

University of Gothenburg
Department of Applied Information Technology
Göteborg, Sweden, July 2011

A Systematic Review of Automated
Software Engineering

Gegentana

Master of Science Thesis in Program Software Engineering and Management

Report No. 2011:066
ISSN:1651-4769

A Systematic Review of Automated Software Engineering

Gegentanta, June 2011.

Supervisor: Dr. Robert Feldt

Chlamers University of Technology
Department of Computer Science and Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Applied Information Technology
Göteborg, Sweden June 2011

 i

Acknowledgement

This thesis project will not be possibly finished, without supports from many people,

and I would like to thank them all here.

First of all, I would like to deeply thank my supervisor, Prof. Dr. Robert Feldt, who

guided and encouraged me to strategically conduct this Systematic Review in the entire

processes of the thesis project, provided me with a lot of valuable guidance, brilliant

suggestions and constructive thoughts throughout this thesis. I am grateful to him for his

enormous support and valuable comments.

Secondly, I would like to thank Jie Lin and Yi Xu, who are master students from

Master program in Software Engineering and Technology of Chalmers University of

Technology. They helped me to prototype the pilot data extraction in this study.

Thirdly, I would like to thank Qianxi Cao, who is working in Chalmers Open

Communication Studio (CHOCS). She provided me with many helps on correcting my

language issues in the thesis paper, which improved both the readability and correctness of

this thesis.

Finally, I would like to thank my dear family who constantly encourage and support

me to pursue my study in Sweden.

 ii

Table	
 of	
 Contents	

1.	
 Introduction ..1	

1.1.	
 Research	
 Questions .. 2	

1.2.	
 Limitation... 2	

2.	
 RELATED	
 WORK...2	

2.1.	
 Previous	
 Research	
 in	
 ASE ... 2	

2.2.	
 Previous	
 Use	
 of	
 Systematic	
 Review... 2	

2.3.	
 What	
 is	
 Automation.. 3	

2.4.	
 Classifying	
 Automation	
 in	
 General .. 3	

3.	
 Research	
 methodology ..3	

3.1.	
 Planning	
 the	
 review.. 3	

3.1.1.	
 Reasons	
 for	
 Performing	
 the	
 SR	
 in	
 this	
 Study..3	

3.1.2.	
 Defining	
 the	
 Research	
 Questions...4	

3.1.3.	
 Defining	
 Automation	
 Levels...4	

3.1.4.	
 Developing	
 	
 a	
 Review	
 Protocol ...4	

3.2.	
 Conducting	
 the	
 Review.. 6	

3.2.1.	
 Identification	
 of	
 Research...6	

3.2.2.	
 Selection	
 of	
 Primary	
 Studies..6	

3.2.3.	
 Study	
 Selection	
 Procedure..6	

3.2.4.	
 Study	
 Quality	
 Assessment...7	

3.2.5.	
 Data	
 Extraction..7	

3.2.6.	
 Data	
 Synthesis..8	

4.	
 Results...8	

4.1.	
 Field	
 from	
 Main	
 Taxonomy.. 9	

4.1.1.	
 Software	
 Design ... 11	

4.1.2.	
 Software	
 Requirements .. 12	

4.1.3.	
 Software	
 Testing .. 12	

4.1.4.	
 Software	
 Quality... 13	

4.1.5.	
 Software	
 Construction... 14	

4.1.6.	
 Software	
 Maintenance... 14	

4.1.7.	
 Software	
 Engineering	
 Process ... 15	

4.1.8.	
 Configuration	
 Management... 15	

4.1.9.	
 Software	
 Engineering	
 Management .. 15	

4.2.	
 Level	
 from	
 Main	
 Taxonomy ...15	

4.3.	
 Required	
 Human	
 Activity	
 from	
 Main	
 Taxonomy..17	

4.3.1.	
 Summary	
 of	
 Required	
 Human	
 Activity .. 17	

4.4.	
 Types	
 of	
 Automated	
 Approaches	
 Used	
 in	
 	
 ASE ..19	

4.4.1.	
 Tools	
 used	
 in	
 ASE .. 19	

4.4.2.	
 Frameworks	
 used	
 in	
 ASE ... 19	

4.4.3.	
 Methods	
 used	
 in	
 ASE.. 19	

5.	
 Discussion ... 20	

5.1.	
 Field	
 of	
 software	
 engineering ...20	

5.2.	
 Automation	
 Level ..21	

5.3.	
 Required	
 Human	
 Activity ...21	

5.4.	
 Types	
 of	
 Automated	
 Approaches ...22	

5.5.	
 Limitation	
 of	
 the	
 Research ...22	

5.6.	
 Recommendation ..22	

6.	
 Conclusion... 22	

 1

A Systematic Review of Automated Software

Engineering

GEGENTANA
Department of Applied IT

IT University of Gothenburg/ Chalmers University of Technology
Gothenburg, Sweden

Tata619@hotmail.com

Abstract

Context: Automated software engineering is becoming an
increasingly important part of Software Engineering. Both fully and
partially automated approaches and methods can improve the
productivity and quality of software development.

Objective: The goal of this study is to identify the current status of the
automated software engineering field based on publications in the
years 1999 to 2009. The results should be valuable for people who
are assessing which automated approaches and methods to
implement in their software development.

Method: The method used in this study is a systematic review. It is a
well-defined method, which can be used to identify, analyze,
synthesize, evaluate and compare available and relevant articles on a
specific research topic. The attributes and characteristics to extract
for each automated approach/method was based on a partial
literature in the field and related software engineering fields
concerned with automation of human activities.

Results: From the 122 published articles selected in the final stage of
paper screening and filtering we found 127 automated approaches
distributed on 9 areas of Software Engineering. We also provide
analysis of these approaches based on the years of publication,
automation level of the proposed automated approaches, human
activity required for using each approach and their types.

Conclusion: Software design was the most prevalent area for
research in automated software engineering from 1999 to 2009.
Furthermore, 39.4% of automated approaches were deemed as
having a low automation level, indicating that much manual work
was still left for utilizing the technique. Meanwhile, only a total of 22
required human activities were mentioned for the 127 automated
approaches, which indicates that researchers focus on the
automation approaches themselves but neglect to consider the level
of automation they supply as well as the human activities that are still
needed when using them.

KEYWORDS: systematic review, automated software engineering,
Required Human Activity,automated approaches.

Acronyms: ASE=automated software engineering, SR=Software
Requirements, SD=Software Design, SM=Software Maintenance,
SEP=Software Engineering Process, ST=Software Testing,
SC=Software Construction, SQ=Software Quality,SCM=Software
Configuration Management, SEM=Software Engineering
Management.

1. INTRODUCTION
In the computer and information era, Computer-based

applications become an essential part of human life [1].
Software is the core of Computer-based application, therefore
became a critical part of science research.

Software engineering has been the subject of a wide range
of discussion over the last decade. It is about developing,
maintaining and managing high-quality software systems in a
cost-effective and predictable way. The studies within
software engineering concern the real-world phenomena of it,
which include: the development of new, or modification of
existing, technologies (process, models, methods, techniques,
tools or language) or support their activities, and the
evaluation and comparison of the effect of using such
technology in the often very complex interaction of
individuals, teams, projects and organizations, and various of
task and software system [2]. As the core of software
engineering, it concerns the development and evolution of
large and complex software-intensive system. Meanwhile, it is
a concern for the production of quality software that meets
reasonable requirements of its performance, reliability,
maintainability, and cost [3].

Nowadays, the size of software becomes increasingly
larger; therefore, massive software production and subtle
software maintenance are needed. Consequently, the cost of
advancing the relevant complimentary work is rising
dramatically. As a result, the demand for high qualitative and
reliable software while keeping reasonable cost of human
resource is needed. As a consequence of the increasing
complexity and the need for better-designed and user-friendly
software products, more and more efforts need to be made to
software development. A vast amount of work is involved in
the different fields of software engineering such as software
requirements, design, construction, testing and quality, etc.

Meanwhile, researchers focus on developing the
techniques, which they use to use manually and they attach an
importance to enabling the automation of the techniques, with
the goal of partially or fully automating the activities in
software engineering that can significantly increase both the
software quality and productivity.

Without automated approaches, it is very labor intensive
and time consuming when developing large software.

 2

Automation stops people from doing redundant and repetitive
work. For software developers, automated software
engineering (ASE) has already become an important element
of the standard development of software. Automated
approaches increase productivity of developers and improve
the reliability of new software [4].

When applying automated approaches into the real world
if the automated approaches cannot afford full-automation,
Required Human Activity are needed.

Systematic research synthesis has been wildly applied to
medicine and health care field, which had been proved useful
for helping the researchers to summarize large amount of
information identifying gaps, beneficial and harmful
interventions. Thereby the researchers can get the clear
reporting and evidence to conduct the future planning in health
care field. The successful use of the SR in different fields can
adequately prove that it is an effective and efficient solution to
performing the overview on specific topics. A systematic
review is a well-defined method to identify, analyze,
synthesize, evaluate, and to compare all available literature
works relevant to a specific research topic [18]. It is a critical
study work for the researchers to get vivid understanding
about the status quo in the relevant field through this SR.

Systematic reviews have been gaining popularity in
software engineering since Kitchenham published the paper in
2004 [5], with reviews of recently published articles on
diverse topics, which includes: requirement elicitation [6],
agile software development [7], etc. It is important for
software engineering practitioners and researchers to
constantly conduct research, since it is impossible for
individuals to get familiar with some specific fields.

In this study, in an effort to summarize the ASE to enable
industry practitioners to better assess that automated
approaches, such as, tools, techniques and methods etc, are
worth implementing in their organizations. All the 122
selected articles involved in this study are mapped into main
taxonomy through systematic review.

Rest of this study is organized as follows. Section 2
introduces the previous researches both in ASE and the
systematic reviews, as well as the definition and classification
of automation. Section 3 presents a detailed introduction of
research methodology used in this study. Furthermore, it
presents how systematic review works, which includes its
planning and conducting process. The results found via
classification of the data extracted in the systematic review are
presented in the Section 4. In Section 5, discussions with
respect to the results are presented. The conclusion is given in
the Section 6.

1.1. Research Questions
Research questions to be addressed by systematic review

are:
• How many types of automated approaches were

investigated in automated software engineering from
1999 to 2009?

• What were the types of automated approaches
investigated in automated software engineering from
1999 to 2009?

• How many fields in software engineering were
considered in the researches during 1999 and 2009?

• Which software engineering field, sub-category and sub-
class was more widely studied by the researchers?

• Which level of automated approach was more popular to
the researchers, autonomous level, informing level or
decision support level?

• What kinds of Required Human Activity were needed
when human applying the automated approaches?

1.2. Limitation
This study aims to consider and analyze the articles

published within ASE field between 1999 and 2009. All the
articles should be written for introducing new automated
approaches used in this area with the purpose of improving the
quality or productivity of software. Case study and papers that
only include descriptions and researches of how to use the
automated approaches are excluded from this study because of
the consideration of the purpose of this study is researches on
newly proposed automated approaches, rather than the further
use of them.

Therefore, the selection of the papers and corresponding
criteria, on which the selection is based, only focuses on the
original published papers that have proposed new automated
approaches used in ASE field. The detailed description of
criteria is presented in Section 3.1.4.3.

2. RELATED WORK
2.1. Previous Research in ASE

Nowadays, automated approaches have been applied in
many areas in software engineering field, such as requirements
definition [8], architecture [9], implementation, modeling [10],
testing and quality assurance [11], verification and validation
[12]. Many articles have been published and widely mentioned
previously finished tasks in the ASE. These researches and
published paper are used in the source paper in this study.

These researches focused on how to apply the semi-
automated and fully automated approaches into the
development of software engineering to improve the quality
and productivity of the software. In this study, the automation
level of automated approaches will be considered as well.

2.2. Previous Use of Systematic Review
Nowadays, systematic review has been broadly used in

researching psychology sciences, statistical sciences,
education, industrial/organizational psychology, medicine,
health sciences domain, and software engineering [13].
According to the medicine practice by using SR, Kitchenham
et al [2004] evaluates the idea of Evidence-Based software
engineering and proposes a guideline for systematic review
that is appropriate for software engineering researchers [14].
Based on these guidelines, a lot of SRs had been done in the
software engineering afterwards.

 3

2.3. What is Automation
Automation has been used in many different ways.

Oxford English Dictionary (1989) defines automation as
 Automatic control of the manufacture of a product

through a number of successive stages;
 the application of automatic control to any branch of

industry or science;
 by extension, the use of electronic or mechanical devices

to replace human labor.
The purpose of applying automation (partially or fully)

in different control systems, technology and process is to
reduce the needs of human intervention. In controlling process,
operators can use the automated devices to implement.

2.4. Classifying Automation in General
Automation can be applied to four broad classes of

functions: information acquisition; information analysis;
decision and action selection; and action implementation. It
refers to full or partial replacement of a function previously
carried out by the human operator, which implies that
automation is not all or none, but can vary across a continuum
of levels, from the lowest level of fully manual performance to
the highest level of full automation [19].

Table 1 shows a 10-point scale, with higher levels
representing increased autonomy of computer over human
action, based on a previously proposed scale [19].

Table 1. Levels of Automation

High

Low

10.The computer decides everything and acts
autonomously, ignoring the human.
9. The computer informs the human only if it decides
to.
8. The computer informs the human only if asked.
7. The computer executes automatically, and then
necessarily informs the human.
6. The computer allows the human a restricted time to
veto before automatic execution.
5. The computer executes that suggestion if the human
approves.
4. The computer suggests one alternative.
3. The computer narrows the selection down to a few.
2. The computer offers a complete set of decision/
action alternatives.
1. The computer offers no assistance: human must take
all decisions and actions.

In order to make the description easier to understand,
these 10-point automation scales have been re-divided and
simplified into four levels, which is used in this project.
(Detailed description can be found in Section 3.1.3).

3. RESEARCH METHODOLOGY
Systematic Literature Review (also referred to systematic

review) is a form of secondary study that uses a well-defined
methodology to identify, analyze and interpret all available
evidence related to a specific research question in a way that is
unbiased and (to a degree) repeatable [15].

The most distinctive point that a Systematic Literature
Review differs from conventional literature review is that SR
holds more scientific value in terms of credibility,
systematization, and preciseness. This is the main reason that a
systematic review has been undertaken. A search strategy
must be predefined, and be in accordance with during the
conducting the SR.

According to the advantages and disadvantages of
systematic review described by Kitchenham (2004) [14], SR
can be a effective method to help the researcher to get the
information about the effects of some phenomenon across a
wide range of settings and empirical methods with it is less
likely the results are biased.

The systematic review conducted in this study followed
the procedure described by Kitchnham [15]; designed three
phases to conduct this SR study, which are described in the
Figure 1 [15].

Figure 1. Stages of systematic review

3.1. Planning the review.
3.1.1. Reasons for Performing the SR in this Study
To begin with, bearing the purposes of implementing the
following activities shown below, SR is selected to be the only
methodology in this study.
 To summarize the existing empirical evidences of benefits

and limitations in ASE.
 To identify how many activities are adopted in current

research in order to help the researchers do the further
research in ASE.

 To execute the SR on existing works in ASE, based on the
predefined search strategy, which can reduce the biases of
hypothesis from the researcher.
In order to avoid meaningless and unnecessary

duplicated work in this study, a pilot search was conducted,
before the design of the SR for ASE. Three databases, which
are known as Inspec, IEEE and ACM digital libraries, have
been searched with, to check whether an SR of this topic has
been done or not.

End	
 of	
 Systematic	
 Review �

Reporting	
 the	
 review �
Specifying	
 dissemination	

mechanisms� Formatting	
 the	
 main	
 report � Evaluating	
 the	
 report�

Conducting	
 the	
 review �

IdentiQication	
 of	

research�

Selection	
 of	

primary	
 studies�

Study	
 quality	

assessment �

Data	
 extraction	
 and	

monitoring � Data	
 synthesis�

Planning	
 the	
 review �

IdentiQication	
 of	
 the	
 need	
 for	
 a	

review � Specifying	
 the	
 research	
 questions� Developing	
 a	
 review	
 protocol �

Start	
 of	
 Systematic	
 Review �

 4

The following search string has been used to search with
subject, title and abstracts in the databases.
((“systematic review” OR “systematic overview”) AND
(“automated software engineering” OR ASE))

According to the search, there was no relevant result
found, which indicated that there was no SR being done in
ASE field. Therefore, a SR of ASE needs to be undertaken,
and won’t duplicate with any previous study.

3.1.2. Defining the Research Questions

Research questions are formed based on scanning
relevant key articles in ASE, and detailed description can be
found in the Table 2.

Table 2. Research Questions
Research Questions Aim

RQ1: How many types of
automated approaches were
investigated in automated
software engineering from 1999
to 2009 and what were they?

To summarize the types of
automated approaches
found in the articles from
1999 to 2009.

RQ2: How many fields in
software engineering were
considered in the researches
during 1999 and 2009?

To summarize automated
approaches based on the
software engineering fields
mentioned in the articles
during 1999 and 2009.

RQ3: Which software
engineering field, sub-category
and sub-class were more
popular to the researchers?

To summarize and classify
the automated approach
into the software
engineering field, sub-
category and sub-class, in
order to see the popularity
distributed in software
engineering field.

RQ4: Which level of
automation was more popular
to the researchers?

To summarize the
popularity of the level that
the automated approaches
were investigated in.

RQ5: What kind of Human
Required Activity are needed
when human applying the
automated approaches?

To summarize the need of
Human Required Activity,
when applying different the
automated approaches.

3.1.3. Defining Automation Levels

Ten levels of automation described in Section 2.4, are re-
divided into four automation levels, which are applied in this
study. Since automation level in this study is just one of the
features that considered, the classification of them doesn’t
have to be too detailed. Data will be generated based on these
four new automation levels. The re-divided automation levels
are displayed in Table 3.

Table 3. Automation Level
Levels Level Description

LA-
Autonomous

10.The computer decides everything and
acts autonomously, ignoring the human
9. informs the human only if it, the
computer decides to

LB-
Informing

8. informs the human only if asked, or
7. executes automatically, then
necessarily informs the human, and
6. allows the human a restricted time to
veto before automatic execution, or

LC-
Decision
Support

5. execute that suggestion if the human
approves, or
4. suggests one alternative
3. narrows the selection down to a few,
or
2. The computer offers a complete set of
decision/ action alternative, or

LD-
No
Automation

1. The computer offers no assistance:
human must take all decisions and
actions.

The highest level (LA) represents that computer can

implement complete automatic activity, or inform the human
if necessary. The computer controls whether the human
interventions are needed or not.

The second level (LB) is middle level, which refers to a
partial automatic approach by the computer. Human needs to
make the decision based on the computer decision alternatives.
It differs from LA in the point that human decision is more
important in this level.

The third level (LC) represents that human completely
control the decision-making and action. The only work that
computer needs to finish is information collection.

The fourth level (LD) refers to non-automation approach.
It is excluded in the study because of the scope of this study is
within ASE field, which means automation has to be taken
into consideration.

3.1.4. Developing a Review Protocol

The purpose of a pre-defined protocol is to guide
researchers during the entire part of “conducting of SR” and
further reduce the possibility of the emergence of researcher
bias.
3.1.4.1. Searching Strategies

The correct search strategies are very important to
guarantee the success of primary study identification. The aim
of search strategies is to define the databases, where the
primary resources are searched, and how to search them.

