: UNIVERSITY OF GOTHENBURG

AstraZeneca

Linked Data

A study of how to extract data into a machine readable
format by using semantic web technologies

MARTIN AGFJORD

Bachelor Thesis in Applied Information Technology

Report No. 2011:004
ISSN: 1651-4769

University of Gothenburg
Department of Applied Information Technology
Gothenburg, Sweden, March 2011

Abstract

The effort to transform and extend data is a growing business in many industries.
Proprietary data formats and inconsistent data structures create complexity for machines
to understand these formats, and each new dataset needs human attention in order for
it to work in a system.

This study investigates how data can be transformed into a machine understandable
format, and make it possible to link and access objects on the web by giving them
unique references. Semantic web technologies and linked data have been adopted to
investigate this procedure.

The investigation was done by means of the research method of laboratory experiments.
A real world example was created from example data provided by AstraZeneca R&D
and the organization CDISC. Tests were executed against this example environment to
examine the theories behind the semantic web and linked data.

The study shows that data can be parsed into a structured, machine readable, graph
data structure with RDF and OWL. The structure can easily be extended. The converted
objects can in this new data format be linked to from other repositories of data. Intelligent
queries can also be executed against the new data with SPARQL.

The report is written in english.

Keywords: Linked Data, Clinical Data, Semantic Web, AstraZeneca, RDF, OWL,
SPARQL, Jena

1

Acknowledgements

[met many helpful people during my stay at AstraZeneca R&D. I would like to express
my special gratitude to researcher Kerstin Forsberg for giving me the opportunity to
do this study, her never ending support, her ideas and interest for my work. I would
also like to thank researcher Chimezie Ogbuji for his expert advices on semantic web
languages.

Finally, I would like to thank my academic supervisor Faramarz Agahi for his exellent
guidance, constructive inputs and advices.

March 19, 2011
Martin Agfjord

1l

Contents

Title page i
Abstract ii
Acknowledgements iti
1 Introduction 1
1.1 Semantic Web as Alternative 2
1.2 Producing Semantic Web Data 4
1.3 Delimitation Lo e e e e e 5
1.4 Disposition 000 L0 e e 5

2 Research Method 7
2.1 Laboratory Experiments Method 7
2.2 Empirical Setting - AstraZeneca R&D o000 0000 8
2.3 In Data Collectiono 8
2.4 Development of a Test Environment - Empirical Process 9
2.5 Validityo e 10

3 Common Semantic Web Tools 11
3.1 RDF . . . o e 11
3.2 Namespaceso e e e e e e e s 13
3.3 Vocabularies and Languages 13
3.4 Sophisticated Queries L0 0L L0000 L s 16
3.5 Linked Data Principleso 16

4 Theory 17
4.1 Producing Linked Data 17
4.2 Linking Data00 0000000 oL 18
4.3 Increasing the Usefulness of Linked Data 19

5 Empirical Work 20
5.1 Initial Datasets Lo 20
5.2 Ontology Development00 0000000 21
5.3 Conversion of CSV-files00 oL 23
5.4 Making Resources Dereferenceable 24
5.5 Design of Tests on New Data 25

6 Results of Experiments 28
6.1 Test 1 - Sophisticated queries: Search for specific items 28
6.2 Test 2 - Access data through linked data principle 29
6.3 Test 3 - Access data through terms from unknown and foreign vocabularies 31
6.4 Test 4 - Manipulate the HI'T'P header to retrieve other syntaxes 31

7 Discussion 35
7.1 Analysis of the Resultso 00000000 35
7.2 Suggestions for Future Work0 0000000000000 L. 39
7.3 Reflections on the Study 40

8 Conclution 42

Bibliography 44

iv

1 Introduction

Many organizations are creating alot of data, and the data is often stored in a specific
system. The organizations can store the data in any way they want. When two
organizations wants to exchange information, the data has to be converted and maybe
extended for it to work in a new system. With so many different systems and formats
the effort to transform and extend data is a growing business, and it creates complexity
when it comes to the distribution of the data.

Problem Motivation

As of today, there is generally no standard of how data should be stored. Even if two
organizations stores the exact same information, the actual data can be represented
in many different ways. Every industry contains so many different organizations and
companies, it is practically impossible to create a standard structure of data.

Organizations can distribute their data on the web today with powerful web friendly
data formats such as XML and JSON. A human being with knowledge of XML has no
problem understanding the meaning of this kind of data, providing it has the knowledge
of the used terms. With this knowledge, a human being can easily use the data in
applications. However, computers or machines has no idea of how to handle XML-data
without help from a human being. Consider the following two XML examples:

<?xml version="1.0" encoding="UTF-8"7?>
2 <laboratory-test>
<type>HE1204</type>
<name>Hemoglobin</name>
<value>16</value>
</laboratory-test>

<?xml version="1.0" encoding="UTF-8"?>
<laboratory-test type="HE1204" name="Hemoglobin" value="16" />

The two examples represents the exact same information, but they are using different
approaches. The first expresses the data through XML-tags, the second through XML-attributes.
Even though computers could know the exact syntax of every programming language in

the world, they will not know the structure or the data types of these documents.

1 Introduction

There is no standard regarding how to construct XML-documents. Computers can never
understand or automatically know how programmers think when they design data sets,
because they simply match words. They has to be taught what purpose the XML-tags
and attributes has to be able to make intelligent decisions. The same goes with every
document on the web, computers has to be teached what the meaning of those documents
are.

It is not an option to strictly standardize how data sets should be designed, because
it would lead to stagnation, bureaucratic problems or other solutions to bypass the
problem, which would lead to them not following the standard anyway.

Problem summary

Computers can never understand foreign data automatically, they are just matching
words. They need a human being to examine the data for them.

Datasets from organizations will never look exactly the same. They have to be
loosly coupled.

Therefore, to integrate a new data set into an application, the programmer needs to
customize the application for it to understand the new data set[l]. Applications built
with this technology will never scale with global sources.

With this technology, data in the world can never be interconnected and work together
to combine the huge amount of knowledge that is available.

1.1 Semantic Web as Alternative

The creators of the World Wide Web were early aware of the problems with textbased
word matching on the web. In 2001, Tim Berners-Lee published a paper[5] where he
proposed that a majority of the information on the web at that time was created solely for
people, not machines. Documents on the web needed to be in a format which would allow
machines to understand the information, not only display it. The solution has nothing
to do with advanced artificial intelligence programming, but with the extra effort to
mark each data with extra metadata to define it for computers. With well-defined data,
machines can perform sophisticated queries and attain more precise results, instead
of attaining irrelevant results from unstructured data. This successor of the web is
called The Semantic Web, and contains many tools available for structuring and defining
data. The semantic web is a "huge engineeing solution" to the problem of unstructured
data. 7]

The semantic web adopts a framework called Resource Description Framework (RDF)
and is a common acronym, because it is one of the essential tools in producing structured
data. Data created with RDF is made to work in a specific kind of database, called
a graph database. The graph database differs from traditional storage of data, e.g.

1 Introduction

relational or tree-based databases (i.e. XML). Graph databases store relationships
between objects. Relationships are not connected through primary keys as in relational
databases. Moreover, there is no intrinsic importance, graph data is simply resources
connected with other resources (objects).

Graph databases are therefore schema-less|21], which makes them highly suitable for
environments with fuzzy and changing requirements.

A piece of RDF-data is called a triplet. A triplet is a statement of three items, two objects
and a relationship (predicate) that connects them[I]. Example of a triplet is:

<LabTest> <hasTestPerson> <John>

When describing a triplet, usually the terms subject predicate and object is used. In
this case LabTest is the subject, hasTestPerson the predicate and John the object.

Linked Resources

RDF adopts URI’s (Uniform Resource Identifier) as identifiers for objects, this makes
it possible to create unique objects, point to other objects and be sure that a computer

will not mistake the object for another object[I]. The above statement could look like
this with URI’s:

<http://meds.fake/LabTest> <#hasTestPerson> <http://john.fake/John>

The URI’s are actually not URL’s, but unique objects which a computer will not mistake
for other objects representing other Labtests and persons named LabTest or John. This
is where the semantic web becomes interesting. Since the objects are identified through
URT’s it would be convenient if the URI’s also would lead to more information (triplets)
about the object if one typed that URI into a browser. If it were true, the machine could
on its own explore new sources by following the identifier. The technology is called Linked
Data and is one of the reasons why the semantic web has become increasingly popular
lately. Linked data opens up for a whole new way of sharing data. Instead of linking
to the full document of data, one can simply link to the specific object and integrate
it directly into the application. Data on the internet is evolving into a "web of data".
Resources link to different resources, and those resources link to more data.

1 Introduction

The figure below visualizes how some of the semantic data is cross linked over the web.
The circles are databases or organizations with data and the arrows shows how individual
objects are linked with resources not part of their own domain. The most linked database
in this figure is the circle named DBpedia. DBpedia is an initiative to extract data from
Wikipedia into semantic data.

T Ry
o \crunen FORF \qugil SIOC Y RV L
v ¥ — Ales Sites : : ;
Base profiles |- A o
| % V o N ;
Py s r v
¢ \ | F, v e
% \ | " { fackr | T —
| project wrapar | Wik |
Guten- % Sponger |

berg

e
.

AT — RDF Book

Hashup
4 C'[ES.QET -
o edia N r {
P o paLP
i | Hannowver
" I- { .--"r - 3
- L
} = o
r .
?_ Reactome u:_":;a..-r_| B
l | : ¥ _d___.r'- F
A /X i 9

Figure 1: Linked datasets create a web of data.

By extracting data into RDF, the extracted data be cross linked from other domains
and link to other resources.

1.2 Producing Semantic Web Data

Li Ding et. al. published the paper Data-Gov Wiki: Towards Linking Government
Data[13] where they described how they could preprocess and enhance the data from
the US Government portal site data.gov'. The study has been based on how Li Ding
et. al. exported government data into RDF-documents. Some of the complications they
discovered is presented below.

