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Abstract

Developments in semantic web are changing how websites are written

for the internet. The categorization principles are applied to closed

systems such as a company’s internal document database; however,

these changes are not as quickly reflected in semantic search due to

existing problems within the natural language programming field.

This project aims to develop a framework for a different type of search:

one that combines linguistic principles and current search options and

tailor returned results according to user input. The Python program-

ming environment and Natural Language Toolkit libraries are the pri-

mary resources used to develop this program.

Once a basic working code is developed, search results are compared

against an increasingly-popular alternative search tool. The results

from these searches provide feedback on which areas the program

needs to develop further.

Keywords: semantic search, human-machine interaction, question-

answering, natural language programming, communications
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Chapter 1

Introduction

Proper knowledge representation within machines is currently quite difficult to

achieve within the AI field. Machines need to understand objects, their relations

with others, properties, knowledge about knowledge, and other similar types of

information in order to behave more intelligently. Currently, machines only rely

on definitions and instructions written by humans. Not only does this make the

machine reliant onto manual input, but without proper algorithms and logics put

in place, it cannot learn new data on its own. They are unable to learn new

information from other machines, making their databases increasingly outdated.

In order to develop intelligent machines further, a new way of accessing and

presenting data should be investigated.

1.1 Semantic Web and Implications

The ’Semantic Web’, proposed by Tim Berners-Lee [1], is an ’upgrade’ of current

HTML. Semantic Web employs a more intelligent tagging system by telling the

machine what the user means instead of telling it what to show. For example, with

current HTML tagging, a user will bold a word by using the < b > and < /b >

tags. With this, the machine will simply make text between those tags show up

in bold. Often, when a user bolds a text, they actually want to show emphasis on

that word. However, the machine will not recognize this distinction. By using a

more sensible tag such as < em > for ’emphasis’, the machine will understand that
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the user is placing importance on that phrase, much like how tone is used in speech

to attract attention. Through the use of the Resource Description Framework,

RDF, this is currently being made possible as users begin to implement the meta-

tagging idea into a ’semantic desktop’ as well as develop different indexes and

ontologies.[2]

Current work is mainly focused on developing the Semantic Web itself or de-

veloping a semantic desktop. With projects such as SIMILE[3], SIOC[4], and

NextBio[5], the use of a semantic framework is spreading rapidly into many dif-

ferent fields. Currently, there is a growing demand for medical and bioscience

applications. With this new organization system, new types of relationships can

be taken advantage of and accessed through new routes, rather than from a strict

start-to-finish point of view. For example, a symptom such as a fever can be put

into the system and a list of related symptoms and sources of these symptoms

will be appear. By narrowing down the search with other symptoms, which are

now acting as search parameters, correct information can be reached by way of

relationship. This differs from current methods, where searching involved man-

ual pruning through lists of articles by the user. Businesses are also using these

systems internally as an aid in reorganization internalized company documents,

databases, and other such tools.

Question-answering systems can also benefit from this development and be-

come more useful when combined with work in natural language processing. First

generation question-answering systems lacked linguistic input and focused on

words as the smallest unit of meaning. This proved to be limiting, as seen in

Simmons.[6] Later generations of question-answering systems developed frame-

work that began to establish referential relationships as well as a basic semantic

memory. However, with the rapid development of technology, the variables and

and networks available have grown exponentially. Thus far, a system has not

been developed that understands human input naturally. Semantic search tools

have been attempted, but have either shut down or have not been very success-

ful. Dbpedia[7] is realizing semantic web classification paradigms by reorganizing

Wikipedia results according to entry’s membership and relationships with other

category classes. Wolfram Alpha[8] may be considered an exception to this, yet

it is still being developed and it has been yet to see whether Wolfram’s compu-
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tational approach[9] will yield the same results as a semantic search would.

1.2 Current NLP Problems

The human mind can make an infinite number of connections between the mean-

ings and knowledge stored within it. Language provides a reference point to

these meanings by establishing a standard word for use within the specific lan-

guage community. For example, when asked to imagine a cat, each person’s

image will most likely have similar characteristics, but will not be exactly the

same. Assuming that the user is thinking of the animal, when asked to describe

a cat, descriptors like ”furry”, ”four legs”, and ”domesticated” are often called

upon. However, these descriptors are not solely relevant to this particular ani-

mal. Bears are also furry, deer have four legs, and dogs are also domesticated.

Without experiencing these meanings and having the proper means of making

those connections, however, humans will not be able to describe what they are

thinking.

This dilemma is currently present within machine intelligence. While a list

of these descriptions may be presented, the machine is unable to establish and

understand the variable relationships between each characteristic. Additionally,

without pre-programmed expectations, the program cannot understand new in-

formation that has been unaccounted for. One can speculate that this issue is

tied to a lack of understanding of how Language truly functions. As it is ethically

wrong to simply cut open a brain and test to see which areas of the mind affect

speech and which areas are activated during different speech activities, researchers

are left to analyze and construct the working framework of Language from only

its output (or lack of output, as seen in those with disabilities or injuries).

However, re-evaluating syntactic theory and applying those principles with

other sentence- and context-bound information, in combination with other re-

sources, may return new results in terms of the development of a more search-

friendly agent.
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1.3 Purpose

The purpose of this project is to develop a basic framework for a search agent that

displays behavior similar to a human while taking advantage of semantic search

methods. It should incorporate linguistic cues from user input into its search and

return results that are tailored towards the type of information that an average

user is looking for. Search behaviors and relevancy are enhanced by Google’s

search framework [10] along with a hierarchy of databases classified according to

the type of question being asked.

1.4 Perspective

This project approaches developing an interactive search agent with a humanistic

point of view. Machines and programs are useful aids and should not be feared.

Users shouldn’t feel intimidated by a communication agent, nor should users feel

alienated when interacting with the agent. The program can do this by mimicking

how humans communicate with other humans. For simplicity, the program will

be referred to as Mordinn for the rest of the document.
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Chapter 2

Theoretical Framework

In developing a search agent that utilizes Language like a human, human inter-

actions should also be analyzed. The environment that humans interact in, the

relationships between people, and social expectations all come into play when an

interaction takes place.

2.1 Models: Human

According to Knapp and Vangelisti[11], the majority of human behavior is gov-

erned by inclusion, control and affection needs. The need to feel included, con-

trol over a situation, and positive social reception directly affect how people

will interact with each other. These needs are often fulfilled through positive,

engaging conversation and activities with other people. With recent growing

trends of youth fulfilling these needs through a new medium of interaction- via

online methods-, the ways in which people interact with others exponentially

increases.[12] People who have traditionally found it difficult to converse in face-

to-face conversations, whether it be due to an uncomfortable social environment

or simply a low need for inclusion, can now satisfy these inclusion needs through

online chats and blogging platforms without the stress of reading nonverbal cues

or paying close attention to social conventions. People who are considered ex-

troverted also benefit; now, they can chat with friends through texting protocols

on cell phones and remain updated on their friends’ activities by watching them
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through various social networking sites.

