
Thesis for the Degree of Doctor of Engineering

Practical, Flexible Programming with
Information Flow Control

Niklas Broberg

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

Göteborg, Sweden 2011

Practical, Flexible Programming with Information Flow Control
Niklas Broberg

c© Niklas Broberg, 2011

Technical report 80D
ISSN 0346-718X
Department of Computer Science and Engineering

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Printed at Chalmers, Göteborg, Sweden, 2011

Practical, Flexible Programming with
Information Flow Control

Niklas Broberg

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

Abstract

Mainstream mechanisms for protection of information security are not ade-
quate. Most vulnerabilities today do not arise from deficiencies in network
security or encryption mechanisms, but from software that fails to provide ad-
equate protection for the information it handles. Programs are not prevented
from revealing too much of their information to actors who can legitimately
interact with them, and restricting access to the data is not a viable solution.
What is needed is mechanisms that can control not only what information a
program has access to, but also how the program handles that information
once access is given.

This thesis describes Paralocks, a language for building expressive but
statically verifiable fine-grained information flow policies, and Paragon, an
extension of Java supporting the enforcement of Paralocks policy specifica-
tions. Our contributions can be categorised along three axes:

• The design of a policy specification language, Paralocks, that is ex-
pressive enough to model a large number of different mechanisms for
information flow control.

• The development of a formal semantic information flow model for Par-
alocks that can be used to prove properties about programs and en-
forcement mechanisms.

• The development of Paragon, an extension of Java with support for
enforcement of Paralocks information flow policies.

Together these components provide a complete framework for programming
with information flow control. It is the first framework to bring together all
aspects of information flow control including dynamically changing policies
such as declassification, making it both theoretically sound as well as usable
for solving practical programming problems.

Acknowledgements Many people deserve thanks for helping me get to the
point where I am today, for helping me complete this work and my degree.

First and foremost I owe huge thanks to my supervisor, Dave Sands. Dave
has not only co-authored much of the work in this thesis – with numerous hours
of fruitful discussions, brainstorming, and wild races towards paper deadlines –
but has also been a steady source of general support and inspiration. His wealth
of crucial knowledge and experience has been invaluable in guiding me towards
becoming a proper researcher. Not the least, I am grateful for his willingness
to believe in a young student with a grand idea, and for letting me run with it.
Besides all this, Dave has also been a great friend and an invaluable support during
times of personal hardship. Dave, you have been nothing short of awesome. I am
truly grateful for everything you have given me, and I greatly look forward to
continuing that work together.

I also owe much to Rogardt Heldal, who has been a great friend and motivator
all the way. He has helped me focus on the important, and has inspired me not
the least in my aspirations to become a good teacher.

The rest of my PhD committee, Andrei Sabelfeld and John Hughes, have
provided many excellent suggestions and feedback on this thesis and previous work.

My opponent Stephan Zdancewic provided useful feedback on my thesis drafts,
and will no doubt give me many interesting challenges in defending my work.

Being a graduate student in the department has been a real pleasure, and I
have appreciated my time here immensely, even if I have not always been as present
as I would have preferred. Many thanks to Josef Svenningsson, who was the one
to awaken in me the thrill of doing research. Without his friendship, support and
mentoring, I would not have gotten to where I am today. To Ulf Norell and Nils
Anders Danielsson, for being great room-mates, and for giving me all the left-
overs. To Aslan Askarov, for inadvertently inspiring me to invent flow locks. To
Daniel Hedin, for being a steady source of interesting discussions on life, politics
and general stupidities. To Phu Phung, for challenging my mediocre badminton
skills. And to everyone else in the research group and the department at large,
who help create such a friendly and creative atmosphere. I am very glad that my
time here will not be over for some time yet.

Huge thanks also to my family who have always believed in me and supported
me over the years. To my parents, Anita and John-Olof, for the endless encour-
agement and support since the beginning of my days, and for providing a loving
sanctuary whenever I needed it. To my brother Pontus, the best brother anyone
could ever ask for. To my grand-parents May-Britt and Karl-Axel, whose pride in
me encourages me to grandeur. To Anne-Lill, who never failed to understand and
support my work, even when our roads led us apart.

And last but quite the opposite of least, my beloved Sophia. You caught me,
you held me, you weathered the storms with me, and now you’ll never be rid of
me. Your love and support gives me the wings that make me fly. I love you.

Table of Contents

1 Introduction 11
1.1 Information Flow Control . 12
1.2 Language-Based Security . 15
1.3 A History of Information Flow Control 17
1.4 Thesis Contributions . 20

1.4.1 Thesis Organisation . 21
1.4.2 General Contributions 24
1.4.3 Author Contribution 24

2 Flow Locks 25
2.1 Introduction . 25
2.2 Motivating Examples . 26
2.3 Flow Lock Security . 29

2.3.1 Preliminaries . 32
2.3.2 Motivating the Security Definition 34
2.3.3 Flow Lock Security . 36

2.4 Basic Properties of Flow Lock Security 38
2.5 Enforcement: A Sound Flow Lock Type System 40

2.5.1 Language . 40
2.5.2 Type System . 40

2.6 Example Encodings . 43
2.6.1 Delimited Non-Disclosure 43
2.6.2 Gradual Release . 44
2.6.3 More encodings . 48

3 Paralocks 51
3.1 Introduction . 51
3.2 Roles and Information Flow 53
3.3 Flow Locks and Roles . 55

3.3.1 Modeling Roles . 56
3.3.2 The Paralocks Policy Language 58
3.3.3 Beyond Roles . 60

7

3.4 Paralocks Security . 61
3.4.1 Computation Model 61
3.4.2 Validating flows . 62
3.4.3 Paralocks Security . 64

3.5 Enforcement: A Sound Paralocks Type System 66
3.5.1 Operational Semantics 69
3.5.2 Type System . 72
3.5.3 Security . 75

3.6 Example Encodings . 76
3.6.1 Robust Declassification 76
3.6.2 The Decentralised Label Model 76

3.7 Recursive Paralocks . 81
3.7.1 Policy . 81
3.7.2 Expressiveness . 82
3.7.3 Semantics . 83
3.7.4 Enforcement . 84

4 Paragon 87
4.1 Introduction . 87

4.1.1 Why Java? . 88
4.1.2 Design Guidelines . 89

4.2 Example Programs . 89
4.2.1 Simple Declassification 89
4.2.2 Robust Declassification 91
4.2.3 Sealed-bid Auctions . 93
4.2.4 Lexically Scoped Flows 97

4.3 The Paragon Language . 101
4.3.1 Types, Policies and Modifiers 101
4.3.2 Locks . 102
4.3.3 Type Parameters . 103
4.3.4 Actors and Aliasing . 104
4.3.5 Type Methods . 105
4.3.6 Exceptions and Indirect Control Flow 105
4.3.7 Field Initialisers . 107
4.3.8 Policy Inference and Defaults 109
4.3.9 Runtime Policies . 109

4.4 The Paragon Type System . 110
4.4.1 Typing Judgment . 111
4.4.2 Typing Expressions . 116
4.4.3 Typing Statements . 121
4.4.4 Typing Blocks and Block Statements 128

4.4.5 Typing Method Declarations 128
4.5 Compiling Paragon . 130
4.6 A Comparison with Jif . 131

4.6.1 The Jif Language . 132
4.6.2 Jif Concerns . 133
4.6.3 Feature Comparison 133
4.6.4 Example: Encoding the DLM 135

5 Related work 139
5.1 Policy Specification Mechanisms 139
5.2 Semantics of Information Flow 141
5.3 Information Flow Programming Languages 142
5.4 Typestate Systems . 144

6 Conclusions and Future work 147

A Flow locks: Proofs and auxiliary definitions 160
A.1 Type system proofs . 160
A.2 DLM encoding . 169

B Paralocks: Proofs and auxiliary definitions 173
B.1 Type System Security Proof 173

Chapter 1

Introduction

Knowledge has always been power – and today this is more true than ever.
Information, and then in particular in digital form, is today bought and sold
in enormous quantities on an ever-expanding market, driven not the least by
the increasing use of so called social media in our daily lives.

The primary reason for the massive increase in information handling to-
day is of course the ease with which information can be handled in digital
form. Digital storage devices the size of your hand could contain the collected
information of several libraries’ worth of books, and world-wide digital net-
works makes the spreading of information take only a fraction of the time it
once took to copy and deliver the same information on paper.

However, with the increasing importance and abundance of information,
there’s an obvious equally increasing need for ensuring that it the information
is handled correctly. The current trend of computerisation, digitalisation and
networking has been accompanied by a dramatic rise in computer security
incidents.

The field of information security can be described as the art of ensuring
that information is handled in a secure fashion, to safeguard the information
from incidents. Information security can be divided into three broad aspects:

• Information confidentiality – the task of ensuring that information is
only available to those who should have access to it.

• Information integrity – the task of ensuring that information is not
manipulated in unintended ways.

• Information availability – the task of ensuring that the information
exists where it is supposed to, when it is supposed to.

The last of these, information availability, is typically an issue of system avail-
ability, where the information itself plays a secondary role. Thus, when we

11

in the remainder of this introduction refer to the term information security,
we mean the first two aspects – confidentiality and integrity.

1.1 Information Flow Control

Envision in a non-computerised setting, a company having trade secrets - e.g.
prototypes, research documents or the like. Clearly they do not want just
anyone to be able to take part of those secrets - there is a need to keep them
confidential, a need for information security. How the company goes about
ensuring the confidentiality of its secrets is a matter of enforcement. Likely
there will be several measures involved. For starters, the secrets would surely
be kept in such a way that only trusted employees could access them. They
would be guarded by locked doors, needing keys and codes to get past. There
might even be physical guards confirming the identity of anyone coming in.

Also when some secrets for some reason need to intentionally leave the
facilities, there would likely be procedures for how they should be handled -
locked bags, guards and escort cars are all possible measures, depending on
the potency of the secrets.

These measures to control access to the secrets would not be enough
though. If physical access was the only thing controlled, there would be
nothing to stop an employee with access to simply walk out the facilities
with some secrets in their bag, either by clumsy mistake or through mali-
cious intent. To prevent against such incidents, the company likely needs to
employ measures to control how secrets are handled when accessed. There
may be protocols to adhere to while being in the facilities, to avoid uninten-
tional leaks of the secrets. There may be monitoring, through surveillance
cameras and through guards screening the bags of people leaving. Cameras
may be forbidden in the facilities. Employees accessing the secrets may need
to register the purpose and intent of their access in advance. In fact, it is
not inconceivable that the company would employ pre-screening of employ-
ees before deciding to trust them, to avoid giving access to someone with
malicious intent.

What we have described here are various aspects of information security
enforcement. When going to a computerised, network-based setting, there
are clear analogies to all these measures. Somewhat crudely, enforced mech-
anisms can be categorised into three broad domains:

• Encryption deals with information security outside the system environ-
ment, to ensure that the information remains confidential and intact
until it reaches its intended recipient. This is analogous to the locked
bags and guards used to protect the secrets outside the facilities.

12

• Access control deals with information security at the system borders.
Its purpose is to restrict access to the system and its information to
only those users that may interact with it. Many conventional security
mechanisms fall into this category, such as firewalls and password pro-
tection mechanisms. This is analogous to the locked doors and guards
on the facilities, stopping unauthorised people from entering.

• Information flow control deals with information security inside the sys-
tem environment, detailing how the information is used once access
has been given. This is the domain of ensuring that the system soft-
ware treats the information in the system in the intended way. All
the remaining measures described in the example fall into this cate-
gory. Protocols, restrictions, screens and monitors, intent control and
pre-screening - all are different aspects of information flow control.

From our example it should be clear that the company cannot suitably
protect their secrets by using only the equivalents of encryption and access
control. Similarly, when looking at the computerised settings, the need for
information flow control should be clear. Despite this, traditionally most
effort in ensuring information security has been devoted to the first two of
these domains. While certainly needed, such measures cannot provide a com-
plete solution to the problem of information security. Software today plays
an increasingly dominant role in everything from traditional computers and
servers to mobile phones to vehicle systems, and the focus of information
security enforcement must shift towards software aspects accordingly. The
need to focus on the security of software applications is supported by gen-
eral vulnerability statistics from the US National Institute of Standards and
Technology, December 2006. Figure 1.1 illustrates that 92% of all reported
vulnerabilities are in software applications – not in networks or encryption
modules. While not all software vulnerabilities can be credited to informa-
tion flow issues – for example, many are likely to be low-level memory safety
problems – the need for a focus shift should still be evident.

There is thus an increasing need for better methods to ensure that soft-
ware handles information correctly, in accordance with the security require-
ments – the information security policy – of that information. Traditional
techniques to information flow control are most often either post-hoc at-
tempts to add a layer of information security to existing systems, or ad-hoc
principles to adhere to when writing new software. Both approaches lead to
flawed and impotent security schemes, to which the numbers in figure 1.1 are
a testament.

When looking at the list of example enforcement measures for information
flow control in our example, these are quite diverse. However, we can again

13

Figure 1.1: Vulnerability stats, NIST, 12/2006

categorise these measures along two dimensions: those that control informa-
tion flow dynamically at the time when the information is handled, and those
that perform the checks statically, by ensuring in advance that the secrets
will be handled correctly. The surveillance cameras and screening of bags on
exit are clear examples of dynamic monitoring, while the pre-screening and
the restriction on cameras are examples of static checks.

When looking at the information flow aspects of software, we can simi-
larly employ both static and dynamic techniques to ensure that information
is handled correctly. Dynamic techniques observe how a running program
behaves, and would attempt to hinder any potential unallowed uses of infor-
mation. The analogy with the company example is straight-forward.

For static measures, however, there is a potential in the software setting
that has no analogue in our company example1. To check a program stat-
ically, before it runs, that implies that we have access to the program in
some form - source code, byte code or, in the worst case, binary code. That
program code is then an exact specification of how the program will handle
the information it is given access to. Exact may not necessarily mean easy
to analyse, but at least in theory we have the potential to perform static
analyses of the code, to establish in advance whether or not the code can
safely be given access.

1It would clearly be inconceivable to perform a similar analysis of a person before
granting access, barring significant advances in mind reading technology.

14

1.2 Language-Based Security

Language based security is the domain of analysing and enforcing software
information security by employing programming language techniques. The
rationale for this approach is that the best way to achieve software security
is to ensure that the software is written correctly. By applying analyses and
enforcement mechanisms at the programming stage, the goal would be that a
program that passes these mechanisms is guaranteed to preserve the security
of the information it handles.

Language-based security techniques can be applied to information secu-
rity aspects in general, but are particularly useful for handling information
flow control, i.e. how information flows through a program. There are many
different ways in which information can be leaked by a running program.
These ways are referred to as information flow channels.

When information is leaked directly, by e.g. the program sending the
information as is over the network, we refer to this as a direct flow channel.
Such direct flows could be monitored by dynamic means, without looking at
the program code. But information can also be leaked through indirect flow
channels. Say for example that the program decides which action to perform
next based on a secret value. The value may not be transmitted directly as
is, but anyone observing the result of the action that was performed, and
knowing enough about the program, can deduce something about it anyway.

An analogy could be an employee observing their boss’ behavior after an
important phone call. If the boss is known to always go for a cup of coffee
after receiving bad news, the employee would not need to overhear the phone
conversation to know whether or not it was indeed bad news.

Language-based techniques are useful to handle both direct and indirect
flows, the latter because having information about why a program performed
a particular action – e.g. knowing the coffee habits of the boss – requires
analysing the source code of the program.

There are many more examples of potential information flow channels,
so called covert channels. These include observing whether or not a pro-
gram terminates, observing the time it takes a program to perform a certain
task, or measuring its memory consumption. Apart from the termination
channel, these covert channels are typically very difficult to secure, and work
on information flow control typically ignores such channels since the cost-to-
gain ratio is too high. Regardless, language-based techniques may be more
or less well-suited for these tasks – but handling all potential channels for
information leakage requires many different techniques working together any-
way. Indeed, all measures for enforcing software security would be worthless
against an attacker that physically breaks in to steal the media containing

15

the secret data. Using language-based techniques to handle some common in-
formation flow channels is thus just one piece of a larger security puzzle. But
no chain is stronger than its weakest link, and, as indicated by the statistics
in figure 1.1, right now that weakest link is in application security, including
information flow control.

As noted, language-based security encompasses more than information
flow control, and there are information flow channels that are not necessarily
best handled by language-based techniques. But for the most common and
(arguably) most easily exploitable channels, language-based techniques are
particularly well-suited.

Such techniques can be applied at different stages in the process of soft-
ware creation and execution, depending on what they are trying to ensure
or protect. For example, one language-based mechanism could be to pre-
process the source code of a program right before it is run by an interpreter,
so that it is guaranteed to either not leak during execution (if it was written
correctly), or terminate with an error before any leak can take place. Such a
measure would come quite late in the process, right before execution, which
would have the benefit that it could be applied e.g. in a server environment
to programs written by external, untrusted parties. One particular use case
for such a measure could be in a browser executing JavaScript code from
unknown and/or untrusted sources.

Our focus has been at the other end of the process, at the point where
the program is written. We focus on tools to help the programmer verify
that their program does not leak unintentionally. To solve that task, the
first question that arises is this: When is a program secure? This question
must be broken down into three different sub-tasks:

• What is the security policy that the program should adhere to?

• By what standard do we judge whether the program adheres to that
policy?

• How do we assure that the program lives up to that standard?

These three sub-tasks correspond to the issues of policy specification, seman-
tic security characterisation, and policy enforcement.

In the following section we will look briefly at the history of the notion
of information flow policies related to their specification, semantic charac-
terisation and enforcement, to give an overview of the domain to which the
work presented in this thesis contributes.

16

1.3 A History of Information Flow Control

The history of information flow control goes back to Bell and LaPadula
[BL73], who were the first to create a mathematical model of program se-
curity. Their model was based on a chain of secrecy levels taken from the
military setting – unclassified < classified < secret < top secret. These levels
were assigned to data, and there were conditions to restrict flows from data
at “higher” levels to “lower”. While this model is still influential today, as
an implicit basis for most enforcement mechanisms of information flow con-
trol, they did not provide a semantic characterisation of what it means for a
program to be secure.

The history of semantic characterisation of information flow instead goes
back to Cohen’s work on strong dependencies [Coh77, Coh78]. This work is
the basis for the notion of non-interference that is still today used as the
fundamental (total) information flow security requirement. The term “non-
interference”, however, was coined by Goguen and Meseguer [GM82].

The work that has been the most influential is arguably that by Denning
[Den76], who expanded on the model by Bell and LaPadula to allow a lattice
of levels as the specification of policies. Denning was also the first to explic-
itly characterise indirect flows arising from the control flow of a program.
Denning and Denning introduced the notion of security contexts to disallow
“low” side-effects happening in “high” branches or loops, and the use of a
program counter to track such contexts in a dataflow analysis [DD77, Den82].

Like Bell and LaPadula, however, Denning’s model lacked a semantic
characterisation of information security. It would be 20 years until Volpano,
Smith and Irvine addressed this problem [VSI96]. They write:

“So far there has not been a satisfactory treatment of the sound-
ness of Dennings analysis. After all, we want to be assured that
if the analysis succeeds for a given program on some inputs, then
the program in some sense executes securely. Denning provides
intuitive arguments only...”

In their work, Volpano et al presented a semantic non-interference condition
for information flow, and proved Denning’s enforcement mechanism sound
according to

Volpano et al, building on the work by Denning, were thus the first to
present all three aspects – specification, characterisation and enforcement –
together as part of a coherent model. Denning’s lattice model is one of only
two models that have been used as a basis for a significant portion of the
research on information flow control to date.

17

Non-interference and its drawbacks Non-interference is a semantic
condition for information flow security. In simple terms it states that the
“high” inputs of a program may not, in any way, influence the program’s
“low” visible outputs.

The condition is total, i.e. it allows no exceptions. This is a strength in
that it allows for precise analyses and enforcement mechanisms to prove that
a given program satisfies the condition. However, this strength becomes a
weakness in practice. Most programs in practice require some influence of
“high” data on “low” outputs. As a very simple example, consider a basic
password checking mechanism. It prompts the user for a (public) guess,
compares this guess to its stored (secret) password, and either lets the user
in (if the guess was correct) or responds with an error. This very basic
program does not fulfill the non-interference condition: the (public) response
from the program depends in part on the secret password.

That non-interference is too strict a condition for practical use can be fur-
ther be argued, anecdotally, from the fate of the language FlowCaml [Sim03],
developed by Pottier and Simonet [PS03]. FlowCaml extends the program-
ming language ML with support for information flow control in the form of
a Denning-style lattice model. Data is annotated with security levels, and
a full information flow type checker, including ML-style inference of levels
to make programming palatable, guarantees that well-typed programs are
secure. The type checker is elegantly proven to indeed guarantee strict non-
interference between security levels.

FlowCaml is quite impressive work, yet was practically never adopted
for any use, other than as a reference for further research. We surmise,
with emphasis, that the reason for this is exactly that non-interference is
prohibitively strong as a security requirement in practice. We argue that
FlowCaml marks the pinnacle work – and end point – of the original Denning
model.

Declassification The realisation that non-interference is too restrictive of
course does not mean that we must let “high” inputs arbitrarily influence
“low” outputs. That would mean not caring about information flow control
at all. Instead what is needed is a way to specify and enforce policies where
programs can deliberately let “high” inputs influence “low” outputs in a con-
trolled fashion. For instance, for our password checking example it would be
fine for the program to reveal whether or not the password matches a given
guess, but not fine for the program to reveal the password in full.

The notion of deliberately leaking information is traditionally known as
declassification – i.e. making data “less classified”. The term declassification

18

implicitly refers to a notion of information flow based on confidentiality, owing
back to the security levels of the model of Bell and LaPadula. However,
information flow also involves issues of integrity, which can be argued to
be the dual notion of confidentiality. For integrity aspects, the analogy to
declassification is called endorsement. A more neutral term that includes
both declassification and endorsement is downgrading. In the remainder of
the introduction we will use the term declassification, since it has been most
prevalent in the literature we discuss here.

There are many different models of various kinds of declassification, and
declassification can be controlled according to several different criteria. Sabelfeld
and Sands [SS05] have made a recent study of existing declassification mech-
anisms in which they categorise mechanisms along four different dimensions :

• What information is declassified, as in our password example where the
whole password may not be leaked.

• When information is declassified. Some data may be made available to
a user only after they have paid for it.

• Who may decide to declassify some information. A patient may de-
cide to share his medical record with his insurance company, but the
company should not be able to make that decision.

• Where in a program information is declassified. This is a program-
ming notion, where some parts of a program are considered trusted to
perform declassifications.

We refer to Sabelfeld and Sands [SS05] for the complete survey.

The Decentralised Label Model The model of information flow that
has had the most impact on information flow research apart from that by
Denning is arguably the Decentralised Label Model (DLM), by Myers and
Liskov [ML97]. The DLM is a language for specifying information flow poli-
cies that allow for controlled declassification along the “who” and “where”
dimensions, and is thus inherently less strict than the Denning model. The
DLM has been implemented as the policy specification language used in the
language Jif [MZZ+06]. Jif is an extension of Java that adds information
flow control primitives through the inclusion of DLM labels on data, and
a type system that statically guarantees information flow properties about
programs.

However, the primary weakness of the DLM (and thus Jif) is that, like the
old model by Bell and LaPadula, it comes without a semantic characterisation

19

of security. Since the DLM allows declassification, it is clear that it cannot
guarantee non-interference – and in fact we would not want it to, since non-
interference is too restrictive. DLM needs a weaker semantic model, one that
can account for controlled use of declassification, but no such model exists
(prior to this work). This means that while the type system of Jif purports to
make some guarantees, we do not know just what those guarantees actually
are.

Other policy models incorporating declassification have been proposed,
that do include full semantic conditions for (their versions of) information
flow security. One example is the work by Almeida Matos and Boudol on non-
disclosure [AB05], a model which allows localised (“where”) declassification
using a Denning-style lattice for policy specification. Despite being complete
and proven correct, this model, like other similar models, has not become
very influential or widely adopted. We surmise that this has three causes:

• Firstly, each model includes only a limited form of declassification, such
as the model by Almeida Matos and Boudol only handling the “where”
dimension of declassification. While in theory some form of declas-
sification is sufficient to allow programs that must deliberately leak
information, in practice it may not allow them to be written conve-
niently. Nor is it clear that a particular semantic model is fine-grained
enough to be able to represent and guarantee the different dimensions
of declassification.

• Secondly, semantic security models for information flow involving de-
classification tend to be quite complex and unintuitive. The model
proposed by Almeida Matos and Boudol is one example of this; our
own early attempts were even worse [BS06a]. Compared to the sim-
ple and intuitive characterisation of strict non-interference, this is a
definite hindrance for the general adoption of any model.

• Lastly, no model has been implemented, like the DLM, as part of a
general purpose programming language. The fact that the DLM has
been implemented in Jif has allowed it to be used in case studies and
courses on computer security, giving hands-on experience. This, we sur-
mise, has allowed the DLM to prevail where other, more fully specified
models have not.

1.4 Thesis Contributions

What we have described above details the state of the art in which the con-
tributions of this thesis should be put in context. On the one hand we have

20

the too-strict notion of non-interference, taking off with the work by Denning
and, in some sense, culminating with FlowCaml. This line of work has a sim-
ple and (relative to its needs) flexible policy specification language (a lattice
of security levels); a formal, complete and intuitively simple semantic char-
acterisation of information flow security (non-interference); well-studied and
formally proven enforcement mechanisms; and a full-fledged implementation
in FlowCaml.

On the other hand we have a diverse plethora of work involving some
notion of declassification, to make information flow control practically useful.
Some of these mechanisms have formal semantic models of information flow
security. Some have clever type systems to enforce security in the presence
of declassification. Few focus on policy specification issues, and only one
– Jif/DLM – has a full-fledged implementation. None of them manages to
combine all these aspects, most only one or two.

The work presented in this thesis incorporates all these aspects, forming
a complete platform for information flow security in the presence of declassi-
fication. This can thus be stated as the main contribution of this work: It is
the first platform for information flow control including declassification that
brings all the necessary bits together.

It is important to note that this thesis does not represent an end point,
but rather a status report of an ongoing project. Much still remains to be
done, even if we have come far enough to refer to our work as a “complete”
platform.

1.4.1 Thesis Organisation

The thesis is organised into six chapters, of which chapters 2, 3 and 4 hold
the main technical results of our work.

Our work up to now has been presented previously in a sequence of four
papers, each of which adds a piece of the overall picture. In the presentation
below we discuss how each of those papers contribute to this thesis.

Chapter 1 – Introduction This chapter, in which we set the context for
our work.

Chapter 2 – Flow Locks Here we introduce flow locks, a policy speci-
fication mechanism for dynamic information flow. The chapter is based on
two earlier papers. The first is “Flow locks – Towards a Core Calculus for
Dynamic Flow Policies” [BS06b], in which we introduce flow locks, and show
how they can be used to encode a number of other proposed mechanisms for

21

declassification, arguing its potential as a stepping stone for a core calculus
of policy specification.

In this paper we gave a full semantic model for information flow security
related to flow lock policies. Further we showed a type system for a small ML-
like language that incorporates flow locks, and proved that the type system
guarantees our semantic security condition.

The semantic model given in this paper was the first model to allow
dynamic changes to the security policy at arbitrary points in the program,
and to allow the policy to become both more liberal or more restrictive.
Earlier (and subsequent) models only allow a successively more liberal policy,
or policies becoming more liberal in a localised piece of the program.

Both the semantic model and the presented type system were influenced
by the work by Almeida Matos and Boudol on non-disclosure, as well as
earlier work by Mantel and Sands on intransitive non-interference [MS04].
The resulting semantic model was complex, unintuitive and very cumbersome
to work with.

The second paper is “Flow-sensitive Semantics for Dynamic Information
Flow Policies” [BS09], in which we completely rework the semantic model
for flow locks. We base our new model on a knowledge-based style inspired
by the work on Gradual Release by Askarov and Sabelfeld [AS07]. We show
how their model for simple two-level policies can be generalised to provide
a model for flow locks, including policies that become more restrictive as
execution progresses.

We also present a type system for a simple while-language, and prove
that it guarantees our new semantic security condition. The semantic model
of this paper, as well as the type system given, is presented along with the
flow locks specification language in chapter 2.

In this thesis we present the policy specification mechanism as defined in
the first paper, but then go on to introduce the semantic model and type
system from the second paper.

Chapter 3 – Paralocks While we could show that flow locks was flexible
enough to encode a number of other mechanisms for information flow control,
this was only true in theory. In practice there were issues that made flow
locks too inflexible, in particular the requirement that all actors interacting
with a program were statically known and enumerable at compile time.

In our third paper, “Paralocks – Role-based Information Flow Control and
Beyond” [BS10], we extend the flow locks mechanism to solve these shortcom-
ings. We show that the extended language, dubbed Paralocks (parameterised
locks), can encode other mechanisms in a practical way, and thus does not

22

suffer from the drawbacks of its predecessor.

We also extend the semantic security model from the previous paper
accordingly, to allow for actors not known until run-time. Like previously
we also show a type system for a simple while-language, and prove that it
guarantees that well typed programs are secure.

An interesting detail is that one of the mechanisms we show an encoding
of is the DLM. Thus we are able to give the first full semantic characterisation
of the DLM, through our encoding into Paralocks.

In this thesis we present the Paralocks policy specification language and
its accompanying semantic model, along with the type system and the en-
codings of other mechanisms.

Chapter 4 – Paragon In this chapter we describe how to incorporate
Paralocks in a full-fledged general purpose programming language (Java).
We call the resulting language Paragon. This chapter serves as an extended
version of our paper “Paragon for Practical Flow-Oriented Programming”
[BS11].

We discuss the issues that arise with features like exceptions and the class
hierarchy, and how they affect the typing of Paragon programs. We sketch
the implementation of Paragon, including the sketch of a type system that
incorporates the most important aspects of checking Paralocks policies in
this setting. The main difference from the paper is the presentation of the
type system, which was omitted from the paper due to space constraints.

What we do not yet have is a formal proof that our type system for
Paragon guarantees the semantic security condition presented in chapter 3.

Chapter 5 – Related Work In this chapter we look at related work
along the three axes we have pointed out: Policy specification mechanisms,
semantics of information flow, and programming languages with information
flow control capabilities.

Further, we also look at work on the concept of typestate and how it
relates to the use of locks in Paragon.

Chapter 6 – Conclusions and Future Work In the final chapter we
give some concluding remarks on our work, and point out several directions
for future research to further improve the platform.

23

1.4.2 General Contributions

We can state our contribution along the three different aspects of information
flow control we identified earlier: Specification, semantic characterisation,
and practical enforcement:

Policy specification mechanisms: We have shown that Paralocks is a
simple yet flexible and expressive language for specifying information flow
policies in the presence of dynamic changes and declassification. Paralocks
can encode a large number of other proposed mechanisms along the “who”,
“where” and “when” dimensions of declassification – notably including the
DLM – thus serving as a core calculus for specifying such policies.

Semantic models for information flow: We present a simple and in-
tuitive condition for when programs satisfy the information flow security
requirements as specified by a Paralocks policy. A notable contribution is
the combination of this point with the previous: Our semantic model relates
to an expressive language for information flow policy specification, not just
a two-level “high-low” system or a simple powerset lattice of actors.

Programming with information flow control: Paragon is only the
third full programming language with support for enforcement of information
flow control, after Jif and FlowCaml. That in itself is a contribution, but
Paragon also improves over these two language in several aspects. Specif-
ically, Paragon allows flexible use of controlled declassification, based on a
formal semantic model.

1.4.3 Author Contribution

I, Niklas Broberg, the author of this thesis, have been instrumental in the
conception, design and development of all the work discussed herein. While
all the work is to varying extent joint work with my supervisor David Sands,
I have largely been the driving force behind it. The original idea for flow
locks was mine, thought up in response to a challenge by Dave to improve
the state-of-the-art of information flow control languages. Along the way I
have been the main contributor to the semantic models and type systems,
and I have been the one doing all the requisite proofs. I had great help from,
and many long and fruitful brain-storming discussions with, Dave, and have
been expertly guided along by his great wisdom and experience. Yet I can
proudly proclaim the work presented in this thesis as primarily mine.

24

Chapter 2

Flow Locks

2.1 Introduction

Unlike access control policies, enforcing an information flow policy at run
time is difficult because information flow is not a runtime property; we can-
not in general characterise when an information leak is about to take place
by simply observing the actions of a running system. From this perspec-
tive, statically determining the information-flow properties of a program is
an appealing approach to ensuring secure information flow. However, se-
curity policies, in practice, are rarely static: a piece of data might only be
untrusted until its signature has been verified; an activation key might be
secret only until it has been paid for. In more formal terms, there is a need
for downgrading of information.

In this chapter we introduce a simple policy specification mechanism
based on the idea that the reading of variable x by certain actors (principals,
levels) is guarded by boolean flags, which we call flow locks. For example,
the policy x{high;Paid⇒ low} says that x can always be read by an actor with a
high clearance level, and also by an actor with a low clearance level providing
the “Paid” lock is open.

The interface between the flow lock policies and the security relevant
parts of the program is provided by simple instructions for opening and
closing locks. The program itself does not depend on the lock state, and the
intention is that by statically verifying that the dynamic flow policy will not
be violated, the lock state does not need to be computed at run time.1

In addition to the introduction of the Flow locks policy specification lan-

1 The term dynamic flow policy could have different interpretations. We use it in the
sense that the flow policies vary over time, but they are still statically known at compile
time.

25

guage, we will also discuss a number of its features:

• A formulation of the semantics of secure information flow for flow locks.

• The definition of a type system for a simple while language which per-
mits the completely static verification of flow lock policies, and a proof
that well typed programs are flow-lock secure.

• The demonstration that flow lock policies can represent a number of
other proposed information flow paradigms.

Regarding the last point, the work presented here can be viewed as a study of
declassification mechanisms. In a recent study by Sabelfeld and Sands [SS05],
declassification mechanisms are classified along four dimensions: what infor-
mation is released, who releases information, where in the system information
is released, and when information can be released. One of the key challenges
stated in that work is to combine these dimensions. In fact, combination
is perhaps not difficult; the real challenge is to combine these dimensions
without simply amassing the combined complexities of the contributing ap-
proaches. Later in this chapter we argue that flow locks can encode a number
of other proposed “declassification” paradigms, including Barthe’s et al de-
limited non-disclosure [BCR08], Chong and Myers’ notion of noninterference
until declassification [CM04], and Zdancewic and Myers robust declassifica-
tion [ZM01, MSZ04]. These examples, represent the “where”, “when” and
“who” dimensions of declassification, respectively, suggesting that flow locks
have the potential to provide a core calculus of dynamic information flow
policies.

2.2 Motivating Examples

i n t aBid = getABid ();

i n t bBid = getBBid ();

makePublic(aBid);

makePublic(bBid);

// ... decide winner + sell item

First let us assume we have a simple imperative language without any security
control mechanisms of any kind. Borrowing an example from Chong and
Myers [CM04], suppose we want to implement a system for online auctions
with hidden bids in this language. We could write part of this system as the
code on the right.

26

This surely works, but there is nothing in the language that prevents us
from committing a serious security error. We could for instance accidentally
switch the lines 2 and 3, resulting in A’s bid being made public before B
places her bid, giving B the chance to tailor her bid after A’s.

Flow locks are a mechanism to ensure that these and other kinds of pro-
gramming errors are caught and reported in a static check of the code.

The basic idea is very similar to what many other systems offer. To deny
the flow of data to places where it was not meant to go, we annotate variables
with policies that govern how the data held by those variables may be used.
Looking back on our example, a proper policy annotation on the variable
aBid could be {A; BBid⇒B}. The intuitive interpretation of this policy is
that the data held by variable aBid may always be accessed by A, and may
also be accessed by B whenever the condition BBid, that B has placed a bid,
is fulfilled. BBid here is a flow lock — only if the lock is open can the data
held by this variable flow to B. To know whether the lock is open or not we
must look at how the methods for getting the bids could be implemented.

getABid (){

i n t {A; BBid => B} x

= bidChanFromA;

open ABid;

r e t u r n x;

}

The method shown on the right first fetches the bid sent by A. We model
the incoming channel as a global variable that can be read from, one with
the same policy as aBid. When the bid has been read, the method signals
this by opening the ABid lock—A has now placed a bid and the program can
act accordingly. The implementation of getBBid follows the same pattern,
and will result in BBid being open. Now both bids have been placed and can
thus be released.

The makePublic method would be implemented as follows:

makePublic(bid){

publicChannel = bid;

}

The outgoing publicChannel is also modeled as a global variable that can
be written to. This one has the policy {A;B} attached to it, denoting that
both A and B will be able to access any data written into it. At the points
in the program where makePublic is applied, both A and B will have placed
their bids, the locks ABid and BBid will both be open, and the flows to the
public channel will both be allowed. However, if the lines 2 and 3 were now

27

accidentally switched, it would be a different story. Then we would attempt
to release A’s bid, guarded by the policy {A; BBid⇒B}, onto the public
channel with policy {A;B}. Since the flow lock BBid will then not yet be
opened, this flow is illegal and the program can be rejected.

auctionItem(firstItem);

aBid = getABid ();

bBid = getBBid ();

makePublic(aBid);

makePublic(bBid);

// ... decide winner + sell item

auctionItem(secondItem);

aBid = getABid ();

bBid = getBBid ();

makePublic(aBid);

makePublic(bBid);

// ... decide winner + sell item

Taking the example one step further, assume that we have two items up for
auction, one after the other. We can implement this rather naively as the
program to the right. The locks ABid and BBid will both be opened on the
first calls to the getXBid methods. But unless we have some means to reset
them, there is again nothing to stop us from accidentally switching lines to
make our program insecure, this time lines 9 and 10. The same problem
could also be seen from a different angle: what if the locks were already
open when we got to this part of the program? Clearly we need a closing
mechanism to go with the open. The method auctionItem could then be
implemented as shown here.

auctionItem(item){

c l o s e ABid , BBid;

// ... present item ...

}

By closing the locks when an auction is initiated, we can rest assured that
both A and B must place new bids for the new item before either bid is made
public.

It should be fairly easy to see that what we have here is a kind of state
machine. The state at any program point is the set of locks that are open
at that point, and the open and close statements form the state transitions.
A clause σ ⇒ A in a policy means that A may access any data guarded by
that policy in any state where σ is open.

Our lock-based policies also give us an easy way to separate truly secret

28

data from data that is currently secret, but that may be released to other
actors under certain circumstances. Assume for instance that payment for
auctioned items is done by credit card, and that the server stores credit
card numbers in memory locations aCCNum and bCCNum respectively. Assume
further that the line aBid := aCCnum; is inserted, either by sheer mistake
or through malicious injection, just before where aBid is made public. This
would release A’s credit card number to B, however, the natural policy on
aCCNum would be {A}, meaning only A may view this data, ever. Thus
when we attempt the assignment above, it will be statically rejected since
the policy on aBid is too permissive.

All the above are examples of policies to track confidentiality. The dual of
confidentiality is integrity, i.e. deciding to what extent data can be trusted,
and it should come as no surprise that flow locks can handle both kinds.

Returning to the example with the credit card, we assume that when A
gives her credit card number, it must be validated (in some unspecified way)
before we can trust it. To this end we introduce a “pseudo” actor T (for
“trusted”) who should only be allowed to read data that is fully trusted. We
then use an intermediate location tmpACCNum to hold the credit card number
when it is submitted by A. This location is given the policy {A; ACCVal⇒T},
stating that this data is trusted only if the lock ACCVal is open, which is
done when the submitted number has been validated. Once validated we can
transfer the value to aCCNum, which now has the policy {A;T} stating that
this data is trusted.2

2.3 Flow Lock Security

Information flow policies are only useful if we have a precise specification – a
semantic model – of what we are trying to enforce. A semantic model gives
us insight into what a policy actually guarantees, and defines the precise
goals of any enforcement mechanism.

Unfortunately, semantic models of declassification – in particular those
that try to specify more that just what is declassified – can be both inaccurate
and difficult to understand.

The Flow Sensitivity Problem The most commonly used semantic def-
inition of secure information flow – at least in the language-based setting
– involves the comparison of two runs of a system. The idea is to define
security by comparing any two runs of a system in environments that only

2 In order to prevent overwriting this data with a new number that hasn’t been vali-
dated, we should also be sure to close the lock ACCVal once the assignment is done.

29

differ in their secrets (such environments are usually referred to as being low
equivalent). A system is secure or non-interfering if any two such runs are
indistinguishable to an attacker. These “two run” formulations relate to the
classical notion of unwinding in [GM82].

Many semantic models for declassification – in particular those which
have a “where” or “when” dimension [SS05] – are built from adaptations of
such a two-run noninterference condition. 3

Such adaptations are problematic. Consider the first point in a run at
which a declassification occurs. From this point onwards, two runs may very
well produce different observable outputs. A declassification semantics must
constrain the difference at the declassification point in some way (this is spe-
cific to the particular flavour of declassification at hand), and further impose
some constraint on the remainder of the computation. So what constraint
should be placed on the remainder of the computation? The prevailing ap-
proach to give meaning to declassification (e.g. [MS04, EP05, EP03, AB05,
Dam06, MR07, BCR08, LM08]) is to reset the environments of the systems
so as to restore the low-equivalence of environments at the point after a
declassification.

We refer to this as the resetting approach to declassification semantics.
The down-side of the resetting approach is that it is flow insensitive. This

implies that the security of a program P containing a reachable subprogram
Q requires that Q be secure independently of P . For example, consider the
program

declassify h in {` := h}; ` := h

where h is a high security variable and ` is low. In the semantics of e.g.
Barthe et al [BCR08] this would be deemed insecure because of the insecure
subprogram ` := h – even though in all runs this subprogram will behave
equivalently to the obviously secure program ` := `. Similar examples can
be constructed for all of the approaches cited above. Another instance of the
problem is that dead code can be viewed as semantically significant, so that
a program will be rejected because of some insecure dead code. Note that
flow insensitivity might be a perfectly reasonable property for a particular
enforcement mechanism such as a type system – but in a sequential setting
it has no place as a fundamental semantic requirement.

The resetting approach is not without merits though. In particular it is
able to handle shared-variable concurrency in a compositional way [MS04,
AB05]. However, the use of resetting for compositionality and its use for giv-

3For the purposes of this paper it is useful to view declassification as a particular
instance of a dynamic information flow policy in which the information flow policy becomes
increasingly liberal as computation proceeds.

30

ing a semantics to declassification are orthogonal, and the flow insensitivity
problem carries over to those parts of the environment which are not shared
across threads.

The first semantic model we used for flow locks [BS06b, BS06a] suffered
from the flow insensitivity problem described above. Perhaps due to its gen-
erality it was also overly complex and unintuitive. The key to recovering flow
sensitivity and to drastically simplifying the semantics has been to follow the
lead of Askarov and Sabelfeld [AS07] who move away from a “two run” view
of security semantics, and focus instead on how an explicit representation of
the attacker’s knowledge evolves as computation proceeds.

A Knowledge-based Approach One of the fundamental difficulties in
the bisimulation-style definition is that it builds on a comparison between two
runs of a system. While this is fairly intuitive for standard noninterference,
in the presence of policy changes such as the opening or closing of locks (in
our work) or declassification (in other work) it can be hard to see how the
semantic definition really relates to what we can say about an attacker.

A more recent alternative to defining the meaning of declassification is
to use a more explicit attacker model whereby one reasons about what an
attacker learns about the initial inputs to a system as computation progresses
[AS07]. The formulation we use here will be closest to that presented by
Askarov et al [AHSS08].

