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Sammanfattning

Denna text handlar om metamatematiska fixpunkter. Efter en kort introduktion
ger vi en översikt över det fält som kallas metamatematik, från förra sekelskiftet
till idag. Vi intresserar oss särskilt för begreppet fixpunkter, satser som visar
att vissa typer av fixpunkter existerar och deras tillämpningar inom metamate-
matik. Andra halvan av texten är en teknisk undersökning av fixpunktsmängder.
Givet en rekursivt enumerabel, konsistent extension T av Peanos aritmetik de-
finierar vi, för varje formel θ(x), mängden

FixT (θ) := {δ : T ` δ ↔ θ(δ)}.

Vi bevisar att alla sådana mängder är Σ1-fullständiga. Vidare definierar vi för
varje formel θ(x), mängden

FixTΓ (θ) := {δ : T ` δ ↔ θ(δ)},

där δ är en Γ-sats. Med hjälp av metoder som härrör från Bennet, Bernardi,
Guaspari, Lindström och Smullyan karaktäriserar vi dessa mängder för formler i
Γ′ ⊃ Γ, och bevisar delresultat för formler i Γ. Vi ger ett tillräckligt villkor för att
en rekursiv mängd skall vara en fixpunktsmängd och visar att sådana mängder
existerar. Vidare ger vi ett tillräckligt villkor för att en rekursivt enumerabel
mängd av Γ-satser skall vara en fixpunktsmängd till en Γ-formel.

I nästa avsnitt studerar vi strukturen av fixpunktsmängder ordnade under
mängdinklusion, och beskriver vissa egenskaper hos dessa strukturer. Slutligen
kopplar vi våra resultat till ett annat öppet problem inom metamatematik, och
föreslår vidare arbete.

Nyckelord: Aritmetiserad metamatematik, fixpunkt, rekursionsteori.





Abstract

This thesis concerns the concept of metamathematical fixed points. After an
introduction, we survey the field of metamathematics, from la fin du siècle to
present. We are especially interested in the notion of fixed points, theorems on
the existence of various kinds of fixed points, and their applications to meta-
mathematics. The second part of the thesis is a technical investigation of sets
of fixed points. Given some recursively enumerable, consistent extension T of
Peano arithmetic, we define for each formula θ(x) the set

FixT (θ) := {δ : T ` δ ↔ θ(δ)}.

Our main result on these sets is that they are all Σ1-complete. Furthermore,
we define for each formula θ(x), the set

FixTΓ (θ) := {δ : T ` δ ↔ θ(δ)},

where δ is a sentence in Γ. Using methods of Bennet, Bernardi, Guaspari,
Lindström, and Smullyan, we characterise these sets for formulas in Γ′ ⊃ Γ,
and provide partial results for formulas in Γ. We give a sufficient condition on
recursive sets to be a set of fixed points, and show that such sets exists. We also
present a sufficient condition for a recursively enumerable set of Γ-sentences to
be a set of fixed points of a Γ-formula.

In the following section, we study the structure of sets of fixed points ordered
under set inclusion, and prove certain properties on these structures. Finally, we
connect our research to another open problem of metamathematics, and state
some possible further work.

Keywords: Arithmetised metamathematics, fixed point, recursion theory.
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Chapter 1

Introduction

“The Cretans, always liars.”

In the 6th century B.C., Epimenides of Knossos accused every Cretan of
always lying. Unfortunately, Knossos is located on Crete, so Epimenides himself
was a Cretan. It is then reasonable to ask how to interpret this claim. If we
suppose that Epimenides told the truth, evidently, he was not lying. As he was
a Cretan, we will have to conclude that the claim he made was false, as he did
not lie. But as he made a false claim, he cannot have told the truth. So we
have established that Epimenides’ claim was false, and nothing is particularly
strange about that. It simply means that there is one Cretan that occasionally
speaks the truth.

However, Epimenides’ claim can be seen as a precursor of the liar paradox,
originating with Eubulides of Miletus in the 4th century B.C.:

This sentence isn’t true.

The truth value of the sentence above is harder to decide. Indeed, suppose the
sentence is true. Then the sentence expresses a true proposition, namely the
proposition that the sentence at hand is false. Thus the sentence is false. But if
the sentence is false, then it expresses the false proposition that the sentence is
false. Thus, it is true. We can then conclude that the sentence above is both true
and false. Eubulides’ sentence is the first known example of a self-referential
sentence, one that makes claims about itself.

Self-referential constructions of this kind are somewhat disturbing. They
allow us to construct seemingly well-formed sentences that we cannot determine
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2 CHAPTER 1. INTRODUCTION

the truth value of. Assuming self reference to be unproblematic, it seems that
anomalities of this kind points out a deficiency in our understanding of, in this
case, the concept of truth. Even though it should be perfectly straightforward
to interpret the liar sentence, there is no coherent way to give it a truth value.
There are many different versions of paradoxes in the literature, of which we
will here present but a few examples. The first two are traditionally classified as
semantical paradoxes, whereas the last falls under the category of set-theoretical
paradoxes.

• Grelling’s paradox: A word is heterological if it does not describe itself.
For example, “long” is heterological, as it is not long. “English” is not
heterological, as it is an English word. It follows that “heterological” is
heterological if and only if it is not heterological.

• Berry’s paradox: Consider the expression “the least number that cannot
be referred to in less than fifteen words”. Since there is a finite number
of expressions less than fifteen words long, there are only finitely many
numbers that can be referred to by such expressions. However, there are
infinitely many integers, so there are numbers that cannot be referred to
by such an expression. By the well-ordering principle, there is a least such
number, whence this fourteen-word expression refers to a number that
cannot be referred to in less than fifteen words.

• Russell’s paradox: R is the set of all sets that are not members of them-
selves. A contradiction arises when one asks whether R is a set that is a
member of itself.

In the analysis of this kind of phenomena, a variety of different approaches
have been taken. As it turns out, self reference is closely related to the math-
ematical (in a most general sense) concept of fixed points. In mathematical
practice, many functions and operators have fixed points, a notion that can be
explained in the following vague way:

If O is some operation defined on a class of objects X, then a fixed point
of O is an element x in X such that Ox = x.

We consider a few examples from different parts of mathematics and logic:

• Real analysis: The function f(x) = x, defined on the real numbers, has
infinitely many fixed points, as every real is a fixed point of f . On the
other hand, the function g(x) = x2 has only two fixed points: x = 0 and
x = 1.
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• Algebraic topology: Brouwer’s fixed point theorem in its simplest formu-
lation—in two dimensions—states that every continuous function from a
disc onto itself has a fixed point. Rumour has it, that Brouwer discovered
the theorem when stirring a cup of coffee, noticing that there was always
a point on the surface that did not move.

• Recursion theory: The recursion theorem states that given an enumer-
ation of all recursive functions of n variables f0, f1, . . . , and a recursive
function of n + 1 variables g(z, x0, . . . xn), there is a number e such that
fe(x0, . . . , xn) gives the same result as g(e, x0, . . . , xn).

• Modal logic: Let �A be the sentence �A ∧ A. We say that a sentence
A is modalised in p if every occurrence of the sentence letter p in A is
within the scope of some occurrence of a �. The fixed point theorem for
Gödel-Löb provability logic then says that for every sentence A, modalised
in p, there is a sentence H containing only sentence letters from A, not
containing p and such that GL ` �(p↔ A)↔ �(p↔ H).

• Category theory: Recently, Noson Yanofsky [72] presented a category the-
oretical construction, analysing self reference in a very general way. He
obtains descriptions of a plethora of self-referential paradoxes, fixed points
and incompleteness theorems as instances of this construction.

• Arithmetised metamathematics: Every formula ϕ(x) expressed in the lan-
guage of an arithmetical theory T has a fixed point, in the sense that there
is a sentence δ such that T ` δ ↔ ϕ(δ).

Although all of these fields are rich in beautiful theorems and clever problem-
solving, we will not explore them all. At times, it may turn out that some
concepts that may look entirely different are in some way closely connected,
maybe even being different sides of the same coin. We will take the route of
the arithmetised metamathematician, and only occasionally glance in another
direction.

1.1 This thesis

This thesis consists of two distinct parts, both related to metamathematical
fixed points. Chapter 2 is an historical survey of the area, from la fin du siècle
to present. Chapter 3 is purely technical and deals with sets of fixed points.
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The text is intended as an historical introduction to metamathematics in
general, and to fixed-point constructions and their applications in particular.
Alas, as the title may suggest, the area is a technical and mathematical one, and
we have to cumber the text with notation and technical constructions. We give
a detailed survey of the development of ideas and proofs, especially in variations
of the fixed point theorem. Similar presentations are often streamlined in terms
of proofs, and results are generalised to allow a wider use. We have not aimed
to do so here, but rather to give an historically correct, readable exposé of
the actual development of the field. Minor embellishments aside, the proofs
presented are original. We have, for example, sometimes changed the ordering
of variables in substitution functions, for greater readability. When notation
differs from the original, we explicitly point this out.

As for the prerequisites, we suppose the reader to be familiar with first-
order logic, the theory of first-order arithmetic, naive set theory, and the theory
of recursive functions. In what follows, T is a consistent, axiomatisable arith-
metical theory extending Peano arithmetic, PA.1 These theories are formalised
in the language of arithmetic, LA. Th(T ) is the set of sentences provable
in T . We will use k,m, n (possibly with subscripts) as variables for natural
numbers. A,B,X, Y will denote sets of (Gödel numbers of) sentences. Sen-
tences and formulas are denoted by lower case Greek letters (again, possibly
with subscripts), where sentences are written as δ, γ, ϕ, ψ etc. and formulas as
θ(x), χ(x), η(x), ξ(x, y) etc. In the historical part of the text, we sometimes di-
vert from these conventions, in order to allow the reader to consult the original
texts for details.

One point where we are not completely historical is on notation of Gödel
numbers in formulas. Generally, pϕq denotes the numeral for the Gödel number
of the formula ϕ. When x is free in ϕ, we use Feferman’s dot notation pϕ(ẋ)q
to denote that x is to be treated as a free variable, so the Gödel number of
that expression depends on the actual value of x. Thus pϕ(x)q and pϕ(ẋ)q are
different numerals. On the other hand, when the context so admits, we conform
to the modern way of identifying formal expressions with the numerals of their
Gödel numbers. Occasionally, we, for readability, allow ourselves to introduce
new function symbols to the formal languages in question, even if they are not
present in the original texts.

1In fact, we could almost everywhere do with a much weaker theory, e.g. Robinson’s arith-
metic Q, plus induction for Σ1-formulas. We have not aimed to state the strongest versions of
theorems in this respect, but instead rest on the intuition that the results hold for reasonably
strong arithmetical theories. The reader interested in technicalities of this kind may consult
e.g. Hájek and Pudlák’s Metamathematics of First-Order Arithmetic [23].



Chapter 2

Metamathematics:
An historical survey

2.1 Foundationalism in the late 19th century

In the beginning, the well-renowned mathematician, philosopher and physicist
David Hilbert devised a grand scheme to formalise all of mathematics and prove
by undoubtable methods that this body of mathematics was free of contra-
diction: that it was consistent. The key idea was to first identify what such
undoubtable methods could be, and to establish that these methods were them-
selves free from contradiction. These methods would then lay the ground for
any other more complex mathematical framework, in that nothing should be
added to mathematics without a proof of non-contradiction, carried out by the
above-mentioned methods. The plan was great, and Hilbert devoted many years
to this project. See e.g. [28, 30, 31].

The crucial problem that Hilbert tried to resolve was how to relate math-
ematical infinities to the real world. It is clear that we can justify the use of
(relatively) small numbers by alluding to counting discrete objects in the world,
but it is possibly more uncertain how to justify the use of actual mathematical
infinities. Hilbert’s remedy was the following [30].

1. Identify and formalise an undisputable system T1 of finitistic mathematics
and methods. By the work of William Tait [68], this system can roughly
be taken to be primitive recursive arithmetic. This system is to be under-

5



6 CHAPTER 2. METAMATHEMATICS: AN HISTORICAL SURVEY

stood as true and contentful, and will serve as the foundation of all other
mathematics.

2. Formalise all mathematical knowledge in a system T2, freely using infi-
nite sets, transfinite induction and any other non-finitistic methods. On
Hilbert’s view, this system is to be understood as pure syntax.

3. Prove that T2 is consistent (free of contradiction) and complete (sufficient
to decide every sentence expressible in the system), using only the system
T1.

4. Prove that T2 is conservative over T1, in the sense that every contentful
mathematical statement that is provable in T2 is provable already in T1.

Could we accomplish this, we would have a reduction of infinitistic mathematics
to finitistic, and a justification of the use of infinitistic methods. We will not
delve into the technicalities of Hilbert’s program here, but refer the reader to
e.g. [33, 58, 68].

A related project of the same era is the one undertaken in Principia mathe-
matica [56] by Russell and Whitehead. Their goal was to deduce all of mathe-
matics from a set of axioms and inference rules formalised in a symbolic logic,
leaving no place for doubts about their truth or plausibility. The similarity
between these two projects lies in that both were concerned with mathematical
truths, and their search for a formal method to establish once and for all which
these mathematical truths were. It was a common belief of the time that such
a project would indeed be possible to carry out.

2.2 Incompleteness

That this foundational endeavour cannot be successful was proved by Kurt
Gödel in his seminal 1931 paper Über Formal Unentscheidbare Sätze der Prin-
cipia Mathematica und Verwandter Systeme, I. [19]. Gödel showed that many
systems formalizing arithmetic suffer from incompleteness, in the sense that
there are arithmetical sentences that these systems can neither prove nor re-
fute. For a system to be subject to this incompleteness phenomenon it has to
satsify a certain list of conditions: it should be a formal system formulated in
first-order logic with a (primitive) recursive set of axioms, strong enough to
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represent all recursive functions, and ω-consistent.1 From this point on, every
formal theory is supposed to be formalised in first-order logic.

We now allow ourselves a technical inspection of Gödel’s first incompleteness
theorem, as stated in the following form:

Theorem 2.2.1 (Gödel’s first incompleteness theorem). Any recursive, suf-
ficiently strong, ω-consistent formal system is incomplete.

Gödel confined himself to a formal system closely related to the system of
Principia mathematica, but extended to contain Peano arithmetic. This system,
P, is recursive, sufficently strong and ω-consistent, so it is incomplete by the
way of there being an arithmetical statement γ such that neither P ` γ nor
P ` ¬γ. The “sufficient strength” called for is to be understood in a certain
technical manner. P is strong enough to represent every recursive relation in
such a way that if R(x0, . . . , xn) is a recursive relation, then there is a formula
ρ(x0, . . . , xn) such that:

1. If R(k0, . . . , kn) holds, then P ` ρ(k0, . . . , kn), and

2. if R(k0, . . . , kn) does not hold, then P ` ¬ρ(k0, . . . , kn).

The ingenuity of Gödels proof is threefold. For the first part, he constructed
a codification of logical syntax in arithmetic— a Gödel numbering. By iden-
tifying every symbol in the arithmetical language with a certain integer, it is
possible to obtain a decidable correspendence between numbers and arithmetical
formulas. This is subsequently extended to a correspondence between numbers
and sequences of formulas. In this way, as proofs are sequences of formulas, it
becomes possible to, loosely speaking, “talk about” arithmetical proofs inside
arithmetic itself. An essential feature of this codification is that “simple” prop-
erties of syntactical objects, such as being a formula or a proof, corresponds to
“simple” (recursive) properties of the corresponding Gödel numbers. The second
part involves defining the recursive relations, and showing that these are actu-
ally representable in P. The proof relation “y is a proof of x in P” is recursive,
so it can be represented in P by a formula Prf(x, y). As for the third ingenious
contribution, Gödel constructed a sentence γ, such that γ is equivalent in P
to the statement ¬Pr(γ) (where Pr(x) is short for the formula ∃yPrf(x, y)), in
symbols

P ` γ ↔ ¬Pr(γ).
1Gödel’s term is rekursiv, which is what today is called primitive recursive, as opposed to

general recursive (used by e.g. Kleene and Rosser). We will see several weakenings of these
conditions later.
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Gödel’s method for constructing this Gödel sentence is the first example of self
reference in arithmetic. In other words, γ is a fixed point to the formula ¬Pr(x).
We give here an outline of the original proof, which is quite involved, and not
entirely transparent. It will, however be of interest to compare the different
methods for obtaining self-referential formulas in the sequel.

Let κ be any class of formulas. κ is said to be ω-consistent if for any
formula ϕ(x), if κ proves ¬ϕ(k) for every k, then κ does not prove ∃xϕ(x). It
follows that every ω-consistent theory is consistent. The formula Prκ(x) stands
for x being provable from κ.2 Let σ(ϕ, n, y) be the result of substituting the
numeral y for the variable with Gödel number n in ϕ.3 Now, let Q(x, y) be the
expression ¬Prfκ(σ(y, 19, pyq), x), where, as defined in Gödel’s paper, 19 is the
Gödel number of a particular variable. This relation is recursive, and as every
such relation is represented in P, there is a predicate symbol (relation sign) q
such that:

1. P ` ¬Prfκ(σ(y, 19, pyq), x)→ Prκ(σ(q, 17, pxq, 19, pyq)), and

2. P ` Prfκ(σ(y, 19, pyq), x)→ Prκ(¬σ(q, 17, pxq, 19, pyq)).

Again, 17 is the Gödel number of a variable, distinct from the variable whose
Gödel number is 19. Now, let G(k, ϕ) be the Gödel number of the formula
obtained by universally quantifying the formula ϕ over the variable with Gödel
number k.4 Though G is strictly not a function symbol of the formal theory at
hand, we will allow ourselves to introduce it, thus simplifying the notation. Let
p := G(17, q), and let r := σ(q, 19, ppq)). It follows that

σ(p, 19, ppq) = σ(G(17, q), 19, ppq) = G(17, σ(q, 19, ppq)) = G(17, R),

and
σ(q, 17, pxq, 19, ppq) = σ(r, 17, pxq).

By substituting p for y in 1) and 2) above, we get

2Gödel’s term is Bew(x), from the German word Beweisbar, meaning provable. The proof
relation is originally denoted xBy.