As new generations continue to grow up with these new technologies, the

ease and comfortability of using these technologies will continue to rise. In fact,

people are becoming so comfortable in incorporating social networking into their

everyday activities that the medical field is seriously considering developing tools

to incorporate into medical practice that will take advantage of this new method of

communication.[13] Interacting with a search agent designed to aid them without

interrupting the flow of communication would be an extension of these activities

and therefore fairly easy to incorporate into an already-established network of

contacts and feeds. Before a search agent can seamlessly interact with a user,

however, the nature of the relationship between a search agent and a user, the

environment within which the search takes place, and each participant’s goals

must be established.

The nature and compatibility of relationships between people are fairly de-

pendent on how these needs are met. Symmetrical relationships are those be-

tween participants that exhibit the same behaviors toward each other, while a

complimentary relationship are based on mutual exchanges of complementary

behavior.[14] In the case of the relationship between the search agent and the

user, a complementary relationship is formed. The user is lacking information

and requires new knowledge, while the search agent supplies it to the best of its

ability. This relationship is understood by the user, as it understands the search

agent’s role as a tool.

This relationship can be further analyzed by establishing the activities that

each participant takes to fulfill this role. The user turns to Mordinn when they

need to access new information. The user needs answers that meet their require-

ments, be provided with information that is related to their inquiry, and be able

to form new knowledge with that information. As a provider, Mordinn aims to

provide this new knowledge as accurate and satisfying to the user as possible.

In order to do this, Mordinn must be able to receive the user’s question, break

down the language into usable pieces, and present data that is pleasing to the

user. Each participant will react according to whether this information presented

meets or violates expectations.[15] The user will not generally interact with this

program when needing someone to talk to, for example, and the program will
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not even run unless the user activates it. This suggests that a particular type

of communication protocol is needed to accomodate these interactions, and that

the user understands this relationship inherently.

Having established the framework in which the user and the program would

generally interact, face-to-face communication strategies can now be analyzed to

prepare Mordinn for proper interaction with the user.

2.2 Environment

When judging appropriate interpersonal interactions, the environment within

which the conversation occurs should be considered. According to Gosling et

al.[16], people respond to cues within the physical environment and incorporate

them when people form impressions of others. Conversations taking place in a

quiet study room in a library or within a corner at an active coffee shop will have

two completely different effects on the interaction. This is due to several param-

eters that come into play when people react to environmental stimuli. Concepts

of formality, warmth, and privacy, for example, affect how well one can relax in

an environment and what topics may be considered safe to discuss openly.

Interactions between the search agent and its use generally will occur through

a personal computer. Whether through a self-owned desktop or a public com-

puter, there is still a semblance of privacy felt by the user as they work on the

machine. Additionally, constraint perceptions can be relaxed, as the user controls

when they open the program and can easily leave it if they so choose.[11] This

leaves all control of the interaction to the user, allowing the user to feel more

at ease. Additionally, computing platforms share similar characteristics between

models. All computers utilize keyboards, monitors and computing mice to aid

the user in using the machine. Also, the software that the computer runs on is

generally one that’s familiar to the user already. People generally prefer familiar

places[17], and this can be applied to computers as well. For example, users of

Windows will be more comfortable using different distributions of the Microsoft

operating system and will prefer to use computers with that type of operating

system then, say, a Macintosh computer. Therefore, the user will already be oper-

ating a computing environment that is predictable and familiar, thereby reducing
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anxiety levels.

2.3 Interaction Limitations

Interactions between people are governed by communicative norms already estab-

lished in society.[11] Starting from youth, people are taught how to greet people,

how to manage conversation flow, and what to consider acceptable and unaccept-

able social behavior. These rules of engagement are developed and maintained in

a variety of ways[18]: by conscious discussion and mutual agreement, through di-

rect instruction of a more experienced individual, or through subtleties governed

by meta-communication[11], for example.

Oftentimes, people are not as aware of communication norms until they are

violated.[19] Different types of violations prompt different reactions, which can

range anywhere from slight annoyance to great offense. To offset these violations,

apologies and other methods of diffusing negative reactions are used, such as

apologies and disclaiming in advance that a violation is about to occur. In the

case of Mordinn, it will not know if the information presented to the user will be

completely accurate and, therefore, will not know in advance if that will violate a

user’s expectations. To account for this, Mordinn will employ apologies[20] and

use a credentialing strategy[21] to soften any frustration resulting from a result

deemed unsatisfactory by the user.

There are also prescribed methods of starting an interaction with another

person. These steps are often executed without consciously being aware of every

step of interaction. However, programs only understand the code written by its

creator. They are often not bound by conversation protocols because they are

treated as tools. Additionally, a computer is not normally equipped with sensors

that may be able to detect when a user wants to engage in a particular activity.

Coupled with the inability to read non-textual cues, Mordinn is already at a great

disadvantage in comparison to another human being.

To minimize these disadvantages, human-inspired responses and interaction

strategies should be used as much as possible. In the case of Mordinn, the greet-

ing is an especially important element to incorporate when designing it. How one

greets another is a direct indication of what sort of relationship is established.
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Traditionally, verbal responses are accompanied by physical cues such as a smile,

a nod of the head, or handshakes. However, Mordinn can only understand input

typed into the computer interface. A hand wave or other body language may be

replaced by the user clicking on an icon programmed to execute Mordinn’s file or

by a keyboard shortcut. Approaching Mordinn would require manipulating hard-

ware. This interaction is always initiated by the user; therefore, in keeping with

human engagement protocol, Mordinn should greet the user once opened before

asking if the user needs anything. Knapp and Vangelisti[11] categorizes these

response types as verbal salutes and personal inquiry questions. By employing

these strategies, the user will, hopefully, become more comfortable in engaging

with Mordinn.

2.4 Linguistic Theory

2.4.1 Chomskian Principles

Machine comprehension of Language itself is considered an AI-complete issue,

meaning that in order to solve one problem, one must also solve many other

problems simultaneously. Fortunately, access to lexicon such as the Wordnet

lexicon[22] and other linguistic components frees development time for this project

and enables it to build upon their previous developments.

In order for a machine to understand and use Language, one must look at the

source of Language: humans. The language phenomenon is a uniquely human

ability, with a complex network of different areas of the brain working together

to interpret, translate, and respond to the outside world. Theoretically, how

Language is stored and used is controversial.

