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Abstract

Stock return predictability is a central issue in empirical finance. Yet no comprehensive study of

international data has been performed to test the predictive ability of lagged explanatory variables.

In fact, most stylized facts are based on U.S. stock-market data. In this paper, I test for stock return

predictability in the largest and most comprehensive data set analyzed so far, using four common

forecasting variables: the dividend- and earnings-price ratios, the short interest rate, and the term

spread. The data contain over 20,000 monthly observations from 40 international markets, including

markets in 22 of the 24 OECD countries.

I also develop new asymptotic results for long-run regressions with overlapping observations. I show

that rather than using auto-correlation robust standard errors, the standard t-statistic can simply be

divided by the square root of the forecasting horizon to correct for the effects of the overlap in the data.

Further, when the regressors are persistent and endogenous, the long-run OLS estimator suffers from

the same problems as does the short-run OLS estimator, and similar corrections and test procedures

as those proposed by Campbell and Yogo (2003) for the short-run case should also be used in the

long-run; again, the resulting test statistics should be scaled due to the overlap.

The empirical analysis conducts time-series regressions for individual countries as well as pooled

regressions. The results indicate that the short interest rate and the term spread are fairly robust

predictors of stock returns in OECD countries. The predictive abilities of both the short rate and the

term spread are short-run phenomena; in particular, there is only evidence of predictability at one

and 12-month horizons. In contrast to the interest rate variables, no strong or consistent evidence

of predictability is found when considering the earnings- and dividend-price ratios as predictors. Any

evidence that is found is primarily seen at the long-run horizon of 60 months. Neither of these predictors

yields any consistent predictive power for the OECD countries.

The interest rate variables also have out-of-sample predictive power that is economically significant;

the welfare gains to a log-utility investor who uses the predictive ability of these variables to make

portfolio decisions are substantial.

JEL classification: C22, C23, G12, G15

Keywords: Predictive regressions, long-horizon regressions, panel data, stock return predictability.



1 Introduction

Our empirical knowledge regarding the predictability of stock returns by valuation ratios or interest

rate variables has been subject to constant updating over time. This updating has been mainly driven

by the development of a number of new econometric methods that enable us to more accurately assess

the evidence of stock return predictability.1 Despite these methodological advances, little consensus

regarding stock return predictability has emerged.

The typical forecasting regression for stock returns, or excess stock returns, is plagued by some

difficult econometric problems due to the near persistence and endogeneity of the forecasting variables.

This is especially true when the dividend- and earnings-price ratios are used as regressors. Early work

such as Fama and French (1988a, 1989) and Campbell and Shiller (1988), which mostly ignored these

issues, concluded that there is generally strong evidence of stock return predictability. Using the most

efficient and robust methods to date, Campbell and Yogo (2003) and Lewellen (2003) still find evidence

of predictability; however, their results are much less conclusive than the earlier studies. In particular,

the predictive ability of the dividend- and earnings-price ratios appear sensitive to the sample period

and the choice of frequency (annual to monthly).

Despite these substantial methodological advances, there have been surprisingly few attempts at

furthering our understanding of stock return predictability using data other than that of the U.S.

stock-market. Consequently, many take as given stylized facts regarding stock return predictability

that are based on this limited source of data. Since the predictable component of stock returns must

be small, if indeed one does exist, there seems to be little chance of reaching a decisive conclusion

using U.S. data alone, which effectively provides only one time-series at the market level.

There has been some analysis of predictability in international stock returns, but many of the re-

sults are based on relatively small data sets and most studies rely on non-robust econometric methods.

In addition, most international results are based on individual time-series regressions and very little

analysis has been conducted using pooled panel data regressions; as is discussed below, pooling the

data is useful both from a strictly econometric viewpoint and in terms of drawing overall conclusions.

Harvey (1991,1995) and Ferson and Harvey (1993) consider various aspects of predictability in inter-

national stock returns. The data sets used in these studies cover a fair amount of different countries,

but the overall time span is limited to the period 1969-1992 and most results are thus based on re-

gressions using less than 20 years of data; no robust econometric methods are used and no pooling

of the data is attempted. Ang and Bekaert (2003) analyze predictability in stock returns from four

different countries, in addition to the U.S, and their international sample only dates back to 1975. In

a survey article, Campbell (2003) briefly considers the evidence of stock return predictability using an

international data set of 11 countries with observations going back to the 1970s. Polk et al. (2004)

use an international sample consisting of 22 countries with observations dating back to 1975, but they

only analyze the predictive ability of their cross-sectional beta-premiums and do not consider more

1Some early references are Mankiw and Shapiro (1986), Nelson and Kim (1993), and Goetzman and Jorion (1993).
Recent work include Cavanagh et al. (1995), Stambaugh (1999), Lanne (2002), Lewellen (2003), Campbell and Yogo
(2003), Janson and Moreira (2004), and Polk et al. (2004). Ferson et al. (2003) discuss spurious regressions and data
mining.
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traditional forecasting variables. However, I am not aware of any serious attempts to test the predic-

tive ability of common forecasting variables, like the earnings-price ratio and short interest rate, using

up-to-date econometric methods in a large data set of international stock returns.

The aim of this paper is twofold. By considering a large global data set, I provide the most

comprehensive picture of stock return predictability to date. The data contain over 20,000 monthly

observations from 40 countries, including markets in 22 of the 24 OECD countries.2 The longest data

series is for the U.K. stock-market and dates back to 1836 while data for eight other markets date

back to before 1935. Secondly, I develop and apply a number of new results for short- and long-run

forecasting regressions, with an extra emphasis on methods utilizing the panel structure of the data.

Since an international data set of stock returns and forecasting variables provides a panel, some

alternative methods to those usually employed in the standard time-series case can be considered. As

shown by Hjalmarsson (2004), pooling the data provides for a convenient solution to the traditional

inferential problems encountered in regressions with highly endogenous regressors of unknown per-

sistence. In particular, I apply panel data methods that do not require the use of inefficient bound

procedures (Cavanagh et al., 1995). Pooling also enables one to draw more general conclusions regard-

ing predictability in the face of contradicting evidence. For instance, when using individual time-series

regressions, the null of no predictability can often be rejected in some countries but not in others.

As argued by Hjalmarsson (2004), a rejection of the null hypothesis of a zero slope coefficient in a

pooled predictive regression indicates that there is on average a predictive relationship in the data.

In addition, tests based on pooled estimates can have more power than individual time-series tests

(Hjalmarsson, 2004).

The main theoretical contribution of this paper is the development of new asymptotic results for

long-run regressions with overlapping observations. Typically, auto-correlation robust estimation of

the standard errors (e.g. Newey and West, 1987) is used to perform inference in long-run regressions.

However, these robust estimators tend to perform poorly in finite samples since the serial correlation

induced in the error terms by overlapping data is often very strong.3 In a time-series setting, I show

that rather than using robust standard errors, the standard t−statistic can simply be divided by the
square root of the forecasting horizon to correct for the effects of the overlap in the data.4 Further,

when the regressors are persistent and endogenous, the long-run OLS estimator suffers from the same

problems as does the short-run OLS estimator, and similar corrections and test procedures as those

proposed by Campbell and Yogo (2003) for the short-run case should also be used in the long-run;

again, the resulting test statistics should be scaled due to the overlap. Thus, these results lead to

simple and more efficient inference in long-run regressions by obviating the need for robust standard

error estimation methods and controlling for the endogeneity and persistence of the regressors. These

2 Included in the sample are the stock-markets in Hong Kong and Taiwan. Since Hong Kong is part of China and
Taiwan is not a formally recognized sovereign state, the use of the term country for these markets is not entirely correct,
but is used for convenience throughout the paper.

