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1Institute of Mathematics and Informatics, Vilnius

2 SAMOS–MATISSE, CES, University Paris 1 Panthéon–Sorbonne
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Abstract

We introduce a new statistic written as a sum of certain ratios of second order increments

of partial sums process Sn =
Pn

t=1
Xt of observations, which we call the Increment Ratio (IR)

statistic. The IR statistic can be used for testing nonparametric hypotheses for d−integrated

(−1/2 < d < 3/2) behavior of time series Xt, including short memory (d = 0), (stationary)

long–memory (0 < d < 1/2) and unit roots (d = 1). If Sn behaves asymptotically as an (inte-

grated) fractional Brownian motion with parameter H = d+1/2, the IR statistic converges to a

monotone function Λ(d) of d ∈ (−1/2, 3/2) as both the sample size N and the window parameter

m increase so that N/m → ∞. For Gaussian observations Xt, we obtain a rate of decay of the

bias EIR −Λ(d) and a central limit theorem (N/m)1/2(IR−EIR) → N (0, σ2(d)), in the region

−1/2 < d < 5/4. Graphs of the functions Λ(d) and σ(d) are included. A simulation study

shows that the IR test for short memory (d = 0) against stationary long–memory alternatives

(0 < d < 1/2) has good size and power properties and is robust against changes in mean, slowly

varying trends and nonstationarities. We apply this statistic to sequences of squares of returns

on financial assets and obtain a nuanced picture of the presence of long–memory in asset price

volatility.
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1 Introduction

The paper introduces a new statistic

IR :=
1

N − 3m

N−3m−1∑

k=0

∣∣∣
∑k+m

t=k+1(Xt+m −Xt) +
∑k+2m

t=k+m+1(Xt+m −Xt)
∣∣∣

∣∣∣
∑k+m

t=k+1(Xt+m −Xt)
∣∣∣+
∣∣∣
∑k+2m

t=k+m+1(Xt+m −Xt)
∣∣∣
, (1.1)

with the convention 0
0 := 1. Here, X1, . . . , XN is a given sample of length N and m = 1, 2, . . . is

a bandwidth parameter. We call (1.1) the Increment Ratio (IR) statistic, since the sums in the

numerator and denominator in (1.1) are second order increments, or differences, of partial sums

Sn :=
∑n

t=1Xt. In fact, (1.1) can be rewritten as the integral:

IR =
1

(N/m) − 3

∫ (N/m)−3

0

∣∣∆2S[mτ ] + ∆2S[m(τ+1)]

∣∣
∣∣∆2S[mτ ]

∣∣+
∣∣∆2S[m(τ+1)]

∣∣ dτ, (1.2)

where ∆f(τ) := f(τ + 1) − f(τ), ∆2f(τ) := ∆(∆f(τ)) is the difference operator.

By definition, the IR statistic is always bounded by 0 and 1: 0 ≤ IR ≤ 1 a.s. It is also location

and scale free, i.e., does not change when Xt is replaced by an arbitrary linear combination aXt + b,

where a 6= 0, b are arbitrary constants. Empirical simulations show that the IR statistic is quite

insensitive to trends, local nonstationarities and heavy tails, see section 3 below. The limit of the

IR statistic as N,m,N/m→ ∞ is related to the limit behavior of a (rescaled) partial sums process

S[mτ ], τ ∈ [0,∞), or the differenced process ∆2S[mτ ], τ ∈ [0,∞). In particular, if Xt is stationary

and its partial sums process converges to a fractional Brownian motion (fBm) Bd+.5(τ), τ ∈ [0,∞)

with (Hurst) parameter d + .5 ∈ (0, 1), in the way described in Assumption 1 (section 2), the IR

statistic converges in probability to the expectation

Λ(d) := E

[ |Zd(0) + Zd(1)|
|Zd(0)| + |Zd(1)|

]
, (1.3)

where (Zd(0), Zd(1)) have a jointly Gaussian distribution, with zero mean, unit variances and the

covariance

ρ(d) := cov(Zd(0), Zd(1)) =
−9d+.5 + 4d+1.5 − 7

2(4 − 4d+.5)
. (1.4)

A similar convergence to the function Λ(d) in (1.3) holds also in the case when Xt is nonstationary

but the differenced process Ut := Xt −Xt−1 is stationary and the partial sums of Ut tends, in the

way described in Assumption 2 (section 2), to a fBm Bd−.5 with Hurst parameter d − .5 ∈ (0, 1).

The limit function Λ(d) is defined in (1.3) for all −.5 < d < 1.5, d 6= .5, where

Zd(τ) :=
1√

|4 − 4d+.5|

{
∆2Bd+.5(τ), −.5 < d < .5,√

2d(2d+ 1)
∫ 1

0 ∆Bd−.5(τ + s)ds, .5 < d < 1.5,
(1.5)

is a stationary Gaussian process with continuous time τ ∈ R, with zero mean unit variance and the

covariance

EZd(0)Zd(τ) =
1

2(4d+.5 − 4)
∆2

s∆
2
t |t− s|2d+1

∣∣∣
t−s=τ

. (1.6)

(For d = .5, (1.3) -(1.6) exist as the corresponding limits when d tends to .5). We call the process

Zd(τ) a second increment fBm. The function Λ(d) is strictly monotone increasing on (−.5, 1.5) (see

the graph in Figure 1) and can be explicitly written as

Λ(d) = Λ0(ρ(d)),
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where

Λ0(r) :=
2

π
arctan

(√
1 + r

1 − r

)
+

1

π

√
1 + r

1 − r
log

(
2

1 + r

)
. (1.7)

The above mentioned consistency property of the IR statistic is very general and essentially uses

only a “fBm asymptotics” of the partial sums process S[mτ ], see section 2 for details. To obtain

more detailed information concerning convergence rates and the asymptotic distribution of the IR

statistic, we assume that Xt is a Gaussian process. Theorem 2.4 obtains the decay rate of the bias

EIR − Λ(d), as the window parameter m → ∞, under semiparametric assumptions on the spectral

density of stationary processes Xt (case −.5 < d < .5) and Ut = Xt − Xt−1 (case .5 < d < 1.5).

Under similar assumptions on Xt and Ut we obtain the central limit theorem:

(N/m)1/2(IR − EIR) →D N (0, σ2(d)) (N,m,N/m→ ∞), (1.8)

see Theorem 2.5 where

σ2(d) := 2

∫ ∞

0

cov

( |Zd(0) + Zd(1)|
|Zd(0)| + |Zd(1)| ,

|Zd(τ) + Zd(τ + 1)|
|Zd(τ)| + |Zd(τ + 1)|

)
dτ, (1.9)

and where Zd(τ) is defined in (1.5). The CLT in (1.8) holds for −.5 < d < 1.25, d 6= .5. (For

d ∈ (1.25, 1.5) the integral in (1.9) diverges and the CLT in (1.8) most likely fails.) The graph of

σ(d) obtained with the help of Mathematica 4.0 is shown in Figure 2.
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Figure 1: The graph of Λ(d) Figure 2: The graph of σ(d)

The above mentioned results suggest using the IR statistic for testing various nonparametric hy-

potheses, e.g., stationary short memory vs. stationary long memory, stationary long–memory vs.

nonstationary unit root, etc. Several statistics and tests have been proposed in the literature for

testing such hypotheses. Among them, we mention the score test (Robinson, 1994), the Lagrange

multiplier test (Lobato and Robinson, 1998), the modified R/S statistic (Lo, 1991), the KPSS statis-

tic (Kwiatkowski et al., 1992), the V/S statistic (Giraitis et al., 2003). The last three statistics are

essentially based on fBm-type behavior of the partial sums process of Xt; however, their limit distri-

butions are nongaussian and normalizations depend on the (possibly unknown) memory parameter

d. Section 3 provides a finite sample simulation study of the IR test of short memory (d = 0) vs.

long–memory (d > 0), with the critical region

IR− Λ(0) > zασ(0)

√
m

N − 3m
, (1.10)
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where Λ(0) ≈ .5881, σ(0) ≈ .2080, and zα is the standard normal quantile. We study the empirical

size of the test (1.10) under “AR+stochastic trend” and “AR+deterministic trend” models, the

empirical power under “FARIMA with memory breaks” model, and the robustness of that test

under nonstationary models and heavy–tailed α–stable distributions.

Long–range dependent processes can be confused with trended processes and change–point pro-

cesses; see e.g., Bhattacharya et al. (1983). One can distinguish between these alternatives by

resorting to estimators of the long–range dependent parameter that are robust to the presence of

trends, change–points and nonstationarities. Abry and Veitch (1998) introduced a wavelet estima-

tor of the memory parameter robust to deterministic linear and polynomial trends, which works for

large samples, e.g., N = 10000; see also Abry et al. (2003), Teyssière and Abry (2005). However,

the asymptotic variance of this estimator depends on the memory parameter and the corresponding

confidence intervals with the sample size used in this paper (N = 1000) are inconclusive; see also

Bardet et al. (2000).

Künsch (1986) and later Sibbertsen (2003) proposed procedures for discriminating between trends

and long–range dependence based on the periodogram. Since tapering the periodogram allows to

get rid of small trends and slowly varying trends, the discrepancy between the spectral estimates

obtained with and without tapering the periodogram constitutes an evidence of spurious long–range

dependence.

Dolado et al. (2005) proposed an extension of the fractional Dickey–Fuller test for long–range

dependence against the alternative of short–range dependence, robust to the presence of a single

break. Recently, Berkes et al. (2006) proposed a CUSUM test for discriminating between long–range

dependence and change–points, including the case multiple change–points. This is of interest when

dealing with large samples, as for large samples the occurence of a single change–point is unlikely. We

then compare the performance of our test with this one for the case of nonhomogeneous processes.

Comparisons with the V/S and Robinson’s (1994) tests are provided, indicating that in the pres-

ence of stochastic trend, deterministic trends or change–points, the IR test clearly outperforms the

other tests.

The robustness of the IR test with respect to change–points and other structural changes can be

explained by the fact that the IR statistic uses “local data” or “moving” subsamples of length 3m,

while other above mentioned tests use “global” quantities such as the sample mean or periodogram

estimates. In the case of a few change–points, only a small fraction of subsamples of length 3m

(ratios in (1.1)) near the change points feel the changes. On the other hand, the sample mean can

be severely affected by a single change in the mean.

The present study can be extended into several directions. From the theoretical point of view, it

is desirable to relax the Gaussianity assumption, e.g., by extending Theorems 2.4 and 2.5 to moving

averages Xt in general iid innovations. The cases of stationary weakly dependent Xt (corresponding

to d = 0) and stationary weakly dependent Ut = Xt−Xt−1 (corresponding to d = 1) are of particular

interest, where the distributional assumptions on Xt should be kept to minimum. The IR statistic

in (1.1) allows for a number of modifications which in principle might have better asymptotic or

finite sample properties. Further generalizations may involve observations in continuous and/or

multidimensional time (random fields). We hope to study some of these issues in the future.

