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Abstract

In this paper we will study the expressive power, measured by the
ability to define certain classes, of some extensions of first order logic.
The central concepts will be definability of classes of ordinals and the
well-ordering number w of a logic.

First we discuss the partial orders ≤, ≤PC and ≤RPC on logics and
how these relate to each other and to our definability concept. Then we
study the division between bounded and unbounded logics. An interrest-
ing result in this direction is the theorem due to Lopez-Escobar stating
that L∞ω is weak in the sense that it does not define the entire class
of well-orderings, even though it has no well-ordering number, whereas
Lω1ω1 is strong in the same sense.

1 Introduction
This thesis began as a question about how to compare the expressive power of
logics stronger than first order logic and indeed how the term “expressive power”
should be understood in this context. This question in term arose from the
observation that some concepts which were not first order were readily expressed
in second order logic and in logics with additional quantifiers. Choosing the
definability of well-orders as a central theme, for reasons which will become
apparent, this text is an attempt to bring clarity to these questions.

Since many basic mathematical concepts like “finitely many”, “countably
many”, “uncountably many” and notions stemming from these are not definable
in first order logic, it is natural to ask how to deal with these formally. In 1957
Mostowski presented a kind of quantifiers being able to express these concepts
(Mostowski [1957]). He also showed that the methods of model theory could be
extended to apply in these logics as well. Mostowski’s was one of the earliest
explicit proposals to expand the study of logic in this new direction (Barwise
[1985]). The new logics containing Mostowski’s quantifiers were shown to behave
very differently from first order logic (Mostowski [1957]). This in turn led to
questions about which properties of first order logic could be retained when
expanding it to encompass non first order notions. Mostowski’s idea was later
also extended to concepts other than cardinality, yielding quantifiers based on
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measure theory, probability theory and more (Barwise [1985]). Furthermore,
in 1966, Lindström proposed a definition of “generalized quantifiers”, expanding
Mostowski’s idea further (Lindström [1966]).

Prior to Mostowski’s work there had been several studies made on what we
will be calling infinitary logics by Zermelo, Novikoff and Bochvar and others
(Barwise et al.). These new logics arose from different needs in several different
fields. For example it was shown by Mostowski (Mostowski [1968]) that, in
a logic with finite syntax in which the notion of finite is definable, the Craig
interpolation theorem fails. To amend this it would suffice, as was shown by
Lopez-Escobar (Lopez-Escobar [1965]), to express the same notion in an infinite
syntax. Further motivations for studying infinitary logics came from within logic
as a way to make explicit inductive definitions (Barwise [1985]).

A third general category of logics, as described in (Väänänen [2008]), which
emerged as an extension of first order logic was higher order logics, and of these,
most notably second order logic. The main theme behind these logics, quan-
tification over arbitrary sets, had been implicit in mathematics since at least
the 19th century in the works on the foundations of calculus. In mathematics
it was (and still is) often presupposed that quantifying over sets of numbers or
indeed relations on numbers and sets of functions is non-problematic. Second
order logic gave a framework for a straightforward formalization of these pro-
cedures. At first full second order logic (L 2) was deemed unmanageable when
compared to first order logic; it lacked completeness, compactness and many
other features which made working with first order logic smoother. L 2 recieved
less attention than it perhaps deserved at first, quoting Barwise: “In fact, in the
early days of extended model theory, many of us saw ourselves as chipping away
manageable fragments of second-order logic.” (Barwise [1985], p. 11). In later
years, though, work in the field of full second order model theory has been very
fruitful (Barwise [1985]).

The definition of a model theoretic logic, together with the regularity prop-
erties in Section 2.1 are all from (Ebbinghaus [1985]). The notion of “definable
in a logic” is new, while the definitions of elementary, projective and relativized
projective classes are all from (Ebbinghaus [1985]). Theorem 2.2.8 is due to
(Ebbinghaus [1985]). In Section 2.3, the orderings ≤, ≤PC , ≤RPC and ≤≡ are
all from (Ebbinghaus [1985]).

In sections 3.1 and 3.2, the definition of well ordering number is due to
(Ebbinghaus [1985]). The distinction between strong and unbounded is new
here, although both words are used for similar properties throughout several of
the texts cited. The proof of Proposition 3.1.2 is new, but the result is stated in
(Ebbinghaus [1985]). Theorem 3.2.5 is from (Ebbinghaus [1985]) and Theorem
3.1.4 is due to (Dickmann [1975]).

Propositions 3.3.7 and 3.3.8 are both due to (Dickmann [1975]). Theorem
3.3.9 as it is presented and proven here is also from (Dickmann [1975]).

Example 2.3.5 is essentially from (Mundici [1985]) and Example 3.1.3 is from
(Ebbinghaus [1985])
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2 Model theoretic logics
As this paper is aimed at those with little to no prior knowledge about abstract
model theory and model theoretic logics this chapter will be dedicated to intro-
ducing the central concepts. The chapter is divided into three parts; in the first
we discuss the notion of “a logic” and try to extract the kernel of this concept.
Further we will name a few basic results of abstract model theory. In the second
part we look at definability in a more general sense and clarify what we mean
by “definable in a logic” via elementary and projective classes. Finally in the
third part we will compare some of the principal regular logics regarding their
expressive power.

2.1 Extending first order logic
In this text we will be using the expression Lωω interchangeably with the phrase
“first order logic” for reasons which will become clear as we progress in our
definition of generalized logics. Also, L 2 will be used as a symbol for second
order logic.

Although historically the many extensions of first order logic preceded the
notion of a generalized logic, we will begin this section at the other end. By first
abstracting some central properties of first order logic which make it “a logic”
we will then be able to study a few special cases of this abstraction, all the while
retaining the link to what is well known to us.

A vocabulary (or signature) is defined just like in the first order case, con-
taining predicate, function and constant symbols. We will be using lower case
greek letters τ , σ, υ to denote vocabularies. Given a vocabulary τ , the τ -terms
are built up just like terms of first order logic. For example, if τ = {f, c, d},
where c and d are constant symbols and f is a two-place function symbol, then
c, d and f(c, d) are all τ -terms. Central to the logics we will be studying are
models (or structures). For a vocabulary τ the definition of a τ -structure is
exactly the same as in the first order case, including the interpretation of the
symbols in the vocabulary. In this text we will be using fracture style upper
case roman letters (like this: A) to denote structures. When referencing the set
underlying the structure we will use the same letter, but in straight style (thus:
A) and to denote the interpretation (or extension) of a non-logical symbol §∈ τ
in a τ -structure A we will write §A.

Given a sentence φ in the signature τ , the class {A|A � φ} of models of φ
is denoted mod(φ). If we wish only to have the class of τ -structures which are
models of φ, we writemodτ (φ). This terminology generalizes naturally to model
classes of sets of sentences.

We are now ready to define what Feferman calls a “model theoretic language”
(Feferman [1974]). The use of this term is motivated by the fact that the general
form of this definition, taken from (Ebbinghaus [1985]), does not mention logical
constants, but rather is all about models and model theory. Throughout this
text we will be using the term “a logic”:
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2.1.1 Definition.

A logic is a pair (L ,�L ), where L is a mapping taking a vocabulary τ and
yielding a class L [τ ], the class of L -sentences of vocabulary τ , and �L is a
relation between structures and L -sentence. Further, L and |=L satisfy the
following:

(i) If τ ⊆ σ, then L [τ ] ⊆ L [σ],

(ii) If A �L φ, then φ ∈ L [τA], where τA is the vocabulary of A,

(iii) If A �L φ and A ∼= B, then B �L φ (the Isomorphism Property),

(iv) If φ ∈ L [τ ] and τ ⊆ τA, then A �L φ iff A � τ �L φ (the Reduct
Property) and

(v) If ρ : τ → σ is a renaming (a bijection from τ to σ such that § ∈ τ
and ρ(§) ∈ σ are of the same kind and the same arity), then for
every φ ∈ L [τ ] there is a ψ ∈ L [σ] such that, for all τ -structures
A, A �L φ iff Aρ �L ψ (the Renaming Property).

In the last clause of the definition, Aρ is the renaming of A through ρ. This is
the unique structure B having the same universe as A in which §A = ρ(§)B for
every symbol § ∈ τA. is interpreted in the same way as the he same way.

The notation in this definition is too unwieldy to be practical. For that
reason, whenever it is clear from context which the underlying logic is, we will
omit the index of �. Further we will use the abbreviation L to denote the logic
(L ,�L ).

Now, this definition is far too general for our purposes since it allows for
all kinds of construction to be called logics. Since we wish to study only logics
which are in some way comparable to first order logic we will be needing the
notion of a regular logic.

2.1.2 Definition.

A logic L is said to have the basic closure properties if it satisfies the following
conditions:

(i) For all τ and all atomic sentences φ ∈ Lωω[τ ] there is a sentence
ψ ∈ L [τ ] such that ModτL (ψ) = ModτLωω

[φ]. (Atom property)

(ii) For all τ and all φ ∈ L [τ ] there is a sentence ψ ∈ L [τ ] such that
ModτL (ψ) = Str[τ ] \ModτL (φ). (Negation property)

(iii) For all τ and all φ0, φ1 ∈ L [τ ] there is a sentence ψ ∈ L [τ ] such
that ModτL (ψ) = ModτL (φ0) ∩ModτL (φ1). (Conjunction property)

(iv) For all τ , if c ∈ τ is a constant, then for any φ ∈ L [τ ] there is a
sentence ψ ∈ L [τ \ {c}] such that for all (τ \ {c}) − structures A,
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A � ψ iff (A, a) � φ for some a ∈ A, where c(A,a) = a. (Particular-
ization property)

If a logic L has all of these properties it is guaranteed to have at least the same
expressive power as first order logic, in which case we will use the same symbol
φ for both the first order and the L -sentence, as long as this does not cause
confusion. In case a logic has both the Negation and the Conjunction properties
we say that it has the Boolean property and write the sentences posited in the
definition ¬φ and φ0∧φ1. Likewise the sentence posited for the Particularization
property is often written ∃cφ or ∃xφ[x\c].