3Ang and Bekaert (2003) advocate the use of Hodrick (1992) auto-correlation robust standard errors. However, these
rely on the regressors being covariance stationary, which is usually a restrictive assumption for forecasting variables like
the short interest rate or the dividend-price ratio that are typically modeled as being nearly persistent processes.

4This result is similar to one by Hansen and Tuypens (2004), who consider the covariance stationary case.
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long-run results are also extended to the panel data case.

The asymptotic distributions of the long-run estimators are derived not only under the null-

hypothesis of no predictability, but also under an alternative of predictability. This gives a more

complete characterization of the asymptotic properties of the long-run estimators than is typically

found in the literature, where results for long-run estimators are often derived only under the null-

hypothesis of no predictability. It is shown that, under the standard econometric model of stock return

predictability, the long-run estimators converge to well defined quantities, but their asymptotic dis-

tributions are non-standard and fundamentally different from the asymptotic distributions under the

null hypothesis of no predictability. The rates of convergence of the long-run estimators are also slower

under the alternative hypothesis of predictability than under the null hypothesis, and slower than that

of the short-run estimator. These results suggest that under the standard econometric specifications

that are typically postulated, short-run inference is preferable to long-run inference. As discussed

briefly, there may be cases where long-run estimation has some advantages; however, these scenarios

may not necessarily be easily captured by formal econometric models.5

In the empirical analysis, I conduct time-series regressions for individual countries as well as pooled

regressions. In both types of analyses, I estimate short- and long-run regressions for four of the most

commonly used forecasting variables: the dividend- and earnings-price ratios, the short interest rate,

and the term spread. In the pooled regressions, countries are either all grouped together in a global

panel or split up into groups of OECD and Non-OECD countries. The short-run time-series analysis

uses methods similar to those of Campbell and Yogo (2003) while the long-run and pooled portions of

the analysis use the methods described above and in Hjalmarsson (2004), respectively. All results are

based on predictive regressions for excess stock returns, although for convenience I will typically just

write stock returns.

The results indicate that the short interest rate and the term spread are both fairly robust predictors

of stock returns in OECD countries. The null of no predictability is clearly rejected in the OECD

pooled regressions as well as in a number of time-series regressions for OECD countries. The predictive

abilities of both the short rate and the term spread are short-run phenomena; in particular, there is

only evidence of predictability at one and 12-month horizons. These results are generally in line with

those found by Campbell and Yogo (2003) with U.S. data and with the limited international results

of Ang and Bekaert (2003). These results are also quite consistent over time, as evidenced by rolling

regressions.

In contrast to the interest rate variables, no strong or consistent evidence of predictability is found

when considering the earnings- and dividend-price ratios as predictors. Any evidence that is found

is primarily seen at the long-run horizon of 60 months. Specifically, there is rather weak evidence

that the earnings-price ratio predicts stock returns and the majority of evidence that does exist is

for Non-OECD countries. The results for the dividend-price ratio are, in general, parallel to those of

5Mark and Sul (2004) analyze local alternatives to the null hypothesis of no predictability and find that there are cases
in which a long-run specification has more power to detect deviations from the null hypothesis, than do the short-run
specifications. No formal analysis of power properties is performed in this paper but simulation results indicate that, in
standard models, the short-run tests dominate the long-run ones.
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the earnings-price ratio, although they do contain a greater number of significant time series results.

Neither predictor yields any consistent predictive power for the OECD countries; as seen in rolling

regressions, this is particularly true for the dividend-price ratio.

In response to the Goyal and Welch (2003b, 2004) critique, on the poor out-of-sample performance

of forecasting variables for stock returns, I also consider out-of-sample forecasts of stock returns using

the short interest rate or term spread as predictors. For all countries where there is a significant

in-sample predictive relationship, it is found that the forecasts based on either of these predictor

variables beat the benchmark forecasts based on the average of past stock returns. The results are

strongest for the short interest rate, which overall appears as the most robust predictor in international

data. Moreover, the out-of-sample predictive power is economically significant, resulting in substantial

welfare gains to a log-utility investor who uses the predictive ability of the short rate to make portfolio

decisions; in most cases, the welfare gain for the investor is at least equivalent to that enjoyed from a

one to two percentage point increase in the annual real risk-free interest rate.

The rest of the paper is organized as follows. Section 2 states the econometric model and main

assumptions, Section 3 outlines the short-run inference methods, and Section 4 derives the new long-run

estimation results. In Section 5, the practical implementation of some of the procedures is discussed.

The data is described in Section 6, the main empirical results are provided in Section 7, out-of-sample

performance and economic implications are discussed in Section 8, and Section 9 concludes. Technical

proofs are found in the appendix.

2 Model and assumptions

Let the excess returns for stocks in country i, i = 1, ..., n, be denoted ri,t, and the corresponding vector

of regressors, xi,t, where xi,t is an m × 1 vector and t = 1, ..., T . The empirical section of this paper

deals almost exclusively with the case of scalar regressors where m = 1; but since the econometric

results developed in this paper are of general applicability, the model is formulated in more general

terms. The behavior of ri,t and xi,t are assumed to satisfy,

ri,t = αi + βixi,t−1 + ui,t, (1)

xi,t = Aixi,t−1 + vi,t, (2)

where Ai = I+Ci/T is an m×m matrix, with diagonal elements 1+ ck,i/T , and off-diagonal elements

ckl,i/T, k, l = 1, ...,m, k 6= l. The error processes are assumed to satisfy the following conditions.

Assumption 1 Let wi,t = (ui,t, �i,t)
0 and Ft = {wi,s| s ≤ t, i = 1, ..., n} be the filtration generated by

wit, i = 1, ..., n. Then, for all i = 1, ..., n,

1. vi,t = Di (L) �i,t =
P∞

j=0Di,j�i,t−j, D̄j ≡ supi ||Di,j || <∞, and
P∞

j=0 j
3
¯̄¯̄
D̄j

¯̄¯̄
<∞.

2. E [wit| Ft−1] = 0, suptE
£
u4i,t
¤
<∞ and suptE

h
||�i,t||4

i
<∞.

3. E
£
wi,tw

0
i,t

¯̄Ft−1¤ = Σi = [(σ11i, σ12i) , (σ21i, I)] .
4. E

£
wi,tw

0
j,s

¤
= 0 for all t, s and i 6= j.

4



The model described by equations (1) and (2) and Assumption 1 captures the essential features

of a predictive regression with nearly persistent regressors. It states the usual martingale difference

(mds) assumption for the errors in the return processes but allows for a linear time-series structure

in the errors of the predictor variables. The error terms ui,t and vi,t are also often highly correlated.

The auto-regressive roots of the regressors are parametrized as being local-to-unity, which captures

the near-unit-root behavior of many predictor variables, but is less restrictive than a pure unit-root

assumption. In the cross-section, the innovation processes are assumed to be independent. This

is clearly a restrictive assumption and methods for relaxing it is detailed in the section on pooled

estimation below.