3Gödel’s notation is Sb(ϕn
y ). The function is then extended to accept any odd number of

arguments, in our notation e.g. σ(ϕ, n, y, k, w) being the result of substituting the numeral y
for the variable with Gödel number n and the numeral w for the variable with Gödel number
k of ϕ.

4E.g., if the variable with Gödel number k is x, then G(k, ϕ) is p∀xϕq.
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1′. P ` ¬Prfκ(G(17, r), x)→ Prκ(σ(r, 17, pxq)), and

2′. P ` Prfκ(G(17, r), x)→ Prκ(¬σ(r, 17, pxq)).

Now, reason in P and suppose that G(17, r) is provable from κ. Then there is an
n such that Prfκ(G(17, r), n), and so, by 2′, it follows that Prκ(¬σ(r, 17, pxq)),
while from the provability of G(17, r) the provability of σ(r, 17, pnq) follows,
leading to a contradiction. As we have just established that G(17, r) is un-
provable, it follows that ∀n¬Prfκ(G(17, r), n) holds. Together with 1′, we get
∀nPrκ(σ(r, 17, pnq)). But this, in conjunction with Prκ(¬G(17, r)) is incom-
patible with the ω-consistency of κ, so neither does κ prove ¬G(17, r). Thus,
G(17, r) is a sentence undecidable in P.

Note that by choosing the relationQ (and subsequently, the predicate symbol
q representing Q) in a different way, the construction would yield a fixed point
to another formula. Thus, it is not at all unreasonable to credit the Fixed point
theorem to Gödel, although he never states it in any generality.

Gödel presented a preliminary version of the first incompleteness theorem
at the Second Conference for Epistemology of the Exact Sciences, which took
place in Königsberg between September 5 and 7, 1930. The only one who seems
to fully have understood the significance of the result is J. von Neumann, who
shortly after the conference wrote to Gödel:

I have recently concerned myself again with logic, using the methods you
have employed so successfully in order to exhibit undecidable properties.
In doing so I achieved a result that seems to me to be remarkable. Namely,
I was able to show that the consistency of mathematics is unprovable.[...]

In a formal system that contains arithmetic it is possible to express, follow-
ing your considerations, that the formula 1 = 2 cannot be the endformula
of a proof starting with the axioms of this system—in fact this formulation
is a formula of the formal system under consideration. Let it be called W .

In a contradictory system any formula is provable, thus also W . If the
consistency [of the system] is established intuitionistically, then it is possi-
ble, through a "translation" of the contentual intuitionistic considerations
into the formal [system], to prove W also.[...] Thus with unprovable W
the system is consistent, but the consistency is unprovable.5

5von Neumann, Letter to K. Gödel (Nov. 20, 1930), in [47], p. 123.
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Gödel replied shortly, and while that letter is lost, von Neumann’s reply is clear:

As you have established the theorem on the unprovability of consistency
as a natural continuation and deepening of your earlier results, I clearly
won’t publish on this subject.6

von Neumann’s observation amounts to the second incompleteness theorem on
the unprovability of consistency. Let ConT be the sentence ¬∃yPrf(0 = 1, y).
In a natural sense, ConT thus expresses that T is consistent.

Theorem 2.2.2 (Gödel’s second incompleteness theorem). For every recursive,
sufficiently strong, consistent formal system T , it holds that T 0 ConT .

For the publication of [19], Gödel sketched a proof of this result. His argu-
mentation is rather different from von Neumann’s, and proceeds by observing
that the reasoning involved in the proof of the incompleteness theorem is “arith-
metical enough” to itself be translated into the language of P. He meant to
prove this in full detail in a later paper, but the argument was convincing, and
the second part of Über Formal Unentscheidbare Sätze was never written. It was
not until 1939 that Hilbert and Paul Bernays presented a fully detailed proof of
the Second incompleteness theorem, in their Grundlagen der Mathematik [32].

A strengthening of the incompleteness theorems was presented by J. Barkley
Rosser in 1936. In the paper Extensions of some theorems of Gödel and Church
[54], incompleteness theorems with weakened premises were proved. Rosser
was able to weaken the constraint on the sets of axioms and inference rules
to recursive enumerability, rather than primitive recursiveness. Moreover, by
employing what is today known as Rosser’s trick for comparing witnesses, he
could weaken ω-consistency to mere consistency.

Theorem 2.2.3 (The Gödel-Rosser incompleteness theorem). Any recursively
enumerable, sufficiently strong, consistent formal system is incomplete.

To obtain his result, Rosser modified the proof predicate specified by Gödel.
Let Prf(x, y) be Gödel’s proof predicate, let ¬̇x be the Gödel number of the
negation of the formula with Gödel number x, and let

PrfR(x, y) := Prf(x, y) ∧ ¬∃z(z≤y ∧ Prf(¬̇x, z)).

Thus, y is a proof of x in Rosser’s sense, if y is a proof of x in Gödel’s sense,
and there is no shorter proof of of ¬x.7 So in this sense of provability, we accept

6von Neumann, Letter to K. Gödel (Nov. 29, 1930), in [47], p. 124.
7The phrasing “x has a shorter proof than y” here means that there is a proof of x whose

Gödel number is less than the Gödel number of any proof of y. Equivalently, we sometimes
speak of x being proved earlier than y.
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only proofs of sentences that we have not yet refuted, thus incorporating the
consistency criterion in the proof predicate. In T + ConT we can readily prove
Prf(x, y)↔ PrfR(x, y) for all x and y, while this is not provable in T on its own,
as the proof requires the hypothesis that T is consistent. Rosser claims that the
formalisation of this provability predicate has properties that Gödel’s provabil-
ity predicate does not possess. As an example of this, he states that for every
sentence ϕ, T ` PrR(ϕ) → PrR(PrR(ϕ)) and T ` PrR(¬ϕ) → PrR(¬PrR(ϕ)).
As we will see later, the first of these properties is indeed possessed by Gödel’s
provability predicate—although this was probably not known until the publica-
tion of Grundlagen der Mathematik in 1939.

For the proof, Rosser only points out that “one can proceed as [...] Gödel”.8
We will give an outline of the argument. By Gödel’s method for obtaining self
reference, Rosser constructs a formula ρ such that:

T ` ρ↔ ∀y(Prf(ρ, y)→ ∃z≤yPrf(¬̇ρ, z)).9

This is indeed equivalent to T ` ρ ↔ ¬PrR(ρ), i.e. a Gödel sentence for
Rosser’s modified provability predicate. We begin by proving that T 0 ρ. Sup-
pose, for a contradiction, that T proves ρ, and that p is the Gödel number for
such a proof. Since T is consistent, it follows that T 0 ¬ρ and that for every k,
T ` ¬Prf(¬̇ρ, k). Thus, T ` z ≤ p → ¬Prf(¬̇ρ, z), and since p is a proof for ρ,
we get T ` ∃y(Prf(ρ, y)∧∀z≤y¬Prf(¬̇ρ, z)). By the construction of ρ, it follows
that T ` ¬ρ, contradicting the assumption that T is consistent.

Next, suppose that T ` ¬ρ, and that p is the Gödel number for such a proof.
Since T is consistent, there can be no proof of ρ, so for every k, ` ¬Prf(ρ, k).
Consequently, T ` y < p → ¬Prf(ρ, y). Since p is a proof of ¬ρ it follows
that T ` Prf(¬̇ρ, p) and trivially T ` p ≤ y → ∃z≤yPrf(¬̇ρ, z). But T ` (k ≤
m)∨ (m < k) for all k,m, so T ` ¬Prf(ρ, y)∨∃z≤yPrf(¬̇ρ, z). By construction
of ρ, it follows that T ` ρ, contradicting the assumption that T is consistent.
Note that we here need the hypothesis of consistency, rather than ω-consistency,
to make sure that T does not simultaneously prove both ρ and ¬ρ.

Both incompleteness theorems have bearings on Hilbert’s program and Rus-
sell’s logicist reduction. Firstly, in the case that T is consistent, then both the
Gödel sentence and the Rosser sentence are true Π1-statements. Thus there are
statements that should rightly be contained in the weaker system T1 of Hilbert,
but which we could not hope to prove by the finitistic methods embodied in T1.

8Rosser [54], p. 90.
9The original (equivalent) formulation is T ` ρ↔ ¬∃y(Prf(ρ, y) ∧ ¬∃z(z≤y ∧ Prf(¬̇ρ, z))),

but the present variation excels in clarity.
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Secondly, as T1 is a mathematical system, it is contained in the stronger
system T2. Also, by the second incompleteness theorem, T1 cannot even prove
its own consistency, nor can it prove the consistency of T2. Gödel himself did
not support such a view, at least not at the time of publication of his theorems:

I wish to note expressly that [the second incompleteness theorem] does not
contradict Hilbert’s formalistic viewpoint. For this viewpoint presupposes
only the existence of a consistency proof in which nothing but finite means
of proof is used, and it is conceivable that there exists finitary proofs that
cannot be expressed in the formalism of P.10

von Neumann did not share Gödel’s belief that Hilbert’s program stood
untouched by the second incompleteness theorem. In a letter to Rudolf Carnap,
he made the following comment on this point:

Thus I am today of the opinion that

1. Gödel has shown the unrealizability of Hilbert’s program.
2. There is no more reason to reject intuitionism (if one disregards the

aesthethic issue, which in practice will also for me be the decisive
factor).

Therefore I consider the state of the foundational discussion in Königs-
berg to be outdated, for Gödel’s fundamental discoveries has brought the
question to a completely different level. (I know that Gödel is much more
careful in the evaluation of his results, but in my opinion on this point he
does not see the connections properly.11

Today it is widely thought that the incompleteness theorems show the im-
possibility to carry out the full Hilbert program. There have been suggestions,
however, for partial realisations of Hilbert’s program, for example through the
use of methods stemming from the research program of Reverse Mathematics
[58].12

A theorem closely related to those of Gödel is Alfred Tarski’s theorem on
the undefinability of truth, published in The concept of truth in formalised
languages [69].13 Let a truth definition for T be a formula τ(x) such that, for
every sentence ϕ,

T ` ϕ↔ τ(ϕ).
10Gödel 1931, translated in [21], p. 195.
11von Neumann, Letter to R. Carnap, (June 7, 1931), in [47], pp. 85-86.
12Cf. Feferman [13].
13Though Tarski’s paper was not published until 1933 (in Polish), most of the investigations

resulting in [69] was carried out in 1929. Before the paper was published in a language more
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Theorem 2.2.4 (Tarski’s theorem). No consistent, sufficiently strong theory
has a truth definition.

The existence of a truth definition could be used to construct a formal version
of the Liar paradox: “This sentence isn’t true”. As we saw in the introduction,
any such sentence is both true and not true, which evidently is a contradic-
tion. Tarski’s construction of this self-referential statement is closely related to
the construction of Gödel’s. Tarski draws the distinction between the object
language and the metalanguage, of which the latter is used to study the for-
mer. He makes the claim that an adequate definition of truth should have as
consequences

[A]ll sentences which are obtained from the expression ’x ∈ Tr if and only
if p’ by substituting for the symbol ’x’ a structural-descriptive name of any
sentence of the language in question, and for the symbol ’p’ the expression
which forms the translation of this sentence into the metalanguage.14

The proof proceeds by first showing that in whatever way the class of true
expressions, Tr, is defined, it is possible to derive the contradiction of one of
the statements of the form described in the above convention. Suppose that
we have defined the class of true sentences Tr in the metalanguage. Define,
also in the metalanguage, an infinite sequence Φ := ϕ0, ϕ1, . . . , such that every
expression of the object language occurs exactly once. This corresponds to
the numbering of formulas used by Gödel, but Tarski is explicit in that this
numbering is carried out in the metalanguage. Let ιk be a formula with a free
variable n, that expresses the relation k = n. Let E(n, y) be the Gödel number
of the existential quantification of y with respect to the variable with Gödel
number n.15 Now, consider the expression

E(3, ιn ∧ ϕn) /∈ Tr (2.1)

Again, 3 is the Gödel number for a variable. By the Gödel numbering, we can
construct an arithmetical formula which is equivalent to the previous expression
for every value of n, denoted ψ(n). As this expression is arithmetical, it occurs

generally accepted for scientific exchange (German, in 1935), both Carnap (as we will see
later) and Gödel had published their related results. Tarski points out that these results are
“quite independent” of each other, but admits that he owes the method of arithmetisation to
Gödel. See the historical notes to [69] in [70], and footnote 1 on p. 247 of [70] for further
details.

14Tarski [69], in [70], p. 188.
15Again, the function symbol E is not strictly in the formal language.
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in the sequence Φ, so for some k, we will have ψ(n) = ϕk. By substituting k for
n in (2.1), and using the equivalence of ψ(n) with (2.1), we obtain

E(3, ιk ∧ ϕk) /∈ Tr if and only if ψ(k). (2.2)

On the other hand, the expression E(3, ιk ∧ ϕk) is a sentence of the language
under consideration, and by applying the criterion of an adequate truth defini-
tion above, we obtain a sentence of the form ’x ∈ Tr if and only if p’. But by
substituting E(3, ιk ∧ ϕk) for x and ψ(k) for p we get

E(3, ιk ∧ ϕk) ∈ Tr if and only if ψ(k), (2.3)

which clearly contradicts (2.2).

2.3 A step ahead: The Fixed point theorem

In proving the First incompleteness theorem, Gödel presented the first example
of a metamathematical fixed point, the concept that is our main interest in this
text. The Gödel sentence γ (as well as the Rosser sentence ρ) is a sentence
constructed to share provability conditions with another sentence—in this case
the sentence stating that γ has no proof. While Gödel, Tarski and Rosser all
explicitely constructed their fixed points, they do not seem to have considered a
more general approach, e.g. proving that every arithmetical formula possesses a
fixed point. It took until 1934, when Carnap published the first edition of The
Logical Syntax of Language [6], for a general formulation of a fixed point theo-
rem to surface. Carnap constructed a mathematical language called Language
II, for which he proved that, for any syntactical property, there is a sentence
that semantically interpreted means that the sentence itself has that syntactical
property.16 In the spring of 1934, Gödel gave a series of lectures [20] at the
Institute for Advanced Study at Princeton, where he credits the Fixed point
theorem to Carnap. The theorem is also stated in Rosser’s 1936 paper [54],
where he credits it to Gödel—although he mentions that Gödel does not state
it explicitly, but rather presents a specific instance. In today’s terminology,
Carnap’s theorem could be put like this:

16Language II is quite strong; apart from the purely arithmetical Language I also introduced
in the text, it contains variables for predicates and functions, an induction axiom and a
variation of the axiom of choice. Its full strength is not, however, needed to prove the Fixed
point theorem.
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Theorem 2.3.1 (The Fixed point theorem). For any arithmetical formula θ(x)
with one free variable, there is a sentence δ such that

T ` δ ↔ θ(δ).

Prima facie, this theorem states that we can construct a sentence δ that is
provably equivalent to the formula θ(x) instantiated with the sentence δ itself.
Loosely speaking, δ says about itself that it possesses the property expressed by
θ(x). Of course, arithmetical sentences rarely speaks at all—after all, they are
just sequences of symbols. These fixed point are really just constructed to fulfil
the provable equivalence stated above. This can be accomplished after specifying
a Gödel numbering, and by a carefully conceived substitution function which
can be put in the following wording:

The result of substituting the quotation of “The result of substituting
the quotation of x for ’x’ in x has property P.” for ’x’ in “The result of
substituting the quotation of x for ’x’ in x has property P.” has property
P.17

If we allow us to carry out the operation specified in the sentence above, it turns
out the result is just the sentence itself. Thus, the sentence “says about itself”
that it possesses the property P.

Carnap’s proof of the Fixed point theorem proceeds as follows. Let ϕ be
a formula with one free variable x, expressing the property P. Let σ(x, s, y)
express “the result of in x replacing all occurrences of s with y”. Then let
ψ = σ(ϕ, x, σ(x, x, x)). But ψ has a specific Gödel number, k, say, that we
can substitute for x in ψ. Letting δ = σ(k, x, k), we obtain a formal version of
the operation described by the quotation above, and δ, semantically interpreted,
means that δ itself has the chosen syntactical property. This construction might
require an intellectual effort to embrace. Spelled out, δ is

σ(σ(ϕ, x, σ(x, x, x)), x, σ(ϕ, x, σ(x, x, x))).

17This kind of self-referential contructions in natural languages is usually credited to W.V.O.
Quine. The form

“yields a sentence with property P when appended to its own quotation.” yields
a sentence with property P when appended to its own quotation.

can be extracted from examples in The ways of paradox [51] from 1962, but Smullyan [63]
credits this construction to Quine as early as 1957. The present phrasing is from Franzén [15],
p. 41.
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Bearing in mind the definitions of σ(x, s, y) and ϕ, it should be possible to realise
that this arithmetical formula actually captures the meaning of the quotation
above.

2.4 Further development: Henkin, Löb

While the results of Gödel, Tarski, Rosser and Carnap undoubtably attracted
some attention, it took more than a decade before any further development of
ideas took place. The method of constructing fixed points was sparsely used,
and the rapidly developing field of recursion theory drew more attention and
also provided similar incompleteness results in an abstract fashion. It was not
until 1952 that Leon Henkin [27] asked the rather natural question of whether a
fixed point to the provability predicate is provable or not. Applying the Fixed
point theorem, he simply constructed a sentence η such that

T ` η ↔ Pr(η).

It is not immediately clear if such a fixed point is true in the standard interpre-
tation, nor if it is provable, refutable or undecidable.

In 1955, M. H. Löb [44] presented an answer to the question.

Theorem 2.4.1 (Löb’s theorem). 18

Any sentence ϕ such that T ` Pr(ϕ)→ ϕ, is provable in T .

In order to prove this theorem, Löb identified three abstract derivability
conditions, extracted from conditions stated by Hilbert and Bernays to hold for
a provability predicate specified in [32].

Definition 2.4.2 (The Hilbert-Bernays-Löb derivability conditions). For any
formulas ϕ,ψ:

L1. T ` (Pr(ϕ→ ψ) ∧ Pr(ϕ))→ Pr(ψ),

L2. T ` Pr(ϕ)→ Pr(Pr(ϕ)),

L3. if T ` ϕ, then T ` Pr(ϕ).

