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1. Introduction 

 

The optimal scale level of an economic activity is usually of great interest both from a 

productivity point of view and from a market point of view. The issue of economies of 

scale is not limited to manufacturing industries. It is now especially topical in previously 

regulated or state-owned industries, like electricity, water, telecom, etc, but also in many 

traditional public sector activities like hospitals and schools.  For example in electricity 

distribution, the debate has been lively about the minimum efficient scale and the 

potential for increased productivity by further exploitation of economies of scale, while 

in electricity generation important issues are whether minimum efficient scales will 

allow competitive markets to be established and if the existing size distribution of firms 

is consistent with a competitive market outcome. From a policy point of view, 

examination of scale properties and scale efficiency of production units is, therefore, 

paramount.  

 

Studies of scale economies are traditionally based on the neoclassical cost function 

approach. However, the surge in production frontier-based analyses of productive 

efficiency of all kinds of economic activities during the last decade has also stimulated 

examination of scale economies and scale efficiency of production units within this 

framework. Empirical research on production frontiers is largely dominated by two 

approaches, viz., the parametric stochastic frontier analysis (SFA) approach, and the 

non-parametric deterministic data envelopment analysis (DEA) approach1. While the 

scale properties of parametric production and cost functions are relatively well known, 

the corresponding properties of the non-parametric functions are less explored. The 

main objective of this study is an empirical exploration of scale issues within the DEA 

model. 

 

                                                 
1 For a recent survey on SFA, see Kumbhakar and Lovell (2000), and for a brief survey of the evolution 
of DEA and a bibliography of about 700 published articles and dissertations applying DEA during the 
period 1978-1995, see Seiford (1996). 
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With the emergence of a large number of user-friendly software packages, the DEA 

model has now become easily accessible for practitioners. It offers a seemingly simple 

method for estimation of efficiency, and it accommodates easily multiple-output 

multiple-input technologies. Moreover, it provides a lot of useful information – not only 

about efficiency but also, for example, about optimal scale. Indeed, one of the most 

frequently conducted investigations concerns returns to scale and the optimal size of 

decision-making units (DMUs in DEA terminology), (see e.g. Førsund (1996) and 

Førsund and Hjalmarsson, 1996). Against this background, it is not surprising that we 

now see the emergence of an international consulting industry doing benchmarking and 

calculating efficiency based on the DEA- model. 

 

Policy recommendations concerning optimal scale of production units (like electricity 

network service areas) often have serious implications for the restructuring of a sector, 

while tests of natural monopoly have important implications for regulatory structure. 

Because DEA has become such a widespread and important analytical tool in practical 

evaluations of productive efficiency (including scale efficiency) all over the world, 

especially for public services and publicly regulated sectors, an investigation of the use 

of DEA for the purpose of revealing scale properties is indeed warranted. While there 

are several theoretical contributions within DEA framework on estimation and 

classification of scale properties, we lack a thorough understanding of the relevance of 

scale properties for inefficient units and a discussion of the empirical usefulness or 

applicability of knowledge about scale properties.  

 

The main purpose of the present study is to check on the theoretical restrictions on the 

nature of scale properties in the DEA model and empirically investigate them for 

electricity distribution utilities. More specifically we will address the question whether 

optimal scale is at all a meaningful concept for policy recommendations in DEA. The 

exploration of that issue is the major contribution of this paper. Our main message is 

that information about optimal scale levels generated by the DEA model may be useless 

in applied efficiency research, and that it is necessary to investigate the scope for 

adjustment to optimal scale. We offer calculations of range of output mix and input mix 
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as diagnostic devices to ascertain the nature of optimal scale in each empirical 

application.  

 

Some basic definitions and relationships of neoclassical production functions are 

presented in Section 2, together with the derived concepts of optimal scale curve, 

efficiency frontier and M-locus to be illustrated empirically. An extended definition of 

the Regular Ultra Passum Law is introduced, and its existence within the DEA model 

analysed. The data used to calculate and explore optimal scale properties are presented 

in Section 3, and the empirical results are given in Section 4. Tentative policy 

conclusions are offered in Section 5. 