Similar models, for the time-series properties of the data, are used to analyze the predictability

of stock returns by Cavanagh et al. (1995), Torous et al. (2005), Lanne (2002), Campbell and Yogo

(2003), and Valkanov (2003).

Let Ei,t = (ui,t, vi,t)
0 be the joint innovations process. Under Assumption 1, by standard arguments

(Phillips and Solo, 1992), for any i,

1√
T

[Tr]X
t=1

Ei,t ⇒ Bi (r) = BM (Ωi) (r) ,

where Ωi = [(σ11i, ω12i) , (ω21i,Ω22i)] , ω21i = Di (1)σ12i, ω12i = ω021i, Ω22i = Di (1)Di (1)
0, and

Bi (·) = (Bi,1 (·) , Bi,2 (·))0 denotes an 1+m−dimensional Brownian motion. Also, let Λ22i =
P∞

k=1E
¡
vi,kv

0
i,0

¢
be the one-sided long-run variance of vi,t. The following lemma sums up the key asymptotic results

for the nearly integrated model in this paper (Phillips 1987,1988).

Lemma 1 Under Assumption 1, as T →∞,
(a) T−1/2xi,[Tr] ⇒ Ji,Ci (r) ,

(b) T−3/2
PT

t=1 xi,t ⇒
R 1
0
Ji,Ci (r) dr,

(c) T−2
PT

t=1 xi,tx
0
i,t ⇒

R 1
0
Ji,Ci (r)Ji,Ci (r)

0 dr,
(d) T−1

PT
t=1 ui,tx

0
t−1 ⇒

R 1
0
dBi,1 (r) Ji,Ci (r)

0 ,
(e) T−1

PT
t=1 vi,tx

0
t−1 ⇒

R 1
0
dBi,2 (r) Ji,Ci (r)

0 + Λ22i,
where Ji,Ci (r) =

R r
0
e(r−s)CidBi,2 (s) .

Analogous results hold for the demeaned variables xi,t = xi,t − T−1
Pn

t=1 xi,t, with the limiting

process Ji,Ci replaced by J i,Ci = Ji,Ci −
R 1
0
Ji,Ci . These results are used repeatedly below.

The greatest problem in dealing with regressors that are near-unit-root processes is the nuisance

parameter Ci; it is generally unknown and not consistently estimable. It is nevertheless useful to

first derive inferential methods under the assumption that Ci is known, and then use the methods

of Cavanagh et al. (1995) to construct feasible tests. The following two sections derive and outline

the inferential methods used for estimating and performing tests on βi in equation (1), treating Ci as

known. I consider both time-series methods, where individual βis for each country are estimated, and

panel data methods where the data are pooled across countries and a common estimate, β, for all i
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is obtained. Section 5 discusses how the methods of Cavanagh et al. (1995) can be used to construct

feasible tests with Ci unknown.

In line with much of the previous literature on stock return predictability, I consider both short-

and long-run regressions. The main econometric contributions of the paper are on long-run regressions

in both the time-series and panel data case. The section on short-run time-series inference is mainly

a review section, but sets the stage for the long-run results. The section on short-run panel inference

summarizes some of the results in Hjalmarsson (2004), which have not been used before.

3 Short-run inference

3.1 The time-series case

Let β̂i denote the standard OLS estimate of βi in equation (1). By Lemma 1 and the continuous

mapping theorem (CMT), it follows that

T
³
β̂i − β

´
⇒
µZ 1

0

dBi,1J
0
i,Ci

¶µZ 1

0

J i,CiJ
0
i,Ci

¶−1
, (3)

as T →∞. Analogously to the case with pure unit-root regressors, the OLS estimator does not have an
asymptotically mixed normal distribution due to the correlation between Bi,1 and Bi,2, which causes

Bi,1 and Ji,Ci to be correlated. Therefore, standard test procedures cannot be used.

In the pure unit-root case, one popular inferential approach is to “fully modify” the OLS estimator

as suggested by Phillips and Hansen (1990) and Phillips (1995). In the near-unit-root case, a similar

method can be considered. Define the quasi-differencing operator

∆Cixi,t = xi,t − xi,t−1 − Ci

T
xi,t−1 = vi,t, (4)

and let r+i,t = ri,t−ω̂12iΩ̂−122i∆Cixi,t and Λ̂
+
12i = −ω̂12iΩ̂−122iΛ̂22i, where ω̂12i, Ω̂−122i, and Λ̂22i are consistent

estimates of the respective parameters.6 The fully modified OLS estimator is now given by

β̂
+

i =

Ã
TX
t=1

r+i,tx
0
i,t−1 − T Λ̂+12i

!Ã
TX
t=1

xi,t−1x
0
i,t−1

!−1
, (5)

where r+i,t = ri,t− ω̂12iΩ̂
−1
22i∆Cixi,t and ri,t = ri,t−T−1

Pt
t=1 ri,t. The only difference in the definition

of (5), to the FM-OLS estimator for the pure unit-root case, is the use of the quasi-differencing

operator, as opposed to the standard differencing operator. Once the innovations vi,t are obtained

from quasi-differencing, the modification proceeds in exactly the same manner as in the unit-root case.

Define σ11·2,i = σ11i − ω12iΩ
−1
22iω21i and the Brownian motion Bi,1·2 = Bi,1 − ω12iΩ

−1
22iBi,2 =

BM (σ11·2,i). The process Bi,1·2 is now orthogonal to Bi,2 and Ji,Ci . Using the same arguments as

6The definition of Λ̂+12i is slightly different from the one found in Phillips (1995). This is due to the predictive nature
of the regression equation (1), and the martingale difference sequence assumption on ui,t.
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Phillips (1995), it follows that

T
³
β̂
+

i − βi

´
⇒
µZ 1

0

dBi,1·2J i,Ci
0
¶µZ 1

0

J i,CiJ
0
i,Ci

¶−1
≡MN

Ã
0, σ11·2,i

µZ 1

0

J i,CiJ
0
i,Ci

¶−1!
. (6)

The corresponding t−statistics and Wald statistics will now have standard distributions asymptotically.
For instance, the t−test of the null hypothesis βi,k = β0i,k satisfies

t+i =
β̂
+

i,k − β0i,kr
σ̂11·2,ia0

³PT
t=1 xt−1x

0
t−1
´−1

a

⇒ N (0, 1) (7)

under the null, as T →∞. Here a is an m× 1 vector with the k’th component equal to one and zero
elsewhere.

The t+i −statistic is identical to the unfeasible Q−statistic of Campbell and Yogo (2003). Whereas
Campbell and Yogo (2003) attack the problem from a test point-of-view, the derivation in this paper

starts with the estimation problem and delivers the test-statistic as an immediate consequence. How-

ever, presenting the derivation in this manner makes clear that this approach is a generalization of

fully modified estimation.

In the empirical analysis of the paper, the β̂
+

i estimator is implemented under the assumption

that bi (L) vi,t = u2,i,t, where bi (L) =
Pp

h=0 bi,hL
h, and bi,0 = Im. That is, the innovations to the

regressors are assumed to follow an AR (p) process, rather than the general linear process specified

in Assumption 1. Although this imposes slightly stronger conditions on the error terms, it allows for

the parametric estimation of ω12i, Ω22i, and Λ22i, and avoids non-parametric estimation, which might

perform poorly in some of the shorter time-series in the sample. The lag length p is determined by

the BIC model selection approach, and ω12i, Ω22i, and Λ22i are estimated as in Campbell and Yogo

(2003).