18This is the first of the presented results which the theory Q is not strong enough to prove.
It is partly because of this result that we have chosen to let T be an extension of PA.
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Now, take any arithmetical formula ψ that is such that T ` Pr(ψ)→ ψ (e.g.
Henkin’s formula above). Then apply the Fixed point theorem to the formula
Pr(x)→ ψ obtain a formula λ such that:

T ` λ↔ (Pr(λ)→ ψ).

The reasoning proceeds as follows. By construction, we have

T ` λ→ (Pr(λ)→ ψ) (2.4)

and by L3 above,
T ` Pr(λ→ (Pr(λ)→ ψ)). (2.5)

By L1
T ` Pr(λ→ (Pr(λ)→ ψ)) ∧ Pr(λ)→ Pr(Pr(λ)→ ψ), (2.6)

so, by 2.5 and 2.6,
T ` Pr(λ)→ Pr(Pr(λ)→ ψ). (2.7)

Again by L1,
T ` Pr(Pr(λ)→ ψ) ∧ Pr(Pr(λ))→ Pr(ψ), (2.8)

so, by 2.7 and 2.8,
T ` Pr(λ) ∧ Pr(Pr(λ))→ Pr(ψ), (2.9)

but, by L2, it follows that

T ` Pr(λ)→ Pr(ψ). (2.10)

Since we have supposed that ψ is such that

T ` Pr(ψ)→ ψ, (2.11)

it follows from 2.10 that
T ` Pr(λ)→ ψ (2.12)

but, by construction of λ, it follows that

T ` λ. (2.13)

Finally, by L3,
T ` Pr(λ), (2.14)

so, by 2.12, we get the desired result

T ` ψ. (2.15)
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By this theorem any Henkin fixed point is indeed provable, and thus true.
It also follows that the fixed points of Pr(x) are exactly the sentences provable
in T . We return to this observation, and related questions, in Chapter 3.

Löb’s theorem is also a direct consequence of the second incompleteness the-
orem. It is interesting, and somewhat lucky, that noone realised this before Löb
published his proof, for both the proof in itself, and the derivability conditions
have turned out to be of importance, e.g. spawning the field of provability logic.
The simpler proof proceeds as follows:

Suppose T ` PrT (ψ)→ ψ.19 Then T +¬ψ ` ¬PrT (ψ). Moreover, for every
sentence ϕ, T ` ¬PrT (ϕ) ↔ ConT+¬ϕ, so T + ¬ψ proves its own consistency.
By the second incompleteness theorem, it follows that T + ¬ψ is inconsistent,
so T ` ψ.

2.5 Graduation day: Arithmetisation of meta-
mathematics in a general setting

The term metamathematics can roughly be understood as referring to the study
of mathematics by using mathematical methods. Or, in other words, we raise
the level of abstraction by making mathematics itself the object of study, rather
than being a method for investigating properties of numbers. Hilbert was the
first to use the word metamathematics with some regularity—the first known
use of the term is from 1922:

[I]n addition to this proper mathematics, there appears a mathematics
that is to some extent new, a metamathematics which serves to safeguard
it by protecting it from the terror of unnecessary prohibitions as well as
from the difficulty of paradoxes. In this metamathematics—in contrast to
the purely formal modes of inference in mathematics proper—we apply
contentual inference, in particular, to the proof of the consistency of the
axioms.20

The term was used synonymous to proof theory, but proof theory was indeed
the tool intended to carry out the finitistic reduction suggested in Hilbert’s
program. Though the concept has broadened today, it is clear that Hilbert’s
research even today is regarded as metamathematical.21

19In writing PrT (x), we emphasise that we are considering the provability predicate of T ,
even if we are using this predicate in the context of another theory.

20Hilbert [29], p. 212.
21Earlier work can certainly be said to be metamathematical to its nature, e.g. the investi-

gations of Gottlob Frege, especially his Begriffsschrift [16].
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A shift in attention occured when Gödel presented his arithmetisation of
syntax. For the first time, it was possible to carry out metamathematical in-
vestigations with purely arithmetical methods. By the codification of decidable
properties, and through the Gödel numbering of sentences and proofs, it became
possible to, as seen earlier, talk about arithmetic within arithmetic itself.

With the publication of Feferman’s The arithmetization of metamathematics
in a general setting in 1960, the field of metamathematics was placed on new,
stable grounds. The majority of the results were obtained as Feferman was
working on his doctoral thesis, and mainly encompasses generalisations and de-
velopments of Gödel’s arithmetisation methods. There are also quite a few new
notions in the paper, e.g. the distinction between extensional and intensional
formulas, the concepts of (bi)numerations of sets, and an example of why we
need to be cautious when interpreting incompleteness theorems informally. We
briefly look into each of these three topics.

In today’s practise, a formula θ(x) is said to be extensional if T ` θ(δ)↔ θ(γ)
whenever T ` δ ↔ γ. This means that an extensional formula cannot distinguish
between different sentences, but only between different equivalence classes of
sentences. An intensional formula, on the other hand, might take into account
the orderings of proofs, or the Gödel numbers of sentences. Feferman informally
introduces the distinction in the introduction of his paper:

In broad terms, the applications of [arithmetization] can be classified as
being extensional if essentially only numerically correct definitions are
needed, or intensional if the definitions must more fully express the no-
tions involved, so that various of the general properties of these notions
can be formally derived.22

On this analysis, e.g. Rosser’s proof predicate expresses an intensionally in-
correct notion of proof, though from a metaperspective (and extensionally),
Rosser’s and Gödel’s proof predicates coincide. Though we can show that if the
theory in question is consistent, a sentence is Rosser-provable iff it is Gödel-
provable, Rosser’s notion intensionally expresses something else than Gödel’s.

Two other key concepts made explicit by Feferman are those of numerations
and binumerations of a relation. The idea was not entirely new—it can be seen
as an explication of representing relations in a theory.

22Feferman [11], p. 35.
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Definition 2.5.1. ξ(x1, . . . , xn) numerates an n-ary relation R in a theory T
if, for all k1, . . . , kn, R(k1, . . . , kn) holds iff T ` ξ(k1, . . . , kn). If ξ also satisfies
the condition that R(k1, . . . , kn) does not hold iff T ` ¬ξ(k1, . . . , kn), then ξ
binumerates X in T .

As stated by Feferman, the concept “binumerate” coincides with what other
authors called “define”, “strongly define”, “strongly represent” and “numeralwise
express”. If R is a one-place relation it can be viewed as a characteristic function
of a set, and we can consider binumerations of not only relations, but also of
sets. It follows that it is precisely the recursive relations (and sets) that can
be binumerated by both a Σ1- and a Π1-formula in T . Similarily, “numerate”
corresponds to the earlier terms “represent”, “weakly represent” and “weakly
define”, and the recursively enumerable relations (sets) are those having Σ1-
numerations in T .

Feferman further associates with a theory T the class of all formulas τ(x)
that (through a Gödel numbering) numerates the set of axioms of T . Such a
formula is said to numerate the theory T . This approach makes it possible to
relativise the notion of e.g. “y being a proof of x in T ” to different τ numerating
the axioms of T . To each such numeration there is a corresponding consistency
statement, Conτ . It is made explicit that the Gödel-Rosser incompleteness
theorem holds for a wide class of theories, but that some restrictions need to be
imposed on what numerations are allowed. Feferman then proves the following
strengthening of the Gödel-Rosser incompleteness theorem.

Theorem 2.5.2. If T is a sufficiently strong, consistent theory, and τ(x) is
any Σ1-formula numerating (an extension of) T in T , then T 0 Conτ .23

This theorem, Feferman’s version of the Gödel-Rosser incompleteness the-
orem, is often informally stated along the lines of “if T satisfies certain not-
very-interesting conditions, then T does not prove its own consistency”. There
is, however, reason to be careful when presenting this kind of technical results
in such an informal way. That the restriction to Σ1-numerations cannot be
dropped is shown by the following theorem.24

23The present phrasing is from Lindström [43]. Feferman’s original notation is “RE-formula”,
but in modern usage it is uncommon to talk about a formula being recursively enumerable.
Strictly, an RE-formula is an existentially quantified primitive recursive formula, allowing no
bounded universal quantification. By the MRDP theorem, due jointly to Y. V. Matijasevic̆,
J. Robinson, M. Davis and H. Putnam, any Σ1-formula is equivalent in PA to an existential
formula—thus our present formulation of Theorem 2.5.2. See e.g. Davis [9] for more on this
matter.

24See also Franzén [15], for a more thorough study of what incompleteness theorems do not
say.



2.5. GRADUATION DAY 21

Theorem 2.5.3. If T is recursive, and τ(x) is a primitive recursive formula
that binumerates T in T , then the formula

τ∗(x) := τ(x) ∧ Conτ |x

binumerates T in T , and PA ` Conτ∗ .25

The numeration τ∗ is a Π1-formula, and the sentence Conτ∗ an intensionally
incorrect way of expressing the consistency of T . While the formula τ∗ exten-
sionally corresponds to the set of axioms of T , as T ` τ∗(ϕ) if and only if ϕ is
an axiom of T , it is not a correct description of ϕ being an axiom of T—rather
of being an axiom of a subsystem of T which is always consistent, regardless
whether T is consistent or not. Accordingly, the consistency of T is rather for-
mulated as Conτ , i.e. as the consistency of a binumeration τ(x) of T . In The
lattice of bi-numerations of arithmetic [24, 25], Hájková shows that there is in
fact no natural distinguished choice of such a binumeration.

A related concept is that of relative consistency proofs. While the incom-
pleteness theorems rules out most systems as unable to prove their own con-
sistency, it is still possible to prove a system to be consistent, relative to some
other system. Consistency statements based on specific binumerations, and the
possibility to binumerate one theory inside another, provides a powerful tool for
establishing such relative consistency results. Examples of this may be found
in Bennet’s On some orderings of extensions of arithmetic [1]. Another way
of relating theories is by interpreting one theory in another. S is said to be
interpretable in T if there is a function t(x) (translating the language of S into
the language of T ) such that if S ` ϕ, then T ` t(ϕ). The connection between
interpretability and consistency statements can be formulated as the following
theorem, due to Feferman:

Theorem 2.5.4. S is interpretable in T if and only if there is a formula σ(x)
numerating S in T such that T ` Conσ.

Actually, the main interest in Theorem 2.5.3 is to be found in this context.
We will see more of interpretability in Section 2.7. All in all, it can be rightly
said that Feferman’s work gave the formal grounds for doing metamathematics
in an organised way.

25If X is a set numerated by τ(x), then X|k = {n ∈ X : n ≤ k}, and τ |y(x) is the formula
τ(x) ∧ x ≤ y. For a proof of Theorem 2.5.3, see Feferman [11] or Lindström [43].
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2.6 Variations on the fixed point theme
In the early 1960s, quite a few variations on the theme of fixed-point con-
structions was developed, each with different applications. Closely related to
the investigations in Arithmetization of metamathematics... are the results of
Ehrenfeucht and Feferman in Representability of recursively enumerated sets in
formal theories [10]. Their main result is that certain theories T that represents
all recursive functions, also represents all r.e. sets. To prove this theorem, they
needed a parametrical version of the Fixed point theorem:

Theorem 2.6.1 (Ehrenfeucht and Feferman’s Fixed point theorem). For any
arithmetical formula ϕ(x0, x1) with two free variables, there is a formula δ(x)
with one free variable such that, for all numbers k,

T ` δ(k)↔ ϕ(k, δ(k)).

As expected, the proof is a variation of the proof of Carnap’s Fixed point
theorem. Instead of just substituting the Gödel number of a formula for x in
the formula itself, we simultaneously make another substitution as well. Let
σ′(i, ϕ, k, γ) represent “γ is the result of substituting k for xi in ϕ”, and let θ be
the following formula:

∃z∃w
(
σ′(1, x1, x1, z) ∧ σ′(0, x0, z, w) ∧ ϕ(x0, w)

)
.

Thus z is the result of substituting x1 for x1 in x1, and w is the result of
substituting x0 for x0 in z. Let δ be the formula θ(x0, θ). It follows from this
construction that

T ` ∀z
(
σ′(1, θ, θ, z)↔ z = δ

)
,

and, for each number k,

T ` ∀w
(
σ′(0, k, δ, w)↔ w = δ(k)

)
.

Note the differences between this kind of substitution and the ones used
before. Gödel, Tarski and Carnap constructs functions, whose results are new
formulas resulting from carrying out the substitution. Ehrenfeucht and Fefer-
man instead formalises the relation between the formula being substituted in,
and the resulting formula. This is what yields e.g. the two equivalences above.

Another variation of a fixed-point construction is Richard Montague’s “for-
mulas in second person” from the paper Theories incomparable with respect to
relative interpretability [46]. Consider the case where we do not only want a
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sentence to express that it possesses a given property, but rather two or more
different sentences prescribing different properties to each other. This can be
formulated as

Theorem 2.6.2 (Montague’s Second person fixed point theorem). For any
arithmetical formulas ϕ0, . . . , ϕn whose free variables include v0, . . . , vn, there
are formulas δ0, . . . , δn whose free variables are among those of ϕ0, . . . , ϕn but
not among v0, . . . , vn, and which are such that, for i = 0, . . . , n,

T ` δi ↔ ϕi(pδ0q, . . . , pδnq).

Here it is understood that the Gödel number for each formula δi is to be
substituted for the variable vi. As one might expect, the techniques needed
for this construction is more complicated than the ones we have encountered
before. In order to keep some readability and transparence of ideas, we use the
notation pϕq for the numeral denoting the Gödel number of ϕ. For the proof
let, for i = 0, . . . , n, the function di be defined as

di(χ0, . . . , χn) = χi(pχ0q, . . . , pχnq).

Each di is clearly recursive, and is thus represented by an n + 1-place formula
σi in T . For i = 0, . . . , n, let

χi = ∀x0 . . . ∀xn
(
σ0(v0, . . . , vn, x0) ∧ · · · ∧ σn(v0, . . . , vn, xn)→ ϕi(x0, . . . , xn)

)
,

where x0, . . . , xn are distinct new variables, and let

δi = di(χ0, . . . , χn).

Note that no δi can contain any free occurrence of the variables v0, . . . , vn,
since in each χi any free variable is substituted by a χk for some k ≤ n. By
construction of χi, we also see that none of the xi’s are free, but that there
might still be free occurrences of variables from ϕi.

It follows that for each i≤n,

T ` δi ↔ ϕi(pδ0q, . . . , pδnq).

The last example of a general fixed point theorem is Montague’s free variable
variation, or the diagonalisation theorem.
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Theorem 2.6.3 (The Diagonalisation theorem). For n>0 and any arithmetical
formula ϕ whose free variables are z, x0, . . . , xn, there is a formula δ with only
x0, . . . , xn free (and no free occurrence of z), such that

T ` δ(x0, . . . , xn)↔ ϕ(pδ(z)q, x0, . . . , xn).

Let d(χ) be the formula ∀z((z = pχq) → χ). As earlier, this function is
recursive, so it is represented by some formula σ. It follows that for each χ,

T ` σ(pχq, y)↔ (y = pd(χ)q).

For each ϕ, let
χϕ = ∀y(σ(z, y)→ ϕ(z, x0, . . . , xn)),

and let δ(ϕ) = d(χϕ). Then

T ` δ(ϕ)↔ ϕ(pd(χϕ)q, x0, . . . , xn).

Similar to the case of the Second person fixed point theorem, it follows that
x0, . . . , xn, but not z, are free in δ(χϕ) and ϕ(pd(χϕ)q, x0, . . . , xn). Finally,
since δ(ϕ) = d(χϕ), the theorem is proved.

In his beautiful exposé of fifty years of self reference, Craig Smoryński points
out that

Montague states the final result—the Diagonalisation Theorem [...] This
is precisely the form analogous to Kleene’s original formulation of the
Recursion Theorem back in 1938.26

Finally, let us for a second turn our attention to the field of recursion theory. The
theory of recursive functions originates with the works of e.g. Turing, Church,
Kleene, Herbrand and Gödel in the 1930s. The idea was to explicate the informal
notion of a computable function in a formally acceptable way. For the present
purposes we define a partial recursive function as a recursive function that need
not be defined for all arguments. Given a recursive enumeration of all partial
recursive functions, let {e} be the eth function of this listing. The recursion
theorem can then be stated as follows:

Theorem 2.6.4 (The recursion theorem (Kleene [35], 1938)). For each n>0,
for any partial recursive function ϕ(z, x0, . . . , xn), a number e can be found
which defines ϕ(e, x0, . . . , xn) recursively, i.e. such that

{e}(x0, . . . , xn) ≡ ϕ(e, x0, . . . , xn),
26Smoryński, [60], p. 358.
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where the equivalence means that if either of the functions is defined, then the
other function is defined and they both take the same value; if either of the
functions is undefined, then the other also is undefined.

We omit the proof. The interested reader is directed to e.g. Rogers [53]
or Kleene [36]. The correspondence between this theorem and Montagues’s
diagonalisation theorem above should, however, be evident.

2.7 Reaching Maturity: Conservativity and in-
terpretability

There are (at least) two different ways to compare the strength of two theories.
One approach is to ask whether a theory T is at least as strong as a theory S
(formulated in the same language as T ) in the sense that T proves every theorem
of S (T ` S), i.e. Th(S) ⊆ Th(T ). As we have seen in section 2.5, another way
of regarding the question is whether S can be interpreted in T (S ≤ T ). This
means, roughly speaking, that the concepts and the range of the variables of
S can be expressed in T in such a way as to turn every theorem of S into a
theorem of T .

When presented to the question of provability strength, the first of the no-
tions mentioned above, it is reasonable to ask whether a theory can be extended
in a partially conservative way, i.e. if there exists extensions S of T such S proves
the same sentences within a certain class as T does. It is clear that every sen-
tence that is provable in T is conservative over T , as a provable sentence gives
no new information when added to the theory. In his 1979 paper Partially
conservative extensions of arithmetic, David Guaspari formally introduced the
concept of partial conservativity:

Definition 2.7.1. Let Γ be either Σn or Πn.27 A sentence is Γ-conservative
over T if and only if any Γ-sentence provable in T +ϕ is provable in T already.
The set of sentences Γ-conservative over T is denoted Cons(Γ, T ).

