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Abstract

A theory formulated in a countable predicate calculus can have at most
2ℵ0 nonisomorphic countable models. In 1961 R. L. Vaught [9] conjected
that if such a theory has uncountably many countable models, then it has
exactly 2ℵ0 countable models. This would of course follow immediately
if one assumed the continuum hypothesis to be true. Almost ten years
later, M. Morley [5] proved that if a countable theory has strictly more
than ℵ1 countable models, then it has 2ℵ0 countable models.

This leaves us with the possibility that a theory has exactly ℵ1, but
not 2ℵ0 countable models — and even today, Vaught’s question remains
unanswered.

This paper is an attempt to shed a little light on Morley’s proof.

1 Preliminaries

In this section we will establish some notions used in the paper. First, a relation
structure A = 〈A,Ri〉 for i ∈ I, is a set A together with finitary relations
Ri indexed over a countable set I. The similarity type of A is the function
τ : I → ω such that τ(i) = n if Ri is an n-ary relation. Corresponding to each
similarity type τ is an applied predicate language L0(τ) containing an n-ary
relation symbol Ri for each i ∈ I with τ(i) = n.

An atomic formula is a sequence of the form vi = vj or Rivj1 . . . vjn where
τ(i) = n. We take ∧,¬ and ∃ to be primitive, and the formulas of L0(τ) are
defined inductively by

F1 an atomic formula is a formula,

F2 if ϕ and ψ are formulas, then (ϕ ∧ ψ) is a formula,

F3 if ϕ is a formula, then ¬ϕ is a formula,

F4 if ϕ is a formula and vi is a variable, then ∃viϕ is a formula.

We will feel free to use the derived connectives ∨,→, and ↔ when convenient.
The infinitary language Lω1,ω(τ) is defined by adding a new formation rule

of infinite conjunctions:
∗This thesis was submitted for the degree of Bachelor of Arts at the Department of Phi-

losophy, University of Göteborg.
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F5 if Ξ is a countable set of formulas whose only free variables are among
v0, . . . , vn for some n, then

∧
Ξ is a formula.

Thus one allows infinite conjunctions, but only if the number of free variables
remains finite. The notion of satisfaction, etc., can be defined in the obvious
way. In particular, every element of Ξ is a subformula of

∧
Ξ.

It will be convenient to speak of “substituting vi for vj in ϕ, renaming vari-
ables to prevent clashes of bound variables.” The renaming process is somewhat
awkward in Lω1,ω. We could define it explicitly but instead we simply assume
there is a function Subst(i, j, ϕ) defined for all i, j ∈ ω and all formulas ϕ in
Lω1,ω such that

SB1 Subst(i, i, ϕ) = ϕ,

SB2 i 6= j ⇒ vi does not occur free in Subst(i, j, ϕ),

SB3 |= vi = vj → (ϕ↔ Subst(i, j, ϕ)).

The set of formulas in Lω1,ω is uncountable. We will be interested in certain
countable subsets of this set, and we say a set L of formulas is regular if

R1 L satisfies F1-F5,

R2 ϕ ∈ L⇒ every subformula of ϕ ∈ L,

R3 ϕ ∈ L⇒ Subst(i, j, ϕ) ∈ L,

R4 L is countable.

It is clear that every countable set of formulas is contained in a smallest regular
subset.

Next, we want to define a certain topology on a given set X. Generally, a
set T ⊆ P(X) is a topology on X if

T1 T is closed under arbitrary unions

T2 T is closed under finite intersections

T3 T 6= ∅

The elements in T are by definition open, and the complement of an open set is
closed. A topological space is a pair of a non-empty set X and a topology T on
X.

A class B of open sets is called a base for a topological space if each open
set in X can be represented as a union of elements of B. These basis sets are
then said to generate the topology T .

The class of Borel sets is the smallest collection of sets that contains the open
sets and is closed under complementation and countable unions. This class is
also closed under countable intersections, since these are countable unions of
complements.
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Let X be a countable set and let 2X denote the set of all functions from X
to {0, 1}. We may identify this with the set of all subsets of X. If Y ⊃ X we
define πY X : 2Y → 2X — the projection on X — by restricting the domain of
g ∈ 2Y to X, in symbols πY X(g) = g | X. A set A ⊂ 2X is analytic if it is a
projection of a Borel set.