For this project, Chomsky-influenced principles are the assumed framework.

This should benefit the development of the machine’s natural language under-

standing and processing in several ways. According to his theories, all languages

share some common rules, with some rules of grammar hardwired into the human

brain.[23] Additionally, these common rules can be switched on or off, according

to the Principles and Parameters theory.[24] By having a predetermined set of

variables, a machine should be able to understand its input more efficiently and,
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with the aid of propositional logic, should be able to understand relationships and

begin to development knowledge independently of direct human input. For the

scope of this project, developing tools that take into account the characteristics

of English is the primary focus.

2.4.2 X-Bar Theory

To account for this, the construction of a new grammar that implemented the

Principle of Modification [25] was attempted. The Principle of Modification states

that if some phrase YP modifies some head X, then the YP must be a sister to

X or is a projection of X. According to Travis 1984 [26], word order falls under

the rules of predetermined parameters. For this project, we shall look at how

specifiers, adjuncts, and complements are organized in English.

In layman’s terms, X-bar parameters can be likened to a switch box. In the

cases of specifiers, adjuncts, and complements, the position of the phrase head

or the node representing the phrase head can come before or after the modifying

phrase. In English, these parameters are realized as follows:

(a) Specifier: XP → (Y P )X ′

(b) Adjunct: X′ → X(ZP ) or X ′ → (ZP )X ′

(c) Complement: X′ → X(WP )

In knowing where the head of the phrase should be within a larger phrase,

we can see how different phrases are ranked in importance in comparison to the

phrase head. For example, let’s examine the noun phrase ’The large box of books

from the bookstore’ in Figure 2.1:
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Figure 2.1: An X-bar tree of the noun phrase ’the large box of books from the
bookstore’
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As seen in its sentence tree, the prepositional phrase ’of books’ is the com-

plement, with the additional phrases as specifiers. By being able to recognize

these traits, one can see that emphasis is placed upon the contents of the box,

rather than the location where the contents of the box came from. As specifier

traits are attached to the head node, the consequent information becomes less

important. For English speakers, this may have origins in the fact that important

pieces of information need to come first during communication, with extraneous

information following. Having been given the key pieces of information at the

beginning, English speakers may lose track of extra information as the sentence

progresses.

Reconstructing the grammar to reflect these trends should, theoretically, allow

for the use of phrase heads and recognize sister and daughter phrases. With the

implementation of the Wordnet tagger, descriptors and the phrases modifying

the noun head would be identified quicker by bypassing complicated rules and

allowing the program to focus on generating relational hierarchies. This step

will be key when constructing a system that would allow the computer to apply

semantic relationships between constituents of a sentence.

2.4.3 Theta Criterion

Language is composed of two main components: a computation component, and a

lexical component. The computational component of Language stores the gram-

matical rules and constraints of a language as well as constructs sentences while

filtering out ungrammatical input. The lexical portion of Language acts as a

mental dictionary, where words and their properties are stored. The relation-

ships between members of a sentence are established through the use of the Theta

Criterion[27].

The Theta Criterion matches the types of arguments of a sentence to a theta

grid. This relationship is established through the use of a theta role, which is the

bundle of morphosyntactic relationships that are bound to an argument. These

roles can be external, where the role is assigned to the subject, or can be internal,

where roles are assigned to direct and/or indirect objects. According to the Theta

Criterion, each argument can only be assigned to one theta role, and each theta
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role can only be assigned to one argument.

Additionally, each lexical entry must contain within itself at least the following

information:

1. the meaning of the word

2. the syntactic category of the word

3. pronunciation

4. exceptional information (for example, morphological irregularities)

5. theta grid (argument structure)

For this project, points two and five are especially important. Point two is

important because the machine will be able to parse and extract information

properly once the parts of speech are established. Additionally, point five is

important because knowing the different types of argument structures will allow

us to predict what types of input scenarios the system will encounter. For this

project, points one, three, and four aren’t as important because:

(a) meaning of the word will be left to the user,

(b) the input is currently text only, currently rendering phonetic information

unnecessary, and

(c) as input is assumed to be grammatical, the user will already account for

irregularities.

Point one will, with future development of the program, become a more im-

portant piece of the code; however, establishing a word’s synsets, lemmas, and

hypernyms and their relationship with these qualities of other words in conjunc-

tion with propositional logic are outside the scope of this current project and will

be addressed in the next phase of development.

Yet another useful characteristic of the theta criterion is that the roles are

assigned according to the node that governs it. According to Koopman et al

1991’s VP-internal subject hypothesis, if it is assumed that subjects are assigned
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by verbs, then it can also be said that theta roles are assigned entirely within the

verb phrase.[28] This makes determining where arguments are placed within the

use cases much easier, as the interrogative statements often fill an argument role

and are immediately followed by a verb. For example, as seen in use case 1.10,

the subject is satisfied by ’what’, the verb ’is’ immediately follows it, and the

secondary argument ’invention’ is found inside the predicate itself. This pattern

was a common pattern across the different use cases used.
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Chapter 3

Methodology

3.1 Tools

Before the program can be constructed, several variables must be considered. A

major player in developing a more user-intuitive search program is the program-

ming language with which the program will be written with. There are many

different types of programming languages that can be used, with each language

structuring rules differently and using different libraries. Currently, programming

languages like C and Java are very popular amongst computer scientists. For

this program, however, the programming language Python will be implemented.

Python is an open-source language that has been developed for more scientific

applications.[29] Unlike Java’s case, many commonly-used definitions are already

defined and stored within its libraries, whereas in Java’s case everything must be

developed from scratch. Python is also widely used within academics, scientific

research, and other programming projects. With an active online community

and a wealth of support, information, and tools provided under flexible creative

commons licenses, Python is the best choice in developing this new tool.

Another benefit to using Python for this project is that it hosts the Natu-

ral Language Toolkit.[30] This series of libraries is developed specifically for work

within the Natural Language Processing field. Many different types of corpora are

already included within the library itself, making it useful when testing the many

different functions written into the Python depositories. Additionally, it provides
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classes for commonly-needed functions like parts-of-speech tagging, parsing func-

tions, and chunking strings. As this project is centered on the use of language

and creating a program that can manipulate user input more efficiently, these

two tools are indispensable.

Having selected Python and NLTK as my main tools, the next step was to

establish exactly what was needed from this program. By establishing the output

that is needed, one can then determine the steps that need to be reached to get

there. For this project, the program needed to return results that matched the

type of information the user was asking about. This requires the machine to be

able to understand user inquiry in terms of parts of speech, the relations between

the language, and the context that the question is asked within.

