec. (3.2)
means that the only two tunneling processes that can contribute to the trans-
port of charge through the system are the tunneling of one electron from the
STM tip to the (initially neutral) neutral and the tunneling from the singly-
charged nanotube to the leads.

The mechanical motion is assumed to be much slower than the rate of tun-
neling across both junctions (w < I'g, I'y), so that the transport of charge can
be analyzed through the simple kinetic equation (see Eq. (3.19)). The cou-
pled equations of motion for the normal modes-amplitudes and the average
probability P;(t) read:

i+ i +wiz; = ePIE/M (3.21a)

Pr = —Ty[x|P +T'.[x], (3.21b)

where FE = Fs[X] -+ FL/ FS[X] = FSGXp[— Ej SL’]/)\] (QOJ'(ZO = 0) ~ 1 fij Odd),
I's being the one shown in Eq. (3.12). The dissipation in the system is modeled
by the linear “viscous” term —vz; in Eq. (3.21) and, since the damping rate

is assumed to be constant, the loss of energy from the oscillating nanotube
occurs in the same way for each mode.
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In the limit in which the frequencies of the bending modes are smaller than
the typical total rate of tunneling, w;/I's; < 1, where I'y, = I's+1I';, it is possible
to find a solution for Eq. (3.21b) in the form of a power series in w;/I'y; (see
Paper I).

It is worth to remark that the condition w; /I's; < 11is far from being optimal
in order to achieve the electromechanical instability. The difficulty to obtain
the instability in this regime is reflected by the request of a higher quality
factor than it was considered in the single-mode case (see the numerical results
in Paper I).

As a consequence of the quantized nature of the tunneling current, the nan-
otube experiences a sequence of random “kicks” that makes it deviate from
the static equilibrium configuration. We notice that the effect of each single
kick is to shift the equilibrium position of the nanotube by the small amount
Az, = €€} p;i(20)/Mw}, which can be considered as the natural parameter
to evaluate the contribution to the electromechanical coupling due to the elec-
trostatic interaction. It is worth to point out that, if the tip of the STM is put
over the point z, = 0, the contribution of each mode to the electromechanical
coupling, ¢; = e£/Muw? differs from the others only for the frequency factor
1/ wf-. Even though this shift is quite small, Az, < 1, the results presented in
Paper I and II reveal that, under certain conditions, the “kicks” produced by
the tunneling electrons can make the equilibrium state of the nanotube unsta-
ble. The analysis of this phenomemon has been performed by means of both
analytical and numerical methods.

The analytical procedure presented in Paper I is based on the observation
that the conditions w; < I'g, I';, assure that any deviation of the nanotube from
the equilibrium configuration will vary very slowly in time compared to typ-
ical time scale of the dynamics of the nanotube net charge, which is defined
by the interval between two consecutive tunneling events. This physical argu-
ment support the possibility to seek for solutions of the equations of motion
(3.21) in the form z;(t) = AA;(t) sin(w;t + x;(t)), where the amplitudes A;(t)
and phases x;(t) are approximately constant over the periods of oscillation
associated to the different vibrational modes, 4;, y; < w;.

In order to investigate how the different vibrational modes affectt dynam-
ically each other, it is necessary to go beyond the linear approximation in
>_; zj/A. The condition of weak electromechanical coupling (and therefore ini-
tially small displacement) makes possible to expand the position-dependent
tunneling rate I's[x] up to third order in ), z;/A and P, up to the first order
in wj/Fg.

Combining the large separation in the characteristic timescales of mechan-
ical and electronic degrees of freedom and the feebleness of the electrome-
chanical coupling, we can reformulate the equations of motion in terms of the
slowly-varying functions A;, x;, by replacing the =, in Egs. (3.21) with the
Ansatz x;(t) = AA;(t)sin(w;t + x;(t)) and averaging over the period of the
tirst mode, which is the longest one. In this time interval the amplitudes and
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3.4. Multimode shuttling of single electrons

phases for the different modes can be considered constant and be replaced by
their average values.
The equations of motion after averaging read:

K
X; = 0, (3.23)

where §; and «; are given by

47T\ w?
5 —=16(1— “ 3.24
’ ( wid; ) e (Fé) (3.242)
o = 59 1o (9] (3.24b)
i = 1287y, T2

To first order in w;/I'y, the expressions for §, and «; do not depend on the
mode index j, as the product w?e; is independent on j. Because of this one can
replace 0; — ¢ and a; — o

The behavior of the solution of Eq. (3.22) can be readily visualized for the
case of two modes n, m (the generalization to more modes is straightforward).
The stationary points of the two nonlinear coupled equations can be found
analytically and their stability can be determined through the evaluation of
the Jacobian matrix [27].

The dynamical behavior of the system depends on the sign of the param-
eter 6. From Eq. (3.22) it is clear that, if 0 < 0 the only stationary point is the
origin, that corresponds to the absence of any oscillation. The nanotube lies
at rest in some static configuration determined only by the constant tunneling
rates I'g and I';. On the other hand, if § > 0 the origin becomes unstable and
three more stationary points appear: a saddle point at (0/3, §/3) and two stable
points at (+/4,0) and (0, v/9). These different scenarios are shown in Fig. (3.4).
The two new stable points represent oscillating states with finite amplitude
V6 and frequency w, or w,,, depending on the initial conditions.

The conditions § > 0 defines the onset of the shuttle instability. From § = 0
it is possible to find the expression for the threshold electric field above which
the instability starts to develop, £ = 4I'sAyM/e. The analysis of Eq. (3.22)
indicates that, once the instability for a certain number of vibrational modes
is established, the system evolves in such a way that only one of the unstable
modes reaches the new stationary state, characterized by steady amplitude
oscillations, i.e. the limit cycle.

The selection of the surviving mode is determined by the initial conditions
as the mode which initially has the largest displacement from the origin (that
is from the static equilibrium state), maintains its separation from the other
ones and evolves into a limit cycle. Trajectories in the amplitudes space cannot
cross and this result can be generalized analytically to the case of an arbitrary
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Figure 3.4: (Color online) Stationary points when two modes (n and m) are unstable.
Two attractors, indicated by (o), correspond to a finite amplitude of one mode while
the other mode is suppressed are shown. The stationary point marked with (x) is a re-
pellor and the point indicated by (*) is a saddle point. The thick lines are separatrices
that trajectories cannot cross. The separatrix A,, = A,, ensures that if 4,,(0) > A,,(0),
this inequality hold for all times ¢ [74].

number of modes by studying the asymptotic behavior of the solutions of Eq.
(3.22) [74].

It is worth to remark that the symmetry between modes that characterizes
Fig. (3.4) is actually broken if higher order (in w,/I's; and w,,/I's) corrections
to 6 become relevant or if the dissipation affects each mode in a different way.
Then each mode will have its own §,, and, in general, it may happen that
the selection of the survivor mode is not only based on the size of the initial
displacements from the static equilibrium point.

In order to check the results obtained by the analysis of Eq. (3.22), they
have been compared with the numerical solution of the equations of motion
for the mode amplitudes z; (Egs. (3.21a) and (3.21b)), based on a fourth-order
Runge-Kutta method. Fig. (3) in Paper I shows both the analytical and nu-
merical solution for a given choice of the initial conditions. The agreement
between the results obtained from the two approaches is found in the whole
range of parameters for which the analytical treatment is valid.

The numerical solution of the equations of motion for the z; illustrates also
another aspect of the dynamics of the system in the regime characterized by
the electromechanical instability. Since the frequencies of the different modes
are not commensurable, i.e. they are not integer multiples of the fundamental
mode, the initial motion of the nanotube is not characterized by a sharply
defined periodicity as can be seen in the lower left panel of Fig. (3). However,
when the system reaches the final stationary state and only the mode n = 5
(which initially had the largest deviation away from static equilibrium) has
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3.5. Geometrical scanning of nanotube bending modes

a non zero amplitude, its oscillations are clearly periodic with frequency ws.
The same behavior for modes n=1 or 3 is observed by simply switching the
initial conditions among them.

Furthermore, the numerical analysis of Eq. (3.21a) is not necessarily lim-
ited by the requirement that the oscillation amplitude be kept small with re-
spect to the tunneling length. The results shown in Fig. (4) of Paper I, for
instance, suggest that the selective evolution promoted by the simultaneous
instability of many vibrational modes can characterize also the “large ampli-
tudes” regime.

3.5 Geometrical scanning of nanotube bending
modes

The theoretical study presented in Paper I and reviewed in Sec. (3.4) sug-
gests that the onset of the electromechanical “shuttle-like” instability in an
extended object, such as a suspended nanotube, induces a selective evolution
of its many mechanical degrees of freedom.

However, it should be stressed that even though the existence of many
stable states characterized by periodic oscillations was proven in Paper I, there
is no clear evidence of how they could be probed from the experimental point
of view. The discrimination of different unstable vibrational modes cannot be
physically performed by a careful choice of the initial conditions as it can be
theoretically done when solving the equations of motion of the model.

