
Infinite time computations and infinite algorithms

Anton Broberg

Master’s Essay in Logic
December 18, 2008

Department of Philosophy
University of Gothenburg

Supervisor: Fredrik Engström

Contents:

1: Introduction 1

2: Infinite time Turing machines (IT-machines) 2

3: Clockable and writable ordinals 5

4: ClO ⊆ WrO 10

5: The halting problems 12

6: Oracles 16

7: Machines with only one tape (or a small head) 18

8: Infinite time machines with infinite programs (ISIT-machines) 25

9: Conclusions 30

10: References 31

1

Infinite time computations and infinite algorithms

Anton Broberg

Abstract

In this paper we investigate infinite time Turing machines as defined by Hamkins
and Lewis in [1]. We extend the result in [2] showing that a larger set of clock-

able ordinals are 1-tape clockable. Furthermore, a new notion of infinite time

Turing machine, in which the set of states may be infinite, is compared with the
original notion. We show that the strength of such infinite state infinite time

machines correspond to the strength of infinite time Turing machines equipped

with real-oracles.

1. Introduction

The notion of infinite time Turing machines (defined in section 2) where intro-
duced in [1] by Hamkins and Lewis. Most of the results in section 2,3,5 and 6
are from this article. Some of these results have (more or less) alternative proofs,
where the new proof of the Lost Melody Theorem (Theorem 5.11) might be of most
interest since the original proof is quite complicated.

Welch shows in [3] that every clockable ordinal is writable (these notions are to
be defined in section 3), which was an open question in [1]. The proof is examined
in section 4.

In [2], Hamkins and Seabold defines infinite time Turing machines with only one
tape (in the original definition the machines have three tapes) and shows that there
is clockable ordinals that are not 1-tape-clockable (clockable by a machine with one
tape). It is however not known exactly which clockable ordinals that are 1-tape-
clockable. This is investigated in section 7 (where the results up until Definition
7.5 are, with some modifications, from [2]).

The main goal of this paper is to investigate what would happen if we where
to allow the infinite time Turing machines to have an infinite amount of states. A
number of questions arises. How ‘powerful’ will these machines be? If the infinite
set of states of such a machine is recursive, will the resulting function this machine
computes be ‘ordinary’ infinite time computable? Will these machines be able to
solve the halting problems for infinite time machines? These infinite state infinite
time machines are defined and examined in section 8.

We will assume some basic knowledge about recursion theory and basic ordinal
arithmetics.

Every machine in this paper is fictional and any resemblance with a real machine
is coincidental.

2

2. Infinite time Turing machines (IT-machines)

An IT-machine works like a Turing machine that can keep on computing for a
transfinite ordinal length of time. The machine has three tapes (an input-tape, a
scratch-tape and an output-tape) with countably many cells on each, ordered as
ω. It has a head that moves along the three tapes, one cell at a time, reading and
writing 1’s and 0’s from/to the cells. The head starts every computation to the far
left at the beginning of the tapes.

When the head reads, it reads three cells (one from each tape) at once, but it
can only write to one cell at a time. It would make no difference in the computing
power (in the sense that the same functions would be computable) if we allowed
the machines to read only from one cell at a time, but it would make a difference
in the possible lengths of certain computations (more on this in section 7).

A program is a finite set of tuples 〈s, r, c, s′〉 that specifies the machines actions,
that is, when the machine is in state s and reads r from the tapes, it executes
command c and enters state s′.

The possible commands that the machine can execute is to write 1 to one of
the three cells the head is currently on, write 0 to one of the three cells the head
is currently on, move the head one step (one cell) to the right on the tapes, move
the head one step to the left1 and finally the machine can halt (that is, end the
computation). When the machine executes one of these commands (except for when
it halts) we say that the machine has made a step of computation. The length of
a computation is the order type of the steps of computation the machine makes
before it halts.

After α steps of computation, where α is a limit-ordinal the machine enters a
limit-stage. Every cell on the tapes that changes value cofinally often before α is
set to 1, and the other cells, that have stabilized, remains the same. The head
is instantly placed on the first cells of the tapes and in the program, a special
limit-state is consulted.

There are two ways for a machine to halt. Either the machine is told to halt by
the program, or there is no tuple in the program that corresponds to the machines
current setup.

For convenience, let the set of all possible states be ω. Let 1 be the start-state for
all programs (so a program that does not contain a tuple with the state 1, is simply
the program that halts after 0 steps of computation) and let 0 be the limit-state.
The set of possible reads is finite (since there is only 23 = 8 different setups for the
three cells the head is reading) and the set of possible commands is also finite so
there is an easy recursive way of coding the set of all possible tuples to ω. In this
way we can code every program with a finite subset of ω (and every finite subset of
ω codes a program). We fix a recursive bijection between ω and the finite subsets
of ω, thus every n ∈ ω codes a program (and every program is coded by an n ∈ ω).
This allows us to be a little careless and call a natural number p a program when
we really mean the program that p codes.

The machine can be told to do different things at once, for example: both
〈s, r, c0, s′0〉 and 〈s, r, c1, s′1〉 may be elements of a program, but then the machine
chooses to obey the tuple with the least natural number coding it.

1If a machine is told by the program to move the head a step to the left when the head is
placed at the beginning of the tapes, the machine simply ignores the command.

3

At the start of the computation the input is written to the input-tape, and the
scratch-tape and the output-tape are filled with 0’s.

The inputs and outputs for the machines are countable binary strings. These
binary strings will be referred to as reals.

Every program p determines a partial function ϕp: 2ω → 2ω simply by letting
the value of ϕp(x) be what is on the output-tape when the machine with program
p and input x halts, and letting ϕp(x) be undefined (which will be denoted ϕp(x)↑)
when the machine does not halt. Of course ϕp = ϕq iff ϕp(x)↓ ↔ ϕq(x)↓ for all x
and ϕp(x) = ϕq(x) for all x such that ϕp(x)↓.

By adding extra input-tapes we get functions of many variables as well.
A (partial) function f on reals is IT-computable if there is a program p ∈ ω such

that ϕp = f (that is ϕp(x) = f(x) if f(x) defined and ϕp(x)↑ otherwise).
A set of reals A is IT-decidable if its characteristic function is IT-computable, and

A is IT-semi-decidable if there is an IT-computable function f such that f(x) = 1
iff x ∈ A.

We will regard the natural numbers as a subset of the reals by letting the real
where the first n digits are 1 and the rest is 0, represent the natural number n.

From now on, ‘decidable’, ‘computable’ and so forth will mean IT-decidable and
IT-computable while ‘recursive’ will refer to ordinary recursiveness in the Turing
sense.

Theorem 2.1: For every computable function ϕp such that ϕp is defined exactly
on ω, ϕp(n) is not computable in less than ω steps of computation for any n ∈ ω.

Proof : Assume the machine with program p and input n ∈ ω halts in k steps
of computation for some k ∈ ω. In k steps of computation, the head has not time
to move more than at most k steps to the right on the tapes. Thus, if we run this
program with an input x that is any real where the first k + 1 digits in x are like
the first k + 1 digits in n, this program will halt in k steps on this input as well.
But this is a contradiction since ϕp is defined only on ω. a

Remark 2.2: If the tapes look exactly the same in two limit-stages and none
of the cells that are 0 in these limit-stages, turns 1 at any point between them,
then the machine is caught in a loop. Since the head always is in the same place
in limit-stages and the program always consults the limit-state in limit-stages, the
exact same thing will happen again. But if any of the cells that are 0 turns 1 at
some point between the two limit-stages, then the machine could escape the loop
in a later limit-of-limits where this cell then turns 1 (for an example of such an
escape, see (6) on page 6).

Theorem 2.3: Every halting IT-computation is countable.

Proof : Suppose a computation has not halted after ω1 steps of computation. Let α0

be the first stage where all the cells that locally stabilize before ω1 has already sta-
bilized. Since there are only countably many such cells, we have that α0 < ω1 (α0

is the supremum of a countable set of countable ordinals and therefor countable).
The cells that change value at all between α0 and ω1 will change value cofinally
often between α0 and ω1, so there must be a countable sequence α0 < α1 < α2 < ...

4

of countable ordinals such that all the cells that change at all after αn have changed
value at least once before αn+1. But then stage δ =sup{αn} is a countable limit-
stage where the tapes looks exactly like they do at stage ω1 and none of the cells
that are 0 at stage δ will turn 1 again before ω1. This computation is therefore
caught in a loop (according to Remark 2.2) and will never halt. a

Since we in this proof can choose α0 as big as we want, as long as it is countable,
we can choose α0 to be bigger than δ and we would produce another δ′ > δ that is
a countable limit-stage where the tapes look exactly like in stages δ and ω1. Hence,
we can draw the following conclusion.

Corollary 2.4: Every non-halting computation is caught in a loop, and the
length of this loop is countable.

Theorem 2.5: Every recursively enumerable set A ⊆ ω is decidable.

Proof : We specify the program p that decides A. The program is set up so that if
there is a 1 on the first cell of the scratch-tape in a limit-stage, the machine halts
with output ‘no’. On input x, p first decides if x is a natural number or not. p does
this by first writing a 1 to the first cell of the scratch-tape and then it starts search-
ing for the first 0 on the input-tape. If there is no first 0, that is, if the input-tape
is filled with 1’s, the search will be in vain and the machine will, after ω steps of
computation, be in a limit-stage with a 1 on the first cell of the scratch-tape, and
the machine will halt with output ‘no’. If it finds a 0 it moves back to the first cell
and writes a 0 to the scratch-tape. Then it returns to the cell where it read the
first 0 and starts a search for the next 1. If another 1 is found, x is not a natural
number and we halt with output ‘no’, but if there is no 1 (after the first 0), the
machine will, after ω steps of computation, be in a limit-stage with a 0 on the first
cell of the scratch-tape. And it is easy to see that this happens exactly when x is
a natural number.

Thus, if the machine has a 0 on the scratch-tape in the first limit-stage, this
means that the input x is a natural number, and it is time for the machine to de-
cide if x ∈ A or not. Since A is recursively enumerable, there is a Turing machine
that halts iff the input is a member of A. So now the machine first writes a 1 to
the first cell of the scratch-tape and then simply simulates this Turing machine on
the input-tape where the input x still is untouched. If the simulated machine halts,
then p halts, since this implies that x ∈ A. If the simulated machine does not halt,
the machine will, after another ω steps of computation, be in a limit-stage with a
1 on the scratch-tape and consequently, the machine halts with output ‘no’. a

Corollary 2.6: The halting problem for Turing machines is solvable by an IT-
machine.

