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ABSTRACT. With an ezperience-oriented view on mathematics, we
make an argument for its validity as well as the validity of mathe-
matical science, provided that natural science is valid. The central
concept here is reverse mathematics, which is presented techni-
cally: in particular, we look at mathematical theorems that are
equivalent to ACAp over RCAg. Finally, we sketch a proof of the
conservation result for II3-formulas in PRA and WKL as an affir-
mation for finitistic mathematics.
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1. PRESENTATION OF THE PROBLEM

“The validity of mathematics is under siege”, mathematician Stephen
G Simpson declares in the article “Partial realization of Hilbert’s pro-
gram” [2]. What he refers to is a more and more widespread doubt
among academics about a connection between mathematics and the
physical world. For example he mentions an article by physicist and
mathematician E P Wigner, suggesting that except for the most ele-
mentary parts, mathematics is just a formal game.

The benefit of research in pure mathematics is often far-fetched. The
only reliable thing that suggest mathematics is mathematics itself. For
the naturalist , this is enough, but mathematical naturalism is thereby
mostly appealing for mathematicians.

The purpose of this paper is to show how reverse mathematics can
help us to validate mathematics philosophically. This relatively new
branch of mathematics is looking for correspondences between axioms
and theorems: the question is not only which axioms are needed to
prove a theorem, but also which axioms can be proved from a given
theorem (over a weaker system of axioms). The technical aspects are
presented later, but first we will investigate what role a formal theory
could play in the study of the world anyway.

In the article mentioned above, Simpson presents an argument for
reverse mathematics, its main idea being to settle Hilbert’s program
partially in finitism. We will use it as one of our arguments, but while
Simpson shows that reverse mathematics is a strong candidate for the
rehabilitation of mathematics by partial realisation of Hilbert’s pro-
gram, the idea of this paper begins by showing which circumstances
implies mathematics, without judging its validity more than through
comparing it with the validity of natural science. This will lead to a
suggestion that a general plan for mathematical science is motivated,
where of course Hilbert’s program is inevitable. And then we will see
how reverse mathematics appears as attractive for such a plan. We will
also see that Hilbert’s program and finitistic mathematics is interesting
from our point of view in a way directly connected to our terminology.

As will be revealed, the formalism presented below does not lead to
any new arguments for the validity of mathematics. But the purpose is
also the opposite: the formalism defines mathematics as something out
of reach from any common validity arguments and rather tries to clean
the discussion from rhetorical dead ends such as "no mathematical
objects exist” or the rivalty between platonism and formalism, which
will mean nothing in our context. The purpose of this formalism is
rather to formulate a question than an answer. The answer is then
suggested mainly by technical arguments in section 4-8.



2. HOW IT ALL HAVE TO BEGIN

What is necessary to have in mind when reading this section, is that
my opinion is that we understand the world through our language, and
that we therefore have to consider the language before we consider who
is using it and why. In fact, I would say that we do not define language:
language defines us. But of course this does not make sense until we
specify what we refer to with the word language.

Sense cannot validate itself. This forces the philosophist to accept
some facts that he cannot validate. But in context of our concerns, at
least three facts cannot be intellectually rejected:

a The reader exists
b Mathematics exists
¢ The information here exists

since without a reader, any text is pointless, without mathematics,
the validity of mathematics is trivial and without the information rep-
resented in this text, the text has failed anyway.

A reader can be a computer with a scanner as well as a human being.
Anyhow, it could be said to give meaning to the word subject, with
mathematics as well as this information only existing as related to it.
What it is to be a reader is thus pointless to describe for the reader:
the property of being (being, not working as) a computer would not
exist if the only kind of subjects that was, were computers.

When a question is asked, one should start the search for the answer
by seing if it is contained in the question. ”Is a green apple green?” ob-
viously answers itself. Questions like ”what is mathematics?” or ”what
is everything?” implies an associative ability or a kind of ”language”
that is tempting to applicate for a reformulation of what we actually
know:

1 Ezperience exists
2 Concepts exist
3 Communication exists

And so, we have defined the foundation of existence by a subjectively
associative extension of the axioms a-c. Note that we still have not said
anything about the existence of the world, and if this way of arguing
needs the world it is only for the validiation of 1-3, which means that to
assume the world is to assume 1-3 or more. But before we are making
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further unvalidable assumptions, we shall decide the relation between
1, 2 and 3.

Here comes the central idea of this section: with the main argument
being simplicity (but we will see later that it is not such a bad idea), we
represent experience as a nonempty set F, all concepts as a nonempty
set B, all communication as a nonempty set 7" and let

B,TCE

What the elements of F, the experiences, are is still decided subjec-
tively depending on ones view of the existence, even if what you are
right now, by the reformulation of a to 1, is built up from them. But one
possibility is to think of an element as an “impression”, like a certain
taste that one can taste. Likewise, the question what the cardinality
of F is (e.g. is it finite, continous, singular) do not need an objective
answer.

What we will do now though is to specify how models give us access
to experience, and how communication gives us access to models. The
definitions in the rest of the section are often formulated in a vague
way. This is because we are only interested in subjective associations
that in many cases would do better without preciseness.

Let R be a binary relation on F and B such that for all b in B there
is an e in F such that R(e,b): if this holds, we call b a concept of e
and e an object. Even the definition of R is left to the association
of the reader, but if e is a taste and R(e,b), b may be thought of as
the memory of e or the reflection that you are tasting e: a concept is
always an “experience of an experience”.