The definition of a feasible method to selectively induce the electrome-
chanical instability in the STM-nanotube system has been the basic motiva-
tion for the work that is described in Paper II. The main idea for the procedure
suggested i Paper Il is to exploit the spatial profiles of the modes and the pos-
sibility to accurately control the position ofthe STM tip in order to optimize
the coupling for the specific mode that is chosen to be unstable.

The geometric features of the vibrational modes appear in the model through
the expression of the electromechanical coupling, which has been defined as
e =efY, vi(z0)/MAw} and is therefore dependent on the spatial profiles of
the modes at the position of the STM tip, ¢;(z). The point zy = 0, for which
©;(20) = 0if j even and ~ 1 if j odd represents a quite peculiar choice.

In general, the dynamics of the mode amplitudes x; will be determined by
the specific electromechanical coupling for the j—th mode, £; = e£p?(2) /Mw?
Furthermore, if the bias voltage is fixed, the only other parameter that can be
varied is the equilibrium distance between the STM tip and the nanotube, d,
which determines the tunneling rate at equilibrium, I's(d) (denoted by I'y(d)
in order to keep consistency with the notation used in Paper II).

In other terms, we can investigate the stability of the STM-nanotube system
as a function of the position of the STM along the z direction, which is parallel
to the nanotube axis and along the = direction, which is perpendicular to it.

>
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For what concerns the description of the coupled dynamics of the mechanical
and electronic degrees of freedom of the system, in Paper II we followed the
more general approach mentioned in Sec. (3.2), whose key ingredient is the
joint probability density Py (x,,t).

We still consider the system in the strong Coulomb blockade regime and
limit to one the maximum number of extra electrons on the nanotube, so that
only the probability densities Fy(x, 7, t) and P;(x, 7,t) should be considered.

The time evolution of F;, and P, is determined by two coupled generalized
Boltzmann equations in which the collisional integral is replaced by a suitable
term that describes the tunneling [4]. In order to study the dynamics of the
nanotube averaged over its possible charge states, it is convenient to introduce
the functions P, = P, + F, that obey the equations of motion

oP.

ot
OP_

ot

+ (L1+ L) (P +P)=0 (3.25a)

+ (L + Lo)(Py 4+ P-) =
=T _[x; 2] Py + ' [x; 20] P_, (3.25b)

where I', [x; z9] = ['g[x; 20] + 'z, I_[x; 20] = 's[x; 20] — ', and the Liouvillian
operators £; and L, are defined as follows:

; 0 0
= oz 20 R
b= ; lM 0z; M, on; +VJ87T‘7T]
0
Lo=eEY pi(z0)=—.

From Egs. (3.25) we can derive the equations of motion for any dynami-
cal variable averaged over the probability densities Py and P_: ((...))q, =
[(...)Pa(x, 7, t)dxdr, where o = +. The set of equations of motion for the first
moments (1)_ = P_(t), (¥j)a, (7)) is:

d(Tj)a  (Tj)a

i~ M (3.26a)
d<§i>a = —Mwj(w))a = 75(m)a + €5 (20) P (3.26b)

dp_

% = (T_[x; 20))+ — (Tu[x; 20]) _, (3.26¢)

The dissipation in the system is introduced by the “viscous” term —~;(x; in
Egs. (3.26), where the index j reflects the fact that dissipation can be frequency-
dependent, that is it affects each vibrational mode in a different way.

In Paper II, we considered the case in which the damping of the mechanical
vibrations can be described in terms of the model formulated by Zener that
has been described in Sec. (1.2.1): v; = Agw;7/(1 + (w;7)?). We do not refer
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3.5. Geometrical scanning of nanotube bending modes

to a specific dissipative mechanism and choose values for the parameters Y
and 7 such that reasonable values for the effective quality factors of different
modes, ; = 7;/w; could be obtained.

We point out that the set of equations (3.26) is not closed because the tun-
neling rate I's[x; 29| introduces a coupling between the first and all the other
moments. However, if we just focus on the analysis of the conditions that
generate a dynamical instability (without actually characterizing the steady
states towards which the system evolves once the instability has started to de-
velop) in the limit of small oscillation amplitudes we can expand I's[x; 2] to
first order in z; /A and that reduces (3.26) to a closed set of linear equations.

The static solution of the linearized equations of motion, (7;), = 0, (7§)a =
r$, p- = p, where 7% and p are constant, describes the nanotube as a slightly
bent beam at rest. The stability of this solution can be investigated by substi-
tuting the expressions (&), = &, + Age®! (where & is any of the dynamical
variables (), (7)), p— and Ay is constant) in the linearized equations of mo-
tion and solving for the exponents j;, [27].

The analytic expression of the 3, cannot generally be found since it requires
the solution of an algebraic equation of degree higher than the third. However,
in the regime of weak electromechanical coupling and weak dissipation we
can look for exponents of the form [, ~ iwy + i, with |0;| < wy, and derive
an analytical expression for the §;, which up to the first order in all ¢, and

e LTy wtal) (), Ti)
e Told)I'n wier(zo 17
P —— |4 i 3.27
FT T T @) o2 4 TR ( L ) (3:27)

where I'; (d)* = T'(d) + T';, (i.e. T's(d) + I'r). The sign of the real part of ;, in
Eq. (3.27) determines the stability of the static solution for the k—th average
mode amplitude. If Re[d;] > 0 then (z;), increases exponentially in time,
hence the static solution for the k-th mode is unstable. This is the signature of
a “shuttle-like” electromechanical instability. On the other hand, if 9e[0;] < 0
the energy pumped into the vibrational mode by the electrostatic field is not
able to compensate the loss due to dissipation and after a time interval of the
order of 1/ the k-th mode amplitude decays to its static value.

For fixed values of 7, £ and I';,, the sign of Pe[d;] becomes a function of z,
and I'j(d), i.e. it depends only on the position of the STM tip in the =z plane.
The set of values of z, and I'{(d) for which the real part of ¢, is positive defines
the instability region for the k-th mode amplitude in the plane (zo,I';(d)).

The instability regions of the first three modes in the two limits w7 > 1
and w;7 < 1 are shown in Fig. (3.5(a)) and Fig. (3.5(b)), respectively. The
regions determined analitically by taking the real part of 5, in Eq. (3.27) are
delimited by solid lines and they are compared with the regions obtained by
the numerical solution of the algebraic problem for the exponents j3;, which
are delimited by markers. Two different scenarios are possible depending on
the value of the parameter w;7. If the relaxation time 7 is longer than the
characteristic time scales associated to the vibrational modes, 7 > 1/w;, then
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Figure 3.5: Regions of instability in the parameter plane (2o, I';(d)) of the first three
bending modes in the case of “slow” (a) and “fast” (b) dissipation-induced mechan-
ical relaxation (see text). The regions computed from the real part of the analytic
expression (3.27) (solid lines) are compared with the results obtained by the numer-
ical solution of the linearized equations of motion (markers). The parts of the plot
filled with colors correspond to the values of (zo, I'jj(d)) for which a single vibrational
mode is excited. The values of the relevant parameters for (a) are: 1/7 = 0.1w;.
e€/(mIw?) = 0.1, T = 5wy, Y = 107% and for (b): 1/7 = 10wy, e£/(mAw?) = 0.1,
I =5wy, Y =1073.

it is possible to find regions in the parameter plane (2, I'j(d)) where only
a single mode is unstable without having the other modes unstable as well
(see the areas filled with colors in Fig. (3.5(a))). A selective excitation of the
vibrational modes is possible in this case.

On the other hand, if the mechanical relaxation induced by dissipation is
much faster than the mechanical vibrations, wr < 1, then the fundamental
mode dominates over all the others and the instability of a certain mode is
always accompanied by the instability of the fundamental one. The selective
excitation of the vibrational modes cannot be achieved in this case.

In concluding this section, we would like to point out that the results pre-
sented in Paper II indicate that the geometric features of the STM-suspended
nanotube device can play a substantial role in promoting the instability of the
static equilibrium configuration. This aspect is peculiar of the STM-nanotube
system (and, more generally, of all the NEMS in which the role of the mov-
able element is played by a spatially extended structure, such as a beam or
a membrane) whereas, on the other hand, in “point-like” shuttle systems the
conditions for the onset of the electromechanical instability have been always
expressed in terms of a bias threshold voltage that has to be overcome or a
maximum damping rate that can be tolerated.
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3.6 Appendix A

As long as the STM tip is not put too close to the ends of the nanotube (so that
the edge effects due to the supporting leads are negligible), in good approx-
imation the force depends only on the relative distance from the position of
the STM tip, that is x(z, 20) = x(|z — 20])-

The coefficients of the electrostatic force expanded on the normal-modes
basis ¢;(z) can be expressed as the sum of two contributions:

L2
= P02, ol =
L)2 L2
~ t), x];(zo0 Y — z20)d? + F[Q(t),x i(2") = wi(z0)x (2" — 20)d2.
QW xies0) [ | 3 =)t + FROLN [ [64(#) = gl — )

(3.28)

The first integral from left in Eq. (3.28) is convergent since F' decays faster
than |z — z5|7'. A simple estimate of the behaviour of the z—component of
the electrostatic force far from the STM tip can be performed by modeling
the STM tip as a charged sphere of radius R at distance d above an infinite
grounded metallic cylinder. From this analysis it turns out that F' ~ |z — 2|3
for |z — 2| > R, d.