The basic idea builds on a notion of noninterference described by Dima
et al [DEG06] and can be explained when considering the simple case of
noninterference between an initial memory state, which is considered secret,
and public outputs. The model assumes that the attacker knows the program
itself P . Now suppose that the attacker has observed some (possibly empty)
trace of public outputs t. In such a case the attacker can, at best, deduce
that the possible initial state is one of the following:

K1 = {N | Running P on N can yield trace t }

Now suppose that after observing t the attacker observes the further output
u. Then the attacker knowledge is

K2 = {N | Running P on N can yield trace t followed by u }

We will call K1 and K2 knowledge sets, and order knowledge sets by K v
K ′ ⇐⇒ K ′ ⊆ K. Note that in the above K1 v K2: the attackers knowledge
increases as the computation proceeds. However, for the program to be
considered non-interfering, in all such cases we must have K1 = K2, since

31

we require the knowledge to not increase at all throughout the program
execution.

This style of definition is the key to our new flow lock semantics. The core
idea will be to determine what part of the knowledge must remain constant
on observing the output u by viewing the trace from the perspective of the
lock-state in effect at that time.

In this section we motivate our flow sensitive definition of flow-lock secu-
rity. The definition is phrased in terms of a labeled transition system where
labels represent observable events. We assume an imperative computation
model involving commands and stores (memories), but the definition is oth-
erwise not specific to a particular programming language.

2.3.1 Preliminaries

We begin by recalling the precise language of policies and introduce the base
assumptions about the operational semantics of the language.

Policies In general a policy p is a set of clauses, where each clause of the
form Σ⇒α states the circumstances (Σ) under which actor α may view the
data governed by this policy. Σ is a set of locks which we name the guard
of the clause, and interpret it as a conjunction. Thus for the guard to be
satisfied, all the locks σ ∈ Σ must be open.

In concrete examples we will often simplify the notation, so that for ex-
ample we will write (as we did in the introduction to this chapter)

{vendor ; Paid⇒ customer}

instead of

{∅⇒ vendor ; {Paid}⇒ customer}.

A policy p is less restrictive than a policy q, written p v q, if for every
clause Σ⇒ α in q there is a clause Σ′ ⇒ α in p where Σ′ ⊆ Σ. For example,
{vendor ; customer} is less restrictive than {vendor ; Paid⇒ customer} which
in turn is less restrictive than {vendor}. We use the distinguished value ⊥
to denote the least restrictive policy, for variables that all actors can see at
all times. The opposite is the policy >, which is simply the empty set of
clauses, meaning no actor could ever see the data of a variable marked with
that policy. To join two policies means combining their respective clauses.
We define

p1 t p2 ≡ {Σ1 ∪ Σ2⇒α | Σ1⇒α ∈ p1, Σ2⇒α ∈ p2}

32

It should be intuitively clear that the join of two policies is at least as re-
strictive as each of the two operands, i.e. p v pt p′ for all p, p′. In contrast,
forming the union of two policies, i.e. the meet, corresponding to u, makes
the result less restrictive, so we have p u p′ v p for all p, p′. Both u and t
are clearly commutative and associative.

We also need the concept of a policy specialised (normalised) to a par-
ticular lock state, denoted p(Σ), meaning the policy that remains if we
remove from all guards the locks which are present in Σ. So for exam-
ple, if p is {Paid⇒ customer}, then p({Paid}) = {customer}. Formally,
p(Σ) = {(∆\Σ)⇒α | ∆⇒α ∈ p}.

Operational Semantics To keep our presentation reasonably concrete we
will consider imperative computation modeled by a standard small-step op-
erational semantics defined over configurations of the form 〈Σ, c,M〉 where
c (c′, d etc.) is a command, M is a memory (store) – a finite mapping from
variables to values, and Σ is the lock state – the set of locks that are currently
open.

We assume that each channel and variable x, y, . . . is assigned a fixed
policy, where pol(x) denotes the policy of x.

Transitions in the semantics are labeled 〈Σ, c,M〉 `−→ 〈∆, d,N〉 where `
is either a distinguished silent action τ , or an observable action of the form
x(v), where x is a channel and v is the value observed on that channel.
We let w, w′ etc range over observable actions, and ~w a vector of such.
We assume the existence of commands which change the lock state. The
open and close commands used in section 2.2 are sufficient, although other
lock-state changing commands are possible. We do, however, assume that
whenever the lock state changes then there is no output or memory change,

i.e. if 〈Σ, c,M〉 `−→ 〈∆, d,N〉 Σ 6= ∆ then we must have M = N and ` = τ .
Given the labeled transition system we define some auxiliary notions.

Definition 1 (Visibility).

• We say that x may be visible to α if Σ⇒α ∈ pol(x) for some Σ;
otherwise we say that it is never visible.

• We say that x is visible to α at ∆ if Σ⇒α ∈ pol(x) for some Σ ⊆ ∆;
otherwise we say that it is not visible at ∆.

We extend these definitions to outputs x(v) in the same way, and we say that
the silent output τ is never visible.

33

2.3.2 Motivating the Security Definition

To motivate our definition we will first look at some properties that we expect
it to have. First we consider the case of simple declassification from the
introduction. Consider the program ` := declassify(h); ` := h, which would
be encoded as as

open Decl ; ` := h; close Decl ; ` := h

The intended meaning of closing a lock is not that an actor should forget
all they learned while the lock was open. Thus we expect this program to
be considered secure, since the value of h is already known at the point of
the second assignment. In other words, we expect our definition to be flow
sensitive, as opposed to our old, bisimulation-based definition. Practically
this means that our semantic definition cannot be a purely local stepwise
definition, but requires us to inspect all knowledge gained by an attacker
up to a certain assignment. Then we must validate that assignment in the
context of the attacker having that knowledge.

Another feature to note is that our flow locks system allows fine-grained
flows, in which a secret may be leaked in a series of unrelated steps. The
following policy and program exhibits this:

x : {{Day ,Night}⇒α} y : {Night⇒α} z : {α}
open Day ; y := x ; close Day ; open Night ; z := y

Here (and in subsequent examples) we assume each assignment generates an
observable action – i.e. each variable is viewed as an output channel. Here
the secret contained in x is leaked into z via y. But at the point where
the assignment to z is made, the lockstate in effect does not allow a direct
flow from x to z since Day is closed. In addition, at the point where the
assignment to y is made, y is not visible at the current lockstate.

To ensure correct information flow in a program, all flows must be vali-
dated at each possible “level” that data can flow to. This is not specific to
our setting, but a very general statement regarding information flow control.
Each of these levels can be thought of as a potential attacker. For each such
attacker, we must ensure that the attacker does not learn more than intended
about the initial data.

The way to do this is, for each possible attacker, to split the state into a
high and a low portion – the low portion being the part directly visible to the
attacker. The security goal is to ensure that the attacker, by observing the
low part, does not learn more than intended about the high part of the state.
For standard noninterference the goal is that the attacker learns nothing. For

34

gradual release [AS07] the goal is to ensure that nothing is learned for the
observations that are not labeled as declassifications.

For our setting, a “level” that we must validate the flows at corresponds
to a certain set of locks guarding a location from a particular actor. We note
that these levels correspond to the points in the lattice Actors × P(Locks).

This leads us to our formal attacker model:

Definition 2 (Attacker). An attacker A is a pair of an actor α and a set of
locks ∆, formally

A = (α,∆) ∈ Actors × P(Locks)

We refer to the lockstate component of an attacker as his capability, and
assume that A can observe locations guarded from α only by locks in ∆.

Intuitively we may think of an attacker as an actor who may open the
locks ∆ at some point in the future, leading to a future-sensitive model that
enables us to build secure commands by sequential composition from secure
commands (see Section 2.4).

We define attacker visibility as a natural extension of actor visibility, by
saying that x is visible to A = (α,∆) iff x is visible to α at ∆.

For each attacker we then define the A-observable transition 〈Σ, c,M〉 w−→A

〈∆, d,N〉 by absorbing transitions which are not visible to attacker A.

Definition 3 (A-observable transitions). We can define the transition rela-
tion

w−→A as the least relation satisfying the following rules:

〈Σ, c,M〉 w−→ 〈∆, d,N〉 w is visible to A

〈Σ, c,M〉 w−→A 〈∆, d,N〉

〈Σ, c,M〉 `−→ 〈Σ′, c′,M ′〉 ` is not visible to A

〈Σ′, c′,M ′〉 w−→A 〈∆, d,N〉
〈Σ, c,M〉 w−→A 〈∆, d,N〉

Combining A-transitions gives us a useful compound which we denote a
trace:

Definition 4 (A-observable trace). We define 〈Σ, c,M〉=⇒A〈∆, d,N〉 if there
is a sequence of zero or more transitions from 〈Σ, c,M〉 to 〈∆, d,N〉 with

labels not visible to A. Now we define the A-observable trace
~w

=⇒A for some
sequence of output labels ~u by equating

ε
=⇒A with =⇒A (where ε denotes the

empty vector), and by inductively defining

〈Σ, c,M〉 ~w
=⇒A 〈Σ′, c′,M ′〉 w−→A 〈∆, d,N〉

〈Σ, c,M〉 ~ww
=⇒A 〈∆, d,N〉

35

We use the notation 〈Σ, c,M〉 ~w
=⇒A as a shorthand for ∃∆, d,N. 〈Σ, c,M〉 ~w

=⇒A
〈∆, d,N〉, i.e. when we don’t care what the resulting configuration is.

To reason about attacker knowledge we need to be able to focus on the
parts of a memory which are visible to a given attacker.

Definition 5 (A-low memory, A-equivalence).
Memory L is A-low for some attacker A if dom(L) = {x | x is visible to A}.
We say that two memories M and N are A-equivalent, written M ∼A N if
their A-low projections are identical – i.e. they agree on all variables that A
can see.

We will adopt the convention that M and N will range over total mem-
ories (i.e. their domain will be the set of all variables). With this we can
formalise the notion of attacker knowledge as follows:

Definition 6 (Attacker knowledge).
The knowledge gained by an attacker A = (α,∆) from observing a se-
quence of outputs ~u of a program c starting with a A-low memory L written
kA(~u, c, L), is defined to be the set of all possible starting memories that
could have lead to that observation:

kA(~u, c, L) = {M |M ∼A L, 〈Σ, c,M〉
~w

=⇒A}

2.3.3 Flow Lock Security

With this attacker model in hand, we can now formalise our security require-
ment. Intuitively, for a program to be flow lock secure we must consider the
perspective of each possible attacker A, and how his knowledge of the initial
memory evolves as he observes successive outputs.

The requirement for each output thus observed is that knowledge of the
initial memory only increases if the attacker’s inherent capabilities are weaker
than the program lockstate in effect at the time of the output. The intuition
here is that an attacker whose capability includes the program lock state
in effect should already be able to see the locations used when computing
the value that is output. Thus no knowledge should be gained by such an
attacker. To formalise this intuition we first, for convenience, introduce the
notion of a run. A run is just an output trace together with the lockstate in
effect at the time of the last output in the sequence.

Definition 7 (A-observable runs). The set of all runs of a command c start-
ing with lock state Σ and with a starting memory whose A-low projection is

36

L, are defined

RunA(Σ, c, L) = {(~uu,∆) | M ∼A L,

〈Σ, c,M〉 ~w
=⇒A 〈Σ′, c′,M ′〉 w−→A 〈∆, d,N〉}

We can now define our security requirement in terms of runs as follows:

Definition 8 (Σ Flow Lock Security). A program c is said to be Σ-flow lock
secure, written FLS(Σ, c), iff for all attackers A = (α,∆), all A-low memories
L, and all runs (~uu,Ω) ∈ RunA(Σ, c, L) such that Ω ⊆ ∆ we have

kA(~uu, c, L) = kA(~u, c, L)

This definition directly captures the intuition that we started out with.
An attacker whose capabilities includes the current lockstate in effect at the
time of the output should learn nothing new when observing that output.
Attackers who do not fulfill this criterion have no constraint on what they
may learn at this step. But note that this cannot lead to unchecked flows
because we quantify over all attackers including, in particular, those with
sufficient capabilities.

At the top level we can define security for a self-contained program, i.e.
one that doesn’t assume any locks are open before it starts:

Definition 9 (Top-level Flow Lock Security). A program c is said to be
flow lock secure, written FLS(c), iff the program is ∅-flow lock secure, i.e.
FLS(∅, c).

The above definitions are termination sensitive, since they require that
no knowledge is gained by the simple observation that there is an output at
all. Following Askarov et al [AHSS08] we can define a termination insensitive
version:

Definition 10 (Termination Insensitive Flow Lock Security). A program c
is said to be termination-insensitive Σ-flow lock secure, written FLSTI(Σ, c)
iff for all attackers A = (α,∆), all A-low memories L, and any two runs
(~uu,Ω) and (~uu′,Ω′) in RunA(Σ, c, L) such that Ω ⊆ ∆ we have that

kA(~uu, c, L) = kA(~uu′, c, L)

In this variant we allow some knowledge to be gained by the last step
of the output, but no more than simply learning that there is an observable
output. See Askarov et al [AHSS08] for more details. Note that by symmetry
we compare the knowledge sets under both Ω and Ω′.

37

2.4 Basic Properties of Flow Lock Security

In this section we look at some basic properties of the definition of flow lock
security. We inspect the basic properties of the definition via the principles
of declassification as stated by Sabelfeld and Sands [SS05], since flow locks
are intended to model various forms of declassification (or more generally
reclassification).

Conservativity The conservativity principle states that in the absence of
any declassification the security condition should revert to noninterference.
We can easily model standard information-flow lattices by policies which
contain sets of unguarded actors, so that for example in the two-point lattice
Low ≤ High we would define two actors low and high, and then Low data
would be modeled by the policy {∅⇒ low ; ∅⇒ high}, whereas High would
correspond to {∅⇒ high}. In the presence of such unguarded policies it is
straightforward to see that the notion of flow lock security reduces to the
knowledge-based definition of noninterference from Askarov et al [AHSS08].

Monotonicity of release This principle states that adding more declassi-
fication to a “secure” program should never render it insecure. In the setting
of flow locks, “adding more declassification” is naturally interpreted as open-
ing more locks. A secure program which is modified to open more locks (but
is otherwise unchanged) will still be secure since it is straightforward to see
that the more locks are open in the lockstate at any given point in a trace,
the weaker the flow lock security requirement at that point.

Formally we can state the principle of monotonicity as follows:

Proposition 1 (Monotonicity of flow lock security). If FLS(Σ, c) and Σ′ ⊇
Σ then FLS(Σ′, c).

The proof can be found in the appendix.

Semantic consistency This states that the notion of security should be
preserved by any semantics-preserving transformations to a program, and
this is true for the semantics we define. One such example is dead code
elimination. As mentioned in the introduction, lack of flow sensitivity makes
security definitions sensitive to dead code. Here the definition of flow lock
security can never be sensitive to dead code since it only quantifies over
possible traces of a system – and these, by definition, are insensitive to dead
code.

38

It is worth noting that semantic consistency is relative to a particular
semantics; in the concrete example that we consider in the next section we
assume a semantics in which the effect of assignments are directly observable
(to an appropriate attacker), something which does not hold for the usual
operational semantics. This is referred to as a semantic anomaly [SS05],
and is common to many security definitions which are phrased in terms of
sequences of assignments.

Non-occlusion The non-occlusion principle is the most vague. It tries to
capture the requirement that one declassification operation should not be
able to mask an arbitrary amount of future insecure information flow. In
our system we can argue for non-occlusion as follows. In our definition each
assignment is considered in isolation, and the presumed knowledge gained
from observing an assignment is exact. Therefore any further knowledge
gained by observing any future assignment must still be subject to the same
constraints (modulo the knowledge gained by the earlier assignment) with
respect to the lock state and policies in force at that time. Adding declassi-
fications therefore cannot mask future unintended flows.

Hookup Properties for Sequential Composition In addition to the
basic principles, it is useful to study composition principles (sometimes called
hook-up properties [McC87]): when can we build secure programs from secure
components.

Here we briefly consider the most basic composition principle correspond-
ing to sequential composition. Let us suppose that we have a sequential
composition operator (either directly or encodable) with the usual semantics
(see the next section for example).

The termination sensitive condition has a technical problem that pre-
vents it from composing sequentially: a program which ends in a silent loop
is indistinguishable from one which terminates. This difference is revealed
by composing the program with one which performs output. Termination
insensitive flow lock security would consider the above composition secure,
but still suffers from a problem, though for a different class of programs.
A program that either silently terminates or produces one last output be-
fore termination is considered secure, since the silent termination is for all
purposes equivalent to a silent loop. Composing such a program with one
that performs an output again reveals the difference, and causes the previous
output to be considered insecure.

To obtain secure composition, the concrete semantics used may thus not
have silent termination, i.e. all programs must produce a distinguished visible

39

output if and only if they terminate. We say that such programs have visible
termination. Our security definition from the previous section is agnostic as
to whether visible termination is used or not.

The second minor obstacle to secure sequential composition is the lock
state component. For this let us introduce Hoare-like triples {Σ}c{Σ′}, which
state that if any computation of c begins with at least locks Σ open, on
termination at least locks Σ′ will be open.

Proposition 2. The following proof rule is sound, assuming the concrete
semantics uses visible termination:

FLS(Σ, c1) {Σ}c1{Σ′} FLS(Σ′, c2)

FLS(Σ, c1; c2)

2.5 Enforcement: A Sound Flow Lock Type

System

In this section we will illustrate our definition of flow lock security to a specific
language and type system, and prove that the type system guarantees flow
lock security as given by the definition in the previous section. For the sake of
brevity we treat just a simple while-language, but in principle we can apply
the same approach to a higher-order language and type system (which we
did in our first paper [BS06b]).

2.5.1 Language

The simple while language presented in figure 2.1 will serve as the basis of
our presentation. The only two non-standard features are statements open σ
and close σ for manipulating the program’s lock state. σ here ranges over
single locks. The notion of observable action is defined (as discussed in the
previous section) as the action of assigning to a variable.

2.5.2 Type System

The type system we use can be found in figure 2.2. To simplify the presen-
tation we use only int as base type for expressions, and commands have no
base type, so we can restrict ourselves to only the flow locks aspects of the
system. However, for convenience we use the boolean values false and true
as shorthands for the value 0, and any value v 6= 0, respectively.

We choose to model our system as a type and effect system in the style
of Almeida Matos and Boudol [AB05]. For expressions we have judgments

40

〈n,M〉 ⇓ n 〈x,M〉 ⇓M [x]

〈e1,M〉 ⇓ v1 〈e2,M〉 ⇓ v2
〈e1 ⊕ e2,M〉 ⇓ v1 ⊕ v2

〈Σ,open σ,M〉 τ−→ 〈Σ ∪{σ}, skip,M〉

〈Σ, close σ,M〉 τ−→ 〈Σ\{σ}, skip,M〉

〈e,M〉 ⇓ v

〈Σ, x := e,M〉 x(v)−−→ 〈Σ, skip,M [x 7→ v]〉
〈e,M〉 ⇓ v v ∈ {true, false}

〈Σ, if e then ctrue else cfalse,M〉
τ−→ 〈Σ, cv,M〉

〈Σ,while (e) c,M〉 τ−→
〈Σ, if e then c; while (e) c else skip,M〉

〈Σ, c1,M〉
`−→ 〈Σ′, c′1,M ′〉

〈Σ, c1; c2,M〉
`−→ 〈Σ′, c′1; c2,M ′〉

〈Σ, skip; c2,M〉
τ−→ 〈Σ, c2,M〉

Figure 2.1: Operational Semantics

of the form ` e : p where the policy p, called the read effect, is the join of the
policies on all variables whose contents are used to produce its result.

For commands the main judgments have the form Σ ` c; p,Σ′. Here Σ
is an assumption about what locks will be open before execution of c. The
policy p is the so called write effect of a command, which is the union of the
policies on all variables whose contents might be changed when executing the
command. This plays a similar role to the “PC” level in many information
flow type systems. The final component Σ′ is a safe approximation (i.e. an
underestimation) of the locks that will be open after execution of c.

Since the rules typically mention a number of different policies, we use
r and w to range over read effect and write effect policies respectively, to
simplify the presentation.

Looking more closely at some of the rules, we note that, unsurprisingly,
open and close are the only commands directly affecting the lock state. In

41

` n : ⊥ ` x : pol(x)

` e1 : r1 ` e2 : r2
` e1 ⊕ e2 : r1 t r2

Σ ` open σ ; >,Σ ∪ {σ} Σ ` close σ ; >,Σ \ {σ}

Σ ` skip ; >,Σ
` e : r r(Σ) v pol(x)

Σ ` x := e; pol(x),Σ

` e : r Σ ` ci ; wi,Σi r v w1 u w2

Σ ` if e then c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

` e : r Σ ∩ Σ′ ` c; w,Σ′ r v w

Σ ` while (e) c; w,Σ′ ∩ Σ

Σ ` c1 ; w1,Σ1 Σ1 ` c2 ; w2,Σ2

Σ ` c1; c2 ; w1 u w2,Σ2

Σ ` c; w,Σ′

Σ ` c (Top level judgement)

Figure 2.2: Flow Lock Type System

the rule for assignments, the check r(Σ) v pol(x) ensures that the assignment
is valid under the current lock state Σ, thereby ruling out leaks from direct
flows. In the rule for if , the check r v w1 u w2 ensures that no indirect
flows leak information about a ”secret” conditional expression to ”public”
locations. Similarly for the test r v w in the while rule.

For the if rule, to compute a safe approximation to the locks that will
be open it suffices to take the intersection of the resulting lock states of the
branches. The while rule needs to use a fix point for the resulting lock state
since one iteration of the loop may close locks that would then not be open
in subsequent iterations.

We note that there is a natural subtyping in the lock state component of
this type system. Formally

Σ ` c; w,Σ′ ∧ ∆ ⊇ Σ =⇒ ∆ ` c; w,∆′ ∧ ∆′ ⊇ Σ′

This is easily proved by looking at all the uses of the lock states in the rules,
and in particular noting that Σ is covariant in r(Σ) v pol(x) in the rule for
assignment.

Further, we can formalise our claim that the resulting lock state in the
type system is a safe approximation of running the command as follows:

42

Proposition 3 (Lockstate Safety). Σ ` c; w,Σ′ implies {Σ}c{Σ′}.

The proof of this is a straightforward induction over the typing deriva-
tions. We of course also want to prove soundness with respect to progress
and preservation. We have that

Proposition 4 (Progress). If Σ ` c; w,∆ and c 6= skip then 〈Σ, c,M〉 `−→
〈Σ′, c′,M ′〉.

Proposition 5 (Preservation). If Σ ` c; w,∆ and 〈Σ, c,M〉 `−→ 〈Σ′, c′,M ′〉
then Σ′ ` c′ ; w′,∆′ for some w′ w w and ∆′ ⊇ ∆.

Proof of Progress is a straightforward case on the syntax of commands.
Proof of Preservation is much more involved and can be found in the ap-
pendix.

Finally we can state the main proposition of this section, which is that
the type system implies flow lock security. The type system is formulated in
a termination insensitive way, in particular we allow low assignments after
high loops, so that is the formulation we will prove.

Theorem 1 (Well typed programs are flow lock secure). If Σ ` c then
FLSTI(Σ, c).

The proof is given in the appendix.

2.6 Example Encodings

Many declassification ideas can be encoded using flow locks. By such an en-
coding we now obtain a weaker flow-sensitive semantics for the corresponding
declassification mechanism.

2.6.1 Delimited Non-Disclosure

As a simple example let us take a recent declassification mechanism, delimited
non-disclosure [BCR08]. In its simplest form we have variables of either High
or Low security levels, and a local block-structured declassification command
declassify h in c which allows a local weakening of the policy so that h is
treated as low for the computation of command c. This is a variable-centric
variant of Almeida Matos and Boudol’s non-disclosure construct [AB05].

To encode this idea using flow locks we need to use one lock Declh per
high variable h. Then we assign the policy pol(`) = {high, low} for each low

43

variable `, and pol(h) = {high,Declh⇒ low} for each high variable h. The
encoding of declassify h in c is then the obvious

open Declh; c; close Declh

For this encoding we need to assume that there are no nested declassifica-
tions over the same variable. This is not a real restriction since the inner
declassification would be redundant in that case.

The semantics of delimited non-disclosure is bisimulation-based with mem-
ory resetting, so suffers from flow insensitivity (see the example in Sec-
tion 2.3). We conjecture that our encoding gives a strictly weaker semantics,
but that encoded programs typable in our simple type system are also ty-
pable in the system given in Barthe et al [BCR08]. This is because our type
system is too simple to take advantage of flow sensitivity.

2.6.2 Gradual Release

A more interesting example is provided by the Gradual Release property
from Askarov and Sabelfeld [AS07]. This is interesting because the style of
definition used there was the inspiration for our approach. Surprisingly we
are able to show that, when specialised to the case of simple declassification,
our definition coincides exactly with gradual release.

We will begin by presenting their core operational semantics, as well as
the Gradual Release security requirement for programs. We will then present
a simple encoding of their language using flow locks, and show that for the
class of flow locks programs conforming to the encoding, the two operational
semantics and security requirements are equivalent. We will also show that
their type system is equivalent to the type system given for the example
language in Section 2.5, for that same class of programs.

The language used by Askarov and Sabelfeld [AS07] is a simple while
language similar to the one presented in section 2.5. It uses a simple two-level
lattice L = {Low,High} with Low v High and High 6v Low. As expected
data may flow freely from locations marked with Low to locations marked
with High, but not the other way around. The special declassify command
allows a program to leak data from High to Low.

The relevant parts of the operational semantics for this language can be
found in Figure 2.3. There should be no surprises apart from the outputs
arising from assignments and declassifications. These are labeled differently
– normal assignments to variables marked with Low cause outputs of the
form x(v) whereas declassifications output so called release events denoted
by r : x(v). Assignments to variables marked with High do not yield any
outputs at all.

44

〈M, e〉 ⇓ n pol(x) 6= Low

〈M,x := e〉 −→ 〈M [x 7→ v], skip〉

〈M, e〉 ⇓ n pol(x) = Low

〈M,x := e〉 x(v)−−→ 〈M [x 7→ v], skip〉

〈M, e〉 ⇓ n

〈M,x := declassify(e)〉 r:x(v)−−−→ 〈M [x 7→ v], skip〉

Figure 2.3: Operational semantics for Gradual Release

The set of all possible low event sequences of a program is defined as
follows:

Definition 11 (Low event sequences). The set of all possible low event
sequences that program c may generate starting from a low memory L is

GRRun(c, L) = {~u | M =Low L, 〈M, c〉 ~u
=⇒〈M ′, c′〉}

where =Low is equivalence on the low part of the memory.

For a program to satisfy Gradual Release, it needs to fulfill the following
property4:

Definition 12 (Gradual Release). A command c satisfies Gradual Release,
written GR(c), if for all low projections of memories L, and all pairs of
sequences ~uu, ~uu′ ∈ GRRun(c, L), we have

k(c, L, ~uu) = k(c, L, ~uu′)

Flow Locks Encoding The language displayed here is as noted already
very similar to that shown in Section 2.5 and the encoding is straightforward
as previously described. We define an encoding function ·̂ over commands,
and policies etc.

First we need to represent the security levels High and Low. As before we
introduce two actors: low is only allowed to see public (Low) data, while high
is allowed to see any data. We also introduce a lock Decl to handle declas-

sification. We can then encode the two levels as Ĥigh = {high; Decl⇒ low}
4We take the liberty of presenting the definitions from Askarov and Sabelfeld [AS07]

in a style that more closely resembles those which we have used for our own definitions.
Our presentation is not different in any substantial way.

45

and L̂ow = {high; low}. We have L̂ow v Ĥigh and Ĥigh 6v L̂ow, as expected.

We extend the encoding to variables (x̂) and memories (M̂) in the obvious
way, by encoding all policies involved.

Secondly, we need to encode declassification. As previously the command

x := declassify(e)

is represented with the sequence of commands

open Decl ;x := e; close Decl

And that is all we need.

Equivalence Our main goal here is to show that our encoding of the Grad-
ual Release primitives leads to a system that is equivalent to the original
Gradual Release system presented by Askarov and Sabelfeld [AS07]. In par-
ticular, we want to show that a program will be deemed secure according to
Gradual Release if and only if its encoding is deemed flow lock secure.

GR(c) ≡ FLSTI(∅, ĉ)

To do this, we first note that on the flow locks side the only possible
lockstates at any point in the program are P(Locks) = {∅, {Decl}}, and the
only actors are Actors = {high, low}. Further we note that for all attackers
A ∈ Actors×P(Locks), the only attacker that would not have perfect knowl-
edge of the memory at all times is A = (low , ∅). We can then specialise the
definition of flow lock security, to say that an encoded program ĉ is termi-
nation insensitive flow lock secure iff for attacker A = (low , ∅), for all A-low

memories L̂, and all pairs of runs (~uu, ∅), (~uu′,Ω) ∈ RunA(∅, ĉ, L̂) we have
that

kA(~uu, ĉ, L̂) = kA(~uu′, ĉ, L̂)

Next we note that we have a simple correspondence between the defini-
tions of runs.

Lemma 1 (Correspondence between runs). If (~uu) ∈ GRRun(c, L) then

(~uw,Ω) ∈ RunA(∅, ĉ, L̂) for A = (low , ∅), and further Ω = {Decl} iff u is a
release event, otherwise Ω = ∅.

The proof of this is a straightforward inspection of c.
Applying lemma 1 to our specialised version of flow lock security above,

we end up with exactly definition 12, which is what we wanted to prove.

46

Type system equivalence We can also show that the type system pre-
sented by Askarov and Sabelfeld [AS07] is equivalent to the type system
presented in Section 2.5. The typing judgments and rules for expressions in
the gradual release system are identical to those in our type system. For
commands, we have that

G̀R c; w ⇐⇒ ∅ ` ĉ; ŵ, ∅

This is trivial to show for all commands except for assignments and declas-
sifications.

For assignments the rule for the Gradual Release system states that

G̀R e : r r v pol(x)

G̀R x := e; pol(x)

and we have a direct correspondence with the type rule for assignments from
Section 2.5, specialised to encoded commands:

` e : r̂ r̂ v p̂ol(x)

∅ ` x := e; p̂ol(x), ∅

For declassification the rule from Gradual Release is simply

G̀R e : r

G̀R x := declassify(e) ; pol(x)

i.e. no constraints on the respective security labels of e and x. For the
encoded equivalent,

open Decl ;x := e; close Decl

we can simply construct the derivation and everything is trivially typable,
with the exception of the constraint r({Decl}) v pol(x) arising from the
assignment in the middle. Since we know from the domain that r is either
{high; low} or {high; Decl⇒ low}, we have that r({Decl}) = {high; low} =

L̂ow. Since for all l, L̂ow v l, the constraint L̂ow v pol(x) is always fulfilled,
and we are done.

Discussion What we hope to show with this encoding is that this could
have been a feasible (not to say easy) way to prove properties about Gradual
Release. The proofs here that Gradual Release is a specialisation of Flow
Locks are much less involved than the proofs in the Gradual Release paper,
even though those are quite simple to begin with.

47

Gradual Release is a special case in that it is already flow sensitive, so we
get an exact equivalence between the original semantics and the flow locks
induced one. We could not get such a correspondence with a flow insensitive
system. However, we argue that most other systems are not inherently flow
insensitive, and that giving a flow sensitive semantics to them via a flow locks
encoding is not only feasible, but also beneficial since it makes it easier to
relate various semantics and enforcement mechanisms.

Reasoning about flow locks is greatly simplified by the new form of se-
mantics. But what we have not done in these examples is take advantage of
the fact that the semantic condition is not only simpler but also more lib-
eral: in fact the type system we have presented is very similar to that which
we originally verified against a flow insensitive semantics in our first paper
[BS06b]. Flow sensitivity would be useful in cases where the type system
also needs to track properties of values – for example if we wanted to ex-
tend the typings to additionally verify that openings of locks only occurred
in specific states, or released specific parts of some data (c.f. Banerjee et
al [BNR08]). Any resetting-style semantics would not be able to track such
properties through a computation.

2.6.3 More encodings

Intransitive Noninterference Flow locks represent a lower level abstrac-
tion than lattice-based information flow models in the sense that the lattice
ordering is not “built in” but must be represented explicitly. One advantage
of such a lower level view is that it can also represent intransitive nonin-
terference policies [Rus92, Pin95] — i.e. ones in which the flow relation is
intentionally not transitive. Since intransitive policies are the default case
for flow locks, it is straightforward to represent simple language-based in-
transitive policies such as the one described by Mantel and Sands [MS04].

Noninterference Until Declassification Chong and Myers [CM04] in-
troduce a class of temporal declassification policies. This is achieved by
annotating variables with types of the form k0

c1 · · · cn kn, which intuitively
means that a variable with such an annotation may be successively declassi-
fied to the levels k1, . . . , kn, and that the conditions c1, . . . , cn will hold at the
execution of the corresponding declassification points. The exact nature of
the conditions are left unspecified, and it is assumed in the type system that
these conditions are verified at certain key program points by some external
tool.

48

We can achieve a similar effect fairly naturally using flow locks, where we
would use a distinct lock Ci for each condition ci. One should then insert
open Ci constructs in the program at points where the intended declassifi-
cation takes place, and verify (with an external tool) that the corresponding
condition ci does indeed hold at these points, and that lock Ci−1 has been
opened (we assume that locks are never closed in this encoding). The policy
above could then be represented as

{k0; {C1}⇒ k1; · · · ; {C1, . . . , Cn}⇒ kn}.

Robust Declassification Information flow may be used to verify integrity
properties, to ensure that untrusted (low integrity) data does not influence
the values of trusted (high integrity) data. Since flow lock policies are neu-
tral with respect to whether we are dealing with confidentiality or integrity
properties it is no problem to add such integrity policies to data, and we
can easily have clauses for integrity and confidentiality in the same policy.
The interesting case, however, is the interaction between confidentiality and
integrity in the presence of dynamic policies.

Zdancewic and Myers [ZM01] introduced the concept of robust declas-
sification to characterise the property that an attacker (who controls low
integrity data) cannot influence what is declassified. This guarantees that
the attacker cannot manipulate the amount of information which is released
through declassification.

In the setting of flow lock policies, “declassification” can be thought of
as the process of opening locks, since whenever a lock is opened more flows
are enabled. Thus we can interpret robust declassification as the question of
whether low integrity data can influence the decision to open locks. 5

One possible way of enforcing robust declassification using flow locks is to
observe the following: since we cannot perform any computation with locks,
the only way that an open operation can be influenced by low integrity data
is via indirect information flow from low integrity data. Suppose that our
policies use an indexed set of locks σi, i ∈ I to control confidentiality. These
are unguarded (i.e. we ignore endorsement). Let us assume that in addition
to the actors of the system we have the pseudo-actor trusted used to track
integrity information, just as we did in Section 2.2.

Since flow locks themselves do not have policies, since the information
they carry cannot be used to influence values at runtime, we need to use an
auxiliary trick to encode the flow from data to locks. In order to prevent

5If we also take the view from Myers et al [MSZ04], then we extend this concept with
the requirement that we should not be able to declassify low integrity data

49

indirect flow from low integrity data to the opening of locks, we will log each
use of an open operation by writing to a variable log . An obvious way to
enforce this is to define a “robust” version of open:

ropen σi ≡ open σi; log := i

Now we give log the policy {trusted}. This ensures that the assignment
is always safe from a confidentiality perspective (since normal actors can
never read it anyway), and that the open operation can never have taken
place in a low integrity context (since otherwise the assignment would cause
information to flow from untrusted to trusted data). Finally, to additionally
prevent the declassification of low integrity data we can syntactically enforce
that lock-guarded policies are only used on high integrity data.

In the next chapter we allow information flow from locks to values, re-
quiring locks to have policies too, which makes the encoding of robust de-
classification even more straightforward.

The Decentralised Label Model In the Decentralised Label Model (DLM)
[ML97, ML98, ML00], data is said to be owned by a set of principals. These
principals may allow other principals to read the data, and the effective reader
set is those principals that all owners agree may read the data. Allowing a
new reader roughly corresponds to declassification, and we can model it simi-
larly. The DLM also defines a global principal hierarchy, where one principal
may allow another principal to act for it, which means it may read all the
same things. This is very similar in spirit to introducing a new flow in the
system by Almeida Matos and Boudol, including transitivity, and we can
model it in the same way. Apart from clauses for declassification and hierar-
chic flows, the policies must also include clauses for the combination of the
two, e.g. A can read the data if B owns it, has declassified it for C to read
it, and A acts for C.

A common extension of the DLM [ZM01, TZ05, TZ04] deals with integrity
and trust. The interesting part for us is the integration with the principal
hierarchy, where if A trusts some data and A acts for B, then B also trusts
that data. This can be modeled as the reverse of the normal clauses for
transitive flows, and the clauses will be very similar to those for forward
flows.

The complete general policy for a DLM variable encoded with flow locks
would be fairly large and awkward due to the lack of a number of abstraction
mechanisms. That is the topic of the next chapter.

50

Chapter 3

Paralocks

3.1 Introduction

As noted in the introduction chapter, issues of software security can be
crudely categorised into three broad domains:

• Access control deals with security at the end points of a system, to
verify that an entity is allowed to access the system, and to what extent.

• Information flow control deals with security inside a system, between
the end points, to ensure that data in the system is handled in a way
that agrees with the security policy of the system. This is the domain
that is most interesting from a programming language point of view,
since it deals with security during execution.

• Encryption deals with security outside a system, to ensure that data
can be protected even outside the trusted system environment.

The problems involved in research on encryption are quite different from
the other two domains, but unsurprisingly there are many similarities be-
tween problems that arise in the access control and information flow control
domains. In particular, problems regarding policy specification and mod-
eling of principal actors are quite similar, much due to the fact that these
issues are not purely technical, but rather relate to the interface between the
system and its users (implementor, admins). Thus, many ideas relevant in
one domain are equally applicable to the other, at least on a high level.

In the access control domain there exists plenty of research regarding
policy specification mechanisms. Such mechanisms have traditionally been
categorised into two separate groups: Mandatory (or static) access control

51

(MAC), where an outside administrator assigns static privileges to princi-
pals, and Discretionary access control (DAC), where principals themselves
can grant and revoke privileges to and from other principals. A later addi-
tion to the family of models is Role-based access control (RBAC) [SCFY96],
which has become very popular and has seen wide-spread adoption both
commercially and academically.

On the information flow control side, there has been far less focus on
policy specification. We surmise that this has a very natural cause. In access
control, which deals with the interfaces to a system, policy specification is
the one core issue and a prerequisite for any further aspects of security.
Information flow control on the other hand is more naturally focused towards
issues of semantic security with respect to a policy, and most research in the
domain has been devoted in that direction.

Papers on information flow control issues typically fall into one of two
categories where the policy mechanism used is concerned. In the first cate-
gory we find those that use a simple model built around a lattice of principals
or sets of principals, going back to Denning’s early ground-breaking work.
The other category is the research that builds on the Decentralised Label
Model (DLM), which is today something of a flagship of information flow
control through its implementation in Jif. These two categories can some-
what crudely be said to correspond to the MAC (static Denning-style lattice)
and DAC (decentralised and discretionary) models.

Interestingly and perhaps surprisingly there has been almost no work on
marrying a fundamentally role-based model to information flow control (the
exceptions being Swamy et al [SHTZ06, BWW08] which are discussed further
in chapter 5), despite the massive attention RBAC has received in the access
control domain, both commercially and academically.

In this chapter we present Paralocks, an extension to our flow locks lan-
guage from the previous chapter. Paralocks extends flow locks with the abil-
ity to express policies modeling roles (in the style of RBAC) and run-time
principals.

The extension (parameterised locks) turns out to provide much more than
just the ability to model roles: we show (section 3.6.2) how relations such as
delegation in discretionary access control can be represented by policies, and
use this to give a sound and complete encoding of the Decentralised Label
Model (DLM) [ML97].

Unlike the DLM we also provide an information flow semantics for Par-
alocks. This defines what it means for a program (whose state components
are labeled with policies) to be secure.

As an illustration of how Paralocks can be integrated into a programming
language we give an example of a small programming language with a Par-

52

alocks type system for which we show that well-typed programs satisfy the
semantic information flow condition.

Finally we outline a logically natural extension to the Paralocks policy
language to include recursively specified locks (Datalog rules).

Our aim with Paralocks is really two-fold. On the one hand we present
the policy specification language itself, as well-suited for specifying infor-
mation flow policies in practice. Paralocks extends flow locks to naturally
models roles, but also actors, groups and general relationships in a simple
and structured way. On the other hand, Paralocks is a very general frame-
work for information flow control. This aspect lets us use Paralocks to reason
about and give meaning to other mechanisms both current and future. Par-
alocks thus serves as a platform that can greatly simplify further research into
various aspects of information flow control, such as specialised policy specifi-
cation languages, and the relationship between information flow control and
programming language design.

3.2 Roles and Information Flow

Roles are a natural concept in an organisational structure and are just as
naturally tied to information flow controls as to access control. Consider a
department consisting of managers, personnel and sales. These roles form a
hierarchy as illustrated in the Hasse diagram below:

Manager

/ \

Personnel Sales

In role-based access control each role represents a set of users (later we will use
the neutral term actors) endowed with a set of permissions. The hierarchy
illustrated in the figure (roles + hierarchies are referred to as RBAC1 in
the RBAC96 model [FSG+01]) represents the intention that the permissions
granted to higher roles subsume those granted to lower roles.

Let us suppose that we take an information flow perspective on roles
and we assume data is labeled with a role, representing the permission to
gain information about that data. Then role-based information flow control
would simply be the constraint that information may only flow upwards in
the hierarchy. This is simply the Denning lattice-based model [Den76] with
a relaxation on the requirements that the hierarchy forms a complete lattice.

In this setting the assignment of users to roles is of little direct concern
from an information flow perspective, since users do not possess their own
data, and are defined purely by the roles to which they are assigned. Inputs

53

and outputs of the system would then be bound to roles, and some external
mechanism would mediate the connection between roles and users.

However, if we admit the possibility of personal data then the information
flow perspective becomes considerably richer. For example, if we had I/O
channels directly to users then we would have an information flow problem
with a dynamic policy: information flows to and from a given actor would
depend on her current role.

Consider another scenario involving personal data, a twist on the example
we used in the previous chapter: an auction site managing sealed-bid auctions
for an a priori unspecified number of users. In such a scenario the roles of
seller and bidder, respectively, immediately spring to mind. Other constraints
on the auction influence the intended information flows:

• the seller can set a reserve price which is initially only visible to the
seller;

• bidders provide sealed bids and can see their own bid but cannot see
each others’ bids;

• bidders learn of the winning bid, but only at the end of the auction;

• if the reserve price is not met then there is no winning bid;

• sellers cannot also be bidders for the same item.

In summary, to verify that code managing such auctions is well behaved
raises a number of general challenges from an information flow perspective,
some of which our flow locks from the previous chapter cannot handle:

1. We need to model dynamic actors – actors whose concrete identity is
not known or may not exist until runtime.

2. The data associated with a role (e.g. the bids) belongs to the actor and
not the role (because bidders should not be able to see all bids - only
their own bid).

3. Permissions associated with roles are assigned dynamically (in this ex-
ample, the ability to read a winning bid is only granted after the auction
is complete).

4. Declassification is required: the winning bid (or its absence) provides
partial information about the secret reserve price of the seller.

5. We must be able to impose role constraints (a la RBAC2) to ensure
that the seller cannot become a bidder on the same item.

54

In the next section we extend flow locks into a language aimed at meet-
ing these challenges. Our extension is motivated by the addition of roles.
However, as we will show in a later section (3.6.2), the extension turns out
to provide considerably more than just the ability to represent roles.

3.3 Flow Locks and Roles

Consider a simplified form of the auction example in which we have two
known buyers B1 and B2 and a single seller S and where the bidders may see
each other’s bids once they have placed their own. We associate two locks,
bid1 and bid2 with the placing of bids by B1 and B2 respectively; bid i will
be assumed to become true once Bi has placed his bid. Then the policy for
B1’s bid is

{S;B1; bid2⇒B2}.
This says that the bid of B1 may flow to S and B1 unconditionally, and may
flow to B2 only when B2 has placed a bid (as modeled by lock bid2).

As can be seen, when using simple flow locks, all actors must be known
statically and enumerated in policies, and we need locks that are specific to
each such actor.