3.2 Use Cases

To start with, input was restricted to interrogative statements. Though people do

not always follow standard structure when asking for information, the machine

needs to be able to parse standard question form before it can be modified to

accept a greater number of variables. Basic interrogative statements with either

one or two noun phrases were first used to determine whether the program could

successfully navigate through a sentence. The first batch of questions used the

interrogative ’what’. While the English language has six major wh- question

words in use (there are more, but are not used in as much frequency as these),

each have specific contexts in which they are used and are involved with different

types of morphological categories. To start, ’what’ was the first type of question

to be explored. ’What’ allows for simple questions with correct and incorrect

answers. By testing the code with these use cases, basic parsing tools can be

developed.

As seen in Appendix 1, simple interrogative statements like ’What is a pen?’

were used. By using simple interrogative statements, the user can check for

accuracy and recognize errors in the code that need to be fixed. When run

through the terminal in Python, one can also call for information, create new

definitions, and interact with the code live. In fact, much of the testing stage

was done through the live use of a terminal due to the immediacy in determining
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errors and in allowing to promptly test solutions.
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Chapter 4

Experiment

4.1 Tagging

By chance, the first test case ’What is a pen?’ was tagged inappropriately. When

using the embedded tagging system, ’pen’ was marked as an adjective. To deter-

mine accuracy, changes in plurality and phrases were made. When testing ’What

are pens?’ and ’What does a pen do?’, ’pens’ and ’pen’ were correctly tagged as

nouns. To determine where the error occurred, the source code of the tagger was

examined.

A large portion of the tagging protocol ran the Punkt tokenizing system, which

was developed using the methods of recognizing abbrevations in Kiss and Strunk

2006’s ’Unsupervised Multilingual Sentence Boundary Detection.’[31] Kiss and

Strunk define an abbreviation as a ’very strict collocation’, and can be charac-

terized by three properties:

1. The abbreviation and the period attached to it share a close bond,

2. Abbreviations have a tendency to be short, with the liklihood of being an

abbreviation decreasing as the length of the abbreviation increases, and

3. Word-internal periods are often found within many abbreviations.

This was found to be 99.38% accurate when tested across newspaper corpora

in eleven languages.
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Given that ’pen’ was short in length and was next to punctuation, it could

have been mistagged as an abbreviation or some form of descriptor. However, as

an English speaker, it can be seen that ’pen’ is clearly a noun due to its position

inside its phrase and the surrounding phrases. This information is tied directly

into the syntactic rules of English, which the machine does not have. To help

prevent mistagging and to help the machine understand a word’s relation to the

rest of the phrase, a chunk grammar should be implemented.

4.2 Automatic Parsing

The most widely-used chunk parser class in NLTK is the RegexpChunkParser

class. This class breaks down a sentence into the phrases that compose it. Here,

all phrases are marked as being on the same level as the other phrases. This

disregards nesting, where some phrases only modify specific phrases. For example,

when the phrase ’the large box of books from the bookstore’ is parsed using this

class, the output becomes as seen in Figure 4.1.

Figure 4.1: A traditional tree of the noun phrase ’the large box of books from
the bookstore’.

While this method of organization may be proficient for simple phrases, it

does not account for the complexities of larger phrases. For example, information

from sentences like ’Yesterday, my younger sister that runs a flower shop went to

the stylist’s to get her hair cut.’ are not organized on a flat structure. Phrases

like ’younger’ and ’that runs a flower shop’ specifically modify the overarching
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noun head ’sister’ and are not considered as important to the subject as ’sister’.

This is also the case when analyzing the predicate, as the verb phrase ’went to

the flower shop’ is more important to the grammaticality of the statement than

is the reason for going, which was to get a haircut. The inability to recognize

which phrases are considered more important than others hinders the program

from recognizing the hierarchy of information that the user is presenting.

X-Bar theory allows for the embedded relationships between different phrases,

developing a sort of hierarchy of importance when phrases are against each other.

If a grammar can be successfully read by the program using this method of

breaking down sentence pieces, traces and content such as tense, possessives, and

plurality would be aligned in their appropriate spots. This would allow for the

system to simply be rearranged when wanting to apply languages outside English.

Additionally, by having a basic underlying structure established for all phrases,

the process of finding the overarching phrase head and, therefore, the main object

of the inquery, would be completely more efficiently.

However, this approach failed because the system could not recognize several

changes. First, the program could not understand the new structure system.

Instead of merely labeling the sentence as ’S’, tense phrase ’TP’ was tried. For

theoretical reasons, this allows the system to be broken down further. However,

the grammar could not recognize the name ’TP’ as the starting point of the

sentence and refused to compile. As a means of correcting this, the label ’S’ was

left and coding the head nodes as an intermediary layer was attempted. A sample

of a self-contained grammar can be seen below:

grammar1 = nltk.parse cfg(”””

S → NPV P

VP → V NP |V NPPP

PP → PNP

V → ”saw”|”ate”|”walked”

NP → ”John”|”Mary”|”Bob”|DetN |DetNPP

Det → ”a”|”an”|”the”|”my”

N → ”man”|”dog”|”cat”|”telescope”|”park”

P → ”in”|”on”|”by”|”with”

”””)
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This example, given by Bird [34], is a closed system that can supplies the

program with a basic grammar to parse input with. Taking the same phrase

from Figure 4.2, a phrase parsed with this grammar would be separated as the

following:

Figure 4.2: A traditional tree of the noun phrase the large box of books from the
bookstore

To test the parameters of the new grammar, values were already defined within

the grammar to ensure that the only variables that were being tested were the

grammar rules. Here is a sample of how the grammar was edited:

grammar2 = nltk.parse cfg(”””

CP → CTP |TP
TP → DTTV P |DPV P

DP → D1

D1 → DNP

NP → N1

N1 → AdjPN1|N1PP |NPP |N
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)

This code attempts to restructure the traditional sentence decomposition by

using X-bar theory as its basis. Head nodes are denoted with 1 instead of ’ , as

the computer could not recognize the use of the apostrophe. By breaking down a

sentence by phrase, this should have given the machine a way to recognize phrase

hierarchy. Unfortunately, this approach failed.

When trying to incorporate an intermediary layer into the grammar, the sys-

tem could no longer identify what the rules wanted. One can suspect this may

be due to its inability to account for a variable intermediate node as well as a

system developed solely on traditional grammar parsing. Without the ability

to use nodes and basic X-Bar notation, more complicated organization such as

theta criterion, head movement, and theta roles cannot be implemented directly.

Therefore, an alternative approach to reading input is needed.

4.3 Manual Parsing

A back-door method must be developed in order to achieve a result that behaves

similar to what was originally designed. In order to do this, one must antici-

pate how the data will be presented and analyzed. Here, the Theta Criterion

becomes more important when determining where different parts of speech are

found within the sentence structure.