The question what R(e,b) actually means cannot be satisfied by a
subjective association, since it resembles to the problem that we started
with: the nature of sense cannot be studied through sense. But as we
accepted B, we have to accept a nonempty R with no furter discussion.
As R is used strictly as implying access of an element e by an element b,
there is no loss of generality in letting R be transitive, since we anyway
can define a relation 7' by letting T'(e, b) if R(e, c) and R(c, b).

Letting b be as above, a t in T such that R(¢,b) can be thought of
as the experience of reading or hearing about the taste e. Even if it is
subjective, “this” is by our reformulation of ¢ to 3, an element of T'.
“This” is an experience, not the physical materia that makes the letters
perceivable on the printed paper, except from that the latter claim also
is an experience and something communicated. Like for every e such
that R(e, b), we say that b is a concept of ¢ if R(t,b): if R("white”, m),
we say that m is a concept of ”white”.

We say that an element ¢ in T is successful to the extent of for how
many b in B, R(t,b), and for how big a part of these b:s also R(e,b)
for a fixed e in E, e # t. Communication is not in the first place



5

something that is practiced, but something that relates models for the
same objects.

We define science as a sequence of sets S of increasingly successful
elements in 7'. Sometimes one says that there are two demands on a
scientific model: the intrinsic demand that the model must make sense
for us, and the extrinsic demand that all the empirical tests on the
object must turn out positive. In this formalism, we can put it like
this: § C T is intrinsicly satisfying to the extent of how many b € B
satisfies R(t,b) for each ¢ € S. Furthermore S is extrinsicly satisfying
in the extent of for how big a part of the b:s in B such that R(t,b) for
a fixed t € S, also R(e,b) holds for a fixed e € E. As a suggestion,
one could think of b here as someone’s perception at a certain time.
If t = “the earth is flat” is an element of S, it would make sense for
many people, until they see a satellite picture of the earth or the sail
on a ship disappearing beneath the horizon. If b is the perception of
a satellite picture of the earth, R(¢,b) does not hold, while probably
R(e,b), for an e that in many senses can be associated with the object
earth.

Ultimately, science should converge to a S C 7" such that there is an
e € E such that for all t € S,R(e,b) = R(t,b) for any b € B. In that
case, we say that e is identified by t.

A subset C' of T defines a communication , while a subset L of B
defines a language . While a language is subjective, it can be called
objective in a sense if its elements are related to a successful commu-
nication. Words and grammar are secondary constructions from C' or
L if they are motivated. So even if it would lack words and grammar,
mathematics is by definition a language: this condition was present
already in the reformulation of b to 2.

A concept b is analytical if there is a concept —b such that for all
a € B, =(R(a,b)AR(a,—b)). By the transitivity of R, this means that
—R(b,—b) and hence also —R(c,d) for ¢,d in B such that R(b,c) and
R(d,—b).

Whatever mathematics means to us, we certainly consider it analyt-
ical and furthermore, in a very wide aspect, logics and mathematics
can be identified as precisely the analytical concepts. For example, let
b € B be a concept of "warm”, ¢ € B the concept of ”prime number”
and —¢ € B the concept of "not a prime number”. Given a concept a of
a number, both R(a,c) and R(a,—c) cannot hold. If a is not a number
at all, neither R(a,c) nor R(a,—c) holds. Therefore, ¢ is an analytical
concept. On the other hand, R(a,b) could possibly hold whatever a is,
or b could actually be analytical too. But an analytical concept is in
any case not interesting as analytical until we know that it is so, as we
arguably know when it comes to the concept of prime numbers.
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What separates mathematics from other analytical languages is thus
decided rather empirical and from our point of view, this is not impor-
tant. But as the most extensive analytical language, what characterizes
mathematics is the transitivity of R. Note that if b is not analytical,
by the transitivity of R there are no concepts of b that are analytical.
On the other hand, there is a good chance of finding an analytical con-
cept as a concept of another analytical concept. This fact leads to the
fact that mathematics appears to be iterating itself while it is studied:
when one makes a concept for a mathematical object, this concept of-
ten turns out to be a mathematical concept too. We will now present
two examples of this.

We can make a prediction of counting by the concept of addition. In
this concept we can add 15 to 24 by first adding 1 to 2 and then 5 to
4, additions that are well-known. Our standard rules then give us that
15+ 24 = 39 and we predict that counting together 15 and 24 will give
us 39.

In the next step, we introduce a new concept, namely the concept
of multiplication, now with the concept of addition as the object. By
experiencing addition and 4 + 4, we can also learn to experience mul-
tiplication and 2 * 4 or 3 x 4, both which are applicable as concepts to
the method of counting.

Another example is the introduction of the concept of natural num-
bers and the potential infinity. Here the object is some natural num-
bers and, again, the method of counting. A person who tries to find
out which is the biggest number, probably will reflect upon pairs like
1000000 and 1000001 before accepting the concept of N, and thereby
predict for example that 1000000000 cannot be the highest number.
In the next step we could introduce concepts of N, for example the
theorem that there are infinitely many prime numbers.

3. THE USE OF MATHEMATICAL SCIENCE FOR NATURAL SCIENCE

The purpose of this paper is to defend the validity of mathematics.
In our terms this does not mean that the mathematics itself may not
be valid: concepts are of course valid in themselves. Instead, it is the
science of mathematics that have to be validated. Since the attack on
it primarily stems from the natural sciences, we can assume that these
are valid.