Proof : Follows directly since K = {n; the n’th Turing machine halts on input n}
is recursively enumerable. a

5

Every relation / ⊆ ω × ω is coded by some real x by letting the 〈n,m〉’th digit
in x be 1 iff n / m (where 〈 , 〉 is some computable pairing function). It is easy to
see that every real codes a binary relation in this way and every binary relation is
coded by a real.

Let WO be the set of reals that codes well orders and for all x ∈ WO let ‖x‖
be the order type of the well order that x codes, hence if x ∈ WO, then ‖x‖ is a
countable ordinal.

WO is Π1
1-complete, which means that WO is Π1

1 and if A is Π1
1, then there is a

recursive function f on the reals such that x ∈ A iff f(x) ∈ WO.2

In [1], Hamkins and Lewis shows that WO is IT-decidable and since WO is Π1
1-

complete, this implies that all Π1
1- and subsequently also all Σ1

1-sets are decidable.
It is also shown that the power of the IT-machines extends further by showing that
some ∆1

2-sets (that are not Π1
1- or Σ1

1-sets) are decidable. But this is where it stops.
All decidable and semi-decidable sets are ∆1

2 (for details on this, see [1]).

Theorem 2.7 (s-n-m): There is a recursive function s such that ϕp(k, x) =
ϕs(p,k)(x), for all reals x and natural numbers p and k.

The classical proof of the s-n-m theorem works in this context as well.

Notice that s is defined only on ω and hence the ki’s in k must not be any reals
but natural numbers. If we let go of this restriction we get in a lot of trouble.
Assume there is a computable function s such that ϕp(k, x) = ϕs(p,k)(x), for all
reals x and k and natural numbers p, and consider the computable function ϕp
such that ϕp(x, y) = x for all reals x and y. Then we have that ϕs(p,x)(y) = x.
But then ϕs(p,x)(0) = x. This means that for any reals x and x′ such that x 6= x′,
we have that ϕs(p,x) 6= ϕs(p,x′) which would imply that there is at least 2ℵ0 many
computable functions and that is a contradiction.

Theorem 2.8 (Recursion): For any IT-computable total f : ω → ω, there is
a program p such that ϕp = ϕf(p).

Again we omit the proof since the classical proof goes through.

3. Clockable and writable ordinals

Definition 3.1: An ordinal α is clockable if there is an IT-machine that halts
after α steps of computation on input 0. Let ClO be the set of clockable ordinals.

Definition 3.2a: A real x is writable if there is an IT-machine that halts with
output x on input 0. Let WrR be the set of writable reals.
Definition 3.2b: An ordinal α is writable if there is a real x ∈ WrR ∩WO such
that ‖x‖ = α. Let WrO be the set of writable ordinals.

2A is Π1
1 if there is a second-order arithmetical formula ∀Xψ(X,Y), where ψ is a first-order

formula, that defines A in the standard model.

6

So which ordinals are clockable? Let us begin by recognizing some simple clock-
able ordinals:

(1) n ∈ ClO for all n ∈ ω. (Consider a program with n states.)
(2) ω ∈ ClO. (Let the limit-state halt the machine.)
(3) α ∈ ClO ⇒ α + 1 ∈ ClO. (Just add an extra state to the program and

instead of halting, go one step to the right and enter this new state and
halt.)

(4) α ∈ ClO⇒ α+ ω ∈ ClO. (Move the computation one cell to the right and
leave the first cell untouched. In the limit-state check if the first cell is 1, if
so halt, otherwise continue with the computation. Instead of halting when
the original machine halts, move to the first cell and write 1. Then enter a
new state that keeps the head stepping to the right. In the next limit-stage,
when the program consults the limit-state and reads a 1 from the tape the
machine will halt. This will take α+ n+ ω = α+ ω steps.)

(5) α ∈ ClO ⇒ α + β ∈ ClO for all β < ω2. (Follows from (3) and (4) since
every β < ω2 can be written on the form ω ·n+k for some natural numbers
n and k (Cantor’s normal form).)

(6) ω2 ∈ ClO. (Consider the machine that only steps to the right and in every
limit first writes 1 to the first cell and then writes it over with a 0 (this will
be referred to as ‘flashing a flag’). Since ω2 is the first limit of limits, this
will be the first time the first cell is 1 in a limit-stage. This will be noticed
by the program and the machine will halt.)

Theorem 3.3: Every recursive ordinal is clockable.

Proof : Cantor’s normal form implies that every ordinal can be written on the
form α+ β where α is a limit of limits (or 0) and β < ω2, hence (5) above implies
that it suffices to show that every recursive limit of limits ordinal is clockable. The
proof of this is described in great detail in [1] and will only be sketched here. Let α
be a recursive limit of limits ordinal. Then there is a real x such that x is writable
in ω many steps and ‖x‖ = α. So we construct a machine that first writes x and
then erases the smallest element in the order-relation that x codes until the relation
is empty, then it stops. This machine halts after ω + (ω + ω)α + ω steps (first ω
steps to write x, then for every element in the relation that x codes, it will take ω
steps to find the smallest element and ω steps to erase all mention of this element,
then it will take ω steps to realize that the relation is empty). Then we use that α
is a limit of limits to shorten this algorithm to the extent that it actually will be
done in α many steps (see [1] for details). Hence α ∈ ClO. a

Theorem 3.4 (Speed-up Lemma): If α + n ∈ ClO, then α ∈ ClO for all α
and all n ∈ ω.

Proof : We may assume that α is a limit ordinal, since it is easy to make a com-
putation a finite amount of steps longer. Consider the program p that halts after
α + n steps of computation. In the limit-stage α the first n + 1 cells on the tapes
must be set up in such a way that the machine will halt n steps from there. Denote
these n+ 1 cells with the tuple a. Now consider the program that simulates p but
moves the computation one step to the right, leaving the first cell on every tape

7

untouched. This program halts after α+ n+ 1 steps of computation, and α is the
first limit-stage where cells 2 to n + 2 on each tape are set up like a. But we can
see this already in the limit by flashing a flag every time any cell that is 0 in a is
not 0, and by flashing a second flag every time every cell that is 1 in a has been 1
at some point since the last time we flashed the second flag. Then the first flag is 0
and the second flag is 1 in a limit-stage if and only if cells 2 to n+ 2 on the tapes
are set up as a, and since the head can see three cells at once, and the first cell on
every tape is free to use as flags, it is no problem to see the two flags in the limit
and halt. Hence α ∈ ClO. a

This proof uses the fact that the machines can read from more than one cell at a
time, and in fact the Speed-up Lemma does not hold if we only allow the machines
to read from one tape at a time (see section 7).

Many of the proofs ahead will use some variation of a universal machine that sim-
ulates all computations on the form ϕp(0). By slicing up one of the tapes in ω parts
and then slice up every one of those slices in three, a universal machine can actually
do this on one single tape or even a slice of a tape (one have to do some modifica-
tions in what constitutes a step of computation in the simulated computations (see
Remark 7.10)). Sometimes we only need the universal machine to simulate, in ω
many steps, one step of computation in every simulated computation but often we
need the universal machine to simulate, in ω many steps, ω steps of computation in
every simulated computation. This can be done by simulating things in a certain
order, for example, consider the recursive bijection from ω to ω×ω that orders ω×ω
like this: 〈0, 0〉 , 〈0, 1〉 , 〈1, 0〉 , 〈0, 2〉 , 〈1, 1〉 , 〈2, 0〉 , 〈0, 3〉 , 〈1, 2〉 , 〈2, 1〉 , 〈3, 0〉 ,...
where 〈p, k〉 represents the k’th step in the computation of program p on input 0.

Theorem 3.5: There are gaps in the clockable ordinals, and the first gap after
any clockable ordinal has size ω.

Proof : Let α ∈ ClO and let β be the first non-clockable ordinal greater than
α. It is easy to see that β must be a limit-ordinal, and the Speed-up Lemma im-
plies that β + n /∈ ClO for all n ∈ ω. We show that β + ω ∈ ClO. Consider a
universal machine that on input 0 simulates all computations on the form ϕp(0)
and makes ω steps of computation of every simulated computation in ω steps. It
keeps track on one of the computations that halts in α many steps, and when this
simulated computation halts, it starts to flash a flag every time a simulated com-
putation halts. Then it simply halts in the first limit-stage where this flag is 0.
Since β is the first non-clockable ordinal greater than α, this flag will be 1 in every
limit-stage between α and β. And it will be 1 in stage β too since the flag will be
flashed cofinally often before β. But for no n ∈ ω will the flag be flashed at stage
β + n so in stage β + ω will this flag be 0. Hence, this universal machine halts in
β + ω many steps of computation so β + ω ∈ ClO which proves the theorem. a

It is shown in [1] that the first non-clockable ordinal is the supremum of the
recursive ordinals ωCK1 , and in fact, for every A ⊆ ω we have that the supremum
of the A-recursive ordinals is not clockable.3

3This follows from a theorem in [1] stating that no admissible ordinal is clockable.

8

Theorem 3.6: For every α ∈ ClO, there is a gap of size at least α in the clockable
ordinals.

Proof : To prove this theorem we will specify a universal machine that would halt
after the supremum of the clockable ordinals if no gap of size at least α existed.
The Speed-up Lemma implies that all gaps are of limit ordinal length so we can
assume that α is a limit ordinal ≥ ω · 2. Simply simulate all computations on the
form ϕp(0). In every limit, start clocking α until a simulated computation halts.
Halt when the computation that clocks α halts. This occurs the first time it has
been α steps since the last simulated computation halted. So if there are no gaps
of size α, this computation will halt after the supremum of the clockable ordinals.
(Some details are omitted here. For example would we need a flag so the machine
knows if it should start over the α-clock in the limit-stages or not. There are also
some technical problems with the α-clock that are addressed in Remark 7.7) a

Since the first gap after any clockable ordinal is of size ω, the gaps of size greater
than ω must start with an ordinal that is a limit of ordinals that starts gaps of size ω.

Theorem 3.7: If α ∈ ClO ∪ WrO, the order type of the gaps of size at least
α is neither clockable nor writable.

The proof of Theorem 3.7 is basically a generalization of the proof of Theorem
3.6 and is left out.

Definition 3.8: A real is eventually writable if it is written to the output-tape
of a (halting or non-halting) computation on input 0, and never is overwritten or
altered. Let EWrR be the set of eventually writable reals.

An ordinal α is eventually writable if α ∈ EWrO = {‖x‖ ; x ∈WO ∩ EWrR}

Definition 3.9: A real is accidentally writable if it at some point of a (halt-
ing or non-halting) computation on input 0 appears on one of the tapes. Let AWrR
be the set of accidentally writable reals.