Four bibliographic databases list below were chosen as
the target databases in this study:

 IEEE Xplore
 ACM Digital library
 Inspec
 Scopus

3.1.4.2. Exploring Search String

In this study, the search string should be composed by
selected keywords. The following parts describe the process of
making search string.

Step 1. Gathering Keywords

 5

The purpose of summarizing keywords was to collect
relevant terms and synonyms used in the ASE field. The
combination of (“automated software engineering” and
(productivity or quality)) was used as the initial search term in
two bibliographic databases (Inspec and ACM Digital library).
The reason of adopting Inspec database instead of the IEEE
Xplore database is that IEEE Xplore is already covered by
Inspec database since 1994 [19]. Therefore, These two
databases were enough for me to conduct a pilot searching and
gathering original keywords. 53 papers were found from the
Inspec database, which included the Journal articles and
Conference Proceedings. Afterwards, 93 articles were found in
ACM Digital library with the same restrictions as the previous
searching in Inspec. By scanning the title and abstract, 64
related papers were chosen from ACM Digital database finally.
In total, 117 papers were studied to select keywords for this
pilot search.

Step 2. Forming Checklist of Keywords by Frequency

(Appendix A).
The contribution of this checklist was to sort out the

keywords by frequency. (Frequency here means the times of
keywords that occur in the amount of journal articles and
conference proceedings.) The keywords were listed in the
Table A in Appendix A, with the frequency from high to low.
The percentages were calculated and listed as well. Two tables
that used to summarize the results are displayed in Appendix
A.

Step 3. Extraction of Keywords
The keywords whose percentages were higher than 13%

in Inspec and 8% in ACM were chosen respectively. The
reason for applying different standards for these two databases
separately was to avoid the biases in selecting key terms, and
to ensure the key terms chosen were as comprehensive as
possible. From the research questions, 21 general keywords
for the further search were extracted. All the keywords
relevant to detailed concepts in specific research fields in ASE
were abandoned because the research focused on studying in a
broader sense of ASE area. Table 4 lists the entire 21 general
keywords.

Table 4
Key terms

Automat*
software, system, program*	

process, engineering, development	

design, model*, comput*, generat*, test*, verification,
requirements, analysis, tool*, management, pattern	

quality, safety, productivity.	

Step 4. Verification of Keywords
In order to make the key terms rigorous, the different

combination of terms needed to be explored, in order to check
how many hits for each search string. The “automat*” with
different compounding was used as the search string to search
in Inspec database. (e.g., automat* program, automat* system).
From the results, there were 14 keywords out of 21 key terms

mentioned in most of those articles. The result is displayed in
Table 5.

Table 5
Compounding Key terms
1. “automat* program*”
2. “automat* system”
3. “automat* software”
4. “automat* process”
5.“automat*software development”

design, model*,
comput*, generat*,
test*, verification,
requirements, analysis,
tool*, management,
pattern, quality, safety,
productivity.

Step 5. Forming Search String
Finally, these key terms listed in Table 5 were used to

form search string with logical operator (AND, OR). The
search string is given in Table 6.

Table 6
Search string

Automat* AND (software OR system OR program*) AND
(engineering OR process OR development) AND (design OR
model* OR comput* OR generat* OR test* OR tool* OR
verification OR requirements OR analysis OR management
OR pattern) AND (quality OR safety OR productivity)

3.1.4.3. Study Selection Criteria

The articles should be selected based on inclusion and
exclusion criteria by considering the title and reading abstract.
As long as the contents of articles are related to any research
question of this SR study in ASE, it has been considered. The
inclusion and exclusion criteria are given below:

 The selected articles should be published works.
 The articles should be journal articles.
 The articles should be published between 1999 and 2009.
 The context of articles should be within automated

software engineering field, i.e. the key purpose of the
articles and proposed automated approach should be
improving the development of software.

 The studies, which were in both academic and industry
environments, should be considered and included.

 The issues of articles need to be related to any of the
research question listed in Table 2.

 The language of articles should be English.
 The articles should be available in full text.
 General discussions, descriptions, experiments, case

studies and reviews of techniques, tools and methods
without empirical evaluation should be excluded. The
detailed descriptions of what automated approaches are
and how customer can use specific automated approaches
in software engineering field should be considered.

 The articles should directly describe a method /technique
/tool /process that automates (or automates more/ to a
higher degree) a software development activity which was
previously done manually.

3.1.4.4. Study Selection Procedure

 6

In order to identify the correctness of the selection work,
and check the correctness of criteria, a pilot selection was
executed before conducting of the main selection work, with
the purpose of measuring the consistency of our understanding
about the study scope and selection criteria to ensure the
quality of the selection.

30 papers out of the searching result were randomly
selected as samples of the pilot selection. Then, selection
works were conducted on these sample articles separately by
the authors, following the selection criteria pre-defined in
Section 3.1.4.3.

After finishing the individual selection, the results were
compared, and the amount of selected papers that matched
was checked. The result from individuals showed there were
14 of them unmatched, which was a very high ratio.

Some negotiations were made on correcting selection
criteria and few changes were made in accordance to
understanding of the criteria based on our agreements.

In order to check the correctness of the negotiated
understandings, another 14 papers were randomly chosen
again. The result showed that there were only three articles
unmatched, which was acceptable. After these two pilot
selection works conducted sequentially, we finally
consolidated the standard understanding of the study selection
criteria.

3.1.4.5. Study Quality Assessment Criteria

Articles searched should follow the inclusion criteria
(Secion 3.1.4.3.) by reading the full text. The purpose of
checklist is to assess the quality of selected papers. The
detailed description is given in Table 7.

Table 7. Quality assessment criteria

Criteria Yes/No/Uncertain
Is the abstract relevant to ASE field?
Does the introduction clearly state the
research question and the result of the
automated approaches?

Is the method innovative or not?
Is the method used in the research
paper appropriate?

Is the content adequate to support the
research?

Are the validity threat mentioned in
the research?

Are the results explicit stated?
Is the conclusion appropriately drawn?

3.1.4.6. Data Extraction Strategy

The extraction work was conducted through a full text
reading, and the data of the articles were mapped into the main
taxonomy in the Table B (Appendix B), which were used for
the further mapping work of articles into specific field and
analysis work.

3.2. Conducting the Review
3.2.1. Identification of Research

SR was conducted to find as many primary studies as
possible, which were relevant to my research questions in
ASE field by following the unbiased search strategy described
in the review protocol in previous section. A big amount of
efforts were made to search the articles from 4 bibliographical
databases. Meanwhile, Zotero [17] was used in this research in
order to help the author to manage the large amount of
research papers, which can reduce the time spent on
organizing the objects. This tool can support adding notes,
tagging, and personal metadata through the in-browser
interface. It can filter some articles automatically by checking
the tags, which can avoid unnecessary duplication of articles.

3.2.2. Selection of Primary Studies

The purpose of performing paper selection was to
identify the relevant papers, which can be relevant to the
subject in agreed scope and suffice the objective of SR as well.

The search string in Table 6 was used to find the related
articles in this study. A total of 7075 articles were found from
4 selected bibliographic databases. The steps of filtering
papers are described fully in Figure 2.

Figure 2. Study Selection

3.2.3. Study Selection Procedure
7075 papers were found based on the searching string of

this study, the papers, which were duplicated and non-English
version were excluded. The usage of Zotero tool [17] to store
the papers made it easier to remove the papers. In the primary
study selection, 5243 papers were collected. Then screening
of papers was conducted abided the exclusion selection
criteria. Afterwards, 5060 papers were excluded according to
these study criteria. Meanwhile, 183 papers were kept after
this exclusion process. 183 publish papers were downloaded

 7

successfully. These papers had been checked based on using
the quality assessment criteria table, which were expressed in
Table 7. During reading the sample articles, 6 papers were
excluded, which included 5 non-full texts and 1 inconsistence
between content and title. By reading the details of the full-
text papers, 55 papers, which were not relevant to this study,
according to the quality assessment criteria, were found,
during the study quality assessment phase, which was
described in Section 3.2.4. Finally, 122 papers were extracted
as the data used in this study, via data extraction procedure. A
list of the selected papers was ordered according to the years
they were published and displayed in Appendix D (Table L),
whose number start with ‘P’, referring to Paper.

3.2.4. Study Quality Assessment

In this stage, the pilot study was assessed through the
quality criteria checklist (Table 7). It was found that some
studies were not well organized enough to interpret new
automated approaches. Such as case study, survey empirical
study, which no innovation automated approaches is proposed
in the research.

3.2.5. Data Extraction

Data extraction work was conducted based on the aspects
that described in Table B, given in the Appendix B. The entire
122 papers were read thoroughly, with full-text. And the
detailed information in the articles used in data synthesis
phase, was mapped into main taxonomy.

3.2.5.1. Generating Main Taxonomy

Main taxonomy was generated according to the research
questions made at the beginning of this study. It was used to
extract the data about automated approaches proposed in 122
selected papers. Since the scope of this study was within
software engineering field, when generating the taxonomy, all
the aspects of entire software engineering should be
considered. Different sub-category and sub-class were used to
determine the location of automated activities and
corresponding techniques.

Table B (Appendix B) is the main taxonomy used for
mapping the entire study with 122 papers. It is a systematic
detailed description of all the information collected from the
data extraction phase. There are 9 tables illustrated in
taxonomy along with the main taxonomy (Table 10 to 16 in
Section 4, and Table C&D in Appendix B and Section 4).
They were used to further address the studies based on the
sub-category and sub-class that the automated activities and
the approaches belonged to. The reason to sort the tables in
this sequence was due to the consideration of facilitating the
readers from different fields in software engineering as much
as possible. They had different points of emphasis and may
search the information they need from the software
engineering field they concern. In that case, the readers can go
through the specific table from those 9 tables, from which they
may find interesting and useful, as well as to find the detailed
information from the main taxonomy based on the categories
described in Table B, (Appendix B), in which the all the
aspects of the paper explained.

3.2.5.2. Description of Main Taxonomy Table

Main taxonomy table was used to collect and classify
data provided by all the articles studied in the research. Paper
number was used to determine the number of the automated
approaches explained in corresponding papers, for example,
P1 refers to automated approach in paper 1. In case there were
more than one automated approaches proposed in one paper,
the combination of paper number and automated approach
number was used to refer the automated approach. When more
automated approaches described in one paper, it can be
displayed in the form of P1-1 and P1-2. More detailed
examples can be found in Section 4.1. This main taxonomy
table is exhibited in Appendix B (Table 8).

Data were sorted based on the years when the papers
were published from 1999 to 2009. Each article was reviewed
and mapped with the following four aspects:
Article:

It includes the number of papers, and the published year
of them.
Automated Approach:

When explaining the automated approach the paper
mentioned, seven different categories were used to address
data, including:
 AA NO.: automated approach number.
 Activity: a short description of relevant activity.
 Approach: automated approaches used to perform this

automated activity.
 Relevant SE Area: which software engineering automated

approach belongs to.
 Automation Level: which automation level automated

approach belongs to.
Required Human Activity:
 RA NO.--Required Human Activity number.
 Activity--detailed explanation of the Required Human

Activity, which aims at achieving the automated activity.
 Relevant SE area--which software engineering area

human activity belongs to.
Setup Cost:
 Type--what kinds of type human needed before

performing the automation activity.
 Effort--which level (Low, Medium, High) setup cost

belongs to.

3.2.5.3. Mapping the Existing Literature into Main

Taxonomy

3.2.5.3.1. Prototype of Data Extraction
In order to guarantee the correctness of the data

extraction phase, two Master students were required to
affiliate to validate, both of who were studying in software
engineering fields as well. A pilot data extraction was exerted
before performing the entire extraction work in the thesis
project. Extracting the data into main taxonomy by reviewing
5 papers randomly chosen from 122 papers separately.
Through the discussion of tiny differences between the results,
the further explicit extraction criteria were formed.

 8

3.2.5.3.2. Examples of Data Extraction
For mapping the correct data from relevant articles into

the main taxonomy, a pre-defined description about how data
varies from each other needs to be considered. Three papers
with top citation numbers as examples are described below.

127 papers were searched in Google Scholar, aimed to
judge the citation numbers of them. Through performing an
analysis on the numbers of citation, 3 papers found with top
citation number (P3 1999, P50&P56 2005). Names of these
papers can be found in the Appendix D. The cited numbers of
them were 94, 296 and 90 respectively.

The reasons why P3 was the second cited paper can be
divided into two parts: firstly, after 10-years’ publication, the
research paper is still popular to study on because of its
valuable topic; secondly, the concepts in the paper touched
upon the fundamental theories, which had been considered
important for today’s research in this field. An interesting
point was about P50, even it was published in the middle of
period of this study considered, still got high amount of
citation.

In terms to extracting the name of automated approach,
the automated activity it can perform, the relevant field it
belongs to, which can be easily and clearly found in the
literatures, SWEBOK was used as a handbook to pilot the
work on specifying the software engineering fields.

In contrary, how to classify the automation level that
automated approach belongs to be flexible. Three different
automation levels should be followed. Description of how to
identify the automation levels of the proposed automated
approach (the numbers refer to relevant automated approaches
are illustrated in Section 4.1) in example papers are showing
as blow:

 P3-1, an automated approach, was a framework, which

comprised by Model-Checking and Abstract
Interpretation. Abstract model checking was used in
automated analysis of software. The researchers proposed
two improvements on applying abstract modeling
checking to infinite abstract transition systems. This
activity belonged to the sub-class of model validation of
Software Requirement field. This automated framework
can perform automated information analysis, which could
be classified into Informing Automation Level (LB).
Since it could inform human only if needed (invalid
model appearing). The researchers didn’t explicitly
mention any Required Human Activity.

 P50, an automated approach, was Dynamic software-
updating framework. This automated activity was
automatic generation of patch files, which used in
Software Maintenance field. It exerted fully automated
date acquisition, analysis, decision-support and action
implementation. Therefore, this automated activity
belonged to Autonomous Automation Level (LA).
Meanwhile, Required Human Activity was mentioned in
this paper. Programmers need to fill in the parts of state
transformer and stub function. The level of human
intervention belonged to high level, which represented

that this automated approach (Dynamic software-updating
framework) could not be exerted without programmers
filling work. After human intervention, this automated
approach would exert fully automated activity, which
belonged to Autonomous Automation Level (LA).

 P55, an automated approach, was XML (Extensible
Markup language) based on WSAMI (Web services for
ambient intelligence). In this paper, researchers
introduced XML-based WSAM declarative language and
associated SOAP-based WSAMI middleware, which
could be used in development of ambient intelligence
system. It could automatically perform dynamically
retrieving instances of services and further achieve
dynamic composition of applications, according to
environment. This automated activity belonged to sub-
class of construction language in Software Construction
field. This automated approach could exert fully
automated activity, which belonged to Autonomous
Automation Level (LA).

3.2.6. Data Synthesis

According to the statement that Brereton et al. mentioned
in the article [21], which described the way of applying
systematic review process within software engineering domain,
the nature of systematic review is on qualitative issue.
Therefore qualitative data synthesis method is more
appropriate to be used in this study. Based on the explanation
that George W. Noblit and R. Dwight Hare provided in their
book, there were three types of the data synthesis methods:
Reciprocal Translations as Syntheses, Refutational Synthesis,
and Line-of-Argument Synthesis [22]. In this study, the last
method was used to carry out the synthesis of the extracted
data, which allowed researchers to analyze individual studies
as well as group them due to the similarities that were
repeatedly compared among studies. Then the analysis of the
group of related studies would be accomplished as a whole.
The results of the data synthesis phase are detailed stated in
next section.

4. RESULTS
Findings of this thesis project are presented in this part,

based on the main taxonomy generated and the existing
literatures mapped in it during data extraction phase. Four
main issues were considered, when going through this study:
the first one was Field from the main taxonomy, which
included the analysis of 9 different software engineering fields;
the second one was Automation Level from main taxonomy,
in which the detailed analysis of automated approaches based
on three different automation levels that the automated
approaches belonged to were explained; the third one was
Required Human Activity from main taxonomy, in which the
detailed description of the efforts that human needs to spend
when applying the automated approaches; the last one was
Types of automated approach used in ASE, which stated

 9

detailed explanation of three most popular types of automated
approaches out of the entire ten types of automated approaches.

4.1. Field from Main Taxonomy
In this study, apart from general analysis of the

approaches found in this study based on the fields they
belonged to and the years, when they were proposed, the
analysis of the data extracted from each field are detailed
described.

Generally, paper’s number represents the index of the
automated approach, but due to the case that there were more
than one automated approach being proposed in one article,
it’s impossible to clearly refer to the approaches from the
same article only by the article number. Therefore, the
combination of paper number and approach number was used
to represent index of automated approach.

For example, if the index of the approach is P1, it means
the approach is from the paper P1, and there was only one
approach in this paper. If the index of the approach is P3-2,
which represents this approach is from paper P3, and it is the
second approach proposed in this article.

Table 8 and 9 contributed to overview of this study based
on the fields and years the approaches were published in.

The purpose of Table 8 was to summarize the number of
approaches that have been found in each software engineering
field, which was displayed and sorted, based on their
percentages from high to low. The percentage described as
how much approaches found in each field occupies in the total
127 automated approaches. This table consisted nine essential
fields in software engineering field. Full references for 122
articles, where 127 automated approaches found, could be
found in Appendix C.

According to the data explained in this table, it was
obvious that the most popular field, where ASE researches

focused on Software Design field. There were 41 automated
approaches relevant to creating innovative automated
approaches to improve the design of software. It accounted for
32.3% out of 127 automated approaches in total. Through
exerting systematic review on 122 articles, the most popular
research field in Software Design was detailed design. 8
automated approaches were proposed in this sub-class and
account for 19.5%. The detailed description of this part was
stated in the Section 4.1.1.

Software Requirements was the second largest field
according to Table 7. In total, 27 automated approaches were
found, which account for 21.3% in the 127 automated
approaches. In Software Requirements field, Model Validation
was the most popular sub-category been focused. 12
automated approaches were proposed, occupied 44.4% out of
the total 27 automated approaches in Software Requirements
field. The detailed description of data in this field was given in
the Section 4.1.2.

Software Testing revealed the third highest percentage
(16.5%) in this table, which included 21 automated
approaches. Detailed description could be found in Section
4.1.3.

The rest 38 automated approaches found in the following
four fields were quite less compared with the first three fields.
Numbers and percentages of these approaches were: Software
Quality field (12 and 9.4%), Software Construction field (11
and 8.7%), Software Maintenance field (9 and 7.1%), and
software engineering Process field (6 and 4.7%). The detailed
descriptions could be found from Section 4.1.4 to 4.1.7
respectively.

There was no automated approach found in either the
Software Configuration Management field or Software
Engineering Management field. Section 4.1.8 and 4.1.9
provide detailed descriptions.