Apart from the basic closure properties we will also require that the logics
studied have the Substitution and Relativization properties. Since terms are
syntactically the same in a generalized logic L as in Lωω it makes sense to talk
about “substituting” a formula for a predicate in L .

2.1.3 Definition.

A logic L is said to have the Substitution property iff, for any τ and τ ′, where
τ ⊆ τ ′, and every φ ∈ L [τ ′], if, for every symbol §∈ τ ’\τ , there is a formula
ψ§(c§,1, ..., c§,n) ∈ L [τ ∪ {c§,1, ..., c§,n}], with new c§,i, where n is the arity of §,
then there exists an L [τ ]-sentence φ∗ such that, in any τ ∪{c§,1, ..., c§,n}-model
A and expansion of A by § to A∗, if

§A∗ =
{
〈ai〉i<n | if c

A
§,i = ai for all i, then A � ψ(c§,1, ..., c§,n)

}
then A∗ � φ iff A � φ∗ for every §∈τ ′ \ τ .

Note. Intuitively substitution means that a sentence containing symbols we
do not want can be reformulated without these symbols, using another formula
as a proxy. This is most often used to replace function and constant symbols by
predicate symbols in circumstances where the former cause complications. This
may be the case for example when using Relativization defined below and the
original sentence contains constant symbols.

In the next definition we will be using the concept of closedness under a
signature. Recall that, for a structure A, we say that a subset B of A is τ -closed
iff the interpretation of any constant symbol in A belongs to B and, for any
f ∈ τ , applying fA to any element in B does not bring us outside of B.

2.1.4 Definition.

A logic L is said to have the Relativization property iff for any χ ∈ L [σ] and
φ ∈ L [τ ] there is a sentence ψ ∈ L [τ ∪ σ] such that for any τ ∪ σ-structure A,
if χA = {a ∈ A|A � χ[a]} is τ -closed in A, then A |= ψ iff (A � τ) |χA � φ.
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Note. Relativization here means that, starting with a sentence φ and a struc-
ture A, we can extend that structure so that, as long as we can define the domain
of A within the extension with a formula χ, we can also find a formula ψ which
is true of the extension precisely when φ is true of A. In fact, by the definition,
ψ must also be independent of A.

Finally, a logic which has all of the above properties is called regular :

2.1.5 Definition.

A logic L is said to be regular if it has

(i) the basic closure properties,

(ii) the substitution property and

(iii) the relativization property.

Being regular ensures that a logic has at least the expressive power of Lωω in
a sense we will define later. Moreover it has many of the intuitive properties
of first order logic, such as the sentences forming new ones with the help of
boolean operations and quantification and the “meaning” of a sentence being
independent of the names of the symbols used. Being regular is in no way a
“mandatory” property of a logic, although the ones we will be studying are.

One other point is also important to stress: While we have argued for the
exclusion of non-regular logics from this study, there are other classes of logics
we omited already in the beginning. All logics we consider here are “model
theoretic” in the sense that they have a Tarskian semantics. We will not, for
example, study modal or intuitionistic logics or dependence logic here. In these
logics Tarskian semantics are generally inappropriate (cf. Ebbinghaus [1985]).

With this in mind we are ready to study some specific abstract logics. These
are divided into three primary categories: infinitary logics, quantifier extensions
and higher order logics. First we turn to

Infinitary Logics

2.1.6 Definition.

Given two infinite cardinals κ and λ, κ regular, the logic Lκλ is first order logic
together with the new formation rules

(CF) If {φα}α<µ, µ < κ, is a set of formulae with free variables among
{xβ}β<ν , ν < λ, then

∧
{φα}α<µ is a formula.

(EQF) If φ is a formula and µ < λ, then ∃
α<µ

xαφ is a formula.

and the new interpretation rules

(CI) A formula
∧
{φα}α<µ is true in a structure A if, for all α < µ,

A � φα.
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(EQI) A formula ∃
α<µ

xαφ is true in a structure A if there exists a sequence

〈aα〉α∈µ such that φ is satisfied in A by 〈aα〉α∈µ.

Here we omit the details of how the satisfaction relation behaves in cases with
free variables, i.e. when the formulae are not sentences. This is done as a
generalization of Tarski’s ideas in the first order case, for example through
interpretation mappings. Furthermore, showing that Lκλ is regular is done
via induction over formulae and this is left as an exercise for the reader.

There are two important notes regarding this definition.

Note 1 For any given sentence φ of a logic Lκλ, φ is built up through a
finite iteration of conjunctions and disjunctions, all of which involve less than
κ sentences. Therefore, if κ is regular, there must be less than κ different
variables in φ, so quantifying over less than κ variables always suffices to bind
all variables of φ. For this reason we will be regarding only logics in which
κ ≥ λ. (cf. Dickmann [1975])

Note 2 The demand that κ is regular is there to ensure that quantifications
are always sufficient to bind all variables in the logics Lθθ. For example, in
Lℵωℵω [{P}] (where P is a unary predicate symbol) , let χ =

∧
n<ω {φn}, where

the φn is the formula
∧
α<ωn

{P (xα)} respectively. Then, the formula χ contains
ℵω of the variables xα. Since quantifications in Lℵωℵω [{P}] are restricted to
sets of variables of cardinality less than ℵα, we cannot bind all variables in χ.

By now the symbol Lωω introduced in the beginning of this section will also
begin making sense. Namely, if we allow quantification to work over only finite
sequences of variables and conjuntion to take only finite sets of formulae we end
up with first order logic.

In speaking of infinitary logics, we presuppose that all constructions are
small in the sense that the sentences of a logic form a set. There are, however,
two special cases of logics we will encounter in the following text which are not
small in this sense:

2.1.7 Examples

L∞ω is thought of as being the union of the logics Lκω for all cardinals κ.
For this reason the sentences do not form a set, but a proper class. Syntax
and semantics for this logic are straightforward generalizations of the “smaller”
infinitary case. Note however that every sentence formed in L∞ω is an Lκω-
sentence for some κ. This kind of construction can be generalized to yield
the logics L∞λ and L∞∞. For more about these logics and their properties,
(Dickmann [1975]) is a rich source.

Next among the three primary categories of logics we have
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Quantifier extensions

A question which arises naturally in the context of quantifier extensions is “what
is a quantifier?”. Syntactically we might say that a quantifier is a logical constant
which binds variables to formulae much like the other logical constants bind
formulae together. The semantics of quantifiers is somewhat more complicated
in the general case. Since a deeper analysis of this field would bring us far
beyond the scope of this paper, we will make do with a few examples and finally
a short description of generalized quantifiers.

2.1.8 Example.

The cardinality quantifiers Qα, meaning “there are at least ℵα many”, have
already been mentioned. When extending first order logic these yield the logics
L (Qα). These are true extensions of Lωω in the sense that it is possible in
these logics to express concepts which are undefinable in Lωω such as “finitely
many”, “countably many”, “uncountably many” and so on.

2.1.9 Example (Equicardinality Quantifiers).

One other kind of quantifier we will be discussing is the equicardinality quantifier
(or Härtig quantifier) I and its relatives. Unlike all quantifiers we have seen this
far the Härtig quantifier does not bind one variable to one formula. Instead it
operates on two of each. The new formula Ixy{φ(x), ψ(y)} is then interpreted as
“the set of elements satisfying φ is equipotent to the set of elements satisfying ψ”.
Two common relatives of I which we will also look at are the Rescher quantifier
QR and the Chang quantifier QC .

QR is similar to I. It binds two variables and two formulae into one in
the same way as I. On the other hand, while the quantifier I expressed equal
cardinality, the interpretation of the sentence QRxy{φ, ψ} is that “φ is satis-
fied by fewer elements than ψ”. Since Ixy{φ(x), ψ(y)} in L (I) is equivalent
to ¬QRxy{φ(x), ψ(y)} ∧ ¬QRxy{φ(x), ψ(y)} in L (QR) (due to the Schröder-
Bernstein theorem) for any φ and ψ, we might ask whether L (QR) in a sense
can define L (I). We will see that this is the case, making this idea more precise
in Example 2.3.5.

The Chang quantifier is more like the quantifiers we encountered earlier in
that it binds one variable to one formula. Given a formula φ, the interpretation
of the new formula QCxφ, again somewhat informally, is that the set {a ∈ A|A �
φ[a]} of individuals satisfying φ in a model A is equipotent to A. Now, given a
formula φ, the formula Ixy{φ, y = y} is also true in a model A iff φ is satisfied
by a set equipotent to A. Just like above, this will be seen to mean that QC is
definable in terms of I.

2.1.10 Example (Branching Quantifiers).

In a first order formula φ in prenex normal form, all of the quantifiers are col-
lected at the beginning. In such a formula, if x is an existentially quantified
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variable, then the choise of x depends on all of the universally quantified vari-
ables preceeding it. For example, in the sentence ∀x1∃x2∀x3φ(x1, x2, x3), it is
stated that no matter the choice of x1, there can always be found a matching x2

to satisfy the formula φ(x1, x2, x3) (and also, the choice of x3is independent of
these). The choice of x2 may therefore depend on which x1, but is independent
of x3. We say that the quantifiers are linearly ordered.