A folklore example of a partially conservative sentence is ¬ConT which is Π1-
conservative over T . The sentence ¬ConT is Σ1, and T +¬ConT proves exactly
the same Π1-sentences as T does. For suppose that T + ¬ConT ` ϕ, where ϕ
is a Π1-sentence. Then it follows that PA ` PrT (¬ϕ) → PrT (ConT ), so PA `

27In the rest of this chapter, we occasionally allow ourselves to use unexplained technical
terminology, most of which is basic metamathematics or explained in Chapter 3. E.g., the
definition of the classes Σn and Πn can be found in Definition 3.2.2 below.
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PrT (¬ϕ) → ¬ConT+¬ConT
. Since ¬ϕ is a Σ1-sentence, we have PA ` ¬ϕ →

PrT (¬ϕ). Finally, PA + ConT ` ConT+¬ConT
. Combining these observations,

we obtain PA ` ¬ϕ→ ¬ConT , so T ` ϕ, and ¬ConT is Π1-conservative over T .
Guaspari shows in his paper that for every complexity class Γ, there is a

sentence in Γd which is Γ-conservative over T , and yet unprovable in T . This
application requires a more sophisticated fixed-point construction than seen
before, as well as the use of a partial truth definition for T (TrΓ(x)), which is
a formula such that, for every sentence γ in Γ, T ` γ ↔ TrΓ(γ). We will use
the following fixed-point contruction to yield the result, which is not Guaspari’s
original, but rather a slight variation due to Per Lindström. Let ϕ be such that

T ` ϕ↔ ∃y∃u≤y∃v≤y
(
Γ(u) ∧ PrfT+ϕ(u, v) ∧ ¬TrΓ(u) ∧ ∀z≤y¬PrfT (ϕ, z)

)
,

where Γ(x) is a binumeration of the set of Γ-sentences.
First we show that T 0 ϕ.

1. Suppose that T ` ϕ. Then T ` PrfT (ϕ, p), for some p. But T + ϕ `
∀u, v≤m(Γ(u) ∧ PrfT+ϕ(u, v) → TrΓ(u)), where m = max(ϕ, p). This
implies, by construction, that T + ϕ ` ¬ϕ. Thus T 0 ϕ.

2. It remains to show that ϕ is Γ-conservative over T . This follows if T+ϕ ` θ
implies that T +¬θ ` ϕ, for every θ ∈ Γ. So suppose that θ is a Γ-sentence
such that T + ϕ ` θ. By the reasoning above, it follows that T + ¬θ
proves that θ is a false Γ-sentence that is provable in T + ϕ, and since
T 0 ϕ, ¬PrfT (ϕ, k) is provable for every k. Thus, again by construction,
T +¬θ ` ϕ, whence T +¬ϕ ` θ. As we have supposed that T +ϕ ` θ, we
get T ` θ, as desired.

Returning to the concept of relative interpretability, notice that if T ` S,
then S is interpretable in T via the identity function. The beautiful relationship
between the different ways of measuring the strength of theories is presented
as the theorem below. The equivalence of statements 1 and 2 was shown by
Stephen Orey [48]; the equivalence of 1 and 3 by Guaspari [17] and Lindström
[38] (independently); the remaining equivalence is due to Feferman [11], using
the construction in Theorem 2.5.3.

Theorem 2.7.2. The following statements are equivalent:

1. S ≤ T ,

2. S|k ≤ T for every k,
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3. S aΠ1
T ,

4. There is a formula τ(x) (bi)numerating S in T such that T ` Conτ .

Let us for a moment return to the foundational program of Hilbert. It has
been argued that what Hilbert took to be “contentful” mathematics is precisely
the Π1-sentences.28 Remember that we called Hilbert’s contentful finitistic sys-
tem, supposedly being the foundation of all of mathematics, T1, and the purely
formal, stronger system T2. Even though the incompleteness theorems show
that Hilbert’s program can not be fully realised, one could argue that a dif-
ferent perspective (based on e.g. interpretability) might be successful. By the
theorem above, this cannot be true. A realisation of Hilbert’s program would
then consist of finding an interpretation of T2 in T1, since Hilbert’s original
approach was to prove the consistency of T2 in T1 (i.e. proving T2 aΠ1

T1).
However, since the stronger theory is supposed to encompass all of mathemat-
ics, including the finitary system, T2 properly extends T1. So if T1 proves T2 to
be consistent, then T2 proves its own consistency.

The 1980s were rich in results in conservativity and interpretability. Investi-
gations were performed by e.g. Lindström [39, 40, 41], Švejdar [67], and Visser
[71], building on earlier work by Feferman, Kreisel and Orey (e.g. [11, 48]). A
deep presentation is available in Chapters 6 and 7 of Aspects of Incompleteness
[43].

2.8 Topics and open problems

To sum up this historical survey, we take time to present a few recent topics
in metamathematics. They are chosen for at least one of the following three
reasons: to examplify the strength of the methods of metamathematics; to show
how a recent application have called for greatly increased complexity of fixed-
point constructions; to present an open problem related to the area developed
in the following chapter.

Lindenbaum algebras and partial conservativity The Lindenbaum al-
gebra for a first-order theory T is the structure (X,⊕,⊗, 0, 1), where X is the
set of sentences modulo provable equivalence in T , ⊕ and ⊗ are disjunction and
conjunction, respectively, 0 is the equivalence class of sentences refutable in T ,
and 1 is the equivalence class of sentences provable in T . This structure is the

28See e.g. Tait [68], Simpson [58].
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countable, atomless Boolean algebra. A partial Lindenbaum algebra ΓT is the
Lindenbaum algebra for T restricted to equivalence classes of Γ-sentences. This
structure is a countable, dense, distributive lattice with 0 and 1, but it is not a
Boolean algebra. Let the reduction principle for ΓT be the following sentence:29

∀a0, a1∃b0, b1(a0 ⊕ a1 = b0 ⊕ b1 ∧ b0 ⊗ b1 = 0 ∧ b0 ≤ a0 ∧ b1 ≤ a1).

It is not difficult to see that the reduction principle holds in all ΣTn . That ΣTn
is not isomorphic to ΠT

m for any n,m, is shown by the following theorem. It is
due to Bennet [1], as are the rest of the results of this paragraph.

Theorem 2.8.1. The reduction principle is false in ΠT
n .

We will not give the full proof, but rather present the complicated fixed-
point construction used in proving the following lemma, which is in turn used
to prove the theorem.

Lemma 2.8.2. If X is an r.e. set, then there are Σn-formulas θ0(x), θ1(x) such
that, for i = 0, 1,

1. T + θi(k) ` ¬θ1−i(k), for all k,

2. if k ∈ X, then T ` ¬θi(k),

3. if k /∈ X, then θi(k) ∈ Cons(Πn, T + θ1−i(k)).

To prove the lemma, let G(x, y) be a p.r. relation such that X = {k :
∃mG(k,m)} and let γ(x, y) be a p.r. binumeration of G. For i = 0, 1, let ξi(x),
ρi(x), and θi(x) be such that the following is provable in T for all k

ξi(k)↔ ∃z
(
∃u, v≤z

(
Πn(u) ∧ PrfT+θi(k)(u, v) ∧ ¬TrΠn

(u)
)
∧ ∀u≤zγ(k, u)

)
ξi(k)↔ ∃zρi(k, z)
θi(k)↔ ∃z

(
ρi(k, z) ∧ ∀y≤z¬ρ1−i(k, y)

)
We omit the details of the proof, but it should be clear that this application of
double self reference is far more complicated than any we have seen so far. It is
an open question whether ΣTn is isomorphic to ΣTm for any n,m > 1.

Guaspari has raised the following question on partial conservativity: given
an r.e. sequence of theories, are there always Γ-sentences which are Γd-conserv-
ative over each theory in the sequence and unprovable in each of them? For
hereditary partial conservativity, the answer is given by the following theorem.

29See Rogers [53].
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Theorem 2.8.3. Given two theories T0, T1, the following are equivalent:

1. Γ ∩HCons(Γd, T0) \ Th(T1) = ∅,

2. Γ ∩HCons(Γd, T0) \ (Th(T0) ∪ Th(T1)) = ∅,

3. ThΓ(T1) is inconsistent with T0.

For partial conservativity, less is known. In the Πn-case, Bennet [1] gives
the following answer

Theorem 2.8.4. Given two theories T0, T1, the following are equivalent:

1. Πn ∩ Cons(Σn, T0) \ Th(T1) = ∅,

2. Πn ∩ Cons(Σn, T0) \ (Th(T0) ∪ Th(T1)) = ∅,

3. ThΠn
(T0) ⊆ ThΠn

(T1) and ThΠn
(T1) is inconsistent with T0.

In the Σn-case, it is an open question, to which we will return in Chapter 3,
whether we can have

Σn ∩ Cons(Πn, T0) \ Th(T1) = ∅.

Some results on interpretability The relation of mutual interpretability
is an equivalence relation, and its equivalence classes are called degrees (of in-
terpretability). The lattice DT of degrees of interpretability (of extensions of
T ) was introduced by Lindström in 1979 [38]. In the same paper, Lindström
shows that this lattice is isomorphic to the lattice VT of finite extensions of T ,
introduced by Švejdar in 1978 [67]. There are a number of open problems in
relation to this lattice.

1. If T is Σ1-sound, but S is not, then DT and DS are not isomorphic. It is
not known whether Σ1-soundness is a sufficient condition for DT and DS

to be isomorphic.

2. It is known that there are non-isomorphic intervals of DT , but the total
picture is still lacking.

3. Let GT be the set obtained from the Σ1- and Π1- degrees by closing under
join and meet. It is an open problem whether GT is isomorphic to DT .
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4. We say that a cups to b if there is a c < a such that a ∪ c = b, where
∪ denotes join in the lattice. For every Π1-degree a > 0T , there is a Σ1-
(and a Π1-) degree which cups to a. It is not known whether this holds
for every degree.

5. If b is the greatest element of the set {c : a ∩ c = 0}, then b is the
pseudo-complement of a. Lindström has shown that every Σ1-degree is
the pseudo-complement of some degree. It is an open question whether
the converse is true, that is, if the Σ1-degrees can be characterised in a
purely algebraic way as those degrees that are pseudo-complements.

Rosser sentences As we have seen, it is a consequence of Gödel’s second
incompleteness theorem that every Gödel sentence is provably equivalent to a
consistency statement for T . In the case of Rosser sentence, no similar result is
available. It is not even clear whether the set of Rosser sentences is contained in a
single equivalence class. Guaspari and Solovay have shown that these properties
of the set of Rosser sentences are in fact dependent on choice of proof predicate.
In their 1979 paper [17], they construct two different proof predicates, each being
extensionally equivalent on natural numbers to the “usual” proof predicate, of
which the first has fixed points in only one equivalence class, while the second
has fixed points in at least two different equivalence classes. Which of the two
cases that holds for the “usual” proof predicate is an open question. It is not
even clear how “usual” is to be defined in this context, and a thorough discussion
of this problem is found in Chapter 6 in Smoryński’s book Self-reference and
Modal Logic [62].

On the relation provable equivalence and on partitions in effectively
inseparable sets Smullyan proved in The theory of formal systems [64] that
the set of provable sentences is effectively inseparable from the set of refutable
sentences. In 1981, Bernardi [3] generalised this result to show that for any
two sentences ϕ,ψ such that T 0 ϕ ↔ ψ the sets [ϕ] = {δ : T ` δ ↔ ϕ} and
[ψ] = {δ : T ` δ ↔ ψ} are effectively inseparable. To see this, let A and B be
any disjoint, r.e. supersets of [ϕ] and [ψ], respectively, and let ξ(x) be a formula
such that if k ∈ A, then T ` ξ(k) and if k ∈ B, then T ` ¬ξ(k). By the Fixed
point theorem, let δ be such that

T ` δ ↔
(
(ξ(δ) ∧ ψ) ∨ (¬ξ(δ ∧ ϕ)

)
.

Such a δ can be effectively found. Suppose that δ ∈ A. Then T ` δ ↔ ψ,
contradicting that [ψ] ⊆ B. Conversely, if δ ∈ B, then T ` δ ↔ ϕ, contradicting
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that [ϕ] ⊆ A. Thus we have effectively found a δ ∈ (A ∪ B)c, and shown that
[ϕ] and [ψ] are effectively inseparable.

On a new notion of partial conservativity In 1984, Petr Hájek presented
a new notion of partial conservativity [22]. It is related to his earlier work on
the length of (non-standard) proofs of consistency and inconsistency. Let M
be a non-standard model of PA, let c be a non-standard element ofM, and let
PAc be PA + {c ≥ n : n ∈ N}. A bounded formula ϕ(x) of one free variable
is (22c

, c)-conservative if for each bounded formula ψ(x), PAc + ϕ(22c

) ` ψ(c)
implies PAc ` ψ(c).

Theorem 2.8.5 (Hájek, 1984 [22]). There is a formula ϕ such that ϕ(x) im-
plies “beneath x there is a proof of a contradiction in PA”, and ϕ is (22c

, c)-
conservative.

Corollary 2.8.6. For eachM |= PA, and each non-standard element a ofM,
there is a K |= PA which is identical withM up to a, and such that in K there
is a proof of contradiction beneath 22a

.

This corollary can be seen as a strengthening of the second incompleteness
theorem, in that it shows that there is a “rather short” proof of contradiction.30
We will again omit the proof, and just state the fixed-point construction used
to prove the result. The notation is quite involved, but the details are not
of importance here; the point being that this is an entirely new kind of self
reference.

In what follows ϕ≤x is a conversion of the sentence ϕ into a bounded formula
of one free variable, by replacing each + and · by formulas of the form w = u+v
and w = u · v and restricting all quantifiers to x. Let x 
 y express (in a
certain technical way, beyond the scope of this text) that x satisfies y. Γ(n)
expresses certain properties of the relation 
. Let c and ĉ be distinct non-
standard elements, and let as before, PAĉ be an expansion of PA. Finally, let λ
be such that:

PAc ` [22c


 λ]↔ [22c


 ∃s∃z(Γ(¬s) ∧ PrfPAĉ
(λ≤ĉ → s≤c, z))].

That this construction is at all admissible is shown by modifying the Fixed point
theorem. The interested reader is directed to Hájek [22].

30Hájek [22], p. 218.
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Partially generic formulas in arithmetic In 1988, Lindström [42] exhib-
ited a general type of fixed-point construction with numerous applications. Let
T be an extension of PA with a new monadic predicate G. Formulas containing
G will be written ϕ(G;x). ϕ is Γ[G] if ϕ(ξ;x) is Γ whenever ξ(x) is p.r. If X
is any set of natural numbers, then X|q = {k ∈ X : k≤q}, and if X is finite,
then [X](x) =

∨
{x = k : k ∈ X}. The notation x̃ is short for x0, . . . , xn−1.

If ξ(x) is any formula, then ϕ(ξ; x̃) is obtained from ϕ by replacing G by ξ(x),
avoiding clashes of variables. When confusion may arise, the notation λxξ(x)
will be used.

Definition 2.8.7. ξ(x) is χ-generic in T if for all k̃, if T ` χ(ξ; k̃), then there
is a q such that T ` χ([X|q]; k̃). Here X is the set numerated by ξ(x) in T .

The proof that a χ-generic numeration exists uses an intriguing fixed-point
construction. Let τ be a p.r. binumeration of T , and κ(x, y) be a p.r. formula
such that X = {k : ∃mPA ` κ(k,m)}, and let ξ0(x) be such that, for all k,

PA ` ξ0(k)↔ ∃y
(
κ(k, y) ∧ ∀zy≤k+y

(
Prfτ (χ(ξ; z), u)→
χ(λw∃v(v+w≤u ∧ κ(w, v)); z)

))
.

From the existence of certain kinds of χ-generic numerations, Lindström pro-
vides simple proofs for e.g. the following theorems:

Theorem 2.8.8. If S is r.e., then there is a Σ1-numeration σ(x) of S in T
such that Prσ(x) numerates ThT (S) in T .

Note that this is only of interest in the case where T is not Σ1-sound.

Theorem 2.8.9 (Guaspari [18]). For any r.e. set X, there is a Γ-formula ξ(x)
such that

1. If k ∈ X, then T ` ξ(k),

2. if k /∈ X, then ¬ξ(k) ∈ Cons(Γ, T ).

Theorem 2.8.10 (Smorynski [61]). Let X0 and X1 be disjoint r.e. sets. Then
there is a Πn+1-formula ξ(x) such that

1. If k ∈ Xi, then T ` ξi(k),

2. if k /∈ X0 ∪ X1, then ξ(k) and ¬ξ(k) are Σn+1- and Πn+1-conservative
over T , respectively.
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There are further examples of related applications of this general fixed-point
construction, mainly concerned with numerations of r.e. sets and partial con-
servativity. Lindström also refines a result of H. Lessan [37] on non-standard
models of arithmetic.

The Lindenbaum fixed point algebra is undecidable A fixed point alge-
bra is a pair of Boolean algebras (A,B), where the elements of B are mappings
A→ A, satisfying the following conditions (elements of A are denoted by latin
letters and those of B by Greek ones):

1. α = β iff ∀a(αa = βa),

2. (α#β)a = αa#βa, where # is any Boolean operation,

3. ∀a∃α∀b(αb = a),

4. ∀α∃a(αa = a).

A fixed point algebra associated with an r.e., consistent theory containing PA
will be called a Lindenbaum fixed point algebra.

Theorem 2.8.11 (Shavrukov, 1991 [57]). The first-order theory of a Linden-
baum fixed point algebra is hereditarily undecidable.

The proof proceeds by defining a recursive procedure during which Gödel
numbers of some sentences may be “painted” black. The arithmetical formula
B(x) shall be read as “x is eventually painted black”, and the procedure is defined
by stages using the Gödel number of B(x), justified by the formalised recursion
theorem. The idea is not entirely new—the procedure is an example of a Solovay
function, a type of construction used by e.g. Guaspari & Solovay in [17]. In view
of the connection between the Fixed point theorem and the recursion theorem,
it is clear that this proof can be seen as a fixed-point construction.
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2.9 Closing time
Central to the discussion of this chapter is the notion of fixed points. In the
following chapter we will concentrate on the set of fixed points of an arbitrary
arithmetical formula. Being able to describe the fixed points of a given formula
in more detail might cast some light on e.g. the open problem on Rosser sen-
tences, as stated above. As we will see later, there are also some connection to
problems on partial conservativity stated by Guaspari and partially answered
by Bennet [1].

