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Abstract

It is a well known fact that the Gddel sentences v of a theory T are
all provably equivalent to the consistency statement of 7', Cony. This
result is independent from choice of proof predicate. It has been proved
by Guaspari and Solovay [4] that this is not the case for Rosser sentences
of T'. There are proof predicates whose Rosser sentences are all provably
equivalent and also proof predicates whose Rosser sentences are not all
provably equivalent. This paper is an attempt to investigate the matter
and explicitly define proof predicates of both kinds.

1 Background

We suppose the reader is familiar with the standard logical notation. Some
acquaintance with Gédels incompleteness results might be useful as well. PA is
Peano arithmetic, formulated in your favourite first order logic. Every theory
T is assumed to be a sufficiently strong, consistent extension of some fragment
of PA. We use p,v,x, ... for formulas and @ for the term denoting the Godel
number of ¢. If p(z) is a formula with one free variable, (&) is the term
denoting the Gédel number of ¢(x) with = still free in .

A proof predicate Prf(x,y) is a binumeration of the relation “y is a proof of
x in T7, and a provability predicate Pr(x) is defined as the formula Jy Prf (z,y),
which is an enumeration of the theory of T'in 7.

Th(T) is the set of theorems of T', i.e. the set of all sentences provable from

T.

Conr is the consistency statement of 7', stating that the theory 1" does not
prove any contradictions, i.e. 0 = 1.

A theory T is w-consistent iff for every formula o(z), if

T+ —p(k), for every k,

then
Tt/ Jzxp(x).
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In 1931, Kurt Godel [5] proved the existence of a true arithmetic sentence
that is neither provable nor — if the theory in question is w-consistent —
refutable. The technique applied to construct such a sentence was a general
one, using fixed points — a method we will see a few examples of. Given a
formula &(x) and a theory T', ¢ is a fixed point of {(x) in T if T F ¢ «— £(®).

The construction Godel used was

ThF~ < =Pr(®).

By this, v asserts its own unprovability, is evidently not provable in T', but true
in the standard interpretation.

By accident, the theory Godel used — a mathematical framework presented
in Russel & Whiteheads Principia Mathematica — is w-consistent, so v is neither
provable nor refutable in T

However, w-consistency is a somewhat artificial property, and in 1936, J.
Barkley Rosser [10] presented a method to construct fixed points possessing the
desired properties, presupposing only consistency. The sentence used the fixed
point

T+ p < Vy(Prf(p,x) — 3z<yPrf(=p, 2)).

Notably, all of these fixed points are true.
Leon Henkin [6] raised the question concerning wether sentences asserting
their own provability are provable. Consider any sentence 7 satisfying

Tk« Pr(m).

It is not intuitively clear wether 7 is true in the the standard interpretation, nor
is it evident wether it is provable or refutable in T. By a theorem of M.H. Lob
[8], these fixed points are indeed provable.

In his work, L&b applied the fixed point theorem to the formula Pr(z) — v,
for some sentence v of T, to obtain a sentence A such that

T X (Pr(X) — ).
From this follows that if 7' Pr(1p) — 1 then T I 1), which gives the answer to
Henkins question.
Strangely enough, the Godel sentence «y, the Henkin sentence 1 and the Lob
sentence \ are all explicitely definable. It is provable that:

I) Since + asserts the unprovability of something, it immediately implies con-
sistency, so T F v < Conr,

IT) 7 is provable in T, so n is provably equivalent to e.g. 0 = 0 or any provable
sentence, and

) T+ A< (Pr(g) — ).



These observations all follow from a more general result, emerging from the
study of modalised provability logic. It is possible to interpret the provability
predicate Pr as the necessity operator [J in some suitable modal logic, and
much work on modal fixed points was done in the seventies by C. Bernardi,
D. de Jongh and G. Sambin. It was proven independently by the three that
modal fixed points are unique, and de Jongh and Sambin also presented proofs
for explicit definability of these fixed points. See for example Smoryniski [11]
for a thorough treatment. The sentences used in Rossers construction, however,
are not modally expressible and as such seem to require some other way of
investigating the desired properties.