Consider a further example represented in Figure 3.1 which depicts three
Denning-style information-flow lattices.

Figure 3.1: Example Dynamic Policy

In the leftmost lattice Alice is the top element. While Alice is “boss” all
information may flow to her. If she is demoted, however, then the informa-
tion flow lattice changes to the central figure. From there either Bob or Alice
can be promoted to be the boss. Let us consider how to encode this intended
scenario with flow locks. To represent this dynamic flow policy we begin,
not surprisingly, by assuming three actors: Alice, Bob, and Joe. To model
the transitions between policies we use two locks: promoteA and promoteB.
The events of promotion and demotion are modeled by the respective open-
ing and closing of these locks. When promoteA is open then Alice is boss.
Closing promoteA (respectively, promoteB) corresponds to demoting Alice
(resp. Bob).

55

To complete the picture we need to describe the corresponding policies for
the data to be associated with Alice, Bob, and Joe. Joe is the simplest case,
and his data has policy {Joe; Alice; Bob} – i.e. it is readable by everyone
at all times. Alice’s data has policy {Alice; promoteB⇒Bob} and Bob has
the symmetric policy {Bob; promoteA⇒Alice}. For Bob this means that his
data is readable by Alice only when Alice has been promoted. Note that
if both locks are open then we have a situation not modeled in the figure:
Alice and Bob become equivalent from an information flow perspective. If
we want to rule this out we cannot do so using the policy on data, instead
we must enforce this via an invariant property of the locks themselves.

Again, using flow locks we can only reason about actors that are stati-
cally known, and duplicate locks across actors and policies. To write these
examples in a convenient and flexible way, we need the concept of roles.

3.3.1 Modeling Roles

A naive approach to supporting roles with Flow locks could be to simply
let the actors be the roles, and not have conventional actors at all. This
would work with no changes to the current policy language, however as our
examples in the previous section have shown, we often need to reason about
both roles (or groups) and individual actors.

Thus we need a different approach to roles that retains the notion of an
actor. Looking at what it means for some data to be accessible to a role R,
the natural interpretation is that an actor may gain information about that
data if the actor is a member of R. How do we express this as a flow lock
policy? We need a lock that captures the condition that “a is a member of
role R”, which we henceforth write R(a). But clearly the policy we want
is not just for some specific actor a, but rather any actor x for which R(x)
holds. Logically we could easily write this as ∀x.R(x) =⇒ x. A role thus
has a natural representation as a lock family, parametrised by actors.

To achieve this we introduce two separate – though synergistic – exten-
sions to the basic formulation of flow locks:

Parameterised Locks Locks which are parameterised over actors repre-
sent role membership. For example the role Seller is represented as
parameterised lock family, so if a is an actor then Seller(a) is a lock
which models a being a member of the seller role. Data labeled with
the policy {Seller(a)⇒ a} is permitted to flow to a providing that a is
a seller.

Actor Polymorphism To make parameterised locks practically useful we
also need to be able to quantify over all actors, so that we could instead

56

write the policy as {∀x. Seller(x)⇒x}, meaning that data labeled with
this policy may flow to any seller.

With this interpretation of roles, and these extensions to the policy specifi-
cation language, we can easily formulate the policies from the examples in
the previous section using flow locks. Let us then return to the challenges
offered by those examples:

1. Actors whose concrete identity is not known until run-time can be
handled by policies with actor polymorphism. As a simple example,
the policy {∀x. x} is the most liberal policy, permitting its data to flow
to any actor at all times. This does not require us to know the identity
of all actors at policy creation time (as would be required using the
original basic flow locks mechanism).

2. Fine grained policies at the level of individual actors combine easily
with roles. For example, suppose we wish to generalise the scenario in
Figure 3.1 to an organisation of 1000 employees – or a situation with
an unknown number. Here we must combine a role (the boss) with
the requirement that non-bosses cannot obtain information from each
other (with the exception of Joe). The data of Joe would have policy
∀x. x – it can flow to anyone. The data for any other individual a would
have the policy {a;∀x.Boss(x)⇒x}, which means that data labeled
with this policy can flow to a and anyone who is a boss (at the time of
the flow).

3. Permissions associated with roles are assigned dynamically by using
standard (non-parameterised) locks. For example, the largest bid might
be stored in a variable with policy

{∀x. {AuctionClosed ,Bidder(x)}⇒x}

where the vanilla lock AuctionClosed represents the property that the
auction is complete and the reserve has been met. So in effect AuctionClosed
represents the condition under which the Bidder role is assigned the
permission to learn about the winning bid.

4. Declassification is inherited from the standard flow locks model. For
example, the reserve price is available to the seller, but is declassified
to bidders providing there is a winning bid:

{Seller ;∀x. {AuctionClosed ,Bidder(x)}⇒x}

57

5. Role constraints – here the requirement that e.g. there is a single
seller, and that seller and buyer cannot be the same actor – can be
established by runtime invariants for flow locks. These can either be
verified statically or enforced dynamically using a runtime representa-
tion of locks. In Section 3.7 we describe an extension which permits
certain constraints on roles to be specified as part of the policy.

3.3.2 The Paralocks Policy Language

Now we can summarise the policy language, and define its lattice structure.
In summary, the policy language generalises flow locks policies with actor-
parametrised locks, hence the name: Paralocks. The ordering on policies is
based on a straightforward and natural logical interpretation of policies.

Definition 13 (Paralock Policies).

• Policies are built from actor identifiers, ranged over by a, b, etc. and
parameterised locks, ranged over by σ, σ′ etc. Each parameterised lock
has a fixed arity, arity(σ) ≥ 0.

• A lock is a term σ(a1, . . . , an), where arity(σ) = n. Let Σ, Σ′ range
over sets of locks.

• A clause c is a term of the form ∀a1, . . . , an.Σ⇒ a.

• A policy p is a set of clauses written { c1; . . . ; cn}.

We have already adopted a number of syntactic abbreviations in earlier
examples: we write just σ instead of σ() in the case that arity(σ) = 0.
Similarly we drop the quantifier on clauses when there are no quantified
variables. When the lock set Σ in a clause is empty, as in ∀a1, . . . , an. ∅⇒ a
we write ∀a1, . . . , an. a. We will routinely write ~a to denote some sequence
a1, . . . , an. Such a sequence will be treated as a set {a1, . . . , an} when the
context permits us to do so without ambiguity.

Policies have a natural reading as conjunctions of definite first-order Horn
clauses. Each clause

∀a1, . . . , an. { σ1(~b1); . . . ;σm(~bm)}⇒ a

can be read as the Horn clause

∀a1, . . . , an. (σ1(~b1) ∧ · · · ∧ σm(~bm))⇒Flow(a)

where Flow is a single unary predicate disjoint from the parameterised locks,
representing the “may flow to” property.

58

Using this logical interpretation we obtain a natural lattice structure on
policies, where the policy ordering (v) on individual clauses is just logical
entailment. Specifically, we define p v q whenever p, viewed as a first order
formula, entails q. We will write p |= q to denote this logical interpretation.

Following this natural interpretation we have the following definition:

Definition 14 (Policy ordering). Policy p1 is less restrictive than policy
p2, written p1 v p2, if ∀c2 ∈ p2. ∃c1 ∈ p1. c1 v c2, where the ordering v
on clauses is defined to be the least partial order (reflexive and transitive
relation) satisfying the following:

• if c1 and c2 are equal up to (i) capture-free renaming of ∀-bound actors
(ii) reordering of quantified actors and (iii) deletion of ∀-bound actors
not occurring in the body of the clause, then c1 v c2;

• ∀a1, ..., an.Σ1⇒ b v ∀a1, ..., an.Σ2⇒ b if Σ1 ⊆ Σ2.

• ∀a0, a1, ..., an.Σ⇒ a v ∀a1, ..., an. ((Σ⇒ a)[a0 := b]), where [a0 := b]
denotes the unconstrained substitution of b for a0.

We do not present a formal proof that this corresponds to the logical
interpretation (in fact we did not spot the connection directly), but we note
that clauses are equivalent to so-called conjunctive queries [CM77], and a
policy thus a union of conjunctive queries. The ordering on clauses defined
above can be seen as a construction of a containment mapping [Ull90]. The
fact that ∀c2 ∈ p2.∃c1 ∈ p1. c1 v c2 is necessary and sufficient to check
logical entailment of unions of conjunctive queries was established by Sagiv
and Yannakakis [SY80].

At any point during program execution, the permitted flows will depend
on the locks which are open at that point. To determine whether p v q in the
context of some open locks Σ, we check the logical implication Σ ∧ p |= q.
In the type system given in Section 3.5 we implement this check via the
specialisation of policy p to a lock state Σ, written p(Σ); we then check that
p(Σ) v q.

The meet operation on policies is simple to define as it corresponds exactly
to conjunction of (sets of) Horn clauses. In our language, that means taking
the union of the clauses of two policies, i.e.

Definition 15 (GLB). p1 u p2 = p1 ∪ p2

The join operation however is more tricky. Logically it corresponds to a
best approximation of disjunction of Horn clauses, since in general (sets of)
Horn clauses are not closed under disjunction. I.e. p t q is the least policy
such that p ∨ q |= p t q. We can define the join directly as follows:

59

Definition 16 (LUB). In the following it is convenient to partition actor
variables in to ∀-bound variables ranged over by x, ~y, and free actor variables
(i.e. actor constants) ranged over by a and b. We write Σ⇒ b to denote the
policy ∀~y.Σ⇒ b where ~y are the ∀-bound variables of Σ⇒ b.

Let p and q be policies. We will assume, without loss of generality, that
all ∀-bound variables appearing in the head of any clause are named x, and
that any other ∀-bound variables in any clause from p are distinct from the
∀-bound variables of q.

Then we define

p t q = {Σp ∪ Σq⇒x | Σp⇒x ∈ p; Σq⇒x ∈ q}
∪ {Σp ∪ Σq⇒ a | Σp⇒ a ∈ p; Σq⇒ a ∈ q}
∪ {Σp ∪ (Σq[x := a])⇒ a | Σp⇒ a ∈ p; Σq⇒x ∈ q}
∪ {(Σp[x := a]) ∪ Σq⇒ a | Σp⇒x ∈ p; Σq⇒ a ∈ q}

It can be shown that the set of Paralocks policies (quotiented by the
equivalence relation generated from v) form a complete lattice. We will
not go into the proof here, but simply note the least (most liberal) policy
⊥ = {∀x. x} and the greatest (most restrictive) policy > = { }, which will
be needed later.

3.3.3 Beyond Roles

Using actor-indexed lock families we have shown how we can model roles
along-side specific actors in a natural logical setting, and how the two can
co-exist in the same program. Next we will show how, using a natural gen-
eralisation, we can model policies where information flow can depend on
relations between actors. Such relations are useful in the description of a
decentralised discretionary security model.

The core components of a decentralised discretionary model is the con-
cept of ownership, and an acts-for relationship (sometimes referred to as
delegation or a speaks-for relation [LABW91]), where an actor a who acts
for b enjoys the same rights as b. In particular if actor a owns some data then
b has full access to that data if b acts for a. The condition under which b
may access the data is thus that “b acts for a”. Logically this is easily mod-
eled with a binary relationship between actors, which in the flow locks setting
would naturally correspond to a lock family with two parameters. The policy
mentioned here could then be written as {a;∀x.ActsFor(a, x)⇒x}.

Going from one to two parameters, or indeed to n-ary lock families, is a
straightforward generalisation. There are no additional technical difficulties
involved, and we already have the mechanics for quantification in place. (We

60

have no immediate examples of lock families with more than two parameters,
but see no reason to exclude them.)

3.4 Paralocks Security

In the previous chapter we developed a simple and accurate context-sensitive
security model for flow locks based on understanding when an attacker’s
knowledge about initial data values is permitted to increase, developed as a
generalisation of the simple gradual release definition [AS07].

The semantic model developed in this section is an extension of the simple
flow locks model. The difference is that we must handle both runtime actor
allocation and runtime querying of the lock state, both of which may be
sources of information flow.

3.4.1 Computation Model

We assume an imperative computation model – a labeled transition system
– involving commands and states, but the definition is otherwise not specific
to a particular programming language. We assume transitions of the form

〈c, S〉 `−→ 〈c′, S ′〉 where c is a program and S is the program state. We assume
that the semantics signals any flow of information, i.e. changes to the state,
using labels l, where l is either a distinguished silent output τ (when there is
no state update), or a value u corresponding to the value of the updated part

of the state. So for example a simple assignment x := 42 would generate a
x[42]→

transition. We further assume that the state includes at least the following
three components:

• A memory, i.e. a mapping from locations to the values they contain. We
denote the memory of state S by Mem(S), and range over memories
using variables M,N .

• A lock state, which is the set of all locks currently open. We denote
the lock state of state S by LS(S), and use Σ,∆ to range over lock
states.

• An actor mapping, keeping track of the concrete run-time representa-
tion of actors that the actor variables in the program represent. We
denote the actor mapping part of state S by Act(S) use Λ to range
over actor mappings.

61

Just as with program variables, actors have concrete representations at run-
time, which differ from their representations in the program code. This is
so we can handle e.g. dynamic creation of actors in a loop, where the same
actor variable name is reused for a new actor each time around the loop. We
call the runtime representations concrete actors, as opposed to the abstract
actors (actor identifiers) found in the program code and policies.

As a consequence, since locks can take actors as arguments, at runtime
locks will be parametrised by concrete actor representations. We refer to
a lock with concrete actor parameters as a concrete lock. The lock state
component of the state consists of the set of concrete locks currently open.

For both actors and lock sets we adopt the convention to use bold face
identifiers when denoting concrete entities. For instance, Σ would represent
a set of abstract locks in e.g. a policy stated in the program, while Σ ranges
over sets of concrete locks. For actors, Λ ranges over sets of abstract actors,
while (with a slight abuse of our convention) Λ will denote an actor mapping,
and hence Λ(a) denotes the concrete actor corresponding to abstract actor a.
We will also apply actor mappings to sets of abstract actors and to abstract
locks and lock sets; the effect in each case is to replace each abstract actor
with the corresponding concrete one.

One other important thing to realise is that since actors and locks have
runtime representations, and can be manipulated and queried at runtime,
they are subject to the same possibilities for information flows as the memory.
This means that to ensure that all information flows are properly specified
and tracked, locks and actors must have policies too, to govern how they may
be used in a program. This is the reason for the slightly different formulation
here compared to that in the previous chapter (2.3). Since locks and actors
are represented at runtime, they can also carry information that influences
computation, and as such they must be handled just like other parts of
the state. Hence we merge the memory and lockstate components from the
formulation in section 2.3 into a single state component, which also includes
the actors.

For a given state component t we write pol(t) to denote the policy of t.

3.4.2 Validating flows

Just like for flow locks, Paralocks permit fine-grained flows where data can
be effectively declassified to an actor in a series of steps, each removing one
condition (i.e. lock) that needs to be fulfilled. Thus our “levels” again need
to account for both actors and lock sets. We thus define an attacker A to
be an actor paired with a set of locks which we denote the capability of that
attacker. The intuition is that an attacker A = (a,Σ) may see any data

62

guarded from actor a by at most Σ. Formally,

A ∈ Actors × P(Locks)

We write Cap(A) for the capability of A. Note though that attackers observe
concrete things at runtime, so they represent concrete actors with concrete
capability sets. This is different from the flow locks model, despite the overall
similarity.

As we saw for flow locks, to formulate security in a “knowledge evolution”
style we need a number of auxiliary definitions.

A trace is a sequence of labels denoting changes to the state. An A-
observable trace is a trace where we mask out changes to pieces of the state
that the attacker A cannot see. We say that an attacker (a,Σ) can see some
part of the state with policy p iff p v {Σ⇒ a}. A transition is visible to
A if A can see the portion of the state involved in the change. We write
〈c, S〉 w−→A 〈c′, S ′〉 when 〈c, S〉 w−→ 〈c′, S ′〉 and the transition is visible to A,
and

〈c, S〉 ~w
=⇒A 〈c′, S ′〉

when there exists a sequence ~̀ of labeled transitions between the respective
configurations, where the projection of ~̀ to the non-silent A-visible transi-
tions is equal to ~u. We sometimes omit result configurations if we only care

about the output of a program, as in 〈c, S〉 ~w
=⇒A . Note that the series of

execution steps generating a trace need not be maximal, so the set of all
A-observable traces of a given program-state pair for a given attacker A is
prefix closed.

An A-low state is a projection of a state to exactly those parts visible to
attacker A.

With these definitions in hand, we can define the notion of attacker knowl-
edge as follows:

Definition 17 (Attacker knowledge). The knowledge an attacker has of the
starting memory after observing trace ~u of program c with a starting state
who’s A-low projection is L is

kA(~u, c, L) =
{
S | S ∼A L, 〈c, S〉

~w
=⇒A

}
i.e., the set of all possible starting states that might lead to that trace.

Note that knowledge grows (uncertainty decreases) during execution, so
we always have that kA(~uu, c, L) ⊆ kA(~u, c, L).

63

3.4.3 Paralocks Security

To validate that all information flows in a program are secure according to
the stated policies, each output must be examined in the context it takes
place, which in our flow locks setting means the lock state in effect at the
time of the output. Consider for example the simple program x := y, where
pol(x) = {a} and pol(y) = {σ⇒ a}. Clearly this program is insecure in
isolation, since the policy on x is less restrictive than that on y, but it would
be secure providing that σ was already open.

To help with our definition, we first define the notion of an A-observable
run of a program to be a non-empty A-observable trace of the program,
paired with the lockstate in which the last output of that trace takes place.
We formally define the set of all A-observable runs that could arise from a
given program c starting in a state whose A-low projection is L, as

Definition 18 (A-observable run).

RunA(c, L) =
{

(~uu,LS(S ′)) | S ∼L, 〈c, S〉
~w

=⇒A 〈c′, S ′〉
w−→A

}
Now, for a given attacker, representing a particular split of the state into

high and low portions, who observes an output, the requirement is that this
output may not signify a data flow from “high” to “low” portions of the state,
unless the lock state permits such flows. Note that a single attacker is a very
course-grained representation of security, as it is only able to distinguish
between “high” and “low”, but no nuances. As a consequence, any lockstate
that would allow some flow from high to low will do. The split of high and
low depends on the capability of the attacker, so for an attacker A we have
that some lockstate Σ allows flows from high to low as long as Σ 6⊆ Cap(A).
If Σ ⊆ Cap(A) then the only flows that are allowed fall completely inside
the parts of the state that A considers low.

The fine granularity is obtained by quantifying over all possible such
attackers, since for any bad flow there must exist an attacker for which the
flow is from “high” to “low”, but without a permissive enough lockstate.

Our formal definition of top-level security for a program, denoted PLS(c),
can then be defined in terms of runs as follows:

Definition 19 (Paralock security). A program is said to be Paralocks secure,
written PLS(c), if for all attackers A, for all A-low states L, for all runs
(~uu,∆) ∈ RunA(c, L) we have that if ∆ ⊆ Cap(A) then

kA(~uu, c, L) = kA(~u, c, L)

64

Informally, if the lock state at the time of the update would not allow any
flows from “high” to “low” portions of the state, then no knowledge may be
gained about the initial state.

In practice we also need a generalised definition which accounts for sub-
programs that are secure in the context they appear, where “context” here
means the actors which exist and the locks which are open. This definition is
slightly trickier to achieve than for simple flow locks, hence we give it some
more in-depth treatment.

Consider the program open σ(a);x := y where pol(x) = {a} and pol(y) =
{σ(a)⇒ a}. This program is intuitively secure, even though the second half
is not secure in isolation. For the second subprogram to be secure, it must
exist in a context where the actor variable a maps to some concrete actor a,
and the concrete lock σ(a) is open.

To generalise our security definition, we first generalise the notion of runs
to account for the fact that we may rely on some locks being open, with
respect to a particular actor mapping. Formally,

Definition 20 (Generalised A-observable run). Let us say that state S is
compatible with Σ if LS(S) ⊇ Act(S)(Σ). Similarly we say that state S is
compatible with an actor set Λ if dom(Act(S)) ⊇ Λ.

We then have the following definition:

RunA(Σ,Λ, c, L) = {~uu,LS(S ′) |

S ∼A L,Λ and Σ are compatible with S, 〈c, S〉 ~w
=⇒A 〈c′, S ′〉

w−→A }

The added condition that Λ and Σ are compatible with S states that we
only consider states that have bindings for at least the abstract actors in Λ
and that we only care about states where the lock state has at least the locks
in Σ open, with respect to the actor mapping used.

This definition is clearly a generalisation of the previous top-level defini-
tion, and we get the specialised version by letting Λ and Σ be empty sets.

The generalised security definition now comes for free, we just need to
use the generalised version of runs:

Definition 21 (Generalised Paralocks security). A program c is said to be
(Λ,Σ) Paralocks secure, written PLS(Λ,Σ, c), if for all attackers A, for all
A-low states L, for all runs (~uu,∆) ∈ RunA(Λ,Σ, c, L) we have that if ∆ ⊆
Cap(A) then

kA(~uu, c, L) = kA(~u, c, L)

Unsurprisingly we can do the same specialisation here to get PLS(c) =
PLS(∅, ∅, c).

65

The above definition of security is termination sensitive, just like with
our definition for simple flow locks. We employ the same trick as for flow
locks to get a weaker but more easily verified termination insensitive version
as follows:

Definition 22 (Termination-insensitive Paralocks Security). A program c is
said to be termination insensitive (Λ,Σ) Paralocks secure, written PLSTI(Λ,Σ, c),
if for all attackers A, for all A-low states L, for all pairs of runs which differ
only at the last output (~uu,∆), (~uu′,∆′) ∈ Run(Λ,Σ, c, L) we have that if
∆ ⊆ Cap(A) then

kA(~uu, c, L) = kA(~uu′, c, L)

One important property of generalised Paralocks security is monotonicity.

Theorem 2 (Monotonicity of Paralock Security). If PLS(Λ,Σ, c) and Σ′ ⊇
Σ and Λ′ ⊇ Λ then PLS(Λ′,Σ′, c)

The proof follows directly from the definition of PLS(Λ,Σ, c), and in
particular from the fact that Run(Λ,Σ, c, L) only considers states that are
compatible with Λ and Σ. Fewer states will be compatible with larger actor
and lock sets, so the security requirement is weakened.

3.5 Enforcement: A Sound Paralocks Type

System

In this section we give an example of how Paralocks can be combined with a
concrete programming language, and present a type system which guarantees
that well-typed programs are (termination insensitive) Paralocks secure. The
underlying language we present is as simple as possible while still using the
full expressive power of Paralocks, to focus on the interesting parts of the
interaction.

Expressions: e ::= n | x[~a] | e⊕ e
Commands:
c ::= x[~a] := e | if e then c else c | while (e) c | skip
| c1; c2 | open σ(~a) | close σ(~a) | newactor a in c
| when σ(~a) do c else c | forall σ(~a) do c

Internal Commands: c ::= for σ(~a) in Σ do c

Figure 3.2: Example language syntax

66

The language, found in Figure 3.2, is at its core a sequential imperative
language, with assignments, conditionals and loops. Data sinks and sources
are kept abstract and are uniformly represented as references, with each
reference having an attached policy. For simplicity the only basic type is the
integers. The internal command (for) is not part of the surface syntax and
only arises in the operational semantics.

To manipulate locks we introduce the commands open σ(~a) and close σ(~a).
These are the only commands in the language that can change the lock state
component of the state. Unlike in the basic flow locks language, locks here
will have runtime representations and can carry information, so the runtime
use of locks will also be governed by policies. The when command is a
conditional which queries the the state of a particular lock.

New actors can be introduced dynamically using the newactor a com-
mand, which generates a fresh concrete actor and brings a new actor variable
a into scope for the enclosed subcomputation. Note that this could for in-
stance be placed inside a loop, so the same variable name introduced by
the same newactor command can represent many different concrete actors
during execution.

In order to keep the language and in particular the type system simple,
actors are not first class entities. To regain some of the lost expressive power
from this choice, we reuse lock families as a sort of storage for actors. A lock
family can be viewed as a “named collection of actors”, and to access the
contents of such a collection we introduce the forall command, which loops
over all open locks in some family, bringing the relevant actors into scope in
the loop body for each iteration. We assume that the order in which locks
are looped over is deterministic.

The creation and use of actors may also be a conduit for information flow
at runtime, so like references and locks we could require actor variables to
have policies too. For simplicity though, we assume that all actors intro-
duced by newactor commands are public, i.e. with a policy {∀x. x}. Actor
variables bound by a forall command will carry information about the lock
family used in the loop, so we assume they inherit the policy of that lock.

Regarding policies, it is important to note that the runtime policies on
runtime entities will talk about concrete actors and locks, while in the pro-
gram code the policies will mention abstract entities. We have no explicit
declaration of references in the language, instead we assume that they are
globally available. But since actor variables are not globally defined, this has
the effect that policies on references (and locks) cannot contain free actors,
as that could lead to name capture problems. In many settings this would
be too restrictive, since it would preclude actor-specific data.

To enable actor-specific data while avoiding all the extra machinery that

67

would have been needed to track scoping and name-capture problems for
policies, we instead make this explicit at the top level by having actor-
parametrised families of references. For full flexibility we allow any number
of parameters on a family of references, just as with locks.

Locks are also globally available, and may have actor parameters. How-
ever, for simplicity we do not allow the policies on lock families to mention
the actor parameters, and thus may not contain any free actor variables.
In other words, for a family of references we could have different actors
having access to each individual reference, e.g. pol(x[a]) = {a}, whereas
for families of locks we only allow a single policy for the entire family, e.g.
pol(σ) = {∀x. σ(x)⇒x}.

With all this in place, there is no need for any control that actors in
policies refer to the proper runtime actors, since they cannot appear free in
policies.

To illustrate these language features consider a simple sealed-bid auction
scenario. For example, if we wanted a ’bid’ variable for each bidder in a
sealed-bid auction, we could model that with a family of references bid[a],
parametrised by actors. Policies on such families can then use the actor
parameter, so we could have

pol(bid[a]) = {a;∀x. {Bidder(x),AuctionClosed}⇒x}

where the policy on the individual references in the ’bid’ family depends on
the actor in question. As an example, the code representing the registration
of a new bidder might be written:

newactor b in

open Bidder(b)

bid[b] := getBid

where we assume that getBid is an input channel from the actor in ques-
tion, represented as a reference. The policy on the reference bid[b] would
be {b;∀x. {Bidder(x),AuctionClosed}⇒x}, stating that all bidders can gain
information about this bid once the auction is completed.

The code fragment for concluding the auction and publishing the winning
bid (the first of the largest bids) could then be written:

68

maxBid := 0

forall Bidder(x) do
i f bid[x] >= maxBid then

maxBid := bid[x]

forall Winner(y) do c l o s e Winner(y)

open Winner(x)

e l s e skip

open AuctionClosed

To be able to compute the maximum bid before the auction is marked as
closed (as in this example) we would give maxBid the policy

{∀x. {Bidder(x),AuctionClosed}⇒x}

We use a separate lock family to denote the winning actor, and by (line 5)
closing all previous winners and then opening the lock for the new winner,
we are assured that we only ever have (at most) one winner. We could then
loop over all actors a for whom the Winner(a) lock is open, to do specific
things relating to the winner.

Again we stress that while some of the language design choices here are
unorthodox, this is just a consequence of keeping the language and type sys-
tem relatively small. In a more realistic programming language incorporating
Paralocks, there are a number of other language design considerations. Sup-
porting first-class dynamic actors would be a more natural route in a richer
language, and this would be naturally supported in the type system using
singleton types. From the expressiveness viewpoint support for policies not
known until runtime (cf. DLM runtime labels [ZM07a]) could well prove
useful, but would require more language features to enable static checking.
However, the issues involved there are largely problems of enforcement. While
interesting in their own right, they are orthogonal to the core issues of this
work, namely the Paralocks policy specification language and its associated
definition of security.

We discuss all these issues in chapter 4.

3.5.1 Operational Semantics

The operational semantics of our example language can be found in Fig-
ure 3.3. Transitions occur between configurations of the form 〈c, S〉, where
c is the command and S is the program state. This state is a triplet of an
actor mapping (Act(S)), a lock state (LS(S)) and a memory (Mem(S)).

69

〈n, S〉 ⇓ n
〈e1, S〉 ⇓ v1 〈e2, S〉 ⇓ v2
〈e1 ⊕ e2, S〉 ⇓ v1 ⊕ v2

〈x[~a], S〉 ⇓Mem(S)[x[~a]]

〈open σ(~a), S〉 open σ(~a)−−−−−−→ 〈skip, S ∪ {σ(~a)}〉

〈close σ(~a), S〉 close σ(~a)−−−−−−→ 〈skip, S \ {σ(~a)}〉

〈e, S〉 ⇓ v

〈x[~a] := e, S〉 x(v)−−→ 〈skip, S[x[~a] 7→ v]〉


~a = Act(S)(~a)

〈e, S〉 ⇓ v v ∈ {true, false}
〈if e then ctrue else cfalse, S〉

τ−→ 〈cv, S〉

〈while (e) c, S〉 τ−→ 〈if e then (c; while (e) c) else skip, S〉

〈c1, S〉
`−→ 〈c′1, S ′〉

〈c1; c2, S〉
`−→ 〈c′1; c2, S ′〉

〈skip; c2, S〉
τ−→ 〈c2, S〉

〈newactor a in c, S〉 a(a)−−→ 〈c, S[a 7→ a]〉 (a fresh)

〈when σ(~a) do c1 else c2, S〉
τ−→

{
〈c1, S〉 σ(Act(~a)) ∈ LS(S)

〈c2, S〉 otherwise

Σ = {~a | σ(~a) ∈ LS(S)}
〈forall σ(~a) do c, S〉 τ−→ 〈for σ(~a) in Σ do c, S〉

〈for σ(~a) in {~a} ∪Σ do c, S〉 ~a(~a)−−→ 〈c; for σ(~a) in Σ do c, S ′〉
~a = a1, . . . , an S ′ = S[a1 7→ a1, ..., an 7→ an]

〈for σ(~a) in ∅ do c, S〉 τ−→ 〈skip, S〉

Figure 3.3: Operational Semantics

70

For simplicity we lift updates on individual components to the full state,
so for instance we write e.g. S[x 7→ v] to update the value of a variable in
the memory, or S ∪ σ to add an open lock to the lock state. Since the three
components have disjoint domains there should be no risk for confusion.

Apart from the labels on transitions, there should be no surprises in the
rules for the ordinary imperative constructs. Regarding open and close, the
only thing of note is that we need to map actor variables in locks to their
concrete representations before updating the lock state.

The when command is very similar to the standard if , the only difference
being that when queries the lock state instead of the memory.

The newactor command generates a fresh concrete actor representation
and binds it to the variable name given. Since we assume all actors bound this
way are public, we don’t need to care about the particulars of the generation
scheme. Syntactically the variable is scoped, but in the semantics we don’t
bother to remove it once we leave the scope, instead we rely on the type
system to ensure that there can be no accidental capture.

Finally, the most complex command semantically is the forall, which
loops over all locks in some particular family. Its execution is done in
two steps. First, the set of locks in the family that are open is (deter-
ministically) calculated, and second that set is looped over, one lock at a
time. For this we need to extend the language with an internal command
for σ(a1, ..., an) in Σ do c, to handle the actual looping. The transition rule
for forall is then simple: gather all open locks in the relevant lock family
and go to the next step, the for.

In the for we bind the relevant actors to the provided variables and then
proceed to execute the body. Just like with the newactor rule, we don’t
care where the scope of the variables ends syntactically, relying on the type
system to handle the scoping details.

The transition arrows are labeled with outputs that signal all direct infor-
mation flows that take place during execution, which in this simple language
means all changes to the program state. These are purely for the sake of rea-
soning about security and otherwise have no effect on the computation. The
commands that have an effect on the state are assignments for the memory
and open and close for the lock state. For the actor mapping, the newactor
command can introduce a single new actor in scope, while the forall loop,
via the auxiliary internal for construct, can bind a number of names in one
transition step. All other base rules have no effect on the state, and thus
yield the silent output τ .

71

3.5.2 Type System

To enforce security we use the type system in Figure 3.4. Since we only have
integers as the base type for values, we don’t need to track base types at all,
so our type system only handles the security component.

For expressions, the typing judgment is simply Λ ` e : r, where r is a
Paralocks policy which we call the read effect of the expression, as it in-
tuitively specifies who may read data from references with this policy. In
effect it will be the least upper bound of the policies on references used to
compute the expression e. There should be no surprises in how this read
effect is computed, though note that the rule for references handles both
parametrised and unparametrised references, as we allow the vector of actors
to be of length 0.

The typing judgment for commands is a bit more involved, but the various
components should come as no surprise. The judgment is

Λ; Σ ` c; w,Σ′

where c is the command to type and w is a policy we call the write effect of
the command. Intuitively this policy specifies who would be able to notice
that the command was executed, by observing its effects on the state. It is
thus the greatest lower bound of all policies on references, locks and actor
variables whose values are affected by the command. The purpose of this
policy is to track indirect flows, similar to the use of a “program counter”
in many other systems. This can be seen in the rules for the commands
that affect control flow, namely if , while, when and forall. All these rules
compare the policy of the branching expression or lock with the write effect
of the body of the command.

The write effect is straightforward to compute for most rules. For as-
signments, open and close it is simply the policy of the affected location
or lock. The newactor command introduces actor variables with the policy
⊥, which is thus its write effect, as ⊥ is clearly at least as liberal as any
write effect of the body. The most interesting rule in this regard is that of
the forall command. We cannot in general know exactly which actors will
be referenced in the loop iterations, so we assume it may be any of them,
meaning that actors introduced by the forall that appear in the write effect
of the body must be universally quantified. However, since the forall also
binds actors to the relevant variables, and these variables inherit the policy
of the lock, the write effect of the whole command will be exactly the policy
of the lock, since we require that to be more liberal than any write effect of
the body.

72

Λ ` n : ⊥
~a ⊆ Λ ∀a ∈ ~a. pol(a) v pol(x[~a])

Λ ` x[~a] : pol(x[~a])

Λ ` e1 : r1 Λ ` e2 : r2
Λ ` e1 ⊕ e2 : r1 t r2

~a ⊆ Λ

Λ; Σ ` open σ(~a) ; pol(σ),Σ ∪ {σ(~a)}

~a ⊆ Λ

Λ; Σ ` close σ(~a) ; pol(σ),Σ \ {σ(~b) | ~a ' ~b}

Λ; Σ ` skip ; >,Σ
Λ ` e : r r(Σ) v pol(x[~a]) ~a ⊆ Λ

Λ; Σ ` x[~a] := e; pol(x[~a]),Σ

Λ ` e : r Λ; Σ ` ci ; wi,Σi r v w1 u w2

Λ; Σ ` if e then c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

Λ ` e : r Λ; Σ ∩ Σ′ ` c; w,Σ′ r v w

Λ; Σ ` while (e) c; w,Σ′ ∩ Σ

Λ; Σ ` c1 ; w1,Σ1 Λ; Σ1 ` c2 ; w2,Σ2

Λ; Σ ` c1; c2 ; w1 u w2,Σ2

Λ; Σ ∪ {σ(~a)} ` c1 ; w1,Σ1 Λ; Σ ` c2 ; w2,Σ2

pol(σ) v w1 u w2 ∀a ∈ ~a. pol(a) v pol(σ)

Λ; Σ ` when σ(~a) do c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

Λ ∪ ~a; Σ ∩ Σ′ ` c; w,Σ′ pol(σ) v ∀~a. w ~a ∩ Λ = ∅
Λ; Σ ` forall σ(~a) do c; pol(σ),Σ′ ∩ Σ \ {σ(~b) | ~a ∩~b 6= ∅}

Λ ∪ {a}; Σ ` c; w,Σ′

Λ; Σ ` newactor a in c; ⊥,Σ′ \ {σ(~b) | a ∈ ~b}

Λ; Σ ` c; w,Σ′

Λ; Σ ` c (Top level judgement)

Figure 3.4: Paralocks Type System

73

Λ is the set of actors in scope, for both commands and expressions, and
the newactor and forall commands introduce new actors into this scope as
expected. We use it only to ensure that any mention of actor variables as
arguments to references and locks are done in a correct way, and that no
variable names clash.

Σ is the set of locks assumed to be open when the command starts ex-
ecuting, and Σ′ is a lower bound on the locks that will be open afterwards.
The one place where Σ is actually used is in the assignment rule. In this
rule we must determine whether the policy of the expression is compatible
with the policy of the variable relative to the current lock state. The idea
is the same as with flow locks – but the details are more complex. For ex-
ample, suppose we have a policy p = {a,∀x.Actsfor(a, x)⇒x}. Intuitively
this says that a may always read the data, and that for any actor x, if the
lock Actsfor(a, x) (“flow from a to x is permitted”) then x may also read. If
we specialise this policy to a lock state Σ = {Actsfor(a, b)} then the policy
in force at that state p(Σ) is {a,∀x.Actsfor(a, x)⇒x, b}. I.e. in that state,
b is also unconditionally permitted to see the data. Specialisation is most
easily understood in logical terms: p(Σ) is just the most liberal policy which
is entailed by the conjunction of p and Σ.

In the definitions that follow we distinguish ∀-bound actor variables syn-
tactically, using metavariable x.

Definition 23 (Matching). Let θ be a substitution from bound actor vari-
ables to free actor variables. We say that Σ matches Σ′ with θ if and only if
the set of bound actors in Σ is equal to the domain of θ, and Σθ ≡ Σ′.

For example, {Actsfor(a, x)} matches {Actsfor(a, b)} with [b/x].

Definition 24 (Specialisation). For a policy p and a lock state Σ, we define
the normalisation of p at Σ, written p(Σ), as

p(Σ) =
⋃
c∈p

{c · Σ}, where

(∀~x.∆⇒ b) · Σ def
= {∀~x.∆2θ⇒ bθ | ∆ ≡ ∆1 ∪∆2; Σ1 ⊆ Σ;

∆1 matches Σ1 with θ }

Note that p(Σ) always contains p (to see this take ∆1 and Σ1 to be the
empty set in the auxiliary definition above) – i.e. p(Σ) v p – normalising a
policy always yields a more liberal policy.

Computing the outgoing lock state is straightforward in most cases, but
a few rules are slightly complex. Actors introduced by newactor and forall
are scoped, and when their respective scopes end we need to forget about any

74

locks mentioning those actors, to avoid name clashes with potential future
scopes reusing the same actor variable.

Most interesting perhaps is the rule for close, which has to account for
potential aliasing issues between actor variables. Hence it is maximally pes-
simistic, and assumes that not only the lock that is explicitly mentioned will
be closed, but also any other lock in the same family where the actor ar-
guments may point to the same concrete actors at runtime. Two variables
introduced by newactor commands can never be aliases of each other as
they must represent fresh concrete actors. A variable introduced by a forall
could alias any other variable though. We assume an implicit predicate alias
where alias(a) = true if a in the current scope is introduced by a forall con-
struct, otherwise false. The result clearly depends on the context in which
the function is called. We then define a simple may-alias relation as

a ' b
def
= alias(a) ∨ alias(b) ∨ a = b.

We extend this relation to equal-length vectors of actors in a point-wise man-
ner. Using this may-alias relation, the rule for close is suitably pessimistic
about what abstract locks may actually be closed at runtime.

3.5.3 Security

We show that well typed programs are Paralocks secure. The proof can
be found in the appendix. Here we just note the main technical stepping
stones – the first of which is the standard property that reduction preserves
typability:

Lemma 2 (Preservation). Let us say that state S is compatible with Σ if
LS(S) ⊇ Act(S)(Σ). Similarly we say that state S is compatible with an
actor set Λ if dom(Act(S)) ⊇ Λ.

Now suppose that Λ; Σ ` c; w,∆ and 〈c, S〉 `−→ 〈c′, S ′〉. Then if Λ and Σ
are compatible with S then Λ′; Σ′ ` c′ ; w′,∆′ for some Λ′ and Σ′ compatible
with S ′, w v w′ and ∆ ⊆ ∆′.

The second basic property is the global (“big step”) property of the effect
components of the typing derivation. Stated informally (to convey the intu-
ition without all the technicalities), they say that whenever Λ; Σ ` c; w,∆
then

• If data labeled w is not visible to attacker A then any computation of
c in any start state compatible with Σ will not produce any A-visible
output (and hence will not modify the parts of the state with policy w
or stronger).

75

• A terminating computation of c in a state with at least locks Σ open
will result in at least locks ∆ being open.

Finally we have proven the main theorem of this section, namely that a well-
typed program is guaranteed to be secure by our semantics for Paralocks.
Since the type system as stated is termination insensitive, for instance it
allows “high loops” to precede “low writes”, we formally have that well-typed
programs are termination-insensitive Paralocks secure:

Theorem 3. If ∅; ∅ ` c then c is termination-insensitive Paralocks secure
(PLSTI(c)).

This in turn is a corollary of a theorem involving a generalisation of the
PLSTI property. Again, the details are available in the appendix.

3.6 Example Encodings

As we showed in the previous chapter, flow locks can be used to encode
many different declassification ideas. Since Paralocks is an extension, it can
obviously encode all the same ideas, but can unsurprisingly also express
and encode some further idioms that with just flow locks would lead to
prohibitively cumbersome encodings.

3.6.1 Robust Declassification

Our encoding of robust declassification in the previous chapter (section 2.6.3)
had to resort to a trick with an auxiliary log file to enable robustness of the
declassify operation. With Paralocks, where locks are also given policies,
we can do away with the log file and just put the requisite policy {trusted}
directly on the respective σi locks that control confidentiality. These locks
then cannot be opened or closed in untrusted contexts.

3.6.2 The Decentralised Label Model

To show the true flexibility of Paralocks, we show how it can be used to
encode the Decentralised Label Model (DLM) of Myers and Liskov [ML97].
In the previous chapter we hinted at a possible DLM encoding using flow
locks, but that encoding would require all principals to be known statically,
so that all relations between principals could be “hard wired” into the policy.
Paralocks now lets us give a much more convenient encoding.

76

The core component of the DLM is the label. Data is decorated with labels
that govern how that data may be used. A label L specifies the owners of
some data, written owners(L), and for each owner the set of readers allowed
by that owner, readers(L, o). The intuition behind the owners is that data,
at its origins, has a single owner who specifies its readers. The label on a
piece of data reflects the various potential origins of the information in that
data.

The decentralisation relates to the readers. Each owner can independently
specify who they consider trusted to view the data. The effective readers of
some data are those for whom all the owners have agreed may read it, i.e.
the intersection of the separate reader sets for all owners. A label for some
data may look like

{o1 : r1, r2 ; o2 : r2, r3}
where o1 and o2 are owners and r1, r2 and r3 are readers. Such data might
be obtained by combining data from o1 and o2 in some way. The effective
readers in this example is just r2.

A label L2 is said to be more restrictive than label L1, written L1 vDLM
L2, if it has at least the same owners, and each of those owners list fewer
potential readers. Formally it is defined [ML97] as

L1 vDLM L2 = owners(L1) ⊆ owners(L2) ∧
∀o ∈ owners(L1). readers(L1, o) ⊇ readers(L2, o)

Data may be relabeled in two ways, through an assignment:

• Data with label L1 can always be assigned to a storage location (a
container) with label L2 if L2 is more restrictive than L1, i.e. L1 v L2.

• Data can be declassified by adding more readers for a given owner. In
the DLM this can be done freely providing that the current process
runs on behalf of the owner in question.

Apart from labels, there is one other important component to the DLM,
namely the principal hierarchy and its associated acts-for relationship. The
DLM lets principals represent both individual users and other notions like
roles and groups, and membership for a user in a role can thus be modeled
by letting the user act for that role.

The acts-for hierarchy has two effects on the security of a program. First,
if a acts for b and b is listed as a reader in a label, then a is also implic-
itly a reader. Second, if a piece of code runs on behalf of a, then it also
implicitly runs on behalf of b, so code running on behalf of a may conduct
declassifications in b’s name.