We hope to have shown that the field of metamathematics is an interesting
one, rich in deep results. In particular, the method of constructing fixed points
lends itself to a diverse number of applications, though most of foundational
character. Indeed, metamathematics is a foundational study of mathematics,
seeking answers to what may be proved by formal means, and what may not.
It investigates relations between different theories and axiomatic systems, in-
dicating whether your formal system is adequate for your purposes. It has
implications on how the notion of truth can be handled in a formal way. It
might not change the way a non-foundationalist mathematician works, but it
secures and tests the ground for any mathematical enterprise. We also hope
to have paved the way for placing our own research in this context. While the
area might not be as active as in, say, the 1970s, there are still interesting and
difficult questions left unanswered.



Chapter 3

Sets of fixed points

3.1 Introduction

Up to this point we have discussed metamathematics in general, and a few recent
topics in the field. In this chapter we turn to investigating sets of fixed points
of an arithmetical formula. It is clear from Gödel [19] that each fixed point to
¬PrT (x) is provably equivalent in T to the statement ConT . If we consider the
set of Henkin fixed points, i.e. the set

{δ : T ` δ ↔ Pr(δ)},

it was shown by Löb [44] that this set is equal to the set of all sentences that are
provable in T . From Smullyan [64] we have the result that for a large class of
formal systems, the set of fixed points of Pr(x) is recursively inseparable from
the set of fixed points of ¬Pr(x), and thus that both are Σ1-complete. A later
consideration is from di Paola [49] and the alternative proof by Bernardi [4],
where a formula is constructed that has, among others, all elements of a given
recursive set as fixed points.

Our first approach will be to study the set of all fixed points of a given
formula. This project can be viewed in (at least) two different ways. On the
one hand, if we are given a formula, we may describe its set of fixed points. On
the other hand, if we are given a set of sentences, we may ask whether there is
a formula with exactly the elements of this set as its fixed points. The first part
of this chapter is devoted to finding partial solutions to these two questions.
In the second part, we also study structural properties of sets of fixed points

35
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ordered under set inclusion. In the final section we relate the present research
to other areas, and state of some open questions.

3.2 Preliminaries
In what follows, every theory is assumed to be a consistent, p.r. extension of
Peano arithmetic, formulated in the arithmetical language LA.1 Such a theory
is denoted T, S, T0, T1, . . . . As noted in the introduction, the assumption that
theories contain PA is everywhere too strong; for most of the proofs we could do
with extensions of Robinson’s arithmetic Q. Occasionally we will need enough
induction to handle partial truth definitions, and in such cases Q plus induction
for Σ1-formulas would suffice. We have, however, not ventured to achieve the
best possible results in this respect; indeed, our focus is on properties shared by
all theories containing a sufficient amount of arithmetic. The terminology if this
paper is closely related to that of Lindström [43], but we explicitly state some
definitions that are used in the sequel. Initially, we presume any standard Gödel
numbering of terms and formulas, and identify formulas with the numerals for
their respective Gödel numbers.

Definition 3.2.1. A formula ξ(x0, . . . , xn) numerates a relation R(k0, . . . , kn)
in T if for all k0, . . . , kn,

R(k0, . . . , kn) iff T ` ξ(k0, . . . , kn).

In particular, ξ(x) numerates a set X in T if for every k,

k ∈ X iff T ` ξ(k).

A formula ξ(x0, . . . , xn) binumerates a relation R(k0, . . . , kn) in T if for all
k0, . . . , kn,

R(k0, . . . , kn) iff T ` ξ(k0, . . . , kn) and

not R(k0, . . . , kn) iff T ` ¬ξ(k0, . . . , kn).

Similar to the notion of numerating a set, we say that ξ(x) binumerates a set
X if for every k,

k ∈ X iff T ` ξ(k) and

k /∈ X iff T ` ¬ξ(k).
1Craig [7] has shown that for each r.e. set X, there is a p.r. set which is deductively

equivalent to X. Thus we can freely use r.e. extensions of PA.
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The primitive recursive (p.r.) functions are the functions constructed from
constant functions, projection functions, and the successor function, by means
of composition and primitive recursion. Gödel proved that every such function
is definable by a formula in first-order arithmetic. The set of p.r. formulas can
roughly be understood as the least set containing the formulas δf defining p.r.
functions, closed under propositional connectives and bounded quantification.
We will not linger on the technicalities of this point, and refer the reader to e.g.
Lindström [43] and Rogers [53] for details, but note that these formulas contain
no unbounded quantifiers. Prf(x, y) is a p.r. binumeration of the relation “y is
a proof of x in T ”.

Definition 3.2.2 (The arithmetical hierarchy2 ). Σn and Πn are the least sets
containing the p.r. formulas, closed under ∧, ∨, and bounded quantification, and
such that

1. Σn ∪Πn ⊆ Σn+1 ∩Πn+1,

2. if ξ is Σn (Πn), then ¬ξ is Πn (Σn),

3. if ξ0 is Σn (Πn) and ξ1 is Πn (Σn), then ξ0 → ξ1 is Πn (Σn),

4. if ξ is Σn (Πn) and δf (x0, . . . , xn, y) defines the function f , then
∃z(δf (x0, . . . , xn, z) ∧ ξ) and ∀z(δf (x0, . . . , xn, z)→ ξ) are Σn (Πn).

5. Σn is closed under existential quantification,

6. Πn is closed under universal quantification.

It follows that Σ0 = Π0 = ∆0, which is the set of p.r. formulas. Bn is the
set of boolean combinations of Σn-formulas. ∆T

n is the set of Σn-formulas, that
are provably in T equivalent to a Πn-formula. ∆n is the set ∆PA

n . In what
follows, Γ is either Σn+1 or Πn+1, and the dual of Γ (Γd) is Πn+1 if Γ = Σn+1,
and conversely. Each set Γ is p.r., so there is a p.r. formula Γ(x) binumerating
this set in T . In writing Σn (Πn, ∆n, Bn) we almost always omit the (obvious)
assumption that n > 0.

2It is common in other texts to use definitions of the type “∃ϕ is a Σn+1-formula if ϕ is
a Πn-formula”, and letting the sets Σn and Πn be closed under provable equivalence. Taking
such an approach does not serve our purposes. As we will see later, we do not want Γ to
be closed under provable equivalence. On the other hand, we want e.g. conjunctions of Σn-
formulas to be Σn. While this these problems can be solved in other ways, e.g. by the use
of normal form theorems, we have chosen the present, somewhat cumbersome definition, to
provide for greater readability of the text.
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Theorem 3.2.3 (Hilbert & Bernays [32]). There is a partial truth definition
for Γ-sentences, i.e. a Γ-formula TrΓ(x) such that

T ` δ ↔ TrΓ(δ) for all δ ∈ Γ.

Definition 3.2.4. Let θ(x) be a formula with one free variable. δ is a fixed
point of θ(x) in T if T ` δ ↔ θ(δ).

We will construct fixed points by appealing to the following two variations
of the Fixed point theorem:

Lemma 3.2.5 (Gödel [19]/Carnap [6]). For any Γ-formula θ(x), we can effec-
tively find a Γ-sentence δ such that

T ` δ ↔ θ(δ).

Lemma 3.2.6 (Ehrenfeucht & Feferman [10]). For any Γ-formula θ(x, y), we
can effectively find a Γ-formula δ(x) such that, for every k,

T ` δ(k)↔ θ(k, δ(k)).

The concept of (hereditarily) partial conservativity, and the following lemma,
are due to Guaspari.

Definition 3.2.7. A sentence ϕ is Γ-conservative over T if, for every Γ-
sentence γ,

T + ϕ ` γ ⇒ T ` γ.

The set of such sentences is denoted Cons(Γ, T ). Moreover, ϕ is hereditarily
Γ-conservative over T (ϕ ∈ HCons(Γ, T )), if ϕ is Γ-conservative over every S
such that T ` S ` PA.

Lemma 3.2.8 (Guaspari [18]). Let X be any r.e. set. Then there is a Γ-formula
ξ(x) such that

k ∈ X ⇒ T ` ξ(k)

k /∈ X ⇒ ¬ξ(k) ∈ Cons(Γ, T ) \ Th(T ).

Note that any such formula ξ(x) numerates X in T .

Next we let [ϕ] denote the (T -) equivalence class of a sentence ϕ, i.e. [ϕ] :=
{ψ : T ` ϕ ↔ ψ}. [0] denotes the equivalence class of the refutable sentences,
and [1] the equivalence class of provable sentences. In contexts where we are
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restricted to some set Γ we will (when needed for clarity) use the notation [ϕ]Γ
for the set [ϕ] ∩ Γ. Whenever X is a subset of Γ, we let Xc be Γ \X.

Finally, we borrow some concepts and results from elementary recursion
theory. For more information, see e.g. Rogers [53] or Soare [65].

Definition 3.2.9. Two sets A,B are effectively inseparable if, for every disjoint
pair (A′, B′) of r.e. supersets of A and B, we can effectively find an element of
(A′ ∪B′)c.

A set X is Turing reducible to Y , X ≤T Y , if there is a recursive function
f(x) such that k ∈ X iff f(k) ∈ Y . If X ≤T Y and Y ≤T X, then X and Y are
Turing equivalent (X ≡T Y ). Moreover, if A and B are infinite sets that differ
on a finite set (i.e. (A \B) ∪ (B \A) is finite), then A ≡T B.

Definition 3.2.10. A set Y is Σ1-complete if for each r.e. (Σ1-) set X, X ≤T
Y .

It follows easily from these two definitions that if A and B are disjoint,
effectively inseparable sets, then both A and B are creative. We will not give
a definition of creative set, as the only aspect of creativeness we are interested
in is that it implies Σ1-completeness. On occasion, we also encounter creativity
when using the following theorem to establish Σ1-completeness:

Theorem 3.2.11 (Jockusch/Mohrherr). Let A be any r.e. set except N. A is
creative iff for every r.e. set B disjoint from A, it follows that A ≡T A ∪B.

3.3 Recursion theoretic complexity

We now start investigating the recursion theoretic complexity of sets of fixed
points. We define, for each formula θ(x) with exactly one free variable x, the
set

FixT (θ) := {δ : T ` δ ↔ θ(δ)}.

This is the unbounded set of fixed points of θ(x), containing fixed points in
every level of the arithmetical hierarchy. Note that we only allow sentences to
be fixed points, i.e. δ contains no free variables. When it it is understood from
the context which theory T we are discussing, we write Fix(θ) for brevity.

Moreover, we define a bounded set of fixed points of a formula θ(x) by

FixTΓ (θ) := {δ ∈ Γ : T ` δ ↔ θ(δ)},
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The elements of FixTΓ are denoted “Γ-fixed points (of θ(x))”. Again, we often
omit the reference to the theory T . We may also restrict the complexity of θ(x)
and consider the set FixΓ(θ) for a formula θ(x) ∈ Γ. When doing so, this will
be clear from the context.

Note that it is essential for the present results how the sets Γ are defined, as in
this setting, Fix(θ) contains sentences of arbitrarily high quantifier complexity.
If we had chosen Γ to be ΓT , i.e. closed under provable equivalence in T , the
definitions of Fix(θ) and FixΓ(θ) would coincide in the following pathological
way: Suppose T ` δ ↔ θ(δ). If θ ∈ Γ then δ ∈ Γ. So, if θ ∈ Γ then Fix(θ) =
FixΓ(θ).

The two folklore examples of sets of fixed points, Fix(Pr) and Fix(¬Pr), are
Σ1-complete sets. Thus one may wonder whether there are other formulas with
Σ1-complete sets of fixed points. A first proposition, providing another example
of a Σ1-complete set of fixed points, and initiating the research of the present
chapter, is the following:

Proposition 3.3.1 (Bennet). The set of Rosser sentences of T is Σ1-complete.

Proof. Let X be any r.e. set, let ρ(x) be the Rosser witness comparison con-
struction ∀z

(
Prf(x, z) → ∃u≤z Prf(¬x, u))

)
, and let, by Lemma 3.2.8, ξ(x) be

such that:
k ∈ X ⇒ T ` ¬ξ(k)

k /∈ X ⇒ ξ(k) ∈ Cons(Π1, T ).

By the Fixed point theorem, let δ(x) be such that, for all k,

T ` δ(k)↔ ρ(δ(k)) ∨ ξ(k).

Suppose that k ∈ X. Then T ` δ(k)↔ ρ(δ(k)). Thus δ(k) is a Rosser sentence.
Next, suppose that k /∈ X and, for a contradiction, that T ` δ(k) ↔ ρ(δ(k)).
Then T + ξ(k) ` ρ(δ(k)), and since ξ(k) is Π1-conservative over T , it follows
that T ` ρ(δ(k)). Thus, by construction, T ` δ(k), contradicting the assumption
that δ(k) is a Rosser sentence for T .

We have shown that

1. if k ∈ X, then δ(k) is a Rosser sentence,

2. if k /∈ X, then δ(k) is not a Rosser sentence,

and since X is an arbitrary r.e. set, the set of Rosser sentences is Σ1-complete.
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Let us begin our general study of sets of fixed points by focusing on the
sets Fix(θ), where we lay no restriction on neither the formula θ(x), nor its set
of fixed points. Such a set is r.e.: as the theory T is itself r.e., we can easily
enumerate the proofs of δ ↔ θ(δ) and thus enumerate the sentences δ for which
these equivalences are provable. A first result, stated here, mainly as an example
of methodology, shows that every such set of fixed points is non-recursive and
thus infinite:

Proposition 3.3.2. For any formula θ(x), Fix(θ) is not recursive.

Proof. Suppose, for a contradiction, that Fix(θ) is recursive, and that ξ(x) binu-
merates Fix(θ) in T . By the Fixed point theorem, let δ be such that

T ` δ ↔
((
θ(δ) ∧ ¬ξ(δ)

)
∨
(
¬θ(δ) ∧ ξ(δ)

))
.

Suppose now that δ ∈ Fix(θ). As we have supposed that ξ(x) binumerates
Fix(θ), it follows that T ` ξ(δ). Thus ¬ξ(δ) is refutable in T , so T ` δ ↔ ¬θ(δ).
This implies that δ /∈ Fix(θ), contradicting our assumption. Thus δ /∈ Fix(θ).

Again, as ξ(x) binumerates Fix(θ), T ` ¬ξ(δ). ξ(δ) is refutable, so T ` δ ↔
θ(δ). Thus δ ∈ Fix(θ), and we reach a contradiction.

Since Fix(θ) is not recursive, it cannot be finite.

We refine this method to show that every unrestricted set of fixed points is
indeed Σ1-complete. By using the variation of the Fixed point theorem due to
Ehrenfeucht and Feferman, we can construct a formula reducing every r.e. set
to a set of fixed points.

Theorem 3.3.3. For any formula θ(x), Fix(θ) is a Σ1-complete set.

Proof. Let, by the Fixed point theorem, δ(x) be such that, for all k,

T ` δ(k)↔
((
θ(δ(k)) ∧ ξ(k)

)
∨
(
¬θ(δ(k)) ∧ ¬ξ(k)

))
,

where ξ(x) is a numeration of an arbitrary r.e. set X. We show that

1. If k ∈ X, then δ(k) ∈ Fix(θ), and

2. if k /∈ X, then δ(k) /∈ Fix(θ).

Then δ(x) is a recursive function reducing any r.e. set X to Fix(θ), so Fix(θ) is
Σ1-complete.

Accordingly, suppose that k ∈ X. Since ξ(k) numerates X, it follows that
ξ(k) is provable in T , and we get T ` δ(k)↔ θ(δ(k)). Thus δ(k) ∈ Fix(θ).
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Now, suppose that k /∈ X and, for a contradiction, that k ∈ Fix(θ). Since
ξ(k) numerates X, it follows that T 0 ξ(k), so T + ¬ξ(k) is consistent. By the
construction of δ, T +¬ξ(k) ` δ(k)↔ ¬θ(δ(k)), but by assumption, T ` δ(k)↔
θ(δ(k)). Thus T + ¬ξ(k) is inconsistent, a contradiction.

The converse is not true, i.e. there are many examples of Σ1-complete sets
of sentences that are not sets of fixed points in T . The following two results are
due to Bennet. Here, a set X is sufficiently closed if ψ ∈ X implies ψ ∨ γ ∈ X,
for all sentences γ. E.g., all deductively closed sets are sufficiently closed.

Proposition 3.3.4 (Bennet). If X is a sufficiently closed r.e. superset of
Th(T ), then there is no θ(x) such that X = FixT (θ).

Proof. Let X be a sufficently closed r.e. supserset of Th(T ). Further suppose
that ψ ∈ X and that X = Fix(θ), for some formula θ(x). By the Fixed point
theorem, let δ be such that:

PA ` δ ↔ ¬θ(ψ ∨ δ).

Since ψ ∈ X and X is sufficiently closed, it follows that ψ ∨ δ ∈ X. But
each sentence in X is an element of FixT (θ), so T ` (ψ ∨ δ) ↔ θ(ψ ∨ δ). By
construction of δ, it follows that T ` ψ ∨ δ ↔ ¬δ. Then T ` ψ.

Proposition 3.3.5 (Bennet). If X is a deductively closed r.e. subset of Th(T ),
then there is no θ(x) such that X = FixT (θ).

Proof. Let X be a deductively closed r.e. subset of Th(T ). Further suppose
that T ` ψ and that X = Fix(θ), for some formula θ(x). By the Fixed point
theorem, let δ be such that:

PA ` δ ↔ θ(ψ ∧ δ).

Since T ` ψ, it follows that T ` (ψ ∧ δ)↔ θ(ψ ∧ δ). But each sentence that is a
fixed point of θ(x) in T is an element of X, so ψ∧δ ∈ X. Since X is deductively
closed, it follows that ψ ∈ X.

It follows that if S is any theory other than T , then Th(S) is not a set of
fixed points over T . This concludes our discussion of unbounded sets of fixed
points.