It is also possible to order quantifiers partially in a sentence. The simplest

possible example of such a sentence is
[
∀x ∃y
∀z ∃w

]
φ, with the interpretation

that two independent choices are possible: For every x you can find a y and at
the same time for every z you can find a w (independent of x and y) such that
they together satisfy φ(x, y, z, w). This construction is the Henkin quantifier

QH (we will be using the expression
[
∀x ∃y
∀z ∃w

]
φ interchangeably with the

alternative form QH
[
x y
z w

]
φ). Quantifiers such as this are called branching

quantifiers.

To see that
[
∀x ∃y
∀z ∃w

]
φ is not the same thing as the formula

∀x∃y∀z∃wφ(x, y, z, w)

of first order logic, note that in the latter formula the choice of w is allowed to
depend on x, y and z whereas in the branching-quantified formula, given a z,
the w is already fixed and cannot vary with our choice of x or y. To see how
this seemingly small detail makes a difference we note the following:

Claim. All of the quantifiers QR, I and QC are definable in terms of QH .

Proof. Consider the sentence χ

QH
[
x y
z w

]
[(x = z ↔ y = w) ∧ (φ(x)→ ψ(y))] ∧

¬QH
[
x y
z w

]
[(x = z ↔ y = w) ∧ (ψ(x)→ φ(y))]

Note, first, that, for any formula φ, A |= ∀x∃yφ(x, y) iff we can define a function
f : A→ A such that, for every a ∈ A, A � φ(x, y)[a, f(a)]. This function (called
a Skolem function) picks, for every element of A, one of the elements posited
by the existential quantification.

Now, in the first conjunct in the sentence χ, the Henkin quantification can
be interpreted to mean that there exist functions f and g such that

∀x∀z [(x = z ↔ f(x) = g(z)) ∧ (φ(x)→ ψ(f(x)))]

. Since x = z → f(x) = g(z) for all x and z, the functions f and g are identical.
So, substituting f for g, we have f(x) = f(z)→ x = z universally. This means
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that f is injective, which, taken together with φ(x) → ψ(f(x)), means that
φ is satisfied by at most as many elements as ψ. By analogous reasoning we
see that the second conjunct of χ is true of a model A iff the cardinality of
{a ∈ A|A � φ[a]} is strictly less than the cardinality of {a ∈ A|A � ψ[a]}.
This shows that χ is equivalent to QRxyφ(x)ψ(y) in the sense that it is true
of precisely the same models. By Example 2.1.9 above this suffices to show the
claim.

Finally we end this section with a discussion about generalized quantifiers.
Somewhat informally, defining a generalized quantifier Q amounts to presenting
the class of interpretations (models) in which Q is satisfied. For the Rescher
quantifier, QR, above, for example, we say that QRxyφ(x)ψ(y) is satisfied in a
structure A iff the triplet (A, {a ∈ A |A � φ[a]} , {b ∈ B |A � ψ[b]}) belongs to
the class KQR = {(A,B,C) |B ⊆ A, C ⊆ A and |B| < |C|}. For the sake of
clarity we restrict ourselves to quantifiers binding one variable to one formula
when formulating the definition.

2.1.11 Definition.

The extension of a logic L by a quantifier Q, denoted L (Q), is L extended
with a rule for constructing new formulae with Q (QF) and a new rule for
interpreting formulae containing Q (QI) such that:

(QF) φ is an L (Q)-formula iff either φ is an L -formula or φ is Qxψ,
where ψ is an L (Q)-formula.

(QI) If Qxφ is an L (Q)-formula and A a structure, then A � Qxφ iff
(A, {x ∈ A|A � φ [x]}) is in KQ.

Note here, that in order to extend a logic with the quantifier Q, we must also
provide the class KQ, in which we specify the interpretation of Q as above.
For simplicity we have restricted the definition to single variable, non-branching
quantifiers. For a more thorough discussion of this field, cf. (Mundici [1985]).

As the last part of the trinity of extensions of first order logic we have:

Second order logic

Second order logic, L 2, is an extension of first order logic in which we intro-
duce two new kind of variables, called predicate and function variables, also
called second order variables, as well as quantification over these. For example,
predicate variables function syntactically exactly like predicate symbols in Lωω.
Given a signature τ , let φ ∈ Lωω[τ ] be a first order sentence which contains
a n-ary predicate symbol P . Then, exchanging all occurences of P in φ for
an n-ary predicate variable X, calling the resulting formula ψ, and quantifying
over X yields an L 2[τ ]-sentence ∀Xψ. The semantics for L 2 is an extensions
of that for first order logic. Pure first order sentences are interpreted like in
Lωω. As an exampel of how second order variables are handled, let ∀Xψ be
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as above. This sentence is true in a structure A iff ψ is true in A regardless of
which extension XA ⊆ An we choose for X.

Second order logic is a strong logic in regard to what it can express. In it we
can formalize most mathematical concepts, many of which are are well beyond
the grasp of first order logic. For this reason it is reasonable to ask why first
order logic seems to be such a staple logic in many presentations, including the
one present here, what Barwise calls “the first order thesis” (Barwise [1985]).
One of the main reasons for this is the fact that while first order logic has many
nice properties such as a sound and complete proof system, compactness and the
Löwenheim-Skolem-property (down to ℵ0), most of the logics we study in this
paper fail on some of these points (cf. “Lindströms Theorem” in (Ebbinghaus
[1985])) . In the case of L 2 we loose all of them.

Note.

Väänänen mentions three main groups (or traces) of extensions to first order
logic in (Väänänen [2008]). Since we have been using the same terminology in
this exposé it is worth noting that the usage differs between these two texts.
While our grouping has been done mainly on a syntactical basis, Väänänen
groups the logics semantically, meaning for example that that L (Q1) belongs
a category of countably compact quantifier extensions of first order logic, while
L (QH) for example belong to the category of “higher order logics” together
with the larger infinitary logics Lκκ. This separation is motivated by the fact
that, in the latter logics, quantification is possible at least over predicates of
cardinality at most κ (Väänänen [2008]).

2.2 Definability and projective classes
In this part we will be looking at the concept of “definable in the logic L ”.
Identifying a property with the class of structures which have that property we
can pin down what this means. In this setting defining a property P would be
the same as pinning down the class KP of structures which have that property.

As a first idea for defining classes of structures and through them study
the expressibility of a logic elementary classes go far. They are exactly the
classes which correspond to sentences in the logic and are therefore a kind of
“basis” for the other definability concepts we will encounter. The elementary
approach however means that a definition of a property would only be allowed
to use the non-logical constants of the property itself in its formulation. The
definition of an infinite set, for example, could not contain any function symbols
and thus could not take the route via Dedekind infinity and bijections. This
restriction is somewhat arbitrary and also does not tie in with the expressibility
of a logic, but rather the choice of vocabulary. For this reason we introduce
alternative allowing a definition to involve any non-logical constants. This is
the idea behind projective classes, studying not directly the model classes of a
logic with a specific vocabulary, but rather the reducts of model classes with
larger vocabularies, formally:
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2.2.1 Definition.

Given a logic L and a vocabulary τ a class of L (τ)-structures K is an L (τ)-
projective class iff there is a vocabulary σ ⊇ τ and a class K ′ such that

(i) K ′ is an L (σ)-elementary class and

(ii) K = {A|A = B � τ and B ∈ K ′}, the class of τ -reducts of structures
in K ′.

Using projective classes it is possible to express properties which are not defin-
able by elementary classes:

2.2.2 Example.

The property “is infinite”, represented by the class {A : |A| ≥ ℵ0} has ∅ as its
vocabulary. It is not elementary in Lωω since its complement (the class of finite
structures) is not, due to compactness. The same class is however projective
in Lωω since a formula which says that “the function f is injective but not
surjective” is satisfied in every (Dedekind) infinite τ -structure where τ = {f}.
Now the reducts of these structures to the empty vocabulary is just the class of
infinite ∅-structures.

This alternative way of defining “definability” is obviously not the only one.
We have chosen it for the above reasons, and because it is relatively simple
to graps. Occasionally, however, we will have reason to look at other ways
of defining properties of classes in a logic. Thus, whenever we say that some
property or class is “definable in the logic L ”, this should be interpreted as the
class being projective in L , but to lessen the confusion a little we will try to
always state explicitly which “kind” of definable the property is. Continuing the
investigation of model classes, we first state this fact about the relation between
projective and elementary classes:

2.2.3 Fact

If a class K is elementary in L then it is projective in L .

The reverse on the other hand is not generally true, as we saw in example
2.2.2. This means that, going from elementary definitions to projective, we
have broadened the class of definable classes, thereby increasing the expressional
power of the logic. Of course there might be, and indeed there are, logics in
which all projective classes are elementary (L 2 is one such example). In such a
logic we would have no reason to choose PC over EC as the “definable” classes.

As mentioned above there are other “kinds” of definable among which we
could choose. Apart from elementary and projective classes we will have reason
to study one more kind, namely relativized projective classes, RPC for short.
As the name implies RPC is a further refinement of projective classes, as seen
in the following definition:
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2.2.4 Definition.

Given a logic L and a vocabulary τ , a class of structures K is RPC in L (τ),
written K ∈ RPCL (τ), if there is a vocabulary σ ⊇ τ , a unary predicate U in σ
but not in τ and a class K ′ elementary in L (σ) such that A ∈ K iff there is a
B ∈ K ′ such that A = (B � τ) |UB and UB is τ -closed in B.

While PC was an extension of the concept of elementary classes by allowing
definitions to contain auxiliary symbols, RPC allows definitions to be “interior”
in a structure. The predicate U marks the boundary of the inner model and the
definition can use the elements not in U in an external way. We will later see
an example of this type of definability.

As we saw in Example 2.2.2 the property of being finite is not elementary
in first order logic, but the property of being infinite is projective. It turns out
that finiteness is not definable in first order logic.