The paper is organised as follows: section 2 provides asymptotic results, section 3 studies the

size, power and robustness of the IR statistic, and provides comparisons with other statistics. An
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application of this statistic to real data is given in section 4. The proofs of all statements in section 2

and the properties of the second increment of fractional Brownian motion are relegated in sections 5

and 6 respectively.

2 Asymptotic results

In this section, we introduce general Assumptions (A1) and (A2) which guarantee the convergence

of the IR statistic to the function Λ(d) in (1.3) (see Proposition 2.1). Neither Gaussianity nor

stationarity of the observations is required by these assumptions. Write →D (respectively, →FDD)

for weak convergence of distributions (respectively, of finite dimensional distributions). Recall that

a fractional Brownian motion (fBm) with Hurst parameter 0 < H < 1 is a Gaussian process

BH(τ), τ ∈ R, with zero mean and the covariance

EBH(τ1)BH(τ2) =
1

2

(
|τ1|2H + |τ2|2H − |τ1 − τ2|2H

)
. (2.1)

Assumption (A1) For −.5 < d < .5, there exists a constant G(d) 6= 0 and normalizations Gm =

Gm(d) → ∞, Am = Am(d) such that

G−1
m




[m(T1+τ1)]∑

t1=1+[mT1]

(Xt1 −Am),

[m(T2+τ2)]∑

t2=1+[mT2]

(Xt2 −Am)


 →FDD G(d)

(
B1

d+.5(τ1), B
2
d+.5(τ2)

)
(2.2)

asm,T1, T2−T1 → ∞, whereB1
d+.5, B

2
d+.5 are independent copies of fBm Bd+.5 with Hurst parameter

H = d+ .5 ∈ (0, 1).

Assumption (A2) For .5 < d < 1.5, there exists a constant G(d) 6= 0 and a normalization Gm =

Gm(d) → ∞ such that

G−1
m

(
X[m(T1+τ1)] −X[mT1], X[m(T2+τ2)] −X[mT2]

)
→FDD G(d)(B1

d−.5(τ1), B
2
d−.5(τ2)) (2.3)

asm,T1, T2−T1 → ∞, whereB1
d−.5, B

2
d−.5 are independent copies of fBmBd−.5 with Hurst parameter

H = d− .5 ∈ (0, 1). Moreover, there exists a constant C2 <∞ such that for any m, j ≥ 1

E(Xm+j −Xj)
2 ≤ C2G

2
m. (2.4)

Proposition 2.1 (i) Let Assumption (A1) be satisfied, −.5 < d < .5. Then, as N → ∞, m →
∞, m/N → 0

EIR→ Λ(d), (2.5)

where the function Λ(d) is defined in (1.3). Moreover,

E(IR− Λ(d))2 → 0. (2.6)

(ii) Let Assumption (A2) be satisfied, .5 < d < 1.5. Then, as N → ∞, m→ ∞, m/N → 0, relations

(2.5) and (2.6) hold. The function Λ(d) is defined in (1.3), with Zd(0), Zd(1) as in (1.5).

In the literature, convergence of partial sums towards a fBm has been proved for a number of

linear and nonlinear (stationary and nonstationary) processes. See Davydov (1970), Taqqu (1977),
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Ho and Hsing (1997), Giraitis et al. (2000), Giraitis and Surgailis (2002), Philippe et al. (2006a,

2006b, 2007) and the references therein. A new feature of Assumptions (A1)/(A2) concerns the

asymptotic independence of increments of partial sums separated by long interval T = T2−T1 → ∞
(i.e., the independence of the limiting fBm’s). For Gaussian processes, Assumptions (A1)/A(2) can

be easily verified; see Proposition 2.2 below. Csörgő and Mielniczuk (1995), Bružaitė and Vaičiulis

(2005) discuss the validity of Assumption (A1) for Gaussian subordinated and linear processes.

Proposition 2.2 (i) Let Xt be a stationary Gaussian process having spectral density f(x) such that

f(x) = L(1/|x|)|x|−2d, (2.7)

where −.5 < d < .5 and L is slowly varying at infinity. Then Xt satisfies Assumption (A1), with

G2
m = L(m)m2d+1, Am = EX0 and G2(d) = K(d+ .5), where

K(H) :=
π

HΓ(2H) sin(Hπ)
. (2.8)

(ii) Let Ut = Xt −Xt−1 be a stationary Gaussian process having spectral density f(x) such that

f(x) = L(1/|x|)|x|2−2d, (2.9)

where .5 < d < 1.5 and L is slowly varying at infinity. Then Xt satisfies Assumption (A2), with

G2
m = L(m)m2d−1, G2(d) = |K(d− .5)| and K(H) as in (2.8).

Let us note that Assumption (A1)(respectively, (A2)) refers to “distant increments” of partial sums

of the observations (respectively, of the observations themselves) on intervals of length O(m) which

are far away from each other and also from the origin, due to the fact that T1 → ∞, T2 − T1 → ∞.

Therefore (A1)/(A2) may apply also in the case when the limit of partial sums is a process with

asymptotically stationary increments (see Philippe et al. (2007), Bružaitė et al. (2006)) for the

definition and examples of such processes). In particular, consider a d−integrated (d > −.5) process

Xt defined as a solution of (1 − L)dXt = ξtI{t≥1}:

Xt =
t∑

s=1

ψ(t− s)ξs, ψ(j) :=
Γ(j + d)

Γ(j + 1)Γ(d)
(j ≥ 0), (2.10)

where LXt = Xt−1 is the backward shift, I denotes the indicator function, ψ(j) (j ≥ 0) are the

coefficients of FARIMA(0, d, 0) filter, and where ξt, t ∈ Z are standard iid random variables, with

zero mean and variance 1. One can show (see Marinucci and Robinson (1999) and the references

therein) that for any d > −.5

m−d−.5

[mτ ]∑

t=1

Xt →FDD
1

Γ(d)

∫ τ

0

(τ − x)dM(dx), (2.11)

where M(dx) is a standard Gaussian white noise (see Sec. 6). The limit process in (2.11) is

called a type II fractional Brownian motion (Marinucci and Robinson, 1999) and has asymptotically

stationary increments tending to increments of a (usual) fBm (Philippe et al., 2007).

Proposition 2.3 Let Xt be the moving average in (2.10), d ∈ (−.5, 1.5), d 6= .5. Then Xt satisfies

(A1)/(A2).
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In the remainder of this section we assume that the time series Xt, t = 1, . . . , N is a Gaussian

process. This assumption and the following assumptions on the covariance structure of Xt allows us

to obtain a convergence rate of the bias EIR − Λ(d), as well as a central limit theorem for the IR

statistic, when N and m increase in a suitable way. We separately discuss the cases (i) −.5 < d < .5

and (ii) .5 < d < 1.5. In the Case (i), we assume that Xt is a stationary Gaussian process, while

in the Case (ii), we assume that Xt is an integrated process so that the process Ut = Xt −Xt−1 is

stationary.

Theorem 2.4 (i) Let Xt be a stationary Gaussian process having spectral density f(x) such that

there exist constants c0 > 0, β > 0,−.5 < d < .5 such that

f(x) = |x|−2d
(
c0 +O(|x|β)

)
(x→ 0). (2.12)

Moreover, assume that f(x) is bounded outside zero frequency, and 0 < β < 2d+ 1. Then

EIR− Λ(d) = O(m−β). (2.13)

(ii) Let Ut = Xt −Xt−1 be a zero mean stationary Gaussian process, with zero mean and spectral

density f(x). Assume that there exist constants c0 > 0, β > 0, .5 < d < 1.5 such that

f(x) = |x|2−2d
(
c0 + O(|x|β)

)
(x→ 0). (2.14)

Moreover, assume that f(x) is bounded outside zero frequency, and 0 < β < 2d − 1. Then relation

(2.13) holds.

Theorem 2.4 is proved in Section 5. Let us explain the main idea of its proof. Define

V 2
m := E

( m∑

t=1

(Xt+m −Xt)
)2

, (2.15)

Rm := E
( m∑

t,s=1

(Xt+m −Xt)(Xs+2m −Xs+m)
)
. (2.16)

By stationarity, in both cases (i) and (ii)

EIR− Λ(d) = E

[ |Y 0 + Y 1|
|Y 0| + |Y 1| −

|Z0 + Z1|
|Z0| + |Z1|

]
, (2.17)

where

Y 0 := V −1
m

m∑

t=1

(Xt+m −Xt), Y 1 := V −1
m

2m∑

t=m+1

(Xt+m −Xt), Z0 := Zd(0), Z1 := Zd(1)

are Gaussian variables, with zero mean, unit variances E(Y 0)2 = E(Y 1)2 = E(Z0)2 = E(Z1)2 = 1

and the covariances

EY 0Y 1 =
Rm

V 2
m

, EZ0Z1 = ρ(d), (2.18)

respectively (the variables Zd(0), Zd(1) and ρ(d) were defined earlier in (1.5)-(1.4)). Using (2.17)

and the Gaussianity, it is easy to show the bound

|EIR− Λ(d)| ≤ C|EY 0Y 1 − EZ0Z1| (2.19)
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where the constant C does not depend on m. As shown in the proof of Theorem 2.4, under the

assumptions on the spectral density as in (2.12), (2.14), one has the following asymptotics

V 2
m = c0m

2d+1
(
V (d) +O(m−β)

)
, (2.20)

Rm = c0m
2d+1

(
R(d) +O(m−β)

)
, (2.21)

where

V (d) := (4 − 4d+.5)K(d+ .5), (2.22)

R(d) := (1/2)
(
− 9d+.5 + 4d+1.5 − 7

)
K(d+ .5), (2.23)

with K(H) given in (2.8) above. (Note the relation R(d)/V (d) = ρ(d) and the fact that (2.20)-(2.23)

hold in both cases (i) and (ii).) Clearly, (2.18)-(2.23) imply (2.13).

We now turn to the central limit theorem for the IR statistic.

Theorem 2.5 (i) Let Xt be a stationary Gaussian process whose spectral density f(x) satisfies

condition (2.12), for some −.5 < d < .5, c0 > 0, β > 0. Moreover, assume that f(x) is differentiable

on (0, π) and

|f ′(x)| ≤ C|x|−2d−1, (2.24)

where C > 0 is some constant. Then, as N,m,N/m→ ∞,

(N/m)var(IR) → σ2(d), (2.25)

and

(N/m)1/2(IR− EIR) →D N (0, σ2(d)), (2.26)

where σ2(d) is defined in (1.9).

(ii) Let Xt−Xt−1 = Ut be a stationary Gaussian process whose spectral density f(x) satisfies (2.14),

for some .5 < d < 1.25, c0 > 0, β > 0. Moreover, assume that f(x) is differentiable on (0, π) and

|f ′(x)| ≤ C|x|1−2d, (2.27)

where C > 0 is some constant. Then the relations (2.25) and (2.26) hold.