In 1979, D. Guaspari and R. M. Solovay proved that the answer to the
question concering uniqueness of the Rosser fixed points depends on the actual
choice of proof predicate, which leads us onto the technical part.

2 Preliminaries

Definition 1. We need a symbol for witness comparison.

Frp(x) < Fr(z) = F(p(x) A Vy<z—p(y))

A Rosser sentence is a sentence x for which x « Pr(Zx) < Pr(¥) is provable
in T. Note that this is the dual of Rossers original notion — this one suits our
purposes better. Additionaly, none of these Rosser sentence of T' are true, nor
provable or refutable in 7.

Remark 1. If
Tk =(Pr(p) < Pr(=9))

then
T+ =p < Pr(p) < Pr(=p) (1)

is not necessarily equivalent to
T+~ = Pr(==p) < Pr(=7) (2)

which would make —¢ a Rosser sentence. Considering this situation from a
point inside the theory T, ==y might have a shorter proof than ¢, in which
case (2) will not say the same thing as (1).

Remark 2. Let Prf(%) be the modified proof predicate:

y(Prf(@,y) AVz<y—Prf (59, z)).
The Rosser sentence is actually the Godel sentence for PrE:

Tk p— -Pri(p).



Definition 2. With a slight abuse of the arithmetical language, we use the
dotted negation sign as a function for getting (the numeral of) the Gédel number
of a negated formula.

P ==p

Definition 3. We use the dotted minus sign as a function that removes a
negation sign from a formula, if possible.

\,0{ ¢ if = ) for some 1

© otherwise

Definition 4. A provability predicate is standard if it satisfies the first two of
the following Léb derivability conditions:

L1) T+ (Pr(e — 9) A Pr(p)) — Pr(y)
L2) T+ Pr(g) — Pr(Pr(g))

L3) THo=TF Pr(p)

for all ¢, 1.

Finally, we need a special case of the fixed point theorem.

Theorem 2.1 (Ehrenfeucht & Feferman). For any Ao formulas yo(x,y)
and v1(x,y), we can effectively find Ay sentences po and oy s.t.

T+ ¢o < v (%0, 1)

T+ ¢1 < 7(%0,%1)

See for example Lindstrom [7] for a proof.

3 All Rosser sentences can be equivalent

Theorem 3.1 (Guaspari & Solovay). There is a standard proof predicate,
all of whose Rosser sentences are provably equivalent.

This theorem was first proven in terms of a recursive function, enumerating
the theorems of T" and having the desired properties concerning Rosser sentences.
Here, however, we actually construct a formula that defines this proof predicate
in FOL.

Let Pr(z) be any standard provability predicate. We define some formulas
simultaneously, such that PA proves:

D) p(r,y) <y =1 < Pr'(=i) < Pr'(i)

1) 7(r,y) < Joe<y(p(r,z) A Prf(z,y)) A .
Vz<yVu<z—((p(-r, z) A Prf(r,u)) V (p(=r, 2) A Prf(r,u)))



IT) Az, y) < Fz<ym(x, z)

) A

IV) Bo(z,y) < Prf(z,y) A Xz, y) AVz<y—Tu<y(Prf(u, z) A AMu, 2))

V) Bi(z,y) < Prf(-x,2) A Az, 2) AVe<y—Fu<y(Prf(-wu, 2) A A(Fu, z))
)

VI) Prf'(z,y) <
(ﬁ)\(x, y) A Prf(z,y) Ay <yVz' <y—Lo(z',y") A
Yy <yVa'<y—F:1 (2, y’)) Vv
(3y'<y3m’<yﬁo(az’, Y)AVz<y' (Ma,y') Ar(x,2) >y =y )A
Va<y (M5, ') A (5w, 2) <y =20) A (FA(2,y) <y =0)) v
(3y'<y3m’<y61 (@) AVz<y' (Ma,y) Am(x,2) = y=2y) A
Vz<y (M5, y') Am(5a, 2) <y =y') A (=X, y) <y =0))

Of these new relations, Prf’ is defined in terms of \, # and m# — 3 uses
A, which in turn uses w and p. Finally, 7 is defined in terms of p only, but
p depends on Pr’ and so, Prf’. All quantification is bounded, so these rela-
tions are primitive recursive, and we apply Theorem 2.1 to makes sure that the
simultaneous construction of Prf” and p goes through.