Currently, machines do not have the capability to process all of this infor-

mation at a rate similar to a human. Calculations and judgments of this caliber

would requirement an extensive knowledge network as well as constant access to a

larger database that is frequently updated with new trends in language use. How-

ever, a substitute can be made. Online networks and databases can be accessed,

therefore rendering these sources as part of the program’s brain. By taking ad-

vantage of resources already posted online, a system can be written to access that

information and return proper results, much like how people access a catalogue.
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4.4 Current Code

4.4.1 Interrogative Statements

Currently, Mordinn is restricted to handling four types of interrogative state-

ments: those involving ’who’, ’what’, ’where’ and ’how’.

’When’ and ’why’ were not developed for this particular project due to the

complexity of the output that the user is expecting. For example, ’why’ questions

are often asking for explanations. Being able to explain ’why’ requires the respon-

dent to understand the concepts being asked, the relationships involved between

the different concepts presented within the question, and the reasons behind their

relationships. ’Where’ is also complicated in that it involves a timeline. Dates

can be written either with numbers or longhand, while relational terms like ’yes-

terday’ and ’tomorrow’ are only relevant at the moment being asked. Developing

a system that takes these relationships into consideration is too complicated to

be completed within this particular project, and will be attempted once the code

has progressed further.

4.4.2 Input

Once the program is loaded, the user is greeted by a request for input. The

prompt for this input is customizable, and can say anything the programmer

would like it to say. To help ease the user into becoming familiar with using

this program, I have the program greeting the user with ’Hello’ followed by the

prompt ’What questions do you have for me today’. This makes the interaction

more natural as well as acts as preps the user for a response that the machine is

more capable of handling.

Once the user gives input, the data must be separated and tagged appropri-

ately before the program can begin deciphering what kind of content the user

is looking for. The input is first broken down into individual parts through a

tokenize function and saved as a separate definition, allowing it to scan over the

data by word. For example, if use case 1.4 was tokenized, a definition question

could contain data as [’What’, ’is’, ’the’, ’color’, ’of’, ’a’, ’banana’, ’?’].

From here, the program then tags each token. The tags are based off data
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from the Wordnet Corpus. Tagging these words allows for the program to then be

able to analyze the data according to its part of speech. This provides a way to

extract grammatical information from the word pertinent to the Theta Criterion

without the aid of an independently-developed grammar.

Currently, the program is expecting the input to begin with an interrogative

and begins by determining which interrogative is used. If ’Who’, ’What’, ’Where’,

and ’How’ are used, then it continues forward. Otherwise, it returns a message

apologizing for its inability to handle the input.

4.4.3 What

The code for the ’what’ interrogative statement was first to be developed. This

was because the simplest questions can be asked. Questions like ’What is a

koala’ and ’What color are dandelions’ are asking for a definition, a characteristic

of an object, or other such simple inquery. The sentence structure is also simple,

allowing for a basic code to be developed for extraction.

When deciphering the input, the noun phrases must be extracted and sep-

arated. Nouns and the adjectives are important for searching for the correct

answer because they provide the boundaries that the answer must lie within. As

seen earlier through the discussion of X-bar theory, the head of a noun phrase

has higher priority than the descriptors attached to it within its boundaries. In

addition to the assumption that arguments are governed by verbs, the remaining

arguments will follow after the verb phrase.

Nouns and adjectives are extracted and stored separately in their own defini-

tion. They are appended to a blank definition in the order that the program cycles

through the input (which is from start to finish). Once this input is extracted,

the program looks to see if the user is asking for a definition. If the user is looking

for a simple definition, then the length of the definition storing the nouns and

adjectives should only be one. If it is one, then the system immediately searches

for a definition using a Google definition and returns several different definitions.

If there is more than one entry within the definition, then Mordinn prepares

the data to be searched. The entries inside the definition are reversed, then joined

by +́′ and placed into a new definition. The entries are reversed in order to rank
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the words from largest category to the smallest category. When communicating

in English, the most important pieces of information come first, with the informa-

tion following it decreasing in importance. By reversing it, the search terms are

then reordered, allowing the search to look for the most specific information as

possible. This allows Mordinn to work from a rudimentary skeleton that attempts

to emulate human behavior.

The terms are then entered into Google search. Before the program returns

information, it first searches for a Wikipedia entry. Wikipedia has quickly become

a first source for people to become more familiar with unknown topics. Since

Google returns search results according to how often people visit sites with those

search terms, the likelihood that a Wikipedia entry regarding the topic asked

about will be returned is high. This search specific can be tailored to what the

user would like it for, and rank search results from another source higher than

others. If a Wikipedia result is not found, then the first link is designated as the

main link to open.

4.4.4 How

Parsing ’how’ interrogative statements was done similarly with ’what’ statements

except that a) Ehow.com was the main database used for the search, and b) entire

verb phrases were used instead of only adjectives and nouns. When asking ’how’

questions, one is generally trying to learn the means of accomplishing some task

or come to an understanding of the mechanisms behind the behavior of others.

By using Ehow.com as the base for the search, the odds of finding instructions

on how to carry out an activity are raised considerably. An interesting challenge

is raised, however, when trying to search for the proper links to return.

Unlike the instructions written for ’what’ interrogative statements, where a

library was imported to assist in locating the search results within the html,

the code must navigate through the raw source code of the search results and

extract the links directly. This is generally very troublesome, as not only html

code not uniformly written across webpages, but there are also embedded links

that contain urls for advertisements, links to other sections of the host website,

and images. In order to determine if there was a trend in where the host site
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places the desired links, the location of the links from the actual results had to

be determined. When comparing the results for five different use cases, a trend

was discovered where the actual search results began at the 21st link. From this,

the code had a place to start its extraction of urls.

4.4.5 Where

Deconstructing ’where’ questions became more complicated. Unlike ’what’ ques-

tions, ’where’ questions may have only one noun phrase that may or may not

be enough information to return an adequate response. Additionally, a user may

ask ’Where is the library’ without telling the program where the user is situated

in real life or where they would like the search to be confined. Before anything

can be searched, the program needs to be able to know if there is enough data

presented to look and, if not, ask the user for more information before searching.

The code goes through a series of loops. The first round of looping separates

the tokenized input by its part-of-speech. This initial loop is conducted in order

to determine what type of information the user gave the program. Its main goal is

to pinpoint any prepositions within the input. Prepositions like ’in’, ’at’, ’on’, and

’under’ designate location. These phrases most often are tied with an argument

and separate the argument from other possibilities with similar characteristics.