The inferential approach described above is based on asymptotic arguments for local-to-unity pro-

cesses; effectively this leads to an extension of well established procedures for unit root data. Janson

and Moreira (2004) and Polk et al. (2004) consider a fundamentally different approach to testing in

models with endogenous and nearly persistent regressors, relying, in part, on finite sample arguments

for Gaussian models. The discussion in Polk et al. (2004) reveals that in terms of power properties of

the tests, neither approach dominates the other, however.

3.2 Pooled estimation

As an alternative to analyzing each time-series regression individually, data from several countries

can be pooled together. In the pooled regressions considered in this paper, a common intercept β is

estimated, but the individual intercepts αi are allowed to vary across countries. Since a common β for

all i is estimated, most panel data studies also assume that the true βis are in fact identical. Rather

than making this often unrealistic assumption, it is useful to start with an assumption of heterogenous
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βis, and consider pooled estimation and testing under such conditions. That is, suppose βi = β + θi,

where {θi}ni=1 are iid random variables with mean zero and variance Ωθθ, and {θi}ni=1 is independent
of wi,t. The parameter β is now the average slope coefficient in the panel. As shown by Hjalmarsson

(2004), in terms of practical inference, the assumption of heterogenous βis does not change anything.

The same pooled estimator and corresponding t−test can be used both in the homogenous case where
βi = β for all i, and in the heterogenous case. The interpretations are different, however. For

heterogenous βis, the pooled estimator converges to the average parameter β and the estimated value

should thus be interpreted as an average relationship. When performing tests, this becomes even more

important. When the βis are heterogenous, the hypothesis of the typical pooled t−test is H0 : β = 0

versus H1 : β 6= 0. That is, the pooled t−test evaluates whether the average parameter β is different
from zero; it has no power against the alternative that some βi are different from zero, as long as the

average value β = 0.

Thus, rejecting the null hypothesis of β = 0 does not reveal whether the variable xi,t−1 predicts
ri,t for a specific i, but it does say that on average there is a predictive relationship in the panel. The

interpretation of β as an average relationship in the panel has the advantage of resolving evidence

from individual time-series regressions. It is often the case that stock returns are found predictable

in some countries, but not in others. The interpretations of such results are not straightforward but

the results from a pooled regression provide an answer; if the average slope coefficient β is significant,

then on average there is a significant relationship in the panel. Of course, the most complete picture

of the empirical evidence is given by careful consideration of both the panel data and the time-series

evidence.

The actual estimators and tests are identical regardless of whether one assumes that the βis are

homogenous or not. The convergence rates of the pooled estimator do differ, however, and for brevity,

the results for just the homogenous case are given here. As shown by Hjalmarsson (2004), in the

case with no individual effects in equation (1), such that αi = α for all i, the pooled estimator is

asymptotically normally distributed as (n, T →∞). The problems arising from the endogeneity of the
regressors in the time-series case are thus no longer an issue in a plain pooled estimation without fixed

effects. Intuitively, when summing up over a large cross-section, the endogeneity effects are diluted

by independent cross-sectional information, and disappear asymptotically as the cross section grows

large. However, when allowing for individual intercepts in each equation in the panel, the resulting fixed

effects pooled estimator does suffer from a second order bias, due to the endogeneity and persistence of

the regressors. That is, the asymptotic distribution is not centered around zero and standard tests will

be invalid. In fact, it follows directly from the results of Hjalmarsson (2004) that in the most common

forecasting regressions, with dividend- or earnings-price ratios as predictors and the covariances ω12i
negative, the pooled estimator has an upward bias. In this case, tests of predictability using standard

pooled estimation with individual effects will tend to over-reject the null of no predictability.

One way of dealing with the problem caused by the inclusion of individual effects would be to

consider fully modified methods similar to those in the time-series case. However, in the panel case,

it is possible to get around the endogeneity problems without resorting to procedures that make use
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of the persistence parameters Ci. When demeaning each time-series in the panel, which is effectively

what is done when fitting individual intercepts, information after time t is used to form the demeaned

regressor xi,t; this induces a correlation between xi,t−1 and ui,t, which gives rise to the second order

bias in the fixed effects estimator. This effect can be avoided by using recursively demeaned data. Let

β̂
rd

n,T =

Ã
nX
i=1

TX
t=1

rddi,tx
d0
i,t−1

!Ã
nX
i=1

TX
t=1

xddi,t−1x
d0
i,t−1

!−1
, (8)

where, xdi,t = xi,t− 1
t

Pt
s=1 xi,s, and x

dd
i,t = xi,t− 1

T−t
PT

s=t xi,s, and rddi,t = ri,t− 1
T−t

PT
s=t ri,s. It now

follows, under the null, as (n, T →∞) ,

√
nT
³
β̂
rd

n,T − β
´
⇒ N

µ
0,
³
Ωrd0xx

´−1
Φrdux

³
Ωrdxx

´−1¶
, (9)

where the expressions for Φrux and Ω
r
xx are given in Hjalmarsson (2004). By using information only

up till time t in the demeaning of xi,t and only information after time t in the demeaning of ri,t,

the distortive effects arising from standard demeaning are eliminated. Standard t−tests can now be
performed, using consistent estimators of Φrdux and Ω

rd
xx, also given in Hjalmarsson (2004). Thus, the

panel-based inference does not require any knowledge of the parameters Ci, either for estimation or

testing. The nuisance parameter problem arising from Ci in time-series inference is therefore no longer

an issue.

The international panel of stock returns analyzed in this paper is unbalanced, with data for some

countries dating further back than for others. The methods just described extend readily to unbalanced

panels; the details are given in Hjalmarsson (2004).

Under Assumption 1, the innovations ui,t and vi,t are cross-sectionally independent. This is in

general too restrictive when dealing with international financial data where, for instance, global shocks

might be present. In order to account for the possibility of cross-sectional dependence, the model in

equations (1) and (2) is extended as follows. Let,

ri,t = βixi,t−1 + γiΛt + ui,t, (10)

and

xi,t = zi,t + δiΠt, (11)

where

zi,t = Aizi,t + vi,t, (12)

and

Πt = GΠΠt−1 + ηt. (13)

The idiosyncratic error terms ui,t and vi,t still satisfy Assumption 1, but the common factors Λt and

Πt are now part of the return and regressor processes, respectively. The factor Λt is assumed to be

9



stationary and satisfy the functional law, T−1/2
Pt

s=1 Λs ⇒ BΛ (r), for t = [Tr], as T → ∞. The
process Πt is an auto-regressive process where the parameter GΠ is assumed to be local-to-unity, so

that T−1/2Πt ⇒ JΠ (r) =
R r
0
e(r−s)CΠdBΠ (r), as T →∞. The above specification allows for a general

factor structure in both the regressand and the regressor. Hjalmarsson (2004) shows that the effects

of these common factors can be controlled for by removing the common factor Λt from the error

term of the returns process. This is done by performing a first-stage OLS time-series regression for

each time-series i, and obtain estimates of the residuals γiΛt + ui,t. From the estimated residuals,

estimates of {γi}ni=1 and {Λt}Tt=1 can be obtained and the ‘de-factored’ data rdfi,t = ri,t − γ̂iΛ̂t is

created. Using rdfi,t instead of ri,t in the pooled regression controls for the effects of the common factors

in the returns. The common factors in the regressors will be implicitly accounted for when estimating

the variance-covariance matrix and standard t−tests will be normally distributed. In the empirical
analysis, estimation of the common factors is done through an extension of the principal component

method to unbalanced panels, described in Stock and Watson (2000).