Since the first integral from left in Eq. (3.28) is convergent, then it just
produces a finite factor that multiplies the eigenmode function below the STM
tip, ¢j(20). The second integral from left in Eq. (3.28) can be estimated as
follows:

Z0+R/2L

L/2
/ 03(2) — 3(z0)x(# — )d' / 03(2) — 03z (€ — &0)de’

L)2 z0—R/2L

12

dQSOj zo+R/2L ) , , R2

/ /

( 22 ) /0 RjL (2" = 20)"x(2" — 20) < P; (20)max, R = ﬁmaXXR,
zo Y 20—

where max, is the maximum value of x over the region where the force is
significantly different from zero (which has been assumed to be symmetric
with respect to zp) and the parity of y ~ |z — 25| * around z, makes possible

to get rid of the linear term in the Taylor expansion of ¢;(2) — ¢; (o).

Since max, R is of the same order of f_LﬁQ F[Q(t), 2 — z]dZ < oo we can
argue that the second term in Eq. (3.28) is O(R?/L?) with respect to the first
one. Consistently with the conditions of validity of elasticity theory, we con-
sider here only those vibrational modes with wavelengths of the same order

of the nanotube length and therefore we approximate d*;/dz* ~ O(L™?).
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Figure 3.6: Electrostatic force distribution for a truncated cone-shaped STM tip with
base radius R=20 nm, top radius 2 nm, height 50 nm which at equilibrium is d = 1
nm far from a cylinder with length L = 200 nm. The voltage drop between the STM
tip and the nanotube is 1 V and the STM tip is put above the midpoint of the cylinder
(20 = 0). The force vanishes outside a region centered around 2z, whose width is of
the order of R (we would like the thank Juan Atalaya for the support with the finite-
element calculation).

The correction term in Eq. (3.28) for typical values R ~ 1077, L ~ 107,
turns out to be very small. Therefore the local approximation for the electro-
static force, i.e. Lf; ~ F[Q(t)]d(z — 20), is valid in the geometry of the system
considered here.

As a further support of these analytical considerations, we calculated the
electrostatic force LF' from the numerical solution of the Poisson equation (ob-
tained through the finite-element method) for the STM-nanotube system. The
STM tip is modeled as a truncated cone with a fixed potential, while the leads
are grounded. As shown in Fig. (3.6), the results of this calculation manifest a
quite good agreement with the behaviour predicted by the physical consider-
ations reported above.
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CHAPTER 4

LCooling of nanomechanical resonators by thermally
activated electron transport

In Chapter (3) we have discussed the conditions under which the coupling
of mechanical and electronic degrees of freedom in the STM-nanotube system
can give rise to a dynamical instability that drive the suspended nanotube to
a regime a self-sustained periodic oscillations in which the transport of charge
is significantly enhanced by the mechanical motion. From a general point of
view, the onset of the electromechanical instability is possible because there
is a transfer of energy from the electronic to the mechanical subsytem and, as
a consequence of this process, the amplitude of the oscillations increases in
time, until a balance bewteen the energy pumped and the energy dissipated
per cycle is established.

One could then naturally wonder if this is the only effect that the elec-
tromechanical coupling can have or rather if there exist conditions under which
the tunneling of electrons causes instead a net removal of energy from the me-
chanical subsystem. The analysis performed in Paper IIl and IV indicates that
such conditions actually exist and that is possible to reduce the energy of the
mechanical vibrations to a level very close to the value associated to the quan-
tum mechanical ground state, i.e. E s = huw/2.

The problem of defining an efficient procedure to actively cool macroscopic
mechanical oscillators, especially in connection with the fundamental issue of
the crossover between classical and quantum mechanics, generated a remark-
able amount of work in the last years, particularly in the fields of nanoelec-
tromechanical and optomechanical systems (see section (1.4) and references
therein). The cooling mechanisms described in Paper III and IV can be consid-
ered as examples of experimentally feasible methods to drive a macroscopic
oscillator to a state that is very close to its vibrational ground state. The de-
scription of the physical behaviour of the system in this regime demands a
quantum-mechanical analysis such as the one performed to derive the results
in Paper Il and IV.

Moreover, we think that there are at least a further reason of interest for the
results presented here, beyond the performance of our cooling procedure and
the comparison with other methods proposed in the literatue. From a ther-
modynamics point of view, the suspended nanotube is a mechanical system
interacting with a nonequilibrium environment, that is the one provided by the
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4.1. Nanotube dynamics in the quantum limit

tunneling current. Under nonequilibrium conditions, we cannot draw general
(i.e. based only on the laws of thermodynamics) conclusions about the state
of the system.

On the basis of these considerations, it might sounds quite surprising that
the picture that emerges from the equations of motion for the mechanical sys-
tem coupled to the nonequilibrium electronic environment is formally equiv-
alent to that of a system interacting with a thermal bath at equilibrium. This
behaviour has been found in a variety of electro- and opto-mechanical sys-
tem under some general conditions of weak coupling and large separation
between relevant time scales.

In this chapter, we devote sections (4.1) and (4.2) to discuss the general fea-
tures of the cooling mechanism introduced in Paper III. The characterization
of the mechanical state of the nanotube under the nonequilibrium conditions
imposed by the tunneling current constitutes the main subject of Paper 1V,
which is briefly introduced in Sec. (4.3).

4.1 Nanotube dynamics in the quantum limit

As anticipated in the introduction above, we are now interested in the dy-
namics of the suspended nanotube in the quantum regime. The general way
to proceed is to start from the Liouville-von Neumann equation of motion for
the total density matrix of the system (which contains information about the
nanotube, the STM and the leads), and then apply some suitable approxima-
tion in order to extract the information concerning only the dynamical state of
the nanotube.

The density matrix formalism requires that the degrees of freedom of the
system can be modeled in terms of Hamiltonian operators. For the mechan-
ical degrees of freedom we already presented the classical hamiltonian func-
tion (3.3), that can be physically interpreted as the mechanical energy of the
suspended nanotube. The standard way of quantizing it is to perform the
canonical quantization of the normal mode amplitudes and their conjugated
momenta, (z;, 7;), that are mapped to the hermitean operators (X, P;) satisfy-
ing the canonical commutation relations

where §;; is the Kronecker delta. For simplicity, we assume that the displace-
ment of the nanotube is adequately described by the fundamental bending
mode alone, that is the coupling of the other vibrational modes to the net
charge on the nanotube is negligibly small (higher-frequency modes contribute
nevertheless to the root-mean-square deviation of the nanotube center-of-mass
position, as discussed in Paper IV). If this approximation is valid, the mechan-
ical degrees of freedom of the system can be modeled by the Hamiltonian of a
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quantum harmonic oscillator

P2 Muw?
H, = it 3 X2 (4.2)

Since the STM tip, the nanotube and the supporting leads are assumed to be in
anormal metallic state, they can be simply modeled as gases of noninteracting
electronic quasiparticles that, in the language of second quantization, can be
represented by the following Hamiltonian operators

He =) Eyat}aqa+ > &che, = Hs+ Hy + Henr, (4.3)
q,& q

where a((f,()x and c((f) are annihilation (creation) operators for electrons in the

SIM tip (o = S), in the leads (¢« = L), and in the nanotube, respectively. It
is worth to remark that, while the theory of Fermi liquids is well suited to
describe the electronic structure of ordinary metals, a number of theoretical
works have argued about the non-Fermi liquid character of the electrons in
one-dimensional nanowires and, in particular, in carbon nanotubes [63].

In the Hamiltonian (4.3) the suspended nanotube is considered as a nor-
mal metallic system with a continuous electronic spectrum. However, this
approximation can be not justified if the quantization of the electronic levels
is not negligible, as it has already pointed out in section (3.2).

In Paper IV we considered the case in which the average difference of the
electronic states energies is largest than any other energy scale in the system,
so that only a single (spin-degenerate) level is involved in the transport of
charge. In this case, the operator describing the electronic degrees of freedom
of the nanotube shown in Eq. (4.3) must be replaced by

He,NT = EQCTC (44)

Then we turn to discuss the terms describing the coupling between mechan-
ical and electronic degrees of freedom. The STM-nanotube system is charac-
terized by two independent mechanisms of interaction, that is the electrostatic
force hat affects the nanotube when it is charged and the modulation of the
width of the tunneling barrier at the STM tip-nanotube junction due to the
nanotube displacement.

We start discussing the electrostatic interaction first and come back to the
expression of the electrostatic force presented in Eq. (3.20) within section (3.3)
to perform some further analysis. Opening the square in Eq. (3.20), in the
regime in which the nanotube can be only neutral or charged by a single elec-
tron, we can rewrite the electrostatic force as:

_ N€CL(V — Vc)
202

0Cyq
ox

_(Cv)?
20T

0Cyg
ox

F= , (4.5)
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where V¢ is the Coulomb blockade threshold voltage, V- = ¢/2C;. The fac-
tor x(z, z9) defined in Sec. (3.3) has been omitted in Eq. (4.5) since only the
lowest-frequency bending mode is considered here and, with our choice of
normalization, ¢, (0) ~ 1.