If an analytical concept b appears as concept of an element in a sci-
ence, it is obvious that the science stribes to exclude either b or neg b
as concepts for the same communication element: the big challenge for
a positivistic science is to avoid contradictions. Sciences that tries to
distinguish models for an analytical concept, which is one of the goals of
natural science and the science of mathematics, are particulary vulner-
able for contradictions. In fact, a condition that these sciences should
make sense, is that a supposedly precise language is used: the element
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“141=2" could be related to the same concepts as “1-1=2”, but as a
scientist one have no choice but to either invent a new communication
or consider a subset of E where such concepts do not appear, so that
the interesting element e can be represented perfectly successfully by
an element t in T, so that e is identified by t.

Since we have accepted natural science, we have thus accepted that
certain communication elements such as ordinary mathematical expres-
sions, are as good as perfectly successful. By now, we can validate basic
mathematical objects: numbers, geometrical figures and operators such
as sums and differentials are analytical concepts that the natural sci-
entist refers to, and hence, their existence “in the world” cannot be
questioned without a simultaneous questioning of the methods of nat-
ural science: after all, “the world” is secondary to B from our point of
view.

The next question is: could a science applied on mathematics, a
mathematical science, be interesting? As natural science tries to iden-
tify elements in E, an analogous mathematical science is in many cases
trivial, since for example “circle” is supposed to be perfectly successful.
On the other hand, a project where all mathematical objects, that is
more or less all analytical concepts, are labelled by communication ele-
ments, is logically impossible. Rather, one has to choose the analytical
concepts that should be identified.

Models that might be useful for natural science can by our assump-
tions be considered interesting. Hence, the elements of mathemati-
cal science that appears in natural science, are immediately approved.
These include constructions such as basic geometry and integration the-
ory, the mathematical representation of probability, mechanics, Brow-
nian motion and so forth. Of course, the successor function and the
potential infinity can be approved, since they are implicated almost
everywhere in the methods of natural science.

The question is to which extent it is useful for natural science to iden-
tify analytic concepts of identified concepts of natural science. Should
for example the theorem that there are infinitely many prime numbers
be identified? What possibly could be gained from such a science, is
the finding of new models that are interesting for natural science. Ac-
cording to a certain view, influenced by Darwinism, this would only
happen accidentally. But it is through these accidents that a mathe-
matical science could be motivated. Like in every positivistic science,
these accidents should be studied so that one can suggest communica-
tion elements that identify common properties of them. That is a valid
mathematical science, that might produce a communication that can
be used by natural science.

We will now mention two basises for mathematical science, both in
which reverse mathematics plays a central role: formalism and finitism

The objective of formalism is to cover mathematics as completely
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as possible by a formal system, that is a set of axioms or rules by
which identifications for mathematical objects are deduced. First order
arithmetics, also called Peano’s arithmetics or PA, is such an example.
Another more general formalism is second order arithmetics that will
be discussed more detailed in the next section.

One should have in mind that the axioms of PA or Z, do not auto-
matically identify any particular mathematical object. What is meant
as an identification is instead the deduction of an “artificial” result or
construction, such as we will see that functions and certain theorems
will get in the following sections. While this identification seems to be
as good or bad as the analytically deduced Bolzano Weierstrass, we can
by reverse mathematics manage a further identification from the de-
duction, namely the axioms that are equivalent to the theorem. As we
will see, apparently different theorems will get the same identification
in this way, and hence reverse mathematics can identify new analytical
concepts of mathematics.

While formalism with reverse mathematics has the advantage that
it is a direct method in identifying, by common methods unidentified,
properties of commonly used mathematical concepts, finitism has its
strengh in that it is closely related to natural science. The idea of
finitism is thus to get a representation of mathematics which in a sense
could be said to be valid by empirical means, or constructive : Due
to the finitist, every mathematical object can be constructed from the
natural numbers in a finite number of steps . In the last section, we
will express this fact in our terminology and also see how it is related
to traditional mathematics.

4. SECOND ORDER ARITHMETICS

All formal systems we are going to deal with are subsystems of the
theory second order arithmetics , denoted Z,. The differences lies in
the comprehension axiom for each system and in some cases in the
induction axiom.

Second order arithmetics is of second order in the sense that while
first order arithmetics only uses variables ranging over the domain, we
also use set variables here. Hence it is convenient to formalise Z5 in
second order logic, allthough it is also possible to do so in first order
logic. The language is defined as follows: the constant terms are 0 and
1, there are binary functions + and -, and there is one binary relation,
<. Lowercase letters are used for the numerical variablesie the domain
variables, and uppercase letters are used for set variables .

The axioms of Zy are divided into the basic axioms:



(1) n+1#0

(2) n+l=m+1—-n=m

(3) n+0=n

4) n+(m+1)=Mn+m)+1

(5) n-0=0

(6) n-(m+1)=(n-m)+n

(7) —n<0

8) m<n+1l+ (m<nVm=n)

which are included in all relevant subsystems of Z,, the induction az-
1o0m scheme

(9) (2(0)AVR(d(n)—=d(n + 1)))—=Vng(n)

and the comprehension ariom scheme
(10) 3XVn(n € X+¢(n))

where ¢ in (9) and (10) is a formula in which X does not occur free.
Note that since we have the comprehension axiom scheme, it would
have been enough with one single induction axiom:

(0 XAVn(n € X—=n+1€ X))=Vn(n € X)

With the natural numbers N as domain for the numerical values (or
numbers), the set of all subsets of N, P(N) as domain for the set values
and with the constants 0 and 1, the functions + and - and the relation
< interpreted in the obvious way, we clearly get a model of Z,. If
we change P(N) to a subset S C P(N), we get a model which might
satisfy Z, or a subsystem of Z; as well. We call these kinds of models
N-models and refer to a specific N-model by its set of sets S.