For example, when considering two balls- ’the ball under the table’ and ’the ball

inside the box’- the receiver understands that the difference between the two is

their location. It can be said that prepositional phrases help place restrictions

on what is true about the argument by distinguishing it from others with similar

qualities, and therefore can also be seen as modifiers of arguments.

When conversing with another person, there is, oftentimes, understood in-

formation that neither person need to outwardly confirm. If two friends meet

on a school campus and one asks ’Where’s the library?’, the listener makes the

assumption that their friend is referring to the school library and continues con-

versation with that assumption. A program, however, does not have access to

that background information without having it physically stored into its program.

To account for this, when separating the input’s parts of speech, it is also

looking for indicators of vague questioning. Vague questions such as those demon-
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strated by the previous example are often short, using a single noun phrase. After

the input is separated, the program looks for indicators of this type of question.

If the second word within the program is ’is’, ’are’, or ’was’, it then looks for

for any prepositions. If there are prepositions found after this verb (’are’ and

’was’ are the plural and past tense forms of ’is’, respectively), then the computer

moves forward, assuming that the information tied to the prepositions will make

the search query more specific. In the case that prepositions are not present,

it then looks to see if there are any proper nouns. Proper nouns like Tucson,

Gothenburg, and even Sweden are the names for specific locations, and if they

are present the program assumes the search query is specific enough.

In the case that there are no proper names, the program interacts with the user

and, once informing them that the question is a little vague for it, asks for a more

specific location. This interaction enables the program to obtain the necessary

information it needs to provide an accurate answer with as little interruption as

possible. Assuming that the user cooperates with the request, the program will

then append the new user input to a raw list of search terms and incorporate it

into its search for the appropriate answer.

For this particular search, certain types of results are ranked higher. The

highest ranked type of result is one that from maps.google.com, followed by tri-

padvisor.com, then wikipedia.org. These three sites were specially as they provide

maps and other means of designating the location of their inquery. Tripadvisor

may seem like an odd site to include; however, when asking where the best burger

in Tucson is, Tripadvisor.com returns results that users themselves have given.

Therefore, not only is the user given a map or directions, but there is also addi-

tional user feedback attached to the sought-after information. Depending on the

search results, one of these will, most often, be chosen as the designated link to

be returned.

4.4.6 Who

When creating the code for ’who’ questions, three types of inquiries were con-

sidered: questions about a public figure, questions about a private figure, and

questions about the actions of a person. Each of these questions would use dif-
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ference sources for information, especially when searching a public figure versus a

private figure. The primary difference here, then, is to determine whether a) the

user is asking about a person specifically, and b) if this person is a public figure

or a private individual.

If asking about a specific person, that person in question is generally listed

first within the predicate. Questions like ’Who is Naoto Kan?’ and ’Who is

Prince William married to?’ all refer to the person immediately after the verb.

People’s names are considered proper nouns, and by determining whether the

word immediately following the initial verb is a proper noun, the system can then

ask the user if the person in question is a public figure or a private individual.

If the person is, indeed, a public figure, Wikipedia.org entries are listed as the

favored search result, as oftentimes the Wikipedia entry for public individuals is

found within the first several urls.

If the person is a private individual, however, the results favor results from

different social media sites. Given the current abilities to access social media sites

from cellphones and smart-phones, along with many sites incorporating other

social media sites within their own, private users are more likely to use these

services to connect to others. Currently, five sites are ranked from most favored

to less favored: Facebook.com, Linkedin.com, Twitter.com, Tumblr.com, and

Myspace.com. These sites are currently very popular in terms of social media.[32]

By favoring these sites, users can also search for screen names, when the person’s

real name is not known and still return fairly accurate results.

In the case that the user is inquiring after the actions or status of a person,

the Wikipedia.org results are also preferred over other results. This, predictably,

works better for public figures than for individuals. Currently in development

is the Friend of a Friend network.[33] Also known as FOAF, this network works

with the development of the semantic by establishing networks of relationships

between people. While it is unknown whether this will become a very popular

option, it would be an interesting addition in the future.
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4.4.7 Output

Once found, Mordinn will open up the designated link immediately through the

user’s default browser while providing a list of up to nine alternative links. While

the computer is opening the main link, the program presents alternative links and

informs the user that some of them may also help in case the original link is not

a completely accurate return. The designated link is opened through the browser

automatically to decrease the amount of time and labor that the user must commit

before finding the answer that is needed. Oftentimes, internet users start from

the first link and progress forward as their questions remain unanswered. The

intermediary steps of visiting a search engine, manually parsing through results,

and then opening a link are done by the machine instead. The user, then, only

needs to open additional links if the user is unsatisfied with the initial response.
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Chapter 5

Results

5.1 Setting

To test the accuracy of the search agent, the use cases where run live in the

program as well as entered into Wolfram—Alpha. Wolfram—Alpha was chosen

as the competing search engine because of its designed. Based off the commer-

cial software Mathematica, Wolfram—Alpha steps away from semantic search

and searches for results computationally. By comparing results against Wol-

fram—Alpha, we can also if different kinds of results are favored in either engine

as well as determine whether linguistic information is important when determin-

ing a result.

As seen in Appendix A, there are 40 use cases total that were tested. Each

use case was tested in Mordin during the development stage to ensure proper

parsing and information extraction. There are ten different questions for each

type of question. When entered into the engines, the results were given one of

three judgements: 0 for inaccurate, 1 for insufficient, and 2 for accurate. In-

accurate answers were returns that did not answer the question at all or were

completely off-topic. Insufficient answers were those that either had the answer

on the first page indirectly or had better returns in alternative links. Accurate

answers were returns that gave the information the user was requesting. To ac-

count for possible ambiguous searches, where the answer could be judged either

accurate or inaccurate depending on the type of information wanted, the answer
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was judged inaccurate. Judgements were also made on a more reserved basis to

try and account for possible interpretations from other users.

5.2 What

Figure 5.1: Accuracy of What-initial user input.

Figure 5.1 demonstrates that in the case for ’What’-initial questions, Mordinn

has a higher rate of accurate returns than Wolfram-Alpha of at least 30%. Wol-

fram performed better when statistical data was the preferred response, whereas

Mordinn performed better at returning information concerning definitions or re-

lationships between arguments.

Although Wolfram-Alpha has a higher rate of inaccurate responses, its re-

sponses to questions such as use case 1.05 are much more accurate when the user

needs data for statistical reasons. If the user’s purpose of asking about gas prices
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in a specific area was to plan where to replenish their vehicle’s gasoline tank

at the minimum cost that day or week, then the results generated by Mordinn

are much more suited. However, if the user wanted to determine average gas

prices over a longer period of time, the graphs and numerical data provided by

Wolfram are much more relevant. A further exploration could be done, where

search queries are reworded, thereby slightly changing the semantic meaning of

the question without changing the overall content. Similarly, when searching for

information pertaining to use case 1.07, Mordinn’s results return a more detailed

account of John F. Kennedy’s assassination, while Wolfram returned the exact

date and additional calculated days since the event.