77

To encode the DLM using Paralocks, we need to represent a number
of things explicitly that are implicit in the DLM. The first of these is the
acts-for relationship that we just discussed. If the principal hierarchy states
that b acts for a, then we expect the ActsFor(a, b) lock to be open. We can
account for changes to the hierarchy during execution by opening or closing
the appropriate locks.

The acts-for relationship is transitive and reflexive. Each actor acts for
himself, and if a acts for b and b acts for c, then we assume implicitly that
a acts for c as well. With Paralocks, properties like transitivity and reflex-
ivity are not built in. Locks are just boolean variables with no additional
predefined semantics attached to them. If we want a transitive property for
a particular relation like ActsFor , we must handle this explicitly.

A naive attempt could be to try to handle this on the policy level, e.g.
by specifying the policy as

{a;∀x.ActsFor(a, x)⇒x;∀x, y.ActsFor(a, x),ActsFor(x, y)⇒ y}

This is not a viable approach since the above policy only works for one step of
transitivity; for full transitivity we would need to explicitly list the transitive
closure, and this would be at best cumbersome, and impossible if we could
not statically enumerate all actors. There are two routes to deal with this
issue. The first is to extend the expressive power of the policy language
to enable such global invariants to be expressed as part of the policy, and
reflected in the security model. This is explored in section 3.7. For now we
take a simpler route, and view transitivity not as a property of a policy, but
rather an intended invariant on the set of locks open at any given time. This
invariant can easily be maintained at runtime by suitably encapsulating lock
manipulation operations.

So if we ensure that any program using a policy involving delegation
maintains the transitivity property of ActsFor , then it is enough for the
policy to be stated (as before) as simply

{a;∀x.ActsFor(a, x)⇒x}.

Second, to account for declassification being possible only when the pro-
cess runs with the authority of the owner of the declassified data, we need
a lock family RunsFor(a). We expect the appropriate locks to be open for
those actors for whom the code runs. Further, we also expect the invariant
that whenever ActsFor(a, b) and RunsFor(b) is open then RunsFor(a) is also
open, again making the implicit relationship explicit.

Third, since Paralocks take the perspective of the reader, as opposed to
the owner as in in DLM, the policy needs to be explicit about the potential

78

future readers to whom the data may be declassified. With respect to a given
owner, we can freely add new readers as long as the code executes with that
owner’s authority. We can thus model the label {o :}, i.e. data owned by o
with no added readers, with the policy

{∀x.RunsFor(o)⇒x}

The intuition here is that in code running with o’s authority, this data may
be declassified to any actor x. 1 Adding a reader to the above policy, we get
{o : r}, which we would represent as

{∀y.ActsFor(r, y)⇒ y;∀x.RunsFor(o)⇒x}

The first clause here corresponds to the reader r. By reflexivity we will
always have ActsFor(r, r) open, and hence r, and anyone else who acts for r,
will be able to read data labeled with this policy.

To handle the general case of the encoding we need to deal with the case
of a potential reader (a reader who is a reader for one but not all owners).
For these readers we need to consider the owners who do not permit r to
read the data.

Definition 25 (Label Encoding). Suppose that r is a (potential or effective)
reader for some label L, and O is a subset of owners for L. We say that the
pair (O, r) is a conflict pair for label L if

O = {o | o ∈ owners(L), r 6∈ readers(L, o)} .

Intuitively, O are the owners who have not permitted r to read data labeled
L.

Now we can define the general encoding of Labels as policies [[·]] : Label →
Policy by

[[L]] = {∀x. {RunsFor(o) | o ∈ owners(L)} ⇒ x}
∪ {∀y.RunsFor(o1), . . . ,RunsFor(on),ActsFor(r, y)⇒ y

| ({o1, . . . , on}, r) is a conflict pair for L}

1 Note that in a programming language enforcing a DLM (such as JFlow/Jif
[Mye99, MZZ+06]) one might want to additionally constrain that declassification occurs
at explicitly declared places in the code. This is easily modeled using regular flow locks
by associating a Declassify lock with the portion of code which is designated as a declassi-
fication. This, however, is not part of the DLM model. We explore this further in chapter
4.

79

The first clause in the definition of [[L]] says that data can be declassified
to anyone providing it is in a context which runs with the authority of all
owners. Otherwise a potential reader r (or anyone who acts for r) may read
providing it does so in a context which runs with the authority of those
owners who did not grant explicit access to r.

As an example, consider the encoding of the empty label:

[[{ }]] = {∀x. {}⇒x} ∪ {} = {∀x. x}

The empty label has no owners, so implicitly anyone can read data with that
label – as expressed explicitly in the flow locks encoding.

When combining labels from different data sources, the DLM simply per-
forms the union of the respective owner policies, leaving the effective reader
set implicit as the intersection of all readers. In our encoding the difference
between effective and potential readers is rendered more explicit. Consider
combining the two policies representing {o1 : r1, r2} and {o2 : r2, r3}, which
are

[[{o1 : r1, r2}]] =

{∀x.RunsFor(o1)⇒x;

∀y.ActsFor(r1, y)⇒ y;∀y.ActsFor(r2, y)⇒ y}
[[{o2 : r2, r3}]] =

{∀x.RunsFor(o2)⇒x

∀y.ActsFor(r2, y)⇒ y;∀y.ActsFor(r3, y)⇒ y}

we get [[{o1 : r1, r2} tDLM {o2 : r2, r3}]]

=[[{o1 : r1, r2 ; o2 : r2, r3}]]
={∀x.RunsFor(o1),RunsFor(o2)⇒x;

∀y.ActsFor(r2, y)⇒ y;

∀y.RunsFor(o2),ActsFor(r1, y)⇒ y;

∀y.RunsFor(o1),ActsFor(r3, y)⇒ y}
=[[{o1 : r1, r2}]] t [[{o2 : r2, r3}]]

Finally we can show that the lattice of labels in the DLM is a sublattice of
the Paralocks policy lattice:

Theorem 4. L1 vDLM L2 if and only if [[L1]] v [[L2]]. Further, [[L1tDLML2]] =
[[L1]] t [[L2]], and similarly for u.

80

The proof of these properties is given in the appendix. The relationship
between v and vDLM amounts to saying that the encoding is sound and
complete with respect to the DLM rule for relabeling data.

What we have given here is an encoding of the DLM policy specification
language only. One might expect to see a deeper comparison, in which we
also compare the impact of the two on the security of programs, i.e. the
formal semantic security definitions. The problem is that the DLM, or more
accurately its implementation in JIF, does not have a formal semantic secu-
rity model. There exist models for subsets or restricted scenarios for DLM,
but it has never been covered in full. But with our encoding here, we are
actually able to do just that, to provide a semantic security model for pro-
grams that use the DLM for their information flow control. Our full semantic
model will be presented in the next section.

3.7 Recursive Paralocks

In section 3.6.2 we presented an encoding of the DLM. One aspect of a DLM
policy was the treatment of the ActsFor relation; implicitly we required that
whenever we open a lock ActsFor(a, b) then we must also open all transitive
consequences. It is intended that this invariant is implemented explicitly by
encapsulating the open operation appropriately within a program which uses
a DLM policy.

In this section we explore an extension to the policy language which
allows us to specify such properties explicitly, avoiding the need to encode
them explicitly in the program. The extension is a natural logical one: allow
relations between locks and flows to be specified recursively as part of a global
policy component.

In this section we briefly explore the implications of this extension to the
questions of policy (c.f. §3.7.2), expressiveness (c.f. §3.6.2), semantics (c.f.
§3.4), and enforcement (c.f. §3.5).

3.7.1 Policy

Policies will now consist of two parts. Firstly we have policies on memory
objects just as before: collections of clauses which have an actor variable
(bound of free) as their head. For the purposes of this section it will be
useful to write a clause ∀a1, . . . , an.Σ⇒ a as ∀a1, . . . , an.Σ⇒Flow(a), thus
making the “may flow to”-predicate explicit. The extension we make is to
add a global policy G which is also a set of clauses. These clauses differ in
that their heads may be locks – and thus they may be recursive. For example,

81

in a DLM encoding we would include the following two clauses in the global
policy:

∀y.ActsFor(y, y);∀x, y, z.ActsFor(x, y),ActsFor(y, z)⇒ActsFor(x, z)

This style of policy specification is already familiar in a security context:
it amounts to the use of Datalog programs as policy specifications, and
has been used in numerous logics for access control policies – e.g., [Jim01,
DeT02, LMW02]. We permit one further useful feature: global policies, in
addition to using locks, may also use the distinguished Flow predicate in
their specification (see Section 3.7.2 for examples).

Policy comparison To compare policies p and q we must now take into
account the global policy. We write p vG q to mean that policy q is more
restrictive than policy p in the context of global policy G. We can define this
relation by giving a straightforward interpretation in first-order logic. As
before we can interpret each clause in p, q and G as first-order Horn clauses,
and sets of clauses are interpreted as logical conjunction. Then we define

p vG q
def
= G ∧ p |= q

To see that this does “the right thing”, consider some lock state Σ. Suppose
that Σ ∧ G ∧ q |= Flow(a) – i.e. that in some concrete lock state the policy
q permits information to flow to a. Then it can be readily seen that p vG q
ensures that Σ ∧ G ∧ p |= Flow(a) – i.e., p allows any flow that q does.

3.7.2 Expressiveness

Here we consider a couple of simple examples using recursive Paralocks.

Denning Lattices, Reloaded The flow locks encoding of standard Denning-
style information flow lattices involves identifying security levels with actors,
and representing a security level j by the (lock-free) policy {Flow(k) | j ≤ k}.
Recursive Paralocks provide several alternative ways to specify this. One ex-
ample is to represent the policy for data of level k as just {Flow(k)}. The
global policy then must define the covering relation of the lattice (represented
as a binary lock ≺), together with the rule

∀x, y.Flow(x), x ≺ y⇒Flow(y).

So, for example, the three point lattice L ≤ M ≤ H would be represented
by the global policy

{L ≺M ;M ≺ H;∀x, y.Flow(x), x ≺ y⇒Flow(y)}.

82

The “Complete” DLM In the case of the DLM encoding we already
mentioned the ability to express reflexivity and transitivity for the ActsFor
hierarchy. Similarly the invariant on the RunsFor lock can then be specified
as

∀x, y.ActsFor(x, y),RunsFor(x)⇒RunsFor(y)

We can also move part of each policy into the global part by applying the
ActsFor hierarchy to Flow predicates:

∀x, y.ActsFor(x, y),Flow(x)⇒Flow(y)

which says that whenever flow to x is permitted then flow to y is also per-
mitted providing y acts for x. With this rule we no longer need to be explicit
about the ActsFor relationship in the data policy itself, so for example we
can encode a label {o1 : r1; o2 : r1, r2} more succinctly as

{∀x.RunsFor(o1),RunsFor(o2)⇒x; r1; RunsFor(o1)⇒ r2}

As an interesting side note, the original version of the DLM ([ML97]) was
considered incomplete; a follow-up paper ([ML98]) identified a “complete”
policy ordering. Specifically the new formulation made the policy ordering
more liberal by weakening it to allow two new v-monotone operations on
policies:

• An owner o1 may to be replaced in a label with an owner o2 that acts
for o1,

• If a reader r1 is listed by some owner, and r2 acts for r1, then we can
also add r2 as a reader for that owner.

Our original encoding is faithful to the original DLM, and cannot handle
these components, specifically because the policy ordering was ignorant of the
transitive nature of the ActsFor relationship and its relation to the RunsFor
property. With the extension presented here, policy ordering becomes “com-
plete” and thus corresponds to the revised version of the DLM [ML98].

3.7.3 Semantics

The definition of security needs only minor modifications to handle recur-
sive Paralocks. There are just two places where the definition needs to be
modified:

• Generalise v to vG in the definition of the parts of a state that the
attacker can see.

83

• In the definition of security, generalise the comparison between lock
state ∆ and attacker capability Cap(A) to take into account the global
policy G by replacing the condition

∆ ⊆ Cap(A) (logically: Cap(A) |= ∆)

by G ∧ Cap(A) |= ∆.

3.7.4 Enforcement

Here we consider the impact that recursive Paralocks have on the integration
with the language and type system of Section 3.5.

The global policy is essentially Datalog2. Datalog and modest exten-
sions thereof, has proved to be a popular basis for e.g. access control logics be-
cause, among other things, a query (the access control mechanism itself) can
be answered in polynomial time. This is also useful in the present context. At
runtime we need to enumerate all actors in a given role (the forall -construct
in our example language), and check whether a particular lock is open (the
when construct). It is necessary that these can be answered precisely and
efficiently, and this is possible because they are Datalog queries.

However, type checking is another matter. We do not need to answer
Datalog queries within the type system, we need to implement policy com-
parison (vG). In all other regards we conjecture that the type system given
in Section 3.5 is sound for recursive Paralocks – providing we generalise the
policy ordering and least-upper-bound operation accordingly.

In the case of assignment x := e, for example, where x has policy q, and
e has policy r, and we know that at least locks Σ are open, then we need to
determine whether Σ ∧ G ∧ r |= q. This problem (and the similar problem
of determining whether r vG q) is the problem of containment of a non-
recursive Datalog program q in a recursive one Σ∪G∪r. This containment
problem is known to be decidable, although EXPTIME-complete (see e.g.
Chaudhuri and Vardi [CV97]). Whether this complexity is a problem in
practice remains to be seen.

Similarly we need a generalised form of least upper bound operation where
p tG q denotes the least policy r such that p ∧ G |= r and q ∧ G |= r. This
kind of operation – i.e., finding a Datalog program which gives a best

2Certain policies that we have used are not safe in the Datalog sense (see e.g. Ceri et
al [CGT89]). For example ∀x.Runsfor(o)⇒Flow(x) is unsafe because x does not appear
in the body of the clause, and so it generates infinitely many instances. However, at any
point during run time, the domains of actors is finite and known. Hence the rule can be
thought of as a shorthand for ∀x.Actor(x),Runsfor(o)⇒Flow(x).

84

approximation to the disjunction of two Datalog programs – does not to
our knowledge seem well studied in the Datalog literature. However, we
note that using p t q just as before (thus ignoring G) would provide a safe
upper bound operation which would be adequate for use in the type system.

85

86

Chapter 4

Paragon

4.1 Introduction

Paralocks is a general and powerful language for specifying information flow
policies – but in itself, it is not a programming language. As noted, the
intended use of Paralocks is instead as an integrated component of a pro-
gramming language, either one written from scratch with Paralocks as a core
feature, or as an extension to an existing language. Questions and challenges
which must be addressed in the adaptation of these ideas to a real language
include:

• whether the model can be scaled to handle the features of a real pro-
gramming language, such as objects, exceptions, dynamic allocation,
aliasing, and so forth,

• since the encoding of complex policies requires computation of policies
(as in the DLM example from 3.6.2), how can static type-checking be
used?

• Paralocks provides a “core calculus” for building information flow poli-
cies; what abstraction facilities are needed to make programming with
Paralocks palatable?

In this chapter we detail how to add Paralocks as an extension to the
general purpose programming language Java. The resulting language we
dub Paragon – “the way programs should be written”.

87

4.1.1 Why Java?

As shown in the previous chapter, Paralocks is agnostic in what base language
it is used in conjunction with. For the task of building a full-fledged, security-
typed programming language incorporating Paralocks, we have chosen to
work with Java, for several reasons.

Adoption First of all, Java is a well-known and widely adopted language,
both commercially and academically, and thus requires no further introduc-
tion. Being well spread, the chances for Paragon to be accepted and adopted
clearly increase.

Clean semantics Second, Java is a relatively clean language in terms of
semantics. The absence of things like explicit memory management or gotos
makes adding Paralocks to it much easier, not to say at all feasible.

In the footsteps of giants Third, Java is also the base language that un-
derlies Jif, the only (other) full-fledged security-typed programming language
to date. Jif is at the same time a competitor as well as an obvious source
of inspiration for Paragon. By basing Paragon on Java too, not only do we
make it easier to compare and analyse differences between the two languages,
but we can also directly use much of the existing ideas and research that has
been done in the context of Jif, e.g. for runtime policies (“labels” in Jif),
when implementing Paragon. On top of this, the dominant position held by
Jif within the community for language-based security research for the past
decade means that our fellow researchers within this domain are already used
to working in, and relating to, Java. We hope that this will lead to an easier
adoption of Paragon as a platform for future research in this field.

For the wider picture, however, it is far from certain that Java is the
optimal host language for a Paralocks-based security-typed programming
language. There are several reasons why Java – and the standard Java im-
plementation in particular – is not perfectly suited for the task. These reasons
range from small, amendable issues like non-opaque pointers and static vari-
able initialisers, to more conceptually difficult issues like information flow
channels introduced by the thread scheduler.

In order to fully fix all these issues, it is likely that a new language would
need to be built from scratch, considering such issues at the core design stage.

88

4.1.2 Design Guidelines

The aim here is to make Paragon a strong, expressive, practical and useful
language, that is at the same time tractable to program in. Adding security
typing invariably requires introducing annotations for the policy type checker,
thus adding more syntactic “noise” to an already verbose language. One clear
design aim is therefore to keep these annotations as little intrusive as possible,
to keep the language tractable. Preferably this means to make annotations as
few as possible, as intuitive as possible, and the least aesthetically disruptive
as possible. Naturally this aim affects all levels of design, from syntax through
semantics of the new language constructs, to issues of policy checking and
inference.

Another design principle is to make the language as complete as possible
with respect to information flow aspects, but not necessarily as complete
when it comes to supporting all the various aspects of Java. Thus, while we
would naturally prefer to support as much of Java as possible, we will at
this stage unashamedly accept presenting a (sizable) subset of Java that still
allows us to support all aspects of Paralocks.

4.2 Example Programs

In this section we introduce Paragon through a series of encodings of various
information flow policy mechanisms. We present them by implementing each
mechanism as a library, which serves a two-fold purpose. First, these exam-
ples allow us to introduce the features of Paragon step by step. and put both
the basics and the more intricate parts into context. Second, it lets us demon-
strate the generality of Paragon as an implementation language for a large
variety of different policy mechanisms, and how, by the use of encapsulation,
we can present each mechanism through a consistent interface.

4.2.1 Simple Declassification

Our first example is just a simple declassification mechanism showing suc-
cinctly how class encapsulation gives us the possibility to encode a policy
scheme as a library.

The interface of this scheme consists of three things: policies for data
that is secret (“high”) and public (“low”) respectively (not to be confused
with Java’s notion of “public”, i.e. exported from a class), and a method
declassify that takes secret data as input and releases it as public.

First we define the policy low as the least restrictive policy, for data that
anyone can see:

89

p u b l i c s t a t i c f i n a l p o l i c y low = { ’x: };

Policies in Paragon are first class values of a primitive type policy. This way
we allow for policies that are not known until runtime (c.f. runtime labels
[ZM07a]), further discussed in section 4.3.9. For a policy to be used to anno-
tate a variable, we require that policy to be marked final , i.e. immutable.
This ensures that the policies remain consistent throughout the program.

For instance, two variables annotated by the same policy name are guar-
anteed to really have the same policy, as there can be no redefinition of that
policy name between their declarations.

We change the syntax of policies slightly from Paralocks, to emphasise
the policy head and to give more of a Java feel. A policy is still a set of
clauses separated by semi-colons, but each clause is written with the head
first, possibly followed by a colon and a list of conditions (locks) to be fulfilled
(open) for the actor in the head to observe data annotated with this policy.
Polymorphic actors are marked with a preceding ′, which means we no longer
need to explicitly quantify actors. The policy above, low, is thus equivalent
to the Paralocks policy {∀x.x}, i.e. bottom.

High data may be made visible to low observers through declassification.
We represent this with a condition (lock) Declassify:

p r i v a t e l o c k Declassify;

Unlike policies, locks are not first class values in Paragon, and cannot for
instance be stored in variables. Locks are always implicitly static , to avoid
aliasing problems. We discuss aliasing issues in more detail in section 4.3.4.

The policy high is now simply that which specifies that the data may be
made visible to a low observer when the lock is open:

p u b l i c s t a t i c f i n a l p o l i c y
high = { ’x : Declassify };

This is equivalent to the Paralocks policy {∀x.Declassify⇒x}.
The act of declassification then becomes a simple matter of taking data

with policy high and, in a context where Declassify is open, reannotating
it with policy low. Such reannotations typically happen at assignments, but
can also happen at e.g. the return of a method. This is exactly what the
method declassify does:

p u b l i c s t a t i c ?low <A>

A declassify(?high A x){

open Declassify { r e t u r n x; } }

90

There are several interesting things to note about this method declaration.
First, it shows how to use policy annotations in Paragon: We simply extend
the list of possible modifiers on e.g. variables and methods. Here we see that
the formal parameter x has a modifier ?high, stating that an argument to
the method should have a policy no more restrictive than this. The method
itself has a modifier ?low, denoting the return policy, i.e. the effective policy
on data returned by the method.

Another thing to note is that neither of the policies we declared, nor the
lock, were annotated with policies. They still have policies though: for fields
the default policy is bottom if nothing else is specified. For locks, it is top.

Also, the body of the method consists of a single statement: a scoped
open statement. The scoped open keeps the specified lock open for the
extent of its body. In other words, it opens the specified lock at the start
(if it was not already open), closes it when done (unless it was already open
at the start), and rules out any (non-scoped) opens or closes of that lock
throughout the body.

Finally, as suggested above, returning from a method causes a reannota-
tion of the returned data to the declared return policy of the method. Here
the reannotation is valid since it appears in a context where Declassify is
open.

We also note that this method is now the only way to declassify data
from high to low, since the Declassify lock is declared to be private to this
class. Our library can thus have a simple, consistent interface through the
use of standard encapsulation techniques.

To further show the strength, we could easily extend our library with the
notion of data that may never be declassified:

p u b l i c s t a t i c c l a s s DeclassWithTopSecret

extends Declassification {

p u b l i c s t a t i c f i n a l p o l i c y top = {};}

Data annotated with policy top can never be the argument to declassify,
since that method’s parameter is stated to be no more restrictive than high.

4.2.2 Robust Declassification

In section 3.6 we discussed how to encode robust declassification [MSZ04]
using Paralocks. We can now implement our encoding as a library in Paragon.

To achieve robust declassification [MSZ04], we need to introduce data
integrity policies. Integrity is the dual of confidentiality, and we can handle
the two concepts in just the same way. Robust declassification requires that
the choice of what data to declassify cannot be affected by untrusted data.

91

To model integrity, we need an actor representing a user who only ob-
serves, and acts on, trusted data:

p r i v a t e s t a t i c f i n a l actor trustor;

Actors, like policies, are values of a primitive data type, actor. This data
type is special in that it allows no literal values, and there are no expressions
that create new actors. Instead, all variables of type actor that are declared
without an explicit initialisation get assigned a value implicitly, just like for
other primitive types in Java. The difference here is that there is no one
default value (like e.g. 0 for int), instead each value assigned this way will
be unique to each declared variable, thereby creating fresh actor IDs.

By making the actual values inaccessible to the program – i.e. actor
identities are opaque – we will not need to worry about any information flow
leaks that this generation of fresh identities could otherwise cause.

Values of type actor are first class values. Just like for policies, for an
actor to be mentioned in annotations on data that actor must be declared
final , to ensure consistency.

With actor trustor, we declare the policy of trusted data as:

p u b l i c s t a t i c f i n a l p o l i c y
trusted = { trustor: };

Now we wish to combine the notion of trusted data with the simple de-
classification mechanism above, but then we run into a problem. Since we
modeled low as bottom, which is the least restrictive policy possible, all data
marked with low would be implicitly trusted – i.e. observable by trustor

– already! Our formulations of the policies in our previous library were too
simple to be combinable with the notion of integrity as required for robust
declassification. We need to define new versions of low and high based on
an explicit observer separate from trustor:

p r i v a t e s t a t i c f i n a l actor observer;

p u b l i c s t a t i c f i n a l p o l i c y
low = { observer: },

high = { observer: Declassify };

Now we can modularly form the combinations we need, e.g. trusted and low
data would have the policy trusted u low.

To ensure robustness, i.e. that the choice whether to declassify is not
based on untrusted data, we give the lock that governs declassification the
policy trusted.

p r i v a t e s t a t i c ?trusted l o c k Declassify;

92

The policy checker will then ensure that this lock cannot be manipulated
in contexts that depend on untrusted data. The type of declassify, which
manipulates the lock, will reflect this in its write effect modifier, written with
a leading !:

!trusted ?(low u p o l i c y o f (x))
p u b l i c s t a t i c <A>

A declassify(?high A x) {

open Declassify { r e t u r n x; } }

Indeed the same holds for other data marked as trusted – it cannot be affected
by untrusted data, either explicitly or implicitly.

Notice how the method is polymorphic in whether its argument is trusted
or not. The parameter is marked with policy high, which really means “no
more restrictive than high”, so arguments to the methods could be trusted,
untrusted, or even low if we wanted.

The return policy, ?(low u policyof(x)), states that the result will have
the same policy as the input, only it will now (definitely) be low (low u high

is low).

The policyof operator is a built-in Paragon primitive that can be used
only in the specification of policy modifiers for methods. It takes as its
argument a parameter of the method, and returns the policy of the argument
supplied for that parameter. In the above example, policyof(x) will thus
not return the policy of parameter x (which is specified to be high), but
rather the policy of whatever argument is passed to the method (which we
know will be no more restrictive than high).

This example also shows that the parameters of a method are in scope
when declaring the modifiers for that method.

This library could easily be extended with a mechanism for endorsement,
similar to declassification.

4.2.3 Sealed-bid Auctions

Our next example is not a library but an actual application, the same example
we used as a motivation in section 2.2: a server for running online sealed-bid
auctions. In this setting we want to model the following information flow
properties:

• bidders provide sealed bids and can see their own bid, but cannot see
each others’ bids.

• bidders learn of the winning bid, but only at the end of the auction.

93

We only sketch the implementation of the system here, focusing on the parts
that are interesting from a Paragon perspective, leaving many other things
underspecified.

A bidder is represented in the system as an actor. The bid placed by actor
a should be visible only to a while the auction is running, and be released to
all other bidders when the auction is complete assuming it was the winning
bid. We model this with the policy {a; ’x: AuctionClosed, HasBid(x)

, Winner(a)}, where we assume the existence of the lock AuctionClosed

and the two unary lock families HasBid and Winner, with intuitive interpre-
tations.

We wrap a bidder and their associated information and operations as a
class Bidder, starting with the following:

f i n a l actor id;

f i n a l p o l i c y bidpol = {id: ;

’x:AuctionClosed ,HasBid(’x),Winner(id)};

?bidpol i n t bid;

We implicitly also assume a channel, chan, over which to communicate with
the actual bidder.

We note that the actors here, unlike those used in the previous examples,
are not marked as static . This means that each instance of Bidder will have
a separate actor, uniquely generated when that instance is created. Since
actors also affect typing, as singleton types, aliasing of objects that contain
actors becomes a problem. We discuss this in more detail in section 4.3.4.

When the bidder supplies a bid as requested, we signal this by opening
the corresponding HasBid lock. If the bidder fails to supply a bid, we throw
an exception:

+HasBid(id) !bidpol

vo id getBid () throws !bidpol NoBidExc {

bid = chan.get(); open HasBid(id); }

Two things are worth noting here. The first is the +HasBid(id) modifier,
which signals to the type checker that calling this method will open that
lock, assuming the method call terminates normally. If it instead terminates
with an exception, we make no such guarantees. The second thing to note
is the write effect modifier on the declared exception. Roughly speaking,
this policy denotes the level at which it will be possible to observe that the
function has terminated with this exception. Java does not normally allow
modifiers on declared exceptions – they are an addition in Paragon.

94

Running the auction now consists of four phases: Getting the bids from
all the bidders, determining the winner, reporting the results, and handing
out the spoils. The first phase simply loops over all bidders, gets the bid of
each, catching exceptions along the way:

!bottom vo id collectBids () {

f o r (Bidder b in bidders) {

t r y { b.getBid (); }

catch (NoBidExc e) {} }}

The only thing to note here is that the contents of the set bidders must be
observable by all the bidders, due to the write effect of getBid. The same
is true for the overall write effect of this method – every bidder can observe
that the method has been called, so the only sensible write effect policy is
bottom.

In the next phase we look at all the collected bids, determine the win-
ner among them, and declare the auction closed. We first declare a policy
allBidders as the part of the policy on bids that is not specific to a partic-
ular bidder:

f i n a l p o l i c y allBidders =

{’x: AuctionClosed , HasBid(x)};

+AuctionClosed ?allBidders

Bidder determineWinner () {

Bidder winner;

for (Bidder b in bidders) {

if (HasBid(b.id)) {

if (winner == null

|| b.bid > winner.bid) {

winner = b; }}}

open AuctionClosed;

return winner; }

The local variable winner must have policy allBidders for the above code
to be type correct. We don’t need to explicitly annotate it with that policy
though – Paragon performs inference of policies for local variables.

Also noteworthy is that the assignment to winner does not affect the
write effect of this method, since winner is only available locally within the
body of the method, so changes to it will not be visible from outside a call
to the method.

The method is guaranteed to open the AuctionClosed lock, as signaled
by the appropriate modifier.

95

Next we want to notify the bidders about the winning bid:

~AuctionClosed !bottom vo id
reportResult(?allBidders i n t winBid){

f o r (Bidder b in bidders) {

i f (HasBid(b.id)) {

b.chan.put(winBid); }}}

We assume that the channel to b makes the data sent on it available to b,
i.e. it can only output data with policy (no more restrictive than) {b.id:}

. To be allowed to send winBid, with policy allBidders, on this channel,
we must know that we are in a context where the two locks mentioned in
that policy are truly open. The modifier ~AuctionClosed declares that this
method expects that lock to be open whenever it is called. Calling it in a
context where that lock is not guaranteed to be open is a type error, and
consequently the body of the method may assume that the lock is indeed
open. For the second lock, we rely on so called runtime querying for the
status, through an if statement. If the condition of the if is a lock, the type
checker can assume that that lock is open when checking the then-branch.
Thus the reannotation of winBid is correctly allowed.

Tying all these pieces together we could now write the main code as
follows:

getBids ();

Bidder winner = determineWinner ();

i f (winner != n u l l) {

open Winner(winner.id);

reportResult(winner.bid);

sendSpoils(winner); }

where we leave to imagination how sendSpoils should be annotated and
implemented, but surmise that it requires the appropriate Winner lock to be
open. We note that the reannotation of winner.bid is allowed when using it
as the argument to reportResult, since we know that Winner(winner.id)
is guaranteed to be open.

In this section we introduced several new concepts, each of which is pre-
sented in more detail in a later section: Lockstate modifiers (section 4.3.1),
runtime querying of locks (section 4.3.2), exceptions (section 4.3.6), policy
inference (section 4.3.8), and instance actors and aliasing (section 4.3.4).

96

4.2.4 Lexically Scoped Flows

Our next example is an encoding of lexically scoped flows, reminiscent of
the work by Boudol and Almeida Matos [AB05]. The basic idea is a lan-
guage mechanism introducing allowed flows between security levels (actors,
principals) inside a lexically enclosed scope:

flow (x to y) { ... }

In this example, within the scope of the enclosed block data owned by (or
that could flow to) principal x may also flow to principal y.

We will first show how to encode the mechanism, which in itself requires
some new features of Paragon. Then we go on to show how to encapsulate
our encoding, to present the interface we want.

To encode this scheme we need a lock family with two parameters, where
each lock in the family represents a flow relation between its two actor ar-
guments. In this scheme, the relation of flows between actors is transitive
and reflexive. We can make our lock family model this using lock properties,
which allow us to specify conditions under which some locks in the family
are implicitly open:

p u b l i c l o c k Flow(from ,to) {

Flow(’x,’x);

Flow(’x,’y): Flow(’x,’z), Flow(’z,’y);}

The lock properties must have the correct lock family in the head, but could
mention other locks among the premises (we show one such example in section
4.6.4).

The parameters from and to in the declaration are solely used to specify
the arity of the lock family. The names themselves are purely mnemonic.

Since transitivity is a common property, Paragon has a short-hand mod-
ifier for it, along with modifiers for reflexivity and symmetry. Our lock defi-
nition could thus be written more succinctly as:

p u b l i c r e f l e x i v e t r a n s i t i v e
l o c k Flow(from ,to);

Note that these property short-hands work only for lock families representing
binary relations, i.e. with arity 2.

With this lock family we can easily encode the flow mechanism using
scoped open statements, so e.g. flow (x to y){ ... } would be encoded
as open Flow(x,y){ ... }.

97

Finally we need to encode the policy annotations used with this scheme.
If some data is owned by some actor, that data should be allowed to flow
to other actors as well when the proper flows are enabled. This means that
data for actor a should be encoded as { ’x: Flow(a,’x)} (which through
reflexivity includes a).

The three components we have defined here – the Flow lock family, the
encoding of the flow statement, and the encodings of policies – is all we need
to be able to express the idiom.

Encapsulation The encoding above suffers from a clear drawback: it does
not present a consistent interface. Specifically it requires the Flow lock family
to be exported for use in the scoped open statements as well as in the encoded
version of policies, but that also opens up for unintended uses such as non-
scoped versions of open or close. It also requires a programmer to know
how to write the encoded policies, which, while not an immense burden
for so simple policies, requires knowledge about the internals of this policy
encoding. These problems are classic symptoms of a lack of encapsulation.

A properly encapsulated version of the library would make the lock family
internal, and export only two things: a way to construct consistent policies,
and a method representing the flow construct.

To enable encapsulation of policy construction, Paragon allows so called
type methods. These are static, pure methods that can be deterministically
evaluated by the policy type checker at compile time. We mark them with
a special modifier typemethod. The type method needed in our example is
one that takes an actor and produces a policy for that actor’s data:

p u b l i c typemethod p o l i c y pol(actor a) {

r e t u r n { ’x: Flow(a,’x) } }

Some data owned by actor a could now be annotated with policy ?pol(a),
which the Paragon type checker can replace by the result of evaluating the
method.

To properly encapsulate the flow construct, we run into a problem with
our choice of host language: Java does not have first class statements or
procedures (let alone functions). To be able to pass to our envisioned flow

method the code to run as its body, we need to use a standard Java trick
and wrap that code up as a method of an anonymous object implementing
a declared interface, and then pass that object as the argument.1

Our flow method then needs to take three arguments: The two actors
for which to enable the flow, and the object representing the body. However,

1Had our host language been e.g. Scala instead, this would not have been an issue.

98

the two actors are not normal arguments, since their intended purpose is to
affect the typing of the body, which will be the third argument. Thus we
need to pass the actors as type arguments to the method:

p u b l i c s t a t i c < actor A, actor B>

vo id flow(FlowBlock <A,B> block) {

open Flow(A,B) { block.go(); }}

p u b l i c i n t e r f a c e
FlowBlock < actor A, actor B> {

p u b l i c ~Flow(A,B) vo id go(); }

As seen by the ~Flow(A,B) modifier, the inner code may depend on this lock
being open, enabling flows from A to B in the body as intended.

Note that the type parameters specify that they in turn have type – or
kind – actor, to distinguish them from ordinary Java type arguments, which
conceptually and implicitly have kind type.

We could now put these components to use together as follows:

flows <a,b>(

new FlowBlock <a,b>{

p u b l i c ~Flow(a,b) vo id go(){ ... }});

This encoding is unfortunately far more verbose than the mechanism we are
encoding – but we note that all the extra noise comes solely from Java not
having first class statements.

The perceptive reader may have noticed a problem with our encoding, or
perhaps even two, albeit slightly related. The first issue is to do with side
effects. We did not specify a write effect policy on either flow or go, which
means they will both default to {}. This in effect means that the body of
an implementation of go cannot have side effects, or at least none visible at
policies lower than {}.

Preferably we would like flow to be polymorphic in the write effect of its
argument. Again we turn to type parameters, this time passing the intended
write effect to the interface as a type argument of kind policy:

p u b l i c i n t e r f a c e
FlowBlock < actor A, actor B, p o l i c y W> {

p u b l i c ~Flow(A,B) !w vo id go(); }

p u b l i c s t a t i c !w

< actor A, actor B, p o l i c y W> vo id
flow(FlowBlock <A,B,W> obj) { ... }

99

Now the body can perform arbitrary side effects as far as flow is concerned.
However, it now appears that a programmer using this interface would need
to explicitly specify the write effect as well, which would be unfortunate. To
avoid this in most cases, Paragon attempts to infer the type arguments when
left unspecified, which in the current case would be straightforward to do
for the write effect policy argument. This is similar to how Java infers type
arguments of generic methods.

Our usage example could thus be written

flow <a,b>(new FlowBlock <>() {

vo id go() { ... }}

where we let the type checker infer all the type arguments for the FlowBlock

constructor, as well as the policy argument to flow.

The second issue relates to the lock state. As seen by the signature of
the method go, the body of an implementation of that method could only
depend on one specific lock being open, even if it was called inside the scope
of several nested flow calls. We need a way to make the methods context
sensitive with respect to the lockstate. The pattern is familiar by now: we
let the methods take yet another type parameter, this time of kind lock[]:

p u b l i c i n t e r f a c e FlowBlock

< actor A, actor B, p o l i c y W, l o c k [] L>

{ p u b l i c ~Flow(A,B) ~L !W vo id go(); }

p u b l i c s t a t i c !W ~L

< actor A, actor B, p o l i c y W, l o c k [] L>

vo id flow(FlowBlock <A,B,W,L> obj)

{ ... }

Again we rely on inference to fill in the proper lockstate context, leaving no
more to write for a user of this library than before.

With these definitions of pol, flow and its auxiliary interface FlowBlock,
we have achieved a proper encapsulation, ensuring that the library is used
consistently. While the overhead for the programmer is somewhat larger than
we would prefer, that overhead is really an artifact of Java, not Paragon.

Lock families and properties are discussed in more detail in section 4.3.2.
Type parameters are discussed in section 4.3.3, type methods in section 4.3.5,
and type inference in section 4.3.8.

100

4.3 The Paragon Language

In this section we take a more formal approach to the features of Paragon.
The examples of the previous section have given a flavor of the language
and its features, aimed for the casual reader or as a first introduction. In
this section and the next we offer a more detailed account of the design and
implementation of the language.

The remainder of this section is structured as a reference to the various
features, each presented in a separate subsection, with no overall narrative.
We will cover the following sections in turn: Types, policies and modifiers
(4.3.1); Locks (4.3.2); Type parameters (4.3.3); Actors and aliasing (4.3.4);
Type methods (4.3.5); Exceptions and indirect control flow (4.3.6); Field
initialisers (4.3.7); Type and policy inference (4.3.8); Runtime policies (4.3.9).

4.3.1 Types, Policies and Modifiers

In Paragon every information container (field, variable, lock) has a policy
detailing how the information contained therein may be used. Every expres-
sion has an effective policy which is (an upper bound on) the conjunction of
all policies on all containers whose contents are read by it – we refer to this
as the expression’s read effect. Similarly every expression (and statement)
has a write effect, which is (a lower bound on) the disjunction of all policies
on all containers whose contents are modified by the expression.

Paragon (unlike Jif – see section 4.6.3) separates policies from base types
syntactically by having all policy annotations as modifiers. All in all, Paragon
adds nine new modifiers over Java. Two of them relate to policies:

• ?pol denotes a policy on an information container, and the read effect
of accessing that container. When used on a method we refer to it as
the return policy, as it is the read effect on the value returned by the
method.

• !pol denotes a write effect, and is used to annotate methods. They are
also used to signal the write effects of thrown exceptions (see section
4.3.6) and of static initialisers (section 4.3.7).

There are also three modifiers used only on methods to detail their interaction
with the lockstate:

• +locks says that the method will open the specified lock(s), for every
execution in which the method returns normally. We call this the opens
modifier.

101

• -locks, dubbed the closes modifier, says that the method may close
the specified lock(s), for some execution.

• ~locks, the expects modifier, says that specified lock(s) must be open
whenever the method is called.

The opens and closes modifiers are also used for exceptions, discussed in
section 4.3.6.

The other four modifiers introduced by Paragon are the three short-hand
modifiers for lock properties discussed in section 4.3.2, and the typemethod
modifier discussed in section 4.3.5.

4.3.2 Locks

Locks in Paragon are not first class. They cannot be stored in variables, nor
can they be passed as arguments to methods. The only way to manipulate
the status of a lock is via open and close statements. However, the status of
a lock may be queried at runtime, in ways such that it makes sense to treat
lock as a type.

If a lock is used syntactically as an expression, the type of that expression
is considered by Paragon to be lock. If an expression of type lock appears as
the condition of an if , while or do loop, or as the first operand of the ternary
conditional operator ?:, the type checker can assume that the lock is open
when checking the branch corresponding to the condition being satisfied.
Apart from this effect on the typing of programs, all expressions of type
lock, in conditions or elsewhere, are implicitly cast to boolean.

Paragon allows methods to specify lock as their return type. This is
particularly useful for implementing “getter” functions, to avoid exporting
the locks themselves for manipulation outside a class. The body of a method
with return type lock must consist only of a single statement return e, where
e is an expression of type lock.

Finally we also allow the use of the operator & on locks. If an expression of
type lock that includes & operators appears in a condition, the type checker
can assume that all the operand locks are open in the appropriate branch.

Lock properties Lock families can be declared to have properties. A prop-
erty specifies conditions under which some locks in the family are implicitly
open. A concrete lock can thus be explicitly closed, but still remain open
due to some property, such as transitivity, keeping it open implicitly.

102

Lock properties are a modest restriction of the full potential power of
Recursive Paralocks, discussed in section 3.7. Specifically the properties must
be declared at the point where the lock family is declared, so a family either
has a property or not. It is not possible in Paragon to e.g. turn transitivity
on and off dynamically during the execution of a program.

Policy checking in the presence of recursive clauses is a far more challeng-
ing problem than without them, as discussed in section 3.7. Essentially the
policy language with recursive clauses is equivalent to Datalog and runtime
querying for locks is equivalent to evaluating Datalog queries. The more
difficult part is entailment of policies, which is equivalent to the problem of
containment of a non-recursive Datalog program in a recursive one. This
problem is EXPTIME-complete in general, though in most cases our policies
do not require the full generality. Also our saving grace is that, at worst,
we can ask the programmer to insert extra annotations to avoid inference in
cases where it would otherwise take too long.

4.3.3 Type Parameters

Java, since the introduction of “Generics” in Java 5.0, allows types and
methods to be parametrised by types, giving Java parametric polymorphism.
Paragon introduces several new entities – actors, policies and locks – that af-
fect typing in various ways. It is natural to extend the polymorphism to also
include these aspects. The different entities are clearly not interchangeable,
which implies the need for a kind system for type-level entities.

Thus in Paragon ordinary types have the implicit kind type. Type pa-
rameters of kind type need not be annotated, like in vanilla Java. For the
Paragon-specific entities we introduce kind annotations, to separate them
from each other and from ordinary types. For actors and policies we can
simply reuse their types as kinds as well. We can do the same for locks,
though, as shown in the example in section 4.2.4, we need to be able to
parameterise over not just single locks, but rather sets of locks. To avoid
introducing new keywords, we reuse the syntax for arrays for this purpose,
i.e. the kind annotation on parameters taking sets of locks is lock[].

With Generics, the Java type checker tries to infer type arguments where
none are provided. Starting in Java 7 this works for both methods and con-
structors. Paragon does the same for missing type arguments, with a slight
generalisation – we allow partial type argument lists, which are assumed to
instantiate the type parameters of the method or constructor from left to
right. We saw an example in section 4.2.4, where we supplied the two actor
arguments but left the policy and lock set arguments to be inferred.

103

4.3.4 Actors and Aliasing

Actors and locks together play a crucial role in the typing of Paragon code.
Locks determine what flows are allowed at what points, and locks are of-
ten parametrised by actors. The typability of some code may depend on a
given lock, with some given actor arguments, being open. Formally, the type
checker treats actors as singleton types [Asp95].

However, the possibility of aliases greatly complicates things. If some
code opens lock L(a) and then closes lock L(b), is the first lock still open?
Clearly that depends on whether a and b are two different actors, or aliases
of the same actor.