The subsystems of Z, that we will be most interested in are RCAg and
ACA,. The central feature that characterizes them is the restrictions of
the formula in the comprehension axiom scheme, and these restrictions
are the first thing we need to define:

Definition 1. A formula in Z, is arithmetical if it contains no set quan-
tifiers.

The axioms of ACA, are (1)-(8) and (9)-(10) where ¢ is arithmetical.
It is obviously a subsystem of Z,. Note that except from the compre-
hension axiom its definition looks exactly like that of first order arith-
metics. Not so surprising, ACAj is first order arithmetic transcribed in
the language of Z,.
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Definition 2. Let £ > 0. A formula in Z, is 3} if it has the form
3711V71237’L3...7’Lk¢

where ¢ is arithmetical and only have numerically bounded quantifiers.
A formula is I} if it has the form

an EinQVny,.. .nkgb

with ¢ as above. A statement is A) if it is equivalent both to a X9-
formula and a II9-formula.

The axioms of RCA, are defined as above, with ¢ being X! in the
induction scheme and A? in the comprehension scheme. Obviously,
RCA, is a subsystem of ACA,.

Another essential definition that puts the definition above in a proper
coherence is the following:

Definition 3. Let £ > 0. A formula in Z, is 2} if it is on the form
3X,VX,3X ... X

where ¢ is arithmetical. IT; and A} is defined analogous to the defini-
tion above.

The index 1 in the definition above and the index 0 in definition 2 is
related to the index 2 in Zs, telling which order the quantified variables
should be of.

Now we will derive some basic definitions and results. Surprisingly
many untrivial mathematical results can be deduced in any of these
systems, but of course one can do much more in ACA, than in RCA,.
Furthermore, mathematical notions that can be defined in ACA; in a
straightforward way, may not be representable in RCAy, or if so, rather
unintuitively. But as long as it is possible to do it in a straightforward
way, we will make our derivations in RCA.

First we use the fact that for numbers of the form (n + m)? + n,
the numbers n and m are uniquely determined (see [2, p. 66]). Hence,
letting (n,m) = (n +m)? + n and given X and Y, X X Y exists by
¥§-comprehension.

A finite sequence < ji,...,7; > can be represented as a set X such
that

(4.1)
n e Xo33j(n = (G, ))NVVE(((G, §) € XAGE) € X)—j = k)

A finite set X in turn, can be represented by a unique number, namely
the least ((n,m), k) such that

Vi(i € X< (i < kATg(m(i + 1) + 1)g =n))
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The proof for the existence of such k£, m and n is technical but quite
direct. It can be found in Simpson [2, p. 67]

Note that (4.1) is X3. Thus, the set of the codes for all finite se-
quences exists. Furthermore, the set of all sequences of length £ exists,
again by Y3-comprehension, and is denoted N¥.

Definition 4. A function f : X — Y is a subset of X x Y such that
ViVivk(((i,7) € fA(i k) € f)—j = k). We denote by f(i) the unique
j such that (i,7) € f.

If f: N> X and NF 5 n =< ny,...,n; >, we write f(n) as f(ni, ..., nx).-
Let f: X—=Y and g : Y—Z be functions. The uniqueness of f(n)
gives that

35((i,5) € fA((J, k) € g iff Vj((5,5) € X—=((j, k) € g

Hence by A%comprehension the composition h : X—Z, h = fog, is
a function in RCA,.

Theorem 4.1 says that the universe of k-ary functions are closed
under primitive recursion, i. e. defining a sequence of functions recur-
sively is allowed.

Theorem 4.1. If f : N'=N and g : N2 5N, there erists a unique
h: N1 — N such that

h(0,n1,...,nk) = f(n1,...,ng) and
h(m + 1,01, ...,n9) = g(h(m,nq, ..., n3), m, Ny, ..., nyg)

Proof. We can construct a X3-formula ¢(s,m, < ng,...,ny >) saying
that s € N1 and that, for all i < m, s(i +1) = g(s(4),%, 11, ..., Ng)
where s(i + 1) is the 7 + 1th element of s. Letting < ny,...,ny > be
fixed, Isé(s,m) is true for each m by 3X%-induction. The uniqueness of
the sequence s that satisfies the formula for a given m, also follows by
induction so that

3s(d(s, m)As(m) = j)=Vs(@(s, m)—s(m) = j)
Hence by A%comprehension there is a b : N*—=N such that
h(m,nq,...,ng) =i iff As(d(s, m, < nq, ...,nE >)As(m) = i)

Clearly we have the unique h we were looking for.
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Finally, we will have a look at the numerical spaces Z, Q and R.
The set of integers Z and the set of rationals Q can be defined quite
directly in RCAy by using pairs (n,m) of natural numbers or integers,
respectively. The set of real numbers is more tricky in RCAy. But we
will do well with a definition in ACAy.

Remember that a sequence of rational numbers < ¢, : n € N > is
cauchy if

Ve(e > 0—InVm(n < m—|¢, — ¢m| < €)), € € Q

Definition 5. In ACAq, a real number is a cauchy sequence of ratio-
nal numbers. If z =< ¢, > and y =< ¢, >, 2 +y =< ¢, + ¢, >,
z-y=<gqp-q,>and z =y iflim|g, —¢},| = 0.