When searching for information that relied on relationships between the differ-

ent arguments of the inquiry, Mordinn returned better results than Wolfram. Use

case 1.08 is a good example of this. Wolfram completely failed to return any sort

of information in regards to what a microscope or what microscopy is. Instead,

it returned technical information about the mathematical symbol ’difference be-

tween’, a topic which is completely irrelevant to the question. Mordinn had a

more difficult time returning correct data immediately; however, a description of

microscopy with an embedded link to microscopes was the first result given to

the user. This sort of question is a good example of the current incapabilities of

natural language processing, as programs are unable to ’learn’ from raw texts.

Both failed when specialized data was requested. Use case 1.06 was the only

case where both search engines failed to return accurate answers. The term ’magic

number’ was searched, anticipating its definition according to the chemical appli-

cation. However, Mordinn returned the definition as used in programming fields,

while Wolfram returned baseball statistics. This demonstrated that the program

was lacking background, or contextual, information that the user was employ-

ing nonverbally. Had the user asked this of a chemistry professor, the professor

would have understood that the asking person wanted the chemistry definition.

It was rather surprising that Wolfram did not return the chemistry definition,

as Wolfram is specially useful when making calculations or when references data

for mathematical or scientific applications. Further tests asking for specialized

definitions may be done in the future to help develop a better parameter for

contextual information.
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5.3 How

Figure 5.2: Accuracy of How-initial user input.

Figure 5.2 demonstrates that in the case for ’How’-initial questions, Mordinn

is significantly better at returning information than Wolfram-Alpha.

’How’ questions specifically rely on the relationships between the arguments.

As seen in most of the use cases, the user is asking for instructions or ways to carry

out an action. In essence, this could be narrowed down to a basic pattern of: ’How

can I perform X in Y?’. To be fair, Mordinn was specifically set up to run in an

engine that handles these types of requests, and therefore was expected to pass.

However, Wolfram claims that Wolfram- Alpha can arrive at the same results

while approaching the search computationally.[9] With the exception of use case

2.07, where a numerical was needed, Wolfram continually returned incorrect and

often unrelated results. For example, use case 2.02 asked for a method of opening

a can; instead, Wolfram returned data pertaining to the Andean Community of
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Nations.

An exception to this would be when a numerical was sought after, as in the

case of 2.07. Mordinn is currently unable to handle such a request and returned

an error. Wolfram, instead, answered the question indirectly. Wolfram provided

a large taxonomy of a domestic dog and, after expanding the taxonomy tables

several times, an answer was given indirectly through the use of an image. Inter-

estingly, Wolfram gave information about the volume of eyes and other specific

details but could not simply list that a domestic dog has two eyes. Obtaining

this answer required being able to see images as well, presenting an additional

issue to consider when developing Mordinn further.

5.4 Where

Figure 5.3: Accuracy of Where-initial user input.

34



Figure 5.3 demonstrates that in the case of ’Where’-initial questions, Mordinn

is better equipped to handle location questions when the user is looking for per-

sonalized responses, while Wolfram failed those inquiries. When asking about

famous or large-scale locations, Wolfram was completely accurate and returned

place name and latitudinal and longitudinal coordinates to the location in ques-

tion.

Use cases like 3.01, 3.03, and 3.04 were tested specifically to test for contextual

clues. These examples asked for information that required a search restriction

before returning results. Mordinn recognized that these use cases did not have

enough specific information for it to search properly, and initiated an interaction

with the user, requesting more specific information. Assuming that the user

cooperates and enters relevant data, Mordinn incorporated the new parameter

and returned results within that search limit. For each case that needed to be

specified, the city Tucson was used due to first-hand experience of the area. These

results all returned accurate locations and often included maps of the requested

locations. Wolfram completely ignored linguistic data encoded in the terms and

returned results that were completely off-topic. This demonstrated that lexical

information does play a part in disambiguating content and in determining what

the user is looking for.

When asking for larger-scale or more famous locations, such as Sweden’s capi-

tal or the host for Woodstock, Wolfram gave very accurate results. When search-

ing for the location of the Swedish capital, Wolfram returned the city name and

its exact latitudinal and longitudinal coordinates. Mordinn returned results that

provided more information about the capital as well as the coordinates. For

users that only need a specific coordinate or name of a location, Wolfram cur-

rently stands as the better engine. In cases where extended information is wanted,

Mordinn returns better results.

5.5 Who

Figure 5.4 demonstrates that in the case of ’Who’-initial questions, both cases

were able to return accurate results at least half of the time.

In regards to asking about individuals, Mordinn returned correct information
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Figure 5.4: Accuracy of Who-initial user input.
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more often than Wolfram. In cases where public individuals were involved, both

engines returned correct results. Mordinn, however, provided more detailed in-

formation about the individual than Wolfram. In case 4.01, though, Wolfram

returned a result defining ’filming’ instead of any information in regards to the

film. Wolfram’s database was not reliable when testing current figures, though it

was surprising to see it return partially correct information when asked about the

death of Dumbledore, a fictional character from a globally-known novel series.

Mordinn outperformed Wolfram when searches for private individuals were

asked about. Mordinn took advantage of the popularity of several social net-

working websites and favored those results over others. Wolfram, on the other

hand, does not access those sorts of sites for data. This function becomes useful

when a user needs to look up a person by their user name, not a proper name.

However, the spelling correction written within the Google search engine can

affect the return of appropriate sites.

Neither engine can currently account for persons that may share the same

name. For instances like this, a network like Friend of a Friend[34] would become

particularly handy, as it would take advantage of semantic web protocol and write

in the relationships between people. Unfortunately, this is currently unusable due

to it still being in the development stage.

5.6 Total

In total Figure 5.5 , Mordinn gave an average accurate return of 77.5%, while

Wolfram-Alpha gave an average accurate return of 25%. Wolfram-Alpha gave a

larger percentage of inaccurate results, 45%, while Mordinn returned an average

of 10%.

During the search phase, Wolfram’s correct results favored results that in-

volved statistical and mathematical information. Cases such as 2.07 and 4.03

demonstrated that when a taxonomy of information is required, Wolfram returns

accurate and detailed results. In cases where answers needed to incorporate

relationships between arguments or required linguistic knowledge of the input,

Wolfram failed.