2.2.5 Proposition.

The class of all finite structures is not a projective class in Lωω.

Proof. Let K be the class of finite ∅-structures. We assume for a contradiction
that K is PC in Lωω and that the class K ′ is the elementary class associated
with K. Further we let K ′ = mod(φ) and φ have vocabulary τ . Note first that
since K is the class of ∅-reducts of K ′, K ′ contains structures of arbitrarily large
finite cardinality. Now, let σ = τ ∪ {ci|i ∈ N} and let Ψ = {ψi}i∈ω, where each
ψi states that there exist x0, ..., xi such that all are different. Now since every
finite subset of {φ}∪Ψ has a model (they can be chosen as expansions of models
in K ′) {φ}∪Ψ must have a model A (by compactness). Since A is a model of φ,
it is in K ′, but A cannot be finite, since for any finite cardinality n, any model
of that size is too small to satisfy ψn. Therefore K contains the infinite model
A|∅ and we have a contradiction.

Now, we turn to stronger logics and try to define finiteness in those. The
two candidates will be the small infinitary logic Lω1ω and L (Q0), where Q0 is
Mostowskis infinite quantifier:

2.2.6 Proposition

The class of all finite ∅-structures is elementary in Lω1ω and L (Q0).

Proof. In L (Q0) the sentence Q0x(x = x) is satisfiable in exactly all infinite
structures, so its negation ¬Q0x(x = x) is true of the class of finite structures.
For the case of Lω1ω, let ψi be as in Proposition 2.2.5. If we let φ be the
conjunction

∧
i∈ω
{ψi}, then mod(φ) is the class of infinite models and ¬φ defines

the class of finite models in Lω1ω.

As a last part of this investigation we show a result of abstract model theory,
relating the definability of ω in a logic to compactness. To this end we first
introduce a generalized type of compactness, called κ-compactness.
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2.2.7 Definition.

Given a cardinal κ, a logic L is called κ-compact iff, for all τ and all Φ ⊆ L [τ ]
such that |Φ| ≤ κ, if every finite subset of Φ has a model, then all of Φ has a
model.

In terms of this definition, Lωω, for example, is κ-compact for all infinite
cardinals κ.

The notion of defining an ordinal presented here will be more rigorously
studied in the next chapter. In short, a set Φ of τ -sentences defines ω iff τ
contains a binary predicate symbol < which is interpreted as a well-ordering of
its field in any model of Φ and that at in least one of the models of Φ the field
of < has order type ω.

2.2.8 Theorem.

L is ℵ0-compact iff no countable set of sentences of L can define ω.

Proof. The implication from left to right makes use of a compactness argument.
Assume for a contradiction that L is ℵ0-compact and that the countable set
Φ of L -sentences defines ω, with A a model order isomorphic to ω. Then,
expanding the signature of Φ with countably many new constant symbols ci,
let, for every n, ψn be the sentence

cn < cn−1 ∧ . . . ∧ c1 < c0.

Let Ψ = {ψn |n ∈ ω}. Now we can expand the signature of A with n new
constant symbols so that A � ψn. This is possible since A is infinite. Since A is
also a model of Φ,this means that every finite subset of Φ ∪Ψ has a model. By
the assumption, then, there exists a model B |= Φ∪Ψ, but the sequence

〈
cBi
〉
i∈ω

is strictly descending, so B is a non-well ordered model of Φ, contradicting that
Φ pins down ω.

For the implication from right to left, assume that L is not ℵ0-compact and
that Θ = {θn |n ∈ ω} is a set of L [τ ]-sentences which has no model, but every
finite subset of which has. We can assume that τ is relational since L allows
for elimination of function and constant symbols. In this context, let Θ′ be the
set of sentences

(i) < is a linear ordering,
(ii) ∀x ∈ field(<)∃yR(x, y),
(iii) ∀x ∈ field(<)

[
∃≥nz(z ≤ x)→ θ

{y |R(x,y)}
n

]
for n ∈ ω.

Now we can construct a model for Θ′. First, let A be a copy of ω and the
interpretation of < be ∈ restricted to ω. Further, for every n ∈ A, we extend
A with a relativization of a model An |= θ0 ∧ . . . ∧ θn and let R ⊃ {〈x, y〉 |x =
n and y ∈ An}. This is possible since every finite subset of Θ has a model.
Through this construction we get a model B such that for any element b in the
field of <B , if b has at least n predecessors, then b is related through RB to a
set which constitutes a model for (the relativization of) θn, so Θ′ is consistent.
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Also, in any model C |= Θ′, every element in the field of <C has finitely
many predecessors. To see this, if c ∈ C has arbitrarily many predecessors,
the relativizations θ{y |R(c,y)}

n are true for all n by clause (iii). That is, the
substructure with the domain {y |R(c, y)} is a model for all of Θ, contradicting
the assumption about Θ being inconsistent. Since <C is also a linear ordering
by (i),

〈
field(<C), <C

〉
must be isomorphic to 〈ω,∈� ω〉.

2.3 An ordering of logics
In the preceding parts of this chapter we have mentioned logics being “strictly
stronger than” or “equivalent”. In this part we will formalize the notion of
“stronger than” as an ordering of logics. From our choice of formalism equiva-
lence will follow naturally. Note first that there are different possible approaches
to comparing and separating logics. One idea stems from the intuitive notion
that if L can tell two structures A and B apart, then any logic L ∗ nominally
stronger than L should also be able to. If we substitute “tell apart” for “satisfy
different sentences” we get an ordering based on L -equivalence:

2.3.1 Definition

A logic L ∗ is said to be equivalently at least as strong as L , written L ≤≡ L ∗,
if, for every A, B, if A ≡L ∗ B then A ≡L B, where ≡L is the relation “satisfy
the same L -sentences”.

Whilst this is an intuitive approach we will not focus much on this type
of comparison. Instead we will look at a relation based on elementary classes.
What we wish to formalize is the idea:

If for any sentence φ in L there is a sentence ψ in L ∗ which has
the same meaning as φ, then L ∗ is at least as strong as L .

That is, the stronger logic must contain equivalents of any sentence in the weaker
one. For an “equivalence” relation between sentences in these two logics we
choose the one generated by taking the model classes of sentences as equivalence
classes.

2.3.2 Definition

A logic L ∗ is said to be at least as strong as L , written L ≤ L ∗, iff for every
sentence φ of L there is a sentence ψ of L ∗ such that {A|A � φ} = {A|A � ψ}.

Equivalently one could say that L ∗ must have at least the same elementary
classes as L . From here on we will be using the usual terminology of orderings.
If L ≤ L ∗ and L ∗ � L then L ∗ is strictly stronger than L , in symbols,
L < L ∗. Conversely, if L ≤ L ∗ and L ∗ ≤ L then L ≡ L ∗, that is, “L is
equivalent to L ∗”. Moreover, it should be obvious what we mean by L ≥ L ∗.
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Before continuing, we will be needing the concept of Löwenheim number,
which extends the downward part of the Löwenheim-Skolem theorem to abstract
logics.

2.3.3 Definition.

The Löwenheim number of a logic L is the least cardinal λ such that every
satisfiable sentence of L has a model of cardinality at most λ.

Now that we have an order relation among logics it is of interest to see
how some of the principal logics are related. Note first that the ordering is
not total. For example the concept of finiteness is expressible in L (Q0), for
example through the sentence ¬Q0x(x = x), but since L (Q1) is ℵ0-compact
(Fuhrken [1964]) it cannot express that same idea. For this reason we have
L (Q0) � L (Q1). On the other hand L (Q0) has the property that any satisfi-
able sentence in the logic has models of cardinality at most ℵ0, or equivalently,
the Löwenheim number of L (Q0) is ℵ0 (Ebbinghaus [1985]), which means that
being uncountable is not expressible in that logic as opposed to to in L (Q1). By
this reasoning we see that L (Q0) � L (Q1) so these two logics are incomparable
in our ordering.

Since we are considering only regular logics, all of them are at least as strong
as Lωω. In fact the question “in which cases is a logic equivalent to first order
logic?” was one of the motivating factors behind the study of abstract model
theory and generalized logics in the beginning. For more on this topic, the reader
is refered to Lindströms original article (Lindström [1969]) and (Ebbinghaus
[1985]).

Continuing the example with cardinality quantifiers from above, we get:

2.3.4 Example.

There are sentences in L (Q0) which have no first-order counterparts, for ex-
ample Q0x(x = x). Thus Lωω < L (Q0). Furthermore, since the Löwenheim
number of any L (Qα) is ℵα for α > 0 (Ebbinghaus [1985]), Lωω is strictly
weaker than any L (Qα).

2.3.5 Example

As we mentioned earlier the Härtig quantifier I and the Rescher quantifier QR
are related. For any two formulae φ and ψ the formula Ixyφψ has the same
model class as the formula ¬QRxyφψ ∧ ¬QRyxψφ. In the logic of this section
this means that L (QR) is at least as strong as L (I). On the other hand L (I) is
not equivalent to L (QR) (Mundici [1985]). Finally, L (I) pins down ω through
the formula ∀x∀y (x = y ↔ Iuw [u < x,w < y]) together with the axioms of a
linear ordering without endpoint, which means that it must be stronger than
first order logic. To summarize we have Lωω < L (I) < L (QR).
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2.3.6 Example

A logic between first and second order logic in terms of expressibility is weak
second order logic, L w2, where the predicate variables range only over finite
sets. To see how the weak version is actually weaker than second order logic
we first note that ∀Xφ means “for all finite extensions of the predicate X...” in
L w2 as opposed to the unrestricted interpretation of similar formulae in L 2.
It is easy to see however that finiteness is expressible in full second order logic
via Dedekind infinity and because of this any L w2-formula can be converted to
an L 2-formula. Thus L w2 ≤ L 2. This ordering is in fact strict. To see this,
first let φ(f,X, Y ) be the conjunction

∀x∀y [(X(x) ∧X(y))→ (Y (f(x)) ∧ f(x) = f(y)→ x = y)] ∧
∀z [Y (z)→ ∃w (X(w) ∧ f(w) = z)]

where f is a function symbol and X and Y are unary predicate symbols. This
formula states that “f restricted to X is a bijection X → Y ”. Further, let ψ(X)
be the formula

∃fX∃Y [∀x (Y (x)→ X(x)) ∧ ∃y (X(y) ∧ ¬Y (y)) ∧ φ(fX , X, Y )] .