Datasets can be in many different formats, and many of them are often in a proprietary
format. These datasets can be faulty and contain blank nodes. Datasets of this kind need
to be extracted and preprocessed by an RDF-engine in order to be useful to semantic
web applications. In the preprocessing phase, the data gets connected with shared
vocabularies and can thereby be inter-connected with other objects[13].

'http://data.gov/

http://data.gov/

1 Introduction

One of the most powerful qualities of RDF-data is the possibility of linking to other
resources. Objects can refer to external objects on other domains, to provide related
information[I3]. This can for example be used to link laboratory tests to related
information about the test, e.g. how the test was taken.

In general, developers have limited knowledge about the semantic web. To satisfy them
and make RDF-data available to more people, there is need for a more user friendly
format. Web application programmers are used to XML and JSON, the software stack of
the semantic web causes them not to be able to take part of data from RDF-documents[16].

Research Question

The above complexity discovered by Li Ding et. al.[13] is something that will be
investigated in this thesis. Linked data has to be created from initial data. Their
encountered problems has shaped the research question of this study.

How can data be extracted into linked data by using semantic web technologies?

1.3 Delimitation

I have delimited the initial data to clinical data produced by AstraZeneca R&D. The
term clinical data can be used to describe many different types of data. This study has
been focused on data which represents laboratory tests. The result will represent one
solution that potentially will be able to work with many different types of data, not only
the laboratory test data.

The implementation part of the study is delimited to the Java programming language,
the semantic web Java library Jena. Many examples on the web are programmed in Java,
this has been one important motivation why I have chosen this programming language.
The Jena framework is developed by Hewlett-Packard Development Company, LP and
is used by many developers world wide, it is also programmed in Java. OWL is a
W3C recommendation and is used widely by semantic web applications and has many
advantages over other languages.

1.4 Disposition

The disposition of the thesis is arranged in the following way.

Chapter 2, Method: This chapter clarifies how the research of this thesis was made.
What kind of method I used to find the results and how I got the in data. The chapter
also reviews the empirical setting at AstraZeneca R&D and the empirical process.

1 Introduction

Chapter 3, Common Semantic Web Tools: This chapters reviews some of the common
languages and tools available to build semantic web applications.

Chapter 4, Theory: The research was built upon existing theories from previous work
in the field. This chapter explains those theories.

Chapter 5, Empirical Work: This chapter describes how I applied the theory from the
previous chapter into a functional software application. The chapter also explaines how
the tests that will produce the results was designed.

Chapter 6, Results of Experiments: The results of the thesis is showed and explained in
this chapter.

Chapter 7, Discussion: The results are being discussed in this chapter, how they are
related to the theory of the thesis. My own thoughts and reflections are included in the
discussion. Suggestions for future work are also presented.

Chapter 8, Conclution: This chapter summarizes the discussions of the thesis and
concludes the findings in general terms.

2 Research Method

The following chapter will describe the chosen research method for the study and how I
collected the in data. The chapter will also define the empirical setting at AstraZeneca
R&D and the empirical process.

The main goal of the study is to find out how to extract data into structured linked
data, and a efficient way to accomplish this task is to simulate a real world example.
This is something that the research method laboratory experiments allows.

2.1 Laboratory Experiments Method

Experiments are something that human beings are doing all the time, but not always are
aware of. Every time someone is doing a test which gives a result, it is a experiment. The
scientific research method is when the researcher is trying to learn as much as possible
from the results. By doing experiments in a supervised environment, a researcher can
control the experiments and change conditions and thereby manipulate the results.
Cornford & Smithson describe the method as an arrangement of tests with variables
that the experimenter is in control of|20]. By changing the input variables, the output
result data can change.

To create as accurate results as possible, it is important for a researcher to be aware
of every element of an experiment. Laboratory experiments generally test hypotheses
to investigate if the results either support or disapprove the hypothesis. The method
can also be used to investigate a question or past results. Experiments cannot confirm
hypotheses, they can only support them. They can however prove the hypothesis to be
false, by doing a counter example if the example is repeatable.

What motivates this research method is primarily the control of variables that are
predicted to affect the system and the capabilities to repeat and reiterate the experiments
are high. The downside is the complexity and time consuming process of creating an
emulation of a real world scenario.

I have chosen to investigate the research question of the thesis by executing designed
laboratory experiments on a semantic web environment.

2 Research Method

2.2 Empirical Setting - AstraZeneca R&D

AstraZeneca is a pharmaceutical company. They do clinical tests to determine the effects
of drugs. The documentation of these tests is stored in SAS-datasets (Statistical Analysis
System). These datasets are very similar to Microsoft Excel-documents. They have
columns with names and rows with data. The column names are standardized codes from
the Study Data Tabulation Model (SDTM) from the organization CDISC (Clinical Data
Interchange Standards Consortium). CDISC is a global non-profit organization which
develops standards to facilitate the exchange of clinical data. It is convenient to use the
same codes as everyone else in the industry, for example to convince authorities that the
drugs do not have any side effects (for instance, US authorities do extensive investigations
on drugs before they allow them to be sold in the country). When authorities inspect
the datasets, they do not have to render the codes because they are familiar with them
already.

However, this solution has some drawbacks. The same SAS-dataset is used for various
tests, and some of the columns are not used in all tests. If a test does not use every
column, the unused columns will contain blank spaces. Another problem is the lack of
possibility of extendeding SAS-datasets. At this time, the dataset is not enough for some
kinds of tests, therefore they adopt reference-datasets to extend these tests with extra
data. This causes the system to be more complex and harder to understand, especially
for a third-party investigator.

Because AstraZeneca adopt proprietary systems, it is not possible to automatically
understand their datasets within another system, even though they use the same vocabulary
for their data. The datasets have to be examined by a human being before they can be
understood by a different system.

2.3 In Data Collection

The initial data for the study was collected from CDISC, the organization has made
SAS-datasets with artificial data available for the public. The data is created to be
simulated and show what data that is used to record laboratory tests looks like. This
data can be used to elaborate with. The SAS-format is a proprietary format, and I
didn’t have any program to read the data. A software developer at AstraZeneca R&D
converted the data into Microsoft Excel format. The conversion process was an easy
task, the developer simply opened the file in the application SAS Viewer, marked all
rows and copied them into a Excel document.

The header of the Excel-file contained all the CDISC-codes. These codes was rendered
with a PDF-documentation also available from CDISC, named Study Data Implementation

2 Research Method

Guide: Human Clinical Trials. The documentation can be found at CDISC’s website!
and requires a free registration.

With the help from a researcher at AstraZeneca R&D, I removed a few columns in the
file to simplify the process to extract the in data. We choosed to focus the in data to
tests related to hemoglobin lab tests. Consequently, every column not related to those
tests was scraped from the spread sheet. The result was 11 columns and 8 rows not
counting the header. The in data was in other words decreased into 8 rows, who all were
describing information about hemoglobin lab tests. The columns are explained more in
detail in chapter 5.

The Excel-document was later saved as a CSV-file, this can be done in Excel. The
CSV-file was used as in data for the application developed in the study to transform the
data into RDF.

2.4 Development of a Test Environment - Empirical
Process

The empirical process is the development of the semantic web applicaton. The application
can read the in data and tranform it into RDF. The end result was a environment that
can be used to execute tests on RDF-data.

I've chosen to work with OWL (Web Ontology Language) to represent knowledge in a
semantic structure. OWL is explained more in detail in chapter 3. An OWL ontology
was developed for the study. The ontology includes classes for Hemoglobin lab tests and
persons.

The semantic web application was developed in Java EE with help from the semantic
web library Jena. The application contains two main parts.

The first part is the one that reads a CSV-file and converts each row into RDF-resources
and triples, the application serializes them into a OWL-document. The second part reads
the OWL-file and the OWL-ontology and makes the resources and triples available on
the web with help from SPARQL and servlets. The empirical process is explained more
in detail in chapter 5.

Four experiments was designed to execute tests on the new data. The tests used different
methods to access the data from the application. The results of the tests was analyzed
by refeering how they was related to the theory of the thesis.

Ihttp://www.cdisc.org/sdtm

http://www.cdisc.org/sdtm

2 Research Method

2.5 Validity

The research background and the theoretical framework of the thesis was found by
searching the web for research papers and analyzing them for the previous work in the
field. The first weeks of the study was dedicated to attaining a good foundation of
the semantic web. The fact that the semantic web framework contains a rather big
software stack was discovered. To be able to understand the research problems of this
thesis, a solid understanding of the common terms used while developing semantic web
applications is needed. Consequently, the next chapter of this thesis is dedicated to
describing these terms.

As a result of the study of previous work in the field, chapter 4 describes a few directives
that previous researchers have observed when developing a semantic web application.

The involved research problems of this thesis were chosen by looking at articles that had
made successful extractments of data in other fields, and adopting them into the field of
clinical data. Articles were found by using the search engine Google Scholar?. Articles
were chosen by [i] looking at the number of times the article had been cited and [ii] the
year of publication.

thtp://scholar.google.com/

10

http://scholar.google.com/

3 Common Semantic Web Tools

Semantic web applications were first introduced through the Resource Description Framework
(RDF), but the creators quickly became of that the framework was not sufficient to
successfully fulfil the vision of the semantic web. The tools available today to create
semantic web applications are a software stack that builds upon RDF. This chapter will
explain some of the common tools available.

3.1 RDF

One of the problems with the web today, as described in the introduction chapter, is that
the same information can be expressed in many different ways (see the XML-example in
the introduction), and machines cannot understand the information, because they are
not familiar with the data structure. Actually, this is also the case with RDF. RDF
can be expressed with different syntaxes, but in the end, it is the underlying triplets
which define the data, not the RDF-syntax|[19]. The following sections will describe
three different syntaxes of RDF.