 

 

2. The Neoclassical underpinnings  

 

The starting point is a standard neoclassical production function for multiple outputs, 

multiple inputs. The output-vector is y = (y1,..,yM) ∈ MR+  and the input-vector x = 

(x1,..,xN) ∈ NR+ : 

F(y,x) =  0 ,  
F(y,x)

y
 >  0 ,  m = 1,.., M ,  

F(y,x)
x

 <  0 ,  n = 1,.. ,N
m n

∂
∂

∂
∂

                        (1) 

The general transformation function F(y,x) = 0 represents the efficient output-input 

combinations, and it is assumed to be continuously differentiable and strictly increasing 

in outputs and decreasing in inputs. 

 

The Passus Coefficient  

The returns to scale, or scale elasticity, or the Passus Coefficient (here denoted by ε) in 

the terminology of Frisch (1965), is a measurement of the increase in output relative to a 

proportional increase in all inputs, evaluated as marginal changes at a point in output – 

input space. In a  multi-output setting  the scale elasticity definition is based on the  

relationship between the proportional expansion of outputs, β, that for a proportional 

expansion, µ, of inputs satisfies the production function; see Hanoch (1970), Starrett 



 
 

5

(1977) and Panzar and Willig (1977). Following Starrett (1977) the procedure is to 

expand inputs proportionally with factor µ, and then pick the proportional expansion, β, 

that yields the maximal expansion, 

 { } )1),,1((0),(:),),,( === xyhavewexyFMaxxyxy βµββµµβ , 

of outputs allowed by the transformation function: 

0),),,(( =xyxyF µµβ                                                                                                     (2) 

The scale elasticity, ε, as a function of outputs and inputs is obtained by differentiating 

(2) with respect to the input scaling factor: 

evaluating the function, without loss of generality, at β = µ = 1. Equation (3) is the 

generalisation of Frisch`s Passus Equation, or sometimes called the generalised Euler 

equation, with regard to  multiple outputs; see Frisch (1965), Hanoch (1970), Starrett 

(1977) and Panzar and Willig (1977). 

 

The Regular Ultra Passum Law 

A question is now if there are any restrictions on the shape of the scale elasticity 

function ε(y,x) within the neoclassical framework. For a traditional "S-shaped" 

production function, the Regular Ultra Passum Law in the terminology of Frisch 

(1965), the elasticity of scale varies from values larger than one for suboptimal output 

levels, through one at the optimal scale level, to values less than one for superoptimal 

output levels (and to negative values if the production function has a peak, i.e. no fee 

disposal) when moving "outwards" in the output-input space, i.e. all inputs and outputs 

non-decreasing and at least one input and one output strictly increasing. 

 

M N

nm
m=1 n=1 nm

N

n
nn=1

M

m
m=1 m

F( y, x) F( y, x)
  +  = 0y x

xy

F(y,x)
 x

x  = (y,x) =  
F(y,x)

 y
y

β µ β β µ
µ

β
ε

µ

∂ ∂ ∂
∂ ∂ ∂

∂
∂ ∂−

∂∂
∂

∑ ∑

∑

∑

                                                            (3)                 
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 Definition: 

A production function F(y,x) = 0 defined by (1) obeys the Regular Ultra Passum Law if 

∂ε/∂yk < 0, k =1,..,m, ∂ε/∂xr < 0, r =1,..,n, where the scale elasticity function ε(x,y) is 

defined in (3) , and for some point (x1,y1) we have ε( y1, x1) > 1, and for some point 

(x2,y2), , where x2 > x1 , y2 > y1 ,  we have ε( y2, x2) < 1. 

 

What can we say about the shape of the contour curves of the scale elasticity function? 

In the case of single output and two inputs the contour curves will have negative slopes 

within the substitution region, but they may be either concave or convex, even if the 

production function is quasi-concave (see Førsund, 1971). This means that in general, in 

the traditional S -shaped neoclassical single output production function, the output level 

varies monotonically along the curve in the input space. The situation is illustrated in 

Figure1 2.  Only  in the case of a homothetic  production  function  will  isoquants of  the 

production function coincide with contour curves of the scale elasticity function. 