Table 8. The percentage of each field in software engineering

Field Approaches Total Percentage
Software Design P1, P5, P6, P9, P11, P12, P13, P14, P16, P18, P22, P23, P25, P30,

P34, P37, P38, P46, P47, P59, P62, P66, P67, P68, P69, P70, P90,
P91, P97, P99, P102, P103, P112, P114, P115, P116, P120, P121,
P3-2, P26-1, P26-2

41 32.3%

Software Requirements P2, P17, P24, P35, P39, P44, P49, P51, P56, P76, P79, P84, P85,
P88, P94, P98, P104, P108, P109, P111, P119,
P3-1, P27-1, P27-2, P27-3, P53-1, P53-2

27 21.3%

Software Testing P4, P20, P21, P33, P41, P42, P45, P48, P57, P60, P61, P64, P65,
P75, P77, P93, P96, P101, P110, P117, P118

21 16.5%

Software Quality P8, P15, P29, P32, P58, P74, P86, P89, P100, P105, P107, P113 12 9.4%

Software Construction P19, P28, P54, P55, P71, P78, P80, P82, P83, P87, P122 11 8.7%
Software Maintenance P10, P31, P36, P40, P50, P72, P92, P95, P106 9 7.1%

Software Engineering Process P7, P43, P52, P63, P73, P81 6 4.7%

Software Configuration
Management

0 0 0%

 10

Software Engineering
Management

0 0 0%

Table 9 displayed the numbers of automated approaches
proposed in each software field based on the years. It was a
supplemental table for Table 8. The horizontal rows were
ordered by different 9 fields based on the popularities of them
according to the Table 8. The vertical columns were sorted
based on the years and divided into two categories under each
year--number of automated approaches proposed (N) and the
percentage (P) of automated approaches found in the
corresponding year when they were published. The bold
numbers highlighted in the table figure the highest percentage
in each year separately. The reason why exerted comparing
based on the number not only the percentage was that the
numbers shown on the table were not necessarily enough to
demonstrate the popularity of the field itself, which can avoid
some bias when analyzing the data. Some of the detailed
descriptions about Table 9 are displayed below:

Firstly, it was apparently seen that Software Design field
was the most popular one in which the automated approaches
was applied through the 8 years out of 11 in total. Especially,
during the first 4 years, it occupied more than half of the
amount of published articles in each year. All of this
information reveals that Software Design was the most
popular field, which attracted researches to explore automated
approaches in ASE field.

By transversely comparing, in Software Design field, the
highest number showed in 2006, which was 7. The odd point
appeared in the 2007, there was no automated approach found
related to Software Design field. In contrast, number of
articles published in Software Construction field revealed the
highest point in 2007, amount of which was 5 and percentage

was 41.7%. It was strongly demonstrated that in 2007,
investigation on ASE in Software Construction field attracted
the most attention among researchers.

Secondly, automated approaches found in Software
Requirement field appeared as the top numbers in 2003 (30%),
2005 (37.5%) and 2008 (27.2%). But it shared the top
percentage with Software Design fields in two years, 2003 and
2008.

Thirdly, there was no top showing in Software Testing
field. Even the articles relevant to Software Quality field
appeared once as top percentage in 2000, it should be noticed
that these results highly depended on the small amount of
automated approaches proposed which was just 2.

Fourthly, only 9 and 6 automated approaches relevant to
the Software Maintenance and Software Engineering Process
fields respectively. Meanwhile, there were no articles
investigating on automated approaches used in Software
Configuration Management and Software Engineering
Management fields.

Finally, two phenomena were found: one was that the
diversity of software engineering fields increased from 1999
to 2009, much more innovative automated approaches were
proposed by researchers; the other was that by comparing with
the number of published articles before and after the year of
2004, the amount of proposed automated approaches was
almost 3 times more than it was in the period between 1999
and 2004, which represented that there were increasingly
attentions paid to the researches on ASE field from 1999 to
2009.

Table 9. The Numbers of automated approaches in each software field based on the years
N=number. P=percentage (%).

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Year

SE
Field N P N P N P N P N P N P N P N P N P N P N P

Design 4 50 1 50 6 60 3 50 3 30 3 33.3 2 12.5 7 36.8 0 0 6 27.2 6 46.2

Requirements 2 25 0 0 1 10 1 16.7 3 30 2 22.2 6 37.5 0 0 4 33.3 6 27.2 2 15.4

Testing 1 12.5 0 0 0 0 2 33.3 0 0 2 22.2 3 18.8 6 31.6 1 8.3 3 13.7 3 23.1

Quality 0 0 1 50 1 10 0 0 2 20 0 0 0 0 2 10.6 1 8.3 4 18.2 1 7.7

Construction 0 0 0 0 1 10 0 0 1 10 0 0 2 12.5 1 5.3 5 41.7 0 0 1 7.7

Maintains 0 0 0 0 1 10 0 0 1 10 2 22.2 1 6.3 1 5.3 0 0 3 13.7 0 0

Process 1 12.5 0 0 0 0 0 0 0 0 0 0 2 12.5 2 10.6 1 8.3 0 0 0 0

Configuration
Management 0

 11

Software
Engineering
Management

0

Total 8 -- 2 -- 10 -- 6 -- 10 -- 9 -- 16 -- 19 -- 12 -- 22 -- 13 --

4.1.1. Software Design

The contribution of Table 10 is to make explicit
classification on detailed of Software Design field. It is a
detailed description of how to map entire 41 approaches,
which belongs to the Software Design field into 10 Sub-
categories in Software Design. This table consists of 6 aspects,
which are fields in Software Design, sub-category, sub-class,
Approach, Number (how many automated approaches were
found in this field) and Percentage (what percentage of
automated approaches occupies in the entire 41 automated
approaches). The corresponding articles of each approach are
displayed in Appendix D.

Detailed design is a sub-class that belongs to sub-category
of Software Design Process. It was the most popular research
area in the Software Design field during 1999 to 2009, since it
was the highest percentage (19.5%) in the entire of table.

For demonstrating how to classify which sub-category or
sub-class automated approach should belong to, an example is
provided as below.

The title of article P22 was “A methodology for designing
toolkits for specification level verification of interval-
constrained information system requirements”. In this article,
authors focused on developing the basic structure of the
Information System (IS) maintenance toolkits design model
and detail modeling of Fault Inspecting sub-module design
pattern. Researchers developed a more reusable and various IS
verification algorithms and design components to achieve
increasing structural quality and decreasing effort in building
specific information system maintenance (ISM) toolkits. An
automated approach they explored, which was Reuse-oriented
UMP methodology that activity was generalized designs of

Information System maintenance toolkits that maintain the
requirements specification of IS.

According to the content of SWEBOK [20], automated
approach P22 belongs to Detailed design sub-class of
Software Design field, of which the definition is to describe
the specific behavior of software components. The output of
this process is a set of models and artifacts that record the
major decisions that have been taken [20], which matched the
corresponding activity performed by this automated approach.

Comparing with sub-class of Detailed design, Simulation
and prototyping, and Static analysis were the second most
popular sub-class. They belonged to sub-category of Quality
Analysis and Evaluation. These two sub-classes both occupied
12.2% (5 approaches) out of 41 automated approaches.

The third most popular sub-category was Error and
exception handling and fault tolerance, which accounted for
9.8% (4 approaches) out of 41 automated approaches.

The forth most popular sub-category was Architectural
Structures and Viewpoints, Families of programs and
frameworks, and one sub-class of Software design reviews.
They all involved 3 automated approaches and accounted for
7.3% in the 41 approaches respectively.

The fifth popular sub-category was Distribution of
Components, and two sub-classes of Architecture design, and
Formal specification languages, which include 2, automated
approaches (4.9%) separately.

The least popular sub-category was Quality, and three
sub-classes of Coupling and cohesion, Behavioral patterns,
and Object-oriented design measures. They only included 1
automated approach (2.4%).

Table 10. Automated approaches in Software Design field
Field Sub-category Sub-class Approach Number Percentage

Architecture
design

P23, P47, 2 4.9% Software Design
Process

Detailed design P22, P62, P70, P91, P99,
P112, P115, P120,

8 19.5%

Software Design
Fundamentals

Enabling
Techniques

Coupling and
cohesion

P59, 1 2.4%

Distribution of
Components

 P37, P68, 2 4.9% Key Issues in
Software Design

Error and
Exception
Handling and
Fault Tolerance

 P18, P69, P102, P121, 4 9.8%

Architectural
Structures and
Viewpoints

 P34, P90, P114, 3 7.3%

Design Patterns Behavioral
patterns

P16, 1 2.4%

Software
Structure and
Architecture

Families of
Programs and
Frameworks

 P6, P9, P97, 3 7.3%

Quality P13, 1 2.4% Software Design
Quality Analysis Quality Analysis

and Evaluation
Software design
reviews

P12, P14, P25, 3 7.3%

 12

Static analysis	
 P1, P3-2, P11, P103, P116, 5 12.2%	

Simulation and
prototyping	

P26-1, P26-2, P30, P66,
P67,

5 12.2%
	
 	

Object-oriented
design measures	

P46, 1 2.4%

Software Design
Notations	

Behavioral
Descriptions
(dynamic view)	

Formal
specification
languages	

P5, P38,	
 2 4.9%

4.1.2. Software Requirements

Table 11 details the percentage of automated approaches
in Software Requirement of software engineering field. It was
the second most popular research field in this study, which
included 27 automated approaches out of 122 articles. This
table indicates detail distribution of each automated approach
in the entire Software Requirements field. It explicitly stated 9
Sub-categories of this field, which were Model validation
(44.4%), Elicitation Techniques (14.8%), Software
Requirements Specification (11.1%), Conceptual Modeling
(7.4%), Measuring Requirement (7.4%), Requirements
Sources (3.7%), Acceptance testing (3.7%), Requirements
Attributes (3.7%), and Requirement Tracing (3.7%). The
details of number of each automated approach were also
mentioned in this table.

In detail, 12 automated approaches belonged to Model
Validation, which occupied 44.4% in the entire 27 automated
approaches, which demonstrated this sub-category was a main
research objective. In terms of the types of these 12 automated
approaches, it consisted of 5 frameworks, 6 methods, and 1
platform.

P3-1, as an example, described how to map automated
approach into Model Validation. The name of article 3 was
“Refine Model checking by abstract interpretation”, in which
two improvements of abstract model-checking were proposed,
which could be applied to infinite abstract transition systems:
one was a new combination of forward and backwards abstract
fixed-point model-checking computations for universal safety;
the other was using partial results of classical combination of
forward and backward abstract interpretation analysis for
universal safety. Both of these improvements were refinement
of the abstract model-check for automated analysis of software.
According to the classification explained in the SWEBOK
[20], these automated approaches belonged to Model
Validation of Requirements Validation in Software
Requirement field.

The second most popular sub-category was Elicitation
Techniques, but the number of automated approaches was
only 4 (14.8%), which was much less than the one was found
in Model Validation.

Table 11. Automated approaches in Software Requirement field
Field Sub-category Approach Number Percentage

Requirements Elicitation Requirements Sources P108 1 3.7%
 Elicitation Techniques P53-1, P53-2, P98, P111 4 14.8%
Requirements analysis Conceptual Modeling P17, P119 2 7.4%
Requirements
Specification

Software Requirements
Specification

P27-1, P27-2,
P27-3

3 11.1%

Model Validation P24, P35, P56, P76, P79,
P84, P85, P88, P94, P104,
P109,
P3-1

12 44.4% Requirements Validation

Acceptance Testing P44 1 3.7%
Requirements Attributes P39 1 3.7%
Requirement Tracing P49 1 3.7%

Practical Considerations

Measuring Requirements P2, P51 2 7.4%

4.1.3. Software Testing
In Table 12, it stated 21 automated approaches in the

Software Testing field. There were 3 automated approaches
found respectively in two different sub-classes in the top stage
of this table, which were Unit testing and Conformance testing
/Functional testing /Correctness testing. They were the most
popular sub-class for the researchers in the Software Testing
field. Each of them occupied 14.3%, concerning the 21
automated approaches. The detailed description about these 6
automated approaches are stated below:

In the sub-class: Unit testing, automated approach P93
(Assume-guarantee testing) was a technique to check
requirements performed during testing of individual

components. The second automated approach (P96) was
Extended Learning framework applied L* algorithm, which
synthesized assumptions that automate assume-guarantee
reasoning for finite-state machines and safety properties. The
third automated approach (P117) was eCrash (automated test
case generation tool) that automatically generated high quality
test cases for Object-Oriented Java software.

In the sub-class: Conformance testing /Functional testing
/Correctness testing, automated approach P4 combined
PURDOM’s and EXTENDED PURDOM’s algorithm with
Extended Generate_Minimum_Statement algorithm. They
were applied to test syntax and semantic coverage of JAVA

 13

language compilers. The second automated approach (P33)
was KLAIML framework that automatically verified
properties in mobile applications programmed in X-KLAIM.
The third automated approach (P65) was Tool-set (Verifying
compiler), which automatically proved that a program would
always meet its specification, insofar as this had been
formalized, without the need to run it.

Furthermore, 4 different sub-classes were mentioned,
including 2 automated approaches in each sub-class separately,
which displayed the same percentage (9.5%). These 4 sub-

classes were known as Integration testing; Finite-state
machine-based; Testing from formal specifications and
Component-based testing.

The rest 7 different sub-classes only covered 1 approach
in each. These 7 sub-classes were Test selection criteria/Test
adequacy criteria, Reliability achievement and evaluation,
Regression testing, Configuration testing; Data flow-based
criteria, Fault density and Test results evaluation. The
percentage of each was 4.8%, considering the 21 automated
approaches in Software Testing field.

Table 12. Automated approaches in Software Testing field

Field Sub-category Sub-class Approach Number Percentage
Software Testing
Fundamentals

Key issues Test selection
criteria/Test
adequacy criteria

P118 1 4.8%

Unit testing P93, P96, P117 3 14.3% The target of the
test Integration testing P21, P110 2 9.5%

Conformance
testing/ Functional
testing/
Correctness testing

P4, P33, P65 3 14.3%

Reliability
achievement and
evaluation

P42 1 4.8%

Regression testing P48 1 4.8%

Test levels

Objectives of
Testing

Configuration
testing

P75 1 4.8%

Finite-state
machine-based

P20, P61 2 9.5% Specification-
based techniques

Testing from
formal
specifications

P41, P64 2 9.5%

Code-based
techniques

Data flow-based
criteria

P60 1 4.8%

TEST techniques

Techniques based
on the nature of the
application

Component-based
testing

P45, P77 2 9.5%

Test-related
measures

Evaluation of the
program under test

Fault density P101 1 4.8%

Test Process Test Activities Test results
evaluation

P57 1 4.8%

4.1.4. Software Quality

In Table 13, it contained 12 automated approaches in the
Software Quality field.

The highest percentage, which is the most noticeable, was
33.3% in the sub-category of Software Quality Measurement,
which included 4 automated approaches. The first automated
approach (P29) was a framework named Genetic classifier
supported by Self-organizing maps and evolutionary-based
developed decision trees. It automatically analyzed the
quality-based software engineering data. The second
automated approach (P32) was a tool named Data Model
Quality Advisor (DMQA) that automatically performing high-
quality conversion of legacy software from one database
model to another using a small and fixed set of
transformations. The third one (P86) was a HMSRM
framework (Hierarchical mixture of software reliability
models). It automatically selected the most appropriate lower-

level model for the data and performances in prediction. The
fourth automated approach (P107) was used to measure the
common features of domain knowledge with object oriented
and developing a set of new quality property metrics to
measure the characteristics that were particular to different
domain knowledge components. The name of this framework
was DKM (Domain knowledge quality metrics) and domain
knowledge quality-measuring tool.

Quality Improvement was the second most noticeable
sub-category in this table. It included 3 automated approaches.
The percentage here was 25%.

The third most noticeable sub-category was Software
Quality Management Techniques, which was further divided
into two sub-classes, which were Analytical techniques with 2
automated approaches found, and Testing with only 1

 14

automated approach found. The percentages of them were
16.7% and 8.3% respectively.

The least noticeable sub-category was Verification and
Validation, which contained 2 automated approaches. The
percentage each was 16.7%, out of 12 automated approaches.

Table 13. Automated approaches in Software Quality field
Field Sub-category Sub-class Approach Number Percentage

Software Quality
Fundamentals

Quality
Improvement

 P8, P89, P105 3 25%

Software Quality
Management
Processes

Verification and
Validation

 P15, P58 2 16.7%

Analytical
techniques

P74, P100 2 16.7% Software Quality
Management
Techniques Testing P113 1 8.3%

Practical
Considerations

Software Quality
Measurement

 P29, P32, P86, P107 4 33.3%

4.1.5. Software Construction
Table 14 comprised 11 automated approaches used in

Software Construction field.
Two sub-classes occupied the highest percentage (18.2%)

in the entire table respectively, which were Programming
Languages and Debugging.

There were 2 automated approaches found in the sub-
class of Programming Languages. One approach (P54) was
StreamBit (a sketching methodology), which supported a
compiler automatically sketch to be faithful to the input
reference code. The other (P78) was Nemo (Language) that
specifying a set of resources with usage constraints, a set of
tasks that consume them according to various modes, and
applications sequencing the tasks.

In the Debugging sub-class, 2 automated methods were
included, names of which were Delta Debugging (P19) and
SOBER statistical method (P71). Former one used the result
of automated testing to systematically narrow the set of
failure-inducing circumstances. The latter one was used to
automatically localize software faults without any prior
knowledge of the program semantics.

Apart from those 4 automated approaches described
before, other 7 approaches were displayed in 7 different Sub-
categories and sub-classes, which were Construction Planning,
Construction Measurement, Integration, Construction
Languages Tools, Unit testing and Integration testing. Then
percentages of them were only 9.1% for each, out of 11
automated approaches.

Table 14. Automated approaches in Software Construction field
Field Sub-category Sub-class Approach Number Percentage

Programming
Languages

P54, P78 2 18.2% Software
Construction
Fundamentals

Constructing for
Verification

Tools P80 1 9.1%
Construction
Planning

 P28 1 9.1% Managing
Construction

Construction
Measurement

 P87 1 9.1%

Unit testing P82 1 9.1% Reuse
Integration testing P122 1 9.1%

Construction
Quality

Debugging P19, P71 2 18.2%

Integration P83 1 9.1%

Practical
considerations

Construction
Languages

 P55 1 9.1%

4.1.6. Software Maintenance
In Table 15, 9 automated approaches were explored in the

Software Maintenance field in total.
The highest percentage appeared was 44.4%, which

contained 4 automated approaches in the sub-category of
Reengineering. According to these data, it indicated that
reengineering was the most noticeable sub-category to the
researchers in the Software Maintenance field. The detailed
descriptions of these 4 automated approaches in
Reengineering are displayed below:

The first automated approach (P31) was MIDAS
(automatic system), which performing high-quality conversion
of legacy software from one database model to another using a
small and fixed set of transformations. The second automated
approach (P40) was WAD abbreviated to Wizard for

Application Dictionary based on Compiere. It automatically
created a Web-based management information system
following the Model-View-Controller pattern. The third
automated approach (P72) was Principles of conventional
control theory. It defined and improved a requirement
engineering (RE) process control system. The forth automated
approach (P92) was a framework named FTSyn (Fault-
Tolerance Synthesizer). It automatically synthesized several
fault-tolerant programs, including a simplified version of an
aircraft altitude switch, token ring, Byzantine agreement, and
agreement in the presence of Byzantine and fail-stop faults.

Reverse engineering was the second top sub-category in
this table, which included 2 automated approaches with the
percentage 22.2%.

 15

The other three automated approaches were displayed in
the Nature of Maintenance, Software configuration

management, and Software quality separately, of which the
percentage was 11.1% for each.