RDF /XML

One of the most frequently used syntaxes is RDF/XML. It adopts, like its name says,
XML-syntax. To create an example, let us define a describing document about the
laboratory test showed earlier.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#"
xmlns:cdisc="http://reference.cdisc.org/LabTests#">
<rdf:Description rdf:about="http://data.astrazeneca.org/LabTest01">
<cdisc:hasTestPerson rdf:resource="http://john.fake/John" />
</rdf :Description>
</rdf :RDF>

This is how the triplet can be defined with RDF /XML, with some improvements. The
first tag defines a RDF-namespace, so that computers will understand that the document
is not an ordinary XML-document. Resources are defined with the Description tag in
the RDF-namespace, and the identifier is created with the about attribute in the same

11

3 Common Semantic Web Tools

namespace. The LabTestO1 object is connected with John with the tag hasTestPerson
from the namespace cdisc. The namespaces will be explaned in further detail later.

Notation3

Another syntax is called Notation3 (N3), and can in many cases be more straightforward
and compact than RDF/XML. N3 is designed to be human readable and is being
developed by the Semantic Web Interest Group at World Wide Web Consortium (W3C)[6].

@prefix cdisc: <http://reference.cdisc.org/LabTests#>
@prefix az: <http://data.astrazeneca.org/>
az:LabTest01 cdisc:hasTestPerson <http://Jjohn.fake/John>

N3 offers programmable relationships in RDF.

@prefix cdisc: <http://reference.cdisc.org/LabTests/>

@prefix az: <http://data.astrazeneca.org/>

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#>
@prefix : <http://www.example.org/>

<http://john.fake/John> :age "65"

az:LabTest0l cdisc:hasTestPerson <http://john.fake/John>

{?b :age ?c . ?c :moreThan "55" } => {?a :isA cdisc:SeniorTest}

The above example shows first that John has the age 65 and states that John is part of
the az:LabTestOl. The code then checks if the LabTest-person has an age that is more
than 55, if its true, another triple is generated automatically that states that the test is
a cdisc:SeniorTest.

N-Triple

N-Triple is a simplified and read only version of Notation3|11]. It adopts full identification
to every resource and relationship.

<http://data.astrazeneca.org/LabTest01>
<http://reference.cdisc.org/LabTests/hasTestPerson>
<http://john.fake/John>.

The code represents one statement. The statements are separated with dots, do not
mind the line breaks. The layout of this document was simply not big enough.

12

3 Common Semantic Web Tools
3.2 Namespaces

The above examples have shown how to produce triplets for defining well-structured
data. Objects has been defined with unique references with URI’s. Also, predicates
have been using URI's. This how RDF allows to avoid custom programming when
developing applications. If the computer which is reading the data is not familiar with
the predicates, it would only understand the structure, not the meaning of the datall].
In other words, it would not understand what kind of relationship the objects have.
Therefore, it is important to try to use as common namespaces as possible when choosing
predicates.

The examples in the above sections have used the cdisc namespace, unfortunately that
namespace is made up. Computers will not know how to understand the data, but for
explaining the use of namespaces it was necessary to create relevant clinical examples of

RDF.

For other kind of data, there are several namespaces available. The Friend of a Friend
(FOAF) namespace is often used to describe people. The Dublin Core namespace can
be used to describe documents. MusicBrainz for music artists.

3.3 Vocabularies and Languages

The previously introduced methods for handling structured data have provided the
possibility of creating a relationship between objects. The relationships can be distributed
and used in applications which can use the information, because the machines understand
the meaning of the data. However, there is still no real semantics behind the data.
Computers using information about LabtestOl would have to "guess" or simply try
every predicate there is, to find any useful information. There is no data model behind
it which tells the computer that the LabtestOl object has some base values, such as a
lab value, a test person and a date.

The Web Ontology Language (OWL) is one solution to this problem. OWL is a language
used to create an ontology in the semantic web. The primary reason to create an ontology
is to represent information about objects and how they are related. OWL defines these
semantics as classes, sub classes and properties. [§]

"Ontologies are formalized vocabularies of terms, often covering a specific domain and
shared by a community of users. "[18]

- W3C

Class-instances in OWL is however not the same thing as an instance of a class in object
oriented programming. One difference is that the triples which represents an instance

13

10

11

12

13

1

2

3 Common Semantic Web Tools

of a class is not bound to that OWL-class by any means. They can however together
acquire the status of a class-instance, if they fulfil the requirements from the class. In
programming environments, an OWL-reasoner is used to make this possible.

Classes

Classes are used to encapsulate values in a specific domain. A class can have a subclass,
which will have inherit all the properties from its parent class.

Example of an OWL Ontology defining a class and a sub class (in N3-syntax):

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
@prefix owl: <http://www.w3.0rg/2002/07/owl#>

@prefix cdisc: <http://reference.cdisc.org/def/owl#>

<http://reference.cdisc.org/def/owl#> rdf:type owl:0Ontology ;
rdfs:comment "An example clinical ontology
to show the basics about OWL"""rdf:PlainlLiteral ;

cdisc:LabTest a owl:Class

cdisc:HemoglobinLabTest a owl:Class;
rdfs:subClassOf cdisc:LabTest

There are a few new things introduced in the code. Line 1, 2 and 3 devine namespaces
used by OWL and line 10 defines the namespace used to refer to this ontology, named
cdisc. At line 6 the object referring to the ontology is set as an ontology, and a comment
is associated with the object.

At line 10 a class is defined, for now the class does not contain any information, other
than that its name is LabTest and it belongs to the cdisc namespace. Line 12 defines a
sub class of the class called HemoglobinLabTest.

Properties

Properties are used to give the classes relationships to other objects or definitive values.
Properties refeering to other objects are called ObjectProperty, properties referring to
values are called DataTypeProperty[12]. Properties combine two objects/datatype’s
with a predicate. ObjectProperty defined:

cdisc:hasCategory
a owl:0bjectProperty

14

10

11

3 Common Semantic Web Tools

Properties can be restricted to certain values or objects.

cdisc:hasCategory
a owl:0bjectProperty ;
rdfs:domain cdisc:LabTest ;
rdfs:range cdisc:Category

rdfs:domain restricts the subject of a triple, rdfs:range restricts the object of a triple. In
the above example it means that the instantiated object must be of the class, or sub class
of cdisc:LabTest and the property has to be an instance of the class cdisc:Category.

To demonstrate the previous explanation about how OWL can be used to define classes
that always have certain properties, an example is needed. Let us create a class that
assumes the following:

Everything that is a laboratory test and has the category "hemotology"” is a hemoglobin
test.

cdisc:HemoglobinLabTest
a owl:Class ;
owl:equivalentClass
[a owl:Class ;
owl:intersectionOf
(cdisc:LaborationTest
[a owl:Restriction ;
owl:onProperty cdisc:hasCategory ;
owl:hasValue cdisc:Hematology
1)
]

This code makes it possible for a computer program to know that a resource and its set of
triples together are the same as an instance of the class HemoglobinLabTest, even if they
are not actually are an instance of the class. This is achieved with owl:equivalentClass
and owl:intersectionOf. intersectionOf takes a collection of classes as argument. It
assumes that the resource fulfil the requirements of every class in the collection. In this
case it means; 1. a resource must be an instance of cdisc:LaborationTest (or a subclass).
2. it must have the property cdisc:hasCategory, and that property must point to the
object cdisc:Hematology.

To accomplish the second restriction an anonymous class has been created, which makes
the restriction. In other words, to be able to call a resource a cdisc:HemoglobinLabTest,
it must be possible for it to be an instance of cdisc:LabTest and the defined anonymous
class.

15

3 Common Semantic Web Tools
3.4 Sophisticated Queries

RDF-documents can quickly become large. Graph-databases often contain millions of
triples. Like most database systems, also RDF has a query language to get relevant
information instead of searching through a whole database[23]. SPARQL is an recursive
acronym and stands for SPARQL Protocol and RDF Query Language. SPARQL asks
queries against the graph-database, and since there is no schema, or many different
tables with primary keys, it is much easier to combine questions compared to traditional
systems. Answers which would have been hard to attain with relational queries are easy
to get with SPARQL. SPARQL is known to be faster than relational databases too.

To put this in context, a simple SPARQL-query to select every resource that is an
instance of the class HemoglobinLabTest has been defined below.

PREFIX cdisc: <http://reference.cdisc.org/def/owl#>
2 SELECT ?resource WHERE ({
?resource a cdisc:HemoglobinLabTest

3.5 Linked Data Principles

As mentioned earlier, linked data is about making object URI’s dereferenceable. This
does not however mean that every object has to be in a separated RDF-document.
Instead, the URI’s should lead to a website which performs a SPARQL query to the
graph-database, and retrieves the information about the object|19].

Many websites provide both a browser interface and the RDF-data in its raw form,
however the URI to the object can lead to both these sites. The webserver simply
detects if the user agent is coming from a web-browser or an RDF-client.[I3] One
way to accomplish this is to give the HTTP header attribute "Accept: " the value
"application /rdf+xml" to retrieve RDF /XML syntax.

16

4 Theory

This chapter introduces three directives to follow when extracting existing data and
developing semantic web applications. The advice is more or less based on the article
Data-Gov Wiki: Towards Linking Government Data|l3]. The article describes how
researchers extracted data from the site Data.gov!. The article only describes brief
information about what kind of tools they used, not any detailed tutorials. As a result,
a deeper study about the terms used in the article was necessary, and the results of some
those terms were previously presented in chapter 3.

The semantic web and its tools are growing and the technology to develop applications
is being outdated quickly, the motivation to choose and base the previous work solely
on one article was motivated by that it was published in 2010. Nonetheless, some of the
recommendations in the article were contradicted by other researchers results.

4.1 Producing Linked Data

The data used in this study has been restricted to the CSV-format. CSV files contain
a header-row with column names and afterwards the data, separeted by the comma
symbol.

With CSV-files, the conversion to RDF is very straightforward. Li Ding et. al.[13]
propose that data transformation should be "minimal and extensible". The reason is to
keep the original data structure and creating as simple triples as possible. Simple triples
make the RDF-data more understandable, which can facilitate for developers to use and
extend the data.