Figure 1. Contour curves of the scale elasticity function 

                                                 
2 As an example of a production function with classical neoclassical properties, Frisch (1965) suggested 

the following: 
( )2

1 2 3
4 4 4
1 2 3 1 2 3

1 2 3
100 ( )

x x x
y

x x x x x x
= + +

+ +
, which is homogeneous of degree one in three 

inputs but S-shaped (regular ultra passum) for one of the inputs constant. Bramness (1975) plotted several 
aspects of this function, among them the non-convex-towards-the-origin optimal scale curve. 

x2

x1

g(y,x1,x2)= const.

F(yo,x1,x2)=0
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The optimal scale curve 

It is one contour curve of the scale elasticity function that is of special importance. The 

locus of ε(y,x) =1 in the input space was introduced by Frisch (1965) as the techncially 

optimal scale curve (TOPS): 

      { }0),(,1),(:),( === xyFxyxyTOPS ε                                                                   (4) 

For movements  along factor rays the productivities are maximal  on the curve in the 

single output case (illustrated in Figure 1 for ε(y, x1,x2) =1), or in the general case of 

multiple outputs the ratio  β/µ is maximised. Notice from Figure 1 that there is no limit 

on the variation of the optimal scale value in the general case. So what would be the 

recommendation for optimal scale? The point is that this can only be a relevant question 

when the factor prices are known. The point of intersection between the expansion path 

and the TOPS curve is the text-book long-run equilibrium point for a unit in a 

competitive market (disregarding any problems with a finite number of units), assuming 

that it is relevant to operate with constant factor prices. Thus a recommondation of 

adjusting to optimal scale has a  relevant frame of reference. 

 

In the case of a single output transforming  the optimal scale curve into the input 

coefficient space it becomes the efficiency frontier (EFF):  

   








=== 0),..,,(,1),..,,(:),..,( 11
1

nn
n xxyFxxy
y
x

y
x

EFF ε                                            (5) 

This is made up of all points where the input coefficients reach their minimum along 

rays from the origin. Since the optimal scale curve is a contour curve we have from the 

section above that the shape of the technically optimal scale curve may vary between 

production functions. Even if the production function is quasi-concave, the elasticity of 

scale function may not have this property, i.e. the optimal scale curve may or may not be 

convex towards the origin. But we note that in the neoclassical world the output level in 

the single output case varies monotonically along the curve and then also along the 

efficiency frontier. In the case of the production function (1) being  simultaneous 

homothetic (Hanoch, 1970) we have that the optimal scale contour in input space for 

fixed outputs coincide with  an input isoquant, and  for fixed inputs it coincides with an 
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output isoquant (in the terminology of Frisch, 1965). Simultaneous homotheticity in the 

case of variable returns to scale implies that the production function is separable; F(y,x) 

= f(y)g(x) (Hanoch (1970), p. 425). In the single output case there is then a unique 

optimal scale level independent of the factor ratio elaboration. 

 

The M - locus 

The concept of the M - locus in the case of multi output was introduced in Baumol et al. 

(1982) to designate the set of all output vectors that minimise average ray costs along 

their own ray. Thus, in our setting, the M - locus corresponds to the technically optimal 

scale extended to the multi output case, i.e. the geometric locus in output space for all 

points where the scale elasticity equals one (see Baumol et al. (1982), p. 58): 

    { }0),(,1),(: === xyFxyyM ε                                                                                 (6) 

The shape of the M - locus is an important diagnostic for determining the number of 

firms in an industry and thereby the market structure. The crucial information is the 

difference between industry outputs and the output levels at the M - locus. It is 

conjectured that the shape may be irregular (pp. 58-59) and that the distance from the 

origin in output space may differ substantially between rays. This is the problem with 

determining the number of firms in an industry: the number may be dependent on the 

output mix. But one main conjecture in the two-dimensional illustration in Baumol et al. 

(Figure 3D1, p. 58) is that there is a trade-off between efficient output levels, similar to 

a traditional transformation curve in output space. In the case of two outputs and one 

input the M-locus must be a falling curve in the output space. 