To generate our topology, we let U be a basis set if there is a finite X0 ⊂ X
and an f0 ∈ 2X0 such that U = {f : πXX0(f) = f0}. Thus, a basis set in this
topology is the set of extensions of some finite set.

Theorem 1.1. An uncountable analytic set has power 2ℵ0 .

We will just give the outlines of the proof, as a detailed proof would lead
beyond the scope of this paper.1

Sketch of proof. The Baire space N is the set of infinite sequences of integers,
with a certain topology on it. It is clear that N is of power 2ℵ0 . N is what is
known as a Polish space, and a classical result of descriptive set theory shows
that every uncountable projection of a Polish space is of power 2ℵ0 . By another
theorem, each Borel set is a projection of N , and by definition an analytic set
is a projection of a Borel set. Thus, every uncountable analytic set is of power
2ℵ0 .

2 Enumerated models

An enumerated structure of similarity type τ is a countable structure A of sim-
ilarity type τ together with an enumeration 〈a0, a1, . . . 〉 of A. Thus a given
countable structure A corresponds to continuum many enumerated structures.
Let L be a regular subset of Lω1,ω(τ). With each enumerated structure A we
can associate the subset of L consisting of the formulas of L satisfied by the
sequence 〈a0, . . . , an, . . . 〉. This subset corresponds to a point t of 2L.

Theorem 2.1. The set {t : t corresponds to an enumerated model} is a Borel
subset of 2L.

Proof. Consider the following conditions on t ∈ 2L:

C1 for each ϕ ∈ L, exactly one of ϕ,¬ϕ ∈ t,

C2 ϕ1 ∧ ϕ2 ∈ t iff ϕ1 ∈ t and ϕ2 ∈ t,

C3
∧
ψ ∈ t iff ψ ⊆ t,

C4 ∃viϕ ∈ t iff for some j Subst(i, j, ϕ) ∈ t,

C5 (vi = vj) ∈ t and ϕ ∈ t implies Subst(i, j, ϕ) ∈ t and (vj = vi) ∈ t.

C6 (vi = vi) ∈ t for all i.
1The interested reader could turn for example to [2] or [6] for a thorough discussion of this

matter.
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The idea is to prove that a necessary and sufficient condition for a t to
correspond to an enumerated model is that the set of those t’s satisfies each one
of the conditions C1-C6. Then we note that each such set is a Borel set and
thus the intersection of those sets is also Borel, since the class of Borel sets is
closed under intersections.

Suppose t corresponds to an enumerated structure. We prove that t satisfies
each one of C1-C6 by a straightforward induction on the length of formulas. If
ϕ contains no free variables exactly one of ϕ and ¬ϕ is in L, since otherwise
both ϕ and ¬ϕ would be satisfied by all sequences. Suppose t satisfies C1 for
formulas containing n free variables. t then satisfies C1 for formulas containing
n + 1 free variables, since otherwise both ϕ and ¬ϕ would be satisfied by the
objects 〈a0, . . . , an, . . . 〉.2

The proof that t satisfies C2-C6 is carried out similarily.
Now, suppose t satisfies C1-C6. We wish to construct an enumerated struc-

ture that corresponds to t. First, we note that C5 and C6 imply that {〈i, j〉 :
vi = vj ∈ t} is an equivalence relation on ω. Denote the equivalence class of i
by [i]. We form the model whose universe is the set of equivalence classes {[i]}
under this relation and for each n-ary relation define R([i1], . . . , [in]) to hold if
R(vi1, . . . , vin) ∈ t. Let the enumeration of this model be the map which sends
i into [i]. Again, induction on the length of formulas proves that t corresponds
to the enumerated structure defined above.

Each set A of t’s satisfying for example C1 is obviously Borel — A is open and
the complement of A is easily found by letting Ac be the set of t’s not satisfying
C1. As for the intersection of two sets A, B satisfying C1, C2 respectively, it is
the set of t’s satisfying both C1 and C2.

Therefore, the set of t’s satisfying all six conditions C1-C6 is Borel.

Corollary 2.2. Let T be a countable set of sentences of L. The set {t : t
represents an enumerated model which satisfies all the sentences of T} is a
Borel set.

Proof. This is the intersection of the Borel set defined above with the Borel set
{t : T ⊂ t}.