4 Long-run estimation

4.1 The time-series case

In long-run regressions, the focus of interest is fitted regressions of the type

ri,t+q (q) = αUi (q) + βUi (q)xi,t + ui,t+q (q) , (14)

and

ri,t+q (q) = αBi (q) + βBi (q)xi,t (q) + ui,t+q (q) , (15)

where ri,t (q) =
Pq

j=1 ri,t−q+j and xi,t (q) =
Pq

j=1 xi,t−q+j . In equation (14), long-run future returns
are regressed onto a one period predictor, whereas in equation (15), long-run future returns are re-

gressed onto long-run past regressors. Equation (14) is the specification most often used for testing

stock return predictability, although Fama and French (1988b) use (15) in a univariate framework

where sums of future returns are regressed onto sums of past returns. The theoretical results of both

Hansen and Tuypens (2004) and Valkanov (2003) suggest that equation (15) may have some desir-

able properties and I will consider both kinds of specifications here. The regressions in equation (14)

and (15) will be referred to as the unbalanced and balanced regressions, respectively, since in the

former case long-run returns are regressed onto short-run predictors and in the latter long-run returns

are regressed onto long-run predictors. This choice of terminology, i.e unbalanced and balanced, is

used purely as a mnemonic device; ‘unbalanced’ is not meant to convey anything negative about this

specification.

Let the OLS estimators of βUi (q) and βBi (q) in equations (14) and (15), using overlapping obser-

vations, be denoted by β̂
U

i (q) and β̂
B

i (q), respectively. A long-standing issue in the return-forecasting

10



literature is the calculation of correct standard errors for β̂
U

i (q) and β̂
B

i (q).
7 Since overlapping ob-

servations are used to form the estimates, the residuals ui,t (q) will exhibit serial correlation; standard

errors failing to account for this fact will lead to biased inference. The common solution to this problem

has been to calculate auto-correlation robust standard errors, using methods described by Hansen and

Hodrick (1980) and Newey and West (1987). However, these robust estimators tend to have rather

poor finite sample properties; this is especially so in cases when the serial correlation is strong, as it

often is when overlapping observations are used. In this section, I derive the asymptotic properties

of β̂
U

i (q) and β̂
B

i (q) under the assumption that the forecasting horizon q grows with the sample size

but at a slower pace. The results complement those of Valkanov (2003), who treats the case where

the forecasting horizon grows at the same rate as the sample size, and those of Hansen and Tuypens

(2004) who also consider the case where q/T → 0 as q, T →∞, but in a covariance stationary setup.
As is seen below, the endogeneity of the forecasting variables plays as important a role in long-run

regressions as they do in short-run regressions. This point is somewhat obscured by the asymptotic

results derived in Valkanov (2003), and effectively not treated in the covariance stationary model of

Hansen and Tuypens (2004).

Given that equations (14) and (15) are estimated with overlapping observations, created from short-

run data, they should be viewed as fitted regressions rather than actual data generating processes

(dgp); the use of overlapping observations effectively necessitates the specification of a dgp for the

observed short-run data. The results below are derived under the assumption that the true dgp

satisfies equations (1) and (2), and that the long-run observations are formed by summing up data

generated by that process. Under the null hypothesis of no predictability, the one period dgp is simply

ri,t = ui,t, in which case the long-run coefficients β
U
i (q) and β

B
i (q) will also be equal to zero. It follows,

that under the null, both equations (14) and (15) are correctly specified and the analysis of β̂
U

i (q)

and β̂
B

i (q) simplifies. It is therefore common in the literature to only derive asymptotic results for

long-run estimators under the null of no predictability. By considering the properties of the estimators

both under the null and the alternative, however, a more complete picture of the properties of the

long-run estimators emerges. Of course, equation (1) is only one possible alternative to the null of no

predictability, but it provides a benchmark case.

Theorem 1 Suppose the data is generated by equations (1) and (2), and that Assumption 1 holds.
1. Under the null hypothesis that βi = 0, as q, T →∞, such that q/T → 0,

(a)

T

q

³
β̂
U

i (q)− 0
´
⇒
µZ 1

0

dBi,1J
0
i,Ci

¶µZ 1

0

J i,CiJ
0
i,Ci

¶−1
, (16)

(b)

T
³
β̂
B

i (q)− 0
´
⇒
µZ 1

0

dBi,1J
0
i,Ci

¶µZ 1

0

J i,CiJ
0
i,Ci

¶−1
. (17)

7There is now a large literature on regressions with overlapping observations. Classiscal references include Hansen
and Hodrick (1980), Richardson and Stock (1989), Richardson and Smith (1991), and Hodrick (1992). Some examples
of recent research are Campbell (2001), Daniel (2001), Valkanov (2003), Britten-Jones and Neuberger (2004), Hansen
and Tuypens (2004), Mark and Sul (2004), Moon et al. (2004), and Torous et al. (2005).
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2. Under the alternative hypothesis that βi 6= 0, as q, T →∞, such that q/T → 0,

(a)
2T

q2

³
β̂
U

i (q)− βUi (q)
´
⇒ βi

µZ 1

0

dBi,2J
0
i,Ci + Λ22i

¶µZ 1

0

J i,CiJ
0
i,Ci

¶−1
, (18)

(b)
T

q

³
β̂
B

i (q)− βBi (q)
´
⇒ βi

µZ 1

0

dBi,2J
0
i,Ci +Ω22i

¶µZ 1

0

J i,CiJ
0
i,Ci

¶−1
, (19)

where βUi (q) = βi

³
I +Ai + ...+Aq−1

i

´
and βBi (q) = βiA

q−1
i . Since Ai = I + Ci/T , it follows that

βUi (q) /q = βi +O (q/T )→ βi and βBi (q) = βi +O (q/T )→ βi, as q, T →∞, such that q/T → 0.

Theorem 1 shows that under the null of no predictability, the limiting distributions of β̂
U

i (q) and

β̂
B

i (q) are identical to that of the plain short-run OLS estimator β̂i, although β̂
U

i (q) needs to be

standardized by q−1, since, as seen in part 2 of the theorem, the estimated parameter βUi (q) is of
an order q times larger than the original short-run parameter βi. Under the alternative hypothesis

of predictability, the limiting distributions of β̂
U

i (q) and β̂
B

i (q) are quite different from the short-run

result, and are in fact similar to the distribution of the OLS estimator of the first order auto-regressive

root in xi,t, although the rate of convergence is slower. The estimators still converge to well defined

parameters under the alternative hypothesis, but their asymptotic distributions are driven by the

auto-regressive nature of the regressors and the fact that the fitted regressions in (14) and (15) are

effectively miss-specified, under the assumption that the true relationship takes the form of equation

(1).