The transformation procedure includes creation of URI’s for each row of data, not
counting the header. The values in the row are mapped into the corresponding RDF-property.
The properties are created from the header-row. According to Li Ding et. al.[13],
RDF-properties must be linked to the dataset it comes from, i.e. the properties must
only be used in RDF-documents generated from the corresponding CSV-file. Properties
can mean different things in different situations. This however contradicts the whole
idea of the semantic web, that the documents should be machine readable. Documents
with unique properties will only be readable to customized applications. According to

'http://data.gov/

17

http://data.gov/

4 Theory

Doan et. al.[14] data should be mapped to properties with ontologies. It is an significant
feature that is needed for documents to be machine readable.

To make the RDF-documents available and usable on the web, the format RDF /XML
has been chosen by Li Ding et. al[13]. RDEF/XML has more readability than other
RDF-formats. Both RDF and XML-readers can understand it, XQuery and SPARQL
can query data from the format.

The unique URI for each row shall be dereferenceable by using the HTTP-protocol|2].
This can be done by for example having a servlet listening on a base URL i.e.

http://example.org/resource/. Everything that comes after that URL can be
queried by the servlet. A SPARQL-DESCRIBE query retrieves all triplets related to the
subject. For example, the URL:

http://example.org/resource/Hemoglobin

will retrieve all triplets related to the object that has the same URI.

For a developer, it is not hard to understand that this kind of procedure needs some
kind of programming environment to work in an application. In the book A Developer’s
Guide to the Semantic Web[19] the semantic web framework Jena is used for this cause.
Jena is a set of Java-libraries that can parse RDF documents into Java objects and vice
versa. It also has tools to execute SPARQL-queries on RDF-documents. Finally, it can
handle OWL-ontologies. These tools make it a very suitable framework for a Java EE
environment to create a semantic web application.

4.2 Linking Data

Li Ding et. al.[I3] converted many datasets with government data, and identified data
which was very similar or identical to other datasets. They created a namespace to use
with datasets that treated the same type of information. It is also possible to use the
same class if using an ontology/[I].

Ontologies can provide programmers with opportunity to link data in many ways. In
particular, they are very good at linking to related data. Semantic web tools available
can link describing texts to URI’s, it can therefore be easier to explore new linked data.

When dealing with resources that have an object in another dataset describing the same
object, the two resources can be linked in a statement with owl:sameAs. The object can
thereby be identified as a common object, even if it has a unique URI.

18

4 Theory
4.3 Increasing the Usefulness of Linked Data

The growing software stack of the semantic web is making it harder and harder for a
developer to understand and consume RDF. The different RDF-syntaxes require special
libraries for programming languages to be parsed. John Sherida and Jeni Tennison[16]
describe that highly experienced programmers failed to understand a SPARQL resource
at data.gov.uk?.

Most developers are however known to understand RESTful web services using API’s
with popular return syntaxes. Data.gov.uk developed a layer on top of the SPARQL
service that transformed the RDF into JSON or XML|[16]. With this layer, the provider
of the data can store it as RDF, link to other RDF-objects and perform intelligent
SPARQL queries and still return developer friendly end results.

2http://data.gov.uk

19

http://data.gov.uk

5 Empirical Work

This chapter explains how the real world example was created from the in-data provided
by AstraZeneca R&D.

A summary of the conversion process is presented below:
e Copying SAS-dataset into Microsoft Excel.
e Saving the Excel-document as a CSV file.
e Reading the CSV-file in Java with help from OstermillerUtils.
e Creating hash maps from the headers and the values.
e Creating resources and triples from values in the hash maps.

The end results from this conversion are merely triples containing the data in RDF-format.
To be able to create queries to retrieve information about specific laboratory tests, an
ontology is needed. The ontology will be used to define what kind of values a laboratory
test will have to contain to be a valid instance of a class in the ontology. The application
will read the ontology and define which triples that together represent instances of
classes.

Resources will get unique URI’s by the conversion process and become dereferenceable
via a SPARQL end point.

5.1 Initial Datasets

Before defining an ontology, the initial dataset is studied. Data received from a hemoglobin
test was converted from SAS-documents into Microsoft Excel through copy and paste of
the columns and rows. The first two rows are represented in OpenOffice Calc below.

The bold text is the header, containing CDISC-codes. The header names will be
explained below.

e STUDYID. Study id which the test is part of, for example a study to test a certain
product for side effects.

e USUBJID. User Subject Identification. It represents the person who was involved
in the test, the test person.

20

5 Empirical Work

A | B | C | D | E
STUDYID USUBJID LBSEQ LETESTCD LBTEST
CDISC01 |CDISCO01.100008 11 HGB Hemoglobin
CDISCO1 |CDISCO01.100008 12 HGB Hemoglobin

F | G | H | [| J | K | L |

LBCAT LBORRES LBORRESU LBSPEC LBFAST LBDTC
Hematology 12.0 g/dL BLOOD Y 2003-04-15T11:20
Hematology (11.3 g/dL BLOOD N 2003-10-13T11:55

Figure 2: Hemoglobin laboratory test data

e LBSEQ. A unique number to ensure the uniqueness of the lab test within the
dataset.

e LBTESTCD. Short name of the measured item in the test.

e LBTEST. The measured item in the test.

o LBCAT. The category of the test.

e LBORRES. The measured value of the test.

e LBORRESU. The unit of the measured value.

e LBSPEC. The fluid of how the test was taken.

e LBFAST. Describes if the person was fasting or not while participating in the test.
e LBDTC. The date of the test.

5.2 Ontology Development

Five classes has been developed from the dataset. The main class to represent a
hemoglobin lab test was taken from the example in chapter 3. It was supplemented
by three additional restrictions. A resource needs the following relations to be equal to
a hemoglobin test.

e Be an instance of the class LabTest

Measures Hemoglobin.

Have a fasting value

Have a date for the test

Have a clinical value

The class in N3 syntax:

21

5 Empirical Work

1 cdisc:HemoglobinLabTest
2 a owl:Class ;
3 owl:equivalentClass

4 [a owl:Class ;

5 owl:intersectionOf

6 (cdisc:LabTest

7 [a owl:Restriction ;

8 owl:onProperty cdisc:isMeasuring ;

9 owl:hasValue cdisc:Hemoglobin

10]

11 [a owl:Restriction ;

12 owl:onProperty cdisc:hasClinicalValue ;
13 owl:someValuesFrom cdisc:ClinicalValue
14]

15 [a owl:Restriction ;

16 owl:onProperty cdisc:hasDate ;

17 owl:someValuesFrom xsd:dateTime

18]

19 [a owl:Restriction ;

20 owl:onProperty cdisc:isFasting ;

21 owl:someValuesFrom xsd:boolean

22 1)

23]
The class LabTest has no restrictions.

1 cdisc:LabTest
2 a owl:Class

To encapsulate values related to the actual test value, the class ClinicalValue has been
created. An instance of the class needs to fulfil the following requirements:

e Be a part of a LabTest
e Have a value
e Have a unit

e Have a value which explains the fluid of the measured test.
The class in N3 syntax:

1 cdisc:ClinicalValue

2 a owl:Class ;

3 owl:equivalentClass
4 [a owl:Class ;

5 owl:intersectionOf

22

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1

2

1

2

3

5 Empirical Work

[a owl:Restriction ;
owl:onProperty cdisc:isPartOf ;
owl:someValuesFrom cdisc:LabTest

[a owl:Restriction ;
owl:onProperty cdisc:hasValue ;
owl :someValuesFrom xsd:float

[a owl:Restriction ;
owl:onProperty cdisc:isMeasuredIn ;
owl:someValuesFrom xsd:string

[a owl:Restriction ;
owl:onProperty cdisc:isMeasuredFrom ;
owl:someValuesFrom xsd:string
1)
]

The class Person is just a reference class, and does not have any values yet.

cdisc:Person
a owl:Class

The final class is named Hemoglobin. It is connected to a lab test with the predicate
cdisc:isMeasuring. The class hemoglobin is connected with another ontology through
the owl: sameAs predicate.

cdisc:Hemoglobin
a owl:Class ;
owl:sameAs ncicb:Hemoglobin

NCICB is an acronym for National Cancer Institute Center for Bioinformatics and
provides an OWL-ontology. This code states that the resource is the same as hemoglobin
provided by NCICB.

5.3 Conversion of CSV-files

The following section will explain how the first entry in the CSV-file was parsed into a
RDF-resource.

23

5 Empirical Work

STUDYID, USUBIID, LBSEQ, LETESTCD, LETEST, LECAT, LBORRES, LBORRESU, LBSPEC, LEFAST, LEDTC
CDISCel, CDISCEL. 1886688, 11,HGE, Hemoglobin, Hematology, 12. 8, g/dL, BLOOD, Y, 2863 -84-15T11: 28
(DISCe1, CDISCEL. 180668, 12, HGE, Hemoglobin, Hematology, 11.3, g/dL, BLOOD, N, 2863-18-13T11:55

Figure 3: Hemoglobin laboratory test data in CSV-format

Parsing CSV-files into Jena-objects

The Java library OstermillerUtils® has been used to read and parse CSV-files. The first
two values are values concerning what study and which person took the test. They
are being used as identifiers for the resource. The third value is a customized solution,
it is a number that represents that this is a lab test. Lab tests have number 01 and
clinical values have the number 02. The fourth value is the sequence number to ensure
uniqueness within a study.

The first resource created has the study id CDISCO01, user id 100008 and unique number
11. The URI is showed below.

http://data.astrazeneca.com/resource/CDISC01/100008/01/11/

The second resource will represent a clinical value. It attains almost the same URI as
the LabTest, with one small difference, the identifier has changed from 100008/01/11
to 10000/02/11.

<http://data.astrazeneca.com/resource/CDISC01/100008/02/11>
The last resource created is the one representing a person.
<http://data.astrazeneca.com/resource/CDISC01/100008>

Predicates (properties) assign values to the resources.

5.4 Making Resources Dereferenceable

To be able to link to objects created from CSV-files, all resources has got an unique URI
from the extractment process. Each URI created has the same base URI:

http://data.astrazeneca.com/resource/

After that part, the resources URI’s gets shaped by the specific values. The reason
for this base URI is that the Java servlet listens to the /resource/ directory. Every
URL with /resource/ as base URL will be processed through the SPARQL-servlet.
A sidenote here, on the test computer, the hosts-file is redirecting all local traffic
which tries to access data.astrazeneca.com to the local machine. The subdomain

"http://ostermiller.org/utils/

24

http://ostermiller.org/utils/

5 Empirical Work

data.astrazeneca.com does not exist of the performance of this study. It is a
fictional example.