Table 15. Automated approaches in Software Maintenance field
Field Sub-category Sub-class Approach Number Percentage

Software
Maintenance
Fundamentals

Nature of
Maintenance

 P50 1 11.1%

Software
configuration
management

P10 1 11.1% Maintenance
Process

Maintenance
Activities

Software quality P106 1 11.1%
Reengineering P31, P40, P72, P92 4 44.4% Techniques for

Maintenance Reverse
engineering

 P36, P95 2 22.2%

4.1.7. Software Engineering Process
Comparing with other 6 different fields mentioned above

in software engineering field, Software Engineering Process
field only included 6 automated approaches.

The sub-category of Process measurement revealed the
percentage of 33.3%, which was the highest in Table 16. It
included 2 automated approaches, the first automated
approach (P7) was a method combining MPM (measurement
process model), Object Oriented concepts and tools; the
second one (P73) was PROM metrics collection tool. The

automated activity of the former one was to provide flexible
design, structure and automatic generation of efficient
implementations of DSL programs. The latter one’s activity
was supporting to manage a large measurement program.

The other 4 automated approaches were found in sub-
categories of Process infrastructure, Automation, Process
assessment models and Software information models, each of
which only accounted for 16.7%.

Table 16. Automated approaches in Software Engineering Process field
Field Sub-category Approach Number Percentage

Process
implementation and
change

Process infrastructure P81 1 16.7%

Process definition Automation P63 1 16.7%
Process assessment Process assessment models P43 1 16.7%

Process measurement P7, P73 2 33.3% Process and product
measurement Software information models P52 1 16.7%

4.1.8. Configuration Management

Table C in Appendix C stated the detailed description of
what sub-categorizes displayed in Configuration Management
field. The information in this table was referred to the
SWEBOK [20]. Systematic review was exerted on the entire
122 articles, based on 17 sub-categorizes of Configuration
Management fields, which were displayed in Table C. It turns
out that there was no automated approach involved into these
17 sub-categories. The definition of Software Configuration
Management (SCM) is a supporting software life cycle
process (IEEE12207.0-96) which benefits project management,
development and maintenance activities, assurance activities,
and the customers and users of the end product [20]. SCM is
closely related to the software quality assurance (SQA)
activity. As defined in the Software Quality KA, SQA
processes provide assurance that the software products and
processes in the project life cycle conform to their specified
requirements by planning, enacting, and performing a set of
activities to provide adequate confidence that quality is being
built into the software. SCM activities help in accomplishing
these SQA goals [20]. Therefore, the researchers concentrated
on exploring the automated approach in the SQA field rather
than on the SCM.

Based on the result, it demonstrated that SQA was more
popular to the researchers to explore the automatic approaches,
comparing with the SCM.
4.1.9. Software Engineering Management

Table D in Appendix C displayed 24 Sub-categories in
the Software Engineering Management field.

The result of exacting data phase showed that there was
no automated approach found in this field, which was as the
same as the situation in the Configuration Management field.
Software Engineering Management can be defined as the
application of management activities-planning, coordinating,
measuring, monitoring, controlling, and reporting-to ensure
that the development and maintenance of software is
systematic, disciplined, and quantified (IEEE610.12-90) [20].
In the 122 papers, no relevant paper focused on Software
Engineering Management field.

4.2. Level from Main Taxonomy
In Table 17, the entire 127 automated approaches were

involved based on three different automated levels. (Detailed
description of each level was mentioned in Section 3.1.3)

All the data were sorted according to the levels and years.
In Table 17, only three different levels were included, in
which Level D was excluded. The scope of this study focuses

 16

on automated approaches; therefore, Level D, presenting no
automated approach, is apparently out of the study scope.

In this table, Number represented how many automated
approaches were found in relevant levels. Research results
were displayed according to the levels (Vertical) as well as the
years (Horizontal). The percentages illustrated the
corresponding numbers in the proportion of the total numbers
of automated approaches found in that year (Horizontal).

According to the results in main taxonomy, LC is the
most popular level, which included 50 automated approaches.
Therefore, when computer exerted these 50 automated
approaches, the Decision Support could be automatically
conducted by generating suggestions and performing actions,
but human needed to choose decisions. Software working on
LC level cannot support fully automatic actions. Meanwhile,
there were 45 and 32 automated approaches found
respectively in the LA and LB level.

The largest numbers appeared in 2008 in Level A, which
were 11, and it accounted for 50% out of the total number of
the 22 automated approaches in that year. Oppositely, there
was no automated approach found in neither Level A nor
Level B in 2000, and the total number of automated

approaches found in that year was only 2. In 1999, even the
number of approaches classified in Level B was only 6; it still
occupied 75% among the automated approaches found in that
year.

The contribution of Figure 3 is to make it easier to
summarize this study regarding to an explicit tendency of
these three levels from 1999 to 2009.

The vertical axis represented the numbers along with
corresponding percentage of automated approaches found in
different years (horizontal axis) in three levels separately. The
data of the period during 2000 and 2004 displayed that more
researchers have focused on LC level than other two levels in
ASE. Afterwards, the figures of LA and LB levels were
increasing dramatically, compared with the moderate increase
of the figure in LC. Even during 2006 and 2007 the figure of
LA and LB represented some decrease, the data of LA in 2008
could more explicitly explains the tendency of the levels of
automated approaches found, which was that there was
increasing tendency of Autonomous Level. Researches
conducted more studies in this LA in order to find the
automated approaches that could achieve full automation in
ASE field.

Table 17. The Level of automated approaches based on the years
Level A -Autonomous Level B-Informing Level C-Decision Support	
 Year

Number Percentage Number Percentage Number Percentage
Total

Number
1999 1 12.5% 6 75% 1 12.5% 8
2000 0 0％ 0 0％ 2 100％ 2
2001 2 20% 3 30% 5 50% 10
2002 2 33.3% 1 16.7% 3 50% 6
2003 3 30% 0 0% 7 70% 10
2004 4 44.4% 1 11.1% 4 44.4% 9
2005 9 56.3% 2 12.5% 5 31.3% 16
2006 5 26.3% 8 42.1% 6 31.6% 19
2007 5 41.7% 2 16.7% 5 41.7% 12
2008 11 50% 5 22.7% 6 27.3% 22
2009 3 23.1% 4 30.8% 6 46.2% 13
Total 45 35.4% 32 25.2% 50 39.4% 127

Figure 3. The Level of automated approaches based on the years

0�

2�

4�

6�

8�

10�

12�

1999� 2000� 2001� 2002� 2003� 2004� 2005� 2006� 2007� 2008� 2009�

Figure	
 3	

LA�

LB�

LC�

 17

4.3. Required Human Activity from Main Taxonomy.
Table 20, 21, 22 were parts of main taxonomy, which

comprised 22 Required Human Activities for entire 127
automated approaches (Detailed description about title of each
column can be found in the Section 3.2.5.2). These three
tables displayed 22 Required Human Activities separately,
which based on the different levels of human effort they need -
High, Medium and Low. These three different levels differ
from each other based on the amount of the human efforts
needed while using the automated approaches.

The contents in this table were sorted according to the
years they were investigated. There are four main Sub-titles in
the table: Required Human Activity, Relevant SE Area, Type,
and Effort. To be specific, they referred to the activities that
human need to do, in order to enable the usage of
corresponding automated approaches; the software
engineering fields, in which the activities will be carried out;
what kind of activities they belong to; and the amount of the
effort needed to spend on the execution of the activities.

The contributions of these three tables were to summarize
how many automated approaches needed by human
intervention and efforts, when applying the automated
approaches with the purpose of making the approaches more
effective. And the table showed whether these human
activities needed were in the same field as the automated
approaches or not.

Only 22 articles, which included 23 automated
approaches, clearly stated the Required Human Activities,
when introducing how to apply the associated automated
approaches.

There were 15 out of 22 articles in total, which needed
high requests of the human activities in order to satisfy the
requirement of applying the automated approaches. There
were 6 articles considering adding human activities, which
belonged to the Medium Level. Only 1 article needed Low
human intervention when applying the automated approach.
4.3.1. Summary of Required Human Activity

The articles mentioned Required Human Activity
accounted for a proportion of 17.3% (22/127) in the entire
automated approaches in this study, which demonstrated only
few researchers focused on needed human efforts when

proposing automated approaches in ASE. The reason might be
that they concentrated more on both probing the automated
approaches and how they work internally, instead of
concerning what human needed to do to improve the
efficiency of using automated approaches. Meanwhile, another
reason could be the limitation of inclusion criteria (Detailed
descriptions can be found in Section 3.1.4.3). For instance, the
articles, which merely introduced how to use automated
techniques, such as introducing case study conducted on using
the techniques, were eliminated.

There was 15 out of 22 Required Human Activity needing
high effort, which might indicate that the researchers would
mention the necessity of the human intervention when it was
really needed. Otherwise, if the usage of automated approach
required just low efforts, the researchers might skip it in their
articles, which might be the reason why only one paper found
mentioning Low effort in Required Human Activity.

In addition, the primary purpose of including Required
Human Activity was to see the software engineering area that
human need to work on, in order to enable the usage of the
automated approaches. The last finding showed that all the 22
Required Human Activity that researchers introduced were
identical with the software field that the corresponding
automated approaches were applied to. For example, in the
paper 7, whose name was “Measurement processes are
software tool”, researchers proposed an automatic method
(P7-1) combining measurement process model, Object
Oriented concepts and tools which guiding the definition
implementation and operation of measurement. It was marked
in the field of Software Engineering Process/Process and
product measurement/Process measurement. According to this
paper, human needed to collect information manually when
they used this automated approach. Required Human Activity
exerted in the same field as the field that the automat ED
approach applied to. Based on the paper 21, users needed to
select testing criteria and extraction of UML Model of a web
application in the integration testing manually. And then, the
automated approaches ReWeb and TestWeb tools could
perform automatic integration testing of the web application.
They both belonged to the same Software Testing field.

Table 18. The High Level of Required Human Activity based on automated approaches

Year Approach Required Activity Relevant SE Area Type Effort
1999 P2 Making the definition by

following the multiple-criteria
decision (MCDA) steps.

Software requirements/
Practical considerations/
Measuring requirements

Definition High

1999 P7 Manually collecting information. Software engineering process/
Process and product measurement/
Process measurement

Collecting High

2001 P15 Estimating if the application
contains the necessary features

Software quality/ Software quality
management process/ Verification
and validation

Preparing High

2003 P31 Human programmers analyze the
original program to find patterns
of database accesses, such as
filtering, joins, and aggregative
operations.

Software maintenance/ Techniques
for maintenance/ Reengineering

Analyzing High

2004 P39 Manually categorizing
requirements into software
attributes.

Software requirements/ Practical
considerations/ Requirements
attributes

Categorizing High

 18

2005 P50 The programmer needs fills in the
parts of the state transformer and
stub functions.

Software maintenance/ Software
Maintenance Fundamentals/ Nature
of maintenance

Filling High

2006 P64 Process feedback phase is
provided by project team
members who accomplish the task
in person.

Software engineering process/
Process definition/ Automation

Providing High

2006 P66 Coding using OWL language. Software design/ Quality analysis and
evaluation/ Simulation and prototype

Coding High

2006

P71 Human prepare the exclusive test
scripts for each component.

Software testing/ Key issues/ Test
selection criteria/ Test adequacy
criteria

Preparing High

2007

P79 Failure modes of components
must be injected by a safety
engineer into the system model
before model checking can be
performed.

Software requirements/ Requirements
validation/ Model validation

Modeling High

2007

P82 Developers need to provide
additional information such as
class names, attribute names and
types, and method names.

Software construction/ Practical
considerations/ Reuse/ Unit testing

Providing High

2007

P84 People set the target height in the
control panel and the controller
conducts the steeve to stop at the
right place.

Software requirements/ Requirements
validation/ Model validation

Setting High

2008

P102 Designers specify the
functionality and the faults that it
may exhibit.

Software design/ Key issues in
software design/ Error and exception
handling and fault tolerance

Specifying High

2009

P111 1. Eliciting MAS (Multiagent
System) requirements with the
REG.

Software requirements/ Requirements
elicitation/ Elicitation techniques

Eliciting High

2009

P112 Translating models to AOSE
(Agent-oriented software
engineering)

Software requirements/ Requirements
elicitation/ Elicitation techniques

Translating High

Table 19. The Medium Level of Required Human Activity based on automated approaches

Year Paper No. Required Human Activity Relevant SE Area Type Effort
1999 P4 Considering and decide which

semantic cases can be automated.
Software testing/ Test level/Objective
of testing/Conformance testing,
Functional testing, Correctness
testing

Preparing Medium

2000 P8 Carrying out the definition Software quality/ Quality
improvement/ The quality
improvement process

Defining Medium

2001 P19 Programmer must follow the
causality chain and decide where
to break it.

Software construction/ Construction
quality/ Debugging

Deciding Medium

2002 P21 1.User selects testing criteria
2. Extraction of UML Model of a
web application

Software Testing/ Test levels/
Integration testing

Selecting and
extracting

Medium

2006

P73 Human needs to specify which
applications are installed in the
target system and, consequently,
which client-side components
have to be installed.

Software engineering process/
Process and product measurement/
Process measurement

Specifying Medium

2007

P81 Software engineer needs to
combine manual tracing with the
tool support during the software
process.

Software engineering process/
Process implementation and change/
Process infrastructure

Tracing Medium

 19

Table 20. The Low Level of Required Human Activity based on automated approaches
Year Paper No. Required Activity Relevant SE Area Type Effort
2003 P26 Producing derivatives without

truncation error.
Software Design/quality analysis and
evaluation/Simulation and prototype

Derivative
production

Low

4.4. Types of Automated Approaches Used in ASE
Table 21 showed 10 types of automated approaches found

from 1999 to 2009 in this study, which were Tool, Framework,
Method, Technique, Model, System, Language, Platform,
Theory, and Process. (Detail descriptions of these automated
approaches can be found in the Appendix C).

The contribution of Table 21 is to display:
• How many automated approaches were found in this

study?
• Which automated approach was more popular?
• Which year was more important for the automated

approach during 1999 to 2009?
• What was the situation for automated approach?
• Which articles did include more than one automated

approach?

Based on the figures summarized in Table 21, 127
automated approaches were specified into 10 types out of
entire 122 articles. The top 3 popular types were Tool,
Framework and Method, which the numbers of automated
approaches included were 32, 28 and 26 respectively.
Contrarily, Platform, Theory and Process appeared as the 3
least popular types of automated approach, whose amount was
only 4.

In terms of the differences between years, 2008, 2006 and
2005 represented the top 3, the numbers of which were 22, 19
and 17 respectively.

Comparing with the figures displayed in the top 3 types, it
was obviously showed that the development trend of tool and
framework was the same, which was increasing from 1999 to
2009, but the one in Method was opposite.

From this table, it could be explicitly showed that the
diversity of automated approaches became more.

The fourth from the bottom was Language, the number of
which was only 5. The reason was that languages were
frequently reused in other automated approaches.

In table 21, all the numbers marked refer to the highest
numbers of automated approaches in each type, based on the
years that they were proposed.
4.4.1. Tools used in ASE

These 32 tools used in 8 different software engineering
fields. (Detail descriptions of tools can be found in Appendix
C, Table E).

In Table E, 7 tools were located in the Software Design
field, and 6 tools belonged to Software Testing field. In
Software Requirements and Software Quality field the number
was the same, which was 5. Software Maintenance field
included 4 tools. Of both Software Engineering Process and
Software Construction fields, it was 2 respectively. Only 1
tool belonged to Software Testing field.

In terms of the tools used in the Software Design field, 7
tools were mapped into 5 kinds of sub-classes, which were
Detailed Design, Behavior description, Simulation and
prototype, Architectural Structures and viewpoints, and
Behavior patterns.

The most special article was P27, whose name was
“Application of linguistic techniques for use case analysis”. It
explained how to perform a quality evaluation of the
requirements documents to ensure the quality of the
documents from the linguistic perspective and the tools used
to support the metrics. There were three tools mentioned and
used in this article, which were Quality analyzer for
requirements specifications (QuARS), Automated requirement
measurement (ARM) and SyTwo. Their automated activities
all belonged to Software Requirements field.
4.4.2. Frameworks used in ASE

There were 28 frameworks used in 7 different software
engineering fields, the detailed distributions were: Software
Design (11), Software Requirement (7), Software Test (3),
Software Quality (3), Software Management (2), Software
Engineering Process (1), Software Construction (1).

In terms of 11 frameworks used in sub-category and sub-
class of Software Design field, 4 of them located in Quality
Analysis and Evaluation; 3 used in Detailed design; 2 used in
Software Structure and Architectural; only 1 used in
Distribution of Components, and Coupling and cohesion
separately.

In terms of 7 frameworks applied in sub-category and
sub-class of Software Requirement, 6 used in Requirements
Validation. There was only 1 used in Requirements Elicitation.
4.4.3. Methods used in ASE

The amount of Methods used in automated software
engineering was 26. Similar as the frameworks mentioned in
last section, they were distributed in 7 different software
engineering fields as well. More precisely, Software Design
(12), Software Requirements (5), Software Construction (3),
Software Engineering Process (2), Software Engineering
Technique (2) Software Test (1), Software Engineering
Management (1).

The most popular was Software Design field (12), half of
which used in sub-category of Quality Analysis field. The rest
of 6 methods were equally divided into sub-class of Detailed
design, and Error and Exception Handling respectively.

The second most popular was Software Requirement field
(5). All of these 5 methods were used in Requirements
Validation area.

It is apparent that the automated approaches were most
frequently used in either Software Design or Software
Requirement field. And the sub-classes like Quality Analysis
and Evaluation, Detailed design, and Model Validation
attracted more attentions from researchers to investigate.

 20

Table 21. The Numbers of each automated approach based on the years

Year Tool Framework Method Technique Model System Language Platform Theory Process Total

1999 1 3 1 1 0 1 1 0 0 0 8

2000 0 1 0 0 0 2 0 0 0 0 3

2001 3 0 5 0 1 0 0 0 0 0 9

2002 2 0 4 0 0 0 0 0 0 0 6

2003 6 2 1 0 0 1 0 0 0 0 10

2004 3 3 0 1 0 0 1 0 0 0 8

2005 2 3 4 3 3 1 1 0 0 0 17

2006 4 2 3 3 2 3 0 0 1 1 19

2007 4 2 2 0 1 0 2 1 0 0 12

2008 6 7 3 2 2 1 0 1 0 0 22

2009 1 5 3 1 2 1 0 0 0 0 13

Total 32 28 26 11 11 10 5 2 1 1 127

5. DISCUSSION
The systematic review conducted in this study found a

total of 122 primary articles, which together proposed 127
different automated approaches in software engineering in the
years 1999 to 2009 (inclusive). The data summarizing the
results in these articles have been presented in Section 4,
particularly in Tables 7 to 20, Figure 3 and in Appendix C.
Below we discuss our results based on the major types of
analysis conducted.

5.1. Field of software engineering
In terms of the fields that automated approaches belongs

to, Software Design and Software Requirement were the top
two most popular areas, where automated approaches were
attempted most often. They included 41 automated approaches
(32.3% in among total approaches) and 27 automated
approaches (21.3%), respectively. Together they account for
more than half of the ASE results. The overall data can be
found in Table 7 while Tables 9 to 15 in Section 4 details the
papers within each area.