Let us explain the idea of the proof of the above theorem. Let

Ym(j) := V −1
m

j+m∑

t=j+1

(Xt+m −Xt), (2.28)

where Vm is defined in (2.15). Note, for m fixed, Ym(j), j ∈ Z is a stationary Gaussian process, with

zero mean and unit variance, and

IR =
1

N − 3m

N−3m−1∑

j=0

ηm(j), ηm(j) :=
|Ym(j) + Ym(j +m)|
|Ym(j)| + |Ym(j +m)| . (2.29)

The proof of (2.25) and (2.26) uses Hermite expansion of the nonlinear function ηm(j) in Gaussian

variables (2.28). It is easy to see from the definition in (2.29) that the linear terms of the Hermite

expansion are zero and therefore the covariance of ηm(j) behaves as the squared covariance of

Ym(j)’s, which turns to be summable for .− 5 < d < 1.25; see (5.35)-(5.36).
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3 The power and robustness of the IR test for short memory:

an empirical study

As noted in the Introduction, the IR statistic can be used to test hypotheses about unknown parame-

ter d, e.g., the null hypothesis H0: d = d0, where d0 ∈ (−.5, 1.25), d0 6= .5. A more precise meaning of

the null hypothesis is that Xt satisfies Assumptions (A1)/(A2) with d = d0, as well as the additional

conditions guaranteeing the asymptotic behavior of the IR statistics as in Theorems 2.4 and 2.5.

Obviously, the assumption of gaussianity in these teorems is quite restrictive and the IR test needs

to be further developped. Nevertheless, an empirical study of the IR statistic and its performance

against other tests for testing similar hypotheses is clearly of interest. The choice of benchmark tests

for IR is somewhat arbitrary and also limited by the length of the paper. In the present section,

we compare the size, power and robustness of the the IR test (1.10) for short memory (d = 0)

against the long–range dependent alternative (d > 0) to the V/S test, the Robinson (1994) test, the

CUSUM test of Berkes et al. (2006) and the SB-FDF test. More complete comparison results can be

found on the the following web site http://samos.univ-paris1.fr/ppub2005.html#prepub2006,

as supplementary material of this paper.

The V/S statistic introduced in Giraitis et al. (2003) is defined as

V

Nŝ2(q)
=
N−1

[∑N
k=1

(∑k
j=1(Xj − X̄)

)2

− 1
N

(∑N
k=1

∑k
j=1(Xj − X̄)

)2]

Nŝ2(q)
. (3.1)

The numerator V is an estimator of the variance of the partial sums process, while

ŝ2(q) = γ̂(0) + 2

q∑

j=1

(1 − j

q + 1
)γ̂(j), γ̂(j) := N−1

N−j∑

i=1

(Xi − X̄)(Xi+j − X̄), (3.2)

is a spectral estimator of s2 =
∑

j∈Z
cov(X0, Xj), and q = qN is the bandwidth parameter satisfying

q → ∞, q/N → 0. This estimator of s2 has been used by Lo (1991) and Kwiatkowski et al. (1992)

for respectively the R/S and the KPSS statistic. For all values of q, the V/S statistic has more

power than the KPSS statistic and is less sensitive to q than the R/S statistic; see Giraitis et al.

(2003a, 2003b) for further details. Thus, we do not consider the R/S and KPSS statistics in this

comparative study.

Under general stationarity and “short memory” assumptions on Xt (see Giraitis et al. (2003a,

Assumption S), the V/S statistic has a limit distribution N−1V/ŝ2(q) →D W , with

P(W ≤ x) = 1 + 2

∞∑

k=1

(−1)ke−2k2π2x.

A test for short-memory against LRD alternatives has a critical region of the form

V

ŝ2(q)
> cαN, (3.3)

cα being the critical values of this distribution. The V/S statistic was also studied in Leipus and

Viano (2003), Giraitis et al. (2003b), Giraitis et al. (2006), Aue et al. (2005). As it should be

clear from equation (3.2), the V/S statistic strongly relies on the constancy of the mean X̄. When

working with financial data that are not homogeneous, e.g., volatility series, this assumption is too

9



strong. Although the V/S statistic solves the issue of extreme sensitivity to q, the issue of sensitivity

to changes in X̄ remains.

The score r̂ test developed in Robinson (1994) and Gil-Alaña and Robinson (1997) tests H0 :

d = d0 against the fractional alternative d > d0, for models of the form

φ(L)Xt = ξt, (3.4)

where φ(z) = (1 − z)d and ξt is a covariance stationary sequence with zero mean and parametric

spectral density f(λ) = (σ2/2π)g(λ; τ) depending on unknown parameters τ ∈ R
k and σ2. Let

ϕ(λ) = Re
{

log
(
φ(eiλ)

)′
d=d0

}
= log |2 sin(λ/2)| , λ ∈ [−π, π). (3.5)

Define ξ̃t = (1 − L)d0Xt, Iξ̃(λ) = (1/2πN)
∣∣∣
∑N

t=1 ξ̃te
itλ
∣∣∣
2

, λj = 2πj/N , ζ̂(λ) = (∂/∂τ) log g(λ; τ̂ ),

σ2(τ) =
2π

N

∑

j

Iξ̃(λj)

g(λj ; τ)
, σ̂2 = σ2(τ̂ ), â = −2π

N

∑

j

′
ϕ(λj)

Iξ̃(λj)

g(λj ; τ̂ )
,

Â =
2

N



∑

j

′
|ϕ(λj)|2 −

∑

j

′
ϕ(λj)ζ̂(λj)

′

{∑

j

′
ζ̂(λj)ζ̂(λj)

′

}−1∑

j

′
ζ̂(λj)ϕ(λj)


 ,

where the sum
∑

j (respectively,
∑′

j) is taken over all λj ∈ (−π, π) (respectively, over all λj ∈
(−π, π), λj 6= 0), and τ̂ is a consistent estimator of τ . Note ξ̃t = Xt for testing the short memory

hypothesis d = 0. The score r̂ statistic is defined as

r̂ =
N1/2

σ̂2
Â−1/2â. (3.6)

Under H0: d = d0 and some additional assumptions on ξt in (3.4), see Robinson (1994), r̂ →D

N (0, 1), and a critical region is given by

r̂ > zα, (3.7)

where zα is the standard normal quantile.

In our study, d0 = 0 and ξt is a weakly dependent AR(k) process, i.e., g(λ; τ) =
∣∣∣1 −∑k

j=1 τje
ijλ
∣∣∣
2

,

τ = (τ1, . . . , τk), with k = 1 and k = 3. Results for AR(k) for other values of k and for the

Bloomfield process can be found at http://samos.univ-paris1.fr/ppub2005.html#prepub2006,

as supplementary material of this paper.

The MN statistic of Berkes et al. (2006) is based on a change–point estimator and two CUSUM

statistics applied to the sub-samples before and after the detected change-point.

3.1 Stochastic and deterministic trends

The empirical sizes (probabilities of Type I error) of the tests (1.10), (3.3) and (3.7) are studied for

short memory observations Xt of the form

Xt = Yt + ft,N , t = 1, . . . , N, (3.8)

Yt = aYt−1 + εt, εt ∼ iid N (0, 1), (3.9)

ft,N =

t∑

i=1

bi,Nci, ci ∼ iid N (0, b2), bi,N iid Bernoulli, (3.10)
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i.e., Xt is the sum of an AR(1) process Yt and a stochastic trend ft,N with P(bi,N = 1) = πN =

1 − P(bi,N = 0). The three processes {εi, 1 ≤ i ≤ N}, {bi,N , 1 ≤ i ≤ N} and {ci, 1 ≤ i ≤ N}
are mutually independent. Model (3.8), called a mixture model in the literature, can generate the

so-called “spurious long–memory” effect; see Diebold and Inoue (2001), Granger and Hyung (2004).

The V/S test in the presence of stochastic trend (3.10) was studied in Leipus and Viano (2003),

Aue et al. (2005). For a = b = 0 this is an iid process, while for b = 0, this is a weakly dependant

process, that tends to a process with a unit root as a tends to one.

Table 1 illustrates empirical sizes of the IR, the V/S and the score tests at the level α = 5% under

the model (3.8) for N = 1000, and selected values of parameters a, b; the probability of “trend jump”

is πN = 5/N = 0.005 in all samples. The choice of q in the range N1/3 to N1/2, as a reasonable

compromise between size and power distortions for the V/S test, was suggested in Giraitis et al.

(2003a, 2003b). Our simulations suggest a similar choice of m = O(N1/3) to O(N1/2) for the IR

statistic.

The results in Table 1 indicate that in the absence of a trend (b = 0), the V/S test has a better

size than the IR test, mainly for the highest values of the parameter a and the smallest windows

m = q = 10. Note also that for the highest values of a and b, the r̂ test with the AR(k) specifications

has a better size than both the IR and V/S tests. However, for lower values of a (a < 0.8) and in

the presence of a trend, the IR test has a better size than the two other tests. The size of the V/S

test rapidly deteriorates as b increases, while the IR test shows a much better robustness to trends

for the largest values of the bandwidth parameters m and q. Note that the bandwidths m and q are

not directly comparable.

Table 1: Frequency of rejection of the null hypothesis of short memory for sequences of AR(1) +

mixture trend processes, having on average 5 N (0, b2)-distributed jumps in a sample, (πN = 5/1000).

Test size 5%. N = 1000 (based on 10000 replications)

V/S IR r̂, ξt ∼ AR(k)

a b q = 10 q = 30 m = 10 m = 30 k = 1 k = 3

0.0 0.0 0.0444 0.0363 0.0515 0.0465 0.0795 0.0691

0.0 0.2 0.6709 0.6062 0.0566 0.0914 0.6854 0.7016

0.0 1.0 0.9581 0.9103 0.1833 0.4669 0.9496 0.6707

0.2 0.0 0.0531 0.0387 0.0845 0.0560 0.0851 0.0545

0.2 0.2 0.5947 0.5286 0.0874 0.0848 0.6059 0.5755

0.2 1.0 0.9484 0.8969 0.2026 0.4120 0.9255 0.7254

0.4 0.0 0.0648 0.0417 0.1351 0.0679 0.0464 0.0302

0.4 0.2 0.4885 0.4125 0.1438 0.0834 0.4123 0.3701

0.4 1.0 0.9292 0.8724 0.2410 0.3394 0.8791 0.7529

0.6 0.0 0.0867 0.0472 0.2802 0.0885 0.0134 0.0122

0.6 0.2 0.3636 0.2679 0.2854 0.0946 0.1420 0.1359

0.6 1.0 0.8893 0.8146 0.3634 0.2689 0.7244 0.6811

0.8 0.0 0.1836 0.0680 0.8023 0.1483 0.0124 0.0013

0.8 0.2 0.2918 0.1422 0.7960 0.1492 0.0187 0.0047

0.8 1.0 0.7929 0.6545 0.8163 0.2231 0.0543 0.0980
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We also consider the case of deterministic trends, with a possible break at time t = [δN ]

Xt = X0 + c0t+ c1I{t>[δN ]}(t− [δN ]) + εt, δ ∈ (0, 1), εt ∼ iid N (0, 1). (3.11)

We set δ = 0.5, i.e., the break in the trend occurs in the middle of the sample.