To retrieve triples about a object, e.g.

http://data.astrazeneca.com/resource/28/28464

The SPARQL-servet creates a DESCRIBE query:
DESCRIBE <http://data.astrazeneca.com/resource/28/28464>

The query will retrieve a RDF-document containing every triplet in the graph associated
with the object.

Since RDF is a language with many syntaxes, the results can be in various formats.
If the client is a web browser, the results will be a HTML-page which will display the
triplets in a user-friendly way. This HTML-presentation is actually merely N-Triples in
a fancy way.

If the client however comes from a semantic web-client, an RDF/XML-document will
be retrieved. The SPARQL-servlet looks at the HT'TP header to find out what kind of
document the client accepts. For example, semantic web browsers can use the following
code in the header:

Accept: application/rdf+xml

Web browsers can however also retrieve the triples in other formats. The use of parameters
is adopted to accomplish this:

http://data.astrazeneca.com/resource/28/28464?format=RDF /XML

The above URL retrieves a RDF-document in the RDF/XML-format. Other formats
available are N-TRIPLE, TURTLE, N3 and JSON. The three first are provided by
Jena. Jena does not provide any JSON-format for DESCRIBE-queries. To produce
JSON-format, Talis? has been used. Talis is an open source library which works with
Jena.

5.5 Design of Tests on New Data

Sophisticated queries - search for specific items

This test’s purpose is to examine the capability of retrieving specific items, with certain
conditions. The test uses the SPARQL-engine in a web browser. The following queries
are going to be executed against the SPARQL-engine:

2https://github.com/talis/rdf-json-writer

25

https://github.com/talis/rdf-json-writer

10

11

5 Empirical Work

PREFIX cdisc: <http://reference.cdisc.org/ontology#>

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchemaf#>

SELECT ?resource ?realValue ?date WHERE ({

?resource a cdisc:HemoglobinLabTest.
?resource cdisc:hasDate ?date.
?resource cdisc:hasClinicalValue ?value.
?value cdisc:hasValue ?realValue.

}

The query asks the graph for a resource that fulfil the requirements of the class HemoglobinLabTest.
It specifies variables in the query as the values and references to objects that the resource
has.

The next query to be executed is displayed below.

PREFIX cdisc: <http://reference.cdisc.org/ontology#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
SELECT ?resource ?date ?realValue WHERE {
?resource a cdisc:HemoglobinLabTest.
?resource cdisc:hasDate ?date.
?resource cdisc:hasClinicalValue ?value.
?value cdisc:hasValue ?realValue.
FILTER (?realValue >= "14"""xsd:float)
FILTER (?date < "2004-01-28T00:00:00Z"""xsd:dateTime)

}

This query asks the graph for the same resources as the previous query, in addition,
it also filters the results to only hemoglobin values higher or equal to 14 and lab tests
before the date 2004-01-28.

The results of both tests should give a list with [i] URI’s to the objects representing the
resources, [ii| the date and [iii] the value of the test.

Access linked data through linked data principle

The previous test is supposed to retrieve a list of URI’s which representing resources.
This test’s purpose is to try out if a client can follow the URI’s that the previous test
provided and retrieve more information about the object. The URI of a resource will be
put into a web browser (thereby through the HTTP-protocol).

26

5 Empirical Work

Access data through terms from unknown and foreign
vocabularies

The purpose of this test is to try to search for anything that is related to Hemoglobin
with terms not defined in the original ontology. The test contains three SPARQL-queries.
The first two tests have no idea of any vocabulary which can be used. It searches with
and without wildcards (the asterisk, *’). The third query uses an ontology provided by
NCICB.

Query 1:

SELECT ?resource ?predicate WHERE ({
?resource ?predicate Hemoglobin

}
Query 2:

SELECT ?resource WHERE ({
?resource ?predicate x:Hemoglobinx

}
Query 3:

PREFIX ncicb: <http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#>
SELECT ?resource WHERE ({
?resource ?predicate ncicb:Hemoglobin

Manipulate the HTTP header to retrieve other syntaxes

This test is going to examine if it is possible to fetch various different syntaxes by
manipulating the HT'TP header attribute: Accept. The accept value will be tested with
application/rdf+n3, application/rdf+xml and application/rdf+json.
To manipulate the header, the command line application cURL is used.

27

6 Results of Experiments

This chapter presents the findings of the experiments. The tests were executed against
the semantic web application developed in the work of this thesis.

6.1 Test 1 - Sophisticated queries: Search for specific
items

The test executed two queries against the SPARQL end point. The adress of the
SPARQL end point is http://data.astrazeneca.com/. The end point contains
a form with a textarea where a SPARQL-query is supposed to be written. The server
responded with a table with three columns for each query. The first column contains
URDI’s to resources that fulfil the requirements of a HemoglobinLabTest. The URI’s are
hyperlinked to their URI. The second column, named realValue, contains numbers of
the datatype float. The third column contains dates of the datatype dateTime. The

datatypes are defined by W3C’s XMLSchema.

The first table below.

resource

realValue

date

<http://data.astrazeneca.com/resource /CDISC01/100014/01 /11>

"13.0"~ " <http://www.w3.0rg/2001/XMLSchema#float>

2004-03-30T12:50:00Z"

<http://data.astrazeneca.com/resource/CDISC01,/200001/01 /12>

"13.5"" " <http://www.w3.org/2001/XMLSchema#float>

"2004-02-02T07:58:00Z"

<http://data.astrazeneca.com/resource/CDISC01/200002/01/11>

"14.2" "~ <http:/ /www.w3.0rg /2001 /XMLSchema#float>

"'2003-09-19T12:45:00Z"

<http://data.astrazeneca.com/resource/CDISC01/100014/01/10>

"13.7"~ ~<http://www.w3.0rg/2001/XMLSchema#float>

'2003-10-06T09:30:00Z"

<http://data.astrazeneca.com/resource/CDISC01/100008/01 /11>

"12.0"~ ~ <http://www.w3.0rg/2001/XMLSchema#float>

2003-04-15T09:20:00Z"

<http://data.astrazeneca.com/resource/CDISC01/200001/01/11>

"14.0"" "~ <http://www.w3.0rg/2001/XMLSchema#float>

"'2003-09-09T09:02:00Z"

<http://data.astrazeneca.com/resource/CDISC01/200002/01/12>

"13.4"" ~ <http:/ /www.w3.0rg /2001 /XMLSchema#float>

'2004-03-29T07:40:00Z"

<http://data.astrazeneca.com/resource/CDISC01/100008/01 /12>

"11.3"" " <http://www.w3.org/2001/XMLSchema#float>

2003-10-13T09:55:00Z"

Figure 4: Query 1 - Ask for every instance of the class HemoglobinLabTest.

The result gives 8 rows. The second table below.

resource

realValue

date

<http://data.astrazeneca.com/resource/CDISC01/200002/01 /11>

"14.2" "~ <http:/ /www.w3.org /2001 /XMLSchema#float>

2003-09-19T12:45:00Z"

<http://data.astrazeneca.com/resource/CDISC01/200001/01/11>

"14.0"" "~ <http://www.w3.0rg/2001/XMLSchema#float>

''2003-09-09T09:02:00Z"

Figure 5: Query 2 - Ask for every instance of the class HemoglobinLabTest and delimit
them to lab values higher or equal to 14 and tests taken before the date 2004-01-28.

28

6 Results of Experiments

The result gives 2 rows.

6.2 Test 2 - Access data through linked data
principle

This test takes the first URI received from the second query in the previous test,
http://data.astrazeneca.com/resource/CDISC01,/200002/01/11, and executes it in Chromium®
web browser. When an URI is inputed and executed, the SPARQL servlet is triggered

and creates a DESCRIBE query. The query retrieves every triplet related to the specified

URI. The triples are presented as a HT'ML table. The table contains two columns. Each

row are together with the input URI is a triplet. The subject of each triple is the URI.

The predicate of each triple can found in the first column, and the object in the second.

D data.astrazeneca.com/p...

{- @ Q data.astrazeneca.com/page/CDISC01,/200002/01,/11 ﬂ? “

€ CDIsC

Property Value
cdisc: hasTestPersan = hitp:/idata. astrazeneca. comiresource/C DI SC01/7 200002
cdisc:isMeasuring = cdisc:Hemoglobin

= ncich:Hemoglobin
cdisc: hasClinicalValue = hitp:/idata. astrazeneca. comiresource/C DI SCOA/7 200002002711
rdf:type = ol Thing

= cdisc:Hemoglobinl sbTest

= cdisc:LabTest
cdisc:isFasting = false*hittp:/fweers . w3.ongf 20017 XM LSchem afhoolean
cdisc: hasCategory = cdisc: Hematology
owl:samehs. = hitp:/idata astrazeneca. comiresource/C DI SCOA7200002/01/11
cdisc:hasDate = 2003-09-19T 12:45:00F “*hittp: Feevrw w3, org 200 1MLE5chema#dateTime

Raw Data in ROF (N-Triples N3 Turtle JSON XML)

Figure 6: Web page 1.

Web page 1 - Site given when inputing the resource URI of an object. The web page
shows what triples the resource has. ObjectProperties are hyperlinked to the object
URI.

"http://www.chromium.org/

29

http://www.chromium.org/

6 Results of Experiments

To test if it is possible to link to other objects within a resource, the next part of the
test is to simply click on one of the URI’s, the one the predicate cdisc:hasClinicalValue
points to, http://data.astrazeneca.com/resource/CDISC01,/200002/02/11.

The result can be seen in the figure below.

D data.astrazeneca.com/p...