We point out that the expression of F' in Eq. (4.5) can be seen as the sum
of two contributions, one that depends only on z and another that depends
on both z and N, the number extra electrons in the nanotube. The latter term
provides a mechanism of interaction between mechanical and electronic de-
grees of freedom. The capacitance of the STM-nanotube junction can be ex-
panded in Taylor series around the equilibrium position of the nanotube, i.e.
Cslz] = Cg[0] + (0Cs/0x)ox + ..., which suggests that the charge-dependent
part of the electrostatic force can be formally derived from an effective poten-
tial energy which is linear in both z and N. The Hamiltonian operator that
corresponds to this effective potential energy is given by

AGY

He = NX =5.,NX. (4.6)
Cs

We are aware that the procedure followed to derive the Hamiltonian (4.6)
might present some ambiguity, since the classical function that corresponds
to it (see Sec. 3.3 ) cannot be interpreted as the energy of a closed system,
because the STM tip is held at fixed potential by an external voltage source.
The operator defined in Eq. (4.6) should be therefore considered as an effective
Hamiltonian that describes the electrostatic interaction in the system.

In Eq. (4.6) it has been recognized the fact that the electrostatic interaction
turns out to be proportional to AGY, that is the variation of the generalized
Gibbs energy associated to the tunneling of one electron from the STM tip to
the initially neutral nanotube. This simple relationship between AG (that de-
termines the rate of charge exchange between the STM tip and the nanotube)
and the electrostatic force that might look rather unexpected. It is natural to
wonder if this result hints us to something deep about the relationship be-
tween charge transport in the Coulomb blockade regime and mechanical dis-
placement and probably it would be interesting to make some speculations
along that direction. However, on the basis of the number of approximations
on which this result follows, it seems unlikely to us that there could be some
very deep meaning enclosed in it.

What is relevant for our purposes in the effective interaction term (4.6) is
the possibility to control not only the strength, but also the sign of the cou-
pling by varying the bias voltage above or below the threshold value V. It is
important that there is a threshold value, but the fact that it coincides with the
Coulomb blockade threshold is probably just accidental.

Nevertheless, the existence of a threshold value is expected to persist also
if some additional control parameter is added to the STM-nanotube system
is modified, for example in the form of a gate electrode inserted in the trench
over which the nanotube is suspended (see Appendix B). That might be useful
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to increase the experimental control over the system. As we show in Appendix
B, the qualitative behavior of the system is not affected, but then the thresh-
old value that discriminates the regimes in which the sign of §,, is positive
or negative does not coincide with the Coulomb blockade threshold value. A
richer scenario of different dynamical/transport regimes can then be envis-
aged, which is summarized in the table below:

|4 < Ve > Ve
< Vp | no tunneling at 7' = 0 | tunneling yes
$m negative $m negative
> Vp | no tunneling at 7' = 0 | tunneling yes
Sm positive Sm positive

It is interesting that the existence of the threshold voltage for the force is
strictly related to the quantized nature of the electron charge. This is in con-
trast with the phenomenon of the “shuttle-like” electromechanical instability
illustrated in Chapter (3), for which the quantization of the electron charge is
not essential, as shown in [72]. That can be understood from Eq. (4.5), which
shows clearly that if e could take vanishingly small values, it would be not
possible to control the sign of §,,. We stress that the total electrostatic force
(i.e., Eq. (3.20)) does not change its orientation by varying the bias voltage,
it is always attractive, as it should be since the charge distributions accumu-
lated on the two sides of the STM-nanotube junction have always opposite
signs, like on the plates of a capacitor.

We now proceed to describe the tunneling coupling, that can be included
in our model through the “transfer Hamiltonian” [84]:

Hr =Y e, [ts()?)aq,s +trag.| + He., (4.7)
a9’

where t5[X] and t;, are the probability amplitudes for tunneling across the
STM-nanotube and nanotube-leads tunnel junctions (they are supposed to be
independent from the electron energy) and the operator ¢’ changes the num-
ber N of excess electrons on the nanotube by one, e #Nei# = N + 1. This
charge-shift operator emphasises the quantized nature of the tunneling elec-
trons and therefore provides a way to include Coulomb blockade effects [79].
The “phase” operator ¢ is the canonically conjugated to the number of extra
electrons operator N, since they obey the commutation relations:

[N, ¢ = i. (4.8)

Since tg depends on the overlap between electronic states in the STM tip and
the nanotube, it depends on the deflection of the tube through the operator
tsexp[X/A], where tg is a constant and A the tunneling length. In contrast,
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the distance between the nanotube and the leads is fixed, so that ¢;, does not
depend on the nanotube deflection.

It is worth to remark that the tunneling electrons produce fluctuactions in
the momentum of the suspended nanotube. At the intuitive level, this fact is
evident if we adopt a classical point of view and consider the electrons as par-
ticles impinging on the nanotube surface and transferring their momentum to
it.

However, at the quantum level this picture is no longer valid, since the
momentum of the tunneling electrons is not even defined, because of the lack
of translational symmetry in the system. The issue of momentum transfer in
the STM-nanotube system is rather subtle. A quantum-mechanical model to
assess it (that treats the electrons in the tip as free particles) has been proposed
by [85].

The role of current-induced momentum fluctuations has been discussed in
several works about the performance of the STM as a sensitive displacement
sensor [86—89]. In all these papers the fluctuations are estimated (mainly ac-
cording to heuristic arguments) to be of the order of 4/\. The analysis focuses
on the noise in the measured tunneling current (through which it is possible
to detect the displacement of a mechanical oscillator coupled to the STM) and
particularly on that part whose origin can be found in the back-action caused
by the momentum transfer associated to the tunneling electrons.

It is interesting to remark that the transfer Hamiltonian (4.7) incorporates
the fact that the tunneling of electrons is responsible for fluctuations of the
nanotube momentum, as it emerges clearly from the equation of motion for
the nanotube momentum operator in Heisenberg picture:

~

m% = [P,H] = [P, Hy). (4.9)

4.2 Cooling by destructive interference

As discussed in the previous section, the electromechanical interaction in the
STM-nanotube system arises from two independent mechanisms, one related
to the tunneling coupling between the nanotube and the STM tip and the other
due to the electrostatic ! force that affects the nanotube when it is charged by
one electron. The cooling effect described in Paper III and IV results from the
interplay between these different mechanisms of coupling.

The analysis of the nanotube dynamics in the quantum regime can be con-
veniently performed representing the mechanical degrees of freedom in terms
of quanta of vibrational energy (vibrons), which are described by the following
annihilation and creation operators: b/b’ = (X /2Az,, 4+ / — iAz,P/h), where

'Due to the formal similarity between the electrostatic term in the Hamiltonian of our
model and the interaction term used in the polaron problem, in Paper IIl and IV and in the
following, the electrostatic coupling will be refererred to as the “polaronic” coupling.
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Azgs = y/h/2Muw is the position uncertainty of the oscillator position in the
ground state.

As it is shown, in Paper III, the “polaronic” term can be removed from the
Hamiltonian by a suitable unitary transformation. As a result of this transfor-
mation, the tunneling amplitudes turn out to be dependent on the momentum
operator and not only on the displacement. In the vibron representation, the
transformed tunneling Hamiltonian is given by:

Hr =3 tygse”Cron o cla, o 4 Het
k,q

+ Z tkq,Leiep(bibT)CLk,LCq —+ H.c.. (410)
k,q

The tunneling Hamiltonian considered in Paper IIl and IV is obtained from Eq.
(4.10) by linearizing the exponentials with respect to the vibron operators (see
Eq. (6) in Paper III), which amounts to consider only single-vibron inelastic
processes. This approximation is motivated by the fact that we are interested
in the dynamics of the nanotube in a regime that is closed to its quantum-
mechanical ground state, therefore only low-energy excitations (or, classically
speaking, small amplitudes of oscillations) should play a relevant role.

The main idea on which the cooling effect discussed in Paper IIl and IV is
based can be understood directly from the structure of the tunneling Hamil-
tonian shown in Eq. (4.10). The probability amplitude of inelastic electron
tunneling processes through the STM tip-nanotube junction depends on the
sum and the difference of the electromechanical coupling constants, which
can be controlled externally by virtue of the voltage-dependence of the “pola-
ronic” coupling constant ¢,. Therefore, if the voltage is set to a value for which
ep ~ &, according to Eq. (4.10), one would expect that the rate of inelastic pro-
cesses involving vibron emission is significantly suppressed.

In the stationary regime, the effective unbalance between absorption and
emission processes in favour of the former ones leads to a net decrease of the
average number of vibrons, that is a phenomenon that, in some sense, can be
interpreted as “cooling” of the mechanical system. The concept of cooling, al-
though intuitively clear, should be perhaps used with some care in the present
context, because the environment with which the mechanical system interacts
here is far from thermodynamic equilibrium.