Table 2: Frequency of rejection of the null hypothesis of short memory for sequences of a process with

a deterministic trend and a possible break. Test size 5%. N = 1000 (based on 10000 replications)

V/S IR r̂, ξt ∼ AR(k)

c0 c1 q = 10 q = 30 m = 10 m = 30 k = 1 k = 3

0.001 0.0 0.0444 0.0363 0.0548 0.0654 1.0000 1.0000

0.001 0.002 1.0000 1.0000 0.0581 0.2043 1.0000 1.0000

From Table 2 we may conclude that the IR test is far more robust to deterministic trends than

both the V/S and the score r̂ tests.

Dolado et al. (2005) studied the power of their test only for a process similar to the one defined

by equation (3.11), so that we study the performance of their test for that process. Note that the

null hypothesis of their test is that the process is I(d), and the alternative hypothesis is that the

process is I(0) with a single break, so that it is not directly comparable with the IR, V/S and r̂ score

tests.

Table 3: Frequency of rejection of the null hypothesis of I(d) for sequences of a process with a

deterministic trend and a break, i.e., c0 = 0.001 c1 = 0.002. Test size 5%. N = 1000 (based on

10000 replications)

d Model B Model C

0.40 1.0000 1.0000

0.30 1.0000 1.0000

0.20 1.0000 1.0000

0.10 0.8832 0.8749

Model B corresponds to the “changing growth” model,

Xt = µ+ ν1t+ (ν2 − ν1)DN
⋆
t + εt, DN⋆

t = (t− [δN ]),

i.e., under the alternative hypothesis, the slope of the trend changes without change in the level,

while Model C corresponds to “the changing growth with crash” model,

Xt = µ1 + ν1t+ (ν2 − ν1)DNt + (µ2 − µ1)DUt + εt, DNt = tI(t>[δN ]), DUt = I(t>[δN ]),

i.e., under the alternative hypothesis there is a change in both the level and slope of the trend; see

Perron (1989) for further details. This test always rejects the null hypothesis of I(d) process for

d = 0.40, 0.30, 0.20, and nearly 90% of the times the null hypothesis d = 0.10.

Teyssière and Abry (2005) studied the performance of the wavelet estimator on a more general

process: an additive combination of a fractionally integrated process and a broken polynomial trend.

12



The wavelet estimator was not fooled by the overimposition of the broken polynomial trend, and

estimation biases were of the same order as the ones for the process without trend and break,

provided that the number of vanishing moments of the mother wavelet is large enough.

3.2 Robustness to memory breaks and heavy tails

Consider the so-called “FARIMA (0, d, 0) with memory breaks” model, defined by

Xt = εt +
∞∑

j=1

εt−jψ(j)

j∏

i=1

(1 − bt−i,N ), εt ∼ iid N (0, 1), (3.12)

where ψ(j) are the FARIMA(0, d, 0) coefficients, see (2.10), and bt,N are iid Bernoulli as in (3.10).

Conditionally on bi,N , i ∈ Z, the process in (3.12) is nonstationary and satisfies the FARIMA(0, d, 0)

equation (1−L)dXt = εt on intervals tk ≤ t < tk+1 between consecutive moments tk with btk,N = 1,

with zero “initial condition” Xu = 0, u < tk; moreover, Xt, t ≥ tk are conditionally independent

of εu, u < tk. The moments tk can be thus identified with “memory breaks”. If the probability

πN = P(b0,N = 1) = c/N is small, there are few “memory breaks” in the interval [1, N ] and their

number has approximate Poisson distribution with mean c. Note also that unconditionally the

process Xt in (3.12) is (strictly) stationary and exists for any d ∈ R, unless P(b0,N = 0) = 1. In the

last case, (3.12) is nothing but the usual stationary FARIMA(0, d, 0) process (d < 0.5).

From Table 5 one may infer that the V/S test has a slightly better power than the IR test under

the “pure FARIMA” model with Gaussian (α = 2) innovations. However, the advantage of the V/S

test disappears with the presence of memory breaks, see Table 4, in which case the IR test seems to

have somewhat better power against fractional alternatives. From Tables 4 and 5 we conclude that

for FARIMA models and models with memory breaks, the r̂ test has a better power than both the

V/S and IR tests.

Table 4: Frequency of rejection of the null hypothesis of short memory for sequences of

FARIMA(0, d, 0) with memory breaks processes, with the average distance 333.3 between breaks

(πN = 15/5000). Test size 5%. N = 5000 (based on 10000 replications)

V/S IR r̂, ξt ∼ AR(k)

d q = 10 q = 30 m = 10 m = 30 k = 1 k = 3

0.40 0.9775 0.8329 1.0000 0.9753 1.0000 0.9994

0.30 0.8946 0.6692 0.9973 0.8602 1.0000 1.0000

0.20 0.6564 0.4363 0.9177 0.5826 1.0000 0.9998

0.10 0.3017 0.2069 0.4678 0.2473 0.9996 0.9583

Table 5 is motivated by applications to financial econometrics, where it is argued that asset returns,

or their squares, may follow a heavy-tailed (e.g., α−stable) distribution. From this table we can see

that for the largest values of m the IR statistic is more robust than the V/S statistic for α–stable

innovations: unlike the V/S statistic, the IR statistic has still the correct size and its power is not

much affected. Surprisingly, the r̂ test is also quite robust to heavy tails and displays an excellent

size-power ratio, at least for the given parametric AR(k) specifications. Abry et al. (2003) observed

that the wavelet estimator of the memory parameter is robust to heavy–tailed distributions.
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Table 5: Frequency of rejection of the null hypothesis of short memory for sequences of

FARIMA(0, d, 0) processes with Gaussian (α = 2) and symmetric α–stable innovations. Test size

5%. N = 1000 (based on 10000 replications)

V/S IR r̂, ξt ∼ AR(k)

α d q = 10 q = 30 m = 10 m = 30 k = 1 k = 3

2.0 0.30 0.7182 0.4486 0.6752 0.3733 0.9999 0.8325

2.0 0.20 0.4816 0.2809 0.4170 0.2327 0.9964 0.7961

2.0 0.10 0.2209 0.1300 0.1864 0.1199 0.8334 0.5040

2.0 0.00 0.0432 0.0358 0.0514 0.0489 0.0805 0.0683

1.5 0.30 0.7538 0.4851 0.8906 0.5416 0.9979 0.8694

1.5 0.20 0.5228 0.2763 0.6441 0.3362 0.9940 0.8400

1.5 0.10 0.2025 0.1101 0.2773 0.1588 0.8769 0.5285

1.5 0.00 0.0303 0.0245 0.0648 0.0487 0.0499 0.0483

1.25 0.30 0.7920 0.5153 0.9656 0.6851 0.9928 0.8875

1.25 0.20 0.5660 0.2861 0.8093 0.4534 0.9915 0.8690

1.25 0.10 0.1984 0.1016 0.3966 0.2031 0.9096 0.5642

1.25 0.00 0.0224 0.0177 0.0762 0.0544 0.0387 0.0385

The above mentioned robustness of the IR test can be explained by the fact that the limit of the

IR statistic is quite insensitive to heavy tails and asymmetry of the DGP. In the case of iid Xt in

the domain of attraction of a stable law with index 0 < α < 2 and skewness parameter β ∈ [−1, 1],

the IR statistic converges to the expectation Λ(α, β) = E[|∆2Zα,β(0) + ∆2Zα,β(1)|/(|∆2Zα,β(0)| +
|∆2Zα,β(1)|)] where Zα,β(τ) is a corresponding Lévy process with independent and homogeneous

increments. Monte-Carlo simulations with large N = 107 show that the ”bias” Λ(α, β)−Λ(0) in the

IR test (1.10) due to a change of the limiting value of the IR statistic is quite small: Λ(1.5, 0)−Λ(0) ≈
0.5905 − 0.5881 = 0.0027, Λ(1.5, 1) − Λ(0) ≈ 0.5914 − 0.5881 = 0.0033, and does not change much

the outcome of the test.

3.3 Robustness to single change–point in the mean of an iid process

We consider the following iid process

Xt = µt + εt, εt ∼ N (0, 1). (3.13)

We consider two cases for µt:

• DGP A: µt = 0 for t = 1, . . . , N ,

• DGP B: µt = 0 for t = 1, . . . , [N/2], µt = 1/4 for t = [N/2] + 1, . . . , N .

From Table 6 we infer that, unlike the V/S and r̂ statistics, the IR statistic is not much affected by

changes in the mean.

The MN statistic of Berkes et al. (2006) strongly rejects the hypothesis d > 0 in both cases DGP

A and DGP B, although with the small change in the mean (1/4 in the case of DGP B), it rarely

detects the change itself.
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Table 6: Frequency of rejection of the null hypothesis of short memory for sequences of iid N (0, 1)

processes. Test size 5%. N = 1000 (based on 10000 replications)

V/S IR r̂, ξt ∼ AR(k) MN

DGP q = 10 q = 30 m = 10 m = 30 k = 1 k = 3 q = 10 q = 45

DGP A 0.0432 0.0358 0.0514 0.0489 0.0805 0.0683 0.0000 0.0000

DGP B 0.8780 0.8254 0.0562 0.0585 0.7270 0.7858 0.0022 0.0001

3.4 Squares of nonhomogeneous GARCH(1,1) processes

We consider several GARCH(1,1) volatility processes defined as

Xt = σtεt, σ2
t = ω + βσ2

t−1 + θX2
t−1, (3.14)

with two possible distributions for εt: εt ∼ N (0, 1) and εt ∼ t(7); the latter choice is motivated by

empirical evidence for financial returns; see Bollerslev (1987) and Teräsvirta (1996).

For one of these processes, the parameters (ω, β, θ) are constant so that the unconditional variance

of the process σ2 = ω/(1−θ−β) is constant as well. For the other processes, the parameters (ω, β, θ)

change at time t = [N/2] with different magnitudes for the change in the unconditional variance of

the process. Mikosch and Stărică (1999, 2003) have shown that nonstationarity in GARCH processes

generate spurious long–range dependence in the power transformation of level series, the intensity

of this spurious long–range dependence is positively correlated with the magnitudes of the changes

in the unconditional variance.

• DGP 0: GARCH(1,1):

ω = 0.1, β = 0.3, θ = 0.3.