 

Introducing inefficiency 

So far efficient operations have been assumed. We need a production technology where 

both feasible efficient and inefficient point can be identified. A production possibility 

set S is in general defined by: 

   { }):),( yproducecanxxyS =                                                                                   (7) 

We then need to distinguish between efficient and inefficient poins as subsets of the 

production set S. The connection between the neoclassical production function (1) and 
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the production set formulation (7) is as follows (see Hanoch (1970), and McFadden 

(1978), which states conditions for a unique connection) , with standard properties  of S: 

   { } { }0),(:),():),( ≤≡= xyFxyyproducecanxxyS                                                 (8) 

The subset of efficient point is then  defined by F(y,x) = 0. 

 

It should be born in mind that returns to scale is a local property and applies only to 

efficient points, i.e. points satisfying F(y,x) = 0. To associate an inefficient point with a 

scale elasticity value is at best ambiguous, because the existence of inefficieny means 

that the local increase in output when inputs are increased cannot be separated from the 

increase due to a reduction in inefficiency3. Therefore, a very basic observation for the 

discussion of scale properties using the DEA model is that inefficient observations must 

first be represented by efficient points. Thus the discussion of scale properties for 

inefficient units must be conditional on a meaningful and interesting representation.  

 

The DEA model 

The efficient subset in the DEA model corresponding to F(y,x) = 0 maintains the 

convexity of isoquants, but in the case of variable returns to sale (VRS) the origin is not 

assumed to be in the set, and it is convex. The surface is made up of facets, thus we do 

not have differentiability at corners  or along  ridges. Rates of substitution and rates of 

transformation are constant on a facet, and changes from facet to facet. Although we 

have to take these features into account we can use the basic definition (2) of the scale 

elasticity (see e.g. Banker et al. (1984), Førsund, 1996). Specificially, the optimal scale 

curve, the efficiency frontier and the M - locus all exist in the DEA model. These 

concepts all belong to a VRS frontier function.  

 

It has become a common practice in the field of non-parametric efficiency analysis  to 

name the linear programme for the calculation of all Farrell (1957) technical efficiency 

                                                 
3 Banker (1984) and Banker et al. (1984) are clear on this point. However, notice that a set is usually 
defined as having constant returns to scale if all finite points on rays belong to the set, i.e. the set is a cone. 
The definition of economies of scale in Panzar and Willig (1977) as a property of the production set in 
general is rather awkward. 
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scores for the DEA model. The efficiency scores for the VRS input- and output oriented 

DEA models, E1i and E2i respectively for unit i, are found by solving the following two 

linear programmes: 

                                                                                                                                    

 

 

                                                    

(9) 

 

 

 

                                                                                     

 

 

 

 

                                                                      

(10) 

                     

 

             

The constraints  in (9) and (10) represent the definition of the piecewise linear 

technology relevant for unit i. This unit may be inefficient in e.g.  its use of inputs. The 

input vector in (9) is adjusted by the efficiency score, θi, and then compared with the 

reference point, ∑ =

J

j njj x1
λ , on the frontier. To find the optimal scale units, the simplest 

procedure is to use either  model (9) or (10) without the constraint that the sum of 

weights add up to one, i.e. the CRS envelopment. The optimal scale units are then 

identified by having no slacks on the input  (or output) constraints and an efficiency 

score of 14. 
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The Regular Ultra Passum Law and the DEA model 

 We want to investigate whether the DEA model fulfills the Regular Ultra Passum Law 

or not. One way of doing this is to use the scale elasticity function for a DEA model 

based on the approach first introduced in Banker et al. (1984) (see also Førsund (1996), 

Førsund and Hjalmarsson, 1996). We then need the dual programmes to the problems 

(9) and (10).  Let umi and vni be the non-negative shadow prices on the output- and input 

constraints respectively in the optimisation problem (9), and ui
in the (unrestricted) shaow 

price on the convexity constraint. The dual problem is then: 

Jjuxvyu

xv

tosubject

uyuMax

in
i

N

n
njnj

M

m
mjmj

N

n
nini

M

m

in
imimi

,..,1,0

1

11

1

1

=≤+−

=

+

∑∑

∑

∑

==

=

=

                                                                      (11) 

 

Using the same symbols for the shadow prices  on the constraints in problem (10) and 

calling the (unrestricted) shadow price on the convexity contraint for ui
out we have the 

dual problem: 

Jjuxvyu

yu

tosubject

uxvMin

out
i

N

n
njnj

M

m
mjmj

M

m
mjmj

out
i

N

n
nini

,..,1,0

1

11

1

1

=≤++−

=

+

∑∑

∑

∑

==

=

=

                                                                  (12) 

The values of the shadow prices ui
in and ui

out determine the scale property. In the case of 

a input-oriented (output- oriented) reference point we have increasing returns when ui
in  

(-ui
out) > 0, constant when ui

in (ui
out) = 0 and decreasing returns when ui

in (-ui
out ) < 0. 