Alias analysis in Java is a well-studied area, with many possible degrees of
sophistication. For Paragon, erring on the side of caution is clearly crucial,
so any analysis that conservatively approximates actor aliasing would be
adequate.

For static actor fields, and for actor variables declared in the current
method, Paragon tracks what variables are known to be distinct or aliases,
and for which variables we simply cannot say. We take the conservative
approach, and assume closed all locks that could potentially be affected by
a close.

For instance actors, i.e. non-static fields of type actor, the situation is
slightly more complex. To track the contents of actor field obj.a, we not only
need to consider possible aliases of the actor itself, but also possible aliases
of obj, which could cause obj.a to change without ever being syntactically
updated.

To avoid a full-scale alias analysis over all fields and variables (which
would not be feasible), Paragon always treats all instance actors belonging
to the same class as potential aliases. In practice this means that we don’t
disallow programs, but may require them to use more runtime queries to
compensate for weaknesses in the alias tracking. Another option could be to
instead restrict the creation of aliases through e.g. affine typing of classes
with actor member fields. Doing that would rule out quite a few interesting
programs though, among them the sealed-bid auction example given in sec-
tion 4.2.3. We naturally prefer to allow such programs, and rather require
the extra runtime query where needed, as seen in that example.

Locks are not first-class and thus cannot be directly aliased. By mak-
ing all locks static we also rule out the possibility of indirect aliasing that
instance actors suffers from. We note that this restriction does not limit
expressiveness, since a non-static lock can easily be mimicked by a static
lock and an extra non-static actor argument. Thus we reduce the aliasing
problem to actors only.

104

4.3.5 Type Methods

A type method is Paragon’s name for methods that can be evaluated by the
type checker at compile time, in order to determine policies on variables,
fields and methods. A more formally correct name would perhaps be type
functions, since these methods must be both pure, i.e. have no side-effects,
and deterministic. By deterministic we mean that the end result may only
depend on values known statically when the method is called. That includes
the method’s arguments, as well as certain static fields. For a field to be
useable in a type method, it must be static and final, have a primitive type,
have a policy bottom, and have a simple initialiser that can be evaluated at
compile time without side-effects.

The fact that type methods can be used at compile time does of course
not preclude them for being used at runtime as well, where they behave like
static methods.

4.3.6 Exceptions and Indirect Control Flow

The static policy type system in Paragon tracks two kinds of information
flows: direct flows arising from assignments, and indirect flows arising from
control flow. It makes no attempt to track flows arising from termination –
it is termination insensitive. If exceptions could not be caught, an exception
would be the same as (premature) termination, which means we would not
need to care about them. However, the catch mechanism makes exceptions
rather a kind of control flow primitive, needing special attention.

In Java, subclasses of RuntimeException are unchecked. This means
that methods need not declare if they could terminate with such an ex-
ception. Examples of runtime exceptions are ArithmeticException which
for instance arises from division by 0, ArrayOutOfBoundsException and
NullPointerException.

It should be obvious that any exception that can be caught is a potential
channel for information flow, which means that in Paragon all exceptions
must be checked. This in turn implies the need for analyses that can rule out
the possibility of exceptions, in particular a null pointer analysis is needed
to avoid that every instance field or method use incurs the need to declare a
possible NullPointerException.

A caught exception is in essence a jump, where control is passed from
the throw point to a catch block. Such a jump may be noticeable by anyone
who can notice either the catch block being executed, or the statements in
the normal control flow past the throw point. To avoid unintended flows,
all such statements must be constrained by the context in which the throw
appears. We refer to this as the exception’s area of influence.

105

Since an exception might not be caught locally, the area of influence is
not a local property in general. However, the area of influence of a throw
statement cannot in general be calculated as a local property. A method that
includes a throw might not catch the exception, but instead declare that it
throws the exception for a caller to handle. To accurately compute the write
effects of throw statements in this general case would require whole-program
analysis, killing modular compilation. Clearly this is not an option.

Instead we let methods that throw exceptions declare the write effect of
those exceptions, which then becomes a lower bound on the writes allowed in
the exception’s area of influence. This write effect is declared as a modifier
on the proper exception type in the method’s throws clause.

This declared write effect serves as an approximation of the context where
the throw appears. It is thus both used as the effective write effect of the
throw statement itself, to ensure that it is not used in even more restrictive
contexts, as well as a bound on the write effects of all statements in the area
of influence.

Constraining subsequent statements in this way is reminiscent of the way
termination sensitivity is typically achieved for information flow type sys-
tems. Indeed, the constraints we introduce here will stop termination leaks
caused by uncaught exceptions. To achieve full termination sensitivity how-
ever, we would also need to disallow “low” effects to follow potentially non-
terminating “high” loops. We choose not to do so though, for two reasons.
First, the mechanisms needed to perform the required analysis would be
pervasive and heavy-weight (all methods would need the equivalent of a ter-
mination effect). Second, since every loop in the program would be like a
potentially thrown exception that can never be caught, putting large con-
straints on subsequent statements, it would significantly reduce the class of
type-correct programs.

Since uncaught exceptions are effectively premature exit points from a
method, the opens and closes modifiers pertaining to a normal exit do not
apply when entering a catch block. Hence we let the declared exceptions
also take opens and closes modifiers, specifying the lock state that will be in
effect at the start of a corresponding catch block.

For the cases where a thrown exception is caught locally, before ever
reaching the top level of a function, there will be no need for approxima-
tions via declared policy or lockstate modifiers. Instead all the necessary
information can be computed locally.

Interestingly, several other control flow mechanisms in Java can be treated
as special cases of exceptions for purposes of policy inference: return, break
and continue. These are simpler to handle than exceptions, since their area
of influence is always contained locally.

106

For return statements, the declared return policy of the method serves as
both an upper bound on expressions used as arguments to the return, and as
the effective (local) write effect of all return statements. Methods returning
nothing (i.e. with a void return type) would have no declared return policy.
Instead the effective write effect can be approximated as the current PC, since
that would be the limit of what would be allowed at the point of the return,
while putting the least constraints on statements in the area of influence.
The area of influence of a return statement naturally extends to the end of
the method body.

Handling break and continue statements is very similar to handling
return statements with no arguments. Both can use the current PC as their
effective write effect. For continue, the area of influence extends to the re-
mainder of the body of the loop it is contained in. For break, the whole of the
loop, including its condition or preamble, is affected, just like for exceptions
thrown in loops. break statements can also end switch statements, in which
case the area of influence covers all subsequent statements.

4.3.7 Field Initialisers

Initialisers for fields are simply expressions, and quite naturally the effective
policy on such an expression cannot be more restrictive than that on the
field. But expressions also have a write effect – i.e. the initialisation taking
place might cause visible changes elsewhere. Furthermore, an initialisation
could potentially fail with an exception.

Fields come in two different flavors: static fields and instance fields. For
both, the main difficulty lies in handling their initialisation – their side-effects
and possibility for exceptions – and the solution differs between the two.

Instance fields are all initialised when the instance they belong to is cre-
ated. This means that we can view the initialisation code as being an implicit
prelude to every constructor for the class. The solution is then natural – the
write effect of the initialisers cannot be less restrictive (more revealing) than
the declared write policy on any constructor. Similarly, if an initialiser could
throw an exception, all constructors for the class must declare this.

Note that the policies on the fields themselves do not contribute to the
write effects of constructors, as there is no way that the contents of the fields
could give away the existence of the object they belong to, i.e. that the
constructor was executed. Anyone having access to read those fields must
obviously already know that the object exists.

107

Static fields have the same issues with write effects and exceptions, but
the story is far less simple. In Java, all static fields of a class are initialised
at the same time, whenever any one of them is used in the program. This in
effect means that any use of a static variable will have the worst-case write
effect of all the static initialisers for the same class. We can analyse whether
a static initialisation is guaranteed to already have taken place before a given
use of a static variable, to preclude it from carrying the write effect.

Regardless of whether a particular use of a static variable should be as-
signed a write effect or not, we need to notify the type checker of such write
effects. For instance fields, the write effect is naturally declared on the con-
structors. For static initialisers, which share a single overall write effect, we
could imagine two choices for the placement of a write effect modifier, neither
very orthodox. The first is that each static field in a class should reports the
write effect that is a lower bound on the write effect of all static initialisers.
In other words, every static field must have the same write effect modifier,
causing redundancy. The second option, which we have chosen for Paragon,
is to place that modifier among the modifiers for the class. This means that
the write effect modifier only needs to be specified once, and it is more intu-
itively clear that this write effect is an upper bound on the write effects of
all the initialisers of static fields of that class.

Regarding exceptions, it is even more difficult to find a place to declare
if a static initialiser may throw one. In Java, if any static initialiser fails
then the whole class fails to initialise, and, regardless of which type of ex-
ception that caused the failure, the result of the field use that caused the
attempted initialisation is a an ExceptionInInitializerError. Any sub-
sequent attempt to access a field of the same class, assuming the first error
is caught (which Java discourages for subclasses of Error), will result in a
NoClassDefFoundError.

We could possibly imagine a similar solution to this problem as to the
problem with write effects, letting the class declare that it throws these ex-
ceptions. This would be a rather ad-hoc change to Java though, compared
to adding modifiers for Paragon-centric things, so we choose a more conser-
vative approach. In Paragon, Initialisers for static fields may not fail, as
guaranteed by the exception handling methods discussed in section 4.3.6.

108

4.3.8 Policy Inference and Defaults

To reduce the burden on the programmer to put in policy annotations,
Paragon attempts to either infer, or supply clever defaults for, policies on
variables, fields and functions. When annotations are omitted, the following
defaults are assumed:

• Policies on fields default to bottom.

• Write effect policies of methods default to top.

• Return policies of methods default to the join of the policies on all
parameters since all of them are expected to contribute to the result.

• If no policy is given for a formal parameter to a method, the method
is assumed to be polymorphic in that parameter. The effective policy
of a polymorphic parameter x is policyof(x).

• If no policy is given for a local variable, Paragon attempts to infer the
effective policy for that variable.

Policy inference works through a straightforward constraint system, where
all constraints arising from comparisons between policies, including the PC,
are collected and resolved on a per-method basis. In the general form a
constraint will be an inequality between two policy expressions, each of which
can contain literal policies, variables denoting policies, and joins and meets.

4.3.9 Runtime Policies

Since policies can be used as values at runtime, and dynamically hoisted to
the type level, we need ways to relate policies that are not known statically to
other (static or dynamic) policies. To achieve this, Paragon needs to perform
runtime entailment checks between policies. This problem has been studied
by Zheng and Myers in the context of Jif [ZM07a], and we choose to follow
their solution.

Similar to runtime lock queries, we thus allow inequality constraints be-
tween policies to appear as the condition in if statements and conditional ?:
expressions. The type checker can then know when checking the first branch
that the inequality holds, and can allow flows that would otherwise have been
untypable.

109

4.4 The Paragon Type System

With all the components discussed in the previous section, we can now put
them together in a type system. We have not yet formalised the full type
system for Paragon, instead we present here a slightly simplified system that
covers the core aspects of Paragon typing. In particular, the following re-
strictions apply:

• We do not cover any aspects of the class hierarchy, e.g. sub-typing, in-
terfaces, overloading of methods, super. These aspects are not difficult
to handle from an information-flow point of view, so we leave them out
for the sake of improving the presentation.

• We do not cover type parameters. Type argument inference for Java
is notoriously tricky to formalise, and state-of-the-art formalisations
are typically given as descriptions of the inference algorithm, in plain
English [GJS96]. We have yet to come up with a suitable formalisation
for Paragon.

• Our type system does not include any aspects of exception analysis.
We have noted previously that some analyses are crucial to reduce the
need to account for null pointers at every use of a variable of a reference
type. This is not reflected in the type system presented here.

• We do not cover runtime policies. All policies are assumed to be known
statically, and all policy variables are assumed to be final and initialized
when they are declared.

• We concentrate on a subset of Java, leaving out a number of features
that do not add anything to the presentation. The features left out are
enums, static fields, arrays (as in the syntactic sugar), inner classes,
casts, most operators, labeled statements, as well as expressions and
statements whose typing would be very similar to those already covered
(e.g. do while is very similar to while).

We also note that our Paragon type system only covers information flow
aspects of typing, and a modicum of ordinary type checking as needed to
properly handle the information flow parts. Our Paragon type system thus
expects an ordinary Java type checker to be invoked to handle many ordinary
typing aspects.

With this in mind, we can go on to present our restricted Paragon type
system.

110

4.4.1 Typing Judgment

The typing judgment for expressions has the deceptively simple form

E;S ` e : τ, p; S ′, C

where

• τ is the type and p the effective policy of the expression e. We use the
convention that upper-case T denotes a class type, while lower-case t
denotes any type (including the pseudo-type void).

• E is the typing environment.

• S is the type state before evaluating e.

• S ′ is the updated state after evaluating e.

• C is the set of policy inference constraints generated by the type rule
for e.

We will treat E and S as records with named fields. The environment E
contains the following fields when checking the body of a class:

• field is a mapping from field names to their types and policies. We
write E[field](x) for the type and policy of field x. We further use
pattern matching notation e.g. E[vars](x) = (tx, px) to bind the type
and policy of x to the names tx and px respectively.

• methods is a mapping from method heads to their signatures. A
method head is a name and a sequence of parameter types. We write
E[methods](m(t1, . . . , tn)) to retrieve a method signature. The signa-
ture includes the parameter types since method names may be over-
loaded2.

A method signature is a 7-tuple, consisting of the following: the return
type; the return policy; an array of parameter policies; a write effect
policy; a set of expected locks; a set of lockstate changes; and a set of
exception signatures. An exception signature in turn is a record with
three fields: read is the read policy on the value thrown, write is the
write effect of the throw, and lockMods is a set of lockstate changes.

2 Note that since we leave out all aspects of sub-typing, we do not need to bother about
the difficulties involved in finding the “best match” among applicable functions.

111

• constrs is a mapping from constructor heads to their signatures. A
constructor head is a class type name and a sequence of parameter
types, with the same mechanism for retrieving signatures as for meth-
ods. A constructor signature is a 5-tuple with the same fields as a
method signature, only it has neither return type nor return policy.

• locks is a mapping from lock family names to arities and policies.

• policies is a mapping from names of policies to the actual policies
they represent.

• types is a mapping from class names to (restricted) environments.
Each class name maps to a record with the five fields listed above,
except we use the name fields instead of vars when reasoning about
fields of classes.

• typemethods is a mapping from the names of type methods to their
compile time behaviour. Specifically, E[typemethods](m) is a compile-
time representation of the body of m, which can be interpreted during
type checking.

• this holds the type of the current class, i.e. the type of the expression
this .

• types is a mapping from class names to type environments containing
the same seven fields discussed above (and would also contain this field
if we considered inner classes).

• lockProps is a set (not a mapping) of the lock properties (section 4.3.2)
for all locks in scope, thus also including locks in other classes than the
one currently being checked.

When checking the body of a method, E will be augmented with the
following fields:

• vars is a mapping from variable names to variable signatures, i.e. a
type and a policy, just like for fields.

• lockstate is the set of locks known to be open when the method is
called, i.e. it is the base set of locks that any lockstate changes will be
applied to.

• return is a tuple holding the return type and return policy of the
method.

112

• exns is a mapping from exception types to their read and write policies.
We store these as records as discussed for exceptions in method signa-
tures above, only we omit the field for lockstate modifiers. The field
will hold mappings for all exceptions with a declared handler – either
those that are declared thrown by the enclosing method, or those with
enclosing catch blocks.

• branchPC holds information regarding the branch PC, i.e. the lower
bound on write effects for statements and expressions that is incurred
by the context they appear in.

To account for local write effects, the branch PC must be parameterised
on which entity that causes the write effect. For example, if a variable
is both declared and assigned to inside one branch of an if -statement,
the effect on the branch PC by the policy of the if -statement’s con-
ditional expression should be ignored. We thus treat the branchPC

component of E as a map, from entities to branch contexts, so that
e.g. E[branchPC](x) is the effective branch PC calculated only from
the branch points where x is already in scope. E[branchPC](?) gives
the full PC. Note that the possible entities in the domain of this map-
ping are not only the variables, but also locks and exceptions, including
the “pseudo”-exceptions break, continue and return.

The state S handles the parts of the analysis that require following ex-
ecution paths linearly, i.e. the parts that do not follow the block structure.
The record S will be used when checking the body of a method, and contains
the following named fields:

• actors is a mapping from actor variable names to actor information.
We will discuss actor analysis in more detail shortly.

• lockMods holds (a safe approximation of) the lockstate changes done
since the beginning of the method up to the current point in the execu-
tion. The actual current lockstate can thus be computed at any point
by applying these changes to the base lockstate held in E[lockstate].

• exns is a mapping from exceptions to exception points. An exception
point represents the point where the exception was thrown, and is a
record with two fields: state is (a safe approximation of) the state (S)
at the time when the exception was thrown, and write is the write
effect policy of the exception.

At any point during typing, S[exns] will contain mappings for exactly
those exceptions for which the area of influence extends over the current

113

execution point. The current exception PC is the joint influence of all
such exceptions, i.e. join of the write effect policies of all exceptions in
the domain of S[exns]. Formally we define

exnPC (S) =
⊔
{S[exns](X)[write] | X ∈ dom(S[exns])}

Updating states and environments We write e.g. S[exns{X 7→ (state =
S, write = p)}] for the state where the exns field maps exception type X to
the record (state = S, write = p), but which otherwise acts as S. When
the field names are clear from the context, we will simplify the above record
to (S, p).

We will further write e.g. E[branchPC{a t= p}] as a short-hand for
E[branchPC{a = E[branchPC](a) t p}], and similarly for other operators.
We extend this notation point-wise to maps, so that E[branchPC t= p]
means E[branchPC{e1 t= p, . . . , en t= p}] for all ei ∈ dom(E[branchPC]).

Many fields in E and S must handle block-wise scoping, to allow for vari-
able name shadowing. For the sake of simplifying the presentation, however,
we will assume with no loss of generality that all newly declared variables
always use names that are not already in scope.

Actor analysis Our actor alias analysis records the status of each actor
variable in scope. For each variable a, S[actors](a) maps to a record with
two fields: id maps to the identity of the actor, while stability holds the
stability of the variable, discussed below.

If actor variable or field a was declared with no explicit initialiser (and
has not been changed since), we know it will hold a fresh actor identity
value. Then S[actors](a)[id] will map to freshk for some freshly generated
number k.

If the value of a cannot be statically known, S[actors](a)[id] will instead
map to alias k, again for a generated k. If actor variable a is assigned the
value of b, it will inherit the identity of of b, regardless of whether b is fresh
or aliased. We use α to range over actor identities.

Two actor variables are known to hold the same value whenever their α
values match, regardless of whether they are both fresh or both aliases (one
of each can never happen). On the other hand, two actor variables may hold
the same value if either their α values match, or one (or both) is an alias.
This is exactly the same may-alias relation that we used for the type system
in section 3.5, and we define it as follows:

a ' b
def
= S[actors](a)[id] = S[actors](b)[id]

∨ alias(S[actors](a)) ∨ alias(S[actors](b))

114

where the function alias(α) returns true iff α = alias k for some k. We
extend this relation to equal-length vectors of actors in a point-wise manner.

Actor fields can be updated indirectly, e.g. the invocation of a method
might update some global actor field with no way to signal this to the caller.
Thus all non-final actor fields of all objects and classes in scope must be
assumed to have changed whenever a method is called, which means our
actor map must now map all such fields to fresh aliases. We call such fields
volatile. Variables local to the current method are not volatile, nor are any
fields marked final . We all such fields stable.

Due to the problem of indirect aliasing discussed in section 4.3.4, non-
final instance actors must also be considered volatile in the presence of an
update of that actor field for any instance of the same type.

We thus have three cases for the stability field for variable a: stable,
volatile or the field designator T.f , where T is the type of the instance to
which the field belongs. Whenever we call a method, all fields not marked
stable will have their identity replaced by a freshly generated α value, unique
to each field, and the alias status set to true. Also, whenever an actor field
f is updated for an instance of class T , any field marked with T.f will be
scrambled in the same way.

We will write S[actors scrambled T.f] to perform the scrambling for
field T.f , and omit T.f when we want to scramble all volatile fields.

Combining lockstate modifiers and states We represent lockstate mod-
ifiers as a pair of sets of locks (C,O), where C and O are the locks that have
been closed and opened respectively. A lock in either set will be on the form
L(α1, . . . , αn) where each αi is an actor identity. When applying some lock-
state modifiers to a lockstate, the intuition is that we first close all the locks
in C, and then open all the locks in O.

We define the operator � to combine lockstate modifiers in sequence:

Definition 26 (�).

(C1, O1) � (C2, O2)
def
= (C1\O2, {L(~α1) | L(~α1) ∈ O1, @L(~α2) ∈ C2. ~α1 ' ~α2})

There is a symmetry between the two components here that may not be
obvious at first glance. The set difference operation could be expanded in
the same way as the second part, only using normal equality for comparison
instead of our may-alias relation. The intuition is exactly the same as in
section 3.5.

115

We overload the � operator to also apply lockstate modifiers to lock-
states proper, by simply assuming that a lockstate is represented a lockstate
modifier pair where the first component is the empty set. We will freely mix
notations as suitable for the presentation.

The operator � handles sequential composition of lockstate modifiers.
However, in many cases we have parallel potential execution paths, e.g. the
two branches of an if -statement, and we need to approximate what the
lockstate modifiers – or in fact the whole state – will be at the point where
the paths merge.

We define the operator � to merge two lockstate modifiers, actor trackers,
or exception trackers (i.e. the component fields of the state S), and further
overload it to merging states by merging the components point-wise.

Definition 27 (�).
For lockstate modifiers: (C1, O1) � (C2, O2)

def
= (C1 ∪ C2, O1 ∩O2)

For actor mappings: A1 � A2 is the actor mapping A such that

A(a) =

{
α , if A1(a) = A2(a) = α

alias k, k fresh , if A1(a) = α1 ∧ A2(a) = α2 ∧ α1 6= α2

For exception mappings: Ex1 � Ex2 is the exception mapping Ex such that
dom(Ex) = dom(Ex1) ∪ dom(Ex2) and Ex(X) = (S1 � S2, p1 t p2), where

(Si, pi) =

{
Exi(X) , if X ∈ dom(Exi)

(SID,⊥) , otherwise

where SID is a distinguished identity of �.

4.4.2 Typing Expressions

Figure 4.1 contains the typing rules for simple Paragon expressions. The
rule for literals appeals to a simple type system for literal values that we
exclude here. The type of this is simply the one recorded in the environment.
The expression null can represent a reference of any class type, so T is
unconstrained in the rule. Binary operators all follow a simple pattern where
the result depends on both operands but the operator itself is pure3. This
includes the Paragon-specific operators on policies, u and t4.

3 Some care must be given to the + operator when given an operand of type String.
The method toString() will then be called on the other operand, and we must ensure
that the implementation of this method has no side-effects for the rule given here to hold.

4 In our prototype implementation of Paragon we use + for u and ∗ for t.

116

` lit : t
E;S ` lit : t,⊥; S, ∅

(Lit)
E[this] = T

E;S ` this : T,⊥; S, ∅
(This)

E;S ` null : T,⊥; S,C
(Null)

E;S ` e1 : t1, p1 ; S1, C1

E;S1 ` e2 : t2, p2 ; S2, C2

t1 ⊕ t2 : top

E;S ` e1 ⊕ e2 : top, p1 t p2 ; S2, C1 ∪ C2
(BinOp)

Figure 4.1: Paragon Type System - Simple Expressions

The rule also holds for the & operator when applied to operands of type
lock, though some complexity is hidden by the seemingly innocuous appeal
to the ternary relation t1 ⊕ t2 : top in the premise. The type lock also tracks
which lock(s) it represents, so specialising the ternary relation to locks we
have that lockL1 ⊕ lockL2 : lockL1∪L2 .

E[vars](x) = (t, p)

E;S ` x : t′, p; S ′, C
(Var)

where

t′ =

{
actorα , if t = actor and S[actors](x)[id] = α

t , otherwise

Figure 4.2: Paragon Type System - Variable Access

For variable access, shown in figure 4.2, we simply look up the type and
policy of the requested variable in the environment. However, if the variable
holds an actor, we will want to know which actor, if possible. Just like for
lock, we thus let the type actor also track which actor it represents.

We have omitted the rule for field access, which mostly follows the same
pattern as the variable rule. The main difference is that it may not in general
be possible to find which actor identity to look up in the state. If we cannot
statically say which actor identity the field access will refer to, a fresh alias
will be generated as α.

Figure 4.3 shows the rules for expressions that update fields. To type the
left-hand side of an assignment, we must ensure that we do not attempt to
update a “low” field of a “high” object, or else aliases could be used to leak
information. The check that po v pf reflects this.

117

E;S ` o : To, po ; So, Co
E[types](To)[fields](f) = (tf , pf)
E;So ` e : te, pe ; Se, Ce te :< tf

E;S ` o.f = e : tf , pf ; S ′, Cf ∪ Ce ∪ Cass
(Assignment)

where

L = E[lockstate] � Se[lockMods]

Cass = {pf v E[branchPC](?), pf v exnPC(S), pe vL pf , po v pf}

S ′ =


Se[actors scrambledTo.f,

actors{o.f 7→ (α, To.f)}] , if te = actorα

Se , otherwise

Figure 4.3: Paragon Type System - Assignments

The test on the types indicates that te is assignable to tf , and in partic-
ular disregards actor identity annotations. When we move to a system with
subtyping, that can be indicated by the semantics of the :< operator.

We can store the identity of o.f in the actor tracker since we know from
the language grammar that o must be a simple field access path rooted in
a variable. However, such an instance variable will be volatile with stability
To.f .

We omit the rule for assigning to a variable, as it is a simplification of
the rule involving instance fields shown here. One thing to be noted though
is that E[branchPC] is not defined on o.f , since a write to instance field o.f
cannot be guaranteed to be “local”, hence the use of E[branchPC](?). For a
variable x, we would instead use E[branchPC](x) to account for local write
effects.

The rules for e.g. post-fix incrementation can also be expressed as special
cases of the assignment rule. Similarly, rules for assignment operators are
straightforward combinations of the rule for assignment with the rule for
binary operators.

One of the arguably most complex rules is that for method calls, as shown
in figure 4.4. The first two lines of the premise, containing the typing judg-
ments for the sub-components, are straightforward. The third line simply
pattern matches on the method signature stored in the environment.

The constraint on the fourth line checks that if method m expects some
locks to be open, those locks are indeed guaranteed to be open.

The policy inference constraints for a method call are plenty: those
yielded by checking the parent (Ce) and argument expressions (Ci); for each
argument, a check that the argument’s policy is no more restrictive than the

118

E;S ` e : Te, pe ; S0, Ce
E;Si−1 ` ei : ti, pi ; Si, Ci

E[types](Te)[methods](m(t1, . . . , tn)) = (t, p, ~pa, pw, L,M,Exns)
E[lockstate] � Sn[lockMods] ⊇ L

E;S ` e.m(e1, . . . , en) : t, p; S ′′, Ce ∪ Cargs ∪ C
(Call)

where

Cargs =
⋃
{Ci, pi v ~pa[i]}

C = E[branchPC] v pw, exnPC (S) v pw}
∪ {Exns(X)[write] v E[exns](X)[write] | X ∈ dom(Exns)}
∪ {E[exns](X)[read] v Exns(X)[read] | X ∈ dom(Exns)}

S ′ = Sn[exns{X 7→ (SX , Exns(X)[write])}] if X ∈ dom(Exns)

SX = Sn[lockMods �= Exns(X)[lockMods], actors scrambled]

S ′′ = S ′[lockMods �= M, actors scrambled]

Figure 4.4: Paragon Type System - Method Call

declared policy of the parameter (Cargs); checks that the write effect policy
of m is no less restrictive than what is allowed by the current branch and
exception PCs; and for each exception declared thrown by m, a check that
its read and write policy modifiers are consistent with those expected by its
enclosing handler (i.e. either a catch clause or a method signature).

The outgoing state S ′′ will be the final state after checking all arguments,
but modified in three ways. First, each exception that may have been thrown
by m should now constrain all subsequent expressions and statements until it
has been handled, which is reflected by the definition of S ′. Each SX will be
an approximation of the state at the time X was thrown inside m, and will be
used when we reach the handler for X. Second, we need to update the lock
modifiers to reflect any modifications done by m. Finally, our alias tracking
for actors must account for the fact that all volatile actors could have been
changed by executing m, so the actors must be scrambled as discussed above.
The same goes for the SX states, since the volatile actors could have been
changed before X was thrown.

The rule for top-level method calls with no parent expression is very
similar – the only non-trivial change is to use E[methods] instead of
E[types](Te)[methods].

119

E;Si−1 ` ei : ti, pi ; Si, Ci
E[types](T)[constrs](t1, . . . , tn) = (~pa, pw, L,M,Exns)

E[lockstate] � Sn[lockMods] ⊇ L

E;S0 ` new T (e1, . . . , en) : T,⊥; S ′′, Cargs ∪ C
(New)

where

Cargs =
⋃
{Ci, pi v ~pa[i]}

C = {E[branchPC] v pw, exnPC (S) v pw}
∪ {Exns(X)[write] v E[exns](X)[write] | X ∈ dom(Exns)}
∪ {E[exns](X)[read] v Exns(X)[read] | X ∈ dom(Exns)}

S ′ = Sn[exns{X 7→ (SX , Exns(X)[write])}] if X ∈ dom(Exns)

SX = Sn[lockMods �= Exns(X)[lockMods], actors scrambled]

S ′′ = S ′[lockMods �= M, actors scrambled]

Figure 4.5: Paragon Type System - Instance Creation

The rule for instance creation in figure 4.5 is unsurprisingly very similar to
that for method invocation found in figure 4.4. The only significant difference
is that constructors cannot specify a return policy, as the return policy of a
constructor invocation is always ⊥. This is because a newly created object
does not carry any information that is not stored in its fields. Just knowing
that the object exists carries no information at all.

E;S ` ec : tc, pc ; Sc, Cc tc :< boolean
E ′;S ′c ` e1 : t, p1 ; S1, C1 E ′;Sc ` e2 : t, p2 ; S2, C2

E;S ` ec?e1:e2 : t, pc t p1 t p2 ; S1 � S2, Cc ∪ C1 ∪ C2
(Cond)

where E ′ = E[branchPC t= pc]

S ′c =

{
S ′[lockMods �= L] , if tc = lockL

S ′ , otherwise

Figure 4.6: Paragon Type System - Conditional Operator

The next expression of interest is Java’s ternary conditional operator, for
which the typing rule can be found in figure 4.6. Two things are of interest
from the perspective of Paragon. The first is that the resulting state is the
common denominator of the states resulting from checking the two branches,
so we need to merge the outgong states of the branches. The second thing to

120

note is that if the condition we branch on is of type lockL, we may assume
the locks denoted by L to be open when checking the first branch.

E[vars](ai) = (actor, pi)

E;S L̀ L(a1, . . . , an) : p t
⊔
pi

(Pred)

E[vars](a) = (actor, pa) E;Si−1 L̀ Li : pi

E;S C̀ a:L1, . . . , Ln : pe t
⊔
pi

(Clause)

E;S C̀ ci : pi
E;S ` {c1; . . . ; cn} : policy,

⊔
pi ; S, ∅

(Policy)

Figure 4.7: Paragon Type System - Policy Expressions

Finally we turn our attention to policy expressions, presented in figure 4.7.
In our simplified type system we assume all policy expressions are built from
only simple components. Clauses and lock predicates are not expressions so
they each have their own typing judgments. There should be no surprises in
any of the rules.

As noted before, combining policies using u and t follows the same rules
as for normal binary operators (figure 4.1).

4.4.3 Typing Statements

The typing judgment for statements is similar to that for expressions – the
only difference is that it contains no τ or p components.

E;S ` s; S ′, C

We overload the ` notation since there should be no risk for confusion.

E;S ` ; ; S, ∅
(Empty)

E;S ` se : t, p; S ′, C

E;S ` se; ; S ′, C
(ExpStmt)

Figure 4.8: Paragon Type System - Simple Statements

Figure 4.8 shows the basic rules for empty statements and statements
that consist only of expressions.

The rule for conditional statements, presented in figure 4.9, closely re-
sembles the rule for conditional expressions, in figure 4.6. In fact the only
difference is the removal of types and policies when expressions changed to
statements. Here tc :< boolean indicates that tc must be a type assignable
to boolean, which we note in particular includes the type lock.

121

E;S ` ec : tc, pc ; Sc, Cc tc :< boolean
E ′;S ′c ` s1 ; S1, C1 E ′;Sc ` s2 ; S2, C2

E;S ` if (ec) s1 else s2 ; S1 � S2, Cc ∪ C1 ∪ C2

(If)

where E ′ = E[branchPC t= pc]

S ′c =

{
S ′[lockMods �= L] , if tc = lockL

S ′ , otherwise

Figure 4.9: Paragon Type System – Conditional Statement

The rule for while-loops, presented in figure 4.10, is arguably the most
complex rule we present here. We first note that the branch PC is constrained
by the policy of the conditional expression, as expected. Here we also see an
example of handling local write effects – any write effects incurred by break

or continue is local to the loop, and need not care about any enclosing
branch contexts that the loop appears in.

Second, we note that while treats conditional expressions of type lock
the same way that conditional statements do.

The remaining complexity comes from the multiple entry and exit points
of the loop. While-loops (in fact all loops in Java) have three different points
of entry depending on how the beginning of the loop was reached. One is the
normal entry, where we are poised to evaluate the conditional expression for
the first time. The state at that time will be S. The second is when execution
of the body of the loop completes normally, and we are poised to re-evaluate
the conditional expression for a subsequent iteration. The state at that time
will be Ss. The third possibility is that execution of the loop body completed
prematurely through the use of continue, and that we are again poised to
re-evaluate the conditional expression. The state when continue was used in
the body will be approximated by the mapping of continue in the exception
tracker of the state. The definition of S∗ reflects these three possibilities.

In order to safely approximate the starting state, we need to first compute
the outgoing state of typing e and s. S∗ combines this outgoing state with
the state at the point when we first reached the loop, and is thus a suitably
pessimistic approximation of the starting state.

The area of influence (see section 4.3.6) of continue extends to the end of
the loop, but not to the next iteration. Thus when typing the next iteration
we need to remove the influence of continue on the exception PC. This is
reflected by the definition of S∗∗, which is the state we will use as the starting

122

E;S ` e : te, pe ; Se, Ce te :< boolean
E ′;S∗e ` s; Ss, Cs

E ′;S∗∗ ` e : te, pe ; S ′e, C
′
e

E ′;S∗∗e ` s; S ′s, C
′
s

E;S ` while (e) s; S ′′, C ′e ∪ C ′s
(While)

where

E ′ = E[branchPC t= pe, branchPC[continue 7→ ⊥,break 7→ ⊥]]

S∗e =

{
Se[lockMods �= L] , if te = lockL

Se , otherwise

S∗ = S � Ss � Ss[exns](continue)[state]

S∗∗ = S∗[exns /= continue]

S∗∗e =

{
S ′e[lockMods �= L] , if te = lockL

S ′e , otherwise

S ′ = S ′e � Ss[exns](break)[state]

S ′′ = S ′[exns /= break]

Figure 4.10: Paragon Type System - While Loops

state for the second iteration. We use S[exns /= continue] to denote the
state whose exns field does not contain a mapping for continue, but which
otherwise acts as S.

There are also two possible points of (normal) exit of the loop. The
first is when the conditional expression evaluates to false , in which case the
state will be (safely approximated by) S ′e. The second is if the body of the
loop ends prematurely through the use of break, in which case the state will
be reflected by the mapping of break in the exception tracker of the state,
analogous to continue. The definition of S ′ reflects these two possibilities.

In the actual result state we must also cancel the area of influence of
break. The definition of S ′′ captures this.

Finally, since the state we use on the second pass is the safe approxima-
tion, the constraints we are interested in collecting are the ones incurred by
the second checks of e and s, i.e. C ′e and C ′s.

Figure 4.11 shows the type rules for goto-like constructs. In the rule for
continue, we let the current effective PC act as constraint on subsequent
statements by adding it to the exception PC. This will be in effect up until
the “catch point” for continue – i.e. until the end of the nearest enclosing

123

E;S ` continue; ; S ′, ∅
(Continue)

where S ′ = S[exns{continue 7→ (S,w)}]
w = E[branchPC](continue) t exnPC(S)

E;S ` e : t, p; Se, Ce
E[return] = (tr, pr) t = tr

E;S ` return e; ; S ′, Ce ∪ Cr
(Return)

where

S ′ = Se[exns{return 7→ (Se, pr)}]
Cr = {E[branchPC](return) v pr, exnPC(Se) v pr, p vL pr}
L = E[lockstate] � Se[lockMods]

Figure 4.11: Paragon Type System - Exception-like Statements

loop, as seen by the rule for while in figure 4.10. We also store the current
state, which will be the state at the beginning of the next iteration of the
loop.

The rule for break is identical to the rule for continue, only changing the
keyword used, so we omit it.

The rule for return e is also similar, but does not use the current PC for
the combined write effect and exception PC contribution. Instead we use the
current method’s return policy, declared as a modifier on the method and
stored in the environment when checking the method’s body. The return
policy acts as the write effect of the return statement, and must be checked
against the relevant branch and exception PCs. It is also the policy given
to the value returned, and thus it must be valid to re-annotate the return
expression to this policy in the current lock state, which is checked by the
test p vL pr.

We omit the rule for return statements without an accompanying expres-
sion, i.e. returning from a method with return type void. The rule is nearly
identical to that for continue. The only difference apart from the keyword
is that the rule for return has the test E[return] = (void,>) in the premise.

The rule for throw, in figure 4.12, is very similar to that for return. The
key difference is that for exceptions we allow the write effect of the exception
to be different from the policy on the value thrown. This will not lead to
unintended leaks since the conceptual assignment of the value thrown to the
parameter of the catch clause is a local write inside the exception’s area of

124

E;S ` e : X, p; Se, Ce
E;S ` throw e; ; S ′, Ce ∪ C

(Throw)

where

wX = E[exns](X)[write]

S ′ = Se[exns{X 7→ (S,wX)}]
C = { E[branchPC](X) v wX , exnPC(Se) v wX ,

pe vL E[exns](X)[read] }
L = E[lockstate] � Se[lockMods]

Figure 4.12: Paragon Type System - Exceptions

influence.

For catching exceptions, we first make the simplifying assumption that
all try-catch- finally statements are unrolled into nested try-catch and try
- finally , each with just a single catch- or finally-block. The rules for these

two statements are found in figure 4.13.

For try-catch, the first thing we must do is to register the handler in
the environment used when checking the try-block. This means storing the
read and write policies associated with the caught exception type. The read
policy is declared as a modifier on the parameter to the catch block. The
write policy is not declared anywhere, and so we must infer it from the
context we have available. We thus introduce a fresh policy variable, which
will then appear in a number of constraints in both Ct and Cc.

The remaining complexity only amounts to ensuring that the proper
states and environments are used in the right places, similar to rules we
have already discussed.

One thing to note though is the appeal to a function readPol . This
function hides quite a bit of complexity which we will not cover here. Loosely,
it picks out the read (or return) policy modifier from the set of modifiers ms,
and evaluates this policy statically. In doing so it will use, among other
things, E[typemethods] and the actor identities found in S[actors], which
is why both E and S are needed to provide the context for readPol . We will
see more examples of such extraction functions in subsequent rules, but will
not cover their definitions.

For try- finally , we know that regardless of how the execution of the
try-block ends, the finally-block will be executed. Thus, for any exception
(or goto-like statement) thrown inside the try-block, the finally-block is not
part of that exception’s area of influence. The exception PC at the start of

125

E ′;S ` bt ; St, Ct E∗;S∗ ` bc ; Sc, Cc
E;S ` try bt catch (ms T x) bc ; S ′, Ct ∪ Cc

(TryCatch)

where pr = E;S ` readPol(ms)

E ′ = E[exns{T 7→ (read = pr, write = π)},
branchPC{T 7→ ⊥}] where π is fresh

E∗ = E[vars{x 7→ (T, pr)}]
S∗ = St � St[exns](X)[state]

S ′ = Sc[exns /= T]

E;S ` bt ; St, Ct E;S∗∗ ` bf ; Sf , Cf

E;S ` try bt finally bf ; S ′, Ct ∪ Cf
(TryCatch)

where

S∗ = St � �{ SX | X ∈ dom(St[exns], St[exns](X)[state] = SX }
S∗∗ = S∗[exns = S[exns]]

S ′ = Sf � Sf [exns = S∗[exns]]

Figure 4.13: Paragon Type System - Try-Catch-Finally

the finally-block is thus the same as at the start of the try-block, which the
definition of S∗∗ captures. However, any statements after the finally-block
are part of the area of influence of all exceptions, including those thrown
inside the try-block, so the resulting state must reinstate the effect of those
on the exception PC for subsequent computation.

Finally we turn to the statements added by Paragon, namely those that
handle lockstate modifications. The type rule for the open statement is
fairly straightforward. All the arguments must be actors, and the result of
the statement is to register in the state that the lock has been opened for the
identities that those actors represent. Opening the lock causes a potentially
visible state change, so the policy of the lock must not be lower than the
current PC.

The only potentially non-obvious part of the rule is the test that the
policies of each actor argument must not be more restrictive than the policy
on the lock, i.e the test pi v pL. This serves the same purpose as the
restriction on field updates, in figure 4.3, that the policy on the field must
not be less restrictive than the policy on the object the field belongs to – we
may not update “low” parts of the state for a “high” object. Opening a lock
changes the (lock)state associated with its actor arguments, so the policy on
the lock family must similarly not be too liberal.

126

E;Si−1 ` ei : actorαi , pi ; Si, Ci
E[locks](L) = (n, pL)

E;S0 ` open L(e1, . . . , en); ; S ′, C
(Open)

where

S ′ = Sn[lockMods �= (∅, {L(α1, . . . , αn)})]

C = {E[branchPC](L) v pL, exnPC(S) v pL} ∪
⋃
{Ci, pi v pL}

E;Si−1 ` ei : actorαi , pi ; Si, Ci
E[locks](L) = (n, pL)
E ′;Sn ` b; Sb, Cb

E;S0 ` open L(e1, . . . , en)b; Sb, Cb ∪ C
(OpenIn)

where

E ′ = E[lockstate ∪= {L(α1, . . . , αn)}]

C =
⋃
{Ci, pi v pL}

Figure 4.14: Paragon Type System - Lockstate Modification Statements

The rule for close, omitted here, is nearly identical to the rule for open
– the only change needed is to swap the tuple to ({L(α1, . . . , αn)}, ∅) when
registering the modification in the state.

The rule for the scoped version of open is interesting in two regards.
First, since the opening of the lock has a block scope, we use the lockstate

field of E to register it as open for the extent of the enclosed block. This
naturally also means that the status of the lock will be the same when leaving
the block as it was when the block started.

What the rule does not currently capture though is the restriction that the
enclosed block may not close the lock. To handle that restriction we would
need to register in the environment what locks are currently untouchable,
and check against that when closing locks. It is a trivial fix, but we leave it
out since it adds unnecessary complexity to the presentation.

The second interesting thing to note is that there is no need to check the
modification of the lock against the PC. Since the status of the lock will be
the same in the outgoing state as it was in the incoming, the modification
can never be visible outside the scope of the statement itself, so the incurred
write effect is purely local.

127

4.4.4 Typing Blocks and Block Statements

E;S ` {}; S, ∅
(EmptyBlock)

E;S ` s; Ss, Cs E;Ss ` {ss}; S ′′, C

E;S ` {s ss}; S ′, Cs ∪ C
(BlockStatement)

E;S ` e : te, pe ; Se, Ce te :< t
E ′;S ′e ` {ss}; S ′, C

E;S ` {ms t x = e; ss}; S ′, Cs ∪ C
(LocalVarDecl)

where

r = E;S ` readPol(ms)

E ′ = E[vars{x 7→ (t, r)}]

S ′e =

{
Se[actors{x 7→ α}] , if te = actorα

Se , otherwise

Figure 4.15: Paragon Type System - Blocks and Block Statements

We overload the ` notation yet again for the typing judgment for blocks
in figure 4.15. The rules add little novelty, and differ from previous rules
only in that the environment is updated for subsequent iterations. The rule
for local variable declarations with initialisers is unsurprisingly very similar
to the rule for assignments.