• DGP 1: GARCH(1,1) process with abrupt change–point in the middle of the sample (large

changes in the parameters, large change in the unconditional variance):

ω = 0.1, β = 0.3, θ = 0.3 for t = 1, . . . , [N
2 ] (σ2 = 0.25), (3.15)

ω = 0.15, β = 0.65, θ = 0.25 for t = [N
2 ] + 1, . . . , N (σ2 = 1.5). (3.16)

• DGP 2: GARCH(1,1) process with abrupt change–point in the middle of the sample (large

changes in the parameters, small change in the unconditional variance):

ω = 0.1, β = 0.3, θ = 0.3 for t = 1, . . . , [N
2 ] (σ2 = 0.25), (3.17)

ω = 0.125, β = 0.6, θ = 0.1 for t = [N
2 ] + 1, . . . , N (σ2 = 0.4667). (3.18)

• DGP 3: GARCH(1,1) process with change–point in the middle of the sample, such that the

unconditional variance ω/(1 − θ − β) remains unchanged (σ2 = 0.25)

ω = 0.1, β = 0.3, θ = 0.3 for t = 1, . . . , [N
2 ], (3.19)

ω = 0.15, β = 0.25, θ = 0.15 for t = [N
2 ] + 1, . . . , N.
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• DGP 4: Smooth transition GARCH(1,1) process,

σ2
t = ω + ω∗F

(
t, [N

2 ]
)

+ (β + β∗F
(
t, [N

2 ])
)
σ2

t−1 + (θ + θ∗F
(
t, [N

2 ])
)
X2

t−1, (3.20)

with

ω = 0.1, β = 0.3, θ = 0.3,

ω∗ = 0.05, β∗ = 0.35, θ∗ = −0.05, γ = 0.05,

where F (t, k) = (1 + exp(−γ(t − k)))−1, γ is a strictly positive parameter controlling the

smoothness of the transition. If γ is large, DGP 4 reduces to DGP 1. We choose here a small

value for γ, i.e., the transition between the two processes is smooth.

• DGP 5: The parameters of this DGP are similar to DGP 2. However, there are two change–

points, at times [N
3 ] and [2N

3 ], i.e.,

ω = 0.1, β = 0.3, θ = 0.3 for t = 1, . . . , [N
3 ] and t = [2N

3 ] + 1, . . . , N (σ2 = 0.25),

ω = 0.125, β = 0.6, θ = 0.1 for t = [N
3 ] + 1, . . . , [ 2N

3 ] (σ2 = 0.4667).

The behavior of the V/S statistic for the sequences of absolute values |Xt| for the DGP 0, DGP 1

and DGP 4 has been studied in Teyssière (2003). For DGP 0, the sum of the parameters β+θ = 0.6,

which differs from what is observed with real data. We check whether this choice does not affect the

results of the Monte Carlo experiment by choosing β = 0.75 and θ = 0.07 from empirical estimation

results on homogeneous samples of the S&P 500 index by Mikosch and Stărică (2004). The empirical

size for the IR statistic is equal to 0.2715 and 0.0990 for m = 10 and m = 30 respectively, while

the empirical size for the V/S statistic is equal to 0.0971 and 0.0494 for for q = 10 and q = 30

respectively, which are close to the results reported in Table 7.

The GARCH processes satisfy Assumption 2.1 by Berkes et al. (2006). Note that DGP 5 contains

two change–points so that we use their testing procedure in the case of at most two change–points.

The bandwidth parameter q in this statistic is analogous to the V/S case; the choice q = [15 logN ] =

45 is suggested in Berkes et al. (2006).

Table 7: Frequency of rejection of the null hypothesis of short memory for sequences of squares

X2
t of GARCH(1,1) processes with N (0, 1) innovations. Test size 5%. N = 1000 (based on 10000

replications)

V/S IR r̂, ξt ∼ AR(k) MN

DGP q = 10 q = 30 m = 10 m = 30 k = 1 k = 3 q = 10 q = 45

DGP 0 0.0648 0.0379 0.2394 0.0910 0.5485 0.0550 0.0006 0.0000

DGP 1 0.9958 0.9468 0.6153 0.2548 0.9933 0.8131 0.3247 0.0899

DGP 2 0.8507 0.7764 0.2239 0.1090 0.9764 0.7759 0.0119 0.0043

DGP 3 0.0690 0.0465 0.1716 0.0789 0.5125 0.0737 0.0010 0.0000

DGP 4 0.9962 0.9584 0.5753 0.2488 0.9933 0.8259 0.3904 0.1205

DGP 5 0.7844 0.6899 0.2458 0.1390 0.9569 0.6867 0.0009 0.0000
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Table 8: Frequency of rejection of the null hypothesis of short memory for sequences of squaresX2
t of

GARCH(1,1) processes with t(7) innovations. Test size 5%. N = 1000 (based on 10000 replications)

V/S IR r̂, ξt ∼ AR(k) MN

DGP q = 10 q = 30 m = 10 m = 30 k = 1 k = 3 q = 10 q = 45

DGP 0 0.0580 0.0339 0.2435 0.0951 0.5389 0.0687 0.0005 0.0002

DGP 1 0.9707 0.8583 0.5801 0.2369 0.9908 0.8275 0.1591 0.0375

DGP 2 0.6686 0.5730 0.2351 0.1099 0.9012 0.5945 0.0082 0.0019

DGP 3 0.0613 0.0426 0.1852 0.0827 0.4660 0.0784 0.0004 0.0000

DGP 4 0.9729 0.8758 0.5381 0.2251 0.9908 0.8345 0.1735 0.0433

DGP 5 0.5954 0.4884 0.2505 0.1322 0.8736 0.5181 0.0000 0.0000

From Tables 7 and 8 we see that, unlike the V/S statistic, the IR statistic is not much affected by

nonstationarities of the GARCH processes. This is of real interest when analyzing the long–memory

properties of the squares of asset prices returns, as the empirical finding of the presence of long–range

dependence in the squares of financial returns might be the consequence of both nonstationarity in

the data and the use of statistical tools not robust to these nonstationarities; see Mikosch and Stărică

(2003). The test r̂ rejects the null hypothesis of an I(0) process when the unconditional variance of

the process is not constant, i.e., for all DGP except DGP 0 and DGP 3. The statistic MN , designed

with the purpose to discriminate between change-points and long memory, performs remarkably well

in this context.

Teyssière and Abry (2005) carried a wavelet analysis on the squares of DGP 0, DGP 1 and DGP

2, and multiple change–points GARCH processes, and observed that unlike the local Whittle and

log periodogram spectral estimators, the wavelet estimator of the memory parameter is not fooled

by the nonstationarities, and does not detect long–range dependence in the squared series.

4 Application to financial times series

The discussion below is similar to the so-called “R/S analysis”’, which consists in analyzing the

long–memory properties of financial time series using the R/S statistic. As it has been shown in

Giraitis et al. (2003a,b), the V/S statistic is more of interest as it is less sensitive to the choice of the

bandwidth parameter q so that the conclusions on the presence of long–range dependence reached

by the investigator do not depend too much on the choice of the bandwidth parameter. As for the

simulation study presented above, we will compare the results of the V/S and IR analysis, by using

their P–values, i.e., the observed size, instead of the standard α%–size tests.

We first consider three series of daily returns X1,t, X2,t, X3,t, where Xi,t = 100× log(Pi,t/Pi,t−1),

where Pi,t are shares on Bank of America (BoA), Oracle, and SAP, observed between April 1999 and

April 2002,N = 752. For these series, see Table 9, while both the V/S statistic and the score statistic

r̂ detect long–range dependence in the series of squared returns, the results of the IR statistic lead

us to the opposite conclusion: the null hypothesis d = 0 is accepted.

For the BoA series, the test by Berkes et al. (2006) detects one change point for q = 5, 10, 15, and

neither change–point nor long–range dependence for q = [15 logN ] = 43. For both the Oracle and

SAP series, this test does not detect neither long–range dependence nor change–points for all values
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Table 9: V/S, IR and score r̂ statistics for the series of squared returns

V/S IR r̂, ξt ∼ AR(k)

Series q V/S P–values m IR P–values k r̂ P–values

BoA 10 0.4662 0.0002 10 0.6433 0.0121 0 6.8593 3.4585e-12

20 0.3524 0.0019 20 0.6291 0.1229 1 6.5906 2.1905e-11

30 0.2919 0.0063 30 0.6059 0.3441 3 4.5082 3.2685e-06

[N1/2] 0.3051 0.0048 [N1/2] 0.6029 0.3612 5 5.5868 1.1564e-08

[N1/3] 0.4830 0.0001 [N1/3] 0.6525 0.0027

Oracle 10 0.2931 0.0061 10 0.6251 0.0652 0 4.7063 1.2614e-06

20 0.2327 0.0202 20 0.6843 0.0033 1 5.5311 1.5909e-08

30 0.1979 0.0402 30 0.6270 0.1895 3 3.9880 3.3320e-05

[N1/2] 0.2072 0.0335 [N1/2] 0.6308 0.1527 5 3.8839 5.1391e-05

[N1/3] 0.3008 0.0053 [N1/3] 0.6027 0.2639

SAP 10 0.2842 0.0073 10 0.5957 0.3774 0 4.8614 5.269e-07

20 0.2302 0.0212 20 0.6517 0.0350 1 6.7675 6.549e-12

30 0.2007 0.0380 30 0.5863 0.5163 3 3.5581 0.0002

[N1/2] 0.2058 0.0344 [N1/2] 0.5866 0.5142 5 2.7533 0.0029

[N1/3] 0.2927 0.0062 [N1/3] 0.6228 0.0660

of q.

Consider now a series of financial returns at higher frequency, i.e., 30 minutes spaced returns on

US dollar/British Pound Foreign Exchange (FX) rate, in ϑ–time (the daily seasonal components

have been removed; see Dacorogna et al., 1993, for the definition of ϑ–time) observed in 1996, i.e.,

N = 17520.
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Figure 3 : The series of returns on US dollar/British pound FX rate with the two estimated change–

points in variance (using the adaptive method) at times t = 2394 and t = 16164 represented by the

two vertical dark lines

The plot of this series, see Figure 3, shows that this series displays intermittency, and two signifi-
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cant changes in variance: we use a Gaussian penalized contrast function, and estimate the number

of intervals with an adaptive method; see Lavielle and Ludeña (2005), Lavielle and Teyssière (2005,

2006) for further details on this method.