 
It is shown in Førsund  and Hjalmarsson (1996) that the scale elasticity function in (3) 

                                                                                                                                               
4 We will not go into details about how to deal with multiple solutions. 
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can be written in the following two equivalent ways for the two reference points 

corresponding to an inefficient unit, i: 

out
iiii

i

in
ii

i
iii

uExy
E

uE
E

xEy

2
2

1

1
1

1),
1

(

),(

−=

−
=

ε

ε
                                                                                              (13) 

 

We will assume that the reference points are in the interior of frontier function facets so 

we can differentiate the scale elasticity function at the reference point. Differentiating 

the first expression in (13) w.r.t. the ouput type m for unit i yields: 

Mm
uE

uu
uE
y
E

u

y
xEy

in
ii

mi
in
i

in
ii

mi

iin
i

mi

iii ,..,1,
)()(

),(
2

1
2

1

1

1 =
−

−=
−
∂
∂

−=
∂

∂ε
                                         (14) 

The last expression is obtained using the Envelope Theorem on the Lagrangian function 

for the problem (9), yielding mimii uyE =∂∂ 1
5.  We see from (14) that the sign of the 

partial derivative of the scale elasticity function w.r.t. an output depends on the sign of 

the shadow price ui
in. For increasing returns, ui

in  > 0, we have a falling value of the 

scale elasticity in accordance with the requirement of the Regular Ultra Passum Law, 

but for decreasing returns,  ui
in  < 0, we have an increasing value of the scale elasticity in 

contradiction of the law. 

 

Differentiating the second expression in (13) w.r.t. the ouput type m for unit i yields: 

NnEvu
x
E

u
x

xy
E

ini
out
i

ni

iout
i

ni

nimi
i ,..,1,

),
1

(
2
2

22 ==
∂
∂

−=
∂

∂ε
                                                  (15) 

 
The last expression is again obtained by using the Envelope Theorem  on the Lagrangian 

function for problem (10) for investigating the impact of a parameter change, yielding 

niinii vExE 2
22 −=∂∂ . Increasing returns to scale, ui

out  < 0, yields a decreasing scale 

                                                 
5 We assume that the basis in the LP solution for (9) does not change, so the shadow prices remain 
unchanged. 
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elasticity in accordance with the Regular Ultra Passum Law, while decreasing returns to 

scale, ui
out > 0, yields an increasing scale elasticity, violating the law. 

 

An illustration 

Before reporting the empirical results, a stylised figure (Figure 2) based on only four 

units may enhance our understanding of the character of returns to scale in DEA6. All 

points are efficient in the case of a variable returns to scale (VRS) envelopment shown 

in Panel a.  Panel b shows the difference in frontier surfaces between VRS and constant 

returns to scale (CRS) envelopment. We see that of the four units two of them,  B and C, 

are optimal scale units. Unit C has maximal output level, while unit B has the minimal. 

The lesson from the stylised figure is that it may be quite normal, even in the case of a 

single output, to have both the maximal and minimal output level as the optimal scale. 

The central facet has the points A,B,C, D as corners. The technically optimal scale curve 

will be a line from B to C  in Panel a, with a corresponding variation in the factor ratio. 

Notice that it seems easy to calibrate the points B and C such that the optimal scale 

curve will be a rising curve in the input plane, in violation of the Regular Ultra Passum 

Law. If we cut the surface of the production function in Panel a with a plane, parallel 

with the output axis, along a factor ray between the values for points A and B, then the 

scale elasticity is infinite at the left-hand side of  the intersection point of the plane and 

the facet border betwen A and B, and has a value greater than one at the right-hand side 

of the intersection point. When the plane intersects the optimal scale curve , a line from 

B to C, the scale elasticity obtains the value of one, and on the left-hand side of the 

intersection  point  with the  facet border between C and  D  the scale elasticity obtains a 

value less than the value on the left-hand side, but will end up at the left-hand side of the 

north- east border of the facet  with a  higher value than the starting value, although this 

will be smaller than the left-hand value on the facet border between C and D. On the 

”flat ” facet North-East of point C the value of the scale elasticity will be zero. 