- & | (© data.astrazeneca.com/page/CDISCOT/200002/02 ool A
Property Value
cdisc:isMessuredFrom = BLOOD*http:/fererw. w3, org 2001 XMLSchema#siring
cdisc:isMeasuredin = gfdl **hittp:/eeeewr . w3 .ongl 20017 XM L5chemads tring
rdf:type = cdisc: Clinicalvalue
= owil:Thing
cdisc: hasValue = 14 2*hittp:liweeew . w3 ong 20017 XM L5chema#float
cdisc:isPartOf = hitp:/idata astrareneca.com/fresource/C DISCO1 /200002701711
owil:sameAs = hittp:/idata astrareneca. com/resource/C DISC01 /20000200211
Raw Data in ROF (N-Triples N3 Turtle JSOM XML)

Figure 7: Web page 2.

Web page 2 - Site given when clicking the link of the object to the property cdisc:hasClinical Value
of the previous resource.

The second web page was an internal site within the application. It was linked from

http://data.astrazeneca.com/resource/CDISCO01,/200002/01/11. The next part of the
test start at the first web page. The predicate cdisc:isMeasuring points to an object

named ncicb:Hemoglobin. The URI of the object is
http://ncicb.nci.nih.gov/zml/owl/EVS/Thesaurus.owl# Hemoglobin.
The third part of the test follows that URI and tries to reach the object.

Web page 3 - The URI to ncich:Hemoglobin did not give any web site. Instead it returned
an OWL-file, Thesaurus.owl, a file with the size 207 MB. It took 13 minutes to download
it. The file contains the object that cdisc:isMeasuring pointed to, but it also contains
several of other objects.

30

6 Results of Experiments

6.3 Test 3 - Access data through terms from
unknown and foreign vocabularies

This test used the same SPARQL endpoint as the first test. The first two queries of the
test did not give any results, they could not be executed by the SPARQL-engine. The
third query gave a table with two columns. The query asked to get every resource and
predicate that was part of a triplet where

<http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#Hemoglobin>
was included. Each row of the returned table is the subject and predicate that is
connected with

<http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#Hemoglobin>.
The first column is the subject and the second is the predicate.

resource predicate
<http://reference.cdisc.org/ontology #Hemoglobin > <http://www.w3.0rg/2002/07 /owl#equivalentClass >
<http://ncichb.neinih.gov /xml/owl/EVS/Thesaurus.owl#Hemoglobin> | <http://www.w3.0rg/2002/07/owl#equivalentClass>
<http://reference.cdisc.org/ontology#Hemoglobin http://www.w3.0rg/2000/01 /rdf-schema#subClassOf
<http://ncicb.ncinih.gov/xml/owl/EVS/Thesaurus.owl#Hemoglobin> | <http://www.w3.0org/2002/07 /owl#sameAs>>
<http://neicb.neinih.gov /xml/owl/EVS/Thesaurus.owl#Hemoglobin > | <http://www.w3.org/2000/01 /rdf-schema#subClassOf>
<http://reference.cdisc.org/ontology #Hemoglobin > <http://www.w3.0rg/2002/07 /owl#sameAs>
<http://data.astrazeneca.com/resource/CDISC01,/200002/01 /12> <http://reference.cdisc.org/ontology#isMeasuring >
<http://data.astrazeneca.com/resource/CDISC01,/200001/01/11> http://reference.cdisc.org/ontology#isMeasuring
<http://data.astrazeneca.com /resource/ CDISC01,/100014/01 /11> <http://reference.cdisc.org/ontology#isMeasuring >
<http://data.astrazeneca.com/resource/CDISC01,/200001/01/12> <http://reference.cdisc.org/ontology#isMeasuring >
<http://data.astrazeneca.com/resource/ CDISC01,/100014/01/10> <http://reference.cdisc.org/ontology#isMeasuring >
<http://data.astrazeneca.com/resource/ CDISC01,/200002/01 /11> <http://reference.cdisc.org/ontology#isMeasuring >
<http://data.astrazeneca.com/resource/CDISC01,/100008/01/11> http://reference.cdisc.org/ontology#isMeasuring
<http://data.astrazeneca.com /resource/ CDISC01,/100008/01 /12> <http://reference.cdisc.org/ontology#isMeasuring >

Figure 8: Query 3 - Ask the server for every resource and predicate that has a
relationship with a specified object.

The query returns 14 rows with two columns.

6.4 Test 4 - Manipulate the HTTP header to retrieve
other syntaxes

This test uses the command line application cURL? to send HTTP-requests to the
semantic web application with a manipulated header to retrieve different RDF-syntaxes.
Three commands are going to be executed, but they will all access the same URL. The

URL is an URI to a RDF resource, http://data.astrazeneca.com/resource/CDISCO01,/200002/01/11.

2http://curl.haxx.se/

31

http://curl.haxx.se/

6 Results of Experiments

The URL will trigger the SPARQL servlet and create a DESCRIBE query (as mentioned
carlier). Each command will first be written, and after the command a screen shot of
the result is shown (from the application gnome-terminal).

1 curl -L -H "Accept: application/rdf+n3"
> http://data.astrazeneca.com/resource/CDISC01/200002/01/11

eidel@eidel-ubuntu:~% curl -L -H “"Accept: application/rdf+n3" http://data.astrazeneca.com/resource/CDISCOL/200002,/01/11
gprefix rdfs: <http://www.w3.org/20008/01/ rdf -schemad= .

@prefix xsd: =http: /v w3, org/ 2001/ XMLSchemad> .
@prefix owl: <http:// wew.w3.org 2002707 fowldE> .
gprefix rdf: <http://www.w3.org/199%/62,/22 - rdf -syntax-nsdé= .

@gprefix cdisc: <http://reference.cdisc.org/ontologyd= .
@gprefix ncicb: <http://ncicb.mci.nih.gov/xml/owl/EVS/Thesaurus. owld> .

<http:/fdata.astrazeneca.com/resource/CDISCOL/200002/01/11=
a owl:Thing , cdisc:HemoglobinLabTest , cdisc:LabTest ;
cdisc:hasCategory cdisc:Hematology ;
cdisc:hasClinicalValue
<http://data.astrazeneca.com/resource,/CDISCE1,/208002,/62/11= ;
cdisc:hasDate "2003-89-19T12:45:007" " xsd:dateTime ;
cdisc:hasTestPerson <httip://data.astrazeneca.com/resource/C(DISCOL1,/200002= ;
cdisci:isFasting “false"""xsd:boolean ;
cdisc:isMeasuring ncicb:Hemoglobin , cdisc:Hemoglobin ;
= <http://data.astrazeneca.com/resource,/CDISCE1,/208002,/81,/11= .
eidelgeidel -ubuntu:~$ []

Figure 9: Retrieves code with cURL.

The command returns code in Notation3 syntax. The next command is:

1 curl -L -H "Accept: application/rdf+xml"
2 http://data.astrazeneca.com/resource/CDISC01/200002/01/11

32

6 Results of Experiments

eidel@geidel-ubuntu:~% curl -L -H "Accept: application/rdf+xml" hitp://data.astrazeneca.com/resource/CDISCAL/200002,/81/11

<?xml version="1.8" encoding="utf-8" ?=<rdf:RDF
smlns: rdf="http:/ wew.w3.0rg/1999/02/22 - rdf -syntax-ns&"
smlns:ncicb="http://ncicb. nci. nih. gov/xml/owl /EVS,/ Thesaurus . owlE"
smlns: owl="http:/ wew.w3.0rg/2002,/07 owlE"
*mlns: xsd="http:/ viw.w3.0rg/ 2001/ XML5chemas"
smlns: rdfs="http:/ www.w3.0rg/2000/81/ rdf - schema&"
xmlns: cdisc="http://reference. cdisc.org/ontologyd" =

=<rdf:Description rdf:about="http://data.astrazeneca.com/resource/CDISCOL,/200002/01/11">
<cdisc:hasTestPerson rdf:resource="http://data.astrazeneca.com/resource/CDISCOL,/200802" /=
=cdisc:hasDate rdf:datatype="htip://www.w3.org/2001/ XMLSchemaddateTime">2003-09-19T12:45:00=/cdisc: hasDate=
<owl:samehs rdf:resource="http://data.astrazeneca.com/resource/CDISCRL/200082,/81,/11" />
=rdf:type rdf:resource="http: S www.w3.0rg/2002/07 /owl#Thing" />
=cdisc:hasCategory rdf:resource="http://reference.cdisc.org/ontologyfHematology" />
<rdf:type rdf:resource="http://reference.cdisc.org/ontology#HemoglobinlabTest" />
<rdf:type rdf:resource="http://reference.cdisc.org/ontologyflLabTest" />
=cdisc:isMeasuring rdf:resource="http://reference.cdisc.org/ontology#Hemoglobin” />
<cdisc:isFasting rdf:datatype="http:// www.w3.0org 2001/ XML Schemafboolean"=Talse</cdisc: isFasting=
=cdisc:hasClinicalValue rdf:resource="http://data.astrazeneca.com/ resource,/C(DISCEL/200002/02/11" /=
=<cdisc:isMeasuring rdf:resource="http://ncicb.nci. nih. gov/xml/owl/EVS,/Thesaurus . owl#Hemoglobin" /=
</rdf :Descriptions
</ rdf:RDF=
eidel@geidel -ubuntu:~% |:|

Figure 10: Retrieves code with cURL.

The command returns code in RDF/XML syntax.

33

6 Results of Experiments

The next command is:

1 curl -L —-H "Accept: application/rdf+json"
2 http://data.astrazeneca.com/resource/CDISC01/200002/01/11

eidel@geidel-ubuntu:~% curl -L -H “"Accept: application/rdf+json” hitp://data.astrazeneca.com/resource/CDISCOL/2006002,/01/11

"http:\/\JSdata.astrazeneca.comy/resource' /CDISCAO1N /2000024 /01 /11" : {
"http:\Wreference.cdisc.org\/ontology#hasTestPerson” @ [{ "value" : "hitp:\/ data.astrazeneca.com'/resourcey/CDIS
Ce1y/2eeee2", "type" : "uri" } 1.
"http:\\Jreference.cdisc.org\ontology#isMeasuring” : [
{ "walue" : "http:\W/\/reference.cdisc.orgh/ontology#Hemoglobin®, "type" : "uwri" },
{ "walue" : "http:“\JSncicbh.nci.nih.govh/xmlSowlEVS /Thesaurus.owlfHemoglobin®, “"type" : "uri" }
]i
"http: VW reference.cdisc.org\/ontology£hasClinicalValue" : [{ "wvalue" : "http:\/\/data.astrazeneca.com'/resource\,/C
DISCE1N /2080824 /82 /11", "type" : "uri™ }],
"hitp: W\ v w3, orgh 19990 /020 /22 - rdf -syntax-ns&Ftype” @ [
{ "wvalue" : "http:W \Seww.w3.orgh/ 200207 owl#Thing", "type" : "uri" }.