We estimate both statistics on the whole sample, for a grid of bandwidths between [N1/3] and

[N1/2], i.e., 26, 40, 60, 80, 100, 132, see Table 10. While the V/S statistic detects long–range

dependence in the series of squared returns, with very low P–values, the IR statistic yields mixed

results, as for m = 40, 100, 132 the null hypothesis of no long–range dependence is accepted. For all

values of the bandwidth parameters, the P–values of the IR statistic are far greater than the ones of

the V/S statistic. We obtain here a more nuanced view on the presence of long-range dependence in

volatility: there might be long-memory in squared returns, but with a lower intensity than the one

that can be inferred from the results of the V/S statistic. This result is consistent with the wavelet

analysis of long–range dependence by Teyssière and Abry (2005), who observed that long–range

dependence is present in this series of squared returns, but with a far lower intensity, i.e., d = 0.0491

than the one obtained with the local Whittle and local log-periodogram spectral estimators.

Table 10: V/S, IR and score r̂ statistics statistics for the series of squared returns on 30-minutes

spaced GBP-USD FX rate

V/S IR r̂, ξt ∼ AR(k)

q V/S P–values m IR P–values k r̂ P–values

[N1/3] 1.2072 8.9425e-11 [N1/3] 0.6100 0.0030 0 50.3717 0.0000

40 1.0868 9.6421e-10 40 0.5918 0.3540 1 6.9013 2.5765e-12

60 0.9798 7.9703e-09 60 0.6127 0.0222 3 9.6007 3.9711e-22

80 0.8898 4.7048e-08 80 0.6179 0.0175 5 8.7394 1.1716e-18

100 0.8148 2.0709e-07 100 0.6106 0.0778

[N1/2] 0.7232 1.2618e-06 [N1/2] 0.5992 0.2721

The score test r̂ rejects always the null hypothesis of long-range dependence, which is not surprising

since this test is not robust to the presence of changes in the unconditional variance of the process.

The CUSUM test by Berkes et al. (2006) detects a change point for q = 5, and does not reject

the null hypothesis of weak dependence, for q = 10, 15, and q = [15 logN ] = 63.

5 Proofs

Proof of Proposition 2.1 (i) Let Sn :=
∑n

t=1(Xt−Am), n = 1, 2, . . . , then
∑m+j

t=j+1(Xt+m−Xt) =

∆2S[mT ], where T = j/m and ∆2 is the 2nd difference operator defined in section 1. Relation (2.2)

can be rewritten as

G−1
m

(
S[m(T1+τ1)] − S[mT1], S[m(T2+τ2)] − S[mT2]

)
→FDD G(d)

(
B1

d+.5(τ1), B
2
d+.5(τ2)

)
(5.1)

as m,T1, T2 − T1 → ∞. In particular, (5.1) implies

G−1
m

m+j∑

t=j+1

(Xt+m −Xt) = G−1
m ∆2S[mT ] (T = j/m)
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= G−1
m (S[m(T+2)] − S[mT ]) − 2D−1

m (S[m(T+1)] − S[mT ])

→D G(d) (Bd+.5(2) − 2Bd+.5(1)) = G(d)∆2Bd+.5(0)

as m→ ∞, j/m = T → ∞. In a similar way,

G−1
m

( m+j∑

t=j+1

(Xt+m −Xt),

2m+j∑

t=j+m+1

(Xt+m −Xt)
)

= G−1
m

(
∆2S[mT ],∆

2S[m(T+1)]

)

→D G(d)
(
∆2Bd+.5(0),∆2Bd+.5(1)

)
. (5.2)

Therefore, as m→ ∞, j/m→ ∞, so

ηm(j) :=

∣∣∣G−1
m

∑j+m
t=j+1(Xt+m −Xt) + G−1

m

∑j+2m
t=j+m+1(Xt+m −Xt)

∣∣∣
∣∣∣G−1

m
∑j+m

t=j+1(Xt+m −Xt)
∣∣∣+
∣∣∣G−1

m
∑j+2m

t=j+m+1(Xt+m −Xt)
∣∣∣

→D

∣∣∆2Bd+.5(0) + ∆2Bd+.5(1)
∣∣

∣∣∆2Bd+.5(0)
∣∣+
∣∣∆2Bd+.5(1)

∣∣ (5.3)

and hence

Eηm(j) → Λ(d) (m→ ∞, j/m→ ∞), (5.4)

by definition of Λ(d) in (1.3). Relation (2.5) now easily follows by the dominated convergence

theorem, as 0 ≤ Eηm(j) ≤ 1 and

IR =
1

N − 3m

N−3m−1∑

j=0

ηm(j). (5.5)

Consider (2.6). With (2.5) in mind, it suffices to show

var(IR) → 0. (5.6)

We have by (5.5)

var(IR) =
1

(N − 3m)2

N−3m−1∑

j1,j2=0

cov (ηj1 , ηj2) . (5.7)

It suffices to show that

Eηm(j1)ηm(j2) → Λ(d)2, Eηm(j1)Eηm(j2) → Λ(d)2, (5.8)

as m, j1/m, (j2 − j1)/m → ∞. Clearly, the second relation in (5.8) follows from (5.4). Next, by

Assumption (A1),

G−1
m

( m+j1∑

t=j1+1

(Xt+m −Xt),

2m+j1∑

t=j1+m+1

(Xt+m −Xt),

m+j2∑

t=j2+1

(Xt+m −Xt),

2m+j2∑

t=j2+m+1

(Xt+m −Xt)
)

= G−1
m

(
∆2S[mT1],∆

2S[m(T1+1)],∆
2S[mT2],∆

2S[m(T2+1)]

)

→D G(d)
(
∆2B1

d+.5(0),∆2B1
d+.5(1),∆2B2

d+.5(0),∆2B2
d+.5(1)

)
. (5.9)

as m → ∞, j1/m = T1 → ∞, j2/m = T2 → ∞, (j2 − j1)/m = T2 − T1 → ∞. Whence and from the

definition of ηm(j) the first relation in (5.8) easily follows. This proves (5.6) and part (i).
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(ii) The proof is similar to that of part (i). Write (mGm)−1
∑j+m

t=j+1(Xt+m −Xt) =
∫ 1

0
hm,T (τ)dτ ,

where T := (j + 1)/m,

hm,T (τ) := G−1
m (X[m(τ+1+T )] −X[mT ]) −G−1

m (X[m(τ+T )] −X[mT ]).

By Assumption (A2),

hm,T (τ) →FDD G(d)(Bd−.5(τ + 1) − Bd−.5(τ)) (5.10)

as m, (j + 1)/m = T → ∞. It is easy to check that the sequence of random processes {hm,T (τ), τ ∈
[0, 1]} satisfies the weak convergence criterion in L1[0, 1] due to Cremers and Kadelka (1986). Indeed,

from (2.4), for any τ ∈ [0, 1]

E|hm,T (τ)| ≤ (Eh2
m,T (τ))1/2 = G−1

m

(
E(X[mτ ]+m+j+1 −X[mτ ]+j+1)

2
)1/2 ≤ C

1/2
2

which also implies E|hm,T (τ)| → |G(d)|E|Bd−.5(τ + 1)−Bd−.5(τ)| and therefore the convergence in

(5.10) extends to the weak convergence in L1[0, 1] so that

(mGm)−1

j+m∑

t=j+1

(Xt+m −Xt) →D G(d)

∫ 1

0

∆Bd−.5(τ)dτ

as m, (j + 1)/m = T → ∞. In a similar way, from Assumption (A2) we obtain

(mGm)−1
( m+j1∑

t=j1+1

(Xt+m −Xt),

2m+j1∑

t=j1+m+1

(Xt+m −Xt),

m+j2∑

t=j2+1

(Xt+m −Xt),

2m+j2∑

t=j2+m+1

(Xt+m −Xt)
)

→D G(d)
( ∫ 1

0

∆B1
d−.5(τ)dτ,

∫ 1

0

∆B1
d−.5(τ + 1)dτ,

∫ 1

0

∆B2
d−.5(τ)dτ,

∫ 1

0

∆B2
d−.5(τ + 1)dτ

)
,

as m → ∞, j1/m = T1 → ∞, j2/m = T2 → ∞, (j2 − j1)/m = T2 − T1 → ∞. The remaining details

are similar as in the proof of (i). Proposition 2.1 is proved. �

Proof of Proposition 2.2 follows by standard Fourier series argument and is omitted. �

Proof of Proposition 2.3. Let first −.5 < d < .5. Write

[m(T+τ)]∑

t=1+[mT ]

Xt =

[m(T+τ)]∑

t=1+[mT ]

X0
t + Sm,T (τ),

where X0
t :=

∑t
s=−∞ ψ(t− s)ξs is a stationary FARIMA(0, d, 0) process, and

Sm,T (τ) :=

0∑

s=−∞

[m(T+τ)]∑

t=1+[mT ]

ψ(t− s)ξs,

Therefore relation (2.2) for Xt follows from the fact that this relation holds for the stationary

FARIMA(0, d, 0) process X0
t , under the normalization Gm = m−d−.5, see Bružaitė and Vaičiulis

(2005), and

m−2d−1ES2
m,T (τ) → 0 (m→ ∞, T → ∞). (5.11)
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But

ES2
m,T (τ) =

∞∑

s=0




[m(T+τ)]∑

t=1+[mT ]

ψ(t+ s)




2

≤ C

∫ ∞

0

(∫ m(T+τ)

mT

(t+ s)d−1dt

)2

ds

= Cm2d+1

∫ ∞

0

(∫ T+τ

T

(t+ s)d−1dt

)2

ds = o(m2d+1).

Next, let .5 < d < 1.5, d 6= 1. Let

Y 0
t :=

t∑

s=−∞

∆ψ(t− s)ξs, ∆ψ(t) := ψ(t) − ψ(t− 1) (t ≥ 1), ∆ψ(0) := 1. (5.12)

Note ∆ψ(j) ∼ jd−2/Γ(d− 1) (j → ∞) and so
∑∞

j=0 (∆ψ(j))
2
<∞ (1 < d < 1.5),

∑∞
j=0 |∆ψ(j)| <

∞,
∑∞

j=0 ψ(j) = 0 (.5 < d < 1). Therefore Y 0
t in (5.12) is well-defined, as a stationary moving

average process, and satisfies Assumption (A.1) with d replaced by d − 1 ∈ (−.5, .5), see Bružaitė

and Vaičiulis (2005). We have

X[m(T+τ)] −X[mT ] =

[m(T+τ)]∑

t=[mT ]+1

Y 0
t + Um,T (τ),

where

Um,T (τ) :=

0∑

s=−∞

[m(T+τ)]∑

t=1+[mT ]

∆ψ(t− s)ξs

satisfies m−2(d−1)−1EU2
m,T (τ) → 0 (m → ∞, T → ∞) (the proof of the last relation is analo-

gous to (5.11). We have proved that Xt satisfies Assumption (A.2). The statement of Proposition

2.3 in the case d = 1 is obvious, as Xt reduces to a sum of iid rv’s. Proposition 2.3 is proved. �

Proof of Theorem 2.4 As explained in Section 2, the theorem follows from the inequality (2.19)

and the asymptotics (2.20) - (2.23).

Proof of (2.20) - (2.23). Without loss of generality, assume c0 = 1. We shall separately consider the

cases (i) (−.5 < d < .5) and (ii) (.5 < d < 1.5).