 

                                                 
6 We are indebted to Dag Fjeld Edvardsen for making the figure. 
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Panel a. The VRS production function 
 

 

 

 

Panel b. The CRS envelopment. 

 Figure 2. The VRS production function and its CRS envelopment 
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3. Data and model specification 

 

In the empirical application we will select our data from a set of data which have been 

utilised in previous work7. The set constitutes a four output - four input model covering 

Swedish electric distribution utilities, and was earlier applied in Hjalmarsson and 

Veiderpass (1992a) and (1992b), Kumbhakar and Hjalmarsson (1997) and also in Zhang 

and Bartels (1998). The data applied in this study cover 163 Swedish electricity retail 

distributors in 1987. Only distributors who supply more than 500 low voltage customers 

are included. The data are constructed based on information obtained from the 

Association of Swedish Electric Utilities (SEF), Statistics Sweden (SCB) and different 

retail distributors. 

 

Modelling of electric utilities varies (see Jamasb and Pollitt (2001) for a review of 

model specifications). The maximal disaggregation our data allows is to specify four 

outputs and four inputs. As regards choice of output measure we consider the total 

amount of low and high voltage electricity in MWhs received by the customers (Y1, Y2) 

and the number of low and high voltage customers served (Y3, Y4) as the four outputs. 

On the input side we use kilometers of low and high voltage power lines (K1, K2) and 

total transformer capacity (K3) in kVa as the capital variables. Labour L is measured in 

full time equivalent employees. Max, min and mean statistics are shown in Table 1. 

 

However, more aggregate models can also be found in the literature. We will therefore 

specify different models that can be used to study the derived economic concepts such 

as technically optimal scale curve, the efficiency frontier and the M - locus. We will use 

the optimal scale results from three different models. Model 1 is a single-output, two-

input model with total electricity (Y = Y1+Y2) as output and labour and transformer 

capacity as inputs. Model 2 is a two-output two-input model with total electricity 

(Y1+Y2) and total number of customers  

                                                 
7  In Førsund and Hjalmarsson (1996) we also use a single output, two input data set for Swedish dairies. 
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Table 1.List of variables and key statistics 

 

 

(Y3+Y4) as outputs and labour and transformer capacity as inputs. Model 3 contains all 

four outputs and all four inputs; see Table 2.  

 

 

4. Empirical results 

 

Because of the many outputs and inputs dealt with, between 10 and 53 units out of 163 

are on the frontier in the case of variable returns to scale. Among these between 3 and 

25 are optimal scale units; see Table 2. We have also added the number of units within 

the models. Notice that the largest unit is of optimal scale in all models. In Model 1 

about 25% of the units are within the range of optimal scale sizes, in Model 2 about 

60% and in Model 3 about 90%. 

 

Table 2. The number of optimal scale and frontier units 

*) Both output- and input orientations are run 

 

  
  

Y1 
MWh low 
voltage 

 

Y2 
MWh high 

voltage 
 

Y3 
Customers  
low voltage 

 

Y4 
Customers 
high voltage 

 

L 
Labour 

 
 

K1 
Lines in 
Km low 
voltage 

K2 
Lines in 
Km high 
voltage 

K3 
Transformers 

in kVa 
  

Mean 286057 665979 22841 36 133 1168 989 155434  
Stdev 3454887 46644285 225909 641 6493 21159 40783 1801496  
Min 9190 0 695 0 2 21 8 4000  
Max 4895138 65966223 422793 908 9189 30033 57733 2554000  

Model Outputs Inputs Frontier 
units, VRS 

Optimal 
scale 
units 

Units within 
the optimal 
scale range 

Total 
sample 

1 Y = Y1 + Y2 L, K3 10 3 39 163 

2 Y1+Y2, Y3 + Y4 L, K3 15 4 97,99* 163 

3 Y1, Y2, Y3, Y4 L, K1, K2, K3 53 25 146 163 
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Optimal scale curves 

All the optimal scale values in the input space with labour, L, and transformer capacity, 

K3, in Model 1 is plotted in Figure 3. This is the technically optimal scale curve 

introduced in Frisch (1965). The most striking feature in our DEA case is the positive 

slope of the curve. In the case of a classical S-shaped production function, the Regular 

Ultra Passum Law introduced in Section 2, the optimal scale curve has a negative slope. 