This is a formula stating that X is Dedekind-infinite. Now, the formula

∃X∃Y [ψ(X) ∧ ψ(Y ) ∧ ¬∃fφ(f,X, Y ) ∧ ∀Z (ψ(Z)→ ∃g [φ(g,X,Z) ∨ φ(g, Y, Z)])]

is true in exactly those structures which have cardinality ℵ1. Now, any elemen-
tary class of L w2 which has only infinite models is a projective class of L (Q0)
(Shapiro [2001]). Also, ℵ1 is not definable in L (Q0) (Chang [1990]), so we may
conclude that L w2 < L 2.
On the other hand, the formula ∀X(X = X) in weak second order logic is true
in all finite structures and by compactness this has no counterpart in first order
logic. Summing up, thus, we have: Lωω < L w2 < L 2.

Next, we will look at what happens if we change the kind of classes used
in defining the above ordering. By inserting ’projective’ for ’elementary’ in
Definition 2.3.2 we get the relation ≤PC :

2.3.7 Definition

A logic L ∗ is said to be projectively at least as strong as a logic L , in symbols
L ≤PC L ∗, iff for every class of models K, if K is projective in L , then K is
projective in L ∗.

As a partial result about this relation we prove

2.3.8 Proposition

If L1 ≤ L2 then L1 ≤PC L2.
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Proof. Let L1 ≤ L2. Then for any vocabulary τ and any class K projective
in L1[τ ] there is a class K ′ elementary in L1[σ], where σ ⊇ τ , which is a class
of expansions of the models in K to the vocabulary σ. Now K ′ is elementary
also in L2[σ] so for every A ∈ K there is a B ∈ K ′ such that A = B | τ
and vice versa, but this is exactly the definition of projective class, proving the
proposition.

As a last variant, exchanging relativized projective for projective in the defi-
nition of the ordering of logics, we get yet another ordering of logics:

2.3.9 Definition

A logic L ∗ is said to be relatively projectively at least as strong as L iff for
every class K of models, if K is RPC in L then K is RPC in L ∗.

Now a natural question to ask about all these orderings of logics is how they
are interrelated. As we saw above, ≤ is a subordering of ≤PC in the following
sense:

2.3.10 Definition.

Given two orderings ≤ and � with the same field, we say that ≤ is a subordering
of � iff, for every x and y, x ≤ y implies x � y.

This definition is then expanded in the natural way: ≤ and � are equal iff
both orderings are suborderings of eachother and ≤ is a strict subordering of �
iff ≤ is a subordering of � and they are not equal.

For this discussion we will be introducing two new logics, only briefly. First,
we have monadic second order logic Lm2, which is second order logic, with
the second order variables ranging only over unary predicates (cf. Mundici
[1985]). The other is the game theoretical logic L∞G. The sentences of L∞G are
sentences of L∞ω, possibly extended with an an infinite string of quantifications
∀x0∃y0∀x1∃y1.... The semantics for this quantification is beyond the scope of
this paper. For a full presentation of L∞G and other game theoretical logics,
cf. (Kolaitis [1985]).

By an argument similar to the one in Proposition 2.3.8, we can show that
≤PC is a subordering of ≤RPC , which also implies that ≤ is a subordering of
≤RPC . Next we will be needing the following result about monadic second order
logic (cf. (Väänänen [1977]):

2.3.11 Theorem.

Given a monadic signature τ , Lm2[τ ] ≤ Lωω[τ ].

This means that the class of infinite structures cannot be elementary in
Lm2[∅]. Since L (QH)[∅] defines infinity (Mundici [1985]), we have L (QH) �
Lm2. It is also shown in (Mundici [1985]) that L (QH) ≤RPC Lm2. It then
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follows that that ≤RPC cannot be a subordering of ≤, and thus that ≤ is a
strict subordering of ≤RPC .

Whether the subordering relations between ≤ and ≤PC and between ≤PC
and ≤RPC are strict is unknown to the author.

It is shown in (Kolaitis [1985]) that LωG and L∞ωare equivalent under ≤≡.
Also, L∞G defines well-orderings as an elementary class (Kolaitis [1985]). As
we will show, however, the finite quantifier logic L∞ω does not define well-
orderings, and is therefore strictly weaker than L∞G under ≤. This means that
≤≡ is not a subordering of ≤. On the other hand, for any two logics L1, L2 such
that L1 ≤ L2, let A and B be τ -structures which satisfy different sentences
in L1. Further, let φ ∈ L1[τ ] be such that A � φ and B 2 φ. Now, since
L1 ≤ L2, mod(φ) is an elementary class of L2 also. This means that there is
an L2-sentence ψ such that A ∈ mod(φ) = mod(ψ), so A � ψ. Similarly, B 2 ψ,
so L1 ≤≡ L2. In conclusion, then, ≤ is a strict subordering of ≤≡.

3 Well-orderings
In this chapter we will look at the special case of defining well orderings in
model theoretic logics. Recall that, what we mean by a property being defin-
able in a logic L , is that the class of models with that property is projective
in L . In some instances we will also allow “definable” to mean “relativized
projective”. By the class of well orderings we mean the class {A |A is a {<
}-model and <A well orders A. Note also, that if A is in this class, then

〈
A,<A

〉
is order isomorphic to some ordinal. First we will look at two examples.

3.0.1 Example

WO is not a projective class in any compact logic. To see this, for a compact
logic L and a signature τ containing {<}, take any sentence φ ∈ L [τ ] which has
arbitrarily large linear orders. Add to τ a set {ci : i ∈ ω} of constants not already
in τ . By compactness the set of sentences {ci < cj |j < i, i ∈ ω, j ∈ ω}∪{φ} has
a model A and, being a model of this set, it is not well-ordered by <A. By a
similar argument, the class of well-orderings is not RPC in any compact logic
L .

3.0.2 Example

The class WO is elementary in second order logic, L 2, for example through the
sentence

∀X (∃xX(x)→ [∃y(X(y) ∧ ∀z(X(z)→ z ≤ y)]) .

3.1 Well-ordering numbers
Next we turn to well-ordering numbers. As we saw above, the class of well-
orderings was not definable in Lωω and definable in L 2. These are the two
extremes of a spectrum of definability when it comes to well orderings. For
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every logic there is a boundary for how large a subset of WO is definable. In
the case of first order logic we have already mentioned the problem of finding
this boundary. By Theorem 2.2.8 ω is not definable in Lωω. As we will soon
see, since regular logics pin down all finite well-orderings, this means that ω
must be the upper bound for the well-orderings definable in Lωω. In L 2, on
the other hand, there can be no upper bound for the definable well orderings.
This notion is made more precise in the following definition:

3.1.1 Definition.

A set of sentences Φ in a logic L [τ ], where <∈ τ , pins down an ordinal α iff

(i) For all A |= Φ, <A is a well-ordering of its field and

(ii) There is a B |= Φ such that <B is of order type α.

Furthermore we let wκ = sup {α|Φ pins down α and |Φ| ≤ κ} and call w1(L )
the well-ordering number of L , denoted w(L ). Note, that the bounds are
defined to be over all sets of sentences of any signature. Also, this definition
allows for relativized projective classes to be used as the interpretation of the
order predicate needs only be partial in any structure.

Now, if an infinite ordinal α is pinned down by a sentence φ in L , then α+1
is pinned down (in the signature {≺}) through the sentence

φ ∧ ∀x∀y [∃z(z < x ∧ z < y)→ (x < y ↔ x ≺ y)] ∧
∀z(x < z ∨ x = z)→ ∀w(w ≺ x ∨ w = x)

Also, if an ordinal β is pinned down by a sentence ψ in L then so is any initial
segment of β (again in the signature {≺}) through the sentence

ψ ∧ ∃z∀x∀y [(x < y ∧ y < z)↔ (x ≺ y)]

By similar arguments, wκ is closed under ordinal addition, multiplication and
exponentiation. (Ebbinghaus [1985]). Thus we may conclude that w(L ) must
be a limit ordinal greater than all ordinals pinned down by single sentences in
L .

3.1.2 Proposition.

The well-ordering number of Lω1ω is at least ω1.

Proof. Let the formulae

µβ(x) = ∀y

y < x↔
∨
γ<β

µγ(y)


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be defined by transfinite recursion for all β. For countable β, µβ is a Lω1ω-
formula, so for countable α, the sentence

∀x
∨
β<α

µβ(x)

is an Lω1ω-sentence. Further, let φα be the conjunction of this sentence with the
first order formula stating that < is a linear ordering. This sentence pins down
the ordinal α. We will show this through induction on α. Note, that any model
of one of the sentences φα is linearly ordered by<. Since µ0(x) is not defined
by the schema above, define it to be the formula ∀y [¬y < x]. Then, µ0(x) is
satisfied in A � φα, for any α, only by a least element. Now, we will begin with
the sentence φ1. This is true in a linearly ordered model A iff A � ∀x∀y [¬y < x],
which means that A can have only one element, which means that A is order
isomorphic to

For the induction step, the assumption will be that, for every β < α, there
is a modelA � φβ such that

〈
A,<A

〉
and every model of φβ is order isomorphic

to some ordinal < β.
Here we will have to start by examining the formulae µβ(x). These have the

property that, for any linearly ordered model B and element b ∈ B, B � µβ(x)[b]
iff the ordered set Sb =

〈
{x|x < b} , <A� {x|x < b}

〉
is order isomorphic to β.