An ordinal α is accidentally writable if α ∈ AWrO = {‖x‖ ; x ∈WO ∩AWrR}

Let λ = sup WrO, ζ = sup EWrO and Σ = sup AWrO. It follows practically
directly from the definitions that WrR ⊆ EWrR ⊆ AWrR, and subsequently also
that WrO ⊆ EWrO ⊆ AWrO, and subsequently λ ≤ ζ ≤ Σ. We shall see later that
in fact λ < ζ < Σ, and hence all the inclusions above are strict.

Theorem 3.10: There are no gaps in the writable ordinals.

Proof : Assume α ∈ WrO. We show that an arbitrary β < α also is writable.
Since there is a real x ∈ WrR such that x codes a well order / and ‖x‖ = α, there
must be an n ∈ ω such that if a real y codes the relation we get if we erase all
mentioning of any m such that n/m out of the relation that x codes, then ‖y‖ = β.
So since y is writable (just write x and start erasing), we have that β ∈WrO. a

Theorem 3.11: The order types of ClO and WrO are both equal to λ.

9

Proof : The order type of WrO is λ since there are no gaps in WrO. First we
show that the order type of ClO is greater than or equal to λ by showing that for
every α ∈ WrO, there are at least α many4 clockable ordinals.

Fix an x ∈ WrR such that ‖x‖ = α. For every n ∈ ω, consider the programs
pn that writes up x on a tape and then starts erasing the /-least element in the
relation that x codes until n is the /-least element in the relation. For every n ∈ ω,
let αn be the ordinal clocked by pn. Then for every n,m ∈ ω such that n / m, we
have that αn < αm. Hence, the order type of the clockable ordinals generated by
these programs is α.

Now for the other direction we show that the order type of all clockable ordinals
less than an arbitrary α ∈ ClO, is writable. Consider a universal machine that
simulates all the computations on the form ϕp(0) and at the same time clocks α, in
such a way that one step of computation is made in every ϕp(0) and in the α-clock,
in ω many steps. We will make sure that this machine writes a real x, that codes
a relation / such that ‖x‖ is of the wanted order type, at the output-tape. At the
start and after every limit-stage, it first makes one step in the α-clock and then it
makes one step in ϕ0(0), ϕ1(0), ϕ2(0)... and so forth, and as soon as a computation
p halts, it will add p to the relation / by writing a 1 to the 〈q, p〉’th cell on the
output-tape for every q that has been added earlier. And then nothing more is done
to the output-tape until the next limit-stage is reached, regardless if more simulated
computations halt. When the α-clock halts, we halt with a real x written to the
output-tape that codes a relation / such that p / q if the program p halts before q
on input 0, and both halts before α. Since only the ‘least’ program that halts in
a certain amount of steps are members of the relation, x will actually code a well
order, and in fact ‖x‖ is equal to the order type β of all clockable ordinals smaller
that α, and consequently β ∈ WrO. a

Theorem 3.12: λ /∈ ClO ∪WrO but λ ∈ EWrO.

Proof : To see that λ ∈ EWrO, just run the same algorithm as in the second
part of the proof of Theorem 3.11, but without the α-clock. That program would
run forever and eventually write λ to the output-tape.

Of course λ /∈WrO, but to see that λ /∈ ClO, assume that λ ∈ ClO and simulate
all computations on the form ϕp(0) and every time a computation halts, make one
step of the computation that clocks λ. When this λ-clock halts, we halt. But since
the order type of ClO is λ, this computation will halt after the supremum of the
clockable ordinals. That is a contradiction. a

Theorem 3.13: λ < ζ < Σ.

Proof : That λ < ζ follows directly from 3.12. To see that ζ < Σ, consider the
universal machine that simulates all computations on the form ϕp(0) on the scratch-
tape, and after it has made one step of computation on every simulated computation
it adds up all the ordinals that are written to the simulated output-tapes (to see

4What we really mean when we write that ‘there are α many clockable ordinals’, is that the

order type of these ordinals is α. We will misuse the word ‘many’ in this way throughout this
paper.

10

that this is a computable procedure, see Remark 3.14) and writes the resulting
ordinal to the real output-tape. Eventually, all the eventually writable ordinals
will be written to the output-tapes of the simulated computations, and after that
point, the ordinals written to the real output-tape will always be greater or equal
to ζ. Since these ordinals are written to a tape, they are accidentally writable and
consequently strictly smaller than Σ. Hence ζ < Σ. a

Remark 3.14: It is no problem to check if a real on a simulated output-tape
codes an ordinal or not so assume this is done and we have ω ordinals on slices of
the scratch-tape. Let z0, z1, ... be the reals coding these ordinals. We now define a
relation / on ω such that 〈n, k〉/〈n′, k′〉 iff k is related to something in the well-order
zn codes and k′ is related to something in the well-order zn′ codes and either n < n′

or n = n′ and 〈k, k′〉 is a member of the well-order that zn codes. This relation
is a well-order and the order type is equal to ‖z0‖+ ‖z1‖+ ..., and this relation is
decidable (with access to z0, z1, ...) so the real coding it is writable (with access to
z0, z1, ...) and this real is what we write to the output-tape in Theorem 3.13.

4. ClO ⊆ WrO

An open question in Hamkins and Lewis’s article ([1]) was whether ClO ⊆ WrO
or not. This was answered affirmative by Philip Welch in [3].

Assume that we have ordered the cells on the three tapes as ω in some com-
putable way.

Definition 4.1: For every i, p ∈ ω and every ordinal α, Cpi (α) is the value (0
or 1) of the i’th cell after α steps of computation with program p on input 0.

Definition 4.2: δpi (α) = sup {β < α; β = 0 ∨ Cpi (β) 6= Cpi (β + 1)}, for every i, p ∈
ω and every ordinal α.

Hence δpi (α) is the last stage, before α, that the i’th cell changed value in the
computation of ϕp(0). It is easy to see that when α is a limit ordinal, we have that
δpi (α) = α iff the i’th cell changed value cofinally often before α (or equivalently
δpi (α) 6= α iff δpi (α) < α iff the i’th cell has stabilized before α). Of course, if
δpi (α) < α and the i’th cell has stabilized before α, it might still ‘destabilize’ at
some stage after α.

Theorem 4.3: δqi (Σ) < Σ ⇒ δqi (Σ) < ζ, for every i, q ∈ ω.

Proof : Theorem 4.3 is proved in [3] and will not be rigorously proved here. In
words it states that if a cell i in a computation (on input 0) has (locally) stabilized
before Σ, it actually stabilized already before ζ. Welch proves this by constructing
a non-halting universal machine M(q, i) that, if δqi (Σ) < Σ, eventually writes δqi (Σ)
to the output-tape, and never writes it over. Hence, the conclusion that δqi (Σ) ∈
EWrO, can be drawn, which proves the theorem.

The way that M(q, i) does this is that after every time it has made one step of
computation on every simulated computation on the form ϕp(0), it computes the
sum σ of all the ordinals that are written to any of the simulated computations

11

simulated tapes (this can be done according to Remark 3.14), then it computes
δqi (σ). Let x be what is currently on the output-tape at this point. Now the
machine checks if x ∈WO, if δqi (σ) ≤ ‖x‖ and if δqi (‖x‖) = ‖x‖. If x withstands all
these tests, the output-tape is left as it is, otherwise (a code for) δqi (σ) is written
to the output-tape instead of x.

Now assume that δqi (Σ) < Σ. We show that δqi (Σ) < ζ. First we show that δqi (Σ)
will be written to the output-tape of M(q, i) at some point of the computation. At
some point will an accidentally writable ordinal that is greater than δqi (Σ) be written
to a simulated tape, so the sum σ will at this point be such that δqi (Σ) < σ < Σ, and
consequently will δqi (Σ) = δqi (σ). The only way that (a code for) δqi (σ) = δqi (Σ) is
not written to the output-tape at this point is if x ∈WO, δqi (σ) = δqi (Σ) ≤ ‖x‖ and
δqi (‖x‖) = ‖x‖, where x is what is currently on the output-tape. But if x withstands
these tests we must have that δqi (Σ) = ‖x‖ since δqi (‖x‖) = ‖x‖ and δqi (Σ) ≤ ‖x‖.
In either case must δqi (Σ) at some point be written to the output-tape.

It is fairly easy to check that when (a code for) δqi (Σ) has been written to the
output-tape, it will never be overwritten, by basically the same arguments as above,
hence δqi (Σ) ∈ EWrO, which proves the theorem. a

Statement 4.4: δqi (Σ) = Σ⇒ δqi (ζ) = ζ, for every q, i ∈ ω.

Some version of Statement 4.4 is used in [3] to prove the statements (I) and (II)
below, but is never stated nor proved in [3].

For every program p ∈ ω, we have:

(I) Cpi (Σ) = Cpi (ζ) for all i ∈ ω.

(II) Cpi (ζ) = 0 implies that Cpi (ξ) = 0 for all ζ < ξ < Σ.

If δpi (Σ) < Σ, Theorem 4.3 shows that δpi (Σ) < ζ and (I) follows. On the other
hand if δpi (Σ) = Σ, Statement 4.4 shows that δpi (ζ) = ζ and hence Cpi (Σ) = Cpi (ζ) =
1. Either way, (I) holds.
Cpi (ζ) = 0 implies that δpi (ζ) < ζ which implies (according to Statement 4.4)

that δpi (Σ) < Σ which implies (according to Theorem 4.3) that δpi (Σ) < ζ which
implies that Cpi (ξ) = 0 for all ζ < ξ < Σ, hence, (II) holds as well.

(I) and (II) implies that if ϕp(0) has not halted before Σ, it is caught in a loop
and will never halt (according to Remark 2.2), in other words, every halting com-
putation (on input 0) halts before Σ.5

Theorem 4.5: µ < λ for every µ ∈ ClO, and consequently, since there are no
gaps in the writable ordinals, ClO ⊆ WrO.

Proof : Let p be a program such that ϕp(0) halts after µ steps of computation.
Then we know that µ < Σ. Let q be a program such that ϕq(0) at some point
writes µ′ ≥ µ on some of its tapes. Let N be a machine that simulates ϕq(0) on

5In [3], Welch draws the conclusion that all computations on input 0 halts before ζ from (I)

and (II). Unfortunately, we fail to see how this conclusion can be drawn, but it does not really
matter since we (with some minor modifications) only need them to halt before Σ.

12

a slice of the scratch-tape, and every time an ordinal α is written to one of ϕq’s
simulated tapes, N writes α on the real output-tape and then runs α steps in the
computation of ϕp(0). If ϕp(0) halts, then N halts. Eventually ϕq(0) will write
an ordinal µ ≥ µ on the output-tape and then ϕp will have time to halt so N will
halt with µ on the output-tape, so µ ∈ WrO. Hence µ ≤ µ < λ, which proves the
theorem. a

Corollary 4.6: sup ClO = λ.