It is apparent that, under the null hypothesis, the long-run OLS estimators suffer from the same

endogeneity problems as does the short-run estimator. Similar remedies to those discussed for the

short-run case, such as the fully modified approach, can be considered. Estimates of Ω22i and Λ22i can

be obtained directly from the short-run specification of xi,t in equation (2). By a first-stage long-run

OLS regression, estimates of the residuals ui,t (q) can be obtained and the covariance ω12i can be

estimated. However, simulations not reported in the paper show that estimates of ω12i based on the

long-run residuals ui,t (q) are often very poor for typical values of q. Thus, unless one resorts to a short-

run OLS first-stage regression, which seems unappealing in a long-run estimation exercise, the actual

finite sample properties of the fully-modified long-run estimators appear unsatisfactory. However,

by imposing somewhat more restrictive assumptions on the error process vi,t in the regressors, an

alternative solution can be considered.

Assumption 2 Let wi,t = (ui,t, vi,t)
0 satisfy conditions 2-4 in Assumption 1, with �i,t replaced by vi,t

in condition 2. That is, vi,t, as well as ui,t, are martingale difference sequences with finite fourth order

moments.

Under Assumption 2, the long-run covariance matrix Ωi is now identical to the short-run covariance

Σi, although I continue to use the long-run notation to be consistent with previous notation.
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Consider the fitted augmented regression equations

ri,t+q (q) = αUi (q) + βUi (q)xi,t + γUi (q) vi,t+q (q) + ui,t+q·2 (q) , (20)

and

ri,t+q (q) = αBi (q) + βBi (q)xi,t (q) + γBi (q) vi,t+q (q) + ui,t+q·2 (q) , (21)

where vi,t (q) =
Pq

j=1 vi,t−q+j. Let β̂
U+

i (q) and β̂
B+

i (q) be the OLS estimators of βUi (q) and βBi (q)

in equations (20) and (21).

Theorem 2 Suppose the data is generated by equations (1) and (2), and that Assumption 2 holds.
1. Under the null hypothesis that βi = 0, as q, T →∞, such that q/

√
T → 0,

T
³
β̂
B+

i (q)− 0
´
,
T

q

³
β̂
U+

i (q)− 0
´
⇒MN

Ã
0, σ11·2,i

µZ 1

0

J i,CiJ
0
i,Ci

¶−1!
, (22)

where σ11·2,i = σ11i − ω12iΩ
−1
22iω21i.

2. Under the alternative hypothesis that βi 6= 0, as q, T →∞, such that q/
√
T → 0,

T

q

³
β̂
B+

i (q)− βBi (q)
´
,
2T

q2

³
β̂
U+

i (q)− βUi (q)
´
⇒ βi

µZ 1

0

dBi,2J
0
i,Ci

¶µZ 1

0

J i,CiJ
0
i,Ci

¶−1
. (23)

Under the null hypothesis of no predictability, the estimators β̂
U+

i (q) and β̂
B+

i (q) have asymp-

totically mixed normal distributions, although under the alternative hypothesis of predictability, the

asymptotic distributions are still non-standard. The long-run estimators β̂
U+

i (q) and β̂
B+

i (q), which

correct for the endogeneity effects of nearly persistent regressors, are to the best of my knowledge the

first to appear in the literature. Given the asymptotically mixed normal distributions of β̂
U+

i (q) and

β̂
B+

i (q) under the null hypothesis, standard test procedures can now be applied to test the null of no

predictability. In fact, the following convenient result is easy to prove.

Corollary 1 Let tU+i (q) and tB+i (q) denote the standard t−statistics corresponding to β̂
U+
(q) and

β̂
B+
(q). That is,

tU+i (q) =
β̂
U+

i,k (q)− βU,0i,k (q)r³
1
T

PT
t=1 û

U+
i (q)

2
´
a0
³PT

t=1 zi,tz
0
i,t

´−1
a

, (24)

and

tB+i (q) =
β̂
B+

i,k (q)− βB,0i,k (q)r³
1
T

PT
t=1 û

B+
i (q)

2
´
a0
³PT

t=1 zi,t (q) zi,t (q)
0´−1

a

, (25)

where ûU+ (q) and ûB+ (q) are the estimated residuals, zi,t =
¡
xi,t, vi,t+q (q)

¢
, zi,t (q) =

¡
xi,t (q) , vi,t+q (q)

¢
and a is an 2m× 1 vector with the k’th component equal to one and zero elsewhere. Then, under the
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null-hypotheses of βi = 0,
tU+i (q)√

q
,
tB+i (q)√

q
⇒ N (0, 1) . (26)

Thus, long-run inference can be performed by simply scaling the corresponding standard t−statistic
by q−1/2. In the case with covariance stationary regressors, where endogeneity effects play no role,
Hansen and Tuypens (2004) derive a similar scaling result for the standard t−statistics corresponding
to β̂

U

i (q) and β̂
B

i (q).

The results in Theorems 1 and 2 bring some clarity to the properties of long-run regressions with

nearly persistent regressors. Under the null of no predictability, the long-run estimators have identical

asymptotic distributions to the short-run estimators. Under the alternative hypothesis of predictability,

however, the asymptotic properties of the long-run estimators change substantially and the results are

now driven by the de facto miss-specification of the long-run regressions, and the auto-regressive nature

of the regressors; this is manifest in both the slower rate of convergence as well as the non-standard

limiting distribution.

All of the above asymptotic results are derived under the assumption that the forecasting horizon

grows with the sample size, but at a slower rate. Torous et al. (2005) and Valkanov (2003) also

study long-run regressions with near-integrated regressors, but derive their asymptotic results under

the assumption that q/T → κ ∈ (0, 1) as q, T → ∞. That is, they assume that the forecasting

horizon grows at the same pace as the sample size. Under such conditions, the asymptotic properties

of β̂
U

i (q) and β̂
B

i (q) are quite different from those derived in this paper. There is, of course, no right

or wrong way to perform the asymptotic analysis; what matters in the end is how well the asymptotic

distributions capture the properties of actual finite sample estimates. To this end, a brief Monte Carlo

simulation is therefore conducted.

Equations (1) and (2) are simulated, with ui,t and vi,t drawn from an iid bivariate normal dis-

tribution with mean zero, unit variance and correlation δ = −0.9. The large negative correlation is
chosen to assess the effectiveness of the endogeneity corrections in β̂

U+
(q) and β̂

B+
(q), as well as to

reflect the sometimes high endogeneity of regressors such as the dividend- or earnings-price ratio. The

intercept αi is set to one and the auto-regressive root Ai is also set to unity. Three different estimators,

and their corresponding t−statistics, are considered: the long-run estimators, β̂U+i (q) and β̂
B+

i (q), as

well as the short-run OLS estimator in the augmented regression equation (20) (or equivalently (21)).8

Since the aim of the simulation is to determine how well the asymptotic distributions derived above

reflect actual finite sample distributions, all estimation and testing is done under the assumption that

the root Ai is known. The sample sizes are chosen as T = 100 and T = 500.

The first part of the simulation study evaluates the finite sample properties of the three estimators

under an alternative of predictability, where the true βi is set equal to 0.05. The second part analyzes

the size and power properties of the scaled t−tests, and the third part shows the properties of the
long-run estimators as the forecasting horizon grows but the sample size is kept fixed. In all except

the last exercise, the forecasting horizon is set to q = 12 and q = 60 for the T = 100 and T = 500

8As shown by Phillips (1991), in the case of normally distributed errors, the OLS estimator in the short-run (q = 1)
augmented regression equation (20) will in fact be equal to the maximum likelihood estimator.
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samples, respectively. These forecasting horizons are similar to those often used in practice for similar

sample sizes. All results are based on 10, 000 repetitions.