For each regular L ⊂ Lω1,ω the set Ln = {ϕ ∈ L : the free variables of ϕ are
a subset of {v0, . . . , vn−1}}. For example, L0 is the set of sentences of L. If A
is a structure of similarity type τ and 〈a0, . . . , an−1〉 a sequence of elements of
A, the L-type of this sequence is the subset of Ln satisfied by 〈a0, . . . , an−1〉 in
A. In particular, the L-type of A is the type of the empty sequence. A class
K of models is called an axiomatic class in Lω1,ω(τ) if there is a countable set
T of sentences in Lω1,ω(τ) such that K = {A : A |= T}. The set of L-types of
n-tuples which occur in the members of K is denoted by SL

n (K).

2Note that an is the n+1:th object in the sequence.
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Theorem 2.3. If K is an axiomatic class, the set SL
n (K) is an analytic subset

of Ln.

Proof. Let L′ be a regular set such that L ∪ T ⊂ L′. By Theorem 2.1 the set
{t : t ∈ 2L′

and t corresponds to an enumerated model of T} is a Borel set
B ⊂ 2L′

. But SL
n (K) = πL′Ln(B) and is therefore analytic.

Corollary 2.4. If K is an axiomatic class, SL
n (K) is either countable or of

power 2ℵ0 .

Proof. This is immediate from Theorem 1.1 and Theorem 2.3.

A theory T is scattered if SL
n (K) is countable for every regular L, where K

is the class of models of T .

Theorem 2.5. If T has fewer than 2ℵ0 isomorphism types of countable models
then T is scattered.

Proof. Suppose that T where not scattered and that K is the class of models
of T . Then there is a regular subset L of Lω1,ω and an integer n such that
SL

n (K) has power 2ℵ0 . Only a countable number of n-types can be realized in
each countable model. Further, types realized in isomorphic models must be
the same. This implies that there are 2ℵ0 nonisomorphic models.

3 Scattered theories

In the previous section we established the result that a theory with fewer than
2ℵ0 isomorphism types of countable models is scattered. Our objective in this
section will be to prove that a scattered theory has at most ℵ1 such models. This
would be trivial if we assumed the continuum hypothesis to be true. Scott [7] has
shown that the isomorphism type of every countable structure is determined by
a sentence of Lω1,ω, and Morley’s proof consists of an elaboration of this result.
For the rest of this section we assume that T is a fixed scattered theory and
that K is the class of its countable models.

Define an increasing sequence {Lα : α < ω1} of languages inductively by:

Lα is the smallest regular language such that for each β < α:

(1) Lβ ⊂ Lα

(2) for each n ∈ ω and each ψ ∈ SLβ
n (K),

∧
ψ ∈ Lα

In other words, in each step we make sure that the (possibly infinite) con-
junction of all Lβ-types is also in Lα. Note that L0 is the usual finitary language,
and that for limit ordinals δ, Lδ in the usual transfinite fashion is the union of
all Lβ for β < δ. The assumption that T is scattered is needed to ensure that
Lα is countable.
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Lemma 3.1. Suppose that A and B are models of T and that 〈a0, . . . , an−1〉
and 〈b0, . . . , bn−1〉 are sequences having the same type in Lα+1. Then for every
an in A there is a bn in B such that 〈a0, . . . , an〉 and 〈b0, . . . , bn〉 have the same
type in Lα.

Proof. Let ψ ∈ SLα
n+1(K) be the type of 〈a0, . . . , an〉. Then, by the construction

above, ∃vn

∧
ψ is a formula of Lα+1 satisfied by 〈a0, . . . , an−1〉 and hence by

〈b0, . . . , bn−1〉.

Now we will give a characterization of the isomorphism types of the countable
models of T in terms of sentences of Lω1,ω.

Theorem 3.2 (Scott). Let A be a countable model of T . Then there is an
α0 < ω1 and a sentence ϕ0 in Lα0 such that a countable structure satisfies ϕ0

iff it is isomorphic to A.

Proof. Consider any two finite sequences of elements 〈a0, . . . , an−1〉 and
〈b0, . . . , bn−1〉 of A and B respectively. Either they have the same Lα-type for
each α < ω1 or there is a least α such that they have different Lα-types. Since
there is only a countable number of pairs of finite sequences, there must be
a δ < ω1 such that if two sequences have the same Lδ-type, then they have
the same type for all α < ω1. Each Lδ-type corresponds to a single sentence in
Lδ+1, according to the construction above. The set of Lδ-types realized in A can
therefore be described by a single sentence in Lδ+2. Similarily the set of Lδ+1-
types realized in A can be described by a single sentence in Lδ+3. Thus, there is
a single sentence ϕ in Lδ+3 which describes which Lδ-types of finite sequences
are realized in A and also asserts that the Lδ+1-type of a finite sequence is
determined by its Lδ-type. We will show that any countable model B satisfying
ϕ must be isomorphic to A.