Proof : For every α ∈ WrO there is a β ∈ ClO such that α ≤ β. For example,
β could be the ordinal clocked by the program that first writes x such that ‖x‖ = α
to a tape and then starts erasing the smallest element from the relation that x
codes and halts when this relation is empty. This computation will take at least
α many steps before it halts. Hence, sup ClO ≥ λ. But Theorem 4.5 implies that
sup ClO ≤ λ, hence sup ClO = λ. a

Although we have no proof for Statement 4.4, we will for the rest of this paper
assume that it is true, and hence that in fact sup ClO = λ.

5. The halting problems

The halting problem can be relativized to IT-machines in two different ways,
H = {(p, x) : ϕp(x)↓} and h = {p : ϕp(0)↓} which are not (as their classical analogs)
equivalent. Notice also that h ⊆ ω, but H * ω.

It is easy to see that H and h are semi-decidable, just simulate ϕp(x) and if it
halts, we give ‘yes’ as an output.

Theorem 5.1: H and h are not decidable

Proof : Assume H is decidable. Then there is an IT-computable function r such
that r(p, x) = 1 if ϕp(x)↓ and r(p, x) = 0 otherwise. But then there is a program q
that computes

ϕq(p) =
{

1 if r(p, p) = 0
undefined otherwise.

This implies that ϕq(q)↓ iff ϕq(q) = 1 iff r(q, q) = 0 iff ϕq(q)↑. That is a contradic-
tion, hence, H is not decidable.

Now assume h is decidable. That implies that h̃ = ω − h also is decidable.
It is easy to see that these two sets are countable. We will now define a bijec-
tion g: h → h̃ simply by letting the n’th element in h go to the n’th element
in h̃. Since both h and h̃ are countable and decidable, g must be computable.
Define f : ω → ω simply by letting f(p) = g(p) if p ∈ h and f(p) = g−1(p)
otherwise. Since g is computable and h ∪ h̃ = ω, f is a total computable func-
tion on ω. The recursion theorem implies that there is a program q such that
ϕq = ϕf(q) and hence ϕq(0)↓ iff ϕf(q)(0)↓. But by the definition of f we have that
ϕq(0)↓ ⇒ q ∈ h ⇒ f(q) = g(q) ⇒ f(q) ∈ h̃ ⇒ f(q) /∈ h ⇒ ϕf(q)(0)↑. This is a
contradiction, hence, h is not decidable. a

13

Let Hα = {(p, x); p halts in less than α steps of computation on input x} and
hα = {p; p halts in less than α steps of computation on input 0}.

Theorem 5.2: For every α < ω1 there is a program p and a real x such that
p halts in α many steps on input x.

Proof : Every ordinal α can be written on the form β+δ where β is a limit of limits
ordinal (or 0) and δ < ω2 (Cantors normal form). Let x be such that ‖x‖ = β and
let p be the program that first counts through x like in the proof of Theorem 3.3.
This can be done in ‖x‖ = β many steps since β is a limit of limits. When this is
done, p simply clocks δ and halts. a

Hence, for all countable ordinals α and β such that α 6= β we have that Hα 6= Hβ .

But this does not hold for the hα’s. For example, if α /∈ ClO and β is the first
clockable ordinal greater than α we have that α 6= β but hα = hβ . We also have
that hα = h for all α ≥ λ.

Theorem 5.3: Hα and hα are decidable for every α ∈ WrO.

Proof : First we show that Hα is decidable. Consider the program that on in-
put (p, x) first writes z, where ‖z‖ = α, on a slice of the scratch-tape. This can
be done since α ∈ WrO. Then it starts to simulate the program p on input x, and
for every step of computation in the simulation of p, it erases the least element in
the well-order that z codes. If the simulation of p halts before this well-order is
erased, it halts with output ‘yes’, and if the well-order is completely erased before
p has halted, it halts with output ‘no’. This decides if (p, x) ∈ Hα or not. And
of course, to decide if p ∈ hα, just check if (p, 0) ∈ Hα, hence hα is also decidable. a

Theorem 5.4: Hλ and hλ are semi-decidable but not decidable.

Proof : That hλ is semi-decidable but not decidable follows directly since hλ = h.
It is also easy to see that if Hλ is decidable, then so is hλ, hence is Hλ not decid-
able either. So it suffices to show that Hλ is semi-decidable. But that is easy. On
input (p, x), just start simulating the program p on input x, and at the same time
simulate every program on input 0 (like a universal machine). If the simulation of
p halts, we wait for some of the other simulated programs on input 0 to halt, and
if one of them does after p has halted, we halt with output ‘yes’. a

Theorem 5.5: For any limit ordinal α ∈ ClO, Hα and hα are not α-decidable, but
they are α-semi-decidable and (α+ 1)-decidable.

Proof : Consider the program q that on input (p, x) simulates the program p on
input x while simultaneously clocking α. This can be done in such a way that in
ω steps of computation of q, ω steps of computation will be simulated in both p
and the α-clock. If p halts before the α-clock, q halts with output ‘yes’, but if the
α-clock halts, we can arrange for q to recognize this in the α’th step of computation

14

and halt with output ‘no’. The program q will halt in less than α+ 1 steps of com-
putation on every input and it decides Hα. Hence Hα and hα (to decide if p ∈ hα
in less than α+1 steps, just run q with input (p, 0)) are α+1-decidable. But q also
shows that Hα and hα are α-semi-decidable, since q halts with output ‘yes’ on input
(p, x) in less than α steps iff (p, x) ∈ Hα. Now it remains to show that hα and Hα

are not α-decidable. But the second part of the proof of Theorem 5.1, that shows
that h is not decidable, is generalizable to state that hα is not α-decidable, since
for the program q produced by the recursion theorem in this proof, we have that q
halts in less than α steps iff f(q) halts in less than α steps, so the contradiction still
holds, hence hα is not α-decidable. Similarly, if Hα is α-decidable, we can make
sure that the program q in the first part of Theorem 5.1 halts in less α steps, if
it halts at all, so the contradiction still holds. HenceHα is not α-decidable either. a

Remark 5.6: The program q in the proof above needs to check that the first
input p really is a natural number, and this we know from Theorem 2.5, takes ω
many steps. One could imagine that this could potentially mess up this algorithm
when α < ω2. But we can in fact do the first ω steps in the algorithm described
above and check such that p ∈ ω at the same time, in ω many steps. First we read p
as if it was a natural number, that is, we search for the first 0 in p. When we find it
(if we do not find a 0, we halt with output ‘no’ after ω steps), we ‘assume’ that the
rest of the first input-tape is filled with zeros. Then we check (with the help of a
bunch of flags) that this is the case at the same time as we run the algorithm above
with the potentially correct natural number. If we after ω many steps discover that
the rest of the first input-tape was not only 0’s, we halt with output ‘no’, and if it
was, we are all good and continues the algorithm above.

Definition 5.7a: A snapshot of a computation ϕp(x) at stage α is a complete
description of the machine that computes ϕp(x) after α steps of computation, that
is, a complete description of the three tapes at stage α, and a description of where
the head is, and which state the program is in, at stage α. So a snapshot can be
represented by an element in 2ω×2ω×2ω×ω×ω (three reals to describe the tapes,
two natural numbers to describe the location of the head and the current state), so
it is easy to code snapshots with reals.

Definition 5.7b: A settled snapshot sequence for a computation ϕp(x) is a se-
quence of snapshots such that the α’th snapshot in the sequence is a snapshot of
ϕp(x) at stage α, and furthermore, the last snapshot in the sequence is either in
a halting stage or the first time that the computation repeat itself in the sense
of Remark 2.2. Hence, every computation ϕp(x) has exactly one settled snapshot
sequence, and it can be coded by a real, since it is a countable sequence of reals.

Theorem 5.8 (No Uniformization Theorem): There is a decidable set A ⊆
2ω × 2ω such that for every y ∈ 2ω there exists a z ∈ 2ω such that (y, z) ∈ A but
such that A does not contain the graph of any computable total function.

Proof : Consider A = {(〈p, x〉 , z); z codes a settled snapshot sequence for ϕp(x)},
where we choose the pairing function such that for every real y there is a real x
and a natural number p such that y = 〈p, x〉.

15

A is decidable since we on input (〈p, x〉 , z) can simulate ϕp(x) and check that
the snapshot sequence that z codes corresponds to the simulated computation.
If at some point we find a snapshot that does not correspond to the simulated
computation we answer ‘no’. If this never happens one of two things can happen.
Either the simulated computation halts, (and then we check if the corresponding
snapshot is the last snapshot in the sequence), or we ‘run out’ of snapshots, (and
then we check so that the last snapshot is the first snapshot where the computation
repeats itself). Either way, it is decidable whether z codes a settled snapshot
sequence for ϕp(x) or not.

For every y ∈ 2ω there is a x ∈ 2ω and a p ∈ ω such that y = 〈p, x〉 and since
every computation has a settled snapshot sequence, there is a z ∈ 2ω such that z
codes a settled snapshot sequence for ϕp(x), and subsequently (y, z) ∈ A.

Assume now for a contradiction that A contains the graph of a total computable
function f . We will specify a program that, with the help of f , decides H. On an
input (p, x) the program simply simulates f(〈p, x〉) and decodes the result z into
the settled snapshot sequence that z codes and check if the last snapshot is in a
halt-stage (halt with output ‘yes’) or in a repeat-stage (halt with output ‘no’). a

Corollary 5.9: There is a program p and a real x such that the settled snapshot
sequence for ϕp(x) is not even accidentally x-writable6.

Proof : Consider the program that on input 〈p, x〉 starts to simulate all compu-
tations on the form ϕq(x), and after every step of computation of a simulated
ϕq(x) it checks if any of the reals currently on q’s simulated tapes are a settled
snapshot sequence for ϕp(x) (this is decidable according to the No Uniformization
Theorem). If it finds such a real, it is written to the output-tape and the program
halts the machine. This defines a computable function f whose graph is contained
in A, hence, f must not be total, because then f contradicts the No Uniformization
Theorem. Hence, for at least one input 〈p, x〉 the settled snapshot sequence will
not be accidentally written by a computation with input x. a

Corollary 5.10: There is a total function, with a decidable graph, that is not
computable.

Proof : Let f be a function such that, for every input 〈p, x〉, f(〈p, x〉) = z, where
z is the settled snapshot sequence for ϕp(x). Then the set A in (the proof of) the
No Uniformization Theorem is the graph of f . Hence, f is a total function with a
decidable graph, but f can not be computable since then A would contain the graph
of a computable total function, which contradict the No Uniformization Theorem.
(Another way of seeing why f is not computable is to use it to solve the halting
problem.) a

Theorem 5.11 (Lost Melody Theorem): There is a real c such that {c} is
decidable but c /∈ WrR.