In order to fulfill the sort of “resonance” condition, ¢, ~ ¢; that implies a
net removal of energy from the oscillator, the “polaronic” coupling constant
must be positive, ¢, > 0. It follows from Eq. (4.5) that the positive sign of
gp corresponds to AGY > 0, the condition for which the tunneling from the
STM tip to the nanotube is suppressed at low temperatures. At this point, it is
clear that for the tunneling current to work as an effective refrigerator of the
mechanical system, it is necessary that the temperature of the STM tip is high
enough to overcome the Coulomb blockade at the STM tip-nanotube junction.

64



4.2. Cooling by destructive interference

However, in the regime of thermally-activated tunneling, the “backward”
inelastic tunneling processes (i.e. those ones from the nanotube to the STM tip)
should be taken into account. Itis clear from Eq. (4.10) that they are detrimen-
tal for the performance of the cooling procedure because, as a consequence
of time-reversal symmetry, the enhancement of absorption for “forward” pro-
cesses would correspond to an equal increase of emission for the “backward”
processes. No net decrease (and not even increase) of the average number of
vibrons would be experienced in this case.

For this reason, in order to achieve the effective cooling of the mechanical
degrees of freedom, it is crucial that the geometry of system implies that the
rate of “backward” transitions is extremely lower than the rate of “forward”
transitions through the nanotube-leads tunnel junction, that is I's < I';, or,
equivalently, the STM tip-nanotube junction is much more resistive than the
nanotube-leads junction.

We would like to stress that the cooling effect discussed here relies funda-
mentally on the quantum-mechanical nature of the electronic transitions. The
possibility to achieve the necessary unbalance between vibron emission and
absorption processes depends essentially on the fact that the respective rates
are obtained as squares of probability amplitudes. To leading order in (tg, ¢,
ep) the rates of single-vibron emission and absorption associated to inelastic
electron tunneling processes through the STM tip-nanotube junction are given
by:

IgL =T5(AGY £ hw)lef + €5 £ 2e48,). (4.11)
The first (second) term of (4.11) gives the probability for tunneling assisted by
either absorption or emission of a vibron due to the tunneling (“polaronic”)
coupling alone, while the third term corresponds to the “interference” be-
tween these two mechanisms in the case of vibron emission (—) and absorp-
tion (+). In particular, €, > 0 if AG§ > 0 so that the interference is destructive
(constructive) for tunneling accompanied by vibron emission (absorption). If
AGY <0, the situation is reversed in the sense that ¢ < 0 and the interference
is constructive (destructive) for emission (absorption).

A further comment can be made about Eq. (4.11). In principle, the rates for
vibron emission/absorption processes are different not only for the ¢, ,—de-
pendent part, but also for the mechanical energy exchanged in the two cases,
+hw, which affects the t ransition rates because of the energy-conservation
constraint (see Eq. (3.11)). However, in all our considerations the temperature
(of both the STM tip and the leads) is always assumed to be high over the scale
defined by the quantum of mechanical energy, that is T’s, 77, > hw/kp.

In this regime, w can be neglected with respect to AG, and therefore the
presence of the mechanical degrees of freedom in Eq. (4.11) is manifested only
in the ¢, ,—dependent part. In this sense the cooling effect described here does
not depend on the conservation of energy during the tunneling processes.
That feature is a distinctive feature, which makes it essentially different from
all the procedures for active cooling that, in analogy with the basic principles
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of laser cooling of trapped atoms, rely completely on electronic transitions
promoted by the absorption of energy from the mechanical system (i.e., the
difference in energy between the initial and final states matches exactly Aw).

In order to perform a quantitative analysis of the cooling effect expected on
the basis of the physical considerations presented above, we followed the stan-
dard procedure to derive a quantum master equation for the reduced density
matrix that describes only the mechanical degrees of freedom of the nanotube.

The starting point is the Lioville-von Neumann equation for the density
matrix operator which represents the state of the whole system:

22 1 o), (4.12)
dt

where H is the total Hamiltonian of the system, given by the sum of all the
contributions introduced above, thatis H = Hs+ H;+ H,,+H yr+Hc+ Hr.
It is convenient to apply the unitary transformation U(t) = exp(iHyt/h), where
Hy = Hg + Hp + Hoynr + He (ie. switch to the “interaction picture”). The
equation of motion for p then becomes ihidp;/dt = [Hr(t), p1(t)], which can be
recast in the following integral form

% = %[HTI(t),pI(—oo)] — %/w dt [Hyi(t), [Hrr(t), pr(t)]], (4.13)

which amounts to a second-order perturbative expansion in the tunneling am-
plitudes (i.e. “Born approximation”). The procedure that leads to the equa-
tions of motion for the mechanical subsystem can be summarized in the fol-
lowing points:

e Define the reduced density matrix operator:
o= Trs.1[p]. (4.14)

The trace in Eq. (4.14) is performed over the electronic degrees of free-
dom of the STM tip and the leads, which are supposed to be weakly cou-
pled to the nanotube. Any possible back-action effect of the nanotube
on the STM tip and leads dynamics is not taken into account, which can
be expressed by writing the total density matrix in the factorized form:
p~o® ps® pr, where pg and p;, are equilibrium density matrices, i.e.
pa = Z texp(—H,/kgT,), where a = S, L. The trace over the electronic
degrees of freedom of the STM tip and the leads produces corresponding
Fermi factors at temperatures 7s and 77..

e Resolve o with respect to the possible charge states of the nanotube, that
is charged by one electron (1) or neutral (0). It means that the equation
of motion for o is multiplied by the operators N and 1 — N and traced
over the nanotube electronic degrees of freedom. This procedure results
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in the equations of motion for the two density matrices o; = Tr.[No] and

0o = Tr[(1 — N)o]. These equations are non-Markovian, that is non-local
in time.

e Similarly to what happens in the high-bias-voltage limit, in the high-
temperature limit, enforced by the conditions kpTs, kg1, > hw the
quantum master equations for o ; become local in time.

e Switch back to Schrodinger picture, which makes more transparent the
analysis of the physical processes involved in the dynamics of oy ;.

The quantum master equations derived according to this procedure are given

by:

dO’l 1 iF _ 1 ~
% = _ﬁ[Hmao-l] + E[X,O'l] — FLO'1 +F;~r <0’0 + X{O’o,X} + 2)\2
1 N 1 N
—FE (O'1+X{O'1,X}+ﬁ{0'1,X2}) +FZ_UO+‘C701 (415)
doyg i - - 1 X 51
%:—El[Hm,Uo]+FLUl+FS 01+X{01,X}+2>\2{O’1,X }+ XO'lX

1 . 1 .
_F—S’— (O'(]—i- X{O’Q,X}—F ﬁ{go,x2}) —FZ_O'O—FLWO'(), (4:16)

where I'Y = T, fo(Ey), I', = To(1 — fo(Ep)). The operator L, describes the
interaction with the equilibrium environment and, on the basis of general con-
siderations on quantum dissipative systems, it can be written as [90]:

Lo = — h[x (P,o}] - :ﬁ coth (hw /2ksTy) [X, [X, o). (4.17)

2

wherey = w/() represents the rate of damping of the mechanical energy to
the equilibrium environment, ) being the quality factor of the resonator, and
g, = lexp(hw/kpT) — 1]7! is the thermal average number of vibrons. Due
to the geometry of the system, the thermal bath that determines the state of
the nanotube at equilibrium can be identified with the phonon bath in the
supporting leads. Therefore the temperature that enters the expression of ny,
must be intended as the temperature of the leads, that however, in the analysis
presented in Paper I1I, is supposed to be the same as in the STM tip, i.e. T}, =
Te=1T.

In the high-temperature limit (Ts, 77, > hw/kp), the master equation be-
comes local in time and the dynamics of diagonal and off-diagonal elements
decouple [65]. The analysis presented in Paper III focuses on the diagonal
elements of the density matrix, denoted by Fpi(n,t) = (n|oo1(t)|n), which
provide the populations of the vibron states. They evolve in time according to
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the equations of motion:

€2 g2
—(n,t) =Ty [1 - Ep(l + Qn)} Pi(n,t) + TLEP(TL +1)P(n+1,t)+

2
+ T ZnP(n = 1,1) = D[l + 21+ 20)| Po(n, ) + £, [ Po(n, 1)

(4.18a)

dP e — g2
d—tl(n,t) =T {1 + e, + —2(1 + 2n)] Py(n,t)+

e7 + ¢’
+ g | egp + 5 + ey, | Po(n+1,t)+

5? + &2
+Tg ( 2 - atap) nPy(n —1,t) = TpPi(n,t) + Ly [Pi(n,1)]
(4.18b)

The operator describing the relaxation to thermal equilibrium introduced in
Eq. (4.17) assumes the following form in vibron representation:

L,[Pa(n)] = ~v(n+ 1)[(nen + 1) Pa(n + 1) — nyn Pa(n)]—
- Vn[(nth + 1)Pa(n) - nthPa<n - 1)]7 (419)

where a =0,1. We remark that Eqgs. (4.18a) and (4.18b) could be also directly
derived as kinetic equations for the populations Fy 1 (n, t) based on the balance
between the electronic transitions that populate the Fock state |0/1,n) and
those that deplete it.