Moreover, when moving along the locus of optimal scale in the input space, the optimal 

scale values either increase or decrease monotonically with the factor ratio, or remain 

constant in the homothetic case. Although the opposite may occur for other sets of data, 

this is also the case in Figure 3, where the smallest unit has a size about 10% of the 

second to smallest unit, which in turn has a size about 5% of the largest unit. However, 

the slope is in contradiction of the Regular Ultra Passum Law. But as indicated in Figure 

2, a positive slope of the curve may well occur. 

 

In the case of DEA, some times small changes in factor ratio “cause” large changes in 

optimal scale. This is obvious from Figure 3, where a small change in the factor ratio 

causes a large change in optimal scale. Moreover, the largest optimal scale level occurs 

at a relatively low capital-labour ratio. A priori, one might expect the opposite, namely 

that more capital-intensive technologies coincide with large optimal scale levels. 
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 Figure 3. The optimal scale curve 

 

 

Efficiency frontiers 

By dividing all optimal scale input values by output we get the efficiency frontier. It 

represents the boundary of the feasible production set. In the neoclassical case, the 

efficiency frontier is convex towards the origin, and, except in the homothetic case, with 

monotonically changing output level along the frontier. The nature of optimal scale in 

DEA is further illustrated for Model 1 in Figure 4, where all optimal scale units are 

plotted in the input coefficient space and connected with straight lines to the efficiency 

frontier. Model 1 yields a traditional efficiency frontier convex towards the origin, and, 

consistent with the variation along the optimal scale curve, the output level varies from 

the smallest in the capital-intensive corner to the largest in the labour-intensive corner. 

A small change in its factor ratio may pass a certain scale efficient unit into the set of 

highly scale inefficient units. 
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Figure 4. The efficiency frontier 

 

 

The M - locus 

In the only empirical application we are aware of, Kim (1987) uses the M - locus (found 

by estimating an average translog cost function) to illustrate his findings for water 

utilities producing two outputs. The form of the locus bears some resemblance to the 

shape illustrated in Baumol et al. (1982) as to a trade-off between efficient output levels, 

and shows a wide variation in optimal scale. 

 

The M - locus in our two-output DEA model (Model 2) is illustrated in Figure 5 with 

the total energy on the abscissa axis and total number of customers on the ordinate axis. 

Since all our optimal scale firms have positive amounts of both outputs, we have no 

observation on stand-alone production used for anchoring the M - locus in Baumol et al. 

The shape is irregular in accordance with the conjectures in Baumol et al. However, 

there is one crucial difference: Our M - locus is an increasing curve in the output space.  

This means that there are no signs of any specialisation effect along the locus. 
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Figure 5. The M- locus 

 

 

The range of optimal scale values  

While Table 2 shows the number of units within and outside the range of optimal scale 

values, Table 3 compares, for all three models, the amount of overlapping in output and 

input ratios of optimal scale units to the entire sample. These optimal scale ratios on 

sample ratios are our output- and input mix-indexes8.  The most amazing result is the 

frequency of ones in the case of the input mix-index i.e. the almost identical range of 

factor ratios for the optimal scale units and the entire sample. The amount of 

overlapping is less on the output side and varies substantially among output ratios in 

Model 3.  The way of using the information of the indices for this specification is to 

observe that optimal scale may be obtained for any observed factor ratio, with the 

exception of the ratio between lines for low voltage and lines for high voltage, where the 

range within optimal scale is more limited. As for output ratios there is no restriction for 

the ratio between high- and low voltage energy, but varying restrictions on other output  

 

                                                 
8 The output mix-index is, of course, meaningless in the case of single output and in Table 3, Model 2 the 
ratio Y2 /Y1 stands for (Y3+Y4)/(Y1+Y2).   
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Table 3. Range of optimal scale mixes of outputs and inputs 

 

 

 

 

 

 

 

 

ratios. The conclusion is that without any price (or relative value) information on 

outputs and inputs, the range of ratios realizing optimal scale is too wide to provide any 

insights for policy purposes.  