Thus = is an equivalence relation and not an identity for real num-
bers in ACA,. But that suffices in most cases. In particular when we
continue to the reverse proofs in the next chapter.

5. REAL ANALYSIS AND ACA,

With the basic concepts and results we deduced in section 4 we can
do quite much in reverse mathematics. In this section we will outline
a proof for the equivalence between the Bolzano Weierstrass theorem
and the axiomatic system ACAp over RCAq, i. e. we will show that
given the axioms of RCAy, the claims of Bolzano Weierstrass and ACAy
are equivalent.

Bolzano Weierstrass is central in real analysis, stating the follow-
ing: Every bounded sequence of real numbers contains a convergent
subsequence. A result which is equivalent to this in real analysis is the
monotone convergence theorem which says that every bounded increas-
ing sequence of real numbers is convergent. It is not difficult to see a
connection between these results and the basic intuition we have for
complete spaces such as R.

We will start with some further deductions in RCAy.

Lemma 5.1. In RCAy it is provable that for any infinite X C N, there
is a strictly growing function mx : N=N such that X C wx(N).

Proof. We will construct mx using primitive recursion. We start with
a function fx : N—N defined so that fx(n) is the least m € X with
m > n. Now we let mx(0) = fx(0) and nx(n+ 1) = fx(7x(n) + 1).
The result follows by X9-induction.

O

Definition 6. Let f be a function. The range of f, range(f), is the
set {y: 3z(f(z) = y)}

The central question in many of our coming proofs is if range(f) exists
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for a given f. A first simple but important result concerning this is the
following:

Lemma 5.2. In RCAy, let ¢(n) be a X0-formula ¢(n) where X and f
do not occur freely. Then either there exists a finite set X such that
Vn(n € X<>¢(n)) or there exists an injective function f : N=N such
that n € range(f) if and only if ¢(n) holds.

Proof. Write ¢ as 310(i, n) for a ¥.3-formula §. Through X3-comprehension,
we may form the set

Y ={(@,n):0(i,n)A~(35 <9)0(j,n)}

If the first alternative fails so that there is no finite set X = {n : ¢(n)},
then Y must be infinite. Now use lemma 5.1 to find a function 7y
which enumerates the elements of Y in strictly increasing order. Note
also that the projection function p : N—N with p((i,n) = n exists by
¥3-comprehension. Therefore, the second alternative in the theorem is
true, with f = pomy.

O

Next, we need a result that allows us to simplify arithmetical formu-
las:

Lemma 5.3. In RCAy, comprehension for ¥9-formulas is equivalent to
comprehension for all arithmetical formulas.

Proof. Each arithmetical formula is equivalent to a 3} formula for some
k (if it is II?, it is equivalent to a X)) formula for £ > ¢).Hence it suffice
to prove that X9 comprehension implies %% comprehension. For k < 1
the assertion is trivial. Assume that the assertion holds for a £ > 1
and let ¢(n) be X9, for. Let ¢(n) = Jif(n, ) for a II} formula 6. By
¥, comprehension, the set Y = {(n, 1) : =0(n, )} exists. Furthermore,
the set X = {n : Ji((n,1) ¢ Y)} exists by 3 comprehension. But then
n € X if and only if ¢(n). By the arithmetical induction in RCAg, we
are done.

U

With these lemmas at hand, it is only a matter of construction to
prove the equivalence between Bolzano Weierstrass theorem and ACAq
in RCAy. To prove the former in the latter, let < z, > be a bounded
sequence of real numbers. We may assume that 0 < z,, < 1 for all n.
By arithmetical comprehension, there is a function f : N — N so that
f(k) is the largest 7 < k such that 27%; < z, < 27%(i + 1) for infinitely
many n € N.

Next, let = be the sequence < 2 %f(k) >. The sequence obviously
is cauchy and thus a real number. It is also straightforward to verify
that x = limsup z,,. Define the subsequence < z,, > by letting ng =0
and letting n;; be the least n > ny such that |x — z,| < 27%. Clearly
z = limy, z,,, and we have thus proved the Bolzano Weierstrass theorem.
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Theorem 5.4. Over RCAqy, ACAq is equivalent to the Bolzano Weier-
strass theorem.

Proof. We have already proved the left-to-right implication, but the
“reverse” part remains. Assuming the Bolzano Weierstrass theorem,
we now want to prove ACA,.

As we have hinted, the monotone convergence theorem is equivalent
to Bolzano Weierstrass over RCAg: the proof is just a couple of simple
arguments in real analysis. Let f : N — N be a bijective function and
let ¢, =) 0, 2=/(). The sequence < ¢, > is then bounded by 2 and
increasing, so by the monotone convergence theorem, there is a real
number

c=lime, = ZZ*W)
i=0
We observe that
Fi(f(i) = k) iff Vn(lc — cp| < 27%F — Fi <n(f@@) = k))

By AY%-comprehension, all & such that 3i(f(i) = k), thus define a set
X = range(f). But f was arbitrary, so lemma 5.2 gives that for each
Y0-formula ¢ there is a set X such that n € X if and only if ¢(n),
and we have proved X.{-comprehension. By lemma 5.3, we obtain the

desired result.
O

6. REVERSE MATHEMATICS IN TOPOLOGY

An area of mathematics that at first sight might seem to be quite far
away from both set theory and analysis, is topology. Hence it would
be interesting to see if there are results equivalent to ACAq here too.
We will start with the mathematical definition of a topology and some
adjacent matters.