The proof of this is also done by induction, in this case over β.
First, note that µ0(x) is satisfied in any linearly ordered model only by a least

element, giving us a base case for the induction. For the induction step, assume
that, for every γ < β, µγ(x) is satisfied in a linearly ordered model B by at most
one element b and that the ordered set Sb =

〈
{x|x < b} , <A� {x|x < b}

〉
is order

isomorphic to γ. Also, note that, by the definition of the sets Sa, a set Sb is an
initial segment of Sa iff b < a. Now, assume that b′ ∈ B such that B � µβ(x)[b′].
We cannot have b′ ≤ b for any b that satisfies one of the formulas µγ(x), where
γ < β, for by the definition of µβ(x), B � µγ(x)[b] implies b < b′ in B. On the
other hand, if we assume that c ∈ B is less than b′ in B, again, by the definition
of µβ(x), there is an ordinal γ < δ such that A � µγ(x)[c]. Together, this means
that b′ is the least (and only) element of B such that c < b′ in B iff c satisfies
some µγ(x), where γ < β, again in B. Now, by the induction hypothesis, this
means that we have a one-one correspondence between the initial segments of
Sb′ and the ordinals γ < β, so the order type of Sb′ must be β.

Returning to the first induction, this means that, if A is a model of φα, then
for every a ∈ A, the initial segment Sa as defined above is order isomorphic to
some ordinal β < α, so A must be well-ordered.. Also, if A is order isomorphic
to α, then all initial segments of A are order isomorphic to some β < α, so
B � φα.

These φα are thus sentences of Lω1ω which pin down all countable ordinals,
which implies that w(Lω1ω) ≥ ω1.
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3.1.3 Example.

wκ(Lωω) = ω for any κ, by compactness.
Above, we saw that w(Lω1ω) ≥ ω1. The opposite inequality is also true (Ebbing-
haus [1985]), so the well-ordering number of Lω1ω is ω1.

We can show, using the same method as in Theorem 3.1.2, that w(Lκω) is
at least κ, proving the following result:

3.1.4 Theorem.

w(L∞ω) =∞.

Now we may ask how far this brings us toward defining well-orderings. The
disjunction of the proper class of formulae {µα|α ∈ ON} pins down every ordinal
and so defines the class WO, but this is not a sentence even in L∞ω. In section
3.3 we will be looking at a result by Lopez-Escobar stating that no single formula
of L∞ω suffices for defining WO.

3.2 Boundedness and its neighborhood
This far we have found that some logics can characterize all well-orderings,
while others fail somewhere on the way. A logic which contains a sentence
characterizing the entire class WO is called strong. On the other hand, a logic
which is not strong is called weak. A logic which has a well-ordering number
is called bounded. When there exists no such upper bound for the definable
well-orderings we call the logic unbounded.

Note. A strong logic is by necessity unbounded, but the opposite is not true, as
we will see later.

We will begin by looking at a few examples of both unbounded and bounded
logics.

Given an Lωω-formula ψ, if we define

φn = ∃x0...∃xn−1

[∧
{xi 6= xj for i 6= j} ∧

∧
{ψ(xi) for i < n}

]
for every natural number n, then φ =

∧
n<ω
{φn} is a sentence of Lω1ω. Now,

for any A |= φ, A must contain arbitrarily large (and therefore infinite) sets
satisfying φ. This means that φ is equivalent to Q0xψ(x). Since ψ is arbitrary,
L (Q0) ≤ Lω1ω. Using this we can give some examples of boundedness.

3.2.1 Example.

As we saw in Example 3.1.3, Lωω and Lω1ω are bounded by ω and ω1 respec-
tively.
By the argument above, L (Q0) must also be bounded since any ordinal which
is pinned down by L (Q0) logic is also pinned down by the stronger Lω1ω.
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3.2.2 Examples.

As we have already seen, L 2 characterizes well-orderings through a straight-
forward formula. For other examples of unbounded langaugages, recall the
alternative formulation of well-ordering: “〈A,<〉 is well-ordered” is equivalent
to “there exists no infinite, strictly descending chain in 〈A,<〉”.
This statement about infinite descending chains is formalizable in Lω1ω1 through
the sentence

¬
[
∃

n<ω
xn
∧
{xi+1 < xi|i ∈ N}

]
.

This shows that Lω1ω1 is strong, with WO an elementary class, and thus also
unbounded.
A third example of an unbounded logic is L (I), first order logic expanded with
the Härtig quantifier. Elementarily we can characterize ω through the sentence
φ = ∀x∀y (x = y ↔ Iuv {u < x, v < y}), which reads out “x and y are the same
iff they have the same number of predecessors”, together with the usual first
order axiomatization of a linear order without a last element. [Barwise/Flum].
Through a variant of the φ above we can now show that WO is a relativized
projective class of L (I). The sentence ψ, which consists of

∀x∀y [(Iuv {u < x, v < y} ∧ U(x) ∧ U(y))→ x = y]

in conjunction with the first order axioms of a discrete linear order with first,
but without last, element, does the job here. In any model A of ψ,

〈
UA, <A� UA

〉
must be order isomorphic to an ordinal number. To see this, let A =

〈
A,UA, <A

〉
,

where |A| = ℵα. By the sentence above, the ordering
〈
A,<A

〉
has ω as an

initial segment. Now, we define the function f : α → UA in the following
way: For every cardinal ℵβ < ℵα, there exists exactly one b ∈ UA such that
|{x|x < b}| = ℵβ , by ψ. Let 〈β, b〉 ∈ f for every β < α. By construction, β < γ
iff ℵβ < ℵγ iff |{x|x < f(β)}| < |{x|x < f(γ)}| , and both being initial segments
of A, this is true iff f(β) < f(γ). This means that f is order preserving, so〈
UA, <A� UA

〉
is order isomorphic to ω + α. Whether WO is also an elemen-

tary or projective class of L (I) is unknown to the author.

Before turning to the main result of this paper we will need one more idea
from abstract model theory. The Hanf number of a logic L is an analogy
to the well-ordering number, giving a measure of how well cardinal numbers
are distinguished in L . The following definition is the cardinality analogue of
pinning down ordinals as in Definition 3.1.1.

3.2.3 Definition.

We say that a set of sentences Φ ⊆ L pins down the cardinal κ if Φ has a model
of cardinality κ but does not have models of arbitrarily high cardinalities. Fur-
thermore, if we let hκ(L ) be sup {λ|Φ pins down λ,Φ ∈ L and |Φ| ≤ κ}, we say
that h(L ) = h1(L ) is the Hanf number of L .
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We will use the term “Φ pins down cardinals” if the set of sentences Φ does
not have arbitrarily large models. Recall the definition of Beth-numbers from
set theory:

3.2.4 Definition (The i-sequence).

For any cardinal κ, any ordinal α and any limit ordinal β:

(1) i0(κ) = κ,

(2) iα+1(κ) = 2iα(κ) and

(3) iβ(κ) = sup{iγ(κ)|γ < β}.

Using a construction which partly mirrors that of the set-theoretic universes Vα
we can show that the well-ordering number of a logic forces the hanf number
upward. The idea here is that we use the ordinals pinned down by L as a “back
bone” for constructing ever larger structures, at the same time making sure that
the constructed formulae pin down cardinals. This construction is adopted from
[Barwise] with only slight variations.

Let L be a regular. Given a set of sentences Φ ⊂ L [τ ] of size ≤ κ such
that Φ pins down the cardinal λ < hκ(L ), expand the vocabulary with two new
unary predicate symbols P0 and P1 (for distinguishing the inner models) and a
binary predicate symbol E (for the set membership-relation) . Then, let Ψ be
the set of formulae

(i) ∃xP0(x)

(ii) ∀x(P0(x) ∨ P1(x))

(iii) φ{x|P0(x)}, the relativization of φ to the “set” P0, for every φ ∈ Φ.
This means that {x|P0(x)}, seen as a substructure, is a model for
Φ.

(iv) ∀x∀y[∀z(E(z, x) ↔ E(z, y)) → x = y], stating that the interpreta-
tion of E is an extensional relation and

(v) ∀x[P1(x) → ∀y(E(y, x) → P0(y))], which, together with (iv) above,
bounds {x|P1(x)} to have at most one element for every E-subset
of {x|P0(x)}.

Now, for any structure A |= Ψ let A0 = {a|P0(a)} and A1 = {a|P1(a)}. Then,
by (i), |A| = |A0|+ |A1|. By (v) there is a function f : A1 → P (A0) defined by

f = {〈a, b〉|a ∈ A1 and b = {c|E(c, a)}}.
From (iv) follows that f is injective, so |A1| ≤ 2|A0|. Since Φ pins down

cardinals, |A0| < hκ(L ), so A < 2hκ(L ) and Ψ pins down cardinals. On the
other hand we can construct a structure B |= Ψ such that |B| = |α| + 2|α|, so
hκ(L ) > 2|α|, or equivalently, hκ(L ) > i1(|α|). Constructing a set of sentences
Φα, where the power set operation is iterated α times, for each ordinal α which
is “pinnable” in L it is possible to prove (cf. (Ebbinghaus [1985])):
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3.2.5 Theorem.