The intended interpretation of these relations are:

) p(r,y): y is the statement that 7 is a Pr'-Rosser sentence,

IT) mw(r,y): r is put on a certain Rosser list at time y whenever p(r,z) holds
for some z<y, y is a proof of z, and neither the negation of r, nor the
sentence with one less negation than r, is on the list,

IIT) A(x,y): z is on the Rosser list at time v,

IV) Bo(x,y): we encountered a proof y of some Rosser sentence z that is on
the Rosser list, and this was indeed the first such,

V) Bi(x,y): we encountered a proof y of the negation of some Rosser sentence
x that is on the Rosser list, and again this is the first of its kind,

VI) Prf'(z,y): v is a proof of z in the new meaning if either of the following
holds:

a) x is not on the Rosser list at time y, y is a Prf-proof of z, and we have
not yet encountered any x’ and ¢’ for which g;(2’,y’) holds, for i = 0, 1.

b) Bo(z’,y’) holds for some z’ and y’, and all proofs of negated Rosser
sentences are greater than the proofs of their positive counterparts.
Besides, any sentence not on the Rosser list has the trivial proof y = 0.

¢) Bi(a’,y’) holds for some z’ and y’, and all proofs of positive Rosser sen-
tences are greater than the proof of their negated counterparts. Again,
any other sentence has the proof y = 0.



Lemma 3.2. If ¢ is Pr—Rosser, ¢ is eventually put on the list.

Proof. Since no Rosser sentence is provable, neither of fy(z,y) or B1(x,y) are
true for any x and y, so the only thing that could keep ¢ off the list is another
Rosser sentence 1 such that ¢ = = or ¢ = —¢. Any of the two cases would
contradict the fact that all Rosser sentences are false. O

Lemma 3.3. PA proves that if Bo(x,y) is true for any x and y, Th(T) is
tnconsistent.

Proof. Suppose [y(@, k) for some ¢ and k. Then ¢ is provable, and additionally,
by construction, Pr’'(=g) < Pr'(p). Either Prf'(=g,4) for some i<k, in which
case Th(T) clearly is inconsistent. Otherwise, Prf’(=p,i) for no i<k, which
yields

Pr'(g) < Pr'(=p). Thus the following sentence, call it v, is a Pr-theorem.

Jz(Pr'(-x) < Pr'(z) A Pr'(z) < Pr'(-z))

But PA proves —1, and since Pr is standard, PA also proves Pr(—1) and
Th(T) is inconsistent.
O

The same proof applies, mutatis mutandis, in the case where 31 (z,y) holds
for some x and y.

Lemma 3.4. PA I Pr(x) < Pr'(x).

Proof. If neither of By (z,y) or 41 (z,y) is true for any x and y, then Pr’ obviously
proves exactly what Pr does. In the other case, Th(T) is inconsistent by the
previous lemma, and so is Th'(T), by construction of Prf’. O

Theorem 3.5 (Proof of Theorem 3.1, concluded).

Proof. Let pg and p; be Pr—Rosser. Then neither is provable, and at some stage
k both are on the Rosser list. By construction,

po < Pr'(Spg) < Pr'(po) < Pr'(Spr) < Pr'(p1) < p1.

4 Some Rosser sentences are unequivalent

Theorem 4.1. There is a standard proof predicate, not all of whose Rosser
sentences are provably equivalent.