We have omitted the rule for declarations without initialisers since it is
mostly a simplification of the rule given. However, there is one interesting
difference – if t is actor and no initialiser is given, then α will be fresh k for
a generated k.

We also omit the rule for local lock family declarations, since it is largely
trivial, only registering the policy, arity and properties of the lock family
in the environment. Similarly we have not included the special case for
policy declarations. These are not quite as trivial in that they require static
evaluation of the initialiser expression, but we do not go into the details of
that here.

4.4.5 Typing Method Declarations

Finally we can look at how to type a complete method declaration, show in
figure 4.16. The rule itself is not so complicated, but contains several things
that need explanations.

128

E ′;S ′ ` body ; S ′′, C |= C
M w S ′′[lockMods]

MXi w S ′′[exns](Xi)[state][lockMods]

E;S ` ms t m(ms1 t1 x1, . . . ,msn tn xn)

throws mx1 X1, . . . ,mxk Xk body

(MethodDecl)

where

r = E;S ` readPol(ms)

w = E;S ` writePol(ms)

pi = E;S ` readPol(msi)

M = E;S ` lockMods(ms)

L = E[lockProps] ∪ E;S ` expects(ms)

rxi = E;S ` readPol(mxi)

wxi = E;S ` writePol(mxi)

MXi = E;S ` lockMods(mxi)

E ′ = E[return = (t, r), lockstate = L, vars{xi 7→ (ti, pi)},
exns{Xi 7→ (rxi, wxi)}, branchPC{? 7→ w, xi 7→ ⊥}]

S ′ = S[lockMods = (∅, ∅), exns = {},
actors{xi 7→ (alias ki, stable)}]
∀i.ti = actor, ki fresh

Figure 4.16: Paragon Type System - Method Declarations

To type the body we must first set up the proper environment, which
constitutes a large portion of the complexity in this rule. We use auxiliary
extraction functions to find and evaluate the various modifiers for the method
itself, its parameters, and the thrown exceptions. One thing to note is that
we let the starting lockstate include all the lock properties5, similar to what
we did in section 3.7.

Most of the setup of E ′ and S ′ should be self-evident. We note that the
branchPC is set up to treat assignments to the parameter variables as local
to the method, while uncaught exceptions cause write effects that escape
the scope of the method body. The actor tracking must generate a fresh,
aliased identity for each parameter of type actor. Since parameters are local
variables, their identities are stable in the face of method calls.

5... glossing over the fact that the properties are clauses and not locks. However, if
we treat each lock as a clause with that lock in the head and an empty predicate list, the
union is well-typed.

129

Once the body has been typed, we need to ensure two things. First we
must solve the constraints gathered from the body, as indicated by |= C. We
have not yet investigated the details of constraint solving, but note that our
constraints are fairly simple inequalities involving literal policies, inferrable
policy variables (from local variables with no specified policy), rigid policy
variables (from policy-polymorphic parameters, which cannot be constrained
in any way), joins and meets. We expect to find standard methods to solve
such constraints. We further note that in the worst case, we can ask the
programmer to put in some extra policy annotations to guide the constraint
solver.

The second thing we must ensure is that the declared modifications on the
lockstate, both for normal return and for exceptions, are safe approximations
of the modifications the body will actually perform. We define a partial order
v on lock modifications as follows:

(C1, O1) v (C2, O2) iff C1 ⊂ C2 ∧ O1 ⊃ O2

Thus, if M1 v M2 we know that M2 closes at least the locks that M1 does,
and opens only locks that M1 also opens. The two constraints in the rule
will then ensure that the signature of the method is a safe approximation
concerning what the lockstate will be after the method has been applied.

We have not covered top-level field or lock family declarations, but note
that they are very similar to their local counterparts.

4.5 Compiling Paragon

In the previous sections we have presented the front-end of the language
Paragon: its features and expected behavior, as well as the static semantics.
In this section we briefly discuss how to compile a Paragon program into
vanilla Java, and how the runtime aspects of Paragon are represented.

Once we know that a given program satisfies the intended information
flow properties, we can safely remove all type-level aspects of policies, locks
and actors. We must still retain the runtime aspects, and in some cases
demote from the former to the latter.

All actor and policy type parameters on methods are demoted to formal
(value) parameters, and type arguments to method calls are demoted to
normal arguments. For type parameters to classes, each type parameter
is also added as a field to the class, and as a formal parameter to each
constructor of the class, with an initialisation at the start of the constructor.

130

Uses of instanceof that check against a type with actor or policy param-
eters are extended to compare against the fields representing those param-
eters. For example, x instanceof Vector<a,int> where the class is defined
Vector<actor A,T>, is compiled to:

x.A == a & x i n s t a n c e o f Vector < i n t >

Runtime casts to types with parameters are affected similarly.

Actors need only one property at runtime – to be uniquely distinguish-
able from each other. Many different representations could be considered
– our current prototype implementation simply uses instances of Object to
represent actors, and distinguishes between them via hash codes. All decla-
rations of actor fields and variables with no accompanying initialisation are
given initialisers that generate a unique actor representation – which in our
prototype simply means new Object().

Lock families need to support opening and closing of individual locks in
the family, parameterised by actors, as well as querying of current status.
Again many different representations could be considered. Our prototype
uses a java.util.Set, whose entries are arrays of actor representations for
the actors for which a lock in the family is open. The three operations are
then obvious. As a special case, locks with no parameters are simply boolean
variables. This model is not sophisticated enough to handle lock properties –
hence our current prototype does not take properties into account at runtime.

The only Paragon-specific statements are open and close, which become
manipulations of the lock representations discussed above. The scoped ver-
sions need a bit more effort, as they need to ensure that they leave the lock
in the same state as it was at the start of the block, even in the presence of
exceptions.

Policies are quite intricate and need to support a number of operations
at runtime, in particular meets, joins and entailment. Our current prototype
does not yet support runtime policies, and the prototype type checker does
not let programs through that rely on runtime aspects of policies. This
includes in particular code that uses runtime tests of policy entailment –
such code is currently unsupported.

4.6 A Comparison with Jif

Comparing Paragon to Jif is inevitable. Jif stands out as the only existing
information-flow-typed programming language to date, and is at the same
time a competitor and a source of inspiration. Due to the unique position
Jif has enjoyed in the domain of information flow research over many years,

131

much research has been done using Jif and DLM for context and examples.
It is thus natural to ask how research done on or with Jif can carry over to
Paragon.

In this section we make a brief but detailed competitive comparison of
Paragon and Jif. We begin by giving an overview of Jif and where it differs
from the DLM that we have discussed in previous sections. Second we discuss
the perceived short-comings of Jif, and how we deal with those aspects in
Paragon. We then go on to compare various language features, and point out
where Jif, or Jif-related research, has directly influenced our design choices.
Finally we show how Paragon can encode the DLM as a library, arguing, as
of yet without any hands-on experience, that Paragon could be used as a
drop-in replacement for Jif in existing examples.

4.6.1 The Jif Language

Jif, (and its predecessor JFlow, [Mye99, MZZ+06]) is a version of Java which
adds statically-checked information-flow annotations in the form of DLM
labels. Jif extends the core DLM model with a number of important features,
including:

• Authority and Selective Downgrading: any piece of code in a Jif pro-
gram runs on behalf of a certain set of principals, known as the authority
of the code. The language contains a declassify operator which allows
the policy of an expression to be weakened. But not just any weakening
is permitted. Only parts of the policy owned by the current authority
may be weakened in this way. For example suppose a piece of data
is labeled with the policy {Alice : Chuck,Dave ; Bob : Dave,Eve} as
above. If the code runs with at least the authority of Alice then it
can be declassified to {Alice : Chuck,Dave,Eve ; Bob : Dave,Eve} in
which case the information may then flow to Eve.

• Robustness: Jif (since version 3) can optionally be run in “robust”
mode [ZM01, MSZ04]. In robust mode the decision to declassify and
the data to be declassified cannot be influenced by low-integrity data.

Many other features of Jif are purely programming language issues rather
orthogonal to the DLM and policies, and concern the tracking of information
flows and the way the type system expresses these. Examples of such features
include the treatment of exceptions, and the support for principals and labels
that are only known at runtime. We discuss such features in 4.6.3.

132

4.6.2 Jif Concerns

We had two main concerns with Jif when starting the Paragon project.
Firstly, and most severe, there is no complete semantic security model for

either Jif or the DLM, meaning Jif only provides intuitive guarantees that a
well-typed program is actually secure.

In contrast, Paralocks has a formal semantic security model. In section
3.5 we proved, for a type system for a simple imperative language, that well-
typed programs are secure in that model. The full Paragon type system is
a far larger beast, and we have not yet attempted to prove a correspond-
ing property. It remains as one of the most important items on the list
for future work. We surmise that the situation is still better than for Jif
though, where only selected isolated fragments, namely robust declassifica-
tion [MSZ04], runtime principals [TZ04], and runtime labels [ZM07b], have
been treated formally – and even then in languages far from Java.

Second, and perhaps more subjective, we felt that the policy model in
Jif was too restrictive, in that it could not be used to express many of the
proposed idioms for programming with information flow control. As case in
point, the original DLM model could not express robust declassification. To
mitigate this short-coming, Jif has added integrity labels on top of the already
existing confidentiality labels, as integrity aspects could not be expressed
using already existing features.

In contrast, flexibility has been one of the main design goals for our work
on Paralocks and Paragon. We have shown in section 4.2 that Paragon can
encode a number of existing idioms for information flow policies, including
robust declassification, which we believe serves as strong evidence that we
have succeeded.

4.6.3 Feature Comparison

Types and policies vs labeled types Jif labels can only express the
DLM notions of confidentiality and integrity, and requires both aspects to
be specified. In contrast, Paragon policies can express a wide range of infor-
mation flow idioms, and can include confidentiality and integrity aspects as
needed, as shown in the examples in section 4.2.

In Jif, every value has a labeled type, bundling types and labels together
both syntactically and semantically. We find this unfortunate since, while
both types and labels affect type checking, they are largely orthogonal con-
cepts as far as a programmer is concerned.

Paragon keeps policies and types separate, keeping the former specified
through modifiers instead of annotations directly on the types. We feel this

133

allows for a cleaner separation of the Paragon additions from the vanilla Java
code, making Paragon code more accessible to a Java programmer.

Locks vs authority and delegation The main strength of Paragon over
Jif is the generality of the concept of locks. The Jif notions of authority and
delegation are in Paragon just special cases of lock families. Queries to the
acts-for hierarchy in Jif then simply become a particular kind of runtime lock
queries in Paragon. Similarly method constraints, used to specify constraints
regarding the acts-for hierarchy and the authority of the calling code, are
just special cases of expects lock state modifiers.

Furthermore, Paragon allows dynamic changes to locks during program
execution, which when considered in Jif terms means that it would e.g. be
possible to encode mechanisms to grow and shrink the acts-for hierarchy
dynamically. In Jif, the notions of authority and delegation are static.

Exception handling Exceptions are handled largely in a similar fashion in
Jif and Paragon, and in many ways Paragon has benefited from Jif serving as
a trail-blazer. For instance we did not need to realise ourselves the potential
problems of unchecked exceptions, or the need for null pointer analysis.

Regarding the effect of exceptions on the PC, Paragon takes a different
approach to reasoning about it, by considering areas of influence instead of
PC traces, but the approaches are identical regarding expressive power.

Static initialisers Jif identifies the same problems we do for static initialis-
ers, a problem that has also been studied by Nakata and Sabelfeld [NS10]. Jif
adopts a more restrictive solution to the problem, by restricting the initialis-
ers not only to not throw exceptions, but also to not have any side-effects.
As noted in section 4.3.7, Paragon handles side-effects by requiring them to
be declared as a modifier to the class.

Type parameters Jif saw the light of day before the introduction of
Generics in Java. Still the authors of Jif recognised the need for parame-
terising classes on labels and principals, so Jif rolled its own form of para-
metric polymorphism, only allowing Jif-specific parameter kinds. While this
work is quite impressive (and as a side-track led to the development of PolyJ
[MBL97], a competitor to GJ [BOSW98] that later became Java Generics),
we have the luxury of having Java Generics as a starting point. Our type
parameter extensions thus syntactically fit more nicely with what is already
available in Java.

134

One particular advantage of this is that we can also build on Java’s mech-
anism for type-parameterised methods, and pass arguments intended to affect
the method’s signature as type arguments instead of formal arguments as in
Jif.

Regarding expressive power, we are not aware of any difference between
our version and that of Jif, if only actor and policy parameters are considered.
Our lock set parameters have no counterpart in Jif.

Aspects of dependent typing Both Jif and Paragon have limited forms
of dependent types. Labels and principals in Jif, and policies and actors
in Paragon, can be used both as first-class values at runtime, and in the
specification of other labels/policies.

In Jif, a label or principal may be hoisted from the value level to the
type level, and used as a type argument or in the construction of new labels,
assuming the expression representing the label or principal is a final access
path. To make programming with type arguments smoother, Jif introduces
the restriction that formal parameters of a method are always final, so can
always be used as the root for a final access path e.g. when writing the
signature of the method.

The notion of final access paths carries over into Paragon, where they can
be used to specify arguments to parameterised types, or in policy annotations.
However, for type parameters on methods we do not require finality, as the
requirements for consistency of types do not apply in the same way. Also,
exactly because we have type parameters on methods (unlike Jif), the reason
to restrict formal parameters to be final partly falls, since we would pass
arguments that affect the method’s signature as type parameters instead.

Runtime policies Runtime policies have been studied by Zheng and Myers
in the context of Jif and the DLM [ZM07a], and their work is the basis
for the current evolution of runtime labels in Jif. Their ideas can largely
be directly applied to Paragon as well, and the language design regarding
runtime policies in Paragon is directly taken from their work.

4.6.4 Example: Encoding the DLM

In 3.6.2 we showed how Paralocks can be used to encode the DLM, proving
Paralocks strictly more general. In this section we show how that encoding
can be implemented as a Paragon library, which we surmise can be used as
a drop-in replacement for Jif in example code, albeit with a few caveats.

135

For the ActsFor hierarchy, we need a lock family that represents a re-
flexive, transitive relation on actors, similar to the one in the encoding of
lexically scoped flows:

p u b l i c s t a t i c r e f l e x i v e t r a n s i t i v e
l o c k ActsFor(A,actsForA);

To mark the authority of any given piece of code we use a unary lock RunsFor :

p u b l i c s t a t i c l o c k RunsFor(A) {

RunsFor(’x): ActsFor(’x,’y), RunsFor(’y)

};

Here no syntactic sugar will do to express the interplay between ActsFor and
RunsFor .

Moving one step closer to Jif, we also introduce an explicit declassification
function to ensure that declassification only happens at explicitly marked
locations. We use a similar trick like in the example with lexically scoped
flows to let our declassify function take a code block as its argument, inside
which the declassification may take place:

p u b l i c s t a t i c l o c k Declassify;

p u b l i c s t a t i c !W ~L < p o l i c y W, l o c k [] L>

vo id declassify(Decl <W,L> block) {

open Declassify { block.go() } }

p u b l i c i n t e r f a c e Decl < p o l i c y W, l o c k [] L>{

!W ~L ~Declassify vo id go(); }

Finally we need to represent DLM labels in this framework.The encod-
ing of DLM into Paralocks was shown and proven correct in [BS10], and
the interested reader is referred there for the details. We can simplify the
programming of our encoding by expressing it at the level of a single clause
rather than a whole label. The policy of a label can then be represented as
the join of those respective clauses. We can thus define the following type
method6:

6Note that the varargs parameter, denoted by the ellipsis, is vanilla Java and not a
Paragon innovation.

136

p u b l i c typemethod p o l i c y
lbl(actor owner , actor ... readers) {

p o l i c y c =

{ ’x : RunsFor(owner), Declassify };

for (actor reader : readers) {

c += { ’y : ActsFor(reader , ’y) }; }

return c; }

We can now form full labels by joining such clauses together, so for in-
stance the DLM label

{ o1: r1,r2; o2: r2 ,r3 }

can be written as

lbl(o1 ,r1,r2) * lbl(o2,r2,r3)

Our encoding does not cover the integrity and robustness aspects of Jif,
but we surmise that they can be handled in a dual manner, similar to what
we did in the example in section 4.2.2.

137

138

Chapter 5

Related work

In this chapter we look at related work along the three axes we pointed
out in the introduction: Policy specification mechanisms (5.1), semantics of
information flow (5.2), and programming languages with information flow
control capabilities (5.3).

Further, we also look at work on the concept of typestate (5.4) which is
closely related to locks in Paragon.

5.1 Policy Specification Mechanisms

As we have argued previously, most research on information flow security and
declassification to date use one of only two policy specification mechanisms:
A lattice model following the work by Denning [Den76], or the Decentralised
Label Model (DLM) by Myers and Liskov [ML97].

In the lattice model, policies are defined by a lattice (L, v), where l ∈ L
is a level, with levels ordered by the partial order relation v. The simplest
example of such a lattice is one with only two levels, “high” and “low”. We
can define it as a lattice with L = (H,L) where L v H. A significant number
of information flow systems uses such a simple model at its core, e.g. Askarov
and Sabelfeld’s work on gradual release [AS07]. Such systems clearly focus
on aspects other than policy specification.

A lattice can consist of explicitly named and ordered levels, as in the
“high-low” case, but more common is systems where the lattice levels corre-
spond to e.g. a powerset lattice of principals [Sim03, AB05], or systems that
work with any arbitrary lattice [CM04, CM05, ZM07a, Bou05].

The other mechanism, the DLM, we have already discussed at length,
but note that it is used as the policy specification mechanism for plenty of
research not specifically targeted at Jif, e.g. [KHHJ08, HTHZ05, TZ04].

139

Paralocks can encode both a lattice model and the DLM, and is thus
strictly more general than these models.

There are systems that introduce other policy specification mechanisms.
One example is the Rx policy language by Swamy et al [SHTZ06]. This
work (and the more recent refinement by Bandhakavi et al [BWW08]) is the
only other language-based security work of which we are aware which uses
roles in an information-flow setting. The main thrust of their approach is to
specify and manage information flows which are caused by policy changes.
Role management ideas are used to control policy updates. In common with
this approach, our semantics also tracks information flows caused by “role
management”. We believe that many features of their meta-policies can
be directly encoded using Paralocks, but we have yet to investigate such
examples.

Nanevski et al [NBG11] introduce Relational Hoare Type Theory (RHTT),
a specification language and verification system that can express information
flow and access control policies via value-dependent types. The strength of
their system over Paralocks is that they can express policies in terms of ar-
bitrary program state, not just the locks and actors that Paralocks allows.
This fact also lets their system include the “what” dimension of declassifi-
cation in a natural way. This strength is also its biggest drawback however
- a full value-dependent type system induces a much heavier enforcement
machinery, including interactive proofs. This puts far higher requirements
on the programmer, something we deliberately want to stay clear of with our
work on Paralocks.

There are several policy languages in the access control and authorisation
area which have some superficial similarity with Paragon/Paralocks, since
they are based on Dataloglike clauses to express properties like delegation
and roles, see e.g. [Jim01, LMW02, DFK06, BFG07]. Key differences are (i)
the information flow semantics that lies at the heart of Paragon, and (ii) the
fact that the principal operation in Paragon is comparison and combination
of policies, whereas is the aforementioned works the only operation of interest
is (run-time) querying of rules.

We note some further similarities to work on RBAC models. Paralocks
permit finer granularity than standard RBAC, with the use of user-specific
policies. This level of control appears similar to that provided by role tem-
plates [GI97]. Our ability to model accesses which are triggered by arbitrary
state conditions (modeled via locks) has similarities to environment roles
[CLS+01]. Related to this, the role activation rules of the OASIS model have
a superficial similarity with Paralocks policies (see e.g. [BEM03]) although
these rules would be more like lock invariant specifications in our model.

140

The extension to recursive Paralocks described in Section 3.7 brings the
work much closer to the logic-based access control work (e.g. [Jim01, DeT02,
LMW02]). One line of work by Dougherty et al [DFK06] deals specifically
with the issues that arise in situations where changes in the environment
entail dynamic changes to access control policy. This is analogous to our
problem of reasoning about policies in the presence of a program which has
side-effects on the policy.

5.2 Semantics of Information Flow

Semantic models for complex information flow policies have historically been
problematic. In some cases – e.g. in the DLM – there is simply no infor-
mation flow model. In others (e.g. Tse and Zdancewic [TZ04]) the semantic
models are simply noninterference in the absence of policy change. For se-
mantic models of declassification and other dynamic information flow policies
which attempt to do more than this (e.g. the “noninterference between pol-
icy updates” approach in Swamy et al [SHTZ06, BWW08]), many semantic
models suffer from flow insensitivity. Flow insensitivity here means that the
semantic conditions are not really fully semantic, since they flag insecurity
simply because they do not have an sufficiently accurate model of the context
of a given “insecure looking” subcomputation.

The notion of flow (in)sensitivity comes from the static analysis world,
where it is used to characterise program analyses, and is not used to describe
the underlying semantic property.

The flow insensitivity problem arising in many approaches [MS04, EP05,
EP03, AB05, Dam06, MR07, BCR08, LM08] all come about through some-
what related bisimulation-like definitions. But flow insensitivity can arise,
in varying degrees, in other styles of model too. For example, Swamy et al
[SHTZ06] deal with a detailed model of information flow policy updating.
The semantics is phrased in terms of the trace segments in between pol-
icy updates, and asserts noninterference for the programs at the beginning
of each of these segments. This is a resetting approach since it reasserts
noninterference at intermediate program points, and thus becomes flow in-
sensitive. As another example, flow insensitivity also arises in the definition
of qualified robust declassification from Myers et al [MSZ04] which uses a
“scrambling” semantics for endorsement (upgrading of integrity) which non-
deterministically resets the value of a variable after its endorsement.

As mentioned previously, the knowledge based approach used in this the-
sis is inspired by the Gradual Release work [AS07]. Similar uses of knowledge
sets appear earlier – e.g. Dima et al [DEG06] – and many of the classic non-

141

interference definitions have a knowledge or “deducibility” flavour. However
Askarov and Sabelfeld [AS07] appear to be the first to use this style of defi-
nition to reason about the semantics of declassification.

Banerjee et al [BNR08] extend Gradual Release in a rather orthogonal di-
rection, by allowing declassifications to carry a logical specification of what is
declassified, and under what condition. Their approach is based on agreement
predicates as pre- and post-conditions to commands. Predicates constrain the
memories compared in traces to only start with such pairs of memories that
agree on the values of certain expressions, leading to a form of delimited
release [SM04].

Paralocks does not provide direct control of the “what” dimension of
declassification [SS05]. Although certain simple “what” policies are easily
encoded in the Paralocks language, our semantic model cannot make any
formal guarantees about such examples. Balliu et al [BD11] show how the
knowledge-based style can be naturally represented by epistemic temporal
logic. Their starting point is Gradual Release, which they also extend to
handle various dimensions of declassification, including a characterisation of
“what” similar to that of Banerjee et al [BNR08]. Unlike Paralocks but like
Gradual Release, their model of the “where” dimension only allows succes-
sively more liberal policies.

5.3 Information Flow Programming Languages

Languages with explicit information-flow tracking Two “real-sized”
languages stand out as providing information-flow primitives as types. The
first is Jif [MZZ+06], which we have already discussed at length in the pre-
vious section. A recent extension of Jif is Fabric [LGV+09], adding support
for distributed programming and transactions. Fabric is a complete, im-
plemented system for writing distributed applications, but shares the same
weakness that Jif does in that it does not include any semantic characterisa-
tion of security, neither for its extensions or for the core Jif language that it
is built on.

The second is FlowCaml [Sim03] which we discussed briefly in the intro-
duction. FlowCaml is a subset of OCaml extended with information flow
annotations on types. In FlowCaml policies (annotations) are security levels
chosen in a user-definable lattice. The policy is the basic multilevel secu-
rity, with no support for e.g. declassification policies. On the other hand
FlowCaml supports full type inference in the ML tradition, and is built on a
semantic formalisation which is rather close to the full language [PS03].

142

Compilers performing IF tracking Information-flow tracking can be
performed in a language which has no inherent security policies, lattice-based
or otherwise. In such a setting one tracks the way that information flows from
e.g. method parameters to outputs. The Spark Examiner, a commercial tool
for static analysis and verification for a safety-critical subset of Ada, contains
such an analysis [CH04].

Hammer and Snelting [HS09, Ham10] explain how state-of-the-art pro-
gram slicing methods can support a more accurate analysis of such informa-
tion flows in Java (e.g. both flow sensitive and object sensitive).

Encoding Information Flow Policies with Expressive Type Systems
With suitably expressive type systems and abstraction mechanisms, static in-
formation flow constraints can be expressed via a library. Li and Zdancewic
[LZ10] showed how to provide information-flow security also as a library. Tsai
et al [TRH07] improve on this by showing how this can be achieved with a
more natural programming style, and including side effects and declassifica-
tion policies, among which are policies inspired by flow locks. Most recently,
Morgernstern and Licata [ML10] show that a rich variety of security policies
can be encoded in the dependently typed programming language Agda.

A number of recent expressive languages aimed at expressing a variety
of rich security policies do not have information flow control as a primitive
notion (as Paragon or Jif). For example, the authorisation policy language
Aura can be persuaded to model information flow and declassification polices
[JZ09]. Fable [SCH08] focuses on the general idea of label-based policies,
allowing user-defined labels and typing constraints (via dependent types).
One example is the encoding of a standard information flow lattice policy.
A weakness of this approach, according to Swamy et al [SCF+11], is that
“verification depends on intricate security proofs too cumbersome for pro-
grammers to write down”. These concerns are in part addressed by Swamy
et al’s F* [SCF+11], which is the culmination of a series of languages (from
the same group) including Fine [SCC10], FX [BCS11], and F7 [BFG10]. F* is
a full-fledged implementation of a dependently typed programming ML-style
programming language. An impressive collection of security-specific exam-
ples have been encoded in F*, although it may be fair to say that information
flow is not naturally modeled in this setting, but has to be encoded using
e.g. a monadic approach (c.f. [SCH08]).

The work by Nanevski et al [NBG11] can be seen to address this short-
coming (albeit in a purely interactive setting).

143

5.4 Typestate Systems

The concept of typestate acknowledges that the runtime state of e.g. an object
many times determines which methods are safe to call, which in mainstream
object-oriented languages can only be informally specified as documentation
for how to use APIs. An example is Java’s File class, where the method
read() can only be called if the file has first been opened through a call to
open(). The purpose of systems with typestate support is to allow formal
specification of typestate properties, and enforce that programs correctly
follow the specifications.

Paragon implements the concept of typestate properties by its use of
lockstate modifiers (section 4.3.1). For instance, a call to open() on a file
f might open a lock Open(f.id), where id is an actor field associated with
f. The read method can then specify that it expects Open(id) to be open
whenever called, which will then be enforced statically by our type system.

One of the main technical challenges of typestate systems is the tracking
of aliases to avoid inconsistencies in assumed states when one alias performs
a transition. This is exactly the problem of alias tracking for instance actors
in Paragon.

The typestate concept was first introduced by Strom and Yemini [SY86],
who present an analysis for enforcing typestate properties in existing pro-
gramming language code. The properties are specified as pre- and post-
conditions on statements, where the post-conditions signal the state transi-
tions.

Aldrich et al [ASSS09] introduce typestate-oriented programming as an
extension of the object-oriented paradigm, and present a Java-like language
called Plaid. Plaid allows objects to be modeled not in terms of classes, but
in terms of the various states they can assume, and allows specification of
transitions between states for objects.

Paragon cannot express features that depend on Plaid’s first-class states,
e.g. “an array of open files”, but can otherwise express solutions to their
motivating examples.

To facilitate precise alias tracking, Plaid uses a system of permission mod-
ifiers [BA07] on variables to abstractly describe and restrict how objects may
be shared. This reduces the need for many runtime tests, but at the cost of
more annotations. Such annotations fit well with the Paragon approach how-
ever, and this work could serve as inspiration should instance actor aliasing
in Paragon turn out to be a problem in practice.

144

McGinniss and Gay propose Hanoi [MG11] as a practical typestate model
for Java programs, requiring no extensions to the language itself. Instead,
Hanoi specifications are written separate from the source code, which allows
specifications to be written and enforced for pre-existing code.

In terms of expressive power, Paragon’s lockstate modifiers can be used
to express most Hanoi specifications, with two exceptions. The first is that
Hanoi can specify state transitions that are conditional on the returned value
of a method. Paragon’s runtime querying of locks gives similar expressive
power, but only for methods that return boolean values. Second, and related,
Hanoi also allows state transitions to be specified for exceptional results
of a method. While Paragon can express what state transitions (i.e. lock
modifications) that will have taken place before an exception is thrown, we
cannot state any state transitions that should happen as a result of the throw
itself.

Paragon’s notion of typestate is more flexible than that in Hanoi in the
sense that the different states of an object must not form a tree hierarchy.
Parallel aspects of the state of an object can be declared and signaled through
the use of different, unrelated lock families, e.g. a bounded queue can be
both “not empty”, allowing dequeueing, and “not full”, allowing enqueueing.
Furthermore, Paragon allows state properties to be shared across different
classes, since lock families are agnostic to where their actor arguments belong.

McGinniss and Gay list static analysis as an area where Hanoi is lacking.
Paragon’s type system could be used to statically enforce encodings of Hanoi
state specifications, with the exception of transitions based on return values
and exceptions as discussed above. However, transitions based on runtime
values could not be checked statically regardless. It is also unclear if the
current actor alias tracking in Paragon is sufficient.

Typestate-like systems have also been used for security purposes. Walker
[Wal00] uses security automata to specify policies on what operations are
allowed on objects in what states, and transitions between states. His au-
tomata can enforce any safety property, but not general information flow
properties.

145

146

Chapter 6

Conclusions and Future work

In this thesis we have introduced a full framework for programming with
information flow control – the policy specification language Paralocks, an
accompanying semantic model, and the programming language Paragon built
on top.

We have shown Paralocks to be a flexible and powerful language for spec-
ifying dynamic, stateful information flow policies, and have proven it sound
with respect to a natural and intuitive semantic security characterisation of
information flow. The aim with this work is really two-fold. On the one hand,
we have shown the flexibility and usefulness of Paralocks for handling a va-
riety of hands-on information flow challenges. On the other hand, Paralocks
is also a very general framework that is capable of expressing and encoding
a wide variety of information flow policy mechanisms, and importantly give
such mechanisms a concrete information flow semantics. It is our hope and
belief that Paralocks can thus serve as a platform that can simplify further
research into policy mechanisms, both future and present, and help give a
better understanding of the relationship between various mechanisms.

Further, we have shown how Paralocks can be integrated into a full-size
object-oriented programming language, by presenting the information flow
oriented language Paragon as an extension of Java. We have argued that
the combination of Java’s encapsulation and the Paralocks policies enables
information flow idioms to be nicely encapsulated, so that client applications
can freely program with the provided abstractions without the distractions
or dangers of seeing their internal representation.

Together, these components cover the whole spectrum from theory to
practice, yielding the first information flow framework that is at the same
time theoretically sound and useable for solving practical programming prob-
lems. Still, much work remains to be done, on many levels.

147

Paragon The first and most pressing task will be to implement the parts
of the design that our current prototype does not cover. Things not yet
implemented include runtime policies (section 4.3.9), lock properties (section
4.3.2) and null-pointer analysis (section 4.3.6).

A second important task regarding Paragon is to formalise the complete
type system, and prove it sound with respect to our Paralocks security con-
dition. Not until that is done can we fully commend ourselves on having
produced a complete platform that is proven semantically sound.

Further, we need experience from concrete examples of using information
flow libraries, not just defining them! A question one might ask, for example,
is whether Paragon is strong enough to provide a drop-in replacement for
existing Jif code (modulo minor syntactic issues)?

The language itself - like almost all the related work - is missing a feature
which is rather important for modern programming, namely threads. This
direction demands both theoretical and practical work.

Paralocks Beyond Paragon, there are also reasons to go back and look at
ways to improve the underlying Paralocks model. After all, Paragon could be
viewed as just one particular implementation of the Paralocks model, and we
hope that Paralocks itself will be a valuable contribution to further research
in the area of information flow.

One potential direction for future research is to fully exploit the connec-
tion to logic-based access control languages. Here we can benefit from various
well-behaved extensions to Datalog such as the addition of stratified nega-
tion and constraints on data; see e.g., Becker et al [BFG07] for an elegant
authorization language combining such extensions. But the potential here is
not just the transferral of technical results. The connection offers new op-
portunities to transfer policy concepts from access control to an information
flow context.

On the semantics side, it would be interesting to explore further the
“what” dimension of declassification [SS05] and how it can be integrated into
our semantic model. Even if this is not the natural focus of the Paralocks
language, for the sake of providing a general framework – a core calculus of
information flow – it would be valuable to semantically characterise such poli-
cies, orthogonal to how or whether our Paralocks language could be extended
to express them.

Another interesting direction would be to combine Paralocks with a higher-
order language like ML or Scala, with a particular focus on type systems to
statically enforce Paralocks security in the presence of higher-order functions.

148

Concluding remarks This thesis presents research that improves the state
of the art in protecting information security. The work presented herein con-
cerns information flow control, an area that has traditionally not received
nearly as much attention as is merited by its importance and usefulness.
It is our hope that this work will help bridge the gap between theory and
practice concerning information flow control, and help promote awareness of
the need for, and the adoption of suitable methods for, programming with
information flow.

149

Bibliography

[AB05] A. Almeida Matos and G. Boudol. On declassification and the
non-disclosure policy. In Proc. IEEE Computer Security Foun-
dations Workshop, pages 226–240, June 2005. Cited on pages 20,
30, 40, 43, 97, 139, and 141.

[AHSS08] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination
insensitive noninterference leaks more than just a bit. In Proc.
European Symp. on Research in Computer Security, 2008. Cited
on pages 31, 37, and 38.

[AS07] A. Askarov and A. Sabelfeld. Gradual release: Unifying declas-
sification, encryption and key release policies. In Proc. IEEE
Symp. on Security and Privacy, pages 207–221, May 2007. Cited
on pages 22, 31, 35, 44, 45, 46, 47, 61, 139, 141, and 142.

[Asp95] D. Aspinall. Subtyping with singleton types. In In Eighth In-
ternational Workshop on Computer Science Logic, pages 1–15.
Springer-Verlag, 1995. Cited on page 104.

[ASSS09] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-
oriented programming. In OOPSLA Companion, pages 1015–
1022, 2009. Cited on page 144.

[BA07] K. Bierhoff and J. Aldrich. Modular typestate checking of aliased
objects. In OOPSLA, pages 301–320, 2007. Cited on page 144.

[BCR08] G. Barthe, S. Cavadini, and T. Rezk. Tractable enforcement
of declassification policies. In Proc. IEEE Computer Security
Foundations Symposium, 2008. Cited on pages 26, 30, 43, 44,
and 141.

[BCS11] J. Borgstrom, J. Chen, and N. Swamy. Verifying stateful pro-
grams with substructural state and Hoare types. In Proceedings

150

of the 5th ACM workshop on Programming languages meets pro-
gram verification, PLPV ’11, 2011. Cited on page 143.

[BD11] M. Balliu and M. Dam. Epistemic temporal logic for informa-
tion flow security. In Proc. ACM Workshop on Programming
Languages and Analysis for Security (PLAS), June 2011. Cited
on page 142.

[BEM03] A. Belokosztolszki, DM Eyers, and K. Moody. Policy contexts:
Controlling information flow in parameterised RBAC. In IEEE
4th International Workshop on Policies for Distributed Systems
and Networks, 2003. Proceedings. POLICY 2003, pages 99–110,
2003. Cited on page 140.

[BFG07] M. Y. Becker, C. Fournet, and A. D. Gordon. Design and seman-
tics of a decentralized authorization language. In Proc. IEEE
Computer Security Foundations Symposium, pages 3–15. IEEE
Computer Society, 2007. Cited on pages 140 and 148.

[BFG10] K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verifica-
tion of security protocol code by typing. In POPL, 2010. Cited
on page 143.

[BL73] D. E. Bell and L. J. LaPadula. Secure computer systems:
Mathematical foundations. Technical Report MTR-2547, Vol.
1, MITRE Corp., Bedford, MA, 1973. Cited on page 17.

[BNR08] A. Banerjee, D. Naumann, and S. Rosenberg. Expressive declas-
sification policies and modular static enforcement. In Proc. IEEE
Symp. on Security and Privacy, pages 339–353. IEEE Computer
Society, 2008. Cited on pages 48 and 142.

[BOSW98] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making
the future safe for the past: adding genericity to the java pro-
gramming language. In Proceedings of the 13th ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications, OOPSLA ’98, 1998. Cited on page 134.

[Bou05] G. Boudol. On typing information flow. In ICTAC, pages 366–
380, 2005. Cited on page 139.

[BS06a] N. Broberg and D. Sands. Flow locks: Towards a core calculus
for dynamic flow policies. Technical report, Chalmers University

151

of Technology and Göteborgs University, May 2006. Extended
version of [BS06b]. Cited on pages 20 and 31.

[BS06b] N. Broberg and D. Sands. Flow locks: Towards a core calculus for
dynamic flow policies. In Programming Languages and Systems.
15th European Symposium on Programming, ESOP 2006, volume
3924 of LNCS. Springer Verlag, 2006. Cited on pages 21, 31, 40,
48, and 152.

[BS09] N. Broberg and D. Sands. Flow-sensitive semantics for dynamic
information flow policies. In ACM SIGPLAN Fourth Workshop
on Programming Languages and Analysis for Security (PLAS
2009), Dublin, June 15 2009. ACM. Cited on page 22.

[BS10] N. Broberg and D. Sands. Paralocks – role-based information
flow control and beyond. In POPL’10, Proceedings of the 37th
Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 2010. Cited on pages 22 and 136.

[BS11] N. Broberg and D. Sands. Paragon for practical flow-oriented
programming. Draft, July 2011. Cited on page 23.

[BWW08] S. Bandhakavi, W. Winsborough, and M. Winslett. A trust man-
agement approach for flexible policy management in security-
typed languages. In Proc. IEEE Computer Security Foundations
Symposium, pages 33–47, 2008. Cited on pages 52, 140, and 141.

[CGT89] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to
know about Datalog(and never dared to ask). IEEE Transactions
on Knowledge and Data Engineering, 1(1):146–166, 1989. Cited
on page 84.

[CH04] R. Chapman and A. Hilton. Enforcing security and safety mod-
els with an information flow analysis tool. ACM SIGAda Ada
Letters, 24(4):39–46, 2004. Cited on page 143.

[CLS+01] M. J. Covington, W. Long, S. Srinivasan, A. K. Dev, M. Ahamad,
and G. D. Abowd. Securing context-aware applications using en-
vironment roles. In SACMAT ’01: Proceedings of the sixth ACM
symposium on Access control models and technologies, pages 10–
20. ACM, 2001. Cited on page 140.

152

[CM77] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational databases. In STOC, pages 77–
90, 1977. Cited on page 59.

[CM04] S. Chong and A. C. Myers. Security policies for downgrading. In
ACM Conference on Computer and Communications Security,
pages 198–209, October 2004. Cited on pages 26, 48, and 139.

[CM05] S. Chong and A. C. Myers. Language-based information erasure.
In Proc. IEEE Computer Security Foundations Workshop, pages
241–254, June 2005. Cited on page 139.

[Coh77] E. S. Cohen. Information transmission in computational systems.
ACM SIGOPS Operating Systems Review, 11(5):133–139, 1977.
Cited on page 17.

[Coh78] E. S. Cohen. Information transmission in sequential programs.
In R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J. Lip-
ton, editors, Foundations of Secure Computation, pages 297–335.
Academic Press, 1978. Cited on page 17.

[CV97] S. Chaudhuri and M. Y. Vardi. On the equivalence of recursive
and nonrecursive datalog programs. Journal of Computer and
System Sciences, 54(1):61 – 78, 1997. Cited on page 84.

[Dam06] M. Dam. Decidability and proof systems for language-based non-
interference relations. In Proc. ACM Symp. on Principles of Pro-
gramming Languages, 2006. Cited on pages 30 and 141.

[DD77] D. E. Denning and P. J. Denning. Certification of programs for
secure information flow. Comm. of the ACM, 20(7):504–513, July
1977. Cited on page 17.

[DEG06] C. Dima, C. Enea, and R. Gramatovici. Nondeterministic noin-
terference and deducible information flow. Technical Report
2006-01, University of Paris 12, LACL, 2006. Cited on pages
31 and 141.

[Den76] D. E. Denning. A lattice model of secure information flow.
Comm. of the ACM, 19(5):236–243, May 1976. Cited on pages
17, 53, and 139.

[Den82] D. E. Denning. Cryptography and Data Security. Addison-
Wesley, Reading, MA, 1982. Cited on page 17.

153

[DeT02] J. DeTreville. Binder, a logic-based security language. In IEEE
Symposium on Security and Privacy, pages 105–113, 2002. Cited
on pages 82 and 141.

[DFK06] D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Specifying and
reasoning about dynamic access-control policies. In IJCAR, vol-
ume 4130 of LNCS. Springer, 2006. Cited on pages 140 and 141.

[EP03] R. Echahed and F. Prost. Handling harmless interference. Tech-
nical Report 82, Laboratoire Leibniz, IMAG, June 2003. Cited
on pages 30 and 141.

[EP05] R. Echahed and F. Prost. Security policy in a declarative style.
In Proceedings of the 7th International Conference on Principles
and Practice of Declarative Programming (PPDP ’05), Lisboa,
Portugal, July 2005. Cited on pages 30 and 141.

[FSG+01] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli. Proposed nist standard for role-based access control.
ACM Trans. Inf. Syst. Secur., 4(3):224–274, 2001. Cited on page
53.

[GI97] L. Giuri and P. Iglio. Role templates for content-based access
control. In RBAC ’97: Proceedings of the second ACM workshop
on Role-based access control, pages 153–159. ACM, 1997. Cited
on page 140.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Specifica-
tion. Addison-Wesley, August 1996. Cited on page 110.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security
models. In Proc. IEEE Symp. on Security and Privacy, pages
11–20, April 1982. Cited on pages 17 and 30.

[Ham10] C. Hammer. Experiences with pdg-based ifc. In Engineering
Secure Software and Systems, Second International Symposium,
pages 44–60, 2010. Cited on page 143.

[HS09] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive,
and object-sensitive information flow control based on program
dependence graphs. International Journal of Information Secu-
rity, 8(6):399–422, 2009. Cited on page 143.

154

[HTHZ05] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic updat-
ing of information-flow policies. In Workshop on Foundations of
Computer Security, pages 7–18, June 2005. Cited on page 139.

[Jim01] T. Jim. SD3: A trust management system with certified evalua-
tion. In Proc. IEEE Symp. on Security and Privacy, 2001. Cited
on pages 82, 140, and 141.

[JZ09] L. Jia and S. Zdancewic. Encoding information flow in aura.
In Proceedings of the ACM SIGPLAN Fourth Workshop on Pro-
gramming Languages and Analysis for Security, 2009. Cited on
page 143.

[KHHJ08] D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit flows: Can’t
live with ’em, can’t live without ’em. In ICISS, pages 56–70, 2008.
Cited on page 139.

[LABW91] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authen-
tication in distributed systems: theory and practice. In SOSP
’91: Proceedings of the thirteenth ACM symposium on Operating
systems principles, pages 165–182. ACM, 1991. Cited on page
60.

[LGV+09] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C.
Myers. Fabric: a platform for secure distributed computation
and storage. In SOSP, pages 321–334, 2009. Cited on page 142.