The result indicated Software Design and Software
Requirement were more important compared with Software
Testing and other software engineering fields. The reason
behind it can be that these two fields were located at the
beginning of software development, and became the basis of
further work in the entire development processes. The quality
of Software Requirement and Software Design may affect the
works afterwards, therefore more researches focus on these
two fields.

One of the most reasons why Software Design became the
most critical research field was that it was located in the
beginning of software development processes. The quality of a
Software Design can strongly affect the implementation of
software, and influence the time and cost of entire software
development, as well as the performance and quality of the
delivered software.

Architecture generation is the first step in the design of
software system [23] [24] [25], based on the result from this
field, the papers involved architecture design, structure,

architectural quality analysis, etc. Meanwhile, it considered
embedded systems [P34], distributed systems [P69], real-time
systems [P11, P14, P90], etc. The reason for many researches
were found is that most of the qualities that the final software
system possesses are usually decided at the architecture
development stage itself [26].

A fundamental goal of software development is to deliver
high quality products that are correct, consistent, and complete.
There had been several examples of approaches to generate
architectures based on functional requirements, whereas,
almost no comprehensive automated approaches to consider
non-functional requirements at the architecture development
stage was mentioned. Since the current state of distributed
system is ad hoc and manually, it should be considered and
engineered into the architecture itself as well [P34]. It had
driven the researchers to investigate automated approaches
that support effectively designing and analyzing, in order to
realize the non-functional requirements [P34, P67] at software
architecture design level of producing automated approach in
Software Design field. The significant benefits of these
approaches included detecting and removing defects earlier,
reducing development time and cost while improving the
system’s quality. Meanwhile, ensure non-functional
requirements, such as adaptability during the process of
architecture generation. For example, P34 presented an
automated design method that helps develop adaptable
architectures for embedded systems by developing a tool
called Software Architecture Adaptability Assistant (SA3).

The other reason for most researches found in Software
Design field is that the possibility and feasibility of developing
automated approach is higher. For example, real-time systems
were becoming increasingly widespread often in safety-critical
application, and it is critical to ensure the concurrency and
timing property of them [P11]. However, the behavior of them
is often affected by the unpredictable factors, such as
communication delays and the arbitrary interleaving of
computations performed by different processes, which caused
non-determinism significantly complicates system testing and
debugging. As the result, testing of real-time system is
difficult because erroneous behaviors may not manifest

 21

themselves during test runs even if the appropriate input test
data are used [P90]. When comparing with the late stage of the
development process where the final system has already been
implemented and integrated together, it is much cheaper at
design stage not only to fix bugs, if any, but also to make
some changes. Additionally, testing and reliability
requirements must be taken into account as early as possible in
the design stage [P14]. Therefore, easier to apply automated
approaches in design stage to guarantee the correctness,
usability, and performance of the system before coding and
testing.

Also, a good Software Design can be reused by similar
software developments, which makes guaranteeing quality in
Software Design area become even more important.

According to the results, Software Requirements played
the second critical role in determining the overall software
correctness and quality. It defines the documents of users’
requirements of systems and serve as the baseline for the
development of the software [27], in which, the errors are very
costly, even impossible, to rectify at later stages of software
development. Therefore, the validation of requirements
definitions is of vital importance to software development
[28]. Which can be one reason that it attracted many focuses.

Within Software Requirement, one of the most critical
phases of software engineering is requirements elicitation and
analysis. The quality of requirements and their associated
analysis influence the success of a software project, since their
outputs contribute to higher level design and verification
decisions [P53]. Requirements analysis paves the way for
high-level design, generation of test cases for verification, and
supports early architecture reviews, which increases the
importance of it. It was the basic reason that automated
requirement elicitation techniques were proposed in papers
P53, P99, P111.

Because reliable techniques for natural language
understanding was not available, software developers rarely
apply formal requirements specification techniques in practice,
and it’s generally infeasible to automatically identify conflicts
and cooperation of requirements. Whereas, paper P39 adopted
requirements traceability to help achieve better understanding
and monitoring persistent software attributes, such as
reliability, scalability, efficiency, security, and usability.

Among various automated approaches suggested for
developing high-quality requirements specifications and
conducting cost-effective analysis, formal methods were
considered effective and promising [29].	

Formal method combining abstract interpretation and
model checking was considered for automated analysis of
software [P3]. From the results in this study, model validation
has been proven to be a powerful automatic verification
technique [30]. There were 12 researches focused on the
development model checking [P24, P35, P56, P57, P79, etc]
indicated the prevalence of it. The feasibility and possibility of
applying model validation in Software Requirement field
therefore become another reason of why it is popular.

5.2. Automation Level
In terms of the automation level of automated approaches,

Level C was the most popular level, which included 50
approaches (39.4% in among total approaches). The overall
data can be found in Table 16 and Figure 3 in Section 4.

The reason why Level C, which is a low automation level,
became the most researched level can be that ASE is still a
new research field in software engineering, and most
researches were conducted without previous relevant works
being their basis, therefore, researches have to start at a lower
level automation, and human interventions were needed on
decision supporting in order to make sure that automated
approaches can work successfully in software development.

Similar conjecture can be drawn from the result of Level
A as well, which included 45 automated approaches (35.4% in
among total approaches). During the first 5 years (From 1999
to 2003) the top researched levels were either Level C or
Level B, while afterwards, there were more researches
conducted on Level A. As a result, Level A became the top
researched automation Level in other 4 years (2004, 2005,
2007, 2008). This indicated that researchers were trying to
increase the automation level, with a few years’ researches on
LB and LC as their basis. It indicated that researches on fully
automated approach are the trend of research on ASE, and the
complete liberation of human is the ultimate aim of researches.

5.3. Required Human Activity
Required Human Activity is needed while applying the

automated approaches, which cannot achieve full-automation.
There were only 22 Required Human Activity clearly stated
for corresponding automated approaches. The overall data can
be found in Table 17, 18 and 19 in Section 4. The result
proved the ignorance from researches on human interventions.

Comparing with 22 mentioned Required Human Activity
automated approaches; researchers omitted them in the rest
105 automated approaches’ human intervention. In fact, the
description of Required Human Activity is still needed when
using some automated approaches. In total, only 45 automated
approaches can fully automation. Apart from them, still 82
automated approaches only support partly automation, which
indicated Required Human Activity is still needed. For
example, in Software Design field, 31 automated approaches
cannot fully automation. 26 out of 31 automated approaches
most conduct information analysis automatically. Depend on
different automated approaches applied, human need to
manually collect information (Acquisition information), make
decision, or act implementation. These Required Human
Activities need to be mentioned when researches describe the
automated approaches. Since, giving clear description about
Required Human Activity can help reader to understand how
to adopt the automated approaches.

Some of researchers tended to represent Required Human
Activity in the when describing the automated approaches. For
example, in paper P13, the name of this automated approach
was design units. It provided the basis for automatic
generation of modular source code, and played a critical role
in both code generation and test plan generation. Researchers
only focused on describing the code generation process and
how to apply the concept of design units into the code
generation process. This automated approach belonged to LC,
which indicated it couldn’t provide fully automation.
Therefore, Required Human Activity was needed when apply
design units. There was little indication of Required Human
Activity in this paper, whereas researchers tended to omit it.
When applying this automated approach, Design and test
engineers might have different options from at design time to
carry out their tasks respectively. Therefore, the detailed

 22

description of Required Human Activity is needed to make
readers and users have clear understanding about how to use
this automated approach.

According to the summary of Level of Required Human
Activity in Figure 4, there were 15 activities requiring High-
Level human interventions, which further indicated that
researchers tended to mention the Required Human Activity,
only when the activities were really needed. Otherwise, even
though some of the automated approaches cannot achieve full-
automation, the researchers would skip their required human
interventions.

Figure 4. Levels of Required Human Activity

According to the summary concerning software

engineering field in Figure 5, Software Requirement field, was
the most researched field, where Required Human Activity
was mentioned, and the number was accounted for 6. The
reason for this could be that more human activities were
needed at the beginning of the entire software development
processes.

Figure 5. Fields of Required Human Activity

5.4. Types of Automated Approaches

In terms of the type of automated approaches, there were
10 types of automated approaches found (The overall data can
be found in Table 20 in Section 4).

The result indicated that automated Tool (32), Framework
(28) and Method (26) were top three most researched types of
automated approaches, the amount of which rated 68%, out of
127 automated approaches found in this study. It indicated that
Tool, Framework, and Method were always the most popular
and traditional types within the ASE field.

Based on the result, there were only 7 types of automated
approaches researched before 2006. Afterwards, researches
were conducted on three new types of automated approaches,
Platform (2), Theory (1) and Process (1). It indicated that,
besides considering the traditional types of automated
approaches, researchers started investigating new types of
automated approaches and tended to find new automated

approaches in ASE field to meet the increasing needs of
liberating developers from repeated work.

5.5. Limitation of the Research
This study only focuses on summarizing the current

situation in ASE field. We focused on how many automated
approaches applied in ASE and what they were; what
corresponding activities of them were; which software
engineering field and automation level the automated
approaches belonged to; what kind of human intervention
needed to be exerted when applying the automated approaches,
and which level corresponding human interventions belonged
to.

For the further research, it may focus on what kind of
separate approaches can be reused in exploring new automated
approaches. It will be useful for the researcher to explore new
automated approaches.

5.6. Recommendation
There are a few recommendations for future researches,

after systematically reviewing 122 articles:
To begin with, clear discussion of the automation level

that automated approaches belong to should be included. It
can make it easier for the user to understand the automated
approach, as well as a clearer view of in what ways they can
use them.

Furthermore, detailed description of the types of human
activities needed, when users apply the corresponding
automated approaches, should be involved. Meanwhile, it
should consider not only what Required Human Activity is
needed before applying automated approaches, but also what
is needed afterwards. Additional human activities, which
might enable the automated approach to be applicable and
improve the usability of it, need to be included as well.

Finally, in this study, the result found that in Software
Design and Software Requirement fields, it’s more likely that
the users can find proper automated approaches to facilitate
their work. Resulting from the findings, the users are more
encouraged to apply appropriate automated approaches.
Meanwhile, the tool, framework, method are most researched
types according to this study, when considering applying
automated approach into software development, these
mentioned types of automated approaches can be the best
options.

6. CONCLUSION
In this study, a systematic review investigating the

automated approaches in ASE field from the year 1999 to
2009 was presented. The purpose of this study is to summarize
the researches conducted and the benefits and limitations of
automated approaches in ASE field. There were 127
automated approaches found in 122 publish articles,

We summarized these automated approaches that
included 10 types of automated approaches: tool, framework,
technique, system, language, model, method, theory, process
and platform. According to the result, Tool revealed the top
popularity. These automated approaches have been classified
into 7 different areas in software engineering fields including
Software Design, Software Requirement, Software Testing,
Software Quality, Software Construction, Software
Maintenance and Software Engineering Process, which based
on SWEBOK.

15�

6�

1�

Levels of RequiredHuman Activity

High�

Medium�

Low�

6�

2�2�

2�

1�
1� 1�

Fields of Required Human Acitivity

SR�

SD�

SM�

SEP�

ST�

SC�

SQ�

 23

The result presented the current trend of researches in
different fields in ASE area. Software Design and Software
Requirements were the top two most researched areas.
Detailed design and model validation were the top two most
researched sub-classes of Software Design and Software
Requirements respectively. The reason of if is to avoid bug to
emerge in the steps afterwards, meanwhile, for it is more
expensive to check the correctness of system after they are
integrated together. Therefore, many automated approaches
were proposed to apply in generation of architecture in
Software Design fields, with the purpose of improving the
overall quality of the architecture of system. Many automated
approaches considering Model Validation and Requirement
Elicitation were proposed to improve the quality in Software
Requirement fields.

Meanwhile, we summarized the popularity of automation
level of 127 automated approaches investigated as well. LC
(Decision Support) was the most popular level in those three
levels. Furthermore, 22 Required Human Activity were
mentioned, in which there were 15 belonged to High Level,
indicating that the researchers wouldn’t introduce them until
necessary.

We have observed that many automated approaches were
developed in combination of different approaches, and made it
fully automated. Future works can be undertaken to explore
the possibility of combining these existing automated
approaches to make more new automated approaches, which
can be fully automated.

REFERENCE

[1] Hameed, S.A.; , "Toward software engineering principles
based on Islamic ethical values," Computer and
Communication Engineering, 2008. ICCCE 2008.
International Conference on, vol., no., pp.379-385, 13-15 May
2008]
[2] Dag I. K. Sjoberg , Tore Dyba , Magne Jorgensen, The
Future of Empirical Methods in Software Engineering
Research, 2007 Future of Software Engineering, p.358-378,
May 23-25, 2007
[3] Roy, G.G.; Veraart, V.E.; , "Software engineering
education: from an engineering perspective," Software
Engineering: Education and Practice, 1996. Proceedings.
International Conference , vol., no., pp.256-262, 24-27 Jan
1996
[4] A.R. Dalton and J.O. Hallstrom, “nAIT: a source analysis
and instrumentation framework for nesC,” Journal of Systems
and Software 82, no. 7, J. Syst. Softw. (USA) (July 2009):
1057-72.
[5] B. Kitchenham, T. Dyba, and M. Jorgensen. Evidence-
based software engineering. In Proceedings of 26th
International Conference on Software Engineering (ICSE’04),
pages 273– 284, Edinburgh, Scotland, UK, May 2004. IEEE
Computer Society.
[6] Davies, A., Dieste, O., Hickey, A., Juristo, N., and
Moreno, A.M. (2006) Effectiveness of Requirements
Elicitation Techniques: Empirical Results Derived from a
Systematic Review, Proceedings 14th IEEE International
Requirements Engineering Conference (RE’06), IEEE
Computer Society, pp. 179–188.
[7] Dybå, T. and Dingsøyr, T. (2008) Empirical Studies of

Agile Software Development: A Systematic Review,
Information and Software Technology, 50(9-10): 833–859.
[8] Américo Sampaio, Ruzanna Chitchyan, Awais Rashid,
Paul Rayson,“EA-Miner: a Tool for Automating Aspect-
Oriented Requirements Identification”, ASE’05, November 7–
11, 2005, Long Beach, California, USA
[9] Brandon Morel and Perry Alexander, “Automating
Component Adaptation for Reuse”, Proceedings of the 18th
IEEE International Conference on Automated Software
Engineering (ASE’03)
[10] Egyed, A., Biffl, S., Heindl, M., and Grünbacher, P.
2005, “Determining the cost-quality trade-off for automated
software traceability”, In Proceedings of the 20th IEEE/ACM
international Conference on Automated Software Engineering
(Long Beach, CA, USA, November 07 - 11, 2005). ASE '05.
ACM, New York, NY, 360-363.
[11] Javed, A. Z., Strooper, P. A., and Watson, G. N,
“Automated Generation of Test Cases Using Model-Driven
Architecture”, In Proceedings of the Second international
Workshop on Automation of Software Test (May 20 - 26,
2007). International Conference on Software Engineering.
IEEE Computer Society, Washington, DC, 3.
[12] Weifeng Xu, Dianxiang Xu, "Automated Evaluation of
Runtime Object States against Model-Level States for State-
Based Test Execution," Software Testing Verification and
Validation Workshop, IEEE International Conference on, pp.
3-9, IEEE International Conference on Software Testing,
Verification, and Validation Workshops, 2009
[13]Jorge Biolchini, Paula Gomes Mian, Ana Candida Cruz
Natali, Guilherme Horta Travassos, “Systematic Review in
Software Engineering”, Rio de Janeiro, May 2005.
[14]Barbara Kitchenham, “Procedures for Performing
Systematic Reviews”, July 2004.
[15] Keele,staffs, Durham,“Guideline for performing
Systematic Literature Review in Software Engineering” EBSE
Technical Report, EBSE-2007-01.
[16] Md. Abdullah Al Mamun, Aklima Khanam, “Concurrent
Software Testing: A Systematic Review and an Evaluation of
Static Analysis Tools”, 2009
[17] Zotero. [Online].Viewed 2010 March 26. Available:
http://www.zotero.org/
[18] Kitchenham BA (2007) Guidelines for performing
systematic literature reviews in software engineering. EBSE
Technical Report EBSE-2007-001
[19] Raja Parasuraman, Thomas B. Sheridan, “ A Model for
Types and Levels of Human Interaction with Automation”
[20] “Guide to the Software Engineering Body of Knowledge
(SWEBOK)” IEEE Computer Society.
http://www.computer.org/portal/web/swebok/home
[21] P. Brereton, B. Kitchenham, D. Budgen, M. Turner, and
M. Khalil, “Lessons from applying the systematic literature
review process within the software engineering domain,”
Journal of Systems and Software, vol. 80, Apr. 2007, pp. 571-
83.
[22] G.W. Noblit and R.D. Hare, Meta-ethnography:
synthesizing qualitative studies, Sage Publications Inc, 1988.
[23] IEEE, 1996. IEEE Standard 12207.0-1996, Industry
Implementation of International Standard ISO/IEC 12207:
1995; ISO/IEC 12207 Standard for Information Technology––
Software Life Cycle Processes.
[24] Shaw, M., Garlan, D., 1996. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall, Upper

 24

Saddle River, NJ. p. 19, 34, 149.
[25] Bass, L., Clements, P., Kazman, R., 1998. Software
Architecture in Practice. In: SEI Series in Software
Engineering. Addison-Wesley, Reading, MA. p. 94, 113.
[26] Bass, L., Klein, M., Bachmann, F., 2000. Quality attribute
design primitives. Software Engineering Institute, Technical
report CMU/ SEI-2000-TN-017.
[27] Stokes, D.A., 1991. Requirements analysis. In: Software
Engineer’s Reference Book. Butterworth-Heinemann, London.
[28]Boehm, B.W., 1981. Software engineering economics.
Advances in Computing Science and Technology. Prentice-
Hall, Englewood Cliffs, NJ.
[29] L. Chung et al., Non-Functional Requirements in
Software Engineering, Kluwer, 2000.
[30] Clarke, E.M., and Grumberg, O.: ‘Model checking’
(The MIT Press,1999)

 25

APPENDIX A
Table A Frequency of Keywords

NO. Keywords from
Inspec Frequency Percentage NO. Keywords

Found In ACM Frequency Percentage

1 program 27 51% 1 software 36 55%
2 quality 25 47% 2 model* 18 28%
3 tool* 19 36% 3 automat* 17 26%
4 software quality 18 34% 4 engineering 14 22%
5 system* 16 30% 5 develop* 13 20%
6 formal 15 28% 6 program* 13 20%
7 language* 15 28% 7 system* 12 18%
8 model* 15 28% 8 test* 12 18%
9 data 14 26% 9 analysis 10 15%

10 programming 14 26% 10 language* 10 15%

11 software
engineering 14 26% 11 generat* 9 14%

12 code* 13 25% 12 design 8 12%
13 specification 13 25% 13 tool* 8 12%
14 program testing 12 23% 14 code 7 11%
15 testing 12 23% 15 reuse 7 11%

16 maintenance 11 21% 16 software
engineering 7 11%

17 software
maintenance 11 21% 17 component 6 9%

18 software tools* 11 21% 18 process 6 9%
19 automated 10 19% 19 embeded 5 8%
20 comput* 10 19% 20 pattern 5 8%
21 generat* 10 19% 21 product line 5 8%
22 verification 10 19% 22 requirements 5 8%

23 formal
specification 9 17% 23 support 5 8%

24 process* 9 17%
25 management 8 15%

26 program
verification 8 15%

27 software
development 8 15%

28 object-oriented 7 13%

29 object-oriented
programming 7 13%

30 program
diagnostics 7 13%

31 safety 7 13%

Percentage = Frequency/Amount number of articles

Amount of articles found in:
Inspect (53)
ACM Digital Library (64)

 26

APPENDIX B: Main taxonomy and two tables of Software Engineering fields omitted in Section 4.1.8 and 4.1.9.