Definition 7. Let X be a nonempty set. Then T' C P(X) is a topology
on X if

e )eTand XeT
o IfU, €T, then|J,Uy€eT
o IfUy,...,U, €T, then JJU; €T

If U €T, Uis open and U¢ is closed . The closure of a set A is the
smallest closed set K such that A C K.

RCA, and ACA, are both too weak to obtain much of classical topol-
ogy. For example, a countable or transfinite union of arbitrary sets U,
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is not allowed since it implies IT}-comprehension. But the following def-
inition, also standard in classical topology, is immediately representable
allready in ACAy:

Definition 8. A poset is a nonempty set P with a relation < such that
for all p, ¢q, r € P:

e p=xXp
e If p<qgandq=p,then p=yq
e Ifp<gand g=<r,thenp<r

Furthermore, if A C P, the upward closure of A, ucl(A) = {p € P :
dg € A(q <X p}. We say that A is upward closed if ucl(A) = A.

Theorem 6.1. In RCAy, ACA, is equivalent to the assertion that every
subset of a countable poset has an upward closure.

Proof. From ACAy, the assertion follows immediately by arithmetical
comprehension. To prove the reverse implication, we will do something
similar to the proof of theorem 5.4. Letting f : N — N, it suffices to
show that the range of f exists, since we thus have X¢-comprehension
by lemma 5.2 which by lemma 5.3 is the same as arithmetical compre-
hension.

Choose P = {2 : i € N} U {3’ : j € N}. By ZJ-comprehension, we
may define a relation < on P by letting

o 202 ifi>j
o 3 <3 foralli, j
o 20 <37 if Ik <i(f(k)=7)

Obviously < is a poset order on P.

Let A= {2* : k € N} C P. We have asserted that ucl(A4) exists. As
37 € ucl(A) iff there is a k such that f(k) = j, the range of f is given
by the Y9-formula ¢(k) = 37%) € ucl(A). O

7. ALGEBRA

In this section, we will define some algebraic structures in RCAy and
see how they corresponds to theories in Z,. Even here we will find that
some classical results are equivalent to ACAg over RCA,.

Definition 9. A countable ring R is a subset of N with operators
+,-: R x R — R and two elements 0 # 1 satisfying the following
axioms:
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(1) (a+b)+c=a+(b+c)

(3) a+b=b+a

(3) a+0=a

(4) For every a there is an element denoted —a such that a + —a =0
(5) (a-b)-c=a-(b-c)

(6) 1-a=a

(7) a-(b+c¢)=(a-b+(a-c))

8) (a+b)-c=(a-c+(b-0))

(To be more specific, we sometimes write e g +x and Og.) The elements
of R is denoted by |R|. Furthermore, R is commutative if

9) a-b=b-a

Examples of countable commutative rings are N and Q with the
standard definition of 4+ and -. Other rings of common interest are the
finite congruence classes N/n for n > 1, where a4/, b = a+b mod n
for a,b € N/n.

Definition 10. Let R be a countable commutative ring. Then I C R
is an udeal of R if

0el
1¢1
Vavb((a € INb € I) - a+ b€ )
VAVa((A € RAa€l) > A-a€l)

Furthermore, I is mazimal if

(5) VA((M€ R\I) —» Ju(p € RAX-p—1€1)

In N/n, an ideal is {0}, and in the same way I = {m : n|m} (n > 2) is
an ideal of N (or Q). Furthermore, if n is prime, then I is a maximal
ideal on N. An exercise for the reader is to identify the maximal ideals
on N/n for a given n > 1.

Theorem 7.1. In RCAy, ACA, is equivalent to the assertion that every
countable commutative ring has a mazximal ideal.

Proof. In ACAy, let R = {r,} be a countable commutative ring. By
arithmetical comprehension there is an I C R such that for each n, r,, €
1iff
Z rp-ap # 1 for all a, € R
{k:ry€l and k<n}
It is now easy to check that (1)-(5) holds for I which thus is a maximal
ideal.
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To prove the converse, let f : N — N. Similarily to our earlier
equivalence proofs, we show the implication of ACAy by showing that
the range of f exists.

Denote the set of polynomials with rational coefficients by Ry. Let
Ky = {p/q : p, ¢ € RyNq # 0}. Tt is easy to check that Ry, and
K, forms countable commutative rings with +, -, 0 and 1 defined as
usual. Let ¢(a) be a X.9-formula asserting that a = p/q € K, where
g=r-+ )\x?(m)...x;’znk) for some r € Ry, 0£AX€Q, k> 0.

Since countably many elements satisfy ¢, lemma 5.2 gives that there
is an injective function h : N — N such that Va(¢(a)<>3b(h(b) = a)).
By making bijections between N and |Ry| and N and | K| respectively,
we can assume that h : |Rg| — |Kj| injectively. Note that ¢(0) and
#(1) holds so that A *(0) and h *(1) exists. Hence, define +, -, 0 and
1 on h™Y(|Ky|) by letting, for a, b € h™(| Ky)),

a+b=h""(h(a) +x, h(b))
a-b= hfl(h(a) ‘Ko (D))

e o o o
[l ]
Il
> S
L
—
(=]
S

We check that (1)-(9) holds in definition 9 and construct a ring R with
|R| = |Ry| by extending + and - as ring operators to the whole |Ry|.
By our assumption, let I be a maximum ideal of R.