6A real is x-writable if it is writable by a machine with x as a real-oracle (to be defined in
section 6) or equivalent, if it is writable with x as input (instead of 0).

16

Proof : For every p ∈ ω, let zp be a real coding the settled snapshot sequence for
ϕp(0). Let c be a real coding all the zp’s by ‘slicing’ the real in ω slices and have zn
on the n’th slice. Assume for a contradiction that c ∈ WrR. We specify a program
that decides h. On input p, it simply writes c to the scratch-tape and decodes
the real on the p’th slice (that is zp) into the settled snapshot sequence it codes
and checks if the last snapshot is in a halt-stage (output ‘yes’) or in a repeat-stage
(output ‘no’). This program decides h which is a contradiction, hence c /∈ WrR.

For every k ∈ ω there is a ϕpk
that decides if the k’th slice of its input is zk by

first decoding the k’th slice of the input into (what could be) a settled snapshot
sequence and then simulating ϕk(0) and check that the simulated computation cor-
respond to the snapshot sequence (similar to what was done in the proof of the No
Uniformization Theorem). Let a program q simulate all these ϕpk

’s and halt with
output ‘no’ if one of them halts with output ‘no’ and halt with output ‘yes’ if all
of them has halted with output ‘yes’. Then ϕq decides {c}. a

Corollary 5.12: There is a constant total function, with a decidable graph,
that is not computable.

Proof : Let f be a function such that, for every input x, f(x) = c, where c is
the real from the Lost Melody Theorem. Then f is a constant total function, with
a decidable graph. Assume that f is computable, that is, there is a p ∈ ω such that
ϕp = f , then ϕp(0) = c which contradicts that c /∈ WrR. a

Our next theorem implies that the real c in the Lost Melody Theorem is not
even accidentally writable.

Theorem 5.13: Every decidable set of reals that does not contain any writable
real, does not contain any accidentally writable real.

Proof : Let A be a set of reals such that A∩WrR = ∅ but A∩AWrR 6= ∅. We
show that A is not decidable. Assume for a contradiction that A is decidable and
consider a program q that simulates all computations on the form ϕp(0), and af-
ter every step of computation in every simulated program q checks if any of the
reals written to the simulated tapes in the simulated computation is in A. Since
A∩AWrR 6= ∅, such a real will eventually be found and then q copies this real to the
output-tape and halts. Thus, ϕq(0) will halt with a real from A on the output-tape
which is a contradiction since A∩WrR = ∅. a

6. Oracles

There are two different kinds of oracles for IT-machines, oracles that are single
reals, and oracles that are sets of reals. A machine with a real-oracle has an extra
‘oracle-tape’ where the real that is its oracle is written, just like an extra input. A
machine with a set-oracle has an extra ‘query-tape’ where it can write down a real
and (in one step of computation) get an answer if this real is in the oracle-set or
not.

It is generally not equivalent to have x as a real-oracle or have {x} as a set-oracle.
To see this, assume that x is not even accidentally writable. A machine with x as

17

a real-oracle can easily halt with x on the output-tape on input 0 (just consider
the program that copies the oracle-tape to the output-tape and halts). But this
can not a machine with {x} as a set-oracle do. To see why, notice that, since x /∈
AWrR, no real can be written to the query-tape in a computation on input 0, that
would generate a positive reply from the oracle. Hence, if a machine with {x} as
an oracle halts with x on the output-tape on input 0, then there is a machine with
no oracle that halts with x on the output-tape on input 0, that is, x ∈ WrR, but
that is a contradiction.

We let ϕxp be the function that is determined by running the program p with
real-oracle x, and we let ϕAp be the function determined by running the program p
with set-oracle A.

For every real x, let Mx = {n ∈ ω; the n’th digit in x is 1}. It is easy to see
that with x as a real-oracle, it is a simple task to decide if a real is in Mx or not.
And with Mx as a set-oracle, it is easy to write down x and use it as a real-oracle.
Hence, it is equivalent to have x as a real-oracle or Mx as a set-oracle. So in a
sense, we could view the real-oracles as special cases of set-oracles, namely those
consisting only of (reals coding) natural numbers.

Let A and B be oracles, then A ≤∞ B (A is computable from B) if the char-
acteristic function of A is computable with B as an oracle. If we think of reals as
subsets of ω, this definition makes sense for all kinds of oracles. As usual we let
A ≡∞ B if A ≤∞ B and B ≤∞ A and it is easy to see that this is an equivalence
relation.

The notions of computability, decidability, clockability, writability and so forth
are extended to A-computability, A-decidability, and so forth, in the natural way.
For example, a function f is A-computable if f = ϕAp for some p ∈ ω and an ordinal
α is A-clockable if there is a program that uses A as an oracle that halts after α
steps of computation on input 0. Notice that A ≤∞ B iff A is B-decidable. Notice
also that for every real x and every oracle B we have that x ≤∞ B iff Mx ≤∞ B
iff Mx is B-decidable iff x is B-writable.

Now we define two jump operators, the weak jump and the strong jump, corre-
sponding to the two halting problems.

Let A ⊕ B be the set of reals from A and B where we have added a 0 in front
of all reals in A and 1 in front of all reals in B. Then both A and B are A ⊕ B-
decidable, and if A and B are C-decidable for some set of reals C, then A ⊕ B is
also C-decidable. Hence A⊕B is in the ≤∞-smallest equivalence class that decides
both A and B.

Definition 6.1a: For any oracle A, the strong jump of A, denoted AH is the
set
{

(p, x); ϕAp (x)↓
}

.
Definition 6.1b: For any oracle A, the weak jump of A, denoted AO is the set
A⊕

{
p; ϕAp (0)↓

}
.

As we shall see in the next theorem there are sets of reals that are not decidable
from any real, so the reason for why we include A in the definition of AO is to make
sure that A ≤∞ AO.

Theorem 6.2: H is not computable from any real.

18

Proof : Assume for a contradiction that H ≤∞ z for some real z, that is, there
is a program q such that ϕzq(p, x) = 1 if ϕp(x)↓ and ϕzq(p, x) = 0 otherwise. Let
f be the computable function (defined only on ω) that on an input r, computes
s(q, r) (where s is such that ϕxq (r, x) = ϕxs(q,r)(x)), decodes s(q, r) into the tuples
describing the program and changes these tuples so that instead of halting, s(q, r)
first checks if the output is 0, and if it is, it halts, otherwise it enters a never ending
loop. Then f(r) is the program that halts on input x iff ϕxs(q,r)(x) = ϕxq (r, x) = 0.
But since f is computable and total, there is a program r such that ϕr = ϕf(r).
But then we have ϕr(z)↓ iff ϕf(r)(z)↓ iff ϕzs(q,r)(z) = 0 iff ϕzq(r, z) = 0 iff ϕr(z)↑.
That is a contradiction. a

This also shows, as we promised earlier, that H 6≡∞ h, since every set of natural
numbers is equivalent to some real.

Theorem 6.3: WrR is not decidable.

Proof : Assume WrR is decidable. Consider the universal machine that simulates
ϕp for all p ∈ ω and every time a real x is written to any of ϕp’s simulated tapes, it
checks if x ∈WrR. If it finds an x such that x /∈WrR, it copies x to the output-tape
and halts. Since a non-writable real eventually will be written to one of ϕp’s tapes,
this machine halts with a non-writable real on the output-tape on input 0. That is
a contradiction. a

Corollary 6.4: A = {(x, y); x ≤∞ y} is not decidable.

Proof : Since (x, 0) ∈ A iff x ∈ WrR, we have that if A is decidable, so is WrR.
Hence, the result follows from Theorem 6.3. a

Theorem 6.5: There are incomparable IT-degrees in the reals.

Proof : Assume that there are no incomparable IT-degrees in the reals, which im-
plies that the degrees are linearly ordered. Since every initial segment of this order
is countable (since there are only countable many programs), there are at most ℵ1

degrees, so the continuum hypothesis holds. But it can be shown that the assertion
that there are incomparable degrees, is a Σ1

2-assertion (see [1]), hence this assertion
is absolute to every forcing extension due to the Shoenfield absoluteness theorem.
But since there is a forcing extension where the continuum hypothesis is false, there
must be incomparable degrees in this extension. Hence there are incomparable IT-
degrees in the reals. a

7. Machines with only one tape (or a small head)

When we defined the IT-machines we allowed the head to read three cells at
once, one from each tape. What happens if we allow the machines to read only
one cell at the time? One could argue that this would be a more natural definition
since the machine can write to only one cell at the time.

We start every computation with the head at the beginning of the input-tape
and in the limit-stages, the head is placed at the beginning of the scratch-tape.

19

We would have to add two new commands for the head to be able to move up and
down between the tapes.

It is fairly easy to see that these ‘1-read-machines’ are equally powerful as the
IT-machines in the sense that every IT-computable function is computable by a
1-read-machine (and vice versa). But it might just take a finite amount of steps
longer since we might have to move up and down to read from the three cells that
an ordinary machine reads simultaneously (it is a finite amount of steps since the
difference will disappear in the limit-stages). So the question is if the ordinals
clockable by a 1-read-machines are the same as the ordinary clockable ordinals.

Let ClO1R be the set of ordinals clockable by a 1-read-machine.

Theorem 7.1 (weak speed-up): α + n ∈ ClO1R ⇒ α + 1 ∈ ClO1R for all
α and all n ∈ ω.

Proof : The proof is analog to the proof of the Speed-up Lemma for the IT-machines
(Theorem 3.4) except that since we can not look at two cells at once we will be
forced to move a step up or down to see the other flag. All the other extra steps
we might have to make will disappear in the limit-stages. a

So, by the argument above, we have that α ∈ ClO ⇒ α + n ∈ ClO1R for some
n ∈ ω, hence, by Theorem 7.1, we have that α ∈ ClO ⇒ α + 1 ∈ ClO1R, and
consequently, every clockable successor ordinal is 1-read-clockable.

Now we will first show that there is a gap of size exactly ω2 in the clockable
ordinals, and then show that the clockable ordinals ending gaps of limit of limits
length, are in fact not 1-read-clockable, hence ClO 6= ClO1R.

Theorem 7.2: The first gap of size at least ω2 in the clockable ordinals is of
size exactly ω2.

Proof : We know from Theorem 3.6 that there is a gap of size at least ω2 in the
clockable ordinals. We will specify a universal machine that will halt after α + ω2

steps, where α is the first ordinal in the first gap of size at least ω2. We slice up
the tapes in ω parts to simulate ϕp for every program p, but leaving the first cell
on every tape for flags. We will use two flags, f1 and f2. Every time a simulated
program halts, we flash f1, and if f1 = 0 in a limit-stage, we flash f2. We halt in
the first limit-stage where f1 = 0 and f2 = 1.