 

 

5. Conclusions 

 

Substantial effort has been devoted to the definition, analytical derivation, classification 

and measurement of  optimal scale in the DEA models, while few have raised the 

question wether measures of optimal scale is of any practical use in efficiency analysis. 

 

First of all a relevant representation  of inefficient units on the frontier must be 

established. Too often an adjustment in either input- or output direction  is used without 

questioning the relevance of such an adjustment  for a unit managing to become 

efficient. 

 

The smooth neoclassical production function gives rise to useful concepts such as the 

elasticity of scale, optimal scale size, the optimal scale curve, the efficiency frontier and 

the M - locus. In this paper we have studied  the empirical aspects of these concepts in 

the DEA model. While the theoretical concepts carry over to the piecewise linear 

frontier production function, the properties of the optimal scale curve and the M - locus 

Model Output Y2/Y1 Y3/Y1 Y4/Y1 Y3/Y2 Y4/Y2 Y4/Y3 
1 Y1+Y2 1           
2 Y1+Y2,Y3+Y4 0.94           
3 Y1,Y2,Y3,Y4 1.00 0.24 0.37 0.92 0.46 0.34 

        
Model Input L/K1 L/K2 L/K3 K1/K2 K1/K3 K2/K3 

1 L, K3     1       
2 L, K3     1       
3 L, K1, K2, K3 1 1 1 0.62 1 1 
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do not. Neither is the Regular Ultra Passum Law obeyed. The efficiency frontier 

behaves as in  neo-classical production theory because it is based on the basic convexity 

of the producion set. 

 

The empirical application illustrates some problems with these concepts in applied DEA 

analyses.  The range of optimal scale levels may be extremely wide, as may be the range 

of factor ratios for the set of optimal scale units. Inclusion or exclusion of a few DMUs 

may have a large effect on the set of optimal scale units and their size. In a technical 

sense the scale properties revealed by a DEA study is correct, provided the outputs or 

the inputs are changed in a strictly proportional fashion. But this is not very comforting 

for policy recommendations when optimal scale changes dramatically from one output-

or input ray to the other. A fundamental problem with  DEA applications arise in the 

case when there are no output- or input prices, which often is the case, at least for 

outputs, for public sector applications. Without expansions paths in input- and output 

space as reference change of input-and output mix may be as relevant as proportional 

scaling up or down along observed proportions. 

 

What about scale efficiency? Scale efficiency is a relative concept tied to optimal scale. 

The scale efficiency of a certain unit depends on its benchmark or yardstick unit - not on 

its absolute size. This benchmark may vary substantially for small changes in input and 

output mix of a specific unit. Therefore, scale efficiency is as ambiguous empirically as 

a basis for recommendations for change as optimal scale. 

 

What about input- and output oriented Farrell technical efficiency measures, the raison 

d’etre of DEA studies? The situation is different for these measures, because the key 

question here is the distance to the frontier, according to some common rule of 

measuring distance. One is not pursuing a recommendation for a specific change, just to 

point out a potential for an improvement.  

 

A general problem with estimating production functions is whether the specification of 

the production relations is sufficiently close to what we want to model. A feature often 
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regarded as a strenght of the non-parametric DEA model is that it reflects just the 

observations and no preconceived functional form. However, the DEA model may be 

too data dependent; the model as it is usually specified may  lack enough structure to 

generate credible information about optimal scale levels. We should recall that the scale 

elasticity and optimal scale level are derived along rays.The general nature of the 

requirements for properties across rays, i.e. requirements about shapes of isoquants and 

transformation curves may not be enough to sufficiently mirror the real life engineering 

restrictions on substitution and transformation not captured by the DEA model 

specification9.  

 

Our recommendation to the dilemmas for policy conclusions based on DEA models as 

to optimal scale is to show the empirical scope for output- and input mixes of optimal 

scale. In the case of wide scopes there is no way around using price data for outputs and 

inputs to establish a frame of reference for scale adjustments. The prices may be 

observed or of a shadow price nature, especially for outputs. 
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