Table B. Main Taxonomy
Year Article

Paper No.
AA NO.

Activity
Approach
Relevant SE Area

Automated Approach

Automated Level
RA NO.

Activity

Required Activity

Relevant SE Area
Type Setup Cost

Effort

Table C. Automated Approaches in Configuration Management field
Field Sub-category Approach

Organizational Context for SCM 0
Constraints and Guidance for SCM Process 0
Planning for SCM 0
Software Configuration Management Plan 0

Management of the SCM Process

Surveillance of SCM 0
Identifying Items to be Controlled 0 Software Configuration Identification
Software Library 0
Requesting, Evaluating and Approving Software Changes 0
Implementing Software Changes 0

Software Configuration Control

Deviations and Waivers 0
Software Configuration Status Information 0 Software Configuration Status Accounting
Software Configuration Status Reporting 0
Software Functional Configuration Audit 0
Software Physical Configuration Audit 0

Software Configuration Auditing

In-Process Audits of a Software Baseline 0
Software Building 0 Software Release Management and Delivery
Software Release Management 0

Table D. Automated Approaches in Software Engineering Management field

Field Sub-category Approach

Determination and Negotiation of Requirements 0
Feasibility Analysis 0

Initiation and Scope Definition

Process for the Review and Revision of Requirements 0
Process Planning 0
Determine Deliverables 0
Effort, Schedule and Cost Estimation 0
Resource Allocation 0
Risk Management 0
Quality Management 0

Software Project Planning

Plan Management 0
Implementation of Plans 0
Supplier Contract Management 0
Implementation of Measurement Process 0
Monitor Process 0
Control Process 0

Software Project Enactment

Reporting 0
Determining Satisfaction of Requirements 0 Review and Evaluation
Reviewing and Evaluating Performance 0

 27

Determining Closure 0 Closure
Closure Activities 0
Establish and Sustain Measurement Commitment 0
Plan the Measurement Process 0
Perform the Measurement Process 0

SW Engineering Measurement

Evaluate Measurement 0

 28

APPENDIX C: Table used in the result

Table E. Tool by Year
Year Tool Field Description Approach

1999 1. PURDOM’s algorithm
2. EXTENDED PURDOM’s
algorithm
3. Extended
Generate_Minimum_Statement
algorithm

Software testing/
Test level/
Objective of testing/
Conformance testing,
Functional testing,
Correctness testing

Testing syntax and semantic coverage of
JAVA language compilers.

 P4

2001	
 Lusceta tool suite	
 Software maintenance/
Maintenance process/
Maintenance
Activities/
Software configuration
management

The current version of Lusceta tool suite
provides support for editing, composing
and simulating (stochastically enhanced)
timed automata.	

P10	

2001 TR system (algorithm tools) Software quality/
Software quality
management process/
Verification and
validation

Validation and maintenance process of
Engineering requirement.

P15

2001 CASE tool built in a manner
similar to the SORAC prototypes

Software design/
Software structure and
architecture/
Design patterns/
Behavioral patterns

Automatically support pattern for the
development of tools, for the specification
of databases and for engineering design
systems.

P16

2002 Simple Covering (Tool) Software testing/
Test techniques/
Specification-based
techniques/
Finite-state machine-
based

Refinement of stream X-machine with
expanding the input and output behaviors.

P20

2002 TestWeb Software testing/
Test levels/
Integration testing

It is a research tool to support testing
processes. This tool exploits a reverse
engineered UML model of the Web
application to generate and execute test
cases, in order to satisfy the testing
criteria selected by the user.

P21

2003 Automatic differentiation (AD)
tool

Software design/
Quality analysis and
evaluation/
Simulation and
prototype

Accurate evaluating derivatives of
functions described in a high-level
programming language.

P26-1

2003 Quality analyzer for requirements
specifications (QuARS) tool

Software requirements/
Requirements
specification/
Software requirements
specification

QuARS is a sentence analyzer aiming at
reducing linguistic defects by pointing out
those wordings that make the document
ambiguous or unclear from a lexical point
of view.

P27-1

2003 Automated requirement
measurement (ARM) tool

Software requirements/
Requirements
specification/
Software requirements
specification

ARM is to providing measures that can be
used to assess the quality of a
requirements specification document.

P27-2

2003 SyTwo tool Software requirements/
Requirements
specification/
Software requirements
specification

Sytwo is a tool that was developed as a
web application to perform a lexical and
syntactical analysis of English text.

P27-3

 29

2003 CATSDL tool Software design/
Quality analysis and
evaluation/
Simulation and
prototype

A coverage analysis tool for SDL
specification

P30

2003 Data Model Quality Advisor
(DMQA) tool

Software quality/
Practical
considerations/
Software quality
measurement

It provides a hypertext explanation facility
for the constructs of the quality evaluation
framework, and supports evaluation and
comparison of up to three data models at a
time.

P32

2004 Software Architecture
Adaptability Assistant (SA3) tool

Software Design/
Software design
notations/
Behavioral description

Selecting the architectural constituents
that best fit the adaptability requirements
for the architecture

P34

2004 MDRE (Using Specware code
generator)

Software maintenance/
Techniques for
maintenance/
Reverse engineering

Using formal specification and automatic
code generation to reverse the reverse
engineering process.

P36

2004 WAD tool (Wizard for
Application Dictionary)

Software maintenance/
Techniques for
maintenance/
Reengineering

Producing code from an application
dictionary in a relational database.

P40

2004 PrUDE (Precise UML
Development Environment)
CASE tool

Software testing/
Test techniques/
Specification-based
techniques/
Testing from formal
specifications

PrUDE platform integrates the graphical
UML notation as a front-end to the PVS
(Prototype Verification System)
verification tools.

P41

2005 RETRO (Requirements Tracing on
Target) tool

Software requirements/
Practical
considerations/
Requirement Tracing

Automatically providing predictive
information before any code has been
written.

P49

2006 C-Saw (Constraint-Specification
Aspect Weaver) transformation
Engine

Software Design/
Software Design
Fundamentals/
Software Design
Process/
Detailed Design

Modularizing crosscutting properties and
replicate element of core model

P62

2006 Tool-set (Verifying compiler) Software testing/
Test level/
Objective of testing/
Conformance testing,
Functional testing,
Correctness testing

Automatically proves that a program will
always meet its specification, insofar as
this has been formalized, without even
needing to run it.

P65

2006 PROM metrics collection tool Software engineering
Process/
Process and product
measurement/
Process measurement

Supporting to manage a large
measurement program.

P73

2006 PLFaultCAT (Product-Line Fault
Tree Creation and Analysis Tool).
Safety analysis tool

Software quality/
Practical
considerations
software quality
management
techniques/
Analytical techniques

To aid software engineers in the
application of product-line software SFTA
(Software Fault Tree Analysis).

P74

2007 µCRL Toolset Software testing/
Test techniques/
Techniques based of
nature of application/

Automatically checking the secrecy of
values inside components.

P77

 30

Component-based
testing

2007 GTB (the Grammar Tool Box) Software construction/
Software construction
fundamentals/
Constructing for
verification/
Tools

Providing implementations of grammar
transforms, automata construction
algorithms, parsing and recognition
algorithms, and a variety of visualization
aids.

P80

2007 Traceability recovery tool based
on Latent Semantic Indexing (LSI)

Software engineering
process/
Process
Implementation and
change/
Process infrastructure

Identifying potential traceability links not
traced yet (Suggested Links) and possible
text description problems in the traced
artifacts (Warning Links).

P81

2007 Diff-CatchUp tool Software construction/
Managing
construction/
Construction
measurement

Inferring plausible replacements for the
offending API that causes the API
migration problem and examines the code
base built on the evolved framework to
select examples of how the potential
replacements are used.

P87

2008 ConQAT (Continuous Quality
Assessment Toolkit.

Software quality/
Software quality
fundamentals/
Quality improvement

Identifying and resolve quality defects
early in the development process, when
implementing countermeasures is still
inexpensive.

P89

2008 Planning based tools (Mixed-
initiative planning algorithms:
UCPOP and SHOP2)

Software design/
Software Structure and
Architecture/
Architectural
Structures and
Viewpoints

Helping the developer to build a “design
plan”, based on the selection and
articulation of a collection of “design
operations” for each “design domain”.

P90

2008 CODe-Imp Software maintenance/
Techniques for
maintenance/
Reverse engineering

Automatically refactoring object-oriented
programs to improve quality as measured
by well-defined quality models.

P95

2008 SMaRT (Scenario Management
and Requirements Tool)

Software requirements/
Requirements
elicitation/
Elicitation techniques

Improving scenario quality and providing
effective automated support for work with
scenarios.

P98

2008 Semantic metrics to analyse
design specifications in NL-based
program comprehension tool
(Tool)

Software Design/
Software Design
Fundamentals/
Software Design
Process/
Detailed Design

Providing a consistent and seamless type
of metric that can be collected through the
entire lifecycle.

P99

2008 Metrics-Based Design selection
tool

Software quality/
Software quality
fundamentals/
Quality improvement

Automatically selecting the better AOD
(Aspect Oriented Programming) from
alternative designs of an application based
on the proposed metrics.

P105

2009 eCrash (automated test case
generation tool)

Software testing/
The target of the test/
Test levels/
Unit test

Automatically generating high quality test
case for Object-Oriented Java software.

P117

Table F. Framework by Year

Year Framework Field Description Approach
1999 Combination of Model-

Checking and Abstract
Interpretation

Software requirements/
Software validation/
Model validation

Abstract interpretation based universal
safety model checking for infinite abstract
systems.

P3-1

1999	
 Abstract interpretation 	
 Software design/
Quality analysis and
evaluation/

Elimination the impossible potentially
infinite behaviors.

P3-2	

 31

1999 Framework comprises two

parts: definition of an abstract
machine and definition of a
DSL in terms of the abstract
machine operations

Software design/
Software structure and
architecture/
Families of programs and
frameworks

Providing flexible design, structure and
automatic generation of efficient
implementations of DSL programs.

P6

 2000 MCRDR (Multiple
classification RDR (ripple-
down rules)) /FCA Framework

Software design/
Software structure and
architecture/
Families of programs and
frameworks

Allowing user to view, exploring analyze,
maintaining, manipulate and consulting
the knowledge in a knowledge-based
system.

P9

 2003 Environment For Combining
Optimization and Simulation
Software (EFCOSS)
framework

Software design/
Quality analysis and
evaluation/
Simulation and prototype

This framework supports the
interoperability of simulation and
optimization software in an automated
fashion and also provides an easy way for
the integration of derivative code.

P26-2

 2003 Genetic classifiers supported
by (Self-organizing maps and
evolutionary-based developed
decision trees) framework

Software quality/
Practical considerations/
Software quality
measurement

Analysis of quality-based software
engineering data.

P29

 2004 KLAIML framework Software Testing/
Objectives of Testing/
Conformance testing,
Functional testing,
Correctness testing

Automatically verifying properties in
mobile applications programmed in X-
KLAIM

P33

 2004 Verifiable Embedded Real-
Time Application Framework
(VERTAF) framework

Software requirements/
Requirements validation/
Model validation

Automatic design of embedded real-time
system integrating functional and
nonfunctional requirements

P35

2004 Co-operative connectors
(Architectural entity)
(Framework)

Software design/
Key issues in software
design/
Distribution of
components

Providing to describe the software
components, the interactions between
these components, and the properties that
regulate the composition of components.

P37

 2005 Formal Design Analysis
Framework (FDAF)

Software requirements/
Requirements validation/
Acceptance testing

It is an aspect-oriented approach that
supporting the automated translation of
extended Unified Modeling Language
designs for distributed real-time systems
into existing formal notations, including
Architecture Description Languages
Rapide and Armani.

P44

 2005 Dynamic software updating
(based on dynamic patches)
Framework

Software maintenance/
Software Maintenance
Fundamentals/
Nature of maintenance

Automatic generation of patch files. P50

 2005 Metadata-driven framework Software engineering
process/
Process and product
measurement/
Software information
models

Automatically producing queuing-base
performance models.

P52

 2006 Framework combines OWL
(Web Ontology Language) and
SweDE (Semantic Web
Development Environment)

Software design/
Quality analysis and
evaluation/
Simulation and
prototyping

Evaluation of the performance and QoS of
ambient intelligent systems.

P66

2006 FDAF (Formal Design
Analysis Framework)

Software design/
Quality analysis and
evaluation/
Simulation and

Modeling and predicting the performance
cost of security aspect.

P67

 32

prototyping
 2007 Q-algebras framework Software requirements/

Requirements validation/
Model validation

Model checking for concurrent
components.

P76

 2007 Adaption approach framework
combine computable safety
criterion and interaction
patterns (procedure calls and
events publishing/subscribing.)

Software construction/
Practical considerations/
Integration

Specifying the coordination between
components, handling and checking
adaptations of this coordination.

P83

 2008 Component substitutability
check part of COMFORT
reasoning framework

Software requirements/
Requirements validation/
Model validation

Localizing the necessary verification effort
to only modified system components of
evolving software, and reduce dramatically
the effort to check substitutability after
every system update.

P88

 2008 SCE (System-on-chip
environment) design
framework

Software Design/
Software Design
Fundamentals/
Software Design Process/
Detailed Design

Integration of automatic model generation,
estimation, and verification tools enables
rapid design space exploration and
efficient MPSoC implementation.

P91

 2008 FTSyn (Fault-Tolerance
Synthesizer)

Software maintenance/
Techniques for
maintenance/
Reengineering

Automatically synthesizing the several
fault-tolerant programs including a
simplified version of an aircraft altitude
switch, token ring, Byzantine agreement,
and agreement in the presence of
Byzantine and fail-stop faults.

P92

 2008 Extended Learning framework
applied L* algorithm

Software testing/
The target of the test/
Test levels/
Unit test

Synthesizing assumptions that automate
assume-guarantee reasoning for finite-state
machines and safety properties.

P96

 2008 SMF (Safety modeling
framework)

Software design/
Quality analysis and
evaluation/
Static analysis

Analyzing and developing safety-aware
UML architectures.

P103

 2008 Three-level framework
(Feature model level, diagnosis
level and implementation
level)

Software requirements/
Requirements validation/
Model validation

Supporting automatic error detection and
explanation.

P104

 2008 Framework: DKM (Domain
knowledge quality metrics)
and domain knowledge
quality-measuring tool.

Software quality/
Practical considerations/
Software quality
measurement

To measure the common features of
domain knowledge with OO and develops
a set of new quality property metrics to
measure the characteristics that are
particular to different domain knowledge
components.

P107

2009 REG (Requirements Elicitation
Guide) based on the AT
(Activity Theory)
(Framework)

Software requirements/
Requirements elicitation/
Elicitation techniques

Guiding requirements elicitation and
increases the productivity with the use of
templates for a wide range of
requirements.

P111

2009 Encompassing taxonomy of
visual guideline for UML class
diagrams. (Framework)

Software Design/
Software Design
Fundamentals/
Software Design Process/
Detailed Design

Improving the aesthetic quality and thus
the understandability of UML class
diagrams.

P112

2009 Traceability reference model
and Rule-based approach
(Framework)

Software quality/
Practical considerations/
Software quality
management techniques/
Testing

Support automatic generation of
traceability relations between feature-
based object-oriented documents.

P113

2009 BaVeL (Framework) Software Design/
Software Design
Fundamentals/
Software Design Process/

Verifying results obtained in semantic
domains to different formats, including the
context of the original language.

P115

 33

Detailed Design
2009 An approach: Two coverage

criteria (process coverage and
modified condition/decision
coverage) for LOTOS
specifications (Framework)

Software testing/
Key issues/
Test selection criteria/
Test adequacy criteria

Allowing automatic generation of
coverage based test suites and can be used
to automatically exercise those aspects of
the system that are missed by handcrafted
test purposes.

P118

Table G. Technique by Year

Year Techniques Field Description Approach
1999 Enhanced Compositional

Reachability Analysis
(CRA) with Property
Automata

Software design/
Quality analysis and
evaluation/
Static analysis

To check safety properties which may
contain actions that are not globally
observable.

P1

2004 RT (Requirements
traceability) (Technique)

Software requirements/
Practical considerations/
Requirements attributes

1.Automatically identifying conflicts and
cooperation among requirements based
on their attributes.
2.Automatically
generating trace dependencies among the
requirements.

P39

2005 DART (Daily Automated
Regression Tester)
(Technique)

Software testing/
Objectives of Testing/
Regression testing

Automate GUI smoke testing. P48

2005 State chart model combine
with timed automata

Software requirements/
Requirements elicitation/
Elicitation techniques

Time dependencies can be represented
allowing a more thorough and accurate
analysis.

P53-1

2005 Message sequence charts
combine with timed
automata

Software requirements/
Requirements elicitation/
Elicitation techniques

Providing a rich set of semantics and
relationships to an abstract clock that
could be used for real-time analysis.

P53-2

2006 NuSPADE (combine by
proof planning and a
program analysis oracle)

Software quality/
Software quality management
process/
Verification and validation

Increasing the level of automation in
high integrity software verification.

P58

2006 Program restructuring
approach using the
clustering techniques

Software design/
Software design fundamentals/
Enabling techniques/
Coupling and cohesion

Automated support for identifying ill-
structured or low-cohesive functions and
providing heuristic advice in both the
development and evolution phases.

P59

2006 The technique based on
compositional model
checking and program
analysis.

Software testing/
Test techniques/
Specification-based techniques/
Testing from formal
specifications

Automatic verification of infinite
families of systems.

P64

2008 Assume-guarantee testing
(Technique)

Software testing/
The target of the test/
Test levels/
Unit test

Checking requirements is performed
during testing of individual components.

P93

2008 Brokering algorithm which
extends query processing
techniques (Technique)

Software quality/
Practical considerations/
Software quality management
techniques/
Analytical techniques

Automatically deriving an integer linear
programming problem that returns an
optimal matching of data providers to
data consumers under realistic economic
cost models.

P100

2009 Test-data generation
approach: Suspicious
statement selection and
test-data generation based
on the suspicious
statements. (Technique)

Software construction/
Practical considerations/
Reuse/
Integration testing

Generating test data with high fault
detection.

P122

 34

Table H. System by Year
Year System Filed	
 Description Approach

1999 ESSE (expert system for
software evaluation)

Software requirements/
Practical
considerations/
Measuring requirements

A prototype expert system for software
evaluation that embodies various aspects of the
Multiple-Criteria Decision Aid (MCDA)
methodology.

P2

2000 DSES (Decision
Supporting Expert
System)

Software quality/
Software quality
fundamentals/
Quality improvement

Inspection for quality evaluation. P8

2000 Deductive System Software requirements/
Requirements analysis/
Conceptual modeling

Automated support to System Requirement
Analysis in the development of time-and safety-
critical computer-based systems.