Assume that h~!(z,) € R. If there is an m such that f(m) = n,
then ¢(1/x,) holds so that A~*(1/z,) € R. Then h~'(x,) ¢ I since

N zn) - h  (1/zn) = h (1) =1¢ 1

Now assume that h~*(z,) ¢ I and let u € R\I and a € I be such that
p-h™'(z,) =1 = a. Then h(a) = p/q for some p, q € Ry with ¢ on
the form r + )\x;”cl(m)...x;’znk). On the other hand, p is not on that form,
since a then would be invertible and thus not an element of /. But

pla = h(a) = h(X) - 7 — 1
Hence
h(A) -z -qg=p+q
We conclude that Im(n = f(m)). Together with the result above, we
thus have proved that Im(n = f(m)) if and only if h~1(x,) ¢ I. As

the latter formula is X3, the range of f exists by %)-comprehension.
O

8. COMBINATORICS

Finally, we will prove an equivalence to ACAy within discrete math-
ematics. The equivalence is a combinatorical principle whose general
non-discrete form is the Radé selection lemma, an important result for
example in differential calculus. For our purposes, the following version



18 PETTER JOHANSSON

(countable Radé lemma) is appropriate: For k& > 0, let f; : Xy — N
where X C N is finite. Assume that given a finite set X C N, there is
a k such that X; D X. Furthermore, assume that

VmanVk(m € Xy — fr(m) <n)
Then there is a f : N — N such that

Theorem 8.1. In RCAy, ACAq is equivalent to the countable Radod
lemma.

Proof. Let ACAq be given and let {fi} be a sequence of functions as
described above. We noted in section 4 that a finite set can be rep-
resented by a unique number. Since f; has a finite domain Xy, it is
a finite set so by arithmetical comprehension we might quanitify over
{fx} to get the formula

é(n,m) =Vidj(j > inf;(n) = m)A(k < m —

~(Vidj(j > iNfi(n) = k)))
Let (n,m) € f if and only if ¢ holds. Obviously the criterias we had
on f are fullfilled.
Now assume the countable Radé lemma and let g : N — N. As usual
we prove ACAg by showing that the range of g exists.
By X9-comprehension there are functions f, : {0,...,n} — {0, 1} for
all n > 0 such that

;o {1 if (3i < n)(g(s) = k)

0 otherwise

Then, by the countable Radé lemma, there exists a function f : N —
{0,1} such that

Vmdn(n > mAf{0,...,m} = f,[{0,...,m})

Assume now that k € range(g). Then f,(k) = 1 for all n big enough
and hence f(k) = 1. Thus range(f) is given by the set X where
Vik(k € X f(k)=1).

d

9. CONCLUSION: THE REVIVAL OF FINITISTIC MATHEMATICS

In RCAy, we let a binary tree be a set of finite sequences of 0Os
and 1s such that any initial segment of a sequence in 7' also be-
longs to T. A path through T is a function f : N — N such that
(f(0), f(1),..., f(k)) € T for all k € N,

A subsystem of second order arithmetics that will turn out to be
particulary useful for our argumentation for reverse mathematics is
WKL. Defined as RCA, with an extra set existence axiom, weak Kdénig’s
lemma , stating that every infinite tree has a path, it is weaker than
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ACA, but still strong enough to actually be equivalent over RCAq to the
maximum principle, the Heine/Borel covering lemma, Lindenbaum’s
lemma and several other important results.

In this chapter, we will conclude the thesis by a brief presentation
of Simpson’s finitistic reductionism of WKL, translated into the terms
from the first chapter. We will find that a strong formal mathematical
system does not have to be successful only high up in a cumulative hier-
archy of sciences of sciences, but through the direct essence of finitism,
successful in the science of the nature of natural science. Thereby,
nonelementary mathematics shows its usefulness in the understanding
of the world.

A concept is essentially related to an experience in the same way as a
logical sentence or theory is to a model. Two theories that are satisfied
by the same model is a formalisation of how two concepts are related to
the same object. If S identifies a part of mathematical science, we can
hence formalise a concept A such that R(S, A), by a theory T" which is
satisfied by a model M of mathematics.

The difference between a formal definition of concepts/objects and of
theories/models is that the former can be used also under nonanalytical
circumstances while the latter only makes sense as analytical. In the
terminology of concepts and objects, it would be possible to discuss the
nature of mathematical concepts and concepts of the ”physical world”
more than in terms of analyticity. Thus the concept of finitism can be
said to have things in common not only with traditional mathematical
concepts but also with concepts of natural science: in spite of its an-
alytical presumptions, it states a generalisation of the conditions of a
natural science. Assuming that the set of natural numbers is the world,
one could reformulate the definition of finitism to everything that we
know can be deduced in a finite number of steps from what we observe

So even if finitism concerns mathematics and not the physical world,
one could guess that it comprises most of the mathematics that is useful
for natural science: the connection between finitistic mathematics and
the physical world is not mystical .