[LM08] A. Lux and H. Mantel. Who can declassify? In Preproceedings of
the Workshop on Formal Aspects in Security and Trust (FAST),
2008. Cited on pages 30 and 141.

[LMW02] N. Li, J.C. Mitchell, and W.H. Winsborough. Design of a role-
based trust-management framework. In IEEE Symposium on
Security and Privacy, pages 114–130, 2002. Cited on pages 82,
140, and 141.

[LZ10] P. Li and S. Zdancewic. Arrows for secure information flow.
Theor. Comput. Sci, 411(19), 2010. Cited on page 143.

[MBL97] A. C. Myers, J. A. Bank, and B. Liskov. Parameterized types for
Java. In ACM SIGPLAN–SIGACT Symposium on Principles of
Programming Languages (POPL) , Paris, France, pages 132–145,
January 1997. Cited on page 134.

155

[McC87] D. McCullough. Specifications for multi-level security and hook-
up property. In Proc. IEEE Symp. on Security and Privacy,
pages 161–166, April 1987. Cited on page 39.

[MG11] I. McGinniss and S. J. Gay. Hanoi: A typestate dsl for java. Tech-
nical Report TR-2011-326, University of Glasgow, 2011. Cited
on page 145.

[ML97] A. C. Myers and B. Liskov. A decentralized model for infor-
mation flow control. In Proc. ACM Symp. on Operating System
Principles, pages 129–142, October 1997. Cited on pages 19, 50,
52, 76, 77, 83, and 139.

[ML98] A. C. Myers and B. Liskov. Complete, safe information flow
with decentralized labels. In Proc. IEEE Symp. on Security and
Privacy, pages 186–197, May 1998. Cited on pages 50 and 83.

[ML00] A. C. Myers and B. Liskov. Protecting privacy using the decen-
tralized label model. ACM Transactions on Software Engineering
and Methodology, 9(4):410–442, 2000. Cited on page 50.

[ML10] J. Morgenstern and D. R. Licata. Security-typed programming
within dependently-typed programming. In IProceedings of the
15th ACM SIGPLAN international conference on Functional
Programming, 2010. Cited on page 143.

[MR07] H. Mantel and A. Reinhard. Controlling the what and where
of declassification in language-based security. In Proc. European
Symp. on Programming, volume 4421 of LNCS, pages 141–156.
Springer-Verlag, March 2007. Cited on pages 30 and 141.

[MS04] H. Mantel and D. Sands. Controlled downgrading based on in-
transitive (non)interference. In Proc. Asian Symp. on Program-
ming Languages and Systems, volume 3302 of LNCS, pages 129–
145. Springer-Verlag, November 2004. Cited on pages 22, 30, 48,
and 141.

[MSZ04] A. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust de-
classification. In Proc. IEEE Computer Security Foundations
Workshop, pages 172–186, June 2004. Cited on pages 26, 49,
91, 132, 133, and 141.

[Mye99] A. C. Myers. JFlow: Practical mostly-static information flow
control. In Proc. ACM Symp. on Principles of Programming

156

Languages, pages 228–241, January 1999. Cited on pages 79
and 132.

[MZZ+06] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nys-
trom. Jif: Java information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001–2006. Cited on
pages 19, 79, 132, and 142.

[NBG11] A. Nanevski, A. Banerjee, and D. Garg. Verification of infor-
mation flow and access control policies with dependent types. In
Proc. IEEE Symp. on Security and Privacy, 2011. Cited on pages
140 and 143.

[NS10] K. Nakata and A. Sabelfeld. Securing class initialization. In Trust
Management IV - 4th IFIP WG 11.11 International Conference,
IFIPTM 2010, Morioka, Japan, June 16-18, 2010. Proceedings,
volume 321. Springer, 2010. Cited on page 134.

[Pin95] S. Pinsky. Absorbing covers and intransitive non-interference. In
Proc. IEEE Symp. on Security and Privacy, pages 102–113, May
1995. Cited on page 48.

[PS03] F. Pottier and V. Simonet. Information flow inference for ML.
ACM TOPLAS, 25(1):117–158, January 2003. Cited on pages 18
and 142.

[Rus92] J. M. Rushby. Noninterference, transitivity, and channel-control
security policies. Technical Report CSL-92-02, SRI International,
1992. Cited on page 48.

[SCC10] N. Swamy, J. Chen, and R. Chugh. Enforcing stateful authoriza-
tion and information flow policies in fine. In In Proceedings of
the European Symposium on Programming (ESOP), 2010. Cited
on page 143.

[SCF+11] N. Swamy, J. Chen, C. Fournet, P. Strub, K. Bharagavan, and
J. Yang. Secure distributed programming with value-dependent
types. In The 16th ACM SIGPLAN International Conference on
Functional Programming, 2011. Cited on page 143.

[SCFY96] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman.
Role-based access control models. Computer, 29(2):38–47, Feb
1996. Cited on page 52.

157

[SCH08] N. Swamy, B.J. Corcoran, and M. Hicks. Fable: A language for
enforcing user-defined security policies. In Proc. IEEE Symp. on
Security and Privacy, pages 369–383, 2008. Cited on page 143.

[SHTZ06] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic. Managing policy
updates in security-typed languages. In Proc. IEEE Computer
Security Foundations Workshop, 2006. Cited on pages 52, 140,
and 141.

[Sim03] V. Simonet. The Flow Caml system. Software release. Located at
http://cristal.inria.fr/∼simonet/soft/flowcaml/, July
2003. Cited on pages 18, 139, and 142.

[SM04] A. Sabelfeld and A. C. Myers. A model for delimited informa-
tion release. In Proc. International Symp. on Software Secu-
rity (ISSS’03), volume 3233 of LNCS, pages 174–191. Springer-
Verlag, October 2004. Cited on page 142.

[SS05] A. Sabelfeld and D. Sands. Dimensions and principles of declas-
sification. In Proc. IEEE Computer Security Foundations Work-
shop, pages 255–269, June 2005. Cited on pages 19, 26, 30, 38,
39, 142, and 148.

[SY80] Y. Sagiv and M. Yannakakis. Equivalences among relational ex-
pressions with the union and difference operators. Journal of the
ACM, 27, 1980. Cited on page 59.

[SY86] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Trans. Software
Eng., 12(1):157–171, 1986. Cited on page 144.

[TRH07] T. C. Tsai, A. Russo, and J. Hughes. A library for secure multi-
threaded information flow in Haskell. In Proc. IEEE Computer
Security Foundations Symposium, July 2007. Cited on page 143.

[TZ04] S. Tse and S. Zdancewic. Run-time principals in information-flow
type systems. In Proc. IEEE Symp. on Security and Privacy,
pages 179–193, 2004. Cited on pages 50, 133, 139, and 141.

[TZ05] S. Tse and S. Zdancewic. Designing a security-typed language
with certificate-based declassification. In Proc. European Symp.
on Programming, volume 3444 of LNCS, pages 279–294. Springer-
Verlag, April 2005. Cited on page 50.

158

[Ull90] J. D. Ullman. Principles of Database and Knowledge-Base Sys-
tems: Volume II: The New Technologies. W. H. Freeman & Co.,
New York, NY, USA, 1990. Cited on page 59.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type system for
secure flow analysis. J. Computer Security, 4(3):167–187, 1996.
Cited on page 17.

[Wal00] D. Walker. A type system for expressive security policies. In
POPL, pages 254–267, 2000. Cited on page 145.

[ZM01] S. Zdancewic and A. C. Myers. Robust declassification. In Proc.
IEEE Computer Security Foundations Workshop, pages 15–23,
June 2001. Cited on pages 26, 49, 50, and 132.

[ZM07a] L. Zheng and A. C. Myers. Dynamic security labels and static
information flow control. International Journal of Information
Security, 6, 2007. Cited on pages 69, 90, 109, 135, and 139.

[ZM07b] L. Zheng and A. C. Myers. Dynamic security labels and static
information flow control. Int. J. Inf. Sec., 6(2-3):67–84, 2007.
Cited on page 133.

159

Appendix A

Flow locks: Proofs and
auxiliary definitions

A.1 Type system proofs

Proof of Proposition 1 We need to show that

FLS(Σ, c) ∧ Σ ⊆ Σ′ =⇒ FLS(Σ′, c)

Assume FLS(Σ, c). That means that for all attackers A = (α,∆), and all
A-low memories L, we have that if (~uu,Ω) ∈ RunA(Σ, c, L) then Ω ⊆ ∆ =⇒
kA(~uu, c, L) = kA(~u, c, L)

We make the following observations for using Σ′ ⊇ Σ:
Changing the lock state will not affect control flow of a program, which

means there will be a direct one-to-one mapping between elements in the two
traces, with the same last element of the output sequence.

For each element (~uu,Ω′) ∈ RunA(Σ′, c, L) with a corresponding (~uu,Ω) ∈
RunA(Σ, c, L), we will have that Ω′ ⊇ Ω. The larger lock state is because
adding more locks at the start can never lead to fewer locks open at any
subsequent point in the program.

We can then see that using Ω′ ⊇ Ω in the implication is less restrictive
since, Ω′ ⊆ ∆ will hold for fewer attackers.

Proof of Proposition 5 We need to show that

Σ ` c; w,∆ ∧ 〈Σ, c,M〉 `−→ 〈Σ′, c′,M ′〉
=⇒ Σ′ ` c′ ; w′,∆′ ∧ w′ w w ∧ ∆′ ⊇ ∆

which we do by induction of the height of the typing derivation.

160

Case c = x := e: We know

` e : r r(Σ) v pol(x)

Σ ` x := e; pol(x),Σ

and 〈Σ, x := e,M〉 `−→ 〈Σ, skip,M ′〉 and can show that Σ ` skip ; >,Σ
where > w pol(x).

Case c = open σ: We must have

Σ ` open σ ; >,Σ ∪ {σ}

and
〈Σ,open σ,M〉 `−→ 〈Σ ∪ {σ}, skip,M〉

and the conclusion follows trivially.
Case c = close σ: Like the case for open σ.
Case c = if e then c1 else c2: We must have

` e : r Σ ` ci ; wi,Σi r v w1 u w2

Σ ` if e then c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

and
〈Σ, if e then c1 else c2,M〉

`−→ 〈Σ, ci,M〉

for some i ∈ {1, 2}, and we have that Σ ` ci ; wi,Σi and wi w w1 u w2 and
Σi ⊇ Σ1 ∩ Σ2.

Case c = while (e) c: We have that

` e : r Σ ∩ Σ′ ` c; w,Σ′ r v w

Σ ` while (e) c; w,Σ′

and

〈Σ,while (e) c,M〉 `−→ 〈Σ, if e then c; while (e) c else skip,M〉

We can then construct the following derivation:

` e : r Σ ` skip ; >,Σ
Σ ` c; while (e) c; w,Σ′ r v w

Σ ` if e then c; while (e) c else skip ; w,Σ′ ∩ Σ

To prove that the sequential composition can indeed be typed we continue
with

Σ ` c; w,Σ′′ Σ′′ ` while (e) c; w,Σ′

Σ ` c; while (e) c; w,Σ′

161

The first premise in this deriviation holds because of subtyping for lock sets,
together with the observation that Σ ⊇ Σ ∩ Σ′. By the subtyping rule we
then also know that Σ′′ ⊇ Σ′. To show the second premise we observe that

` e : r Σ′′ ∩ Σ′ ` c; w,Σ′ r v w

Σ′′ ` while (e) c; w,Σ′ ∩ Σ′′

and note that this is an equivalent statement since Σ′′ ∩ Σ′ = Σ′ due to
Σ′′ ⊇ Σ′.

Remains to show that Σ′ ` c; w,Σ′. Since Σ′ ⊇ Σ′ ∩Σ we can show by
subtyping of the original premise that Σ′ ` c ; w,Σ′′′ where Σ′′′ ⊇ Σ′. To
see that Σ′′′ = Σ′ we note that by the subtyping rule we have that

Σ′′′\Σ′ ⊆ Σ′\(Σ′ ∩ Σ) = Σ′\Σ

and the only way to satisfy that inequation is if Σ′′′\Σ′ = ∅, hence Σ′′′ ⊆ Σ′

and we are done.
Case c = c1; c2: We have two cases, either c1 = skip or c1 6= skip. In the

former case the conclusion follows trivially from the typing derivation and
semantic rule, so the interesting case is the latter. We then have that

Σ ` c1 ; w1,Σ1 Σ1 ` c2 ; w2,Σ2

Σ ` c1; c2 ; w1 u w2,Σ2

and

〈Σ, c1; c2,M〉
`−→ 〈Σ′, c′1; c2,M ′〉

where the induction hypothesis gives us that

Σ′ ` c′1 ; w′1,Σ
′
1 ∧ w′1 w w1 ∧ Σ′1 ⊇ Σ1

We then have by subtyping that Σ′1 ` c2 ; w2,Σ
′
2 where Σ′2 ⊇ Σ2, and thus

we have that

Σ′ ` c′1; c2 ; w′1 u w2,Σ
′
2 ∧ w′1u2 w1 u2 ∧ Σ′2 ⊇ Σ2

and we are done.

Definition 28 (Bounded iteration). We define a bound on iteration of while-
loops as follows:

[while (e) c]0 = skip

[while (e) c]k = if e then c; [while (e) c]k−1 else skip

162

Lemma 3 (Consistent run).
If (~u,∆) ∈ RunA(Σ, c,M\A) and

〈Σ, c,M〉=⇒A 〈Σ′, c′,M ′〉

then (~u,∆) ∈ RunA(Σ′, c′,M ′\A)
Also, if (u~uu′,∆) ∈ RunA(Σ, c,M\A) and

〈Σ, c,M〉 u−→A 〈Σ′, c′,M ′〉

then (~uu′,∆) ∈ RunA(Σ′, c′,M ′\A)

The proof follows directly from the construction of
RunA(Σ, c,M\A). Note also that this extends naturally to the case where
we take more than one step and/or produce more than one output along the
way.

Lemma 4 (Context typing). If Σ ` E[c] ; w,Σ′, then Σ ` c; wc,Σ
′′ with

w v wc.

Proof: Straighforward induction on the typing derivation for E[c].

Lemma 5 (Deterministic expression evaluation). If ` e : r and r is visible
to A and 〈e,M〉 ⇓ v then ∀M ′ ∼A M we have that 〈e,M ′〉 ⇓ v.

Proof: By induction on the structure of e.
Case e = n: We have 〈n,M〉 ⇓ n for all M so the conclusion always holds.
Case e = x: We have that 〈x,M〉 ⇓ (M [x]), and since pol(x) is visible to

A and M ′ ∼A M we know that M ′[x] = M [x].
Case e = e1 ⊕ e2: By the assumption and the type rule for operators

we know that r1 t r2 is visible to A, which implies that ri is visible to A,
i ∈ {1, 2}. We apply the induction hypothesis to the subterms, and combine
that with ⊕ being deterministic, and we are done.

Lemma 6 (Silent evaluation). If Σ ` c ; w,∆ and w is not visible to
A, then running c with any starting memory will not produce any A-visible
output, and will not change the memory in any way visible to A. Formally,
∀M we have either

〈Σ, c,M〉=⇒A 〈Σ′, skip,M ′〉

with M ′ ∼A M , or 〈Σ, c,M〉 ⇑A

Proof: By induction on the height of the typing derivation of Σ ` c.

163

Case c = x := e: We have

` e : r r(Σ) v pol(x)

Σ ` x := e; pol(x),Σ

Since pol(x) is not visible to A, for the transition

〈Σ, x := e,M〉 `−→ 〈Σ, skip,M [x 7→ v]〉

where 〈e,M〉 ⇓ v, l is not visible to A, and M [x 7→ v] ∼A M .
Case c = if e then c1 else c2: We have

` e : r Σ ` ci ; wi,Σi r v w1 u w2

Σ ` if e then c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

Neither w1 nor w2 are visible to A, so we can take a transition step

〈Σ, if e then c1 else c2,M〉
τ−→ 〈Σ, ci,M〉

using either transition rule for conditionals. We apply the induction hypoth-
esis to the resulting term and we are done.

Case c = while (e) c′: We have

` e : r Σ ∩ Σ′ ` c′ ; w,Σ′ r v w

Σ ` while (e) c′ ; w,Σ′ ∩ Σ

To prove this case we need a contradiction. Assume that running c will pro-
duce a first output visible to A on the kth iteration, i.e. after first performing
k − 1 silent iterations. This means that up to the point of the first output,
running c will be equivalent to running a bounded iteration [while (e) c′]k
such that:

〈Σ, [while (e) c′]k,M〉=⇒A 〈∆, c′; skip,M ′〉

with M ′ ∼A M . We must then have

〈∆, c′; skip,M ′〉 w
=⇒A 〈∆′, c′′; skip,M ′′〉

since the output cannot have come from the skip. But by the induction
hypothesis and the typing of c we know that running c cannot produce any
output visible to A, and we have our contradiction.

Case c = c1; c2: We apply the induction hypothesis to both subterms and
we are done.

The remaining cases for c can never produce any output or change the
memory so they are trivial.

164

Lemma 7 (Deterministic output). If Σ `, M ∼A N , 〈Σ, c,M〉 ~uu=⇒A〈Σ′, c′,M ′〉
and 〈Σ, c, N〉 ~uu

=⇒A 〈Σ′′, c′′, N ′〉 then c′ = c′′ and M ′ ∼A N ′.

Proof: By induction on the length of the transition sequence producing
~uu when running with memory M .

Case c = E[x := e]: We have

` e : r r(Σ) v pol(x)

Σ ` x := e; pol(x),Σ

and we identify two cases:
i) pol(x) is visible to A. We must then have

〈Σ,E[x := e],M〉 x(v)−−→A 〈Σ,E[skip],M [x 7→ v]〉

and

〈Σ,E[x := e], N〉 x(v)−−→A 〈Σ,E[skip], N [x 7→ v]〉

where we have M [x 7→ v] ∼A N [x 7→ v]. If this was the final output then
we are done, and that forms our base case for the induction. Otherwise we
apply the induction hypothesis to the resulting configurations.

ii) pol(x) is not visible to A. We then get

〈Σ,E[x := e],M〉 `−→ 〈Σ,E[skip],M [x 7→ v]〉

and
〈Σ,E[x := e], N〉 `′−→ 〈Σ,E[skip], N [x 7→ v′]〉

where neither l nor l′ are visible to A, and M [x 7→ v] ∼A N [x 7→ v′]. We
continue by applying the induction hypothesis to the resulting configurations.

Case c = E[if e then c1 else c2]: We have

` e : r Σ ` ci ; wi,Σi r v w1 u w2

Σ ` if e then c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

and we identify two cases:
i) r is visible to A. Then by the deterministic expression evaluation lemma

we have 〈e,M〉 ⇓ v =⇒ 〈e,N〉 ⇓ v. We must have

〈Σ,E[if e then c1 else c2],M〉
τ−→ 〈Σ,E[ci],M〉

and
〈Σ,E[if e then c1 else c2], N〉

τ−→ 〈Σ,E[ci], N〉

165

for the same i ∈ {1, 2}. We continue by applying the induction hypothesis
to the resulting configurations.

ii) r is not visible to A, which means w1 u w2 is not visible to A. Then
by the silent evaluation lemma, and the fact that we know the computations
cannot silently diverge before producing the output we seek, we must have
that

〈Σ,E[if e then c1 else c2],M〉=⇒A 〈Σ′,E[skip],M ′〉

and
〈Σ,E[if e then c1 else c2], N〉=⇒A 〈Σ′′,E[skip], N ′〉

where M ′ ∼A M ∼A N ∼A N ′. Since the lockstate cannot interfere with the
evaluation or output, we can continue by applying the induction hypothesis
to the configurations 〈Σ′,E[skip],M ′〉 and 〈Σ′,E[skip], N ′〉.

All other cases are trivial since only one transition rule applies, and that
transition does not change the memory or produce any output. We simply
perform that transition and apply the induction hypothesis to the resulting
configurations.

Lemma 8 (Deterministic silent termination). If Σ ` c and M ∼A N and
〈Σ, c,M〉=⇒A 〈Σ′, skip,M ′〉 then either 〈Σ, c, N〉=⇒A 〈Σ′′, skip, N ′〉 or
〈Σ, c, N〉 ⇑A.

Proof: By induction on the length of the transition sequence leading to
termination when running with memory M .

Case c = skip: This case is only interesting since it forms the base case
for the induction. skip trivially converges to skip in 0 steps with no output.

Case c = E[x := e]: Since we know the computation is silent we must
have that pol(x) is not visible to A. We then have

〈Σ,E[x := e],M〉 `−→ 〈Σ,E[skip],M [x 7→ v]〉

and
〈Σ,E[x := e], N〉 `′−→ 〈Σ,E[skip], N [x 7→ v′]〉

for some v, v′. We have that neither l nor l′ are visible to A, and
M [x 7→ v] ∼A N [x 7→ v′], and we can apply the induction hypothesis to the
resulting configurations.

Case c = E[if e then c1 else c2]: We have

` e : r Σ ` ci ; wi,Σi r v w1 u w2

Σ ` if e then c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

and we identify two cases:

166

i) r is visible to A. Then by the deterministic expression evaluation lemma
we have 〈e,M〉 ⇓ v =⇒ 〈e,N〉 ⇓ v. We must have

〈Σ,E[if e then c1 else c2],M〉
τ−→ 〈Σ,E[ci],M〉

and
〈Σ,E[if e then c1 else c2], N〉

τ−→ 〈Σ,E[ci], N〉
for the same i ∈ {1, 2}. We continue by applying the induction hypothesis
to the resulting configurations.

ii) r is not visible to A, which means w1 uw2 is not visible to A. Then by
the silent evaluation lemma we must have that

〈Σ,E[if e then c1 else c2],M〉=⇒A 〈Σ′,E[skip],M ′〉

and either

〈Σ,E[if e then c1 else c2], N〉=⇒A 〈Σ′′,E[skip], N ′〉

where M ′ ∼A M ∼A N ∼A N ′, or 〈Σ,E[if e then c1 else c2], N〉 ⇑A. In the
latter case we are done, in the former we apply the induction hypothesis to
the resulting configurations.

All other cases are trivial since only one transition rule could apply, and
that transition does not change the memory nor produce any output. We
simply perform that transition and apply the induction hypothesis to the
resulting configurations.

Proof of Theorem 1 , repeated here for convenience. What we want to
prove is Σ ` c =⇒ FLSTI(c), which expanded means

∀A = (α,∆), L, (~uu,Ω), (~uu′,Ω′) ∈ RunA(Σ, c, L)

we have that
∆ ⊇ Ω =⇒ kA(c, L, ~uu) = kA(c, L, ~uu′)

We prove this by showing that we must have w = w′, by induction on the
length of the computation leading to ~uu. We identify two cases:

i) ~u has length greater than 0. Then by the deterministic output lemma,
and the fact that we know both computations will produce more output and
so cannot diverge, we must have that for M ∼A N :

〈Σ, c,M〉 ~u
=⇒A 〈Σ′, c′,M ′〉

and
〈Σ, c, N〉 ~u

=⇒A 〈Σ′′, c′, N ′〉

167

where M ′ ∼A N ′. By the consistent run lemma, subject reduction and non-
interference of lockstates we then know that Σ′ ` c′ and (w,Ω), (w′,Ω′′) ∈
RunA(Σ′, c′, L′), where L′ is the common A-low projection of M ′ and N ′, and
we can apply the induction hypothesis to get w = w′.

ii) ~u has length 0. We then proceed to case on c.
Case c = E[x := e]: We have

` e : r r(Σ) v pol(x)

Σ ` x := e; pol(x),Σ

and we identify two cases:
i) pol(x) is not visible to A. Then

〈Σ,E[x := e],M〉 `−→ 〈Σ,E[skip],M [x 7→ v]〉

and
〈Σ,E[x := e], N〉 `′−→ 〈Σ,E[skip], N [x 7→ v′]〉

We have that neither l nor l′ are visible to A, and
M [x 7→ v] ∼A N [x 7→ v′], and by the consistent run lemma we must have
(w,Ω), (w′,Ω′) ∈ RunA(Σ,E[skip], L) where L is the common A-low projec-
tion of the resulting memories. We can apply the induction hypothesis to
get w = w′.

ii) pol(x) is not visible to A. Then the next transition will generate the
visible output, so we must have Ω = Ω′ = Σ. Then by r(Σ) v pol(x) and
∆ ⊇ Σ we know that r is visible to A. Then by the deterministic expression
evaluation lemma we know 〈e,M〉 ⇓ v =⇒ 〈e,N〉 ⇓ v, so we must have

〈Σ,E[x := e],M〉 x(v)−−→A 〈Σ,E[skip],M [x 7→ v]〉

and

〈Σ,E[x := e], N〉 x(v)−−→A 〈Σ,E[skip], N [x 7→ v]〉
We have w = w′ = x(v) and we are done.

Case c = E[if e then c1 else c2]: We have

` e : r Σ ` ci ; wi,Σi r v w1 u w2

Σ ` if e then c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

and we identify two cases:
i) r is not visible to A. Then by the silent evaluation lemma and r v

w1 u w2 we know the subterms cannot produce A-visible output. We must
have

〈Σ,E[if e then c1 else c2],M〉=⇒A 〈Σ′,E[skip],M ′〉

168

and
〈Σ,E[if e then c1 else c2], N〉=⇒A 〈Σ′′,E[skip], N ′〉

with M ′ ∼A M ∼A N ∼A N ′. By the consistent run lemma we must also
have (w,Ω), (w′,Ω′′) ∈ RunA(Σ′,E[skip], L) and we can apply the induction
hypothesis to get w = w′.

ii) r is visible to A. Then by the deterministic expression evaluation lemma
we know 〈e,M〉 ⇓ v =⇒ 〈e,N〉 ⇓ v and we must have

〈Σ,E[if e then c1 else c2],M〉
τ−→ 〈Σ,E[ci],M〉

and
〈Σ,E[if e then c1 else c2], N〉

τ−→ 〈Σ,E[ci], N〉
for some i ∈ {1, 2}. By the consistent run lemma we must have (w,Ω), (w′,Ω′′) ∈
RunA(Σ,E[ci], L) and we can apply the induction hypothesis to get w = w′.

All other cases are trivial since only one transition rule applies, and that
transition does not change the memory or produce any output. We simply
perform that transition, note that the consistent run lemma applies, and
apply the induction hypothesis to the resulting configurations.

A.2 DLM encoding

Here we give the full formal details of our encoding of the decentralised label
model (DLM). We begin by restating the actual encoding:

To handle the general case of the encoding we need to deal with the case
of a potential reader (a reader who is a reader for one but not all owners).
For these readers we need to consider the owners who do not permit r to
read the data.

Definition 29 (Label Encoding). Suppose that r is a (potential or effective)
reader for some label L, and O is a subset of owners for L. We say that the
pair (O, r) is a conflict pair for label L if

O = {o | o ∈ owners(L), r 6∈ readers(L, o)} .

Intuitively, O are the owners who have not permitted r to read data labelled
L.

Now we can define the general encoding of Labels as policies
[[·]] : Label → Policy by

[[L]] = {∀x. {RunsFor(o) | o ∈ owners(L)} ⇒ x}
∪ {∀y.RunsFor(o1), . . . ,RunsFor(on),ActsFor(r, y)⇒ y |

({o1, . . . , on}, r) is a conflict pair for L}

169

What we want to show is the following theorem:

Theorem 5. L1 vDLM L2 if and only if [[L1]] v [[L2]].
Further, [[L1 tDLM L2]] = [[L1]] t [[L2]].

We begin with the proof of equivalence for the partial orderings.
We want to prove L1 vDLM L2 if and only if [[L1]] v [[L2]]. We start

with the only if direction. We know from L1 vDLM L2 that owners(L1) ⊆
owners(L2) and that ∀o. readers(L1, o) ⊇ readers(L2, o). We have that

[[Li]] = {∀x. {RunsFor(o) | o ∈ owners(Li)} ⇒ x}
∪ {∀y.RunsFor(o1), . . . ,RunsFor(on),ActsFor(r, y)⇒ y |

({o1, . . . , on}, r) is a conflict pair for Li}

To prove that [[L1]] v [[L2]] we must show that ∀c2 ∈ [[L2]].∃c1 ∈ [[L1]]. c1 v c2.
Looking at [[L2]] we can immediately see that

{∀x. {RunsFor(o) | o ∈ owners(L1)} ⇒ x}
v {∀x. {RunsFor(o) | o ∈ owners(L2)} ⇒ x}

since we know owners(L1) ⊆ owners(L2). All remaining clauses pertain to
some particular (actual or potential) reader

r ∈
⋃

o∈owners(L2)

readers(L2, o)

We then have two cases:
i) r ∈

⋃
o∈owners(L1)

readers(L1, o). We then have that

{∀y.RunsFor(o1), . . . ,RunsFor(on),

ActsFor(r, y)⇒ y | ({o1, . . . , on}, r) is a conflict pair for L1}
⊆ {∀y.RunsFor(o1), . . . ,RunsFor(on),ActsFor(r, y)⇒ y

| ({o1, . . . , on}, r) is a conflict pair for L2}

since owners(L1) ⊆ owners(L2) and r 6∈ readers(L1, o) =⇒ r 6∈ readers(L2, o).
ii) r 6∈

⋃
o∈owners(L1)

readers(L1, o). Then since owners(L1) ⊆ owners(L2)

and r ∈ readers(L2, o) =⇒ r ∈ readers(L1, o) we must have a clause in [[L2]] of
the form ∀x.Σ∪{ActsFor(r, x)}⇒x where Σ ⊇ {RunsFor(o) | o ∈ owners(L1)}.
Then we have that

∀x. {RunsFor(o) | o ∈ owners(Li)} ⇒ x v ∀x.Σ ∪ {ActsFor(r, x)}⇒x

170

and we are done.

Next we prove the if direction. We know [[L1]] v [[L2]], which means
∀c2 ∈ [[L2]]. ∃c1 ∈ [[L1]]. c1 v c2. To prove L1 vDLM L2 we need to show that
owners(L1) ⊆ owners(L2) and ∀o. readers(L1, o) ⊇ readers(L2, o). The first
is easy. We know [[L2]] includes the clause

∀x. {RunsFor(o) | o ∈ owners(L2)} ⇒ x

and the only clause from [[L1]] that could be less restrictive than this is

∀x. {RunsFor(o) | o ∈ owners(L1)} ⇒ x

which immediately gives us owners(L1) ⊆ owners(L2).

The remaining clauses in [[L2]] are on the form ∀y.Σ∪{ActsFor(r, y)}⇒ y
for some r ∈

⋃
o∈owners(L2)

readers(L2, o), where we have that

Σ = {RunsFor(o) | o ∈ O, (O, r) is a conflict pair for L2}.
If r 6∈

⋃
o∈owners(L1)

readers(L1, o) then we have that

∀x. {RunsFor(o) | o ∈ owners(L1)} ⇒ x v ∀y.Σ ∪ {ActsFor(r, y)}⇒ y

which teaches us nothing, so we restrict our attention to the other case.
We thus assume r ∈

⋃
o∈owners(L1)

readers(L1, o) which means that ∃o ∈
owners(L1).RunsFor(o) 6∈ Σ, so we know that

∀x. {RunsFor(o) | o ∈ owners(L1)} ⇒ x 6v ∀y.Σ ∪ {ActsFor(r, y)}⇒ y

.

Thus we must have that one of the other clauses in [[L1]] is less restrictive
than the clause at hand. That clause must then be on the form

∀y.Σ′ ∪ {ActsFor(r, y)}⇒ y

with Σ′ ⊆ Σ, and thus we have

Σ′ = {RunsFor(o) | o ∈ O, (O, r) is a conflict pair for L1}
⊆ {RunsFor(o) | o ∈ O, (O, r) is a conflict pair for L2} = Σ

In other words, ∀o ∈ owners(L1). r 6∈ readers(L1, o) =⇒ r 6∈ readers(L2, o),
and thus readers(L2, o) ⊆ readers(L1, o) as required. For o 6∈ owners(L1) we
have that readers(L1, o) is defined to be the set of all possible readers, so for
those the conlcusion trivially holds, and we are done.

171

Next we want to prove that [[L1]] t [[L2]] = [[L1 tDLM L2]]. We have that
[[L1]] t [[L2]]

={∀x. {RunsFor(o) | o ∈ owners(L1)}⇒x}
∪ {∀y.RunsFor(o1), . . . ,RunsFor(on),ActsFor(r, y)⇒ y

| ({o1, . . . , on}, r) is a conflict pair for L1}
t {∀x. {RunsFor(o) | o ∈ owners(L2)} ⇒ x}

∪ {∀y.RunsFor(o1), . . . ,RunsFor(on),ActsFor(r, y)⇒ y

| ({o1, . . . , on}, r) is a conflict pair for L2}
={∀x. {RunsFor(o) | o ∈ owners(L1) ∪ owners(L2)} ⇒ x}

∪ {∀y.RunsFor(o11), . . . ,RunsFor(o1n),

RunsFor(o21), . . . ,RunsFor(o2m),ActsFor(r, y)⇒ y

| ({o11, . . . , o1n}, r) is a conflict pair for L1,

({o21, . . . , o2m}, r) is a conflict pair for L2}
={∀x. {RunsFor(o) | o ∈ owners(L1 tDLM L2)} ⇒ x}

∪ {∀y.RunsFor(o1), . . . ,RunsFor(on),ActsFor(r, y)⇒ y

| ({o1, . . . , on}, r) is a conflict pair for L1 tDLM L2}
=[[L1 tDLM L2]]

172

Appendix B

Paralocks: Proofs and auxiliary
definitions

B.1 Type System Security Proof

In this section we discuss and prove properties of the type system of our
example language for Paralocks, where the climax is the proof that a well-
typed program is (termination insensitive) Paralocks secure.

The type system as stated in section 3.5 is slightly problematic to prove
things for since some properties of the typing are not localised, i.e. some
properties that we know hold for whole well-typed programs may not be
visible locally from the typing of every subprogram. To help with our proofs
we thus begin by giving a type system that is locally stronger than the one
presented in section 3.5, and prove that the two are equivalent for the purpose
of typing whole programs.

The localised type system can thus be found in figure B.1. There are
two differences from the one presented previously. First, it includes a type
rule for the internal for construct, which differs from the forall rule only
by not requiring all actor variables to be fresh. Indeed we expect them not
to be, since we may be in the middle of looping over the lock set and those
variables will have been bound to actors on earlier iterations. Second the
localisation part, which amounts to adding a constraint on the use of actor
variables in the rules for assignment, open and close. This constraint says
that any actor variables that you use must have less restrictive policies than
the entity you use them with, to avoid leaks through observing the change to
the entity in question and from that learning the identity of a “secret” actor.

As previously stated, for whole self-contained surface programs (i.e. pro-
grams with no for constructs), the following property holds:

173

~a ⊆ Λ ∀a ∈ ~a. pol(a) v pol(σ)

Λ; Σ f̀ open σ(~a) ; pol(σ),Σ ∪ {σ(~a)}
~a ⊆ Λ ∀a ∈ ~a. pol(a) v pol(σ)

Λ; Σ f̀ close σ(~a) ; pol(σ),Σ \ {σ(~b) | ~a ' ~b}

Λ; Σ f̀ skip ; >,Σ

Λ ` e : r r(Σ) v pol(x[~a]) ~a ⊆ Λ ∀a ∈ ~a. pol(a) v pol(x[~a])

Λ; Σ f̀ x[~a] := e; pol(x[~a]),Σ

Λ ` e : r Λ; Σ f̀ ci ; wi,Σi r v w1 u w2

Λ; Σ f̀ if e then c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

Λ ` e : r Λ; Σ ∩ Σ′ f̀ c; w,Σ′ r v w

Λ; Σ f̀ while (e) c; w,Σ′ ∩ Σ

Λ; Σ f̀ c1 ; w1,Σ1 Λ; Σ1 f̀ c2 ; w2,Σ2

Λ; Σ f̀ c1; c2 ; w1 u w2,Σ2

Λ; Σ ∪ {σ(~a)} f̀ c1 ; w1,Σ1 Λ; Σ f̀ c2 ; w2,Σ2

pol(σ) v w1 u w2 ∀a ∈ ~a. pol(a) v pol(σ)

Λ; Σ ` when σ(~a) do c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

Λ ∪ ~a; Σ ∩ Σ′ f̀ c; w,Σ′ pol(σ) v ∀~a. w ~a ∩ Λ = ∅
Λ; Σ f̀ forall σ(~a) do c; pol(σ),Σ′ ∩ Σ \ {σ(~b) | ~a ∩~b 6= ∅}

Λ ∪ ~a; Σ ∩ Σ′ f̀ c; w,Σ′ pol(σ) v ∀~a. w
Λ; Σ f̀ for σ(~a) in Σ do c; pol(σ),Σ′ ∩ Σ \ {σ(~b) | ~a ∩~b 6= ∅}

Λ ∪ {a}; Σ f̀ c; w,Σ′

Λ; Σ f̀ newactor a in c; ⊥,Σ′ \ {σ(~b) | a ∈ ~b}

Figure B.1: Localised Paralocks Type System

174

Theorem 6.
∅; ∅ ` c; w,Σ′ ⇐⇒ ∅; ∅ f̀ c; w,Σ′

The right-to-left implication trivially holds since the localised type sys-
tem is strictly more restrictive locally, so we give our attention to the other
direction. To prove the left-to-right implication we generalise the statement
to the following lemma:

Lemma 9. If Λ; Σ ` c; w,Σ′ and ∀a ∈ Λ. pol(a) v w then
Λ; Σ f̀ c; w,Σ′.

and note that at the top level, with Λ = ∅, the added condition for the
actor variables in Λ trivially holds. Thus if we can prove this lemma we have
also proven the main theorem. We proceed by induction on the height of the
typing derivation for Λ; Σ ` c.

Case c = x[~a] := e: We have w = pol(x[~a]) and thus the added condition
for f̀ that ∀a ∈ ~a. pol(a) v pol(x[~a]) holds.

Case c = open σ(~a): We have w = pol(σ) and thus the added condition
for f̀ that ∀a ∈ ~a. pol(a) v pol(σ) holds.

Case c = close σ(~a): Same as for open.
Case c = newactor a in c′: The newly created actor variable will have

policy ⊥, so for the enclosed subcomputation the second premise for the
induction hypothesis is guaranteed to hold, so we simply call the induction
hypothesis on c′.

Case c = forall σ(~a) do c′: We know that the write effect of c′ is more
restrictive than pol(σ), which happens to be the policy of all the introduced
actor variables. Hence we can call the induction hypothesis on c′.

The remaining cases are trivial, just call the induction hypothesis on any
subcomputations.

That concludes the proof of equivalene for top-level programs for the
two type systems. From this point on we will use the full type system, but
sometimes omit the subscript on the turnstile for the sake of readability.

Next we prove that subject reduction preserves typeability of programs.
To do that we first need the following lemma:

Lemma 10 (Subsumption). If Λ; Σ ` c; w,∆ and Σ′ ⊇ Σ then
Λ; Σ′ ` c; w,∆′ where ∆′ ⊇ ∆ and ∆′ \∆ ⊆ Σ′ \ Σ.

The proof is straight-forward induction on the height of the typing deriva-
tion. We will not go into the details, instead just noting that the only use of
Σ in any of the type rules is in the rule for assignments, where it appears in
a covariant position in the specialisation of the policy of the written data.

Now we can move on to subject reduction proper. Formally we have

175

Lemma 11 (Preservation). Let us say that state S is compatible with Σ if
LS(S) ⊇ Act(S)(Σ). Similarly we say that state S is compatible with an
actor set Λ if dom(Act(S)) ⊇ Λ.

Now suppose that Λ; Σ ` c; w,∆ and 〈c, S〉 `−→ 〈c′, S ′〉. Then if Λ and Σ
are compatible with S then Λ′; Σ′ ` c′ ; w′,∆′ for some Λ′ and Σ′ compatible
with S ′, w v w′ and ∆ ⊆ ∆′.

Proof by induction on the height of the typing derivation for c.
Case c = x[~a] := e: We know

Λ ` e : r r(Σ) v pol(x[~a]) ~a ⊆ Λ ∀a ∈ ~a. pol(a) v pol(x[~a])

Λ; Σ ` x[~a] := e; pol(x[~a]),Σ

and 〈x[~a] := e, S〉 `−→ 〈skip, S ′〉. Since LS(S) = LS(S ′) and Act(S) =
Act(S ′) we pick Λ′ = Λ and Σ′ = Σ and can show that Λ; Σ ` skip ; >,Σ
where pol(x) v >.

Case c = open σ(~a): We must have

~a ⊆ Λ ∀a ∈ ~a. pol(a) v pol(σ)

Λ; Σ ` open σ(~a) ; pol(σ),Σ ∪ {σ(~a)}

and

〈open σ(~a), S〉 `−→ 〈skip, S ∪ {σ(Act(S)(~a))}〉

We pick Σ′ = Σ ∪ {σ(~a)} and the conclusion follows trivially.
Case c = close σ(~a): Like the case for open σ(~a).
Case c = if e then c1 else c2: We must have

Λ ` e : r Λ; Σ ` ci ; wi,Σi r v w1 u w2

Λ; Σ ` if e then c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

and

〈if e then c1 else c2, S〉
`−→ 〈ci, S〉

for some i ∈ {1, 2}, and we have that Λ; Σ ` ci ; wi,Σi and wi w w1 u w2

and Σi ⊇ Σ1 ∩ Σ2.
Case c = while (e) c: We have that

Λ ` e : r Λ; Σ ∩ Σ′ ` c; w,Σ′ r v w

Λ; Σ ` while (e) c; w,Σ′ ∩ Σ

and

〈while (e) c, S〉 `−→ 〈if e then c; while (e) c else skip, S〉

176

We can then construct the following derivation:

Λ ` e : r Λ; Σ ` skip ; >,Σ
Λ; Σ ` c; while (e) c; w,Σ′ r v w

Λ; Σ ` if e then c; while (e) c else skip ; w,Σ′ ∩ Σ

To prove that the sequential composition can indeed be typed we continue
with

Λ; Σ ` c; w,Σ′′ Λ; Σ′′ ` while (e) c; w,Σ′

Λ; Σ ` c; while (e) c; w,Σ′

The first premise in this deriviation holds because of subsumption for lock
sets, together with the observation that Σ ⊇ Σ ∩ Σ′. By the subsumption
lemma we then also know that Σ′′ ⊇ Σ′. To show the second premise we
observe that

Λ ` e : r Λ; Σ′′ ∩ Σ′ ` c; w,Σ′ r v w

Λ; Σ′′ ` while (e) c; w,Σ′ ∩ Σ′′

and note that this is an equivalent statement since Σ′′ ∩ Σ′ = Σ′ due to
Σ′′ ⊇ Σ′.

Remains to show that Λ; Σ′ ` c ; w,Σ′. Since Σ′ ⊇ Σ′ ∩ Σ we can
show by subsumption of the original premise that Λ; Σ′ ` c ; w,Σ′′′ where
Σ′′′ ⊇ Σ′. To see that Σ′′′ = Σ′ we note that by the subsumption lemma we
have that

Σ′′′\Σ′ ⊆ Σ′\(Σ′ ∩ Σ) = Σ′\Σ

and the only way to satisfy that inequation is if Σ′′′\Σ′ = ∅, hence Σ′′′ ⊆ Σ′

and we are done.
Case c = c1; c2: We have two cases, either c1 = skip or c1 6= skip. In the

former case the conclusion follows trivially from the typing derivation and
semantic rule, so the interesting case is the latter. We then have that

Λ; Σ ` c1 ; w1,Σ1 Λ; Σ1 ` c2 ; w2,Σ2

Λ; Σ ` c1; c2 ; w1 u w2,Σ2

and
〈c1; c2, S〉

`−→ 〈c′1; c2, S ′〉

where the induction hypothesis gives us that

Λ′; Σ′ ` c′1 ; w′1,Σ
′
1 ∧ w′1 w w1 ∧ Σ′1 ⊇ Σ1

We then have by subtyping that Λ′; Σ′1 ` c2 ; w2,Σ
′
2 where Σ′2 ⊇ Σ2, and

thus we have that

Λ′; Σ′ ` c′1; c2 ; w′1 u w2,Σ
′
2 ∧ w′1u2 w1 u2 ∧ Σ′2 ⊇ Σ2

177

and we are done.
Case c = when σ(~a) do c1 else c2. We must have

Λ; Σ ∪ {σ(~a)} ` c1 ; w1,Σ1 Λ; Σ ` c2 ; w2,Σ2

pol(σ) v w1 u w2 ∀a ∈ ~a. pol(a) v pol(σ)

Λ; Σ ` when σ(~a) do c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

and
〈when σ(~a) do c1 else c2, S〉

`−→ 〈ci, S〉
for some i ∈ {1, 2}. If i = 1 then we must have that σ(Act(S)(~a)) ∈ LS(S)
and we can pick Σ′ = Σ ∪ {σ(~a)}, and if i = 2 we can simply pick Σ′ = Σ.
In both cases we pick Λ′ = Λ and we have that Λ′; Σ′ ` ci ; wi,Σi and
wi w w1 u w2 and Σi ⊇ Σ1 ∩ Σ2.