Let fi(β) be the value of fi after β steps of computation.
Since no program halts between α and α+ ω2, we have that f1(β) = 0 for all β

such that α + ω ≤ β < α + ω2. Thus f1 has truly stabilized to 0 before the limit-
stage α+ω2, hence f1(α+ω2) = 0. Also f1(α+ω) = 0, f1(α+ω · 2) = 0,..., hence
f2 changes value unboundedly often before stage α + ω2, making f2(α + ω2) = 1.
Therefore, as long as this machine does not halt at some stage γ ≤ α, this machine
halts at α+ ω2 and proves the theorem.

Let γ be any limit ordinal less than, or equal to α. We show that f2(γ) = 1 ⇒
f1(γ) = 1 which will complete the proof.

Assume that f2(γ) = 1. Then we may assume that γ is a limit of countably
many limit-stages where f1 = 0, since otherwise there is a β < γ such that f1 is
1 for all stages between β and γ, and consequently f1(γ) = 1. Since γ is a limit

20

of countably many limit-stages where f1 = 0, there must be unboundedly large
limit-stages less than γ where f1 = 1, otherwise would γ end or be inside of a gap
of size greater or equal to ω2, which contradicts the choice of α. Thus we have that
f1(γ) = 1. a

It is promising that we use the machines ability to read two flags at once in this
algorithm since we aim to prove that this ordinal is not 1-read-clockable.

Theorem 7.3: Every ordinal β that ends a gap of limit of limits size in the
clockable ordinals, is not 1-read-clockable.

Proof : Assume β ∈ ClO1R. Since β is a limit ordinal, there has to be a program p
that halts after it has read what is on the first cell C0 on the scratch-tape directly
after the limit. It is easy to see, since β is a limit of limits, that C0(β) 6= 0, since
otherwise C0 would have stabilized at some stage γ < β, but the machine would
then have halted at the next limit-stage (which can not be β since that limit-stage
is not a limit of limits). Hence, this machine will halt in the first limit-stage where
C0 is 1. With the same argument one realizes that C0 can not have stabilized to 1
either, it must have changed value unboundedly often before β.

For every n, there is a program pkn
that simulates p but has made room for

n flags that are all set to 0 at the start of the computation. After every step of
computation in the simulated program p, it checks if the cell corresponding to C0

in p is 1, and every time it is, the first flag that are 0 is turned to 1. When all n
flags are 1, the computation halts. If αn is the stage where C0 is 1 for the n’th
time in our original program, then pkn

will halt at αn + k for some k ∈ ω, so the
Speed-up Lemma yields that αn ∈ ClO for all n ∈ ω. Let γ = sup{αn; n ∈ ω}.
Since αn < αn+1 for all n ∈ ω, we must have that γ is a limit ordinal. And since
the αn’s are unbounded in γ and C0(αn) = 1 for all n ∈ ω, we have that C0(γ) = 1.
Thus β = γ which contradicts that β ends a gap (since for every α < β there is an
αn ∈ ClO such that α < αn < β). a

This also shows that the Speed-up Lemma does not hold for 1-read-machines
since for every β that ends a gap of limit of limits size in ClO, we have that
β ∈ ClO and β + 1 ∈ ClO1R, but β /∈ ClO1R. Thus the 1-read-machines has the
same computational power as the IT-machines but ClO1R 6= ClO.

How about an IT-machine with only one tape instead of three, a 1-tape-machine?
Such a machine will have its only tape filled with the input at the start of the
computation and when (if) it halts, the tape will be filled with the output.

In [2] Hamkins and Seabold shows that there is a 1-tape computable way of
stretching the input so that it will be written to every third cell of the tape instead.
They also show that when this is done, it is easy to simulate a given IT-machine
by thinking of the tape as divided in three slices, with the input written to the
first, and at the end of the computation, the output written to the third (with the
second slice simulating the scratch-tape). They also show that there is a easy way
of compressing this output to fill up the tape like it should at the end of a 1-tape
computation.

21

Hamkins and Seabold also shows by a diagonalization argument in [2] that there
is a function that is IT-computable but not 1-tape-computable.

This is confusing at first, but the 1-tape-computable functions are not generally
closed under composition. To first stretch the input, then simulate the computation,
then compress the output does not have to be a 1-tape-computable algorithm, even
if the three parts of the algorithm is.

The reason for this is that the machine might not know that it should halt after
the compression since we have no room for flags to tell us that we are done. In fact,
the real at the tape after the compression might have already been written to the
tape at some earlier stage of the computation.

They also show that we only need room for one single flag, that is, a cell that is
not part of the output, for 1-tape-machines to compute the same functions as the
IT-machines.

So how about the ‘1-tape-clockable’ ordinals ClO1T ? In [2] it is shown that every
clockable successor ordinal is 1-tape-clockable, which implies that the only 1-read-
clockable ordinals that perhaps are not 1-tape-clockable, are the 1-read-clockable
limit ordinals. Assume α ∈ ClO1R is a limit ordinal. Then it is easy to see that
α ∈ ClO1T . Simulate the 1-read-computation that clocks α on a 1-tape-machine
and make sure that the first cell on the simulated scratch-tape is the first cell
on the tape. This 1-tape-machine will halt at stage α since the finite amount of
steps more that the 1-tape-machine might have to make in every step of simulated
computation will disappear in the limit-stages. Hence ClO1R ⊆ ClO1T . And by
simply using only the scratch-tape it is easy to see that a 1-read-machine can clock
every ordinal that a 1-tape-machine can. Hence ClO1T ⊆ ClO1R and subsequently
ClO1T = ClO1R .

In [2] Hamkins and Seabold shows that every clockable limit of clockable ordinals
is 1-tape-clockable. Which implies that the only clockable ordinals that might not
be 1-tape-clockable are the ones that end gaps in the clockable ordinals. We know
that every ordinal that ends a gap of limit of limits length in ClO is not 1-tape-
clockable. So the only clockable ordinals that we do not know whether they are
1-tape-clockable or not are the ones that end gaps of size β + ω for some β < λ.

It is an open question whether all the ordinals that ends gaps in ClO of length
β + ω where β < λ is 1-tape-clockable, however Hamkins and Seabold shows that
many of these gaps is 1-tape-clockable in the following theorem. The proof is left
out because we will prove a more general theorem later.

Theorem 7.4: For every δ, β ∈ ClO, the ordinal that ends the first gap after
δ of size at least β + ω is 1-tape-clockable.

For more details on this, see [2].

Definition 7.5a: Any gap of size β is a Γ0-gap of size β.

Definition 7.5b: A Γn+1-gap of size β is a gap of size β that begins with an
ordinal that is a limit of ordinals that begins Γn-gaps of size at least β.

It is easy to see that the Γn-gaps with n 6= 0 are not covered in 7.4 since there
is no clockable ordinal δ such that a Γn-gap (with n 6= 0) of size β + ω is the first

22

gap of size at least β +ω after δ, since this gap is a limit of such gaps (it is in fact,
for every γ ∈ ClO, not even the γ’th gap of size at least β + ω after δ).

The first question is if there is a Γn-gap (with n 6= 0) in the clockable ordinals.
We will show that there is by specifying a program that would halt after the supre-
mum of the clockable ordinals, λ, if no such gap existed.

Let Gβ(n) be the formula: ‘There is a universal 1-tape-machine with a flag fn
such that fn = 0 in a limit-stage iff it is in a stage that is β + ω steps after the
start of a Γn-gap of size at least β + ω.’

Let F β(n) be the formula: ‘There is a universal 1-tape-machine with a flag fn+1

such that fn+1 = 1 in a limit-stage iff it is in a stage that is a limit of Γn-gaps of
size at least β + ω.’

Lemma 7.6: For every β ∈ ClO, Gβ(n) and F β(n) holds for every n ∈ ω.

Proof : We may assume that β is a successor ordinal since (β+1)+ω = β+(1+ω) =
β + ω. Hence, it is no restriction to assume that β ∈ ClO1T .

We will show the lemma by an inductive argument over F and G simultaneously.
We will show, for an arbitrary β ∈ ClO1T , that

(I) Gβ(0) is true,
(II) if Gβ(n) is true, then F β(n) is true,
(III) if F β(n) is true, then Gβ(n+ 1) is true.

(I), (II) and (III) shows the lemma.
(I): We will not show this in the easiest way, since we will generalize this proof in

(III). We need two flags, f0 and f0. We will make sure that f0 = 0 in a limit-stage
iff we are β+ω steps into a gap of size at least β+ω, and consequently proving (I).
We define an universal machine with a β-clock (that is, a simulated computation
that halts in β many steps) that makes ω steps of computation of every simulated
computation and the β-clock, in ω many steps.

When a simulated computation halts: Set f0 to 1 and set f0 to 1.
In a limit: If f0 is 1, then restart the β-clock (see Remark 7.7) and set f0 to 0, if
f0 is 0, set it to 1.
When the β-clock halts: set f0 to 0.

Let β′ be the limit ordinal such that β = β′ + n for some n ∈ ω. Then it is easy
to see that when the β-clock halts, we are in a gap of size at least β′ (since when
a simulated computation halts, we reset the β-clock in the next limit). This is the
only time that f0 is set to 0, so the only chance for f0 to be 0 at a limit-stage is
if no computation halts before the next limit. But this happens if and only if we
are β′+ω = β+ω steps into a gap of size at least β+ω which is exactly what we want.

(II): Consider the machine promised to exist by Gβ(n). Then we know that
fn = 0 in a limit-stage exactly one time in every Γn-gap of size at least β + ω and
never at any other limit-stage. So flash a new flag fn+1 in every limit-stage where

23

fn = 0. When fn+1 = 1 in a limit-stage, set it to 0. Then fn+1 is 1 in a limit-stage
iff it is a limit of Γn-gaps of size at least β + ω.

(III): Consider the machine promised to exist by F β(n). This machine has a flag
fn that is 1 in a limit-stage iff this limit-stage is a limit of Γn-gaps of size at least
β + ω. This implies that all gaps that starts when fn is 1 are Γn+1-gaps, and no
gap that starts when fn is 0 is a Γn+1-gap of size at least β+ω. So add a new flag,
fn, and let it follow the following instructions (similar to the machine in (I)):

When a simulated computation halts: Set fn to 1.
In a limit: If fn is 1, then re-start the β-clock (see Remark 7.7) and set fn to 0, if
fn is 0, set it to 1.
When the β-clock halts: Set fn to 0.

To see that these instructions gives us the machine we want is similar to (I). a

Remark 7.7: There could be a problem with the β-clock, due to the restarts.
When we start the clock, the slice where we clock β could be full of old ‘crap’ from
earlier clockings or limits of clockings. This could potentially mess up the clock
since it is a computation on input 0. This is however solvable.