The results are shown in Figure 1. In the top two graphs, A1 and A2, the kernel estimates of

the densities of the estimated coefficients are shown. To enable a comparison, the β̂
U+
(q) estimate

is scaled by q−1. The non-standard distributions of β̂
U+

i (q) and β̂
B+

i (q) under the alternative are

evident, especially so for β̂
B+

i (q). The fact that β̂
U+

i (q) converges faster than β̂
B+

i (q) under the

alternative, after scaling β̂
U+

i (q) by q−1 is also clear. The short-run estimator outperforms both long-
run estimators, however. In the middle graphs, B1 and B2, the rejection rates of the 5% two-sided

t−tests, for tests of the null of no predictability, are given. For both T = 100 and T = 500, all three

tests have a rejection rate very close to 5% under the null, so the scaling of the long-run t−statistics
by q−1/2 appears to work well in practice, as well as the endogeneity correction implicit in β̂

U+

i (q)

and β̂
B+

i (q). The test based on the β̂
U+

i (q) estimator has similar power properties to the short-run

test, although the short-run test performs better in all instances. The test based on β̂
B+

i (q) performs

rather poorly, especially in the larger sample with the longer forecasting horizon. In the bottom graphs,

C1 and C2, I illustrate the effects, on the long-run point estimates, of an increase in the forecasting

horizon as the sample size stays fixed. Three different cases are considered, βi = 0.05, 0.00,−0.05. It
is interesting to note that as q grows larger relative to the sample size, the long-run estimates tend to

drift towards the opposite sign. Only under the null-hypothesis do they not tend to drift, although

β̂
B+

i (q) does so a bit in the small sample. These last simulation results show the importance of not

using too large a horizon relative to the sample size.

In summary, the simulation results for the size and power properties, in particular, show that the

endogeneity correction performed in β̂
U+

i (q) and β̂
B+

i (q) appears to work well and that the scaling of

the t−statistic, as suggested by Corollary 1, achieves the correct size.
Both the asymptotically slower rate of convergence for β̂

U+

i (q) and β̂
B+

i (q) under the alternative

of predictability and the finite sample results given in Figure 1 indicate that there is little reason to

consider long-run tests if one believes that the alternative model of stock return predictability is given

by equation (1). This is not to say that long-run procedures are not useful. Long-run regressions

effectively perform a smoothing of the data, for both the dependent and independent variables in

the case of β̂
B+

i (q) and for the dependent variable only in the case of β̂
U+

i (q). It is likely that

there are situations where such smoothing is desirable and the relationship in the smoothed data

reveals properties not easily detected in the short-run data. For instance, one could consider a setting

where asset prices are prone to temporarily drift away from their ‘fundamental’, or rational, values.

Suppose that the earnings-price ratio predicts future stock returns when returns and prices reflect

fundamentals. Then short-run tests of stock return predictability may be less likely to capture this

relationship than long-run tests, since, in the short run, the prices and returns might not be determined

by fundamentals. But, as long as the forecasting horizon is large enough, the long-run regression will

capture the relationship.

Likewise, the advantages of β̂
B

i (q) over β̂
U

i (q) indicated by the work of Valkanov (2003) and

Hansen and Tuypens (2004) do not appear in the results above, but might also be realized under
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different alternative models of stock return predictability. Intuitively, the smoothing of the regressor

in β̂
B

i (q), versus no smoothing in β̂
U

i (q), provides a trade-off between reducing noise and using the

latest available information in forming the forecasts. The best approach will depend on the relative

importance of these factors.

4.2 The panel case

As discussed in Section 3.2, the demeaning of the data in the standard short-run pooled estimator

causes a second order bias when the regressors are endogenous. The same will be true in the long-

run case, but the recursive demeaning solution used for the short-run estimator is less practical in

the long-run; the overlapping nature of the data would necessitate a large loss of observations in the

calculations of the recursively demeaned data. Instead, an approach similar to that in the time-series

case will be used. Let β̂
U+

n,T (q) and β̂
B+

n,T (q) be the pooled estimators of β
U (q) and βB (q) in the

augmented regressions (20) and (21), respectively, allowing αi and γi to vary across i. The exact

expressions for β̂
U+

n,T (q) and β̂
B+

n,T (q) are given in the proof of the following theorem.

Theorem 3 Suppose the data is generated by equations (1) and (2), and that Assumption 1 holds.
Further, suppose the slope coefficients are homogenous so that βi = β for all i. Under the null

hypothesis that β = 0, as (T, n→∞)seq and q →∞ such that q/
√
T → 0,

√
n
T

q

³
β̂
U+

n,T (q)− 0
´
,
√
nT
³
β̂
B+

n,T (q)− 0
´
⇒ N

¡
0,Ω−1xxΦu·v,xΩ

−1
xx

¢
,

where Ωxx = E
hR 1
0
J i,CiJ

0
i,Ci

i
and Φu·v,x = E

·³R 1
0
dBi,1·2J 0i,Ci

´³R 1
0
dBi,1·2J 0i,Ci

´0¸
.

This result most likely also holds in joint limits, under some extra rate restrictions on n and T ,

and could probably be proved using similar methods to those of Hjalmarsson (2004) and Phillips and

Moon (1999).9 However, the extra technical detail required for such a proof does not seem justified in

the present context. For brevity, the results are given under the null-hypothesis of no predictability

and under the assumption of homogenous slope coefficients.

Let tU+n,T (q) and tB+n,T (q) denote the pooled t−statistic from the augmented pooled estimation,

defined in the proof of the following corollary.

Corollary 2 Under the null hypothesis that β = 0, as (T, n→∞)seq and q →∞ such that q/
√
T → 0,

tU+n,T (q) , t
B+
n,T (q)⇒ N (0, 1) .

Thus, in the pooled case, no scaling of the t−statistics is required. This result follows from the

fact that the natural way of estimating Φu·v,x for the pooled t−statistic leads to a heteroskedasticity
9The notation (T, n→∞)seq follows that of Phillips and Moon (1999) and indicates a sequential limit result derived

by first keeping n fixed and letting T go to infinity and then letting n go to infinity.
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and autocorrelation consistent (HAC) estimator, although the panel structure avoids the usual non-

parametric shape of the estimator. One could consider a non-HAC estimator by deriving more explicit

expressions for Φu·v,x, but in this case the convenient result that the test works both in the homogenous
and heterogenous slope coefficient cases no longer hold, as is evident from the analysis in Hjalmarsson

(2004).

The effects of common factors can be dealt with in the same manner as for the short-run case; by

de-factoring the returns data. As pointed out above, it is somewhat undesirable to rely on a first-stage

short-run regression in a long-run analysis. In the case of obtaining estimates of the common factors in

the returns residuals, however, first-stage short-run OLS time-series regressions seem more appropriate

than long-run time-series regressions; the overlapping nature of the long-run residuals is likely to prove

troublesome when attempting to extract common factors. The de-factored data, rdfi,t is thus created as

in the short run, and the long-run pooled regressions are then estimated using long-run returns formed

from rdfi,t.

5 Feasible methods

To implement the methods described in the two previous sections, with the exception of the short-run

pooled estimator in Section 3.2, knowledge of the parameters {Ci}ni=1 is required. Since Ci is typically

unknown and not estimable in general, I rely on the bounds procedures of Cavanagh et al. (1995) and

Campbell and Yogo (2003) to obtain feasible procedures. The following discussion assumes a scalar

regressor, as do the above studies.