Let us now regard bounded sets of fixed points. Any such set is r.e., but not
necessarily infinite. We have the following characterisation, which is stated as
an exercise (2.28c) in Lindström [43]. The present proof is due to Bennet.
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Theorem 3.3.6. If X is an r.e. subset of Σn, then there is a formula θ(x) ∈ Bn
such that X = FixΣn

(θ). Dually, if X is an r.e. subset of Πn, there is a formula
θ(x) ∈ Bn such that X = FixΠn(θ).

Proof. Let X be a r.e. subset of Σn, let γ(x) ∈ Σn numerate X as stated in
Lemma 3.2.8, let ξ(x, z) be a p.r. formula such that X = {k : ∃mT ` ξ(k,m)},
and let θ(x) be such that, for all δ ∈ Σn,

T ` θ(δ)↔ ¬γ(δ) ∨
(
TrΣn

(δ) ∧ ∃z
(
ξ(δ, z) ∧ ∀u≤z¬Prf(δ ↔ θ(δ), u)

))
.

Note that the complexity of θ(x) is Bn.
Suppose δ ∈ X and δ /∈ FixΣn

(θ). Then T ` θ(δ) ↔ δ, a contradiction, so
X ⊆ FixΣn

(θ).
Next, suppose δ /∈ X and δ ∈ FixΣn

(θ). The second disjunct is then
refutable, so T ` ¬γ(δ) ↔ θ(δ). But δ ∈ FixΣn(θ), hence T ` ¬γ(δ) ↔ δ. As
¬γ(δ) is Σn-conservative over T, T +¬γ(δ) ` δ implies T ` δ. Thus T ` ¬γ(δ),
contradicting our choice of the numeration γ(x).

The dual case follows by changing all Σn to Πn.

Noting that FixΓ(θ) obviously consists only of Γ-sentences, we get the fol-
lowing characterisation.

Corollary 3.3.7. X is a r.e. set of Γ-sentences iff there is a θ ∈ Bn such that
X = FixΓ(θ).

Having characterised the sets FixΓ(θ), where θ(x) is a formula in Γ′ ⊃ Γ,
we now restrict the set of fixed points to the same quantifier complexity as
the formula in question. From this point on, when we write FixΓ(θ) or speak
of Γ-fixed points of θ(x), it is understood that θ(x) ∈ Γ. Any set FixΓ(θ),
where θ(x) ∈ Γ, is infinite and r.e.3 It is evident that few of the proofs used in
the previous sections apply directly, as the fixed points defined are always of a
higher complexity than θ(x). E.g., in the proof of Theorem 3.3.2, we construct
a sentence δ that can neither be in nor outside of Fix(θ). The complexity of δ is
Bn if θ(x) is Σn or Πn. So, if we try to apply the proof to FixΓ(θ) instead, this
δ cannot serve as a counterexample, as FixΓ(θ) contains no sentences in Bn \Γ.
Also note that if we limit ourselves to ∆n- or Bn-formulas, the ordinary proof
of Σ1-completeness (3.3.3) goes through, since the complexity bound no longer
limits the use of negation in the diagonalisation.

3This is stated as Exercise 2.28b of [43].
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Trying to prove that all sets of Γ-fixed points are Σ1-complete, one would
want to avoid the complexity problem by modifying the proof of Theorem 3.3.3
in the following way. Let

T ` δ(k)↔
((
θ(δ(k)) ∧ ξ(k)

)
∨
(
χ(δ(k)) ∧ ¬ξ(k)

))
,

where ξ(x) is a numeration of any r.e. set X. Then we would only need to
construct a χ(x) ∈ Γ that is equivalent to ¬θ(x) on Xc. Such a χ(x) can,
however, only be found in some cases, which we will discuss in the next section.

Now, there is a simple special case, namely when the formula in question is
extensional. A formula θ(x) is extensional if it is such that T ` θ(ϕ) ↔ θ(ψ),
whenever T ` ϕ↔ ψ. We prove that every set of Γ-fixed points of an extensional
formula is effectively inseparable from its complement relative to Γ, except in
the case when this complement is empty. Thus it follows that any such set is
Σ1-complete. We will use the following lemma to prove the proposition below:

Lemma 3.3.8 (Putnam & Smullyan [50]). If X0, X1 are disjoint r.e. sets, then
there is a Σ1-formula ξ(x) such that ξ(x) numerates X0 in T and ¬ξ(x) numer-
ates X1 in T . By symmetry, there is also a Π1-formula with these properties.

Proposition 3.3.9. If θ(x) ∈ Γ, and X is an r.e. subset of Γ containing an
equivalence class, and disjoint from FixΓ(θ), then Fix(θ) and X are effectively
inseparable.

Proof. Suppose that X is an r.e. subset of Γ, disjoint from FixΓ(θ), and con-
taining an equivalence class [ψ]. Suppose also that Γ 6= Π1. By Lemma 3.3.8,
let ξ0(x) be a Π1-formula and ξ1(x) a Σ1-formula such that, for i = 0, 1, ξi(x)
numerates FixΓ(θ) and ¬ξi(x) numerates X. By the Fixed point theorem, let δ
be such that:

T ` δ ↔
((
θ(δ) ∧ ¬ξ0(δ)

)
∨
(
ψ ∧ ξ1(δ)

))
.

Note that such a δ can be effectively found, and that δ is a Γ-sentence.
Suppose, for a contradiction, that δ ∈ FixΓ(θ). Then T ` ξi(δ), so T ` δ ↔

ψ. But FixΓ(θ) is disjoint from [ψ], and we have a contradiction. Analogously,
suppose that δ ∈ X. Then T ` ¬ξi(δ), so T ` δ ↔ θ(δ). But by supposition X
is disjoint from FixΓ(θ), a contradiction.

If Γ = Π1, we have to change the complexity of the numerations ξi(x) to
ensure that δ is a Π1-sentence. In this case, we choose ξ0(x) to be a Σ1-formula,
and ξ1(x) to be a Π1-formula, and use the same construction as above.

Note that the proof of this proposition does not depend on extensionality of
θ(x). However, the proposition may be used to prove the following theorem for
extensional formulas.
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Theorem 3.3.10. If θ(x) is an extensional Γ-formula such that FixΓ(θ) 6= Γ
then FixΓ(θ) is Σ1-complete.

The proof is simple and follows directly from Proposition 3.3.9: Suppose
that θ(x) is an extensional formula in Γ. If Γ \ FixΓ(θ) is non-empty, then
Γ \FixΓ(θ) contains a whole equivalence class, since θ(x) is extensional. By the
proposition, it follows that FixΓ(θ) is Σ1-complete. As in the case of unbounded
sets of fixed points, the converse is not true. If we restrict Proposition 3.3.5 to
any deductively closed r.e. subset of Th(T ) ∩ Γ, we get an example of a Σ1-
complete set of Γ-sentences that is not a set of Γ-fixed points.

Furthermore, if FixΓ(θ) = Γ, then T ` δ ↔ θ(δ) for all δ ∈ Γ, so it follows
that T ` θ(δ) ↔ TrΓ(δ) for all δ ∈ Γ. So, by this theorem, there is, modulo
provable equivalence, only one extensional Γ-formula with a recursive set of fixed
points.

3.3.1 Non-extensional formulas
In contrast to extensional formulas, a non-extensional formula may distinguish
between distinct elements of an equivalence class, and the set of fixed points of
such a formula may contain parts of equivalence classes. For example, the set
of fixed points of the formula ϕ∧ x = ϕ (where ϕ is a non-refutable formula) is
the set of sentences refutable in T in addition to ϕ. Thus the proof of Theorem
3.3.10 can not be modified to yield a similar result for non-extensional formulas.
However, a partial result is available. It can be seen as a variation of either
of Proposition 3.3.9, Bernardi’s Theorem 1 [3] or the results in Chapter III of
Smullyan [64].

Theorem 3.3.11. If θ(x) and χ(x) are Γ-formulas, and X is an r.e. subset
of Γ containing FixΓ(χ), and disjoint from FixΓ(θ), then FixΓ(θ) and X are
effectively inseparable.

Proof. The proof is similar to that of Proposition 3.3.9. Suppose that θ(x) and
χ(x) are Γ-formulas, and that X is an r.e. subset of Γ, disjoint from FixΓ(θ),
and containing FixΓ(χ). Suppose also that Γ 6= Π1. By Lemma 3.3.8, let ξ0(x)
be a Π1-formula and ξ1(x) a Σ1-formula such that, for i = 0, 1, ξi(x) numerates
FixΓ(θ) and ¬ξi(x) numerates X. By the Fixed point theorem, let δ be such
that:

T ` δ ↔
((
θ(δ) ∧ ¬ξ0(δ)

)
∨
(
χ(δ) ∧ ξ1(δ)

))
.

Such a δ can be effectively found.
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Suppose that δ ∈ FixΓ(θ). Then T ` ξi(δ), so T ` δ ↔ χ(δ). But FixΓ(θ) is
disjoint from FixΓ(χ), and we have a contradiction. Analogously, suppose that
δ ∈ X. Then T ` ¬ξi(δ), so T ` δ ↔ θ(δ). But, by supposition, X is disjoint
from FixΓ(θ), again a contradiction.

If Γ = Π1, we let ξ0(x) be a Σ1-formula, ξ1(x) a Π1-formula, and use the
same construction.

Corollary 3.3.12. Given θ(x) ∈ Γ, there is no χ(x) ∈ Γ such that Γ\FixΓ(θ) =
FixΓ(χ)

Proof. Since every set of fixed points is r.e., Γ \ FixΓ(θ) = FixΓ(χ) implies
that both sets are recursive. But by the theorem it follows that both sets are
Σ1-complete.

Moreover, every equivalence class [ψ] is the set of fixed points of the non-
extensional formula ψ ∧ (x = x). Thus we can freely substitute any equivalence
class [ψ] for FixΓ(χ) in the proof above. The above theorem is of course also
equivalent to the statement that every set of Γ-fixed points that is not Σ1-
complete intersects all sets of Γ-fixed points (and all equivalence classes).

We also note that the previous results, in a way are the best possible one
could hope for, applying this particular method to the problem at hand. In
order to establish inseparability, we need an r.e. set that we can guarantee is
disjoint from the set of fixed points. And it does not suffice to put a numera-
tion ξ(x) of an arbitrary r.e. set in place of ψ in the proof above, for nothing
guarantees that δ ∈ FixΓ(θ) implies that T 0 δ ↔ ξ(δ), even if the two sets are
disjoint.4 In fact, the set in question must be “generated” by some condition
of provable equivalence, e.g. being a fixed point to another formula, or being
in some particular equivalence class. With this in mind, it seems the solution
must be sought elsewhere.

As we have established Σ1-completeness of only some set of Γ-fixed points,
there is reason to ask whether there are counterexamples or if our methods
are not sophisticated enough to prove a full result. As it turns out, there are
indeed recursive sets of fixed points other than Γ, though only to non-extensional
formulas.

Proposition 3.3.13. If X = FixΓ(θ) for some θ(x) ∈ Γ, and Y is a recursive
set such that FixΓ(τ) ∩ Y = ∅ for some τ(x) ∈ Γ, then we can construct a
formula χ(x) ∈ Γ such that FixΓ(χ) = X \ Y .

4Unless, of course, we suppose that the set numerated by ξ(x) contains e.g. no provable
sentences, in which case the conditions of Theorem 3.3.11 is fulfilled, and no strength is gained.
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Proof. Let X = FixΓ(θ), and let Y be a recursive set such that FixΓ(τ)∩Y = ∅
for some τ(x) ∈ Γ. Further, let η(x) binumerate Y and let

χ(x) := (θ(x) ∧ ¬η(x)) ∨ (τ(x) ∧ η(x)).

Suppose that δ ∈ Y . Then T ` χ(δ)↔ τ(δ). Suppose further that δ ∈ FixΓ(χ).
Then T ` δ ↔ τ(δ), but Y is disjoint from FixΓ(τ), a contradiction. Now
suppose δ /∈ Y . Then T ` χ(δ) ↔ θ(δ) so δ ∈ FixΓ(χ) iff δ ∈ FixΓ(θ). Thus
FixΓ(χ) = FixΓ(θ) \ Y .

Should X be a recursive set of fixed points, and Y a recursive subset of
X satisfying the conditions of the proposition, then we can construct a new
recursive set of fixed points, by removing Y from X. By successively applying
this method, starting from the set Γ, we can construct infinitely many recursive
sets of fixed points. We only need to make sure that Y is disjoint from some set
of fixed points, but by choosing Y to be e.g. a recursive subset of an equivalence
class, we guarantee that this set has the needed properties. Should we be given
a set of fixed points, we can add any recursive set to it by a similar construction:

Proposition 3.3.14. If X = FixΓ(θ) for some θ(x) ∈ Γ, and Y is a recursive
subset of Γ, then we can construct a formula χ such that FixΓ(χ) = X ∪ Y .

Proof. Let X = FixΓ(θ), and let Y be a recursive set, binumerated by η(x). Let

χ(x) := (θ(x) ∧ ¬η(x)) ∨ (TrΓ(x) ∧ η(x)).

Suppose that δ ∈ Y , then T ` η(δ), so T ` δ ↔ TrΓ(δ) ↔ χ(δ), so δ ∈
FixΓ(χ). If δ /∈ Y , then T ` ¬η(δ), so T ` χ(δ) ↔ θ(δ) and δ ∈ FixΓ(χ) iff
δ ∈ FixΓ(θ).

In a sense, every set constructed from Γ by these means is a trivial example.
We would like to find necessary and sufficient conditions for a recursive set to be
a set of fixed points. The two following propositions are the weakest sufficient
conditions we have. Note that they differ somewhat in flavour.

Proposition 3.3.15. If X is a recursive subset of Γ and there is a formula
θ(x) ∈ Γ such that FixΓ(θ) ⊆ X, then we can construct a formula χ(x) ∈ Γ
such that FixΓ(χ) = X.
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Proof. Let X be a recursive subset of Γ such that FixΓ(θ) ⊆ X, for some
θ(x) ∈ Γ, and let X be binumerated by ξ(x). Let

χ(x) := (TrΓ(x) ∧ ξ(x)) ∨ (θ(x) ∧ ¬ξ(x)).

If δ ∈ X, then T ` ξ(k), so T ` δ ↔ TrΓ(δ)↔ χ(δ). If δ /∈ X, then T ` ¬ξ(δ),
so if δ ∈ FixΓ(χ) it follows that T ` δ ↔ θ(δ), contradicting our assumption on
X.

Proposition 3.3.16. If X is a recursive subset of Γ and there is a sentence
ψ ∈ Γ such that [ψ] ∩Xc is recursive, then X is a set of fixed points.

Proof. Let X be as in the statement of the proposition. Let X ′ be X∪([ψ]∩Xc).
By Proposition 3.3.15, X ′ is a recursive set of fixed points, since it is a recursive
set that contains an equivalence class. But [ψ] ∩ Xc is a recursive set disjoint
from some equivalence class (i.e. every other equivalence class, since it is a
subset of [ψ]), so by Proposition 3.3.13, X ′ \ ([ψ]∩Xc) is a recursive set of fixed
points.

This last result differs in an important respect from the other results of this
section. In these, we may freely interchange “set of fixed points” and “equivalence
class”, and use virtually the same proof to prove a different result. In this case,
however, it seems we need the fact that equivalence classes partition Γ. This
is to make sure that the recursive part of Xc is disjoint from some equivalence
class, so that this set may actually be removed. We could modify the premises
of the proposition to obtain the following result:

Proposition 3.3.17. If X is a recursive subset of Γ and there is a formula
θ(x) ∈ Γ such that FixΓ(θ) ∩ Xc is recursive, and this intersection is disjoint
from some set of fixed points, then X is a set of fixed points.

Here we may use the same proof as above, since the set FixΓ(θ) ∩ Xc is
disjoint from some set of fixed points, and may thus be removed from the set
X ′.

Let us now tie these observations to our earlier results. When we try to
settle the question of complexity of a set of fixed points, we readily run into the
question of how such a set intersects other sets of fixed points (or equivalence
classes). For suppose that a set of fixed points has a recursive intersection with
some other set of fixed points (and that this intersection is indeed disjoint from
some set of fixed points). Then we can use Proposition 3.3.13 to remove this
intersection, and obtain a new set of fixed points which is now disjoint from
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a set of fixed points and thus Σ1-complete.5 But by the Jockusch-Mohrherr
theorem, the union of two disjoint r.e. sets of which one is creative is itself a
creative set. Thus, our original set of fixed points is also Σ1-complete. This
argument improves Theorem 3.3.11.

We can use a similar argument to show that the intersection between a
recursive set of fixed points and an equivalence class is non-recursive. Theorem
3.3.11 shows that a recursive set of fixed points intersects every equivalence
class. But suppose that the intersection with [ψ] is recursive. Then we can use
Proposition 3.3.13 to remove this corresponding part of [ψ], obtaining a set of
fixed points that is disjoint from [ψ]. But since the intersection was recursive,
the new set of fixed points is both recursive and Σ1-complete, a contradiction.

These two arguments are not completely dual, as in the first one we establish
the complexity of a given set, and in the second we establish some property of
a set with a given complexity. It should, however, be clear how intersections of
equivalence classes enter the discussion. Also note that we have no non-trivial
examples, neither of Σ1-complete, nor recursive sets of Γ-fixed points.

Consider the question for which r.e. sets X ⊆ Γ we can construct a formula
with exactly the elements of this set as fixed points. It is clear that for each
such set, we can find a formula, i.e. TrΓ(x), whose set of fixed point contains X.
What remains is to find means to make sure that nothing outside of X can be
a fixed point of the formula we are trying to construct.

In [4], Bernardi briefly mentions the set of all fixed points of the formula
θ(x) := ¬Pr(x 6= c), where c is the Gödel number of ¬Pr(0 6= 0). He notes that
the set of fixed points of this formula equals the set of all refutable formulas
together with c. In our present setting, where the formula θ(x) and its set of
fixed points is restricted to Γ, we can acquire a stronger result from a simpler
construction. Let θ(x) be the formula TrΓ(x) ∧ ξ(x), where ξ(x) binumerates
any recursive set X of Γ-sentences. Then FixΓ(x) = [0]∪X. Of course, this can
also be seen as an application of the even more general Proposition 3.3.14.