In the other hand, Mordinn returned better results when search inquiries
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Figure 5.5: Accuracy of Total-initial user input.
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relied on relational and contextual background. Mordinn’s ability to initial com-

munications with the user and ask for more specific information not only helps

increase Mordinn’s performance, but also allows for the user to remain involved

in the search process while letting Mordinn do the search work.
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Chapter 6

Discussion

The errors and inaccurate results returned by both Mordinn and Wolfram-Alpha

gave good insight into how language plays a part in the communication process.

Errors involving context, relations between arguments, and dealing with ’fluid’

data- data that can be considered opinion pieces or are subjected to change

quickly- were particularly insightful.

Context played a large role in returning accurate results. Inaccurate results,

as demonstrated through use case 1.06, demonstrated the need for more context.

Currently, machines do not understand when a word has several meanings, and

without additional input from the user, the program has a lower probability

of returning the needed answer. This phenomenon was explored through the

’Where’ cases, where Mordinn searched through the entire phrase looking for

additional information before asking for more specific locations. This function

helped Mordinn function better against Wolfram-Alpha in this type of question.

However, the contextual knowledge that humans often draw upon is from

the surrounding environments and from established relationships between other

people. Machines currently do not have the capability to read from their envi-

ronments and storage of previous searches and interactions is often limited. An

alternative means of handling various forms of ambiguity must be developed.

Further development of this aspect of the program can set out to minimize lex-

ical ambiguity by exploring a word’s relationship to its lemma, hypernyms, and

synsets as well as how relationships between groups of these characteristics are

formed and maintained.
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Argument relations also proved to be an important player in generating mean-

ing from a question. As seen in most of the ’How’ use cases, Wolfram-Alpha was

unable to access lexical information that humans use with ease on a daily basis.

This could have led to its inability to reliably return related information, as seen

with case 2.02 where the question about can-opening returned information about

the Andean Community of Nations. Taking advantage of user-created content

and databases, rather than official compilations of technical data, can help the

search task when relationships and instructions are called upon.

Additionally, incorporating argument relations will help prevent the program

from making assumptions. As seen with use case 2.03 Wolfram-Alpha assumed

that ’journal’ was used as a unit of measurement and returned information about

its use as a measurement. If linguistic context had been considered, it would have

recognized the adjective modifying ’journal’ as a noun, as well as recognized that

the noun phrase was governed by a verb head. Mordinn attempts to account for

this context; however, more complex logics need to be incorporated in order to

truly begin to function on a linguistic level. Future development for Mordinn

could include moving away from specialized data sources and incorporate a wider

range of databases.

Finally, navigating ’fluid’ data is troublesome. This kind of data is constantly

evolving. When trying to search for private persons, it becomes especially difficult

when a) the private individual does not use a popular networking site, b) when the

private individual shares a name with others, and c) when the private individual’s

user name is used by several different persons. However, when looking for current

events or popular information, Mordinn had a fairly successful return of accurate

information. Future development of private individuals will be dependent on

how people continue to interact with online resources as well as how different

networking sites cooperate with each other and larger search engines such as

Google.
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Chapter 7

Conclusion

The aim of this project was to establish a basic framework for an interactive

search agent that carried out much of the search process for the user. Before the

start of the construction process, goals, interaction limitations, and a linguistic

theoretical approach had to be established before actual construction could begin.

By analyzing how people interact with each other on a daily basis, a sense of what

is unobtrusive and friendly was determined. In treating the search agent as a

human with major communication blocks, such as a lack of environmental context

or the limited ability to interpret input, methods of overcoming these obstacles

became easier. With something as simple as a casual ”hello”, the search agent

is able to ease the user into responding into a more human fashion. Initiating

further interaction and asking for extra information in a way a human may by

apologizing and asking for more specific information allows the program to obtain

further data without being obtrusive.

From there, developing a basic framework became a problem. Much of the

trouble in developing the framework came from applying a different theory than

what a lot of current NLP applications are based off. Having failed to construct

a complete grammar from scratch, an alternative method of catching parts of

speech was created. Once able to pull out wanted pieces of lexical information,

resorting user input into data the program can use to then search with became

easier. Accessing databases online became a problem, mainly due to messy HTML

tagging, thus proving that cleanly-written semantic tags will assist in the data-

mining process. Once able to access online, results were then able to be returned
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to the user.

Testing the use cases for actual content against a search engine that favored

statistical input demonstrated that in many cases, lexical information was im-

portant when disambiguating user input. Further development in dealing with

ambiguous content, handling context-bound requests, and determining argument

relations in relation to overall content will help fine-tune the program. Addi-

tionally, further insight into human communication procedures can be gathered

through the errors found in the testing process.
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Appdx A: Use Cases

Refference Number Question Type Inquery
1.01 WHAT is a pen
1.02 WHAT are pens
1.03 WHAT do pens do
1.04 WHAT is the color of bananas
1.05 WHAT is the cost of gas in Tucson
1.06 WHAT is the magic number
1.07 WHAT the year JFK was assassinated
1.08 WHAT is the difference between microscope and microscopy
1.09 WHAT instruments are used in jazz
1.10 WHAT is the most famous invention of Thomas Edison

Table 1: Use Cases:What

Refference Number Question Type Inquery
2.01 HOW do I roast a chicken
2.02 HOW do I open a can without a can opener
2.03 HOW do I write a reflective journal
2.04 HOW do I change gears on a bike
2.05 HOW can I get married in Hawaii
2.06 HOW do I buy music from the Itunes store
2.07 HOW many eyes does a dog have
2.08 HOW can I increase my server speed
2.09 HOW can I make a fire without a lighter
2.10 HOW can I predict an earthquake

Table 2: Use Cases:How

*Name changed for publication in order to maintain privacy
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Refference Number Question Type Inquery
3.01 WHERE can I buy pizza [specifier: Tucson]
3.02 WHERE is the capital of Sweden
3.03 WHERE is the nearest library [specifier: Tucson]
3.04 WHERE is the best burger [specifier: Tucson]
3.05 WHERE does the president of the United States live
3.06 WHERE was Prince William’s wedding
3.07 WHERE can I buy a portable playstation
3.08 WHERE is Da Vinci’s Mona Lisa showcased
3.09 WHERE will the 2012 Olympics be held
3.10 WHERE did Woodstock take place

Table 3: Use Cases:Where

Refference Number Question Type Inquery
4.01 WHO is filming The Hobbit
4.02 WHO is Naoto Kan
4.03 WHO shot Abraham Lincoln
4.04 WHO is albinwonderland
4.05 WHO is Monica West*
4.06 WHO was the 4th president of the United States
4.07 WHO first discovered the Americas
4.08 WHO wrote To Kill A Mockingbird
4.09 WHO killed Dumbledore
4.10 WHO is the richest celebrity in 2011

Table 4: Use Cases:Who
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