{1 "walue" : "http:“\JSreference.cdisc.org'/ontology®#HemoglobinlabTest™, “type" : “uri® }.
{ "walue" : "http:W/\/reference.cdisc.orgh/ontology#labTest", "type" : "wri"
1.
"http:"reference.cdisc.org\ontology#isFasting” : [{ "value" : "false", “"type" : "literal", "datatype" : "http:'/
vt w3 L orgh 20010 XML chema®#boolean” } .
"http:\\Jreference.cdisc.org\/ontology#hasCategory” : [{ "value" : "hitp:“/\JSreference.cdisc.org\/ontology#Hematolo

gy", "type" : "uri® }],

"http: W\wew . w3, orgh S 20020,/07 fowl#sameAs" : [{ "wvalue" : "http:\/\JSdata.astrazeneca.com'/resources/CDISCE1\ /200002
WE1Y/11", “type" : "wri" } 1.
"http:\/\/reference.cdisc.org\/ontology£hasDate” : [{ "value" : "2003-89-19T12:45:88Z", "type" : "literal", "datatyp
e" : "http:'/ ' www.w3.org\/ 2001/ XMLSchemafdateTime" }]
1

1
eidelgeidel -ubuntu:~§ []

Figure 11: Retrieves code with cURL.

The command returns code in JSON syntax.

34

7 Discussion

7.1 Analysis of the Results

The findings of the research in the thesis can be hard to understand without any deeper
knowledge about the field. The purpose of this section is to analyze how the result are
related to the theoretical framework of the thesis. My own reflections will also be a part
of this section.

Producing Linked Clinical Data

The extraction of the SAS-dataset produced resources and RDF-triples. The resources
got URI’s as identifiers based on the values in the SAS-dataset. The first test executed
two SPARQL-queries against the new data. The results was two tables with data. The
first data contained resources equivalent to the requirements of a HemoglobinLabTest-class.
The second query had the same requirements as the first query, but it also added
some filters to delimit the results. The results went from eight rows into two with
the filters. The filters shows how SPARQL can be used to get specific information
from RDF-datasets. However, query languages are nothing new in the field of computer
science. The interesting point about the queries is how easy it can be to include data from
more than one resource. For instance, both queries started from the HemoglobinLabTest-class
and followed their reference to an instance of the class ClinicalValue, to get the data
type value. With for example SQL, a solution would involve primary and foreign keys
to make this possible. While this example would be rather easy to implement SQL, it
still shows how more easily it can be done with semantic web applications.

35

7 Discussion

It also gives an understanding of how the data structure has been changed from the plain
container standard with the SAS-datasets into a graph structure. The resources are
connected to other objects with help from predicates. And those objects are connected
with other objects. Resources can easily connected with new objects by creating new
triplets. There is no limitation from the data structure, the resources can be extended
and changed in any way. The only limitation would be from an ontology, if the ontology
has certain demands to fulfil any requirements for specific classes.

Below this paragraph is a visualization of a Person-resource connected to two HemoglobinLabTests.
The circles with text whom starts with http:// are resources created from the CSV-file

used in this study. The figure shows the relationships of each object. The Linked Data

Cloud is an illustration of how every node in this graph structure can be interconnected to

other objects by following references. In the figure, the Linked Data Cloud is connected

to ncicb:Hemoglobin, and I chose the node because it is part of a well established
ontology. But every object in this graph can be connected to other databases by adopting

linked data. Either by creating new triples which links to terms outside the ontology, or

by others who links to this graph.

httpe// .. 100008/

cdiscisPartOf cdisc:isPartOf

httpedf .. 100008/01/11/

cdisc:isMeasuring

rdf:type

cdisc:Person

http:/f .. 100008/01/12/

cdisc:isMeasuring

owl:sameds
rdfitype rdf:type

cdisc:HemoglobinLabTest

rdf-type

cdisc:LabTest

Figure 12: The graph structure of a Person object.

Linked Data Cloud

The objects are no longer bound to their dataset.

36

7 Discussion

Linking Data

While the extracting and conversion process of initial data can be seen as an important
part of the development of a semantic web system, the linking process is also an essential
part of the process. One of the tests was named Access data through linked data principle,
but what might not be realized is that every test was related to linked data. At
some point, in every test, there was a URI to a resource which was expected to be
dereferenceable. This shows what an important role linked data has for semantic web
applications.

The real question about the results related to linked data is: Was is possible to directly
link to resources? Resources were made dereferenceable by the use of the HT'TP-protocol.
This was tested directly in two tests. The web browser accepted only HTML results and
the command line application cURL manipulated the header to force it to accept other
syntaxes than HTML.

The results were web pages and RDF-code containing the information related to the
resource. The web page also hyperlinked the ObjectProperties, i.e. the properties to
other resources. The experiment tested to follow the reference of one resource, to get
more information about that object. As the results show, it followed another resource
(the ClinicalValue of the test) that was created from the exractment process. However,
when the application tried to follow a resource outside the frames of the application,
the result give the full document of the OWL-file Thesaurus.owl. The providers of the
owl file do not use a SPARQL-DESCRIBE query to give only information of the related
object. therefore the whole document is given.

Resources within the application built for this project can be linked to by any semantic
web application, but if they are trying to follow more links from our resources, they
might not get any results. The Thesaurus.owl file took 13 minutes to download, it is
unlikely to think that systems are willing to wait that long to get information.

Semantic web applications needs to improve their systems. The owners of the file
Thesaurus.owl did expose the file online, so people can link to it, but they missed one
essential part of linked data, the capability to link to individual objects instead of a
whole document.

Using Unknown and Foreign Terms

The results from the third test Access data through terms from unknown and foreign
vocabularies executed queries with foreign terms. The first two queries did not give
any results, they were probably invalid. The third asked the server for every object
and predicate with a relation to the object ncicb:Hemoglobin. The query returns a
table with 14 rows. I find it unlikely that anyone could use this information. To make
use of ncich:Hemoglobin, T suggest that the user uses it with a specified predicate. In
this case, the predicate cdisc:isMeasuring is highly related to ncich:Hemoglobin, since

37

7 Discussion

cdisc:Hemoglobin is set to be equivalent with owl:sameAs. Although, this suggestion
assumes that the user has some knowledge of the ontology.

My understandings is that the connection between different, unknown, ontologies is the
most complex thing to achieve with semantic web applications. The application created
in the study of this thesis is linked into another ontology, but how the linked data works
practically is not known.

Increasing the Usefulness of Linked Data

One of the tests manipulated the HTTP header to change the return syntax of the
RDF-document. The results showed that clients can choose which syntax they would
like the server to return by changing the Accept attribute of the HI'TP header.

One of the syntaxes retrieved was the JSON. Many web developers are familiar with
JSON and the language is fairly easy to understand. However, the return syntax of
JSON from the application in this study did return RDF as JSON. While the syntax
would most probably be much more understandable than RDF/XML, Notation3 or
N-Triples for a web developer, it is still RDF and developers have to learn RDF before
they can use the syntax.

The below code shows a draft from the results, it is clearly RDF-based JSON.

L

> "http:\/\/data.astrazeneca.com\/resource\/CDISC01\/200002\/01\/11" : {
3 "http:\/\/reference.cdisc.org\/ontology#hasTestPerson" : [

4 {

5 "value" : "http:\/\/data.astrazeneca.com\/resource\/CDISC01\/200002",
6 "type" : "uri"

7 }

8 1y

0 "http:\/\/reference.cdisc.org\/ontology#isFasting" : [

10 {

11 "value" : "false",

12 "type" : "literal",

13 "datatype" : "http:\/\/www.w3.0rg\/2001\/XMLSchema#boolean"

14 }
15]
16}
17}

Personally, I think that this is a poor solution, I'd rather use Notation3 than JSON, I
find it more human readable. The code in N3-syntax:

38

7 Discussion

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>
> @prefix cdisc: <http://reference.cdisc.org/ontology#>

<http://data.astrazeneca.com/resource/CDISC01/200002/01/11>
cdisc:hasTestPerson
<http://data.astrazeneca.com/resource/CDISC01/200002> ;
cdisc:isFasting "false"""xsd:boolean

The problem with web developer friendly results is that, seemingly they cannot return
RDF. To make this possible, a new data structure has to be generated from RDF. A
structure without any URI’s and no linked data. It really does not sound like a solution
that would last long, I mean, is that not exacly why RDF was invented? At this point
in time , RDF is not very known by developers, but in 5 years, I believe the data-format
will be widely spread among programmers world-wide. Instead of being conservative, it
is better to learn the new language.

7.2 Suggestions for Future Work

The analysis of the results observed that the findings supported the theory of the thesis
in some ways. However, a few things could have been done better. This section will give
suggestions of related work that could not be included in this thesis, mostly due to the
timeframe of the thesis.

Using recognized ontologies

Applications familiar with the developed ontology will be able to make use of the
application. Nonetheless, in chapter 3, it was proposed that semantic web applications
should use as common predicates as possible. Also, common classes can be sub-classed to
be customized for the application and still be recognized by applications. The developed
ontology for this study uses almost exclusively predicates and classes that were created
for this ontology. The classes and predicates are not understandable to a machine with
no knowledge of the ontology.

The following paragraph will introduce a few ontologies that can be used when dealing
with clinical data in semantic web applications.

CPR (Computer-Based Patient Record)!. This is an ontology that can be used to
create electronic patient records.