We now present a similar criterion, applicable not only to recursive sets, but
also to r.e. sets satsifying another condition.

Definition 3.3.18. A set X of sentences has a lower bound if there is a non-
refutable sentence ϕ such that T ` ϕ→ ψ, for all ψ ∈ X.

Proposition 3.3.19. Given an r.e. set X ⊆ Γ such that Xc has a lower bound,
there is a Γ-formula θ(x) such that X = FixΓ(θ).

5Actually, the set is creative.
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To prove the proposition, we use another definition and a lemma. Note also,
that for an r.e. set to have a lower bound, it has to be disjoint from [0].

Definition 3.3.20. A set X of sentences is monoconsistent with T if T +ϕ is
consistent for every ϕ ∈ X.

Lemma 3.3.21 (Lindström [38]). Suppose X and Y are r.e., and Y is mono-
consistent with Q. Then there is a Σ1- (and a Π1-) formula ξ(x) such that, for
every k, if k ∈ X, then Q ` ξ(k), and if k /∈ X, then ξ(k) /∈ Y .

Proof of Proposition 3.3.19. Let X be any r.e. subset of Γ such that Xc has
a lower bound ϕ. Since T 0 ¬ϕ, it follows that T + ϕ is consistent. Let, by
Lemma 3.3.21, ξ(x) be a Σ1-formula such that if k ∈ X, then T ` ξ(k), and if
k /∈ X, then ξ(k) /∈ Th(T + ϕ). Further, let θ(x) := TrΓ(x) ∧ ξ(x).

Suppose ψ ∈ X. Then T ` ξ(ψ), and T + ψ ` TrΓ(ψ) ∧ ξ(ψ), so T ` ψ →
θ(ψ). Moreover, T + θ(ψ) ` TrΓ(ψ), so T ` θ(ψ) → ψ. Thus every ψ ∈ X is a
fixed point of θ(x).

Now, suppose that ψ /∈ X and, for a contradiction, that ψ ∈ FixΓ(θ). Then
T 0 ξ(ψ), so T+¬ξ(ψ) is consistent and proves ¬θ(ψ). ψ is a fixed point of θ(x),
whence T ` ψ → ξ(ψ). Since ϕ is a lower bound of Xc, we have T ` ϕ → ψ,
so it follows that T + ϕ ` ξ(ψ). But by our choice of ϕ and ξ(x), this is a
contradiction. Thus we have shown that no ψ /∈ X is a fixed point of θ(x).

Let X be any r.e. subset of Γ. For Xc to have a lower bound, it is clear that
X must contain [0], for if Xc contains any refutable sentence, it can evidently
have no lower bound. Bennet [1] observes that an r.e. set that is disjoint from
[0] has a lower bound, so for any recursive X ⊆ Γ, Xc has a lower bound iff
[0] ⊆ X. This means that for recursive sets, Proposition 3.3.19 yields nothing
beyond Proposition 3.3.15. Finally, we note that the condition stated in the
proposition is not necessary for an r.e. set to be a set of fixed points. If we pick
an undecidable sentence ψ, it is clear that [ψ] is a set of fixed points, but its
complement has no lower bound.

For a brief summary of our results on the recursion theoretic complexity of
sets of fixed points, we have the following facts.

1. For any formula θ(x), the set Fix(θ) is Σ1-complete. It is not the case
that every Σ1-complete set of sentences is a set of fixed points.

2. For every r.e. subset X of Σn (or Πn), there is a formula θ(x) ∈ Bn such
that FixΓ(θ) = X. This is a complete characterisation of such sets in
terms of sets of fixed points.
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3. If two sets of Γ-fixed points of Γ-formulas are disjoint, then these sets are
effectively inseparable, and are thus Σ1-complete. This includes the sets
of Γ-fixed points of extensional formulas, except for TrΓ(x).

4. There are recursive sets of Γ-fixed points, though only for non-extensional
Γ-formulas. Any such set intersects every other set of Γ-fixed points non-
recursively.

3.3.2 ∆0-formulas

Here, we only briefly cover the special case where we restrict the complexity
to ∆0-sentences, as an example of a decidable fragment of a theory. For the
rest of this discussion, A,B will be subsets of [1]∆0

:= {k : T ` k} ∩ ∆0 and
[0]∆0

:= {k : T ` ¬k} ∩∆0, respectively. As every ∆0-formula is decidable in
Q, the set of provable formulas and the set of refutable formulas together make
up the whole of ∆0. By inspection, we see that every extensional ∆0-formula is
provably equivalent to either of x = x or x 6= x. Note that the only sets having
binumerations in ∆0 are the p.r. sets.

Proposition 3.3.22. If A ⊆ [1]∆0 and B ⊆ [0]∆0 , then the following four
statements are equivalent:

1. Fix∆0
(θ) = A ∪B

2. θ(x) binumerates A ∪ ([0]∆0
\B)

3. ¬θ(x) binumerates ([1]∆0 \A) ∪B)

4. Fix∆0
(¬θ) = ([1]∆0

\A) ∪ ([0]∆0
\B)

The proof is routine, and is left to the interested reader. A simple argument
also shows that no set of ∆0-fixed points can be p.r. For suppose, for a con-
tradiction, that Fix∆0

(θ) is p.r. Then this set is binumerated by a p.r. formula
ξ(x). By the Fixed point theorem, let δ be such that

T ` δ ↔
((
θ(δ) ∧ ¬ξ(δ)

)
∨
(
¬θ(δ) ∧ ξ(δ)

))
.

It follows that δ ∈ Fix∆0
(θ) iff δ /∈ Fix∆0

(θ), a contradiction.

Proposition 3.3.23. If Fix∆0
(θ) = A ∪B, then A is p.r. iff [0]∆0

\B is p.r.
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Proof. Let Fix∆0
(θ) = A ∪ B. Then θ(x) binumerates A ∪ ([0]∆0

\ B). Sup-
pose ξ(x) binumerates A ([0]∆0

\ B), and let η(x) := θ(x) ∧ ¬ξ(x). Then η(x)
binumerates [0]∆0 \B (A).

We have not outruled the possibility that A ∪ ([0]∆0 \B) could be p.r., but
neither of A nor [0]∆0\B. However, should none of these sets be p.r., they are
in a sense inseparable by p.r. sets.

Proposition 3.3.24. If Fix∆0(θ) = A ∪ B and neither of A nor [0]∆0 \ B is
p.r., then there is no p.r. set A′ such that A ⊆ A′ ⊆ [1]∆0 .

Proof. Suppose Fix∆0
(θ) = A∪B, that neither of A nor [0]∆0

\B is p.r., and that
there is a p.r. set A′ (B′) such that A ⊆ A′ ⊆ [1]∆0 ([0]∆0 \B ⊆ B′ ⊆ [0]∆0). Let
ξ(x) binumerate A′ (B′), and let η(x) := θ(x) ∧ ¬ξ(x). Then η(x) binumerates
[0]∆0

\B (A).

3.4 Structural properties
Having studied the properties of individual sets of fixed points, we here turn to
the study of collections of sets of fixed points, ordered to give rise to interest-
ing structures. There are examples of such structures obtained from ordering
equivalence classes of T under implication, e.g. (partial) Lindenbaums algebras
and Magari algebras. As we are concerned with formulas with a free variable, it
is not evident how an ordering under implication should be defined, so we have
not pursued this course. Instead, we choose to order sets of fixed points under
set inclusion.

We will briefly introduce some concepts from the field of lattice theory. For
more details, see e.g. Davey & Priestley [8]. A partially ordered set is a set P
together with a binary relation ≤ such that, for all a, b, c ∈ P :

1. a ≤ a,

2. if a ≤ b and b ≤ a, then a = b,

3. if a ≤ b and b ≤ c, then a ≤ c.

If P is an ordered set and S ⊆ P , then an element a ∈ P is the supremum of S
if a is the least element such that s ≤ a for all s ∈ S. We define the infimum
dually.

P is an upper semi-lattice if, for each pair of elements a, b ∈ P , the set {a, b}
has a supremum in P . We will call such an element the join of a and b, and
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denote this element by a⊕ b. Dually, P is a lower semi-lattice if, for each pair
of elements a, b ∈ P , the set {a, b} has an infimum, the meet of a and b (a⊗ b).
A lattice is an ordered set that is both a lower and an upper semi-lattice.

A (semi-) lattice P has a greatest (top) element if there is an element > ∈ P
such that b ≤ > for all b ∈ P . A least (bottom, ⊥) element is defined dually.
A lattice having both a greatest and a least element is bounded. In a bounded
lattice, we say that a is the complement of b (a = b−1) if a⊗b = ⊥ and a⊕b = >.
Note that we will consistently use ⊗, ⊕, −1 as algebraic operations, and ∩, ∪
and c as set-theoretical operations.

Here we are interested in sets ordered under set inclusion, in which case we
have the following situation. Let a, b be two elements of a set ordered under set
inclusion. If a ∪ b is an element of the ordered set, then a ∪ b is indeed the join
of a and b: It is evident that a∪ b is greater than both a and b, so suppose that
it is not the supremum. Then there is a d ⊂ a ∪ b such that a ⊆ d and b ⊆ d.
But since a ∪ b is the least set containing each element of both a and b, there
can be no such d. Thus a ∪ b = a ⊕ b. A similar argument shows that if a ∩ b
is an element of the ordered set, then a ∩ b = a ⊗ b. This means that in many
cases, we can use the closureness under unions and intersections to show that
ordered sets are (semi-) lattices.

Let F be the set of all sets of fixed points, ordered under set inclusion. We
know little about how the elements of this sets are related to each other, e.g.
whether the union of two arbitrary sets of fixed points is itself a set of fixed
points or not. If we restrict ourselves to the set of all sets of Γ-fixed points,
we are in a similar situation, and we fail to state interesting properties of these
structures. Instead, we will consider subsets of the set of all sets of Γ-fixed
points, based on our different sufficient conditions for r.e. sets to be sets of fixed
points. As a first example, we define Fb to be the structure(

{X : X is an r.e. subset of Γ and Xc has a lower bound},⊆
)
.

By Proposition 3.3.19, each set in Fb is the set of Γ-fixed points of some Γ-
formula.

Proposition 3.4.1. Fb is a distributive lattice with a greatest element.

Proof. Let a, b ∈ Fb, and let ϕ,ψ be some lower bounds of ac and bc, respec-
tively. To show that a ⊕ b exists, it suffices to show that a ∪ b ∈ Fb, by the
discussion above. It is clear that a∪b is an r.e. subset of Γ, so it remains to show
that (a∪ b)c has a lower bound. But (a∪ b)c = ac ∩ bc, so for every element δ in
this set, T ` ϕ ∨ ψ → δ. Thus ϕ ∨ ψ is a lower bound of (a ∪ b)c, and it follows
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that a ∪ b is an element of Fb. A dual argument shows that ϕ ∧ ψ is a lower
bound of (a∩ b)c, so a⊗ b exists. Since join and meet is union and intersection,
respectively, it follows that join and meet distribute over each other. Moreover,
the set Γ is the greatest element as it is an r.e. subset of Γ, and every sentence
is a lower bound for Xc = ∅.

It is easy to see that Fb can have no least element. For suppose a is such
an element. Then we can use Proposition 3.3.13 to remove any singleton set
from a, obtaining an element that is in Fb, but less than a. This argument also
shows that the structure is not dense.

We now briefly discuss the structural properties of the set of recursive sets of
fixed points. Here we use the sufficient conditions stated in propositions 3.3.15
and 3.3.16 to define our structures. As an introduction we present a somewhat
neater example. Given θ(x), let Fθ be the structure(

{X : X is recursive and FixΓ(θ) ⊆ X ⊆ Γ},⊆
)

Proposition 3.4.2. If FixΓ(θ) is non-recursive, Fθ is a distributive lattice with
greatest, but no least, element.

Proof. Let a, b ∈ Fθ. To prove that a⊕ b exists, it suffices to show that a∪ b ∈
Fθ. But a∪b is a recursive subset of Γ, containing FixΓ(θ). Thus join is given by
union. Similarily, since the intersection of a and b is a recursive set containing
FixΓ(θ), meet is given by intersection. This also shows that the structure is
distributive.

The top element is Γ. Suppose that a is the bottom element of Fθ. Since
FixΓ(θ) is non-recursive, a \ FixΓ(θ) is non-empty. Then we can remove a
singleton set from a \FixΓ(θ), obtaining an element that is less than a, but still
in the structure. Thus Fθ can have no least element.

In the case where FixΓ(θ) is itself recursive, we obtain a countable Boolean
algebra. By the same argument as before, join and meet are given by union
and intersection, respectively. Γ is the top element, and FixΓ(θ) is the bottom
element. Finally, every element a has a complement a−1 which is given by
Γ \ (a ∪ FixΓ(θ)).

We now turn our attention to the conditions stated in propositions 3.3.15
and 3.3.16. Let, accordingly, F∃ be the structure(

{X : X ⊆ Γ is recursive, and there is a θ ∈ Γ s. t. FixΓ(θ) ⊆ X},⊆
)
,
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and let FR be the structure(
{X : X ⊆ Γ is rec., and there is a ψ ∈ Γ s. t. [ψ] ∩Xc is rec.},⊆

)
.

Proposition 3.4.3. F∃ and FR are upper semi-lattices with a greatest element.

Proof. Let a, b ∈ F∃. To prove that a⊕ b exists, it suffices to show that a∪ b ∈
F∃. But a ∪ b is a recursive subset of Γ, and since both sets contains a set
of fixed points, it is clear that their union contains (at least) one set of fixed
points. Thus join is given by union, and as before, Γ is the greatest element.

Suppose now that a, b ∈ FR. We want to show that a∪ b ∈ FR. This set is
recursive, so it remains to show that there is a sentence ψ such that (a∪b)c∩ [ψ]
is recursive. (a∪b)c∩ [ψ] = (ac∩bc)∩ [ψ], and since intersection is commutative
and associative, this set equals (ac ∩ [ψ]) ∩ bc. But by assumption, there is a
sentence ϕ such that ac ∩ [ϕ] is recursive. Since b ∈ FR, bc is recursive, so
(ac ∩ [ϕ]) ∩ bc is a recursive set. Thus we have found a sentence ψ such that
(a ∪ b)c ∩ [ψ] is recursive, and a ∪ b ∈ FR.

It is not clear if a⊗ b exists for every a, b ∈ F∃. Should a and b contain the
very same set of fixed points, then their meet is the intersection of the two sets.
A similar argument applies for a, b ∈ FR, for if both ac ∩ [ψ] and bc ∩ [ψ] are
recursive, then the set (a ∩ b)c ∩ [ψ] = (ac ∪ bc) ∩ [ψ] = (ac ∩ [ψ]) ∪ (bc ∩ [ψ]) is
recursive, and a ∩ b ∈ FR.

By Proposition 3.3.14, any recursive subset of Γ in addition to an equivalence
class is a set of Γ-fixed points of some Γ-formula. We briefly investigate the
structure of these sets, so for each ψ ∈ Γ, let F[ψ] be the structure(

{X : there is a recursive set Y ⊆ Γ s.t. Y ∪ [ψ] = X},⊆
)
.

The mapping from recursive subsets of Γ to elements of F[ψ] is not injective,
as for a given set X, there might be different recursive sets Y and Y ′ such that
X = Y ∪ [ψ] = Y ′ ∪ [ψ]. Thus, for every element a ∈ F[ψ] we let A be a
representative of the equivalence class {A : A ∪ [ψ] = a}.
Proposition 3.4.4. The structure F[ψ] is an atomic, bounded, distributive lat-
tice.

Proof. Suppose a, b ∈ F[ψ]. As before, it suffices to show that a ∪ b and a ∩ b
are elements of F[ψ]. Let A and B be representatives of the equivalence classes
corresponding to a and b, as above. It is clear that a ∪ b = A ∪ B ∪ [ψ], so
a⊕ b = a∪ b. Similarily a⊗ b = a∩ b. This also shows that F[ψ] is distributive.

Γ is the top element, and [ψ] is the bottom element. Each element a of F[ψ]

is covered by an element constructed by adding any singleton set to a.
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Every recursive element of F[ψ] has a complement. For let a be such an
element, and let A′ be the set Γ \ (A ∪ [ψ]), where A is a representative of the
equivalence class corresponding to a. It is clear that different choices of A does
not affect the set A′. Now, let a−1 be the set A′ ∪ [ψ]. Since A′ is recursive,
this set is an element of F[ψ]. It follows that a⊕ a−1 = Γ and a⊗ a−1 = [ψ].

3.4.1 Finite differences
In each of the aforementioned structures, we can use the techniques of propo-
sitions 3.3.13 and 3.3.14 to add and remove singleton sets from any element.
This shows that none of these structures are dense. We take this as a reason to
introduce the order of set inclusion modulo finite sets, as is common in e.g. the
study of the structure of r.e. sets. We will show that in some cases, the order
modulo finite sets will give rise to dense structures. We will use the notation
a ⊆? b to mean that b \ a is a finite set. Thus a ≡? b iff (a \ b)∪ (b \ a) is finite.
We will also use the notation a ⊂? b whenever a ⊆? b and a 6≡? b. For each of
the structures defined above, we use e.g. F ?

θ , to indicate that we consider the
structure Fθ, but with the new order ⊆?. The elements of these structures are
no longer sets, but rather equivalence classes [a] under the relation ≡?.

Proposition 3.4.5. If FixΓ(θ) is non-recursive, the structure F ?
θ is a dense,

distributive lattice with a greatest, but no least, element.

Proof. Let a, b be representatives of the equivalence classes [a], [b] ∈ F ?
θ . It is

clear that the equivalence classes corresponding to the union and intersection,
respectively, of these sets are elements of F ?

θ . By the discussion in the intro-
duction to this section, this suffices to show that F ?

θ is a distributive lattice.
Suppose, for a contradiction, that a is the least element of F ?

θ . We can use
Proposition 3.3.13 construct an element a′ in F ?

θ such that a′ ⊂? a. Since a
recursive set of fixed points intersects every equivalence class non-recursively, we
can find an infinite recursive subset b of such an intersection, and let a′ = a \ b.