The stationary solution of Eqs. (4.18a) and (4.18b) can be found by means
of a perturbative approach based on the smallness of the parameters &7, 2 and
1/Q. The same method has been applied in both Paper III and IV, therefore it
is worth to present it in some detail.

The problem of finding the stationary solution of linear systems of equa-
tions such as Egs. (4.18a) and (4.18b) can be formulated in general as:

(Lo +eL1) f(§) =0, (4.20)

where L, £, are linear operators defined in some vector space and ¢ a small
dimensionless parameter. The independent variable £ can be continuous or
discrete. The perturbative approach to the problem represented by Eq. (4.20)
is based on the search for a solution in the form of a power series in the small
parameter ¢, that is:

F(&) = FOE) +efV(E) +2fD () + O(?). (4.21)

By replacing the perturbative expansion shown in Eq. (4.21) into Eq. (4.20) and
imposing that terms at the same order in € must be equal, it should be possible
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to determine f(&) at any desired level of accuracy. It is worth to remark that
the power series shown in Eq. (4.21) does not imply that the zero-order term,
fO(€), does not depend at all on ¢, but rather that any deviation from f(©(¢) is
proportional to some power of ¢, therefore it can be considered as a correction
to f(¢) of the order of (at most) ¢, that is small if ¢ is small. In other terms,
most of the physical character that can be attributed to the solution f(¢) is
expected to be captured by the zero-order term @ (¢).

However, we can see immediately that this procedure encounters some
trouble if £, and £, are non-invertible, such as in the case of Eqs. (4.18a) and
(4.18b). For example, substituting the zero-order term, £ (¢) into Eq. (4.20),
we obtain the equation L, f(©)(¢) = 0, that surely has some non-trivial solution,
since £ is non-invertible, however it is not sufficient to determine (¥ (¢) (i.e.
all the functions in the kernel of £, satisfy the equation).

In order to derive an equation that constraints the form of £ (¢), it is nec-
essary to consider the perturbative expansion of f (&) up to the first order in .
Substituting the Ansatz f(¢) = f0(¢) + efW(¢) into Eq. (4.20), to first order
in € we obtain the equation

LofV = —£,f© (4.22)

Let us now consider a left eigenvector of £, corresponding to the eigenvalue
0 and denote it by ¢.(¢), that is g, (£) Ly = 0. Multiplying from left by g;, both
sides of Eq. (4.22), we get

gL L1 f =0 (4.23)

If the left eigenvector gy, is such that (g7, () are not linearly dependent (f(*
being the conjugate transpose of (%)), then Eq. (4.23) provides the wanted
condition that makes possible to determine f(*). The existence of a g; that
is not linear dependent with respect to f(1 is not guaranteed a priori. For
example, if £, is Hermitian, then g;, coincides with the conjugate transpose of
f©, therefore Eq. (4.23) does not help to find f(©.

Fortunately, this is not the case for Eqs. (4.18a) and (4.18b), from which it
results that the operator £, has a block-diagonal structure, each block being
defined by the 2x2 matrix:

—T's Ty
(v %)

The zero-order approximation of the unknown functions Py(n), P;(n) can be
written in the form
I's _ - I'p
n Py(n) =
FS"‘FLp( ) ol) s+ Ty

Pi(n) = B(n), (4.24)

where the function p(n) is presented in Eq. (9) in Paper III. In order to deter-
mine the function p(n), the (infinite-dimensional) matrix corresponding to the
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Figure 4.1: Average number of vibrons (n) plotted against the difference 6V = Vo —V
between the Coulomb blockade threshold voltage Vi and the bias voltage V. Each
curve corresponds to a different quality factor of the oscillator, while the straight line
gives the thermal average number of vibrons at the temperature of 7 = 1 K. Other
parameters used were: Vo=2 mV, Rg = 2.5 M), Ry, = 250 kS, ; = 0.27, ep(x 0V) =
0.0 -0.3.

operator £, can be multiplied by a row vector whose elements are all zeros
except for the two (one for each charge state) at a given n—th position which
are ones, thatis (...0...0,-10,-11,1,0,,410541 .. .). The resulting equation is
a finite-difference equation of the form: F(n + 1) — F(n) = 0 (F being a cer-
tain functional of p(n), i.e. F = F|p,]), which implies F = constant. Since
F(0) = 0, it follows that F(n) = 0 for every n, which corresponds to Eq. (8) in
Paper III.

By means of the stationary probability distributions Py(n) and P;(n), we
can determine the average number of vibrons that characterizes the mechani-
cal state of the nanotube in the stationary regime resulting from the interaction
with the nonequilibrium electronic environment: (n) = 3" m[Py(m)+ P1(n)].

The expression of (n) is presented in Eq. 4.25, while (n) is plotted as a
function of the bias voltage (for different values of the quality factor) in Fig.
4.1)

612, + (& — 5p)2 + wny, /(I's@)
e+ (e +5p)? +w(nm + 1)/ (UsQ)

(n) = (4.25)

In the limit ) — oo in which the system is basically decoupled from the
equilibrium environment, the stationary state of the nanotube is determined
only by the vibron processes associated to the electronic transitions. From Eq.
(4.25) it follows that the best performance of the cooling mechanism presented
here (i.e. the minimum of (n)) is achieved for £,(6V*) = ¢,/v/2 and the mini-
mum average number of vibrons is given by (n),,;, ~ 0.2, that is a probability
of nearly 80% to find the system in the vibrational ground state.
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4.3 Cooling in the zero-bias limit

In Paper IV we investigated the conditions under which the suspended nan-
otube is effectively cooled through the same mechanism introduced in Paper
3 when the electronic tunneling transitions are promoted exclusively by the
temperature drop between the STM tip and the leads, i.e. Ts > T}, and both
the STM tip and the leads are electrically grounded.

Although no electrostatic field is present between the STM tip and the
leads, since V' = 0, the electrostatic (or “polaronic”) electromechanical cou-
pling still exist, originated by the fact that when a “hot” electron tunnels from
the STM tip to the nanotube, it creates a polarization charge of opposite sign
in the STM tip. The electron is supposed to remain inside the nanotube for a
time interval sufficiently long to assure that the electrostatic interaction with
the polarization charge is not negligible.

The contribution to the total energy in this case can be evaluated analyt-
ically by means of a simple electrostatic model: two wires of lengths L and
R (i.e. the effective radius of the STM tip) situated at distance d and charged
by uniform distributions of charge with opposite sign. The result of this es-
timate is shown in Eq. (2) of Paper IV: the attractive electrostatic force (and
therefore, the “polaronic” coupling constant) is inversely proportional to the
d — u(z,t), where 1u(z, t) is the quantum field that describes the displacement
of the nanotube. Expanding the force in Taylor series with respect to the small
parameter u/d, we obtain an Hamiltonian operator describing an interaction
linear in the displacement and witn strength that can be controlled through
the distance d, that is moving the STM tip farther or closer to the suspended
nanotube.

The relevant electronic transitions that contribute to determine the station-
ary state of the suspended nanotube interacting with the nonequilibrium elec-
tronic environment are shown in Fig. (4.2). The temperature drop from the
STM tip to the leads activate transitions from/to the thermally populated elec-
tronic states in the STM tip and the leads and the single level of the nanotube,
characterized by energy E,. The combination of electrostatic and tunneling
coupling implies that, for €, ~ ¢, when electrons tunnel inelastically from the
STM tip to the nanotube, they mainly cause the absorption of vibrons, whereas
the emission is promoted for transitions in the opposite direction, that in the
regime of thermally-activated transport occurs at the same rate as the “for-
ward” processes. The effective cooling of the system is achieved if the rate of
tunneling from the nanotube to the leads is significantly higher than the rate
of tunneling from the STM tip to the nanotube. The quantitative analysis of
the nanotube dynamics can be performed following the same approach out-
lined in Sec. (4.1). In order to describe the dynamics of its mechanical degrees
of freedom, it is convenient to formulate the problem in terms of the operator
o+ = 09 + 01. A closed set of equations of motion is then obtained by intro-
ducing the operator o_ = 0y — 01, which accounts for the correlations between

71



Chapter 4. Cooling of nanomechanical resonators by thermally activated
electron transport

E E
KE=1K ET =0.1K

Nanoilube

T™ ti
; S lip 0 0 Leads 7

K(E) FES

Figure 4.2: Schematic picture of the electronic transitions through the STM-nanotube
system in the zero-bias limit. The (+) and (-) refer to the inelastic tunneling processes
that leads to the emission (+) and absorption (-) of one vibron (see text).

the charge states of the nanotube. After shifting the origin of the reference
frame to the equilibrium position of the “+” oscillator (defined by Tr,,(Po.)),
the time evolution of o and o_ results to be determined by the equations:

do , Al'y, s (15 A
d—t+ = —iw[H,,, 04] —iwe,——— 3T “[X, 0] - W [X o_|+¢; 2S <§{X2,a+} + XU+X) +
Alg (1 A
5375 <§{X2, o} — XU_X) + Lo, (4.26a)
do_ AT .
% = —iw[H,,,0_] — iwspr—; - iw%p[X,aJr]—

,AT
(FEO— +elg{X,0_}+ ngS{XQ o TSX X)

T
(AFEUJF + o AT{X, 0.} + 3€?AF5{X oi}— 5 S Xo_ X) + Lo,
(4.26b)

The operators H,, and X in Egs. (4.26a) and (4.26b) are dimensionless, having
been expressed in units of the fundamental scales 7w and Az,,. The stationary
state of the oscillator can be conveniently described through the “Wigner func-
tion representation” [91,92] of the operators 7, and 7_ (that is, the stationary
solutions of Egs. (4.26a) and (4.26b)), which is defined as:

400
Wi(z,p,t) = / %G—ng(x —&lox(t)|z + &) (4.27)

o

The linear transformation introduced in Eq. (4.27) maps the quantum-mechanical
operators to classical function of the position and momentum, A — A(x, p),
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where hereafter (z, p) will be always intended to be dimensionless (see Paper
IV). In particular, the operator o, (¢), that describes the mechanical degrees
of freedom of the nanotube, corresponds to the quasi-distribution function
Wy (z,p,t), for which the “quasi-" prefix reflects the fact that this function is
negative in some regions of the phase space, and hence it cannot be interpreted
as a probability density.