P17

2003 MIDAS (automatic
translation system)

Software maintenance/
Techniques for
maintenance/
Reengineering

It uses temporal abstraction techniques to
discover database access patterns in the host
program and translate them to relational-database
operations.

P31

2005 Multi-agent System
(MAS)

Software testing/
Test techniques/
Techniques based of
nature of application/
Component-based
testing

Practicing agent-oriented software testing.
(Effectiveness in selecting the appropriate
assignment based on requirements).

P45

2006 WAT (Agent-based WA
testing system)

Software testing/
Test techniques/
Code-based techniques/
Data flow-based criteria

Automatically generate and coordinate test agents
to decompose the task of testing an entire WA
into a set of subtasks.

P60

2006 DRE SEMANTIC
DOMAIN (System)

Software design/
Key issues in software
design/
Distribution of
components

Verifying distributed non-preemptive real-time
scheduling of embedded systems.

P68

2006 MODEST (Modeling and
Description language for
Stochastic Timed
systems) modeling
formalism

Software Design/
Software Design
Fundamentals/
Software Design
Process/
Detailed Design

A language to model real-time and stochastic
concurrent systems.

P70

2008 ISFEA automated
knowledge-based system

Software requirements/
Requirements
elicitation/
Requirements sources

Intelligent supporting of the preprocessing stage
of engineering analysis in the contact mechanics
domain.

P108

2009 Symbolic Model Verifier
(SMV) system

Software Design/
Software Design
Fundamentals/
Software Design
Process/
Detailed Design

Performing safety analysis of software
requirement through generating fault tree and
verifying safety properties automatically.

P120

Table I. Language by Year
Year Language Field Description Approach

1999 Real-time Estelle
(Language)

Software design/
Software design notations/
Behavior description/
Formal specification language

Generating implementation and
guarantee specified real-time quality-of-
service requirements automatically.

P5

2004	
 TUG (Formal specification
language)	

Software design/
Software design notations/
Design patterns/
Formal specification languages

It supports an automatic derivation of a
prototype in Prolog from a specification
in the language via a set of
transformation rules.	

P38	

 35

2005 XML (Extensible Markup
Language) based WSAMI
(Web services for ambient
intelligence)

Software construction/
Practical consideration/
Construction language

Developing ambient intelligence
application based on Web services.

P55

2007 Nemo (programming
language)

Software construction/
Software construction
fundamentals/
Constructing for verification/
Programming languages

Specifying a set of resources with usage
constraints, a set of tasks that consume
them according to various modes, and
applications sequencing the tasks.

P78

2007 RDL (Reuse Description
Language)

Software construction/
Practical considerations/
Reuse/
Unit testing

Specifying object-oriented framework
instantiation processes.

P82

Table J. Model by Year

Year Model Field Description Approach
2001 An extended I/O automata

formalism (Model)
Software design/
Key issues in software design/
Error and exception handling
and fault tolerance

Specifying fault tolerance in mission
Critical Intelligent Systems.

P18

2005 SRGM (with generalized
logistic TEF and change-
point) Model
SRGM-Software
Reliability Growth Model

Software testing/
Objectives of testing/
Reliability achievement and
evaluation

Describing the fault detection/removal
process during software development.

P42

2005 OOSPICE metamodel
(Object-Oriented and
Component-Based
Software Process
Improvement and
Capability Determination)

Software engineering process/
Process assessment/
Process assessment models

Automatically ensuring that their
executed work conforms to the
appropriate assessment model.

P43

2005 Probabilistic analysis
(Model)

Software design/
Software design quality
analysis/
Quality analysis and evaluation/
Object-oriented design
measures

Evaluating the evolution of a design
through successive generations and to
identify “bad” classes that can cause
changes to the rest of the system.

P46

2006 EARL (Evaluation and
Report Language)
Data model

Software testing/
Test process/
Test activities/
Test results evaluation

It builds on Semantic Web technologies
in order to make use of already existing
metadata vocabulary, APIs, repositories,
as well as other tools and resources.

P57

2006 State characterization
model

Software testing/
Test techniques/
Specification-based techniques/
Finite-state machine-based

Automated test generation of test inputs
using model checking.

P61

2007 HMSRM (Hierarchical
mixture of software
reliability models)

Software quality/
Practical considerations/
Software quality measurement

Automatically selecting the most
appropriate lower-level model for the
data and performances in prediction.

P86

2008 ED3M
(Estimation of Defects
based on Defect Decay
Model)

Software testing/
Test-related measures/
Evaluation of the program
under test/
Fault density

Computing an estimate of the total
number of defects in an ongoing testing
process.

P101

2008 GCT (Goal Centric
Traceability)

Software maintenance/
Maintenance process/
Maintenance activities/
Software quality

Explicitly link QAMs to goals, to
identify initial impact points, and to
provide executable links between
QAMs and goals that support dynamic
reevaluation during an impact analysis
event.

P106

2009 SIGNALMETA
metamodel

Software design/
Software Structure and

Automated transformations are defined
and implemented in order to produce,

P114

 36

Architecture/
Architectural Structures and
Viewpoints

analyze, statically verify and model-
check programs obtained from high-
level models.

2009 Requirement metamodel Software requirements/
Requirements analysis/
Conceptual modeling

Extending the conceptual models used
by Web Engineering methodologies
with the aim of allowing the explicit
consideration of usability requirements
along with the evaluation of quality
metrics during the design of the system.

P119

Table K. Method by Year

Year Method Field Description Approach
1999 Method combine MPM

(measurement process
model), Object Oriented
concepts and tools

Software engineering process/
Process and product
measurement/
Process measurement

Guiding the definition implementation
and operation of measurement.

P7

2001 STP set (Simple Time
Petri net)

Software design/
Software design quality
analysis/
Quality analysis and evaluation/
Static analysis

To model the behavior of a program
specification and allow to
automatically analyze larger programs.

P11

2001 SMV Model Checker Software design/ Software
design quality analysis/
Quality analysis and evaluation/
Software design review

Automatically analyzing the potential
for model confusion of interactive
system.

P12

2001 Design units Software design/ Software
design quality analysis/
Quality

Automatic generation of modular
source code.

P13

2001 MOSYS (Methodology for
Automatic Object
Identification from System
Specification) supported
by SIM2SYS tool

Software design/
Software design quality
analysis/
Quality analysis and evaluation/
Software design review

Providing a method for automatically
generating alternative design objects
architectures.

P14

2001 Delta Debugging (Method) Software construction/
Construction quality/
Debugging

Using the result of automated testing to
systematically narrow the set of
failure-inducing circumstances.

P19

2002 Reuse-oriented UMP
methodology

Software design/
Software design Fundamentals/
Software design process/
Detailed design

Building generalized designs of
Information system maintenance
toolkits that maintain the requirements
specification of Information system.

P22

2002 Concurrent Designer’s
Assistant (CODA)
(Method)

Software design/
Software design Fundamentals/
Software design process/
Architectural design

Largely automates the process of
generating a concurrent design.

P23

2002 Testing tool combine three
methods. (Data flow
testing methods, State
transition testing methods,
Entity testing methods)
(Method)

Software requirements/
Software validation/
Model validation

Automatically generate a set of task
activity lists according to state
transition based test criteria, and to
measure the adequacy of the test set
according a set of data flow adequacy
criteria.

P24

2002 MEDI (Methodology for
estimate design intent)
supported by MGP
(Multiple genetic
programming)

Software design/
Software design quality
analysis/
Quality analysis and evaluation/
Software design review

Automatically estimate or extract
design intent based on the data
recorded from the design process,
without interrupting designer’s normal
design activities. It is a reasoning
method.

P25

2003 Extension the Lustre with
Mode-Automata (Method)

Software construction/
Managing construction/
Construction planning

Description of these running modes of
regulation system.

P28

2005 Decomposition method Software design/
Software design Fundamentals/

Automated decomposition of a system
into IDEAL components.

P47

 37

Software design process/
Architectural design

2005 BDSA (Bi-directional
safety-analysis method)
combine SFMEA
(Software Failure Modes
and Effects Analysis) and
SFTA (Software Fault
Tree Analysis).

Software requirements/
Practical considerations/
Measuring requirements

Performing safety analysis on a
software product line.

P51

2005 StreamBit (a sketching
methodology)

Software construction/
Software construction
fundamentals/
Constructing for verification/
Programming languages

A compiler automatically sketch is
faithful to the input reference code.

P54

2005 Automated method of
translating SCR (software
cost reduction)-style
requirements into PVS
input language.

Software requirements/
Requirements validation/
Model validation

Verifying functional properties in PFS
using PVS.

P56

 2006 Semi-automated process
tailoring method

Software engineering process/
Process definition/
Automation

It uses the artificial-neural network-
based learning theory to reduce the
time.

P63

2006 X-frame (A template of
GFTSA (Generic Fault
Tolerant Software
Architecture) based on
XVCL methodology
(XML-based Variant
Configuration Language))

Software design/
Key issues in software design/
Error and exception handling
and fault tolerance

Customizing the formal template of
GFTSA to formal models of specific
systems automatically.

P69

2006 SOBER statistical method Software construction/
Construction quality/
Debugging

Automatically localizes software faults
without any prior knowledge of the
program semantics.

P71

2007 Formal method based on
Safe charts model and
SGM (State-Graph
Manipulator)	

Software requirements/
Requirements validation/
Model validation

Verifying if a safety-critical system is
safe or not.

P79

2007 Method: Timed automata
model and Uppaal
(Symbolic model checker)

Software requirements/
Requirements validation/
Model validation

Validating the safety and time
constraint properties of embedded
system with programmable logic
controller, which modeled by timed
automata.

P84

2008 Architectural Risk
Analysis methodology
based on Security Patterns

Software requirements/
Requirements validation/
Model validation

Automatically extracting the risk of a
software system by reading the class
diagram of the system.

P94

2008 SCRAPE (Safety-Critical
Real-time Applications
Exploration) (Method)

Software design/
Key issues in software design/
Error and exception handling
and fault tolerance

Automatically deducing the replication,
mapping and scheduling embedded
control Software.

P102

2008 Timed Behavior Tree Software requirements/
Requirements validation/
Model validation

Checking timed behavior tree model of
time-critical systems using UPPAAL to
support FMEA (Failure Mode and
Effects Analysis).

P109

2009 Method combines three
techniques on: computing
the PSEs; determining the
relevant instances;
redefining a constraint in
terms of the best context
type

Software testing/
Test levels/
Integration testing

Facilitating the efficient integrity
checking of UML-based software
specifications complemented with a set
of integrity constraints defined in
Object Constraint Language (OCL)

P110

2009 nAIT Software design/
Quality analysis and evaluation/

Providing a foundation for extending
the use of automated software

P116

 38

Static analysis engineering methods to the domain of
wireless sensor network.

2009 Global-to-Local approach
(Method)

Software design/
Key issues in software design/
Error and exception handling
and fault tolerance

Given a well-formed global
description, a set of peers can be
generated automatically.

P121

Table L. Theory by Year
Year Theory Field Description Approach

2006 Principles of conventional
control theory (Theory)

Software maintenance/
Techniques for maintenance/
Reengineering

Defining and improving a requirement
engineering (RE) process control
system.

P72

Table M. Process by Year
Year Process Field Description Approach

2006 Variable-strength
covering-array (Process)

Software testing/
Testing levels/
Objectives of testing/
Configuration testing

Testing higher-level interactions only
in subspaces needed, while keeping a
low level of coverage across the entire
space.

P75

Table N. Platform by Year

Year Platform Field Description Approach
2007 FSAP/NuSMV-SA

(Platform)
Software requirements/
Requirements validation/
Model validation

Improving the development cycle of
complex systems by providing a
uniform environment that can be used
both at design time and for safety
assessment.

P85

2008 A reduced Diopsis tile
(Platform)

Software design/
Software structure and
architecture/
Families of programs and
frameworks

Efficiently use the resource of the
architecture and allowing easy
experimentation of several mappings of
the application onto the platform
resources.

P97

 39

APPENDIX D:
Table L. The references in the systematic review

Paper Ref
 S.C. Cheung and J. Kramer, “Checking safety properties using compositional reachability analysis,” ACM
Transactions on Software Engineering and Methodology 8, no. 1 (1999): 49-78.

P1

I. Vlahavas et al., “ESSE: an expert system for software evaluation,” Knowledge-Based Systems 12, no. 4 (1999): 183-
197.

P2

P. Cousot and R. Cousot, “Refining model checking by abstract interpretation,” Automated Software Engineering 6,
no. 1, Autom. Softw. Eng. (Netherlands) (January 1999): 69-95.

P3

A.S. Boujarwah, K. Saleh, and J. Al-Dallal, “Testing syntax and semantic coverage of Java language compilers,”
Information and Software Technology 41, no. 1, Inf. Softw. Technol. (Netherlands) (January 15, 1999): 15-28.

P4

S. Fischer, “Towards the automatic generation of quality-of-service-preserving implementations from formal
specifications,” Computer Communications 22, no. 3, Comput. Commun. (Netherlands) (February 23, 1999): 211-23.

P5

S.A. Thibault, R. Marlet, and C. Consel, “Domain-specific languages: from design to implementation application to
video device drivers generation,” IEEE Transactions on Software Engineering 25, no. 3, IEEE Trans. Softw. Eng.
(USA) (May 1999): 363-77.

P6

M. Morisio, “Measurement processes are software, too,” Journal of Systems and Software 49, no. 1, J. Syst. Softw.
(USA) (December 15, 1999): 17-31.

P7

E.P. Paladini, “An expert system approach to quality control,” Expert Systems with Applications 18, no. 2, Expert Syst.
Appl. (UK) (February 2000): 133-51.

P8

D. Richards, “The reuse of knowledge: a user-centred approach,” International Journal of Human-Computer Studies
52, no. 3, Int. J. Hum.-Comput. Stud. (UK) (March 2000): 553-79.

P9

L. Blair et al., “Formal support for dynamic QoS management in the development of open component-based
distributed systems,” IEE Proceedings: Software 148, no. 3 (2001): 89-97.

P10

U. Buy and R.H. Sloan, “Automatic real-time analysis of reactive systems with the parts toolset,” Automated Software
Engineering 8, no. 3 (2001): 227-273.

P11

J.C. Campos and M.D. Harrison, “Model checking interactor specifications,” Automated Software Engineering 8, no.
3, Autom. Softw. Eng. (Netherlands) (2001): 275-310.

P12

Jaehyoun Kim and C.R. Carlson, “Design units-a layered approach for design driven software development,”
Information and Software Technology 43, no. 9, Inf. Softw. Technol. (Netherlands) (2001): 539-49.

P13

O.P. Dias et al., “On identifying and evaluating object architectures for real-time applications,” Control Engineering
Practice 9, no. 4, Control Eng. Pract. (UK) (April 2001): 403-9.

P14

T.L. McCluskey and M.M. West, “The automated refinement of a requirements domain theory,” Automated Software
Engineering 8, no. 2, Autom. Softw. Eng. (Netherlands) (April 2001): 195-218.

P15

J. Peckham and B. MacKellar, “Generating code for engineering design systems using software patterns,” Artificial
Intelligence in Engineering 15, no. 2, Artif. Intell. Eng. (UK) (April 2001): 219-26.

P16

A. Gargantini and A. Morzenti, “Automated deductive requirements analysis of critical systems,” ACM Transactions
on Software Engineering and Methodology 10, no. 3, ACM Trans. Softw. Eng. Methodol. (USA) (July 2001): 255-
307.

P17

T.S. Perraju, “Specifying fault tolerance in mission critical intelligent systems,” Knowledge-Based Systems 14, no. 7,
Knowl.-Based Syst. (UK) (November 2001): 385-96.

P18

A. Zeller, “Automated debugging: are we close?,” Computer 34, no. 11, Computer (USA) (November 2001): 26-31. P19
F. Ipate and M. Holcombe, “An integrated refinement and testing method for stream X-machines,” Applicable Algebra
in Engineering, Communications and Computing 13, no. 2 (2002): 67-91.

P20

F. Ricca and P. Tonella, “Testing processes of Web applications,” Annals of Software Engineering 14, Ann. Softw.
Eng. (Netherlands) (2002): 93-114.

P21

S.M. Schorling and D.C. Rine, “A methodology for designing toolkits for specification level verification of interval-
constrained information systems requirements,” Information and Software Technology 44, no. 2 (2002): 77-90.

P22

K.L. Mills and H. Gomaa, “Knowledge-based automation of a design method for concurrent systems,” IEEE
Transactions on Software Engineering 28, no. 3, IEEE Trans. Softw. Eng. (USA) (March 2002): 228-55.

P23

Hong Zhu et al., “Software requirements validation via task analysis,” Journal of Systems and Software 61, no. 2, J.
Syst. Softw. (USA) (March 15, 2002): 145-69.

P24

Y. Ishino and Y. Jin, “Estimate design intent: a multiple analysis genetic programming and multivariate based
approach,” Advanced Engineering Informatics 16, no. 2, Adv. Eng. Inf. (UK) (April 2002): 107-25.

P25

C.H. Bischof et al., “Solving large-scale optimization problems with EFCOSS,” Advances in Engineering Software 34,
no. 10 (2003): 633-639.

P26

A. Fantechi et al., “Applications of linguistic techniques for use case analysis,” Requirements Engineering 8, no. 3,
Requir. Eng. (UK) (2003): 161-70.

P27

F. Maraninchi and Y. Remond, “Mode-automata: a new domain-specific construct for the development of safe critical
systems,” Science of Computer Programming 46, no. 3, Sci. Comput. Program. (Netherlands) (March 2003): 219-54.

P28

 40

M. Reformat, W. Pedrycz, and N.J. Pizzi, “Software quality analysis with the use of computational intelligence,”
Information and Software Technology 45, no. 7, Inf. Softw. Technol. (Netherlands) (May 1, 2003): 405-17.

P29

W.E. Wong et al., “Coverage testing software architectural design in SDL,” Computer Networks 42, no. 3, Comput.
Netw. (Netherlands) (June 21, 2003): 359-74.

P30

Y. Cohen and Y.A. Feldman, “Automatic high-quality reengineering of database programs by abstraction,
transformation and reimplementation,” ACM Transactions on Software Engineering and Methodology 12, no. 3, ACM
Trans. Softw. Eng. Methodol. (USA) (July 2003): 285-316.

P31

D.L. Moody and G.G. Shanks, “Improving the quality of data models: empirical validation of a quality management
framework,” Information Systems 28, no. 6, Inf. Syst. (UK) (September 2003): 619-50.

P32

L. Bettini, R. De Nicola, and M. Loreti, “Formulae meet programs over the net: A framework for correct network
aware programming,” Automated Software Engineering 11, no. 3 (2004): 245-288.

P33

L. Chung and N. Subramanian, “Adaptable architecture generation for embedded systems,” Journal of Systems and
Software 71, no. 3 (2004): 271-295.

P34

P.-A. Hsiung et al., “VERTAF: An application framework for the design and verification of embedded real-time
software,” IEEE Transactions on Software Engineering 30, no. 10 (2004): 656-674.

P35

S. Rugaber and K. Stirewalt, “Model-driven reverse engineering,” IEEE Software 21, no. 4, IEEE Softw. (USA) (July
2004): 45-53.