Let B satisfy ϕ and let 〈a0, a1, . . . 〉 and 〈b0, b1, . . . 〉 be enumerations of A and
B respectively. Then it is possible to inductively define sequences 〈c0, c1, . . . 〉
and 〈d0, d1, . . . 〉 in A and B respectively such that

(1) 〈c0, c1, . . . 〉 has the same Lδ-type as 〈d0, d1, . . . 〉,

(2) c2n = an

(3) d2n+1 = bn

Suppose we have defined such a sequence for all m < n. If n is even, we let
cn = a2/n. Since the sequences 〈c0, . . . , cn−1〉 and 〈d0, . . . , dn−1〉 have the same
Lδ-type, they have the same Lδ+1-type. According to Lemma 3.1, there is a dn

such that 〈c0, . . . , cn〉 and 〈d0, . . . , dn〉 have the same Lδ-type. For n odd we let
dn = b(n−1)/2 and apply the lemma to get cn. The function that maps cn on dn

is the required isomorphism.
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Theorem 3.3. A scattered theory can have at most ℵ1 nonisomorphic countable
models.

Proof. Each isomorphism type is characterised by a sentence in some Lα, α <
ω1, but each Lα has only a countable number of sentences.

Combining Theorem 2.5 and Theorem 3.3 we get

Theorem 3.4. If a theory T in Lω1,ω has more than ℵ1 nonisomorphic count-
able models, it has 2ℵ0 nonisomorphic models.

4 Relativized reducts

We have established a result on the number of countable models of theories
in the infinitary language Lω1,ω. In this section we prove that the result is
applicable to the ordinary finitary predicate calculus as well. This is done by
introducing the concept of relativized reducts — we restrict the theories to be
in L0 and note that they have classes of models for which the argument in the
preceding section still goes through.

Let A = 〈A,Ri〉 for i ∈ I be a relation structure of type τ and let J ⊂ I.
If B = 〈A,Ri〉 for i ∈ J , then B is said to be A reduced to J and we write
B = A | J . The similarity type of B is denoted by τ | J .

If ϕ0(v0) is a formula of Lω1,ω with one free variable, then Aϕ is defined to
be

Aϕ = {a ∈ A : A |= ϕ[a]}

and Rϕ
i denotes the relation Ri restricted to Aϕ. The relation system

Aϕ = 〈Aϕ, Rϕ
i 〉 is A relativized to ϕ. If the preceding operations, reduction and

relativization, are combined, then the result Aϕ | J is called a relativized reduct
of A.

A class K of models is called a pseudo-axiomatic class in Lω1,ω(τ | J) if
there is a set T of sentences and a formula ϕ in Lω1,ω such that

K = {B : there exists A of type τ,A |= T and B = Aϕ | J}

If both T and ϕ are restricted to be in L0, then K is a pseudo-axiomatic class
of L0(τ | J).

Theorem 4.1. If L is a regular subset of Lω1,ω(τ | J) and K is a pseudo-
axiomatic class, then SL

n (K) is analytic.

Proof. LetK ′ be an axiomatic class in Lω1,ω(τ) satisfyingK = {B : there exists
A ∈ K ′ and B = Aϕ | J}. Let L′ be a regular subset of Lω1,ω(τ) such that
L ⊂ L′, ϕ ∈ L and the axioms T for K ′ are contained in L′.
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Let B be the set of all t ∈ 2L′
satisfying

(1) T ⊂ t,

(2) t satisfies C1-C6,

(3) ϕ(vi) ∈ t, for all i = 0, 1, . . . , n− 1.

Then B is Borel by an argument analogous to the argument of the proof of
Theorem 2.1, and SL

n (K) — the projection πL′Ln of B — is analytic by defini-
tion.

Repeating the argument of the preceding section we get

Theorem 4.2. If a pseudo-axiomatic class has more than ℵ1 nonisomorphic
countable models, it has 2ℵ0 nonisomorphic models.

Theorem 4.3. There is a pseudo-axiomatic class in Lω1,ω with exactly ℵ1 iso-
morphism types of countable models.

Whether Theorem 4.3 can be extended to axiomatic classes or pseudo-
axiomatic classes in L0 is not known.
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