We will represent finitism by a theory in first order logic: PRA, out-
spelled primitive recursive arithmetics. In short, it is the same as PA
restricted to primitive recursive functions. Its language consists of a
constant symbol 0, 1-ary function symbols Z, S and k-ary function
symbols PZ-’“, 1 <3 < k. Axioms then are introduced to fix Z as the
zero function, S as the successor function and PF as the projection
function PF(z1,...,2;) = ;. Finally PRA have the primitive recursive
function symbols: if a function symbol f is n-ary and ¢y, ..., 9, are
k-ary, then C(f,g1,...,9,) is a k-ary function symbol. If a function
symbol f is k-ary and g is k + 2-ary, then R(f,g) is a k + 1-ary func-
tion symbol. By axioms introduced for each of these functions, they
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are fixed as composition functions C(f,¢1,...,9,) = f(g1,...,9x) and
primitive recursive functions

R(f, g)(O, L1y eany .fEk) = f(:L'l, ceey .’Ek)
R(f,9)(S(x), z1, ..., zx) = g(z, R(g, f)(x1, .., Tk), 1, -, Tg)

respectively. Additional axioms are given by an axiom scheme which
establishes induction on every quantifier-free formula in PRA.

Now the constant 1 and the functions + and - as well as the pred-
icative symbol < can be interpreted in terms of 0 and S, and hence
every sentence in PA makes sense also in PRA. The question is now
when the sentences that are provable in PA, also are provable in PRA,
or more generally, which sentences that are provable in different second
order arithmetics, also are provable in PRA. The important result is
the following:

Theorem 9.1. A T13-sentence is provable in WKL if and only if it is
provable in PRA.

We will sketch a model-theoretical proof for this that is fully outlined
in Simpson [3]. The most interesting implication is that provability in
WKL implies provability in PRA, and hence we need to see that given
1, not provable in PRA, there is a model for WKL that satisfies —¢.

What we know is that there is a model M of PRA in which ¢ is false,
and we now have to construct a corresponding model L for WKL. But
as M only demands Y-induction, it might be a nonstandard model
with numbers too big to be reachable by the successor function. On
the other hand L have to satisfy ¥.%-induction. To handle this matter,
we will need a certain terminology:

Definition 11. Let M be a model of PRA. Given the predicative
symbol R and b, ¢i,...,c; € |[M| a subset X of |M| is M-finite if

X =a€|M|:a<uybARy(a,c,...,ck)
Furthermore the M -cardinality of X is then defined as cardy(X) =
cardy (X, m) where X C {a:a <y m} and

cardy (X,0) =0

cardy(X,a)+1 ifae X

du(X,a+1) =
cardy (X, a + 1) {cardM(X, a) otherwise

A subset I of |[M|is a cut in M if M(1) C I # |M| and M(a < b),
b € I implies that ¢ € I. We define codedy;(I) as the set of all X C I
such that there is an M-finite set X* with X* N1 = X. Finally we say
that I is semiregular if X N I is bounded in I for all M-finite sets X
such that cardy(X) € T

The relation between PRA and WKL can now be expressed by the
following proposition:
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Proposition 9.2. Given a model M of PRA, the restriction of M to
any semireqular cut I of M is a model for WKL, with codedy(I) as
domain for the set variables

For the proof we need the following lemma, which is verified straight-
forwardly:

Lemma 9.3. Let 0(zy, ..., zx) be a X9-formula in the language of PRA
expanded with the predicative symbol <. Then there is a k-ary primitive
recursive function symbol f such that

f(z1,.zx) =1 <= 0O(x1,...,xx) (and)

f(fl)l, ...,CCk) =0 < _'0(.%1, ,iEk)
in PRA.

Proof of proposition 9.2. Given a semiregular cut I, we denote the re-
striction of M to I by L. The crucial thing is to see that 3%-induction
holds on L. To this end, let ¢(z) be a ¥:%-formula on L and assume that
L satisfies 1) ¢(0) and 2) Vz(¢(z) — ¢(zr + 1)). As a contradiction,
assume that there is an e in I such that N satisfies —¢(e). Now it only
remains to prove that the set

Y ={a:a <y eand N satisfies ¢(a)}

is M-finite, since then there is a least element b € I such that b ¢ Y,
which contradicts either 1) or 2).

Create a first-order formula ¢* from ¢ by replacing each set param-
eters X by an M-finite set X* with X* NI = X. Let d € [M|\I. Note
that letting 6 be such that ¢* = Jyf(zx, y), it satisfies the conditions in
lemma 9.3. Hence by definition, the set

Z ={(a,b) € |M|:a<p e b<pyd, 0(a,b) and Ve(f(a,c)—b <u ¢)}

is M-finite. Hence, since [ is semiregular, ZNI is bounded and therefore
also M-finite.

Noting that Y = {a : 3b((a,b) € ZN 1)}, we conclude that Y is M-
finite by using lemma 9.3 once again, now on the formula (a,b) € ZN1I.
This completes the proof.

O

It now remains to find a semiregular cut / such that letting L, ac-
cording to proposition 9.2, be a model of WKL that is the restriction
of M to I, L satisfies —1). But ¢ = Vzf(x) for some I1{-formula 0(z).
As PRA does not prove 1, the theory 7" consisting of PRA, a constant
symbol e and the theorem —f(e) is consistent and satisfied by M with
a good interpretation of e. The essential thing is now not to omitt e
in the semiregular cut I we choose for constructing L: then obviously
L satisfies =6(e) and thus —7). To show how such an I can be found is
outside the range of this paper, but the details are outlined in Simpson
p. 379-381.
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With theorem 9.1, we have taken one step against comprising the es-
sense of the analytical concepts that accidentally have been useful for
natural science, as well as establishing a connection between mathe-
matics and what we say is the world. Furthermore, by the examples
lined out in the middle sections we see that reverse mathematical meth-
ods produces equivalence results of well-known mathematical theorems.
These results proposes a new way to study mathematics and its rele-
vance for the understanding of the physical world.
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