"http://code.google.com/p/cpr-ontology/

39

http://code.google.com/p/cpr-ontology/

7 Discussion

MUO (Measurement Units Ontology)?. This ontology is used to measure values.
For example, a measurement of hemoglobin could be an instance of a class in this
ontology, with information about the value, which unit, and how it was measured.

OBO Relation ontology®. The two previous ontologies mainly provide classes to
encapsulate values. This ontology’s purpose is to connect objects with predicates.
Examples of predicates includes: has_participant, is_a, part_of and instance_of.
The working field of the ontology is biology.

These ontologies increase the chances that computers will understand the clinical data
sets.

XHTML-pages with RDF

The application developed in this study could represent triplets in HTML if the client
was a web browser, and if the client was an RDF-application, the server would return
RDF/XML (or some other RDF-syntax). There is however another, maybe better
solution. Tt is possible to build XHTML-pages with RDF-syntax by adopting RDFa[22].
One document can therefore be read by both a web browser and RDF-clients.

RDFa is an acronym for RDF - in - attributes, and the name speaks for itself, the data
is expressed in attributes in XHTML. I think that RDFa is an important part of the
vision of creating a semantic web. It is not likely that every web page owner will set
up a full RDF-environment like T have done in the work of this study, but I do think
that they are willing to make the little effort to mark up the XHTML-pages they are
creating. If they do, their data can be understood by machines just like any RDF.

An interesting fact is that the content management system Drupal has many features
available to facilitate for developers to use RDFa.

7.3 Reflections on the Study

I knew that 1 wanted to make a study about the semantic web when I first began to
think about my upcoming bachelor thesis. I had read a lot of the semantic web, and
frankly, I found it very confusing to read about the theories behind it. Therefore to learn
as much as possible I wanted to set up a working environment. I found the laboratory
experiments method to match my needs very well. It allowed me to read a lot about
the semantic web software stack and simultaneously elaborate with the programming
environments.

2http://idi.fundacionctic.org/muo/muo-vocab.html
3http://www.obofoundry.org/ro/

40

http://idi.fundacionctic.org/muo/muo-vocab.html
http://www.obofoundry.org/ro/

7 Discussion

I do not think that more theoretical methods can compete with laboratory experiments
when it comes to the implementation of a practical system. Ovwerall, T am satisfied
with the results of the study. However, some of the results are not as good as others.
Specifically the results from the third test, Access data through terms from unknown and
foreign vocabularies. Those results could probably been better if I designed the test in
another way. I found the other tests to work very well to either support or disapprove
the theories.

41

8 Conclution

The purpose of the study was to answer the research question How can data be extracted
into linked data by using semantic web technologies?.

[have used the research method of laboratory experiments and created a real world
example, based on example data from the organization CDISC provided by AstraZeneca
R&D and concluded that data can be converted into a machine readable format by
using semantic web technologies (RDF, OWL and SPARQL) and the Java library Jena.
However, the data has to use a known vocabulery to be machine readable by a computer.

The study showed how the converted data can easily be interconnected with other
RDF-resources, by using triples in a graph structure. This makes the RDF-data schemaless
and extendable. The graph structure allows organizations to choose their own data
structure, and simultaneously making it readable by another system with a different
data structure. SPARQL can be used to perform intelligent queries on a graph database
and easily get information of related objects from a given match.

The study also showed how objects in a graph database can be available on the web by
using URI’s as references and making the URI’s dereferenceable. This allows semantic
web applications to link directly to an individual object, instead of linking to the full
database or document.

Clients whom are requesting objects can change the RDF-syntax by modifying the
Accept attribute of the HTTP header. In addition, the clients can also choose to
get a HTML visualization of an object by only accepting HTML syntax.

The study converted RDF code to JSON, which is a data format which is largely
recognized by web developers. The purpose was to facilitate for web developers to
use RDF. The JSON format of the study was in fact RDF in JSON-syntax. The syntax
is not more developer friendly than any other RDF-syntax. A recommendation to web
developers was given, to learn RDF instead of being conservative.

Finally, the study showed the complexity to integrate alien objects to an ontology. The
study tried to connect laboratory tests with a foreign ontology to make it readable by
more machines. It was pointed out that it was difficult to interpret the results, and they
lead to confusion to the user.

42

Bibliography

1]
2]

3]

[4]

[5]

6]

7]

18]

19]

[10]
[11]

[12]

L. Yu, Introduction to the Semantic Web and Semantic Web Services. Chapman &
Hall/CRC.

T. Berners-Lee, “Linked data - design issues.” http://www.w3.0org/
DesignIssues/LinkedData.html, June 2009.

A, Culley, “Technical basis for the semantic web.” http://
instructionaldesign.com.au/Academic/TechnicalThemel.htm,
June 2006.

W3C, “Rdf - semantic web standards.” http://www.w3.0rg/TR/
rdf-concepts/, February 2004.

T. Berners-Lee and J. Hendler, “Scientific publishing on the ’semantic web.”
http://www.nature.com/nature/debates/e—access/Articles/
bernerslee.htm, 2001.

T. Berners-Lee, “Notation3 (n3) a readable rdf syntax.” http://www.w3.org/
DesignIssues/Notation3.html, 2006.

S. B. Palmer, “The semantic web: An introduction.” http://infomesh.net/
2001 /swintro/, September 2001.

M. K. Smith, C. Welty, and D. .. McGuinness, “Owl web ontology language guide.”
http://www.w3.0rg/TR/owl—-guide/|, 2004.

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Dbpedia: A
nucleus for a web of open data.” http://www.springerlink.com/content/
rm32474088w54378/, 2007.

DBpedia, “wiki.dbpedia.org : About.” http://dbpedia.org/About, January
2011.

J. Grant and D. Beckett, “Rdf test cases.” http://www.w3.o0rg/TR/
rdf-testcases/#ntriples, February 2004.

M. K. Smith, C. Welt, and D. L. McGuinness, “Owl web ontology language
guide.” http://www.w3.0rg/TR/2004/REC-owl-guide—-20040210/
#SimpleProperties, February 2004.

43

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://instructionaldesign.com.au/Academic/TechnicalTheme1.htm
http://instructionaldesign.com.au/Academic/TechnicalTheme1.htm
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://www.nature.com/nature/debates/e-access/Articles/bernerslee.htm
http://www.nature.com/nature/debates/e-access/Articles/bernerslee.htm
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/Notation3.html
http://infomesh.net/2001/swintro/
http://infomesh.net/2001/swintro/
http://www.w3.org/TR/owl-guide/
http://www.springerlink.com/content/rm32474088w54378/
http://www.springerlink.com/content/rm32474088w54378/
http://dbpedia.org/About
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#SimpleProperties
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#SimpleProperties

[13]

[14]

[15]

[16]

[17]
18]

[19]

[20]

21]

[22]

23]

Bibliography

L. Ding, D. DiFranzo, A. Graves, J. R. Michaelis, X. Li, D. L. McGuinness, and
J. Hendler.

A. Doan, J. Madhavan, P. Domingos, and A. Halevy, “Learning to map
between ontologies on the semantic web.” http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.73.7937&rep=repl&type=pdf, 2002.

D. L. McGuinness and P. P. da Silva, “Explaining answers from the semantic web:
the inference web approach.” http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.93.9550&rep=repl&type=pdf, 2004.

J. Sherida and J. Tennison, “Linking uk government data.” http://events.
linkeddata.org/1dow2010/papers/1dow2010_paperld.pdf, 2010.

R. Ejvegard, Vetenskaplig Metod, vol. 4:2. Studentlitteratur AB.

W. O. W. Group, “Owl 2 web ontology language document overview.” http://
www.w3.0rg/TR/owl2-overview/, 2009.

L. Yu, A Developer’s Guide to the Semantic Web. Springer-Verlag Berlin Heidelberg
2011.

T. Cornford and S. Smithson, Project Research in Information Systems: A Student’s
Guide, vol. 2. Palgrave Macmillan.

S. Elbassuoni, M. Ramanath, R. Schenkel, and G. Weikum, “Searching rdf graphs
with sparql and keywords.” |ftp://ftp.research.microsoft.com/pub/
debull/alOmar/weikum-paper.pdf, 2010.

B. Adida, M. Birbeck, S. McCarron, and S. Pemberton, “Rdfa in
xhtml: Syntax and processing.” |http://www.w3.0rg/TR/2008/
REC-rdfa-syntax—-20081014/, 2008.

E. Prudhommeaux and A. Seaborne, “Sparql query language for rdf.” http://
www.w3.0rg/TR/2008/REC-rdf-spargl-query-20080115/), 2008.

44

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.7937&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.7937&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.9550&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.9550&rep=rep1&type=pdf
http://events.linkeddata.org/ldow2010/papers/ldow2010_paper14.pdf
http://events.linkeddata.org/ldow2010/papers/ldow2010_paper14.pdf
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
ftp://ftp.research.microsoft.com/pub/debull/a10mar/weikum-paper.pdf
ftp://ftp.research.microsoft.com/pub/debull/a10mar/weikum-paper.pdf
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

	Title page
	Abstract
	Acknowledgements
	Introduction
	Semantic Web as Alternative
	Producing Semantic Web Data
	Delimitation
	Disposition

	Research Method
	Laboratory Experiments Method
	Empirical Setting - AstraZeneca R&D
	In Data Collection
	Development of a Test Environment - Empirical Process
	Validity

	Common Semantic Web Tools
	RDF
	Namespaces
	Vocabularies and Languages
	Sophisticated Queries
	Linked Data Principles

	Theory
	Producing Linked Data
	Linking Data
	Increasing the Usefulness of Linked Data

	Empirical Work
	Initial Datasets
	Ontology Development
	Conversion of CSV-files
	Making Resources Dereferenceable
	Design of Tests on New Data

	Results of Experiments
	Test 1 - Sophisticated queries: Search for specific items
	Test 2 - Access data through linked data principle
	Test 3 - Access data through terms from unknown and foreign vocabularies
	Test 4 - Manipulate the HTTP header to retrieve other syntaxes

	Discussion
	Analysis of the Results
	Suggestions for Future Work
	Reflections on the Study

	Conclution
	Bibliography