Case (i). Let r(t) =
∫ π

−π eitxf(x)dx be the covariance of Xt. Then

V 2
m = 2

m∑

t,s=1

r(t− s) − 2

m∑

t,s=1

r(t − s+m) = 4

∫ π

−π

f(x)
sin4(mx/2)

sin2(x/2)
dx, (5.13)

and, similarly,

Rm = 4

∫ π

−π

f(x) cos(mx)
sin4(mx/2)

sin2(x/2)
dx. (5.14)

Consider the integral

J(a,m) :=

∫ π

0

xa sin4(mx/2)

sin2(x/2)
dx = 4m1−a

∫ ∞

0

xa−2 sin4(x/2)gm(x)dx,

where −1 < a < 1 and

gm(x) :=

{
(x/2m)2

sin2(x/2m)
, 0 < x < mπ,

0, x > mπ.
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Note for each x > 0, gm(x) → 1 (m → ∞). Next,
∫∞

0
xa−2 sin4(x/2)|gm(x) − 1|dx ≤ I1 + I2, where

I1 :=

∫ ∞

mπ

xa−2dx, I2 :=

∫ mπ

0

xa−2 sin4(x/2)
(x/2m)2 − sin2(x/2m)

sin2(x/2m)
dx

Here, I1 ≤ Cma−1. Using the bounds: sin(x) ≥ c1x and |x2 − sin2(x)| ≤ c2x
4 (0 < x < π/2), where

c1, c2 > 0 are some constants, we obtain

I2 ≤ C

∫ mπ

0

xa−2 min(x4, 1)(x/m)2dx ≤ Cma−1.

Note also I(a) :=
∫∞

0
xa−2 sin4(x/2)dx <∞. We thus obtain that for a ∈ (−1, 1),

J(a,m) = 4I(a)m1−a +O(1) (m → ∞). (5.15)

Applying (5.15) with a = −2d ∈ (−1, 1) and a = −2d + β ∈ (−1, 1) (as 0 < β < 2d + 1) we

obtain relation (2.20), with V (d) = 4
∫∞

0 x−2d−2 sin4(x/2)dx. In a similar way, (2.21) follows

with R(d) = 4
∫∞

0
x−2d−2 cos(x) sin4(x/2)dx. To explicitly obtain the above integrals, use (2.8)

and the identities
∫∞

0
x−2d−2 sin2(x/2)dx = K(d + .5)/8 (see Taqqu (2003, (9.8)) and sin4(x/2) =

− 1
4 sin2(x) + sin2(x/2), cos(x) sin4(x/2) = 1

8

(
− sin2(3x/2) + 4 sin2(x) − 7 sin2(x/2)

)
.

Case (ii) follows similarly to (i), by writing Vm, Rm in terms of the spectral density f(x) of Ut =

Xt −Xt−1:

V 2
m =

∫ π

−π

sin4(mx/2)

sin4(x/2)
f(x)dx, (5.16)

Rm =

∫ π

−π

cos(mx)
sin4(mx/2)

sin4(x/2)
f(x)dx, (5.17)

c.f. (5.13), (5.14). The remaining details are similar to those of part (i) and are omitted.

Proof of (2.19). Let ρm := EY 0Y 1, ρ := EZ0Z1 = ρ(d). Let ξ0, ξ1 be mutually independent standard

N (0, 1) random variables. Then

(Y 0, Y 1) =D (ξ0, ρmξ0 + (1 − ρ2
m)1/2ξ1), (Z0, Z1) =D (ξ0, ρξ0 + (1 − ρ2)1/2ξ1), (5.18)

in the sense of equality of distributions. By (2.17),

EIR− Λ(d) = E

[ |ξ0 + (ρmξ0 + (1 − ρ2
m)1/2ξ1)|

|ξ0| + |ρmξ0 + (1 − ρ2
m)1/2ξ1|

− |ξ0 + (ρξ0 + (1 − ρ2)1/2ξ1)|
|ξ0| + |ρξ0 + (1 − ρ2)1/2ξ1|

]

=

∫ ρm

ρ

E

[
∂φ(r; ξ0, ξ1)

∂r

]
dr, (5.19)

where φ(r;x0 , x1) := (|x0 + (rx0 + (1 − r2)1/2x1))/(|x0| + |rx0 + (1 − r2)1/2x1|). It is easy to check

that |∂φ(r;x0, x1)/∂r| ≤ C/(1− r2) is bounded uniformly in x0, x1 provided r2 is separated from 1:

1 − r2 > C1 > 0. Then (2.19) is immediate from (5.19). Theorem 2.4 is proved. �

Proof of Theorem 2.5 (i) Recall the definitions of Yj(m) in (2.28) and Zd(τ) in (1.5). We start

with the relation

Ym([mτ ]) →FDD Zd(τ), (5.20)
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which holds in view of Gaussianity of Xt and the assumptions on the spectral density f(x). Next,

(N/m)var(IR) =
N

N − 3m

∑

|j|<N−3m

m−1cov (ηm(0), ηm(j))

(
1 − |j|

N − 3m

)
, (5.21)

Using the convergence (5.20), one can easily show that as m→ ∞ and j/m→ τ ∈ R, so

cov (ηm(0), ηm(j)) → cov

( |Zd(0) + Zd(1)|
|Zd(0)| + |Zd(1)| ,

|Zd(τ) + Zd(τ + 1)|
|Zd(τ)| + |Zd(τ + 1)|

)
. (5.22)

From Lemma 5.1, (5.35) and Arcones (1994, Lemma 1) it follows that there exists a constant C > 0

such that for any m, j ≥ 1

|cov (ηm(0), ηm(j))| ≤ C(j/m)−2. (5.23)

Then (2.25) follows from (5.21), (5.22), the dominated convergence theorem and (5.23).

The proof of (2.26) follows the usual scheme of the proof of CLT’s for sums of subordinated

Gaussian functionals using Hermite expansion and the diagram formula; see e.g., Breuer and Major

(1983), Giraitis and Surgailis (1985), Chambers and Slud (1989), Arcones (1994). (However, these

results do not directly apply to our situation since Ym(j), 0 ≤ j < N − 3m form a triangular array.)

Therefore, we present an outline of the proof of the CLT (Steps 1-3 below).

Step 1: Hermite expansion. Let

ξ0m(j) := Ym(j), ξ1m(j) := (1 − ρ2
m)−1/2(Ym(j +m) − ρmYm(j)). (5.24)

Then for each j,m, ξ0m(j), ξ1m(j) are independent and have a standard Gaussian distribution;

moreover, Ym(j) = ξ0m(j), Ym(j +m) = ρmξ0m(j) + (1 − ρ2
m)1/2ξ1m(j); see (5.18). Let

gm(x0, x1) :=
|x0 + ρmx0 + (1 − ρ2

m)1/2x1|
|x0| + |ρmx0 + (1 − ρ2

m)1/2x1|
. (5.25)

Then ηm(j) = gm (ξ0m(j), ξ1m(j)) is a nonlinear function (bounded by 1) in standardized Gaussian

variables of (5.24). One can write the Hermite expansion:

ηm(j) = Eηm(j) +
∑

k0,k1≥0:k0+k1≥2

c
(m)
k0,k1

k0! k1!
Hek0 (ξ0m(j))Hek1 (ξ1m(j)) , (5.26)

convergent in mean square, where

c
(m)
k0,k1

:= E [gm(ξ0, ξ1)Hek0(ξ0)Hek1(ξ1)] , (5.27)

where ξ0, ξ1 ∼ N (0, 1) are uncorrelated, and where Hek(x) = (−1)kex2/2(e−x2/2)(k), k = 0, 1, . . . are

Hermite polynomials. Note Eηm(j) = Egm (ξ0m(j), ξ1m(j)) = c
(m)
0,0 and c

(m)
1,0 = E[ξ0gm(ξ0, ξ1)] =

0, c
(m)
0,1 = E[ξ1gm(ξ0, ξ1)] = 0 which follows by symmetry of gm in (5.25).

Step 2: approximation by finite sum of Hermite polynomials. Let K ≥ 1 be a sufficiently large

integer. From (5.26) we can write

IR− EIR = SK + S̃K , (5.28)
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where SK := (N − 3m)−1
∑N−3m−1

j=0 ηm,K(j), S̃K := (N − 3m)−1
∑N−3m−1

j=0 η̃m,K(j), and where

ηm,K(j) :=
∑

2≤k0+k1≤K

c
(m)
k0,k1

k0!k1!
Hek0(ξ0m(j))Hek1(ξ1m(j)), (5.29)

η̃m,K(j) :=
∑

k0+k1>K

c
(m)
k0,k1

k0!k1!
Hek0(ξ0m(j))Hek1(ξ1m(j)). (5.30)

Similarly to (5.23) we obtain |cov (η̃m,K(0), η̃m,K(j))| ≤ δ(K)(j/m)−2, where δ(K) does not depend

on m, j ≥ 1, and vanishes as K → ∞. As a consequence, the second term on the r.h.s. in (5.28) is

negligible, and it suffices to prove the CLT for the (truncated) term SK only, namely,

(N/m)1/2SK →D N (0, σ2
K), (5.31)

as N,m,N/m→ ∞, where limK→∞ σ2
K = σ2(d) (the proof of the last fact is similar to (2.25) above).

Step 3: proof of (5.31). Similarly to (2.25), one can show (N/m)ES2
K → σ2

K (N,m,N/m →
∞). Therefore the proof of (5.31) reduces to asymptotic normality of sums of (bivariate) Hermite

polynomials in (5.29). In other words, it suffices to show that for any p ≥ 3 and all sufficiently large

N,m ≥ 1

cum(S(q01, q11), . . . , S(q0p, q1p)) = o
(
(N/m)−p/2

)
, (5.32)

where cum(·, . . . , ·) stands for joint cumulant,

S(k0, k1) :=
1

N − 3m

N−3m−1∑

j=0

Hek0(ξ0m(j))Hek1(ξ1m(j)),

and where qij ≥ 0 (i = 0, 1, j = 1, . . . , p) are arbitrary integers such that q01+q11 ≥ 2, . . . , q0p+q1p ≥
2. By the diagram formula, see e.g., Arcones (1994), Giraitis and Surgailis (1985), the cumulant in

(5.32) can be written as a sum of contributions J(γ) corresponding to all connected diagrams γ of

the table

T =




(1, 1) (1, 2) . . . (1, q01 + q11)

(2, 1) (2, 2) . . . (2, q02 + q12)

. . .

(p, 1) (p, 2) . . . (p, q0p + q1p)


 , (5.33)

and (5.32) follows from J(γ) = o
(
(N/m)−p/2

)
, for any given connected diagram γ. The last relation

can be proved using the bound in Lemma 5.1 (i) and the (generalized) Hölder inequality in Giraitis

and Surgailis (1985, (2.13)) (see also Surgailis (2003, Proposition 3.1)). This concludes the proof of

(5.31) and part (i) of Theorem 2.5, too.