A pair of dynamical equations for the Wigner functions W, (x, p, t) is ob-
tained by applying the transformation defined in Eq. (4.27) to all the terms in
Egs. (4.26a) and (4.26b), which results in the mappings

[P, 4] = 27 p0, W (4.28)
(X2, 0] = —2ihad, W (4.29)
. 1
{XQ, O':t} — 2 |:ZL‘2 — Z@;} Wy (430)
o 1
Xo X — {gﬂ + Za;} W (4.31)
(X, 01] — 10, W (4.32)
{X,0:} — 22W, (4.33)
(X, [X,04]] = —02W. (4.34)
(X, {P,0:}] — 2i0,(pW), (4.35)

where {A, B} = AB + BA denotes the anticommutator of the operators A
and B. The Wigner functions W, (z,p) associated to the stationary state of
the oscillator coupled to the nonequilibrium electronic environment can be
obtained from Eqs. (4.26a) and (4.26b) by imposing 0W, (z, p,t)/0t = 0 and
they turn out to be

_ JAN A _ 2
w(pd, — 20, W = =20,V + ’SI’TWapr + rs%af,w++
2
2
Ars%a;W+ + 0, (P +) + coth(hw /2kTL)%a;W+ (4.36a)
_ _ 1 _
w(p0dy — xdp)W _ = %%6PW+ — <AFZ + 26, AT gz — 262 AT g2 — Z@g) W, —
1 _ _
_ (I‘Z + 2e, T gz — 262 Tg2® — Z@;) W_ +~0,(pW_)+
coth(fiw /%TL)%@;W_, (4.36b)
where FE = FS -+ FL/ AFE = AFS -+ Ars, AFQ = Fa(fa(EO) — (1 — fa(EO>>>/
fo being the Fermi-Dirac distribution of the STM tip (v = S) and the leads
(av = L). It should be noticed that, in contrast to the kinetic description for the

dynamics of the vibron populations (i.e. Egs. (4.18a) and (4.18b)) discussed
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in Paper III and Sec. (4.1), in Eqgs. (4.36a) and (4.36b), all the processes, that
is both “forward” and “backward” electronic transitions have been taken into
account. The regime of thermally activated charge transport from the STM tip
to the leads is defined by imposing fs(Ey) ~ 1/2, fr(Ey) ~ 0, 's/T'; < 1.

The perturbative methode described in Sec. (4.1) can be adoperated in
order to solve Egs. (4.36a) and (4.36b). Corrections to the solution found
through this procedure are at most of the order of the small parameters (7,
2, Q7'). After the change of variables, A = /(2% + p?), ¢ = arctan(z/p), the

grturbative solutions of Eqgs. (4.36a) and (4.36b) result to be: Wi = w(A),

W = —(AT'y/T's)w(A), where the function w(A) in the regime of thermally-

activated-single electron transport turns out to have a Gaussian shape (see
Fig. (2) in Paper IV for comparison with the Wigner functions corresponding
to the quantum ground state and the thermal equilibrium distribution func-
tion), w(A) = Z ! exp[—(A/6)?], where 0 is given by:

EpEt _'_ 1

-2 1+F22 4QTs
07" = €2 2 coth(fiw/2kpTr) (437)
1+1% +3F 2QT'g

Due to the Gaussian form of the quasi-distribution function w(A), the quantity
V0 provides also the root-mean-square fluctuations of the nanotube center-of-
mass position (only the fundamental bending mode is taken into account).

In Fig. (4.3) the nonequilibrium-environment-induced fluctuations v/ are
compared to the zero-point fluctuations that the oscillator has in the ground
state and to the thermal equilibrium fluctuations (at the leads temperature 77,).
For any value of the “polaronic” coupling constant ¢,, the nonequilibrium-
induced fluctuations are significantly smaller than the thermal ones even at
moderate quality factors and approach the value of the quantum fluctuations
as () increases. This behavior can be considered as an effective cooling of the
mechanical degrees of freedom. In spite of the Gaussian form of the quasi-
distribution function w(A), the fluctuations represented by 6 preserve their
nonequilibrium character even in the limit in which the nanotube is com-
pletely decoupled by the equilibrium environment, that is () — oco. In this
case the stationary state of the oscillator is determined only by the interplay
between the two mechanisms of electromechanical coupling, represented by
the parameters ¢, and ¢,,. It follows from Eq. (4.37) that the “cooled” state,
characterized by fluctuations of the nanotube center-of-mass position that are
smaller than the thermal ones, can be established only if both the coupling
mechanisms are present in the system. If one of the two interactions is negli-
gible in with respect to the other, the numerator at the right-hand-side of Eq.
(4.37) — which can be intepreted as an effective damping term on the basis
of Einstein’s relation between diffusion coefficient and viscosity— vanishes,
causing the broadening of quasi-distribution function w(A), even beyond the
width that characterizes the thermal distribution function. This behavior is in
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4.3. Cooling in the zero-bias limit
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Figure 4.3: Comparison between the root-mean-square fluctuations of the center-of-
mass nanotube position, y/(X?2) (only the fundamental bending mode is considered),
calculated with the Wigner functions corresponding to the ground state of the os-
cillator, the thermal equilibrium state at temperature 77, and the stationary state in-
duced by the nonequilibrium electronic environment as a function of the “polaronic”
coupling constant ¢, for different quality factors. Values of the relevant parameters:
w=10°Hz, I's = 10" Hz, T';, = 10° Hz, ¢, = 0.27.

striking contrast with the equilibrium case, in which diffusion and damping
are always both present, by virtue of the fluctuation-dissipation theorem.

We conclude this section with a few remarks about the problem of experi-
mental detection of the cooling effect described here.

In the STM-nanotube system the physical quantity that is more natural
to considered as experimentally accessible parameter carrying information
about the mechanical state of the oscillator is the tunneling current. To leading
order in the small parameters (¢, £,, @ '), the current obtained through the
perturbative approached described in Sec. (4.1), is given by:

I =I[1+¢&} (14 2(n))], (4.38)

where I = el's with I's &~ kgT/e?Rg (in the case of sub-Coulomb threshold
bias and equal temperatures in the STM tip and the leads). If kg7 > edV*
then I's remains independent of voltage in a certain voltage interval, where
the differential conductance will be completely determined by the deriva-
tive of the average number of vibrons with respect to voltage, i.e. 9I/0V =
21ye70(n) /OV . Therefore, the cooling effect will be reflected in the structure of
the dI /dV —V curves and accessible for experimental investigation. The pres-
ence of regions of negative differential conductance in the dI/dV — V curves
measured for suspended carbon nanotubes has been already reported exper-
imentally [60] and generally attributed to the effects of inelastic electron tun-
neling processes [65].

In order to detect experimentally the cooling effect predicted above, the
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Figure 4.4: STM-carbon nanotube system with a gate electrode capacitively coupled
to the nanotube.

most direct approach consists in the measurement of the root-mean-square
fluctuations of the nanotube center-of-mass position, i.e. /(X?). Regard-
ing this point, it is has been pointed out since a long time ago that the STM
(combined with a current amplifier) can provide the basic building block for a
quantum-limited position displacement sensor [86].

The tunneling current that can be measured at the output of such a device
contains information about the displacement of the mechanical system under
investigation but, at the same time, perturbs it with a very small back-action
force, being this mainly due to the random momentum transfer associated
with the tunneling electrons. The reduced back-action makes it possible for
the STM-based displacement sensor to achieve a sensitivity that is several or-
ders of magnitude larger than that one of conventional (e.g. capacitive) elec-
tromechanical transducers.