Given a cardinal κ, assume that, for every ordinal α < wκ(L ), there is a set of
sentences Φα and a structure Aα such that

(i) α is pinned down by Φα,

(ii) |Φα| < κ,

(ii) Aα |= Φα,

(iv) |Aα| < hκ(L ) and

(iii) <Aα is of order type α.

Then, for every λ < hκ(L ), hκ(L ) ≥ iwκ(L )(λ).

3.3 L∞ω is weak.
The result that L∞ω is weak was first proven by Lopez-Escobar (Lopez-Escobar
[1966a]). First, by generalizing results by Morley (Morley [1965]) and Helling
(Helling [1964]) on an upper bound for hκ(Lω1ω), Lopez-Escobar showed that
h(Lκω) < i(2κ)+ . Then, using methods introduced by Hanf (Hanf [1962]),
he could show that if Lκω is strong, then Lκω pins down the cardinal iλ,
where λ = 222κ

, yielding a lower bound for h(Lκω). In the proof we will be
investigating, due to (Dickmann [1975]), this is done in a way similar to the
construction in Theorem 3.2.5. From this we then derive a contradiction.

In this section we hope to shed some light on the constructions of both the
upper and lower bounds for h(Lκω) mentioned above. We start with a central
theorem:

3.3.1 Theorem.

h(Lκ+ω) < i(2κ)+

The proof of this theorem depends on some preliminary results. Before we
can look at these, however, we will be needing the concept of types from first
order logic:

3.3.2 Definition.

Given a signature τ , an n-type over τ is a set Σ of first order formulae such
that

(1) All σ ∈ Σ are Lωω[τ ]-formulae,

(2) The free variables of all σ ∈ Σ are found among x0, ..., xn−1 and

(3) Σ is consistent, which is to say that there exists a model A and a
sequence ai ∈ A, 0 ≤ i < n such that A |= σ[a0, ..., an−1] for all
σ ∈ Σ and
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(4) Σ is maximal in the sense that Σmay not be extended to contain
new formulae without breaking this consistency.

Often the signature and the number of free variables of a type is implicit from
the context, in which case we may ommit them, referring to a type simply as
“a type over τ ” or even just “a type”. Also, since any consistent set of formulae
which share a number of free variables may be expanded to be maximal, we will
at some points be using the term “type” somewhat loosely to refer to such sets.

For completenes we also repeat what it means for a type to be omitted:

3.3.3 Definition.

Let Σ be an n-type over τ and A a τ -structure. If there exist a0, ..., an−1 in A
such that A |= σ[a0, ..., an−1] for all σ ∈ Σ we say that Σ is realized in A (or
that A realizes Σ). Otherwise Σ is omitted in A (A omits Σ) . Further, if S is
a set of types, we say that S is omitted in A (or that A omits S) iff all Σ in S
are omitted in A. Otherwise we say that S is realized in A (A realizes S).

Now we turn back to proving Theorem 3.3.1. For this we need the concept
of Morley number :

3.3.4 Definition.

For any cardinal λ and any signature τ , we say that a set S of types over τ
omits the cardinal λ iff S is omitted in a structure of cardinality λ but is not
omitted in arbitrarily large structures.
Given a cardinal κ, let Uκ be the set of all sets of cardinality ≤ κ of types over
signatures of cardinality at most κ. Then, the Morley number mκ is defined
as sup{λ|S omits λ, S ∈ Uκ}. We also define a second Morley number nκ as
sup{λ|S omits λ, S ∈ U}, where U is the union of Uκ over all κ.

From this definition it is obvious that mκ ≤ nκ. Given a signature τ of
cardinality κ, there are at most κ Lωω[τ ]-formulae. Since each τ -type is a
set of formulae chosen from among the κ τ -formulae, there are at most 2κ τ -
types. Denote this set Type[τ ]. Now, any S ∈ Uκ is a subset of Type[τ ] of
cardinality at most κ. There are (2κ)κ such subsets, so |Uκ| ≤ (2κ)κ = 2κ. By
a similar argument, |U| ≤ 22κ . Taking the signature τ to be a κ-large set of
unary predicates, we can construct exactly 22κ . As can be seen in the proof for
Corollary 3.3.7, this means that mκ < nκ.

The following result describes the size of the second Morley number nκ. This
is given without proof.

3.3.5 Theorem

nκ= i(κ)+

This result can be found in (Chang [1968]), building on Morleys proof of
mω = iω1 in (Morley [1965]). The proof makes use of a construction with

26



indiscernibles and the Erdős-Rado theorem. For another proof, see (Dickmann
[1975]).

We will also be needing the following consequence of the Löwenheim-Skolem
theorem (downward):

3.3.6 Fact

Given a type Σ of signature τ and a structure A omitting Σ there are structures
omitting Σ in every cardinality λ such that max{|τ | ,ℵ0} ≤ λ ≤ |A|.

From theorem 3.3.3 and this fact we may now derive an upper bound for the
Morley number mκ:

3.3.7 Corollary

mκ< i(κ)+

Proof. Given a signature µ of cardinality at most κ, there are at most 2κ sets
of types over µ of cardinality ≤ κ (compare with the number of subsets of κ).
Let 〈Sξ|ξ < 2κ〉 be a listing of these. For every ξ, let λξ be the least cardinal
such that if Sξ is omitted in a structure of cardinality at least λξ then it is
omitted in arbitrarily large structures. The morley number mκ is the supremum
of these λξ by definition. Now, any λ ≥ i(2κ)+ must have the mentioned
property by Theorem 3.3.5. Also, if Sξ is omitted in the cardinal λ ≥ i(2κ)+ ,
it is omitted in cardinalities less than i(2κ)+ by Fact 3.3.6. By this reasoning,
λξ < i(2κ)+ for all ξ < 2κ. Now, since cf(i(2κ)+) = (2κ)+ and (2κ)+ is regular,
sup{λξ|ξ < 2κ} < i(2κ)+ .

This result gives us an upper bound for Morley numbers, concerning sets of
Lωω-types. We will also be needing a way to relate sets of first order types to
sentences in Lκ+ω. Intuitively such a sentence corresponds to a set of cardinality
κ of types in the following way: If S is a set of types over µ, S is ommitted
in a structure A exactly when no type in S is realised in A, corresponding to
the Lκ+ω-sentence

∧
Σ∈S
¬∃x

∧
φ∈Σ

φ(x) being true in A. In this way we can codify

Lκ+ω-sentences as κ-large sets of types and vice versa. More formally:

3.3.8 Proposition

h(Lκ+ω) = mκ

(Sketch of proof). The direction that mκ ≤ h(Lκ+ω), i.e that, if a set S of at
most κ types is ommitted by a structure of cardinality at least h(Lκ+ω), then it
is omitted by arbitrarily large structures, is proven by constructing a sentence
φ which is the conjunction over all Σ ∈ S of the sentences¬∃x

∧
φ∈σ

φ(x). This has

the property
A |= φ ⇐⇒ A omits every type of S
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and is a sentence in Lκ+ω.
For the other direction, i.e h(Lκ+ω) ≤ mκ, given any sentence φ ∈ Lκ+ω (these
sentences correspond to sets of sentences of cardinality at most κ+) one can
expand the signature of φ with one predicate symbol Rψ for each subformula ψ
of φ and construct a set S of types, codifying the satisfiability of subformulae of
φ. Now one can show that for any structure A, A |= φ iff there is an expansion
A
′
of A (expanded with all the Rψ) omitting S. Now if there is a model B |= φ

of cardinality at least mκ then there is an expansion B
′
omitting S, which is

also of cardinality at least mκ, but this in turn means there are arbitrarily large
structures omitting S and therefore arbitrarily large models of φ.

This was first proven for the case κ = ω by López-Escobar (Dickmann
[1975]). The result cited here, in turn, is due to Chang (Chang [1968]).

Now, Theorem 3.3.1, stating that h(Lκ+ω) < i(2κ)+ , is a straightforward
consequence of Proposition 3.3.8 and Corollary 3.3.7. Using this upper bound for
the hanf number of a finite quantifier logic we can now prove the non-definability
of well-orderings in those logics. More generally:

3.3.9 Theorem (López-Escobar)

WO is not PC in L∞ω.

In the proof of this theorem we start by assuming that well orderings are
PC in Lκω and contruct a theory which has large, but not arbitrarily large,
models. This then results in a lower bound on the hanf number of Lκω which is
larger than the upper bound fixed in Theorem 3.3.1, leading to a contradiction.
The construction in this proof is much like that in the discussion leading up to
Theorem 3.2.5. We will also be using the formulae µα from Proposition 3.1.2.