Case c = newactor a in c′. We must have

Λ ∪ {a}; Σ ` c; w,∆

Λ; Σ ` newactor a in c; ⊥,∆ \ {σ(~b) | a ∈ ~b}

and
〈newactor a in c′, S〉 `−→ 〈c′, S[a 7→ a]〉

and we can pick Λ′ = Λ∪{a} and Σ′ = Σ and we have that Λ′; Σ ` c′ ; w,∆

with w w > and ∆ ⊇ ∆ \ {σ(~b) | a ∈ ~b} as required.
Case c = forall σ(~a) do c′. We must have

Λ ∪ ~a; Σ ∩ Σ′ ` c; w,Σ′ pol(σ) v ∀~a. w ~a ∩ Λ = ∅
Λ; Σ ` forall σ(~a) do c; pol(σ),Σ′ ∩ Σ \ {σ(~b) | ~a ∩~b 6= ∅}

and
〈forall σ(~a) do c′, S〉 `−→ 〈for σ(~a) in Σ do c′, S〉

and we can show that

Λ ∪ ~a; Σ ∩ Σ′ ` c′ ; w,Σ′ pol(σ) v ∀~a. w
Λ; Σ ` for σ(~a) in Σ do c′ ; ∀~a. w u pol(σ),Σ′ ∩ Σ \ {σ(~b) | ~a ∩~b 6= ∅}

Case c = for σ(~a) in Σ do c′: We must have

Λ ∪ ~a; Σ ∩ Σ′ ` c; w,Σ′ pol(σ) v ∀~a. w
Λ; Σ ` for σ(~a) in Σ do c; pol(σ),Σ′ ∩ Σ \ {σ(~b) | ~a ∩~b 6= ∅}

The case when Σ = ∅ is trivial, so we concentrate on the other case. We
then have

〈for σ(~a) in {σ(~a)} ∪Σ do c′, S〉 `−→ 〈c′; for σ(~a) in Σ do c′, S[~a 7→~a]〉

178

We pick Λ′ = Λ ∪ ~a and can construct the following derivation:

Λ′; Σ ` c′ ; w,Σ′′

Λ′; Σ′′ ` for σ(~a) in Σ do c′ ; pol(σ),Σ′ \ {σ(~b) | ~a ∩~b 6= ∅}
Λ′; Σ ` c′; for σ(~a) in Σ do c′ ; pol(σ),Σ′ \ {σ(~b) | ~a ∩~b 6= ∅}

The left premise holds from subtyping, with Σ ⊇ Σ ∩ Σ′ and thus Σ′′ ⊇ Σ′.
Then we can construct

Λ′; Σ′′ ∩ Σ ` c′ ; w,Σ′′

Λ′; Σ′′ ` for σ(~a) in Σ do c′ ; pol(σ),Σ′ ∩ Σ′′ \ {σ(~b) | ~a ∩~b 6= ∅}

and note that Σ′′ ∩ Σ′ = Σ′ due to Σ′′ ⊇ Σ′. The premise then holds since
Σ′ ⊇ Σ′ ∩ Σ so we have

Λ′; Σ′ ` c′ ; w,Σ′′′

with Σ′′′ ⊇ Σ′ and Σ′′′ \ Σ′ ⊆ Σ′ \ Σ. This can only hold if Σ′′′ \ Σ′ = ∅, so
Σ′′′ ⊆ Σ′, which means Σ′′′ = Σ′ and we are done, and that concludes the
proof of Preservation.

For completeness we also include progress, i.e. that well-typed programs
cannot get stuck.

Definition 30 (Progress). If Λ; Σ ` c ; w,∆ and c 6= skip and S is

compatible with Λ and Σ then 〈c, S〉 `−→ 〈c′, S ′〉.

Proof: a straight-forward case analysis on commands.
Next we turn our attention to the global properties of the effect compo-

nents of the type system. We begin with the read effect of expressions, and
state the following property:

Lemma 12 (Deterministic Evaluation). If Λ ` e : r and S is compatible with
Λ and Act(S)(r) is visible to A and S ∼A T and 〈e, S〉 ⇓ v, then 〈e, T 〉 ⇓ v.

Intuitively this lemma states that if an expression is only computed from
locations that are visible to an attacker A, then evaluating them with any
states that are A-equivalent will always produce the same result – in other
words, the result cannot depend on data not visible to A.

Proof by induction on the height of the typing derivation for e.
The case for literal integers is trivial, and the case for operators follows

directly from the induction hypothesis and the fact that operators are deter-
ministic.

The only interesting case is thus e = x[~a]. We have

~a ⊆ Λ ∀a ∈ ~a. pol(a) v pol(x[~a])

Λ ` x[~a] : pol(x[~a])

179

and then Act(S)(pol(x[~a])) = Act(T)(pol(x[~a])), x[Act(S)(~a)] = x[Act(T)(~a)]
and then also Mem(S)[x[Act(S)(~a)]] = Mem(T)[x[Act(T)(~a)]] which are
the results of evaluating e with S and T respectively.

Next we turn our attention to the write effect of commands. Before we
define the relevant property, we first need the concept of A-silent divergence.

Definition 31 (A-silent divergence). We say that a configuration 〈c, S〉
silently diverges for attacker A, written 〈c, S〉 ⇑A, if for all 〈c′, S ′〉 reach-

able from 〈c, S〉 in zero or more steps we have 〈c′, S ′〉 `−→ for some l not
visible to A.

We also need the following lemma for actor mappings:

Lemma 13 (Actor Mapping Consistency). If Λ; Σ ` c ; w,Σ′ and S and
T are compatible with Λ and S ∼A T and Act(S)(w) is visible to A, then
Act(T)(w) is visible to A.

As a corollary, due to symmetry of ∼A, the negative statement also holds,
that if Act(S)(p) is not visible to A, then Act(T)(p) is not visible to A either.

Proof by induction on the height of the typing derivation.
Case c = x[~a] := e: We have ∀a ∈ ~a. pol(a) v pol(x[~a]), so if Act(S)(pol(x[~a]))

is visible to A then all Act(S)(pol(a)) are also visible to A, which in turn
means that Act(S) and Act(T) must agree on the mapping of those vari-
ables due to S ∼A T . Since pol(x[~a]) is closed with respect to the actor
variables in ~a, we must then have Act(S)(pol(x[~a])) = Act(T)(pol(x[~a])).

Case c = open σ(~a): We have ∀a ∈ ~a. pol(a) v pol(σ). Since pol(σ) is
closed, we must have Act(S)(pol(σ)) = Act(T)(pol(σ)).

The cases for close σ(~a), forall σ(~a) do c′ and for σ(~a) in Σ do c′ all
follow the same reasoning as the case for open σ(~a).

Case c = newactor a in c′: Trivial since the write effect is ⊥, and so is
always visible.

Case c = if e then c1 else c2: We know that Act(S)(w1uw2) is visible to
A, which means that at least one of Act(S)(w1) and Act(S)(w2) are visible
to A. We call the induction hypothesis on the subterms to get that at least
one of Act(T)(w1) and Act(T)(w2) are visible to A, which in turn means
Act(T)(w1 u w2) is visible to A.

Case c = c1; c2: Same as for if .
Case c = when σ(~a) do c1 else c2: Same as for if .
Case c = while (e) c′: Simply call the induction hypothesis on the

enclosed subterm.
To help with the unrolling of while loops, we also use the following aux-

iliary definition:

180

Definition 32 (Bounded iteration). We define a bound on iteration of while-
loops as follows:

[while (e) c]0 = skip

[while (e) c]k = if e then c; [while (e) c]k−1 else skip

Now we can state and prove the following global property for the write
effects of commands:

Lemma 14 (Silent evaluation). If Λ; Σ ` c ; w,Σ′ and Λ and Σ are com-
patible with S and and Act(S)(w) is not visible to A, then either

〈c, S〉=⇒A 〈skip, S ′〉

with S ∼A S ′, or 〈c, S〉 ⇑A.

Proof by induction on the height of the typing derivation for c.
Case c = newactor a in c′: This case cannot be, since the write effect of

the command must be ⊥, which is always visible to A.
Case c = x[~a] := e: We must have

Λ ` e : r r(Σ) v pol(x[~a]) ~a ⊆ Λ ∀a ∈ ~a. pol(a) v pol(x[~a])

Λ; Σ ` x[~a] := e; pol(x[~a]),Σ

so if Act(S)(pol(x[~a])) is not visible to A then we must have

〈x[~a] := e, S〉 −→A 〈skip, S ′〉

with S ∼A S ′.
Case c = open σ(~a): We must have

~a ⊆ Λ ∀a ∈ ~a. pol(a) v pol(σ)

Λ; Σ ` open σ(~a) ; pol(σ),Σ ∪ {σ(~a)}

so if Act(S)(pol(σ)) is not visible to A then we must have

〈open σ(~a), S〉 −→A 〈skip, S ′〉

with S ∼A S ′.
Case c = close σ(~a): Analogous to the case for open.
Case c = for σ(~a) in Σ do c′: We must have

Λ ∪ ~a; Σ ∩ Σ′ ` c; w,Σ′ pol(σ) v ∀~a. w
Λ; Σ ` for σ(~a) in Σ do c; pol(σ),Σ′ ∩ Σ \ {σ(~b) | ~a ∩~b 6= ∅}

181

and we do a separate induction on the size of Σ. If Σ = ∅ then

〈for σ(~a) in ∅ do c′, S〉 −→A 〈skip, S〉

and we are done. If Σ 6= ∅ then since Act(S)(pol(σ)) is not visible to A we
must have

〈for σ(~a) in {~a} ∪Σ do c′, S〉 −→A 〈c′; for σ(~a) in Σ do c′, S ′〉

with S ∼A S ′ and we can call the outer induction hypothesis on c′, and the
inner induction hypothesis on the second subterm.

Note that to call the induction hypothesis here, we must show that
Act(S ′)(pol(σ)) is not visible to A, which we get from the actor mapping
consistency lemma due to S ∼A S ′.

Case c = while (e) c′: We must have

Λ ` e : r Λ; Σ ∩ Σ′ ` c; w,Σ′ r v w

Λ; Σ ` while (e) c; w,Σ′ ∩ Σ

and to prove this we need a contradiction. Assume that running c will pro-
duce a first output visible to A on the kth iteration, i.e. after first performing
k − 1 silent iterations. This means that up to the point of the first output,
running c will be equivalent to running a bounded iteration [while (e) c′]k
such that:

〈[while (e) c′]k, S〉=⇒A 〈c′; skip, S ′〉

with S ∼A S ′. We must then have

〈c′; skip, S〉 w
=⇒A 〈c′′; skip, S ′〉

since the output cannot have come from the skip. But by the induction
hypothesis and the typing of c′ we know that running c′ cannot produce any
output visible to A, and we have our contradiction.

Case c = if e then c1 else c2: We have that

Λ ` e : r Λ; Σ ` ci ; wi,Σi r v w1 u w2

Λ; Σ ` if e then c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

where neither of Act(S)(w1) and Act(S)(w2) are visible to A, so we take a
transition step

〈if e then c1 else c2, S〉
τ−→ 〈ci, S〉

into either branch and apply the induction hypothesis to the resulting term.
Case c = when σ(~a) do c1 else c2: Same as for if .

182

Case c = forall σ(~a) do c′: Same as for for, only with a single silent
initial transition step.

Case c = c1; c2: We simply apply the induction hypothesis to the sub-
terms.

The other global property pertains to the outgoing lockstate component
of the typing judgement. Formally we have the following lemma:

Lemma 15 (Safe Lockstate Approximation). If Λ; Σ ` c ; w,∆ and S is
compatible with Λ and Σ and

〈c, S〉 ~u
=⇒〈skip, S ′〉

then S ′ is compatible with ∆.

The proof follows immediately from preservation, since we must have that
∃Λ′,Σ′. S ′ is compatible with Λ′ and Σ′ and Λ′; Σ′ ` skip ; >,Σ′ where
Σ′ ⊇ ∆. Since the larger the lock set, the harder it is for a state to be
compatible with it, we must then also have that S ′ is compatible with ∆,
and we are done.

Finally we tackle the most important proof, namely that the type system
guarantees (termination insensitive) Paralocks security for programs. As
usual we start by defining a set of auxiliary helper lemmas.

The first of these pertains to runs, and how a run is consistent throughout
execution of a program:

Lemma 16 (Consistent run). If (~u,∆) ∈ Run(Λ,Σ, c, L) and S is compatible
with Λ and Σ and S ∼A L and

〈c, S〉=⇒A 〈c′, S ′〉

then ∃Λ′,Σ′. S ′ is compatible with Λ′ and Σ′ and (~u,∆)
∈ Run(Λ′,Σ′, c′,Mem(S ′)\A).

Also, if (u~uu′,∆) ∈ RunA(Λ,Σ, c, L) and

〈c, S〉 u−→A 〈c′, S ′〉

then ∃Λ′,Σ′. S ′ is compatible with Λ′ and Σ′ and (~uu′,∆)
∈ RunA(Λ′,Σ′, c′,Mem(S ′)\A).

The proof follows directly from the construction of RunA(Λ,Σ, c, L). Note
also that this extends naturally to the case where we take more than one step
and/or produce more than one output along the way.

Next we introduce, for simplicity, evaluation contexts as a short-hand on
the following form:

183

Definition 33 (Evaluation Contexts). E[·] = E[·] ; c | [·]

Further, we need the following lemma for how how to reason about typing
of commands that include evaluation contexts:

Lemma 17 (Context typing). If Λ; Σ ` E[c] ; w,Σ′, then Λ; Σ ` c; wc,Σ
′′

with w v wc.

Proof: Straighforward induction on the typing derivation for E[c].
Next we have two related lemmas regarding deterministic execution of

commands:

Lemma 18 (Deterministic Execution).
If Λ; Σ ` c and S ∼A T and S and T are compatible with Λ and Σ and

〈c, S〉 ~uu
=⇒A 〈c′, S ′〉 and 〈c, T 〉 ~uu

=⇒A 〈c′′, T ′〉 then c′ = c′′ and S ′ ∼A T ′.

Proof: By induction on the length of the transition sequence producing
~uu when running with state S. Throughout the proof we implicitly use the
preservation lemma to ensure that resulting configurations actually fulfill
the premise for the induction hypothesis. We will also implicitly use the
actor mapping consistency lemma to split each case into two cases based on
attacker visibility.

Case c = E[x[~a] := e]: We have

Λ ` e : r r(Σ) v pol(x[~a]) ∀a ∈ ~a. a ∈ Λ

Λ; Σ ` x[~a] := e; pol(x[~a]),Σ

and we identify two cases:
i) Act(S)(pol(x[~a])) is visible to A. We must then have

〈E[x[~a] := e], S〉 x(v)−−→A 〈E[skip], S[x[~a] 7→ v]〉

and

〈E[x[~a] := e], T 〉 x(v)−−→A 〈E[skip], T [x[~a] 7→ v]〉

where we have S[x[~a] 7→ v] ∼A T [x[~a] 7→ v]. If this was the final output then
we are done, and that forms a base case for the induction. Otherwise we
apply the induction hypothesis to the resulting configurations.

ii) Act(S)(pol(x[~a])) is not visible to A. We then get

〈E[x[~a] := e], S〉 `−→ 〈E[skip], S[x[~a] 7→ v]〉

and
〈E[x[~a] := e], T 〉 `′−→ 〈E[skip], T [x[~a] 7→ v′]〉

184

where neither l nor l′ are visible to A, and S[x[~a] 7→ v] ∼A T [x[~a] 7→ v′]. We
continue by applying the induction hypothesis to the resulting configurations.

Case c = E[if e then c1 else c2]: We have

Λ ` e : r Λ; Σ ` ci ; wi,Σi r v w1 u w2

Λ; Σ ` if e then c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

and we identify two cases:
i) Act(S)(w1 u w2) is visible to A. The Act(S)(r) must also be visible

to A, and by the deterministic expression evaluation lemma we have 〈e, S〉 ⇓
v =⇒ 〈e, T 〉 ⇓ v. We must have

〈E[if e then c1 else c2], S〉
τ−→ 〈E[ci], S〉

and

〈E[if e then c1 else c2], T 〉
τ−→ 〈E[ci], T 〉

for the same i ∈ {1, 2}. We continue by applying the induction hypothesis
to the resulting configurations.

ii) Act(S)(w1 u w2) is not visible to A. Then by the silent evaluation
lemma, and the fact that we know the computations cannot silently diverge
before producing the output we seek, we must have that

〈E[if e then c1 else c2], S〉=⇒A 〈E[skip], S ′〉

and

〈E[if e then c1 else c2], T 〉=⇒A 〈E[skip], T ′〉

where S ′ ∼A S ∼A T ∼A T ′ and we continue by applying the induction
hypothesis to the resulting configurations.

Case c = E[open σ(~a)]: We have

∀a ∈ ~a. a ∈ Λ ∧ pol(a) v pol(σ)

Λ; Σ ` open σ(~a) ; pol(()σ),Σ ∪ {σ(~a)}

and we identify two cases:
i) Act(S)(pol(σ)) is visible to A. Then we must have

〈E[open σ(~a)], S〉 open σ(~a)−−−−−−→A 〈E[skip], S ∪ {Act(S)(σ(~a))}〉

and

〈E[open σ(~a)], T 〉 open σ(~a)−−−−−−→A 〈E[skip], T ∪ {Act(T)(σ(~a))}〉

185

with S ∪ {Act(S)(σ(~a))} ∼A T ∪ {Act(T)(σ(~a))}. If this was the last out-
put then we are done, and this forms another base case for the induction.
Otherwise we apply the induction hypothesis to the resulting configurations.

ii) Act(S)(pol(σ)) is not visible to A. Then we must have

〈E[open σ(~a)], S〉 −→A 〈E[skip], S ′〉

and
〈E[open σ(~a)], T 〉 −→A 〈E[skip], T ′〉

with S ′ ∼A T ′ and we call the induction hypothesis on the resulting config-
urations.

Case c = E[while (e) c′]: There is only one possible transition, which does
not produce any output or affect the state in any way, hence we trivially call
the induction hypothesis on the resulting configurations.

Case c = E[when σ(~a) do c1 else c2]: We must have

Λ; Σ ∪ {σ(~a)} ` c1 ; w1,Σ1 Λ; Σ ` c2 ; w2,Σ2

pol(σ) v w1 u w2 ∀a ∈ ~a. pol(a) v pol(σ)

Λ; Σ ` when σ(~a) do c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

and we identify two cases:
i) Act(S)(w1 u w2) is visible to A, which means Act(S)(pol(σ)) is also

visible to A. Then all Act(S)(pol(a)) are also visible to A, and we must have
that if Act(S)(σ(~a)) ∈ LS(S) then Act(T)(σ(~a)) ∈ LS(T). We will then
have

〈E[when σ(~a) do c1 else c2], S〉
τ−→ 〈E[ci], S〉

and
〈E[when σ(~a) do c1 else c2], T 〉

τ−→ 〈E[ci], T 〉

for the same i ∈ {1, 2}. We continue by applying the induction hypothesis
to the resulting configurations.

ii) Act(S)(w1 u w2) is not visible to A. Then by the silent evaluation
lemma, and the fact that we know the computations cannot silently diverge
before producing the output we seek, we must have that

〈E[when σ(~a) do c1 else c2], S〉=⇒A 〈E[skip], S ′〉

and
〈E[when σ(~a) do c1 else c2], T 〉=⇒A 〈E[skip], T ′〉

where S ′ ∼A S ∼A T ∼A T ′ and we continue by applying the induction
hypothesis to the resulting configurations.

186

Case c = newactor a in c′: We must have

Λ ∪ {a}; Σ ` c; w,Σ′

Λ; Σ ` newactor a in c; ⊥,Σ′ \ {σ(~b) | a ∈ ~b}

and we know that A can see pol(a) = ⊥, so we must have

〈E[newactor a in c′], S〉 a(a)−−→A 〈E[c′], S[a 7→ a]〉

and

〈E[newactor a in c′], T 〉 a(a)−−→A 〈E[c′], T [a 7→ a]〉
We have S[a 7→ a] ∼A T [a 7→ a] as required. If this was the last output
then we are done, otherwise we call the induction hypothesis on the resulting
configurations.

Case c = E[forall σ(~a) do c′]: We must have

Λ ∪ ~a; Σ ∩ Σ′ ` c; w,Σ′ pol(σ) v ∀~a. w ∀a ∈ ~a. a 6∈ Λ

Λ; Σ ` forall σ(~a) do c; ∀~a. w u pol(σ),Σ′ ∩ Σ \ {σ(~b) | ~a ∩~b 6= ∅}

and we have two cases.
i) Act(S)(pol(σ)) is visible to A. Then we must have that {σ(~a) | σ(~a) ∈

LS(S)} = {σ(~a) | σ(~a) ∈ LS(T)} = Σ and we have

〈E[forall σ(~a) do c′], S〉 τ−→ 〈E[for σ(~a) in Σ do c′], S〉

and
〈E[forall σ(~a) do c′], T 〉 τ−→ 〈E[for σ(~a) in Σ do c′], T 〉

and we apply the induction hypothesis to the resulting configurations.
ii) Act(S)(pol(σ)) is not visible to A. Then by the silent execution lemma,

and the fact that we know the computations cannot silently diverge before
producing the output we seek, we must have that

〈E[forall σ(~a) do c′], S〉 =⇒ 〈E[skip], S ′〉

and
〈E[forall σ(~a) do c′], T 〉 =⇒ 〈E[skip], T ′〉

with S ′ ∼A S ∼A T ∼A T ′ and we apply the induction hypothesis to the
resulting configurations.

Case c = E[for σ(~a) in Σ do c′]: We must have

Λ ∪ ~a; Σ ∩ Σ′ ` c′ ; w,Σ′ pol(σ) v ∀~a. w
Λ; Σ ` for σ(~a) in Σ do c′ ; ∀~a. w u pol(σ),Σ′ ∩ Σ \ {σ(~b) | ~a ∩~b 6= ∅}

187

where the case where we have Σ = ∅ lets us trivially apply the induction
hypothesis. We thus concentrate on the other case, and then identify two
cases:

i) Act(S)(pol(σ)) is visible to A, and that policy is inherited by all the
actor variables a, so we must have

〈for σ(~a) in Σ ∪~a do c′, S〉 ~a(~a)−−→A 〈c′; for σ(~a) in Σ do c′, S[~a 7→~a]〉

and

〈for σ(~a) in Σ ∪~a do c′, T 〉 ~a(~a)−−→A 〈c′; for σ(~a) in Σ do c′, T [~a 7→~a]〉

where we have S[~a 7→ ~a] ∼A T [~a 7→ ~a]. If this was the last output then we are
done, else we apply the induction hypothesis to the resulting configurations.

ii) Act(S)(pol(σ)) is not visible to A. Then by the silent execution lemma,
and the fact that we know the computations cannot silently diverge before
producing the output we seek, we must have that

〈E[for σ(~a) in Σ do c′], S〉=⇒A 〈E[skip], S ′〉

and
〈E[for σ(~a) in Σ do c′], T 〉=⇒A 〈E[skip], T ′〉

with S ′ ∼A S ∼A T ∼A T ′, and we can apply the induction hypothesis to
the resulting configurations.

Lemma 19 (Deterministic silent termination).
If Λ; Σ ` c and S ∼A T and S and T are compatible with Λ and Σ and

〈c, S〉=⇒A 〈skip, S ′〉

then either
〈c, T 〉=⇒A 〈skip, T ′〉

or 〈c, T 〉 ⇑A.

Proof: By induction on the length of the transition sequence leading to
termination when running with state S.

Case c = skip: This case is only interesting since it forms the base case
for the induction. skip trivially converges to skip in 0 steps with no output.

Case c = E[x[~a] := e]: Since we know the computation is silent we must
have that Act(S)(pol(x)) is not visible to A. We then have

〈E[x[~a] := e], S〉 `−→ 〈E[skip], S[x[~a] 7→ v]〉

188

and
〈E[x[~a] := e], T 〉 `′−→ 〈E[skip], T [x[~a] 7→ v′]〉

for some v, v′. We have that neither l nor l′ are visible to A, and S[x[~a] 7→
v] ∼A T [x[~a] 7→ v′], and we can apply the induction hypothesis to the result-
ing configurations.

Case c = E[if e then c1 else c2]: We have

Λ ` e : r Λ; Σ ` ci ; wi,Σi r v w1 u w2

Λ; Σ ` if e then c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

and we identify two cases:
i) Act(S)(w1 u w2) is visible to A, which means r is also visible to A.

Then by the deterministic expression evaluation lemma we have 〈e, S〉 ⇓
v =⇒ 〈e, T 〉 ⇓ v. We must have

〈E[if e then c1 else c2], S〉
τ−→ 〈E[ci], S〉

and
〈E[if e then c1 else c2], T 〉

τ−→ 〈E[ci], T 〉
for the same i ∈ {1, 2}. We continue by applying the induction hypothesis
to the resulting configurations.

ii) Act(S)(w1 u w2) is not visible to A. Then by the silent evaluation
lemma we must have that

〈E[if e then c1 else c2], S〉=⇒A 〈E[skip], S ′〉

and either
〈E[if e then c1 else c2], T 〉=⇒A 〈E[skip], T ′〉

where S ′ ∼A S ∼A T ∼A T ′, or 〈E[if e then c1 else c2], T 〉 ⇑A. In the latter
case we are done, in the former we apply the induction hypothesis to the
resulting configurations.

Case c = E[open σ(~a)]: We have

∀a ∈ ~a. a ∈ Λ ∧ pol(a) v pol(σ)

Λ; Σ ` open σ(~a) ; pol(σ),Σ ∪ {σ(~a)}

Since we know the computation is silent we must have that Act(S)(pol(σ))
is not visible to A. We then have

〈E[open σ(~a)], S〉 `−→ 〈E[skip], S ′〉

and
〈E[open σ(~a)], T 〉 `′−→ 〈E[skip], T ′〉

189

where neither l nor l′ are visible to A, and S ′ ∼A T ′. We continue by applying
the induction hypothesis to the resulting configurations.

Case c = E[close σ(~a)]: Same as for open.
Case c = E[when σ(~a) do c1 else c2]: We must have

Λ; Σ ∪ {σ(~a)} ` c1 ; w1,Σ1 Λ; Σ ` c2 ; w2,Σ2

pol(σ) v w1 u w2 ∀a ∈ ~a. pol(a) v pol(σ)

Λ; Σ ` when σ(~a) do c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

and we identify two cases:
i) Act(S)(w1 u w2) is visible to A, which means Act(S)(pol(σ)) is also

visible to A. Then all Act(S)(pol(a)) are also visible to A, and we must have
that if Act(S)(σ(~a)) ∈ LS(S) then Act(T)(σ(~a)) ∈ LS(T). We will then
have

〈E[when σ(~a) do c1 else c2], S〉
τ−→ 〈E[ci], S〉

and
〈E[when σ(~a) do c1 else c2], T 〉

τ−→ 〈E[ci], T 〉
for the same i ∈ {1, 2}. We continue by applying the induction hypothesis
to the resulting configurations.

ii) Act(S)(w1 u w2) is not visible to A. Then by the silent evaluation
lemma we must have that

〈E[when σ(~a) do c1 else c2], S〉=⇒A 〈E[skip], S ′〉

and either

〈E[when σ(~a) do c1 else c2], T 〉=⇒A 〈E[skip], T ′〉

or 〈E[when σ(~a) do c1 else c2], T 〉 ⇑A. In the latter case we are done, in
the former we continue by applying the induction hypothesis to the resulting
configurations.

Case c = newactor a in c′: This case cannot be since it would begin
evaluation with a visible output.

Case c = E[forall σ(~a) do c′]: We must have

Λ ∪ ~a; Σ ∩ Σ′ ` c; w,Σ′ pol(σ) v ∀~a. w ∀a ∈ ~a. a 6∈ Λ

Λ; Σ ` forall σ(~a) do c; ∀~a. w u pol(σ),Σ′ ∩ Σ \ {σ(~b) | ~a ∩~b 6= ∅}

and we have two cases.
i) Act(S)(pol(σ)) is visible to A. Then we must have that {σ(~a) | σ(~a) ∈

LS(S)} = {σ(~a) | σ(~a) ∈ LS(T)} = Σ and we have

〈E[forall σ(~a) do c′], S〉 τ−→ 〈E[for σ(~a) in Σ do c′], S〉

190

and
〈E[forall σ(~a) do c′], T 〉 τ−→ 〈E[for σ(~a) in Σ do c′], T 〉

and we apply the induction hypothesis to the resulting configurations.
ii) Act(S)(pol(σ)) is not visible to A. Then by the silent execution lemma

we must have that

〈E[forall σ(~a) do c′], S〉 =⇒ 〈E[skip], S ′〉

and
〈E[forall σ(~a) do c′], T 〉 =⇒ 〈E[skip], T ′〉

or 〈E[forall σ(~a) do c′], T 〉 ⇑A. In the latter case we are done, in the former
we apply the induction hypothesis to the resulting configurations.

Case c = E[for σ(~a) in Σ do c′]: We must have

Λ ∪ ~a; Σ ∩ Σ′ ` c′ ; w,Σ′ pol(σ) v ∀~a. w
Λ; Σ ` for σ(~a) in Σ do c′ ; ∀~a. w u pol(σ),Σ′ ∩ Σ \ {σ(~b) | ~a ∩~b 6= ∅}

where the case where we have Σ = ∅ lets us trivially apply the induction
hypothesis. We thus concentrate on the other case, and note that since the
evaluation is silent we must have that Act(S)(pol(σ)) is not visible to A.
Then by the silent execution lemma we must have that

〈E[for σ(~a) in Σ do c′], S〉=⇒A 〈E[skip], S ′〉

and
〈E[for σ(~a) in Σ do c′], T 〉=⇒A 〈E[skip], T ′〉

or 〈E[for σ(~a) in Σ do c′], T 〉 ⇑A. In the latter case we are done, in the
former we can apply the induction hypothesis to the resulting configurations.

With all this in hand, we can finally turn our attention to the main
theorem. Here we give the fully general version of the theorem and proof:

Theorem 7. If Λ; Σ ` c then c is termination-insensitive (Λ,Σ) Paralocks
secure (PLSTI(Λ,Σ, c)).

Expanded this means

∀A,L, (~uu,∆), (~uu′,∆′) ∈ RunA(Λ,Σ, c, L)

we have that

Cap(A) ⊇∆ =⇒ kA(c, L, ~uu) = kA(c, L, ~uu′)

191

We prove this by showing that we must have w = w′, by induction on the
length of the computation leading to ~uu. We identify two cases:

i) ~u has length greater than 0. Then by the deterministic execution
lemma, and the fact that we know both computations will produce more
output and so cannot diverge, we must have that for S ∼A T :

〈c, S〉 ~u
=⇒A 〈c′, S ′〉

and
〈c, T 〉 ~u

=⇒A 〈c′, T ′〉
where S ′ ∼A T ′. By the consistent run lemma and subject reduction we then
know that ∃Λ′,Σ′. Λ′; Σ′ ` c′ and (w,∆), (w′,∆′′) ∈ RunA(Λ′,Σ′, c′, L′),
where L′ is the common A-low projection of S ′ and T ′, and we can apply the
induction hypothesis to get w = w′.

ii) ~u has length 0. We then proceed to case on c.
Case c = E[x[~a] := e]: We have

Λ ` e : r r(Σ) v pol(x[~a]) ~a ⊆ Λ ∀a ∈ ~a. pol(a) v pol(x[~a])

Λ; Σ ` x[~a] := e; pol(x[~a]),Σ

and we identify two cases:
i) Act(S)(pol(x[~a])) is not visible to A. Then

〈E[x[~a] := e], S〉 `−→ 〈E[skip], S[x[~a] 7→ v]〉

and
〈E[x[~a] := e], T 〉 `′−→ 〈E[skip], T [x[~a] 7→ v′]〉

We have that neither l nor l′ are visible to A, and S[x 7→ v] ∼A T [x 7→ v′],
and by the consistent run lemma we must have (w,∆), (w′,∆′) ∈
RunA(Λ,Σ,E[skip], L) where L is the common A-low projection of the re-
sulting states. We can apply the induction hypothesis to get w = w′.

ii) Act(S)(pol(x[~a])) is visible to A. Then the next transition will gener-
ate the visible output, i.e.

〈E[x[~a] := e], S〉 x(v)−−→A 〈E[skip], S[x[~a] 7→ v]〉

so we must have ∆ = LS(S). By r(Σ) v pol(x[~a]) we know Act(S)(r(Σ))
is visible to A. But since Cap(A) ⊇ ∆ = LS(S) ⊇ Act(S)(Σ) we know
that Act(S)(r) alone is visible to A, without specialisation. Then by the
deterministic expression evaluation lemma we know 〈e, S〉 ⇓ v =⇒ 〈e, T 〉 ⇓ v,
so we must have

〈E[x[~a] := e], T 〉 x(v)−−→A 〈E[skip], T [x[~a] 7→ v]〉

192

We have w = w′ = x(v) and we are done.
Case c = E[open σ(~a)]: We have

~a ⊆ Λ ∀a ∈ ~a. pol(a) v pol(σ)

Λ; Σ ` open σ(~a) ; pol(σ),Σ ∪ {σ(~a)}

and we identify two cases:
i) Act(S)(pol(σ)) is not visible to A. Then

〈E[open σ(~a)], S〉 `−→ 〈E[skip], S ′〉

and

〈E[open σ(~a)], T 〉 `′−→ 〈E[skip], T ′〉

We have that neither l nor l′ are visible to A, and S ′ ∼A T ′, and by the con-
sistent run lemma we must have (w,∆), (w′,∆′) ∈ RunA(Λ,Σ,E[skip], L)
where L is the common A-low projection of the resulting states. We can
apply the induction hypothesis to get w = w′.

ii) Act(S)(pol(σ)) is visible to A. Then the next transition will generate
the visible output, i.e.

〈E[open σ(~a)], S〉 open σ(~a)−−−−−−→A 〈E[skip], S ∪ {σ(~a)}〉

so we must have ∆ = LS(S). Since ∀a ∈ ~a. pol(a) v pol(σ) we know that all
Act(S)(pol(a)) is visible to A, and hence Act(S)(~a) = ~a = Act(T)(~a), and
thus

〈E[open σ(~a)], T 〉 open σ(~a)−−−−−−→A 〈E[skip], T ∪ {σ(~a)}〉

We have w = w′ = open σ(~a) and we are done.
Case c = E[close σ(~a)]: Same as for open.
Case c = E[if e then c1 else c2]: We have

Λ ` e : r Λ; Σ ` ci ; wi,Σi r v w1 u w2

Λ; Σ ` if e then c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

and we identify two cases:
i) Act(S)(w1 u w2) is not visible to A. Then by the silent evaluation

lemma we know that the subterms cannot produce A-visible output. We
must have

〈E[if e then c1 else c2], S〉=⇒A 〈E[skip], S ′〉

and

〈E[if e then c1 else c2], T 〉=⇒A 〈E[skip], T ′〉

193

with S ′ ∼A S ∼A T ∼A T ′. By the consistent run lemma we must also have
(w,∆), (w′,∆′′) ∈ RunA(Λ′,Σ′,E[skip], L) and we can apply the induction
hypothesis to get w = w′.

ii) Act(S)(w1 u w2) is visible to A, which means Act(S)(r) is also visi-
ble to A. Then by the deterministic expression evaluation lemma we know
〈e, S〉 ⇓ v =⇒ 〈e, T 〉 ⇓ v and we must have

〈E[if e then c1 else c2], S〉
τ−→ 〈E[ci], S〉

and
〈E[if e then c1 else c2], T 〉

τ−→ 〈E[ci], T 〉
for some i ∈ {1, 2}. By the consistent run lemma we must have (w,∆), (w′,∆′′)
∈ RunA(Λ,Σ,E[ci], L) and we can apply the induction hypothesis to get
w = w′.

Case c = E[when σ(~a) do c1 else c2]: We have

Λ; Σ ∪ {σ(~a)} ` c1 ; w1,Σ1 Λ; Σ ` c2 ; w2,Σ2

pol(σ) v w1 u w2 ∀a ∈ ~a. pol(a) v pol(σ)

Λ; Σ ` when σ(~a) do c1 else c2 ; w1 u w2,Σ1 ∩ Σ2

and we identify two cases:
i) Act(S)(w1 u w2) is not visible to A. Then by the silent evaluation

lemma we know that the subterms cannot produce A-visible output. We
must have

〈E[when σ(~a) do c1 else c2], S〉=⇒A 〈E[skip], S ′〉

and
〈E[when σ(~a) do c1 else c2], T 〉=⇒A 〈E[skip], T ′〉

with S ′ ∼A S ∼A T ∼A T ′. By the consistent run lemma we must also have
(w,∆), (w′,∆′′) ∈ RunA(Λ′,Σ′,E[skip], L) and we can apply the induction
hypothesis to get w = w′.

ii) Act(S)(w1 u w2) is visible to A, which means Act(S)(pol(σ)) is also
visible to A. Then since ∀a ∈ ~a. pol(a) v pol(σ), if Act(S)(σ(~a)) ∈ LS(S)
then Act(T)(σ(~a)) ∈ LS(T), so we must have

〈E[when σ(~a) do c1 else c2], S〉
τ−→ 〈E[ci], S〉

and
〈E[when σ(~a) do c1 else c2], T 〉

τ−→ 〈E[ci], T 〉
for some i ∈ {1, 2}. By the consistent run lemma we must have (w,∆), (w′,∆′′)
∈ RunA(Λ,Σ,E[ci], L) and we can apply the induction hypothesis to get
w = w′.

194

Case c = newactor a in c′: We must have

Λ ∪ {a}; Σ ` c; w,Σ′

Λ; Σ ` newactor a in c; ⊥,Σ′ \ {σ(~b) | a ∈ ~b}

and since pol(a) = ⊥ we must have that Act(S)(⊥) is visible to A. Then
we must have

〈E[newactor a in c′], S〉 a(a)−−→ A〈E[c′], S[a 7→ a]〉

and

〈E[newactor a in c′], T 〉 a(a)−−→ A〈E[c′], T [a 7→ a]〉
with S[a 7→ a] ∼A T [a 7→ a] and we are done.

Case c = E[forall σ(~a) do c′]: We must have

Λ ∪ ~a; Σ ∩ Σ′ ` c; w,Σ′ pol(σ) v ∀~a. w ~a ∩ Λ = ∅
Λ; Σ ` forall σ(~a) do c; pol(σ),Σ′ ∩ Σ \ {σ(~b) | ~a ∩~b 6= ∅}

and we identify two cases:
i) Act(S)(pol(σ)) is not visible to A. Then by the silent execution lemma

we must have that

〈E[forall σ(~a) do c′], S〉=⇒A 〈E[skip], S ′〉

and
〈E[forall σ(~a) do c′], T 〉=⇒A 〈E[skip], T ′〉

with S ′ ∼A S ∼A T ∼A T ′ and we apply the induction hypothesis to the
resulting configurations.

ii) Act(S)(pol(σ)) is visible to A. Then we have that

{σ(~a) | σ(~a) ∈ LS(S)} = {σ(~a) | σ(~a) ∈ LS(T)} = Σ

and we must have

〈E[forall σ(~a) do c′], S〉 τ−→ 〈E[for σ(~a) in Σ do c′], S〉

and
〈E[forall σ(~a) do c′], T 〉 τ−→ 〈E[for σ(~a) in Σ do c′], T 〉

and we apply the induction hypothesis to the resulting configurations.
Case c = E[for σ(~a) in Σ do c′]: We must have

Λ ∪ ~a; Σ ∩ Σ′ ` c; w,Σ′ pol(σ) v ∀~a. w
Λ; Σ ` forall σ(~a) do c; pol(σ),Σ′ ∩ Σ \ {σ(~b) | ~a ∩~b 6= ∅}

195

and we identify two cases:
i) Act(S)(pol(σ)) is not visible to A. Then by the silent execution lemma

we must have that

〈E[for σ(~a) in Σ do c′], S〉=⇒A 〈E[skip], S ′〉

and
〈E[for σ(~a) in Σ do c′], T 〉=⇒A 〈E[skip], T ′〉

with S ′ ∼A S ∼A T ∼A T ′ and we apply the induction hypothesis to the
resulting configurations.

ii) Act(S)(pol(σ)) is visible to A. The case when Σ = ∅ is trivial so we
concentrate on the other case. We then have

〈E[for σ(~a) in {σ(~a)} ∪Σ do c′], S〉
~a(~a)−−→A 〈E[c′; for σ(~a) in Σ do c′], S[~a 7→ ~a]〉

and

〈E[for σ(~a) in {σ(~a)} ∪Σ do c′], T 〉
~a(~a)−−→A 〈E[c′; for σ(~a) in Σ do c′], T [~a 7→ ~a]〉

and we are done.
That concludes the proof that well-typed programs are Paralocks secure.

196

	Introduction
	Information Flow Control
	Language-Based Security
	A History of Information Flow Control
	Thesis Contributions
	Thesis Organisation
	General Contributions
	Author Contribution

	Flow Locks
	Introduction
	Motivating Examples
	Flow Lock Security
	Preliminaries
	Motivating the Security Definition
	Flow Lock Security

	Basic Properties of Flow Lock Security
	Enforcement: A Sound Flow Lock Type System
	Language
	Type System

	Example Encodings
	Delimited Non-Disclosure
	Gradual Release
	More encodings

	Paralocks
	Introduction
	Roles and Information Flow
	Flow Locks and Roles
	Modeling Roles
	The Paralocks Policy Language
	Beyond Roles

	Paralocks Security
	Computation Model
	Validating flows
	Paralocks Security

	Enforcement: A Sound Paralocks Type System
	Operational Semantics
	Type System
	Security

	Example Encodings
	Robust Declassification
	The Decentralised Label Model

	Recursive Paralocks
	Policy
	Expressiveness
	Semantics
	Enforcement

	Paragon
	Introduction
	Why Java?
	Design Guidelines

	Example Programs
	Simple Declassification
	Robust Declassification
	Sealed-bid Auctions
	Lexically Scoped Flows

	The Paragon Language
	Types, Policies and Modifiers
	Locks
	Type Parameters
	Actors and Aliasing
	Type Methods
	Exceptions and Indirect Control Flow
	Field Initialisers
	Policy Inference and Defaults
	Runtime Policies

	The Paragon Type System
	Typing Judgment
	Typing Expressions
	Typing Statements
	Typing Blocks and Block Statements
	Typing Method Declarations

	Compiling Paragon
	A Comparison with Jif
	The Jif Language
	Jif Concerns
	Feature Comparison
	Example: Encoding the DLM

	Related work
	Policy Specification Mechanisms
	Semantics of Information Flow
	Information Flow Programming Languages
	Typestate Systems

	Conclusions and Future work
	Flow locks: Proofs and auxiliary definitions
	Type system proofs
	DLM encoding

	Paralocks: Proofs and auxiliary definitions
	Type System Security Proof