Now, suppose a ⊂? b. Since a and b are both recursive, the set b \ a is
recursive and infinite. This set can then be split in two infinite, recursive parts
d, e, such that a ⊂? a ∪ d = b \ e ⊂? b.

As in the case of Fθ, if we choose θ(x) such that FixΓ(θ) is recursive, then
F ?
θ is a countable Boolean algebra, since FixΓ(θ) is the least element of that

structure. The proof above also suffices to show that F ?
θ is dense, so for each

pair of Γ-formulas θ(x), χ(x) with recursive sets of Γ-fixed points, the structures
F ?
θ and F ?

χ are isomorphic.
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Using the argument from the proposition above, we can show that F ?
R and

F ?
∃ are dense, upper semi-lattices with a greatest element. It is, on the other

hand, unknown if F ?
b and F[ψ] are dense or not, as the aforementioned method

does not suffice.
Another known method for proving denseness, successfully applied to partial

Lindenbaum algebras, also fails.6 When we try to adapt this proof, we run into
the following problems: Let a and b be elements of F ?

b such that a ⊂? b, and
let ϕ,ψ be some lower bounds to ac and bc, respectively. Let γ be a sentence
that is undecidable in T + ψ + ¬ϕ. Then the set dc = {δ : T + ϕ ∨ (ψ ∧ γ) ` δ}
is a Σ1-complete set with a lower bound. It follows that d is Π1-complete, so
d /∈ F ?

b . If we could construct an r.e. extension of d, without making d ≡? b,
then we would have shown that F ?

b is dense, but no such construction is known
to us.

We would like to know more about these structures and the relation between
them. E.g., if any pair of these structures are isomorphic, or whether they can
be embedded into each other. As an example, it is clear that each Fθ forms a
proper filter in F∃. It seems that the most interesting structures are F ?

b and
F ?

[ψ]. The former because it contains the sets of fixed points given by our only
condition on possibly non-recursive, r.e. sets (Proposition 3.3.19), and the latter
because it is the structure with the neatest structural properties. We wonder in
particular how the structure F ?

[0] is related to F ?
b . It is clear that each element

of these structures is an r.e. extension of the equivalence class of the refutable
sentences. However, [0] is not an element of F ?

b , since [0]c can have no lower
bound: Suppose that [0]c has a lower bound ϕ. Then we can always construct
a sentence ψ such that T 0 ψ, T 0 ϕ → ψ and T ` ψ → ϕ, contradicting that
ϕ is a lower bound of [0]c.

3.5 Connections
In this section, we show how our investigations relate to an problem on partially
conservative sentences, formulated in Guaspari [18] and left open in Bennet [1].
Before we had acquired the results of Section 3.3.1, we had the following partial
result. The fixed-point construction used in the proof of the proposition may also
be of some interest on its own. Let the kernel of θ(x) be the set {k : T ` θ(k)},
which we write as Kθ. Thus, Kθ is the set numerated by θ(x).

Proposition 3.5.1. If Kθ is recursive, and θ ∈ Γ, then FixΓ(θ) is Σ1-complete.

6Cf. Bennet [1].
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Proof. Only the Π1- (Σ1-) case provides any difficulties as to complexity. We
state the proof in the Π1-case, and only comment on the Σ1-case.

Let α(x) be a Σ1-binumeration of Kθ, and let X = {k : ∃mT ` ρ(k,m)},
where ρ(x, y) is a p.r. formula. Further, let ξ0(x) be a Π1-numeration of X, and
let ξ1(x) and δ(x), respectively, be such that, for all k,

T ` ξ1(k)↔ ∃z(ρ(k, z) ∧ ∀u≤z¬Prf(ξ1(k), u)∧
(¬α(δ(k))→ ∀u≤z¬PrfT+¬θ(δ(k))(ξ1(k), u))))

T ` δ(k)↔ (θ(δ(k)) ∧ ξ0(k)) ∨ (¬α(δ(k)) ∧ ¬ξ1(k)).

ξ0(x) and θ(x) are Π1, ξ1(x) and α(x) are Σ1, so δ(x) is Π1.
It is easy to check that ξ1(x) is such that

1. if k ∈ X, then T ` ξ1(k)

2. if k /∈ X, then T 0 ξ1(k) and, if T +¬θ(δ(k)) is consistent, T +¬θ(δ(k)) 0
ξ1(k).

Suppose k ∈ X. Then, by 1, T ` ξi(k), hence, by construction, T ` δ(k)↔
θ(δ(k)).

Now suppose, for a contradiction, that k /∈ X and T ` δ(k)↔ θ(δ(k)).
Suppose δ(k) ∈ Kθ, whence T ` θ(δ(k)). Now, α(x) binumerates Kθ, so

T ` α(δ(k)) and thus T ` δ(k) ↔ ξ0(k). By choice of ξ0(x), T 0 ξ0(k), so
T 0 δ(k), and since δ(k) is a fixed point of θ, T 0 θ(δ(k)), a contradiction.

Thus δ(k) /∈ Kθ. Then T 0 θ(δ(k)), so T + ¬θ(δ(k)) is consistent. But
T ` ¬α(δ(k)), so T+¬θ(δ(k)) ` δ(k)↔ ¬ξ1(k). Thus T+¬θ(δ(k)) ` θ(δ(k))↔
¬ξ1(k), whence T + ¬θ(δ(k)) ` ξ1(k).

Thus
k /∈ X ⇒ T 0 δ(k)↔ θ(δ(k)).

The Σ1-case goes through, mutatis mutandis, by letting ξ1(x) be such that, for
all k:

T ` ξ1(k)↔ ∀z(∀u≤z¬ρ(k, u)→ (∀u≤z¬Prf(ξ1(k), u)∧
(¬α(δ(k))→ ∀u≤z¬PrfT+¬θ(δ(k))(ξ1(k), u))).

Another criterion for Σ1-completeness that we used in an earlier stage of
research was the existence of certain kinds of numerations α(x) of r.e. sets.
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Definition 3.5.2. Given θ(x) ∈ Γ, let θ∗ be the following statement:
There is an α(x) ∈ Γd such that, for all k,

1. If T ` θ(k), then T ` α(k),

2. if T 0 θ(k), then ¬α(k) ∈ Cons(Γd, T + ¬θ(k)).

Let θ∗H be θ∗ with Cons replaced by HCons. By definition, θ∗H implies θ∗.

Proposition 3.5.3 (Bennet). If θ(x) ∈ Γ and θ∗ holds, then FixΓ(θ) is Σ1-
complete.

Proof. The proof is almost the same as the proof of Theorem 3.5.1. Let X,
ρ(x, y), ξ0(x), ξ1(x), and δ(x) be as in the statement of that theorem, and let
α(x) be as regulated by θ∗. It is important to note that if θ(x) ∈ Γ, we can
choose ξ1(x) to be in Γd, and to be such that if T +¬θ(δ(k)) is consistent, then
T + ¬θ(δ(k)) 0 ξ1(k).

If k ∈ X, then T ` ξi(k), so T ` δ(k)↔ θ(δ(k)).
Now, suppose that k /∈ X, and for a contradiction, that T ` δ(k)↔ θ(δ(k)).

If T ` θ(δ(k)), then T ` α(δ(k)), whence T ` δ(k) → ξ0(k). But δ(k) is a
fixed point of θ(x), so T ` ξ0(k), a contradiction. It follows that T 0 θ(δ(k)).
Thus T 0 θ(δ(k)). But then ¬α(δ(k)) ∈ Cons(Γd, T + ¬θ(δ(k)), whence T +
¬θ(δ(k))+¬α(δ(k)) is consistent, and proves δ(k)↔ ¬ξ1(k). But δ(k) is a fixed
point of θ(x), so T + ¬θ(δ(k)) + ¬α(δ(k)) ` ξ1(k). By the conservativity of
¬α(δ(k)), T + ¬θ(δ(k)) ` ξ1(k), a contradiction.

Thus
k /∈ X ⇒ T 0 δ(k)↔ θ(δ(k)).

While, in fact, this proposition yields nothing beyond Proposition 3.3.11,
there is an interesting relationship between the existence of these numerations
and of the set Kθ being recursive. First, let us show that θ∗ implies that there
is a set of fixed points disjoint from FixΓ(θ).

Proposition 3.5.4. If θ∗ holds, then FixΓ(θ) is disjoint from FixΓ(¬α).

Proof. Suppose, for a contradiction, that θ∗ holds, and that there is a δ such
that T ` δ ↔ θ(δ)↔ ¬α(δ).

Suppose first that T ` δ. Then T ` θ(δ), so, by θ∗, T ` α(δ). But by
supposition it follows that T ` ¬α(δ). Thus T 0 δ. But then T 0 θ(δ), whence
¬α(k) ∈ Cons(Γd, T+¬θ(k)). Now T ` δ ↔ ¬α(δ), so T+¬θ(δ)+δ is consistent.
But this theory proves both θ(δ) and ¬θ(δ), a contradiction.
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We next invoke a theorem of Bennet to shed light on the relationship between
the existence of the numerations described by θ∗H and recursivity of the set Kθ.

Theorem 3.5.5 (Bennet [1]). Given two theories T0, T1, the following are equiv-
alent:

1. Γ ∩HCons(Γd, T0) \ Th(T1) = ∅,

2. Γ ∩HCons(Γd, T0) \ (Th(T0) ∪ Th(T1)) = ∅,

3. ThΓ(T1) is inconsistent with T0.

Proposition 3.5.6 (Bennet). Given θ(x) ∈ Γ, Kθ is recursive iff θ∗H holds.

Proof. Let θ(x) be any Γ-formula such that Kθ is recursive. Let α(x) be a
∆1-binumeration of Kθ. Then:

1. If T ` θ(k), then T ` α(k), since α(x) binumerates Kθ.

2. If T 0 θ(k), then T ` ¬α(k). Any provable sentence is trivially con-
servative, and since T + ¬θ(k) is consistent, it follows that ¬α(k) ∈
HCons(Γd, T + ¬θ(k)).

Thus, if Kθ is recursive, θ∗H holds. For the other direction, let θ(x) be any Γ-
formula such that θ∗H holds. For any k, Let T0 := T +¬θ(k) and T1 := T +θ(k).
Then ThΓ(T1) is inconsistent with T0, so by Theorem 3.5.5, Γ∩HCons(Γd, T0)\
Th(T1) = ∅. Thus we have:

1. If T ` θ(k), then T ` α(k), and thus T + θ(k) 0 ¬α(k).

2. If T 0 θ(k), then T + θ(k) ` ¬α(k) and T 0 α(k).

These clauses are mutually exclusive, and we have r.e. methods for testing both
provability and non-provability of θ(k). It follows that Kθ is recursive.

By inspection of the definition of θ∗H and θ∗, it is easy to confirm the following
two facts.

1. If θ(x) ∈ ∆T
1 , then θ∗H ,

2. if θ(x) ∈ ∆T
n for some n, then θ∗.
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By the theorem above, we also see that if θ∗H holds, then Kθ is recursive, so
there is a ∆1-numeration of Kθ. Thus a set is recursive iff it is numerated by a
∆1-formula iff it is numerated by a formula such that θ∗H holds. We would like
to know if there is a similar relationship when it comes to the statement θ∗ and
partial (as opposed to hereditary partial) conservativity instead. The solution
is not as easily found, and again we invoke a theorem of Bennet.

Theorem 3.5.7 (Bennet [1]). Given two theories T0, T1, the following are equiv-
alent:

1. Πn ∩ Cons(Σn, T0) \ Th(T1) = ∅,

2. Πn ∩ Cons(Σn, T0) \ (Th(T0) ∪ Th(T1)) = ∅,

3. ThΠn(T0) ⊆ ThΠn(T1) and ThΠn(T1) is inconsistent with T0.

Proposition 3.5.8 (Bennet). For any r.e. set X, there is a Πn-numeration
θ(x) of X such that Kθ is recursive iff θ∗ holds.

Proof. Let X be any r.e. set, and let, by Lemma 3.2.8 θ(x) be a Πn-numeration
of X such that, for all k, if k ∈ X, then T ` θ(k), and if k /∈ X, then ¬θ(k) ∈
Cons(Πn, T ). By construction, Kθ = X, and if Kθ is recursive, then θ∗ holds
by definition.

So suppose θ∗ holds. For any k, let T0 := T + ¬θ(k) and let T1 = T + θ(k).
ThΠn

(T1) is inconsistent with T0, and since ¬θ(k) is Πn-conservative over T ,
ThΠn

(T0) ⊆ ThΠn
(T1). By Theorem 3.5.7, Πn ∩ Cons(Σn, T0) \ Th(T1) = ∅.

Thus:

1. If T ` θ(k), then T ` α(k), and T + θ(k) 0 ¬α(k).

2. If T 0 θ(k), then T + θ(k) ` ¬α(k) and T 0 α(k).

Again, it follows that Kθ is recursive.

We know nothing on these lines when it comes to Σn-numerations. If we had
a result dual to Theorem 3.5.7, we could prove that θ(x) ∈ ∆T

n iff θ∗ holds. But
for each θ(x) ∈ ∆T

n , FixΓ(θ) is Σ1-complete, so such a proof would show that
the method of constructing numerations α(x) according to θ∗ yields nothing
new on the recursion theoretic complexity of sets of fixed points. Now, we have
no such proof, and instead we are left with the open question from Bennet [1]
of whether one may have

Σn ∩ Cons(Πn, T0) \ Th(T1) = ∅.
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Chapter 4

Conclusion and further work

After an introduction, we gave an historical survey of the field of metamathe-
matics. Starting in the early 1900s, with the foundational struggle of Hilbert and
others, and the impact of Gödel’s incompleteness theorems on these projects,
we gave proofs of Rosser’s incompleteness theorem, Tarski’s theorem of the un-
definability of truth, the general Fixed point theorem as stated by Carnap, and
Löb’s solution to Henkin’s problem on provability. Further, we discussed differ-
ent strengthenings of the Fixed point theorem, due to Ehrenfucht, Feferman and
Montague. We studied in some detail the connections between interpretability,
partial conservativity and relative consistency. Using examples from Bennet,
Bernardi, Guaspari, Hájek, Lindström, Shavrukov, and Solovay, we showed, in
the final section of Chapter 2, how more elaborate fixed-point constructions
were used in the 70s and 80s.

In Chapter 3, we introduced the notion of a set of fixed points, a concept
which we studied in technical detail. We here briefly sum up our knowledge of
the recursion theoretic complexity of sets of fixed points.

1. Every set Fix(θ) is Σ1-complete. (Theorem 3.3.3.)

2. Every r.e. Σn- (or Πn-) set is a set of fixed points of a Bn-formula. (The-
orem 3.3.6.)

3. Every set of Γ-fixed points whose intersection with another set of Γ-fixed
points is recursive and disjoint from some set of Γ-fixed points, is Σ1-
complete. This includes any set of Γ-fixed points of an extensional formula,
except for formulas provably equivalent to TrΓ(x). (Theorem 3.3.11.)

63
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We also gave examples of Σ1-complete sets of (Γ-) sentences that are not sets
of fixed points of any (Γ-) formula. Moreover, we showed that there are non-
extensional formulas with recursive sets of fixed points. The following are suffi-
cient conditions for a set X to be a set of fixed points.

1. X is a recursive subset of Γ, and there is a formula θ(x) ∈ Γ such that
FixΓ(θ) ∩Xc = ∅. (Proposition 3.3.15.)

2. X is a recursive subset of Γ, and there is a sentence ψ ∈ Γ such that
[ψ] ∩Xc is recursive. (Proposition 3.3.16.)

3. X is an r.e. subset of Γ, and there is a sentence ψ ∈ Γ such that T ` ψ → ϕ,
for all ϕ ∈ Xc. (Proposition 3.3.19.)

The first condition can be changed to the condition that FixΓ(θ)∩Xc is recursive
and disjoint from some set of fixed points, which implies that there is a formula
χ(x) such that FixΓ(χ) ∩Xc = ∅.

Further on, we investigated the structural properties of sets of fixed points,
ordered under set inclusion. As we have no characterisation of sets of fixed
points, we could obtain no results on the set of all sets of fixed points. Instead,
we had to rely on the three sufficient conditions stated above to define struc-
tures with neater properties. A more thorough investigation of this type would
probably demand better characterisations.

We were able to relate our knowledge on sets of fixed points to older results,
e.g. Löb’s theorem and Bernardi’s results on inseparability of equivalence classes.
The latter connection is due to the fact that every equivalence class is a set of
fixed points. Also related to this is the observation that the set of Γ-self-provers
of T is a Σ1-complete set of fixed points.

There are also some relation to open problems in metamathematics, as seen
in Section 3.5. There we saw, as in the section on partial Lindenbaum algebras
at the end of Chapter 2, that some results may depend on whether we are
considering Σn- or Πn-formulas. A possibility is that future refinements of our
present results may have to take this situation into account.

Another problem relating to ours is that of Guaspari & Solovay [17]. They
ask whether all Rosser sentences are equivalent, i.e. how many equivalence
classes the set of Rosser sentences intersects. In their paper, they prove that
the answer to this question depends on the choice of proof predicate. By Propo-
sition 3.3.1 it is clear, however, that the Σ1-completeness of the set of Rosser
sentences is independent of this choice. This follows directly from the observa-
tion that no Rosser sentence can be provable nor refutable in T , so the set of
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Rosser sentences is disjoint from both [0] and [1]. It seems here that we have
to take into account the actual syntactical properties of formulas to settle the
question, an approach we have not taken in this project.1

We intend to take the study of sets of fixed points further, and conclude by
listing some open questions that are implicit or explicit in the text.

1. Is there a set of Γ-fixed points that is neither recursive nor Σ1-complete?

2. Is Y is a recursive set of Γ-fixed points iff Y is a recursive subset of Γ such
that FixΓ(θ) ∩ Y is non-recursive for all θ(x) ∈ Γ?

3. Is there a Σ1-complete set of Γ-fixed points that intersects every other set
of Γ-fixed points non-recursively?

4. Which conditions are necessary for an r.e. set of (Γ-) sentences to be a set
of (Γ-) fixed points?

5. What is the relation between the structure of sets of fixed points ordered
under inclusion (or implication) to other known structures, as Boolean
algebras and partial Lindenbaum algebras?

1See also Blanck [5].
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