Case 1, β < ω: It is easy to see that it yields an equivalent machine to skip the
clock and just set fn to 0 in every limit-stage.

Case 2, β ≥ ω2: Let p be a program that clocks β and let q be the program that
in ω steps writes a 0 to every cell, regardless of how the tape was set up. Now let
the real β-clock be the program that first runs q and then p. This program will
halt in ω + β = β many steps on every input.

Case 3, ω ≤ β < ω2: There is a clockable β′ such that ω + β′ = β. So in this
case the β-clock is the program that first runs q and then runs the program that
clocks β′. This program will halt in ω + β′ = β many steps on every input.

Hence, for every clockable β there is a program that ends in β many steps of
computation on every input.

Theorem 7.8: For every n ∈ ω and every β, γ ∈ ClO, there are γ many Γn-
gaps of size at least β in ClO.

Proof : We show this with an inductive argument. We know from section 3 that,
for every γ, β ∈ ClO, there are γ many Γ0-gaps of size at least β in ClO so the case
n = 0 is already proved. Now assume that, for every γ, β ∈ ClO, there are γ many
Γn-gaps of size at least β in ClO. Then the supremum of the clockable ordinals, λ,
must be a limit of Γn-gaps of size at least β, since for every ordinal µ < λ, there
is a clockable γ > µ such that there are γ many Γn-gaps of size at least β. Thus,
at least one of these gaps must occur between µ and λ. Hence, the flag fn+1 in
the F β(n)-machine specified above is 1 at stage λ. If there are no Γn+1-gaps, λ
would be the first limit-stage where this flag is 1 and we could easily direct the
machine to halt when this happens. That is a contradiction since λ /∈ ClO. Hence
for every β ∈ ClO there is a Γn+1-gap of size at least β in ClO. Now assume for a
contradiction that for a certain β it is not the case that for every γ ∈ ClO there
are γ many Γn+1-gaps of size at least β. Then there must be exactly η such gaps

24

for an η < λ. But then let σ be the supremum of the lengths of all these η gaps.
Obviously σ < λ so there is a β′ ∈ ClO such that σ < β′ < λ. But, we know there
is a Γn+1-gap of size at least β′ in ClO. This gap can not be any of the η gaps, since
it is ‘bigger’ than every one of these. This is a contradiction since this is a gap of
size at least β, and we can (finally) draw the conclusion that, for every β, γ ∈ ClO,
there are γ many Γn+1-gaps of size at least β, which concludes the proof. a

Theorem 7.9: If α ends the γ’th Γn-gap of size at least β + ω after δ, where
γ, β, δ ∈ ClO and n ∈ ω, then α ∈ ClO1T .

Proof : We may assume that δ and β are clockable successor ordinals, since the
first gap after δ is the same gap as the first gap after δ+ 1, and since (β+ 1) +ω =
β+(1+ω) = β+ω. So it is no restriction to assume that β and δ is 1-tape-clockable.

Consider the 1-tape universal machine whose existence is promised by F β(n).
This machine has a flag, fn, that is 0 in a limit-stage iff this limit-stage is β + ω
steps into a Γn-gap of size at least β + ω. It will also have a flag fn that is 1 in a
limit-stage iff this limit-stage is a limit of Γn-gaps of size at least β + ω. We will
add a new flag f̂ that will be set to 1 at the start of the computation and set to 0
when the next Γn-gap of size at least β + ω will be the γ’th such gap. This is how:

At the start of the computation: Make one ‘IT-step’ (see Remark 7.10) of com-
putation in the simulated IT-program p that clocks γ and set f̂ to 1.

When p halts: Set f̂ to 0.
In a limit: If fn = 1 or if f̂ = 1 and fn = 0 we make another ‘IT-step’ of

computation in the simulation of p.

The first limit-stage where f̂ = fn = 0 is α, since this is β + ω steps into the
γ’th Γn-gap of size at least β + ω and we could easily direct an IT-machine to halt
in the first limit-stage when f̂ = fn = 0 since it can read three cells at once. But it
is an easy thing to modify this into a 1-tape-machine by setting a master flag f to
max(f̂ , fn) every time we change the value of f̂ or fn. Then f = 0 in a limit-stage
iff f̂ = fn = 0 in this limit-stage. So by placing this master flag on the first cell of
the tape, we can easily halt at stage α and the proof is complete. a

Remark 7.10: If an IT-program p clocks an α ∈ ClO, we can make this into
a 1-tape-computation simply by slicing the tape into three, and simulate the three
tapes of this IT-machine on these slices. Since the input is 0, there is no need to
stretch it, and we do not care about the output in this particular case so there is
no need for compressing the output either. If we by an ‘IT-step’ of computation
mean the finite amount of steps this 1-tape-machine does to simulate one step of
computation in the original IT-machine (it has to move around and read from three
cells before it consults the IT-program p). Then it is easy to see that this 1-tape-
computation will halt after α ‘IT-steps’ of computation.

The proof of Theorem 7.9 shows that for every β, γ, δ ∈ ClO, the γ’th Γn-gap
of size at least β + ω after δ is of size exactly β + ω. Hence every Γn-gap of size
greater than β + ω is the γ’th gap of size at least β + ω, after δ, for some γ /∈ ClO.

25

There are (at least) two things that might cause Theorem 7.9 to fail to cover all
the gaps we want it to.

1: The theorem does not cover any gaps of non-clockable length. Thus, one
needs to show that no such gaps exists or one needs to strengthen the theorem.

2: There could be Γα-gaps for ω ≤ α < λ. If so, one needs to generalize the
theorem to a more general induction.

8. Infinite time machines with infinite programs (ISIT-machines)

If we in the definition of the IT-machines let go of the restriction that the pro-
grams must be finite sets and instead let the programs be countable sets, we get
the ISIT-machines. If we dropped the restriction that the ISIT-programs must be
countable, it would not yield a more powerful machine (see Remark 8.7).

Thus, a program is a countable set of tuples 〈s, r, c, s′〉 that specifies the machines
actions. It is obvious that the IT-machines are those ISIT-machines with a finite
program.

It is no restriction to let the set of all possible states be ω since there can only
be countably many states per program. So the set of possible tuples are exactly
the same as for the IT-programs. Hence there is a recursive bijection between the
set of possible tuples and ω. So every program is coded by a subset of ω (and
every subset of ω codes a program). And since every real codes a subset of ω in
an obvious way we will be careless, as usual, and call a real x a program when we
really mean the program that x codes.

And, like before, every program x determines a partial function ϕx by letting
the value of ϕx(z) be what is on the output-tape when the machine with program
x and input z halts, and letting ϕx(z) be undefined when the machine does not
halt. Of course ϕx = ϕy iff ϕx(z)↓ ↔ ϕy(z)↓ for all z and ϕx(z) = ϕy(z) for all z
such that ϕx(z)↓.

We extend, in the natural way, the notions of computability, (semi-)decidablilty,
writability, and so forth, to the ISIT-context. For instance, a function f on reals is
ISIT-computable if there is a program x such that f = ϕx.

Theorem 8.1: Every real x is ISIT-writable in ω steps of computation.

Proof : Fix an x ∈ 2ω. We show that there is a machine that writes x on the
output-tape on input 0. Consider this program:
{〈2n+ 1, r,write the n’th digit of x on the output-tape, 2n+ 2〉 ; n ∈ ω, r ∈ R} ∪
{〈2n+ 2, r,move one step to the right, 2n+ 3〉 ; n ∈ ω, r ∈ R} (where R is the set
of possible reads). This machine writes x on the output-tape in ω steps, and in the
limit-stage it halts since there is no state 0 in the program. a

Hence ‘writable’ is a meaningless concept for ISIT-machines. We also see that
the ISIT-machines are ‘stronger’ than the IT-machines, since Theorem 8.1 shows
that there are uncountably many ISIT-computable functions.

Corollary 8.2: There are 2ℵ0 different ISIT-computable functions.

26

Proof : Since every program is coded by a real, there must be at most 2ℵ0 dif-
ferent ISIT-computable functions, but Theorem I implies that there are at least
2ℵ0 different ISIT-computable functions, so there must be exactly 2ℵ0 different
ISIT-computable functions. a

Theorem 8.3: For every ISIT-computable function f there are 2ℵ0 different in-
dices x such that f = ϕx.

Proof : Let x be a program. Multiply every state in x (except 0 and 1) with 2.
This gives us a new program x′ such that ϕx = ϕx′ with ω many free states. So we
can add pointless states to this program in 2ω different ways. All these programs
produce different indices but defines the same function. a

Theorem 8.4 (s-n-m): There is an ISIT-computable, total function s such that
ϕx(y, z) = ϕs(x,y)(z)

Proof : Assume we have a program x with n + m arguments. We will specify
the program x′ = s(x, y) with m arguments. First it slices up the scratch-tape
in n + 1 slices and writes the y’s on n of them, leaving one for scratch work.
Then it runs the same algorithm as x except that it reads the y’s from slices of
the scratch-tape instead of input-tapes, and it does scratch work on a slice of the
scratch-tape instead of the whole scratch-tape. This procedure is ISIT-computable.
So for an ISIT-program that gets x and y as input it is a easy thing to decode x
into tuples, make these changes, and code it back into x′ = s(x, y). Hence, s is
ISIT-computable. a

Theorem 8.5 (Recursion): For every total ISIT-computable function f there
is a program x such that ϕx = ϕf(x).

Proof : The classical proof works in this context as well. Fix f . Let µ be the
program so that ϕµ(y, z) = ϕf(s(y,y))(z). Let x = s(µ, µ). Then we have ϕx(z) =
ϕs(µ,µ)(z) = ϕµ(µ, z) = ϕf(s(µ,µ))(z) = ϕf(x)(z). a

Theorem 8.6: Every halting ISIT-computation is countable.

Proof : It is not hard to see that Remark 2.2 is true for ISIT-machines as well,
so the proof of the corresponding theorem for IT-machines (Theorem 2.3) works in
this context. a

Remark 8.7: If we allowed the programs to be any set of tuples without the
restriction that it must be countable, and let any ordinal be a possible state (in-
stead of letting ω be the set of possible states), it would not yield a more powerful
machine. Remark 2.2 and Theorem 2.3 would be true in this context as well, mak-
ing every halting computation countable and every non-halting computation caught
in a countable loop. Thus, only a countable subset of the program is ever used, the
rest is just dummy-tuples, and subsequently, only countably many states is used.
Hence, every such machine can be simulated by an ISIT-machine.

27

Theorem 8.8: Every ordinal α < ω1 is clockable.