4.4 Appendix B

If the x—dependence of the gate capacitance is taken into account, following
the procedure described in Sec. (3.3), one obtains a more complicated expres-
sion for the electrostatic force, which, for arbitrary values of the voltages Vs,
Vi, and Vg, is given by

[Q -+ CL(VL — Vs) + C(;(l‘)(VG — Vs)]z 605 _

b= 2Cx(x) Ox
[Q —+ CL(VL — Vg) -+ Cs(x)(vs — Vg)]Q 8CG
205 () Ox (439)

The second term in Eq. (4.39) can be obtained from the first one by swapping
the indexes ST'M — < G. The threshold value for the charge-dependent part
of the electrostatic force can be calculated straightforwardly from Eq. (4.39) by
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applying the condition F'(V) = 0 and it turns out to be

e CrL+Cs
1 sCice) T el Ve 00
— Ve — =
1 — _Cs 9Cg acS’ 1 1 — _Cs 9Cg acs} L ox
CrL+Cq Ox oz Cr+Cq Ox oz

-1

0Cy

Vi = or

(4.40)

In the limit |0Cs/0x| > |0C¢/0x| we recover the result Vi = V- that has been
used throughout the Thesis and in the Papers.
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Summary

The work presented in this thesis concerned the theoretical analysis of some
phenomena that are expected to characterize the physical behavior of those
systems in which the dynamics of mechanical and electronic degrees of free-
dom are strongly correlated, such as a suspended carbon nanotube (or, more
generally, nanowire) in tunneling contact with the tip of a STM and its sup-
porting leads.

Regarding the nanotube/nanowire remark, it is pertinent to remark that
the analysis presented in this thesis, even though carbon nanotubes are men-
tioned throughout, is basically not dependent on the specific material prop-
erties of the movable part of the nanoelectromechanical system. Therefore,
nothing prevents that phenomena assimilable to the electromechanical insta-
bility and the cooling effect presented here could be found, generally, in a
large class of mechanical systems, characterized by different material proper-
ties and geometries.

The “shuttle-like” electromechanical instability in suspended-nanowired-
based NEMS, which is described in Chapter 3 and in Papers I and II pro-
vides an example of such phenomena. The general conditions under which
the instability arises and the development of the instability in limit-cycle-like
oscillations are the same as in the conventional, point-like shuttle system.
However, our analysis shows that the extended structure of the suspended
nanowire considered here (in contrast to the “point-like” structure in the shut-
tle case) provides a more complicated (and richer) scenario for the dynamics
of the system.

In particular, the results presented in Paper I suggest that, no matter how
many vibrational modes are unstable, the stationary state that towards which
the system evolves is characterized by the excitation of only one eigenmode.
The other modes do not contribute to the self-sustained oscillations that the
nanowire performs in the stationary regime.

In order to operate this selective excitation in a controllable way, the pos-
sibility to exploit the accuracy in the positioning of the STM tip has been in-
vestigated in Paper II. The results presented there indicate that the tuning of
the electromechanical coupling of different modes originated by their differ-
ent spatial profile can be sufficient to promote the selective instability of single
vibrational modes.
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Chapter 5. Summary

In relation with the general problem of the characterization and control of
the quantum dynamics of nanomechanical (although, in some sense, “macro-
scopic”) oscillators, we investigated the conditions under which the electrome-
chanical coupling in the STM tip-nanotube system can be exploited in order
to produce an effective cooling of the mechanical degrees of freedom, down to
a state as close as possible to the quantum ground state, that is, characterized
by the minimum number of vibrational excitations.

As a first result of this analysis, it turns out the no effective cooling can oc-
cur if the bias voltage is above a certain threshold value, that in the geometry
of the STM tip-nanotube system, is very close to the Coulomb blockade thresh-
old value, which determines the rate of tunneling processes at low tempera-
tures. Therefore, an alternative source of energy must be available in order
to activate the tunneling transitions, including the inelastic processes that, if a
suitable unbalance between the vibron emission and vibron absorption rate is
established, remove energy from the mechanical system. The stationary state
that originates from this effective cooling mechanism can be characterized by
an average number of vibrons lower than 1 (0.2 is the best achievable), which
means that the ground state is approached.

The cooling mechanism described here presents some peculiar features
that mark the difference with respect to most of the other proposed scheme
for ground state cooling of nanomechanical resonators. For example, it does
not rely on the constraint of energy conservation that must be satisfied by the
inelastic tunneling transition. In this sense, the tunneling here is seen just as a
stochastic process, no coherence effects related to the wave-like nature of the
electrons are involved. At the same time, the whole mechanism of cooling
can be seen as a kind of quantum interference process, because the probability
amplitudes depend on the sum and difference of the parameters that express
the strength of the two mechanisms of electromechanical coupling that char-
acterize the system, i.e. the position-dependent tunneling amplitude between
the STM tip and the nanotube and the electrostatic force.

Independently of the performance in terms of minimum average number
of vibrons achievable, the cooling mechanism described here is interesting
from another (and more general) point of view, that is the analysis of the ef-
fect that the interaction with a far-from-equilibrium environment produces
on the mechanical state of the suspended nanowire. In the zero-bias limit, in
which the electronic transitions are activated only by the temperature drop
from the STM tip to the supporting leads, the result of our analysis might
appear slightly puzzling at the intuitive level. In absence of temperature gra-
dient, the nanowire is in thermal equilibrium with the leads. When a higher
temperature is applied to the STM tip, electronic tunneling processes transfer
energy to and from the suspended nanotube. In the stationary regime, the
mechanical system is in a state that corresponds to an effective temperature
that is lower than the temperature of the STM tip (and of the leads), instead of
simply intermediate between the STM tip and leads temperatures.
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The analysis of the system from the thermodynamical point of view is still
going on, besides the results presented in this thesis, in order to clarify in
what sense and to what degree we can interpret the stationary state resulting
from the coupling with the nonequilibrium environment as some sort of “ef-
fective equilibrium” state. Interestingly, a necessary condition for the system
to experience the effective cooling, is that both the mechanisms of electrome-
chanical coupling are present. If only one of them is active, its effect is to
increase the diffusion of the system in energy space. The intepretation of the
resulting quasi-distribution function as a state of effective thermal equilibrium
appears dubious, since for a system interacting with a “true” equilibrium ther-
mal bath, diffusion and damping (i.e. fluctuation and dissipation) are always
both present.

The experimental investigation of the phenomena examined in this thesis
(both in the pumping and cooling regimes) seems not a trivial task. Among
the issues that should be dealt with carefully in order to observe such effects,
there are the requirement of very high quality factors and a quite accurate
spatial control of the in the local injection of tunneling current through the
nanotube. Nevertheless, the tremendous at which the refinement of nanofab-
rication methods and the development of new measurement techniques pro-
ceed, suggest the idea that the experimental test of the phenomena described
in this thesis is not completely unrealistic.

We can find at least two reasons which can motivate the interest in the
experimental realization of this effect. At the purely scientific level, the selec-
tivity associated to the simultaneous excitation of several vibrational modes
provides an interesting example of how “simple” behaviors can emerge out of
the dynamics of rather “complicated” systems.

From a more practical perspective, one might conceive several ways to ex-
ploit the large separation between the frequencies of the vibrational modes
and the pronounced selective character of the electromechanical instability,
for example to design sensors that do not need a time-varying driving signal
in order to work (the STM tip could be replaced by something that could be
patterned on a substrate, such as an atomic point contact). For some appli-
cations, the fact that the electromechanical instability described here requires
a DC bias voltage might present some advantages over more conventional
excitation schemes based on a resonant mechanism.

The possibility to transfer some of the knowledge acquired by purely cu-
riosity-driven studies into practical realizations is one of the most relevant
points in any discussion concerning the relationship between science and tech-
nology, that in the case of NEMS represent literally the two sides of the same
coin. Although in principle the ability to exploit the natural phenomena for our
aims does not improve our understanding the phenomena themselves, we con-
sider positively the perspective that the research on NEMS in the forthcoming
years will probably oriented to a large extent towards the development of
novel devices for quite mundane purposes.
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Chapter 5. Summary

More NEMS-based applications can generate more extensive knowledge
and deeper understanding of the fundamental principles underlying their
physical behavior. That not only provides us with new challenging problems,
but also induce us to look at old problems with new eyes. For example, the
works presented in this thesis suggest that, in spite of the fact that thermo-
dynamics and quantum mechanics have been elaborated and tested for more
than one hundred years and have provided the basic tools to solve countless
problems even outside the domain of physics, their application to the “in-
termediate” (neither “microscopic” nor “macroscopic”) and sometimes seem-
ingly bizarre world of nanoelecromechanical systems oblige us to reconsider
them once again from their (solid?) foundations. Incidentally, thermodynam-
ics and quantum mechanics are perhaps those ones which, more than any
other branch of physics, have constantly led the mankind to confront with the
limits of its comprehension of the natural phenomena.

It is not excluded that we will come to doubt (or even partially reject) some
piece of well-established knowledge matured in different (more “micro-” or
“macro-") contexts. Something like a journey for which neither the destination
nor the return date are fixed.

In other words, an opportunity to grow, maybe wiser, but not necessarily
older.

“Ah, but I was so much older then
I'm younger than that now”

My Back Pages, Bob Dylan (1964).
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