Proof. Following the results in the preceding section, I) to V) are as before, and
we continue by defining two new formulas simultaneously. Again, we use Theo-
rem 2.1 to make sure the simultaneous construction of p(r,y) and Prf” (x,y) is
admissible. Let 8'(x,y) and Prf”(z,y) be formulas such that PA proves:



VI) B'(z,y) < Fe<y(n(z,2) AI'<y(z # 2/ Ao/ <7 (2, 2")))
VIL) Prf"(z,y) <
(=X (2, y) A Prf(x,y) Ay <yVa' <y=Lo(z,y') A
Yy <yVa' <y—p1 (2, y’)) Vv

(3x’<y3y’<yﬁo(m’, y)
Mz, v ) A B (2,y) <y = 1A Prf’(<z,2)) A
A&, y) A= (2,y') oy =2y + 1) A
(A (ﬂx,y)Aﬂ’(w y') —y=2APrf"(z,1)) A
A2,y ) A =B (2,y') <y =2y ) A
(=Az,y) = y=0))V

(3x’<y3y <yB (', y) A
M,y ) AN B (z,y)) <y =2A Prf’(<z,1)) A
MA@,y ) AN =B (2, y) =y =2y ) A
()\(ﬁx y)NB (z,y) = y=1APrf"(z,2) A
Az, )N =f (2,y) =y =2y +1)A
(=Az,y) © y=0))

B'(x,y) states that there are at least two syntactically distinct sentences on
the Rosser list. 3 being a Prf”-proof of 2 now means that either of the following
conditions a)—c) are satisfied:

a) Neither of By(2',y') or B1(z’,y’) holds for any z’<y and y'<y, = is not on
the Rosser list at time y, and y is a Prf-proof of x.

The following are parts of the second disjunct of the formula:

bl) Bo(z’,y’) holds for some ' <y and y'<y. z is on the Rosser list, and §'(z,y")
holds. Now y = 1 and Prf”(-z,2). All other sentences has the trivial proof
y =0.

b2) Bo(x’,y’) holds for some 2’ <y and y'<y. x is on the Rosser list, but 5’ (z,y’)
is false. y = 2y’ + 1, and all other sentences has proof y = 0.

b3) Bo(z’,y’) holds for some x'<y and y'<y. -z is on the Rosser list, and
B'(x,y') holds. Now y = 2 and Prf”(-x,1). All other sentences has the
trivial proof y = 0.

b4) Bo(z’,y’) holds for some z'<y and y'<y. - is on the Rosser list, but
B'(x,y') is false. y = 2y, and all other sentences has proof y = 0.

cl-c4) The cases for (1 (z’,y’) are similar to 5y(z’,3’) and can be worked out by
the interested reader.

Lemmata 3.2 — 3.4 holds for Prf” as well. Finally, Prf” orders the proofs of
Rosser sentences in the following way

£0, P00, 7P, P15, P2, P25 - -

and pg is not provably equivalent to p;.



5 Concluding remarks and questions

Remarks

As pointed out by Smorynski, the derivability conditions L1-L3 together with
Lob’s theorem seem to tell the whole story of Pr. Indeed, the result on pos-
sible non-uniqueness of Rosser sentences is the first requiring more than these
conditions, together with “the usual” ordering of proofs, for a settlement.

It is also clear that “the usual” ordering and “the usual” proof predicate is
highly arbitrary. A change in the coding of finite sequences is likely to change
the order of proofs, as is a transition between different proof systems, and even
two different Godel numberings of formulas.

Standardness of proof predicates does not provide any clues towards a so-
lution — as we have seen there are standard proof predicates with as well
equivalent as with non-equivalent Rosser sentences.

The fact that all Rosser sentences are false does not seem to have anything to
do with this. By construction, their negations are not provable either, although
they are true.

Questions

As none of fy(z,y) and (1(z,y) are ever true for any standard numbers,
what Prf’ and Prf"” actually does is rearranging the proofs of Rosser sentences
in non-standard models to PA. Can this be used to clarify matters?

There seems to be three parts of the concept of Rosser sentences. The Godel
numbering of formulas and sequences, the proof predicate and the fixed point
construction. We know that choice of proof predicate does matter, and also that
Godel numbering should matter when it comes to ordering proofs. Is it possible
that technicalities on the fixed point theorem holds the answer?

In light of this, together with Theorem 3.1 and 4.1 (and maybe their counter-
parts concering definability) one can ask how interesting the question of equiv-
alence of Rosser sentences really is. The problem concering “the usual” proof
predicate, is still open, and as Guaspari & Solovay stated in their 1979 article,
the answer seems to be very hard to find.
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