Proof. Assume for a contradiction that WO is a projective class in L∞ω. Then
there are λ σ, φ such that φ ∈ Lλω[σ] and WO = mod(φ) � {<}. We may
assume that λ is a successor cardinal such that λ = κ+ and |σ| < κ. The
construction we are aiming at now is a set of sentences Θ in a signature τ ⊇ σ
such that

(I) there is A � φ ∧Θ such that |A| = iµ, where µ = 222κ

, and
(II) for all A, A � φ ∧Θ =⇒ |A| ≤ iµ.
This would then mean that h(Lλω) ≥ i

222κ , but as we already know,
h(Lλω) = h(Lκ+ω) < i(2κ)+ < i

222κ .
For this end we expand the signature σ to a signature τ containing the

additional symbols
(i) P1, ..., P5 (binary predicates)
(ii) P6 (trinary predicate)
(iii) P7 (unary predicate)
(iv) c0, ..., c6 (constants).
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Now, let Φα(x) be the formula ∀y[y < x ↔
∨
β<α

µβ ]. This has the property

that, in a well-ordered structure A, A � Φα(x)[a] iff the initial segment {b|b < a}
is order isomorphic to α. Finally, we let Θ be the following set of sentences:

(1) ∀x∀y[P1(x, y)↔ x < y ∧ ¬∃z(x < z ∧ z < y)]
(2) ∀x[P7(x)↔ c0 < x ∧ ∀y(y < x→ ∃z(y < z ∧ z < x))]
(3) Φ0(c0)
(4) Φω(c1)
(5) Φκ(c2)
(6) ∀x∀y [x < c3 ∧ y < c3 → (∀z (P2(x, z)↔ P2(y, z))→ x = y)]
(7) ∀x∀y [x < c4 ∧ y < c4 → (∀z (P3(x, z)↔ P3(y, z))→ x = y)]
(8) ∀x∀y [x < c5 ∧ y < c5 → (∀z (P4(x, z)↔ P4(y, z))→ x = y)]
(9) ∀x∀y [P2(x, y)→ y < c2]
(10) ∀x∀y [P3(x, y)→ y < c3]
(11) ∀x∀y [P4(x, y)→ y < c4]
(12) ∀x∀y∀z [y < x ∧ z < x (∀w(P6(x, y, w)↔ P6(x, z, w))→ y = z)]
(13) ∀x∀y∀z [P5(x, y) ∧ P5(x, z)→ y = z]
(14) ∀x[∃yP5(x, y)↔ x ≤ c5]
(15) P5(c0, c1) ∧ P5(c5, c6)
(16) ∀x∀y∀z∀w [P1(x, y) ∧ P5(x, z) ∧ P5(y, w)→ ∀u∀v (P6(w, u, v)→ v < z)]
(17) ∀x∀y [P7(x) ∧ P5(x, y)→ ∀z (z < y → ∃u∃v (u < x ∧ P5(u, v) ∧ z < v))]
(18) ∀x(x ≤ c6)
To show (II) above, let B � φ ∧ Θ. Since B is a model of φ, the reduct

B � {<} is order isomorphic to some ordinal δ. We may assume WLOG that
B � {<} is 〈δ,∈� δ〉. This means that the interpretations of the constants ci in
B are ordinals; call these ξi. By (3)-(5) above, ξ0 = 0, ξ1 = ω and ξ2 = κ. Now,
by (6) the function f = {〈α,A〉|α < ξ3 and A = {β|〈α, β〉 ∈ PB

2 } is injective
and by (9) f2(α) ⊆ ξ2 for every α < ξ3, so |ξ3| ≤ 2κ. By similar arguments,
|ξ4| ≤ 22κ and |ξ5| ≤ 222κ

< µ+. For α ∈ δ, we define the functions

gα = {〈β,Bα〉|β < α and Bα = {γ|〈α, β, γ〉 ∈ PB
6 }}.

By (12), then,

(#) gα is an injection on the set α.

Furthermore, by (1) the interpretation of P1 must be the successor-relation
in any well-ordered structure, and by (2) P7 must be the set of limit ordinals.
Also, from (13)-(15) we see that PB

5 is a functional relation with domain ξ5 + 1
such that PB

5 (0) = ω and PB
5 (ξ5) = ξ6.

Now, using (16) and (#) we can show that

(*)
∣∣PB

5 (α+ 1)
∣∣ ≤ 2|P

B
5 (α)| for all α ≤ ξ5,

that is, PB
5 grows at most as fast as the i-sequence for successor ordinals. Using

(17) an (*), then, we can show through induction over α that∣∣PB
5 (α)

∣∣ ≤ iα for all α ≤ ξ5.
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Finally, since (18) gives us that δ = ξ6 + 1, we can conclude that |B| = |δ| =
|ξ6| =

∣∣PB
5 (ξ5)

∣∣ ≤ iξ5 < iµ+ .
For (I), let C |= φ, C order equivalent to ν = iµ + 1. This structure exists,

since mod(φ) = WO. Take, for exampel, C = 〈ν,∈� ν〉. Now, by describing
how C is expanded into a τ -structure D |= Θ ∧ φ we will present a structure
satisfying (I). Note first that (18) must be true in any structure extending C.
In D we intrerpret the extra symbols of τ as follows: cD0 = 0, cD1 = ω, cD2 = κ,
cD3 = 2κ, cD4 = 22κ , cD5 = 222κ

, cD6 = iµ,

PD
1 = {〈α, α+ 1〉 |α ∈ ℵµ},
PD

5 = {〈α,iα〉|α ≤ µ},
PD

7 = {α|0 < α ≤ iµ, α limit ordinal}.

By the relative sizes of the ordinals cD2 , cD3 and cD4 it is now possible to find
bijections fi : cDi+1 → P (cDi ) for i = 2, 3, 4. Using these we interpret

PD
i = {〈α, β〉|α < ci and β ∈ fi(α)}.

Similarly, for each α < µ, let gα : iα+1 → P (iα) be a bijection. These exist
by the definition of the i-sequence. This makes the interpretation

PD
6 = {〈iα+1, β, γ〉|α < µ, β ∈ iα+1 and γ ∈ gα(β)}

well-defined. By this construction it is clear that D |= Θ, concluding the
proof.

In his original article, Lopez-Escobar showed that “WO is not RPC in L∞ω”
(Lopez-Escobar [1966b]). Since every PC class is RPC, this result by Lopez-
Escobar might be stronger that the one we have proven here, though this is not
clear (cf. (Dickmann [1975])).

In conclusion we give an existence result as a corollary.

3.3.10 Corollary.

There exists a regular logic L which is both unbounded and weak.

Proof. L∞ω is a regular logic (Dickmann [1975]). It is unbounded by Theorem
3.1.4, but weak by Theorem 3.3.9.

4 Conclusion
We have seen that there are many ways of extending first order logic to logics
with greater expressive power. It also became apparent that extending the logic
destroys some of the “nice” properties of first order logic, such as completeness
and compactness. We have, however, only briefly mentioned the question of
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how strong a logic we can have without loosing the “niceness”. For more on this
topic, see (Flum [1985]), as well as (Nadel [1985]).

The idea of this paper was in a sense to compare the expressiveness of logics.
To make this idea more precise we chose to define the expressiveness of a logic
L as the class of elementary or projective classes of L . This made it possible
to not only pinpoint what was expressible in a logic, but also to compare two
logics. Here we could have chosen to study relativized projective classes and
define expressiveness in terms of these. This choise was informed by two facts.
As one moves from elementary to projective and relativized projective classes,
the expressibility increases, since ECL ⊆ PCL ⊆ RPCL . This increase in
expressiveness, on the other hand, is due to the fact that the definition of a
model class uses an increasingly larger machinery with extra non-logical symbols
and inner models as we traverse the hierarchy. So, elementary classes might
not capture all there is to a logic because the definition of a model class is
restricted to not using any symbols beyond the definiendum. The increase in
expressiveness found in relativized projective classes, on the other hand, might
be more due to the use of an intricate construction than it is to the expressiveness
of the underlying logic.

That being said, we have mostly not entered into these discussion, but rather
tried to give an overview of what the different kinds of expressiveness amount
to.

In the last part of this paper we looked specifically at what well-orderings
we could define in a logic. We saw there that Lω1ω1 was expressive enough to
define all of WO, the class of well-orderings. We saw also that it was impossible
to do the same in Lκω, for any κ, implying the undefinability of WO in L∞ω.

This result was proven through an argument about Hanf numbers. The
same result follows from other, related, properties of abstract logics, however.
For this we are going to be needing the Craig property of a logic:

Definition.

Given a logic L , if, for every signature τ and every pair of model classes K1

and K2, projective in L [τ ] there exists an elementary L [τ ]-class K such that
K1 ⊆ K and K2 ∩K = ∅, then we say that L has the interpolation property.

If, K1 and K2 are as in the definition and K can always be found in an-
other (stronger) logic L ′, then we say that L ′ interpolates L , symbolically,
Craig(L ,L ′).

Due to a result by Gostanian and Hrbáček, if Lκ+ω pins down a regular
ordinal α, then ¬Craig(Lκ+ω,Lαα). On the other hand, Malitz has shown
that, for regular κ, Craig(Lκω,L(2<κ)+ω). This together with the assumption
that L∞ω is strong yields a contradiction. (Väänänen [2008]).

A few loose ends have been left in the preceeding text for various reasons.
These are new, interresting questions arising from the study of model theoretic
logics or the definability of well-orderings.
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The discussion leading up to Theorem 3.1.4 left open the question of an
upper bound for the well-ordering numbers of the logics Lκω. The interrested
reader should find more about this in (Dickmann [1975]) and (Dickmann [1985]).

The section about suborderings gives rise to some questions. There are
examples of logics showing that ≤RPC is not a subordering of (and thus not
equivalent to) ≤, but the author is still to find examples showing that ≤PC is
not equivalent to ≤RPC . It is also known that L w2 � L (Q0) (Shapiro [2001]).
On the other hand, the proposition L w2 ≤PC L (Q0) is dependent on the open
question in computational complexity theory whether NP is equal to PH.

The question about comparing the expressive power of logics through the
definability of well-orderings, which introduced the subject of abstract model
theory to the author, seems to have been answered partly. While there is
some information to be gathered in the well-ordering numbers of logics and
the weak/strong-dichotomy, these pieces of information alone do not settle the
question about relative expressive power of logics. For example they say little
about the finite model theory of a logic. Also, the ordering on logics we intro-
duced were all seen to be partial, whereas an ordering based on well-ordering
numbers would be linear (even a well-ordering).

Related to this there is another direction in which further study would be of
interrest. Given any mathematical structure or property of structures P , which
is not definable in first order logic, the question about which logics define P
yields more information about the expressiveness of model theoretic logics. Ex-
amples of interresting classes are Complete Partial Orderings (Dickmann [1985])
and ℵ1-free abelian groups vs. free abelian groups (Nadel [1985]).
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