(ii) is very similar to that of (i). Consider the representation (2.29), with Yj defined as in (2.28).

From the assumptions on Xt and spectral density f(x) of Ut, it easy to verify the relation (5.20).

Then (2.25) follows from (5.22) as in part (i), and from the bound

|cov (ηm(0), ηm(j))| ≤ C|j/m|−2min(1,3−2d), (5.34)

as 2 min(1, 3 − 2d) > 1 for .5 < d < 1.25. The proof of (5.34) is exactly similar to that of (5.23),

with the difference that Lemma 5.1 (i) must be replaced by Lemma 5.1 (ii). Theorem 2.5 is proved.

�
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Lemma 5.1 (i) Let the assumptions of Theorem 2.5 (i) be satisfied. Then there exists a constant

C > 0 such that for any integers m, j ≥ 1

|cov (Ym(0), Ym(j))| ≤ C(j/m)−1. (5.35)

(ii) Let the assumptions of Theorem 2.5 (ii) be satisfied. Then there exists a constant C > 0 such

that for any integers m, j ≥ 1

|cov (Ym(0), Ym(j))| ≤ C





(j/m)−1, .5 < d < 1,

(j/m)−1 (1 + log(1 + (j/m))) , d = 1,

(j/m)3−2d, 1 < d < 1.5.

(5.36)

Proof. (i) Let ρm(j) = cov(Ym(0), Ym(j)). Similarly as in (5.13)-(5.14),

ρm(j) = V −2
m

m∑

t,s=1

(2r(j + t− s) − r(j +m+ t− s) − r(j −m+ t− s))

= 4V −2
m

∫ π

−π

f(x) cos(jx)
sin4(mx/2)

sin2(x/2)
dx

= −8V −2
m j−1

∫ π

0

sin(jx)F ′
m(x)dx,

where Fm(x) := f(x) sin4(mx/2)/ sin2(x/2). Hence using V 2
m ∼ const.m2d+1 we obtain

|ρm(j)| ≤ Cm−2d−1j−1

∫ π

0

|F ′
m(x)|dx. (5.37)

Note F ′
m(x) → 0 (x→ 0) by condition (2.12) and

∣∣∣
(sin4(mx/2)

sin2(x/2)

)′∣∣∣ ≤ C

{
m4x, 0 < x < 1/m,

mx−2, x > 1/m
. (5.38)

From (2.12) and (5.38) we obtain

∫ 1/m

0

|F ′
m(x)|dx ≤ C

∫ 1/m

0

(
x−2dm4x+ x−2dm2

)
dx = Cm2d+2,

∫ π

1/m

|F ′
m(x)|dx ≤ C

∫ π

1/m

(
x−2dmx−2 + x−2d−1x−2

)
dx ≤ Cm2d+2,

implying (5.35) by (5.37).

(ii) As EY 2
m(j) = 1, it suffices to prove the statement for j ≥ m. Furthermore, for simplicity we

shall assume that j is an even integer, j ≥ 2. Similarly as in (5.13)-(5.14),

ρm(j) = V −2
m E

( m∑

t=1

∑

t<s≤t+m

Us

)( j+m∑

t′=j+1

∑

t′<s′≤t′+m

Us′

)

= 2V −2
m

∫ π

0

f(x) cos(jx)
sin4(mx/2)

sin4(x/2)
dx =: 2V −2

m I. (5.39)

Write I =
∫ 2π/j

0 . . .+
∫ π

2π/j . . . =: I1 + I2. Here,

I2 = j−1

∫ πj

2π

cos(y)f (y/j)
sin4(my/2j)

sin4(y/2j)
dy = j−1

j/2−1∑

q=1

I2(q),
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where

I2(q) :=

∫ 2πq+π

2πq

cos(y)

(
f

(
y

j

)
sin4(my/2j)

sin4(y/2j)
− f

(
y + π

j

)
sin4(m(y + π)/2j)

sin4((y + π)/2j)

)
dy

=

∫ 2πq+π

2πq

cos(y)

(
F̃m

(
y

j

)
− F̃m

(
y + π

j

))
dy,

where F̃m(x) := f(x) sin4(mx/2)/ sin4(x/2). Using condition (2.27) and the bound

∣∣∣∣
( sin4(mx/2)

sin4(x/2)

)′∣∣∣∣ ≤ C

{
m6x, 0 < x < 1/m,

x−5, 1/m < x < π,

we obtain

|F̃ ′
m(x)| ≤ |f ′(x)|

( sin4(mx/2)

sin4(x/2)

)
+ |f(x)|

∣∣∣∣
( sin4(mx/2)

sin4(x/2)

)′∣∣∣∣

≤ C

{
x1−2dm4 + x2−2dm6x = m4x1−2d, if 0 < x < 1/m,

x1−2dx−4 + x2−2dx−5 = x−3−2d, if 1/m < x < π.
(5.40)

Then for 1 ≤ q ≤ j/m, using the first bound in (5.40), we obtain

|I2(q)| ≤ C|F̃ ′
m(2πq/j)|j−1 ≤ Cm4j2d−2q1−2d,

and

j−1

j/m∑

q=1

|I2(q)| ≤ Cm4j2d−3

j/m∑

q=1

q1−2d ≤ Cm2d+1





(j/m)−1, .5 < d < 1,

(j/m)(1 + log(j/m)), d = 1,

(j/m)2d−3, 1 < d < 1.5.

On the other hand, for j/m ≤ q ≤ j, using the second bound in (5.40), we obtain

|I2(q)| ≤ C|F̃ ′
m(2πq/j)|j−1 ≤ Cq−2d−3j2+2d,

and

j−1
∑

q≥j/m

|I2(q)| ≤ Cj2d+1
∑

q≥j/m

q−3−2d ≤ Cm2d+1(j/m)−1.

Consequently,

|I2| ≤ Cm2d+1





(j/m)−1, .5 < d < 1,

(j/m)−1 (1 + log(1 + (j/m))) , d = 1,

(j/m)2d−3, 1 < d < 3/2.

(5.41)

Finally, using (2.14),

|I1| ≤ Cm4

∫ 2π/j

0

f(x)dx ≤ Cm4j2d−3 = Cm2d+1(j/m)2d−3. (5.42)

The statement of the lemma follows from (5.41), (5.42) and V 2
m ∼ c0V (d)m2d+1 (see (2.20)). �
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6 Properties of the second increment of fBm

In this section, we discuss some properties of the process Zd(τ), τ ∈ R (the second increment of

fBm) defined in (1.5).

Proposition 6.1 The processes Zd(τ), τ ∈ R in (1.5) is well-defined and stationary Gaussian pro-

cess, for any −.5 < d < 1.5, d 6= .5. It has zero mean, unit variance EZ2
d(τ) = 1 and the covariance

given in (1.6); more explicitly,

EZd(0)Zd(τ) =
1

2(4 − 4d+.5)

(
− |τ + 2|2d+1 + 4|τ + 1|2d+1 − 6|τ |2d+1

+4|τ − 1|2d+1 − |τ − 2|2d+1
)
, (6.1)

The process Zd(τ) admits the stochastic integral representation

Zd(τ) = C(d+ .5)

∫

R

∆2
τ (τ − x)d

+M(dx), (6.2)

where M(dx) is a standard Gaussian white noise with zero mean and variance dx, and where

C(H) :=
√

Γ(2H + 1)| sin(πH)|/Γ(H + .5)2|4 − 4H |.

Proof. Equation (6.1) follows from (1.5), (2.1) and elementary integration; eq. (6.2) is immediate

from (1.5) and the stochastic integral representation of fBm given in Taqqu (2003). (One can easily

check that the integrand in (6.2) belongs to L2(R) so that the stochastic integral is well-defined.) �

Remark 6.1 (i) For d = .5, the process Z.5(τ), τ ∈ R can be defined by continuity, as a stationary

Gaussian process with zero mean and the covariance

EZ.5(0)Z.5(τ) =
1

16 log 2

(
(τ + 2)2 log(τ + 2)2 − 4(τ + 1)2 log(τ + 1)2 + 6τ2 log τ2

−4(τ − 1)2 log(τ − 1)2 + (τ − 2)2 log(τ − 2)2
)

= − 1

16 log 2
∆2

s∆
2
t (t− s)2 log(t− s)2

∣∣∣
t−s=τ

. (6.3)

(ii) From Taylor expansion of (6.1),

EZd(0)Zd(τ) ∼ (2d+ 1)(2d)(2d− 1)(2d− 2)

2(4d+.5 − 4)
τ2d−3 (τ → ∞). (6.4)

The asymptotic relation (6.4) holds for all −.5 < d < 1.5, d 6= 0, .5, 1. Note the asymptotic constant

vanishes for d = 0 and d = 1. When d = 0 or d = 1, the autocovariance function is a piecewise

polynomial, in particular,

EZ1(0)Z1(τ) = 2−3





6τ3 − 12τ2 + 8, 0 ≤ τ ≤ 1

−2τ3 + 12τ2 − 24τ + 16, 1 ≤ τ ≤ 2

0, τ ≥ 2.
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Proposition 6.2 The function Λ(d) in (1.3) satisfies Λ(d) = Λ0(ρ(d)), where ρ(d),Λ0(r) are given

in (1.4), (1.7), respectively. The function Λ(d) is strictly increasing on the interval (−.5, 1.5) and

Λ(1.5) = 1. In particular,

Λ(0) = Λ0(−.5) =
2

π
arctan

√
1

3
+

1

π

√
1

3
log 4 = .588101 . . . ,

Λ(1) = Λ0(.25) =
2

π
arctan

√
5

3
+

1

π

√
5

3
log
(8

5

)
= .773572 . . . .

Proof. From the definition and the change of variables x1 = a cosφ, x2 = a sinφ,

Λ0(r) =
1

2π
√

1 − r2

∫

R2

|x1 + x2|
|x1| + |x2|

e
− 1

2(1−r2)
(x2

1−2rx1x2+x2
2)dx1dx2

=
2
√

1 − r2

π

∫ π/4

0

(
1

1 − r sin(2φ)
+

cosφ− sinφ

cosφ+ sinφ

1

1 + r sin(2φ)

)
dφ

=
2

π
arctan

(√
1 + r

1 − r

)
+

√
1 − r2

π(1 − r)

(
log 2 − log(1 + r)

)
,

proving (1.7). The strict monotonicity of Λ(d) follows from the monotonicity of ρ(d), d ∈ (−.5, 1.5)

and Λ0(r), r ∈ (−1, 1), which follows from

Λ′
0(r) =

1

π
√

(1 + r)(1 − r)3
log

(
2

1 + r

)
> 0 (−1 < r < 1).

Proposition 6.2 is proved. �
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