P36

R. de Lemos, “Analysing failure behaviours in component interaction,” Journal of Systems and Software 71, no. 1, J.
Syst. Softw. (USA) (April 2004): 97-115.

P37

Chia-Chu Chiang, “Automated rapid prototyping of TUG specifications using Prolog,” Information and Software
Technology 46, no. 13, Inf. Softw. Technol. (Netherlands) (October 1, 2004): 857-73.

P38

A. Egyed and P. Grunbacher, “Identifying requirements conflicts and cooperation: how quality attributes and
automated traceability can help,” IEEE Software 21, no. 6, IEEE Softw. (USA) (November 2004): 50-8.

P39

N. Serrano et al., “Automated management of multicustomer code bases,” IEEE Software 21, no. 6, IEEE Softw.
(USA) (November 2004): 26-31.

P40

I. Traore and D.B. Aredo, “Enhancing structured review with model-based verification,” IEEE Transactions on
Software Engineering 30, no. 11, IEEE Trans. Softw. Eng. (USA) (November 2004): 736-53.

P41

Chin-Yu Huang, “Performance analysis of software reliability growth models with testing-effort and change-point,”
Journal of Systems and Software 76, no. 2, J. Syst. Softw. (USA) (May 2005): 181-94.

P42

C. Gonzalez-Perez, T. McBride, and B. Henderson-Sellers, “A metamodel for assessable software development
methodologies,” Software Quality Journal 13, no. 2, Softw. Qual. J. (USA) (June 2005): 195-214.

P43

K. Cooper, Lirong Dai, and Yi Deng, “Performance modeling and analysis of software architectures: An aspect-
oriented UML based approach,” Science of Computer Programming 57, no. 1, Sci. Comput. Program. (Netherlands)
(July 2005): 89-108.

P44

D. Ponnurangam and G.V. Uma, “Fuzzy complexity assessment model for resource negotiation and allocation in
agent-based software testing framework,” Expert Systems with Applications 29, no. 1, Expert Syst. Appl. (UK) (July
2005): 105-19.

P45

N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, “Predicting the probability of change in object-oriented systems,”
IEEE Transactions on Software Engineering 31, no. 7, IEEE Trans. Softw. Eng. (USA) (July 2005): 601-14.

P46

D. Wang, F.B. Bastani, and L.-I. Yen, “Automated aspect-oriented decomposition of process-control systems for ultra-
high dependability assurance,” IEEE Transactions on Software Engineering 31, no. 9, IEEE Trans. Softw. Eng. (USA)
(September 2005): 713-32.

P47

A.M. Memon and Q. Xie, “Studying the fault-detection effectiveness of GUI test cases for rapidly evolving software,”
IEEE Transactions on Software Engineering 31, no. 10, IEEE Trans. Softw. Eng. (USA) (October 2005): 884-96.

P48

J.H. Hayes, A. Dekhtyar, and S.K. Sundaram, “Improving after-the-fact tracing and mapping: supporting software
quality predictions,” IEEE Software 22, no. 6, IEEE Softw. (USA) (November 2005): 30-7.

P49

M. Hicks and S. Nettles, “Dynamic software updating,” ACM Transactions on Programming Languages and Systems
27, no. 6, ACM Trans. Program. Lang. Syst. (USA) (November 2005): 1049-96.

P50

R.R. Lutz and Qian Feng, “Bi-directional safety analysis of product lines,” Journal of Systems and Software 78, no. 2,
J. Syst. Softw. (USA) (November 2005): 111-27.

P51

A. D'Ambrogio and G. Iazeolla, “Metadata-driven design of integrated environments for software performance
validation,” Journal of Systems and Software 76, no. 2 (2005): 127-146.

P52

H. Saiedian, P. Kumarakulasingam, and M. Anan, “Scenario-based requirements analysis techniques for real-time
software systems: a comparative evaluation,” Requirements Engineering 10, no. 1, Requir. Eng. (UK) (2005): 22-33.

P53

A. Solar-Lezama et al., “Programming by sketching for bit-streaming programs,” ACM SIGPLAN Notices 40, no. 6
(2005): 281-294.

P54

V. Issarny et al., “Developing ambient intelligence systems: a solution based on Web services,” Automated Software
Engineering 12, no. 1, Autom. Softw. Eng. (Netherlands) (January 2005): 101-37.

P55

Taeho Kim, D. Stringer-Calvert, and Sungdeok Cha, “Formal verification of functional properties of a SCR-style
software requirements specification using PVS,” Reliability Engineering & System Safety 87, no. 3, Reliab. Eng. Syst.

P56

 41

Saf. (UK) (March 2005): 351-63.
S. Abou-Zahra, “A Data Model to Facilitate the Automation of Web Accessibility Evaluations,” Electronic Notes in
Theoretical Computer Science 157, no. 2 (2006): 3-9.

P57

A. Ireland et al., “An integrated approach to high integrity software verification,” Journal of Automated Reasoning 36,
no. 4, J. Autom. Reasoning (Netherlands) (2006): 379-410.

P58

C.-H. Lung et al., “Program restructuring using clustering techniques,” Journal of Systems and Software 79, no. 9
(2006): 1261-1279.

P59

Y. Qi, D. Kung, and E. Wong, “An agent-based data-flow testing approach for Web applications,” Information and
Software Technology 48, no. 12 (2006): 1159-1171.

P60

C. Robinson-Mallett et al., “Extended state identification and verification using a model checker,” Information and
Software Technology 48, no. 10 (2006): 981-992.

P61

J. Gray, Y. Lin, and J. Zhang, “Automating change evolution in model-driven engineering,” Computer 39, no. 2,
Computer (USA) (February 2006): 51-8.

P62

V. Sugumaran et al., “A semi-automated filtering technique for software process tailoring using neural network,”
Expert Systems with Applications 30, no. 2, Expert Syst. Appl. (UK) (February 2006): 179-89.

P63

S. Basu and C.R. Ramakrishnan, “Compositional analysis for verification of parameterized systems,” Theoretical
Computer Science 354, no. 2, Theor. Comput. Sci. (Netherlands) (March 28, 2006): 211-29.

P64

J.C. Bicarregui, C.A.R. Hoare, and J.C.P. Woodcock, “The verified software repository: a step towards the verifying
compiler,” Formal Aspects of Computing 18, no. 2, Form. Asp. Comput. (UK) (June 2006): 143-51.

P65

I. Lera, C. Juiz, and R. Puigjaner, “Performance-related ontologies and semantic web applications for on-line
performance assessment of intelligent systems,” Science of Computer Programming 61, no. 1, Sci. Comput. Program.
(Netherlands) (June 2006): 27-37.

P66

Lirong Dai and K. Cooper, “Modeling and performance analysis for security aspects,” Science of Computer
Programming 61, no. 1, Sci. Comput. Program. (Netherlands) (June 2006): 58-71.

P67

G. Madl, S. Abdelwahed, and D.C. Schmidt, “Verifying distributed real-time properties of embedded systems via
graph transformations and model checking,” Real-Time Systems 33, no. 1, Real-Time Syst. (Netherlands) (July 2006):
77-100.

P68

Ling Yuan et al., “Generic fault tolerant software architecture reasoning and customization,” IEEE Transactions on
Reliability 55, no. 3, IEEE Trans. Reliab. (USA) (September 2006): 421-35.

P69

H. Bohnenkamp et al., “MODEST: a compositional modeling formalism for hard and softly timed systems,” IEEE
Transactions on Software Engineering 32, no. 10, IEEE Trans. Softw. Eng. (USA) (October 2006): 812-30.

P70

Chao Liu et al., “Statistical debugging: a hypothesis testing-based approach,” IEEE Transactions on Software
Engineering 32, no. 10, IEEE Trans. Softw. Eng. (USA) (October 2006): 831-48.

P71

P. Sawyer, Hong Xu, and I. Sommerville, “Requirement process establishment and improvement from the viewpoint of
cybernetics,” Journal of Systems and Software 79, no. 11, J. Syst. Softw. (USA) (November 2006): 1504-13.

P72

A. Sillitti, G. Succi, and S. De Panfilis, “Managing non-invasive measurement tools,” Journal of Systems Architecture
52, no. 11, J. Syst. Archit. (Netherlands) (November 2006): 676-83.

P73

J. Dehlinger and R.R. Lutz, “PLFaultCAT: a product-line software fault tree analysis tool,” Automated Software
Engineering 13, no. 1, Autom. Softw. Eng. (Netherlands) (January 2006): 169-93.

P74

C. Yilmaz, M.B. Cohen, and A.A. Porter, “Covering arrays for efficient fault characterization in complex configuration
spaces,” IEEE Transactions on Software Engineering 32, no. 1, IEEE Trans. Softw. Eng. (USA) (January 2006): 20-
34.

P75

T. Chothia and J. Kleijn, “Q-Automata: Modelling the Resource Usage of Concurrent Components,” Electronic Notes
in Theoretical Computer Science 175, no. 2 (2007): 153-167.

P76

T. Chothia, J. Pang, and M. Torabi Dashti, “Keeping Secrets in Resource Aware Components,” Electronic Notes in
Theoretical Computer Science 190, no. 3 (2007): 79-94.

P77

G. Delaval and E. Rutten, “A domain-specific language for multitask systems, applying discrete controller synthesis,”
Eurasip Journal on Embedded Systems 2007 (2007),
http://www.scopus.com.proxy.lib.chalmers.se/inward/record.url?eid=2-s2.0-
34247259625&partnerID=40&md5=f2e3190e0709202a9b3c706876ae6050.

P78

P.-A. Hsiung, Y.-R. Chen, and Y.-H. Lin, “Model checking safety-critical systems using safecharts,” IEEE
Transactions on Computers 56, no. 5 (2007): 692-705.

P79

A. Johnstone and E. Scott, “Proofs and pedagogy; science and systems: The grammar tool box,” Science of Computer
Programming 69, no. 1 (2007): 76-85.

P80

A.D. Lucia et al., “Recovering traceability links in software artifact management systems using information retrieval
methods,” ACM Transactions on Software Engineering and Methodology 16, no. 4 (2007),
http://www.scopus.com.proxy.lib.chalmers.se/inward/record.url?eid=2-s2.0-
34648836593&partnerID=40&md5=e0cdd81589839fd29b8ad6e35681397a.

P81

T.C. Oliveira et al., “RDL: A language for framework instantiation representation,” Journal of Systems and Software
80, no. 11 (2007): 1902-1929.

P82

 42

C. Sibertin-Blanc, P. Mauran, and G. Padiou, “Safe Adaptation of Component Coordination,” Electronic Notes in
Theoretical Computer Science 189 (2007): 69-85.

P83

R. Wang, X. Song, and M. Gu, “Modelling and verification of program logic controllers using timed automata,” IET
Software 1, no. 4 (2007): 127-131.

P84

M. Bozzano and A. Viliafiorita, “The FSAP/NuSMV-SA safety analysis platform,” International Journal on Software
Tools for Technology Transfer 9, no. 1, Int. J. Softw. Tools Technol. Transf. (Germany) (February 2007): 5-24.

P85

Ping Guo et al., “A hierarchical mixture model for software reliability prediction,” Applied Mathematics and
Computation 185, no. 2, Appl. Math. Comput. (USA) (February 15, 2007): 1120-30.

P86

Zhenchang Xing and E. Stroulia, “API-evolution support with Diff-CatchUp,” IEEE Transactions on Software
Engineering 33, no. 12, IEEE Trans. Softw. Eng. (USA) (December 2007): 818-36.

P87

S. Chaki et al., “Verification of evolving software via component substitutability analysis,” Formal Methods in System
Design 32, no. 3 (2008): 235-266.

P88

F. Deissenboeck et al., “Tool support for continuous quality control,” IEEE Software 25, no. 5 (2008): 60-67. P89
J.A. Díaz-Pace and M.R. Campo, “Experiences with planning techniques for assisting software design activities,”
Applied Intelligence 29, no. 1 (2008): 56-78.

P90

R. Dömer et al., “System-on-chip environment: A SpecC-based framework for heterogeneous MPSoC design,”
Eurasip Journal on Embedded Systems 2008, no. 1 (2008),
http://www.scopus.com.proxy.lib.chalmers.se/inward/record.url?eid=2-s2.0-
49749151366&partnerID=40&md5=b1aa6b8e4be5ed469e67076eb79b1cdc.

P91

A. Ebnenasir, S.S. Kulkarni, and A. Arora, “FTSyn: A framework for automatic synthesis of fault-tolerance,”
International Journal on Software Tools for Technology Transfer 10, no. 5 (2008): 455-471.

P92

D. Giannakopoulou, C.S. Pǎsǎreanu, and C. Blundell, “Assume-guarantee testing for software components,” IET
Software 2, no. 6 (2008): 547-562.

P93

S.T. Halkidis et al., “Architectural risk analysis of software systems based on security patterns,” IEEE Transactions on
Dependable and Secure Computing 5, no. 3 (2008): 129-142.

P94

M. O'Keeffe and M. Ó Cinnéide, “Search-based refactoring for software maintenance,” Journal of Systems and
Software 81, no. 4 (2008): 502-516.

P95

C.S. Pǎsǎreanu et al., “Learning to divide and conquer: Applying the L*algorithm to automate assume-guarantee
reasoning,” Formal Methods in System Design 32, no. 3 (2008): 175-205.

P96

K. Popovici et al., “Platform-based software design flow for heterogeneous MPSoC,” Transactions on Embedded
Computing Systems 7, no. 4 (2008), http://www.scopus.com.proxy.lib.chalmers.se/inward/record.url?eid=2-s2.0-
49449088727&partnerID=40&md5=7fed6a3df4f9b9305e3213c1e22f79eb.

P97

T.A. Alspaugh and A.I. Ant, “Scenario support for effective requirements,” Information and Software Technology 50,
no. 3, Inf. Softw. Technol. (Netherlands) (February 2008): 198-220.

P98

C.S. Gall et al., “Semantic software metrics computed from natural language design specifications,” IET Software 2,
no. 1, IET Softw. (UK) (February 2008): 17-26.

P99

A. Avenali et al., “Brokering infrastructure for minimum cost data procurement based on quality-quantity models,”
Decision Support Systems 45, no. 1, Decis. Support Syst. (Netherlands) (April 2008): 95-109.

P100

S.W. Haider et al., “Estimation of defects based on defect decay model: ED3M,” IEEE Transactions on Software
Engineering 34, no. 3, IEEE Trans. Softw. Eng. (USA) (May 2008): 336-56.

P101

C. Pinello, L.P. Carloni, and A.L. Sangiovanni-Vincentelli, “Fault-tolerant distributed deployment of embedded
control software,” IEEE Transactions on Computer-Aided Design of Integrated Circuits 27, no. 5, IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. (USA) (May 2008): 906-19.

P102

M.A. de Miguel et al., “Integration of safety analysis in model-driven software development,” IET Software 2, no. 3,
IET Softw. (UK) (June 2008): 260-80.

P103

P. Trinidad et al., “Automated error analysis for the agilization of feature modeling,” Journal of Systems & Software
81, no. 6, J. Syst. Softw. (USA) (June 2008): 883-96.

P104

C. Babu and R. Vijayalakshmi, “Metrics-based design selection tool for aspect oriented software development,”
Software Engineering Notes 33, no. 5, Softw. Eng. Notes (USA) (September 2008): 27.

P105

J. Cleland-Huang, W. Marrero, and B. Berenbach, “Goal-centric traceability: using virtual plumblines to maintain
critical systemic qualities,” IEEE Transactions on Software Engineering 34, no. 5, IEEE Trans. Softw. Eng. (USA)
(October 2008): 685-99.

P106

D. Nabil, A. EL-Korany, and A. Sharaf Eldin, “Towards a suite of quality metrics for KADS-domain knowledge,”
Expert Systems with Applications 35, no. 3, Expert Syst. Appl. (UK) (October 2008): 654-60.

P107

P. Wriggers et al., “Intelligent support of the preprocessing stage of engineering analysis using case-based reasoning,”
Engineering with Computers 24, no. 4, Eng. Comput. (UK) (October 2008): 383-404.

P108

R. Colvin, L. Grunske, and K. Winter, “Timed behavior trees for failure mode and effects analysis of time-critical
systems,” Journal of Systems and Software 81, no. 12, J. Syst. Softw. (USA) (December 2008): 2163-82.

P109

J. Cabot and E. Teniente, “Incremental integrity checking of UML/OCL conceptual schemas,” Journal of Systems and
Software 82, no. 9 (2009): 1459-1478.

P110

 43

R. Fuentes-Fernandez, J.J. Gomez-Sanz, and J. Pavon, “Requirements elicitation and analysis of multiagent systems
using activity theory,” IEEE Transactions on Systems, Man and Cybernetics, Part A (Systems and Humans) 39, no. 2,
IEEE Trans. Syst. Man Cybern. A, Syst. Humans (USA) (March 2009): 282-98.

P111

H. Eichelberger and K. Schmid, “Guidelines on the aesthetic quality of UML class diagrams,” Information and
Software Technology 51, no. 12 (2009): 1686-1698.

P112

W. Jirapanthong and A. Zisman, “XTraQue: Traceability for product line systems,” Software and Systems Modeling 8,
no. 1 (2009): 117-144.

P113

C. Brunette et al., “A metamodel for the design of polychronous systems,” Journal of Logic and Algebraic
Programming 78, no. 4, J. Log. Algebr. Program. (USA) (April 2009): 233-59.

P114

E. Guerra et al., “Supporting user-oriented analysis for multi-view domain-specific visual languages,” Information and
Software Technology 51, no. 4, Inf. Softw. Technol. (Netherlands) (April 2009): 769-84.

P115

A.R. Dalton and J.O. Hallstrom, “nAIT: a source analysis and instrumentation framework for nesC,” Journal of
Systems and Software 82, no. 7, J. Syst. Softw. (USA) (July 2009): 1057-72.

P116

J.C.B. Ribeiro, M.A. Zenha-Rela, and F. Fernandez de Vega, “Test case evaluation and input domain reduction
strategies for the Evolutionary Testing of object-oriented software,” Information and Software Technology 51, no. 11,
Inf. Softw. Technol. (Netherlands) (November 2009): 1534-48.

P117

M. Weiglhofer, G. Fraser, and F. Wotawa, “Using coverage to automate and improve test purpose based testing,”
Information and Software Technology 51, no. 11, Inf. Softw. Technol. (Netherlands) (November 2009): 1601-17.

P118

F. Molina and A. Toval, “Integrating usability requirements that can be evaluated in design time into model driven
engineering of Web information systems,” Advances in Engineering Software 40, no. 12, Adv. Eng. Softw. (UK)
(December 2009): 1306-17.

P119

Kwang Yong Koh and Poong Hyun Seong, “SMV model-based safety analysis of software requirements,” Reliability
Engineering & System Safety 94, no. 2, Reliab. Eng. Syst. Saf. (UK) (February 2009): 320-31.

P120

Chao Cai et al., “Global-to-local approach to rigorously developing distributed system with exception handling,”
Journal of Computer Science and Technology (English Language Edition) 24, no. 2, J. Comput. Sci. Technol., Engl.
Lang. Ed. (China) (March 2009): 238-49.

P121

Dan Hao et al., “Test-data generation guided by static defect detection,” Journal of Computer Science and Technology
(English Language Edition) 24, no. 2, J. Comput. Sci. Technol., Engl. Lang. Ed. (China) (March 2009): 284-93.

P122