Proof : Just like for IT-machines, it is easy to see that all α < ω2 is clockable
(see section 3). Assume α ≥ ω2. According to Theorem 5.2 there is an IT-machine
p that halts after α steps of computation on some input x ∈ 2ω. Construct a
ISIT-program that on input 0 first writes x on the input-tape and then runs the ex-
act same algorithm as p. This machine will halt after ω+α = α steps on input 0. a

Theorem 8.6 and Theorem 8.8 tell us that all ordinals that can be clockable is,
hence ‘clockable’, just like ‘writable’, is not a meaningful concept for ISIT-machines.
It is also easy to see that the set of writable ordinals is the same as the set of clock-
able ordinals.

Let A ≤̂∞ B if the characteristic function of A is ISIT-computable with B as
an oracle, and let A ≡̂∞ B if A ≤̂∞ B and B ≤̂∞ A. Of course, since every real is
ISIT-writable, only set-oracles are meaningful in the ISIT context.

Let Ĥ and ĥ be the halting problems relativized to ISIT-machines, that is,
Ĥ = {(x, y); ϕx(y)↓} and ĥ = {x; ϕx(0)↓}. It is easy to see that Ĥ and ĥ are
semi-decidable.

Theorem 8.9: Ĥ ≡̂∞ ĥ.

Proof : Obviously ĥ ≤̂∞ Ĥ. We show that Ĥ ≤̂∞ ĥ. Suppose we want to de-
cide if (x, y) ∈ Ĥ, that is if ϕx(y)↓. Since y is writable, there is a program f(x, y)
such that f is computable and the program f(x, y), on input 0, first writes y on a
slice of the scratch-tape and then runs (practically) the same algorithm as x. Then
we have that ϕx(y)↓ iff ϕf(x,y)(0)↓ and this we can decide with ĥ as an oracle. a

Theorem 8.10: Ĥ and ĥ are not ISIT-decidable.

Proof : The corresponding proof of that H is not IT-decidable (Theorem 5.1) works
in this context to show that Ĥ is not ISIT-decidable. Thus, Theorem 8.9 implies
that ĥ is not ISIT-decidable. (The corresponding proof of that h is not IT-decidable
does not work in this context since it uses that h is countable). a

Let Ĥα = {(x, y); the program x halts in less than α steps of computation on
input y} and ĥα = {(x, y); the program x halts in less than α steps of computation
on input 0}. Then we have:

(1) Ĥα & Ĥβ , for all α < β ≤ ω1

(2) Ĥω1 = Ĥα = Ĥ, for all α ≥ ω1

(3) Ĥα is ISIT-α-semi-decidable but not ISIT-α-decidable, for all limit α
(4) Ĥα is ISIT-(α+ 1)-decidable, for all limit α
(5) Ĥα is ISIT-decidable for all α < ω1.

(1) follows from Theorem 8.8, (2) follows from Theorem 8.6 and (3)-(5) has basi-
cally the same proof as corresponding IT-statements (see section 5). (1)-(5) also
holds for ĥ.

28

Theorem 8.11: There is an IT-program q such that for every ISIT-program x
we have ϕx = ϕxq .

Proof : We specify the IT-program q, that with x as a real-oracle, will simulate
the ISIT-program x.

At ‘time’ v (the ‘time’ v here will correspond to the state the simulated com-
putation currently is in):

The first time q does this, it does it with v = 1 and after that q knows what v
is from the previous round of computation. The first thing it does is ‘memorize’
what it reads r from the tape and then it starts decoding x (which it has access
to since x is its oracle) into the tuples describing x’s program. If it finds a tuple
〈v, r, c, w〉 (where v is the current ‘time’), it moves back to where it read r and
executes command c, flashes a flag on and of, and starts over (unless c tells it to
halt) at ‘time’ w. This will be done in a finite amount of steps (as long as it finds
the corresponding tuple).

In limit-stages it checks if the flag is on or not. If it is on it will start over at
‘time’ 0, if it is off, that means that at some point we did not find the correspond-
ing tuple and searched for it in x in vain, so then we halt. This IT-program q will,
on every input y, halt with ϕx(y) as output if ϕx(y) halts, and run forever if ϕx(y)
is undefined, so ϕx = ϕxq . a

From now on q will be the IT-program in 8.11 that simulates the ISIT-program
that it has as a real-oracle.

Corollary 8.12: The power of ISIT-machines are exactly the same as the power
of IT-machines with real-oracles.

Proof : Theorem 8.11 shows that the ISIT-machines are not stronger than IT-
machines with real-oracles. To see that IT-machines with real-oracles are not
stronger than the ISIT-machines, consider for every IT-program p with x as an
oracle, the ISIT-program that first writes x on a slice of the scratch-tape and then
runs basically the same algorithm as p. a

The proof of 8.11 uses the easy coding we have chosen to go from a real x to
the program x codes, and back. One could imagine that this proof might not go
through with an ISIT-computable coding-algorithm that is not IT-computable, but
Corollary 8.12 still holds since the strength of the machines does not depend on the
coding.

Corollary 8.13: For every ISIT-computable function ϕx where x is IT-writable
there is an IT-computable function ϕp such that ϕx = ϕp.

Proof : First we write x on a slice of the scratch-tape and then we follow prac-
tically the same algorithm as in the proof of Theorem 8.11. a

29

This implies for example that the recursive ISIT-machines are not stronger than
the IT-machines.

Let H = {(x, y); ϕx(y)↓ ∧ x codes a finite program} and
h = {x; ϕx(0)↓ ∧ x codes a finite program}. So H and h are (equivalent to) the
halting problems for the IT-machines.

Corollary 8.14: H is not ISIT-decidable.

Proof : Assume ϕx decides H. Theorem 8.11 implies that ϕxq decides H. But
that contradicts Theorem 6.2. a

Theorem 8.15: Ĥ ≡̂∞ H.

Proof : Since it is easy to check if x codes a finite program, it is clear that H ≤̂∞ Ĥ.
Now we show that Ĥ ≤̂∞ H. Let q′ be the program such that ϕq′(x, y) = ϕxq (y).
This program exists since it is easy to direct q to look at the first input-tape in-
stead of the oracle-tape. Then let q′′ be such that ϕq′(x, y) = ϕq′′(〈x, y〉). But
then we have that (x, y) ∈ Ĥ iff ϕx(y)↓ iff ϕxq (y)↓ iff ϕq′(x, y)↓ iff ϕq′′(〈x, y〉)↓ iff
(q′′, 〈x, y〉) ∈ H. a

Since Ĥ =
{

(x, y); ϕxq (y)↓
}

, we see that the proof above also shows that Ĥ ≡∞ H
(where ≡∞ is the relation defined in section 6).

Theorem 8.16: The relation x ≤∞ y is not ISIT-decidable (where ≤∞ is the
relation defined in section 6).

Proof : Assume there is an ISIT-program z such that ϕz decides A = {(x, y);
x ≤∞ y}. Then we have that ϕzq decides A. But then there is an IT-program q such
that ϕzq(x) = ϕzq(x, z). This implies that B = {x; x ≤∞ z} = {x; x is z-writable}
is IT-decidable with z as an oracle since ϕzq decides B. This is a contradiction.
To see why, consider the IT-program q′ that, with z as an oracle, simulates every
computation on the form ϕp(z) on a slice of the scratch-tape, and as soon as a real
on any of the simulated tapes have been altered, q′ checks if this real is a member
of B. If it is, q′ continues with the computation, but if it is not, q′ copies this
real to the output-tape and halts. This machine will eventually halt with a real
that is not z-writable on the output-tape (to see why, generalize Theorem 3.12 to
show that there are eventually z-writable reals that are not z-writable). That is a
contradiction. a

Theorem 8.17: Every countable set of reals is ISIT-decidable.

Proof : For every countable set there is a program that slices up the scratch-tape
in ω slices and simply writes up all the members of the set. It is then a simple task
to check if a given input has been written to any of the slices. a

Corollary 8.18: h is ISIT-decidable.

30

Proof : Follows directly since h is countable. Another way of seeing it is to consider
the program that writes the supremum of the IT-clockable ordinals λ and then
simulates the IT-machine in question on input 0 and at the same time counts down
λ. The result also follows from the fact that c from the Lost Melody Theorem is
ISIT-writable. a

Corollary 8.19: ClO, WrO, EWrO, AWrO, WrR, EWrR and AWrR are all ISIT-
decidable.

Proof : Since ClO ⊆ WrO ⊆ EWrO ⊆ AWrO and WrR ⊆ EWrR ⊆ AWrR and
|AWrO| ≤ |AWrR|, it suffices to show that AWrR is countable and the result fol-
lows from Theorem 8.17. But that follows from Theorem 2.3 and Corollary 2.4,
since they imply that every program produces at most countably many accidentally
writable reals. a

Theorem 8.20: Every ISIT-decidable and ISIT-semi-decidable set is ∆1
2.

7

Proof : Assume that ϕx (semi-)decides A. This means that ϕxq (semi-)decides A.
This means that A is IT-(semi-)decidable with x as a real-oracle. This means (ac-
cording to section 7 in [1]) that A is ∆1

2. a

9: Conclusions

In the proof of that ClO ⊆WrO, we discover that Statement 4.4 is used (although
never stated) without proof in [3]. It may very well be obvious that Statement 4.4
is true and that we just have failed to see it, otherwise, one would need to prove it
to complete the proof.

We did not succeed in solving the open question in [2], that is, ‘is every ordinal
that ends a gap of size β + ω (for some β < λ) in the clockable ordinals 1-tape-
clockable?’, but at least we showed that even more of them, than was known before,
are.

Thanks to Theorem 8.11, most of the questions we had about the ISIT-machines
where answered with relative ease. We showed that the power of the ISIT-machines
is equivalent to the power of IT-machines with real-oracles (in the sense that the
same functions are computable). We also showed that it suffices for the ISIT-
program to be IT-writable for the resulting function to be IT-computable, and
hence it is indeed true for recursive programs. We also showed that h is ISIT-
decidable but that H is equivalent to the halting problem for ISIT-machines, and
therefore not ISIT-decidable.

7A is Π1
1 if there is a second-order arithmetical formula ∀Xψ(X,Y,B), where B are set pa-

rameters and ψ is a first-order formula, that defines A in the standard model.

31

References

[1] Joel David Hamkins and Andy Lewis. Infinite time Turing machines. J. Symbolic Logic,

65(2):567–604, 2000.
[2] Joel David Hamkins and Daniel Evan Seabold. Infinite time Turing machines with only one

tape. MLQ Math. Log. Q., 47(2):271–287, 2001.
[3] P. D. Welch. The length of infinite time Turing machine computations. Bull. London Math.

Soc., 32(2):129–136, 2000.