Although Ci is not estimable, a confidence interval for Ci can be obtained, as described by Stock

(1991). By evaluating the estimator and test-statistic for each value of Ci in that confidence interval, a

range of possible estimates and values of the test-statistic are obtained. A conservative test can then be

formed by choosing the most conservative value of the test statistic, given the alternative hypothesis.

If the confidence interval has a coverage rate of 100 (1− α1)% and the nominal size of the test is α2,

then by Bonferroni’s inequality the final conservative test will have a size no greater than α = α1+α2.

In general, the size of the test will be less than α, and a test with a pre-specified size can be achieved

by fixing α2 and adjusting α1. In practice, the test-statistics used in this paper are monotone in Ci

and only the end points of the confidence interval for Ci need be evaluated. A drawback of this method

is that no clear-cut point estimate is produced, but rather a range of estimates. In the result section

of the paper I therefore report the standard OLS point estimate, or in the case of the long-run pooled

estimation, the standard fixed effects estimate.

For practical inference in the time-series regressions, I adopt a similar approach to Campbell and

Yogo (2003), but rule out the possibility of explosive roots Ci > 0. A confidence interval for Ci is

obtained by inverting the DF-GLS statistic. Table 2 of Campbell and Yogo (2003) is used to find the

desired significance level of this confidence interval in order for the final test to have a one-sided 5%

size. If the upper bound is greater than zero, it is simply replaced by zero. The test statistics, either

the t+i −statistic in the short-run case or the scaled tU+i (q) and tB+i (q) statistics in the long-run, are
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evaluated for the upper and lower bounds of this confidence interval, and the more conservative of the

two values, given the alternative one-sided hypothesis, is reported as a conservative one-sided test and

normal significance levels apply. That is, if the reported statistic is greater than 1.65, the null can be

rejected at the 5% level against an alternative positive hypothesis, and analogously for the negative

alternative. In practice, ruling out the possibility of explosive roots have relatively little effect on the

results and does not affect the overall conclusions.

In the case of the long-run pooled estimators, β̂
U+

n,T (q) and β̂
B+

n,T (q), and the corresponding t−statistics,
the bounds procedures just described for the time-series case become cumbersome, especially if one

wants to chose α1 in a manner that produce tests with the correct size. Instead, in the panel case, I

use an approach similar to that of Lewellen (2003). It is easy to show, for the pooled estimators, that

the estimates will be decreasing in Ci if the average ω12i, denoted ω12, is negative, and increasing in

Ci if ω12 is positive. Thus, if Ci ∈ (−∞, 0], and ω12 < 0, a conservative test of H0 : β = 0 versus

H1 : β > 0 is obtained by evaluating tU+n,T (q) and tB+n,T (q) at Ci = 0 for all i. Similarly, if one wants to

construct a conservative test of H0 : β = 0 versus H1 : β < 0, for ω12 < 0, the test-statistics should be

evaluated at Ci → −∞ for all i. As Ci → −∞, the process xi,t become stationary and the fixed effects
t−statistics obtained from pooling the standard long-run regressions in equations (14) and (15) can

be used, rather than the augmented regressions in equations (20) and (21). Conservative tests when

ω12 > 0 are obtained by reversing the arguments for ω12 < 0.

6 Data description

All of the data used in this paper come from the Global Financial Data database. Total returns,

including direct returns from dividends, on market wide indices in 40 countries were obtained, as well

as the corresponding dividend- and earnings-price ratios. In addition, for each country, measures of

the short and long interest rates are obtained. All returns and interest rate data are on a monthly

frequency. For a few of the older observations, the dividend- and earnings-price ratios are given on an

annual basis; these are transformed to monthly data by filling in the monthly dividends or earnings

over the year with the previous year’s values.

With the exception of Spain, the dividend-price ratio data is available over the same sample period

as the total stock returns. But, the other predictor variables are typically not available during the

whole sample of total stock returns. Due to the two world wars, France, Germany, Japan, and the

U.K. have some years during which no observations are available. Further, Spain’s total returns data

start in 1940, but no dividends data is available during 1968-1983. In the time-series analysis, separate

regressions are fitted for each sample period for these countries, and in the pooled estimation separate

intercepts are estimated. In Tables 2-4, which state the pooled results, the row listing the number of

‘countries’ in each panel can therefore include more than one count of some countries.

The variable definitions follow the usual conventions in the literature. The dividend-price ratio

is defined as the sum of dividends during the past year, divided by the current price. The earnings-

price ratio is defined in the same manner, i.e. the current price divided by the latest 12 months of
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earnings available at the time. Both the dividend- and earnings-price ratios are thus expressed in

annual units. The measure of the short interest rate comes from the interest rate series constructed

by Global Financial Data. These use rates on 3-month T-bills when available or, otherwise, private

discount rates or interbank rates. The long rate is measured by the yield on long-term government

bonds. When available, a 10 year bond is used; otherwise, I use that with the closest maturity to

10 years. To conform with the one month stock returns, the short and long interest rates are also

expressed on a monthly basis. The term spread is defined as the log difference between the long and

the short rate.

In defining excess stock returns, two approaches are available: (i) the return on stocks, in the local

currency, over the local short rate, or (ii) the return on stocks in dollar terms, over the U.S. short

interest rate. In the latter case, returns in local currencies are transformed to dollar denominated

returns using exchange rate data, also obtained from Global Financial Data. During large parts of the

sample period, official exchange rates poorly reflect the actual market rates; so, in cases when unofficial

black market rates are available, they are used. The results presented in this paper rely mainly on

the former approach since it provides the international analogue of the typical forecasting regressions

estimated for U.S. data. In addition, using excess returns expressed in domestic currencies avoids the

possibility that the results are driven by predictability in exchange rates rather than in stock returns.

In practice, either approach delivers similar results in most cases; however, I point out in the text

those instances where the results do differ substantially.

Four different forecasting variables are considered: the dividend- and earnings-price ratios, the

short interest rate and the term spread.10 All regressions are run using log-transformed variables with

the log excess returns over the domestic short rate as the dependent variable.

As pointed out in the method sections above, there are advantages to pooling data from several

countries; these advantages are greatest when the panel is reasonably homogenous. So in addition to

pooling all countries into a global panel, I also consider pooling based on OECD membership. These

different groups of countries will be referred to as the Global, OECD, and Non-OECD panels. Pooling

according to geographical areas such as Europe and Asia was also considered, but the results were

similar to those for the OECD pooling and yielded no extra insights. Table 1 provides summary

statistics of the data and indicates what countries belong in each group. Table 8 in the Appendix

lists the stock-index in each country to which the total returns and dividend- and earnings-price ratios

correspond.

7 Empirical results

In the empirical analysis, I conduct pooled regressions as well as time-series regressions for individual

countries. Once again, the dependent variable is always excess stock returns over the domestic short

10 In addition to the standard earnings-price ratio, I also considered the 10 year smoothed earnings price ratio, as
suggested by Campbell and Shiller (1988). This is defined as the average earnings over the past 10 years divided by the
current price. The results were similar to those of the standard earnings-price ratio, however, and are not included in
the paper.
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rate; in the discussion, I just write stock returns for simplicity. In both types of analyses, I estimate

short- and long-run regressions. While the short-run regressions use the original monthly data, the

long-run regressions use overlapping observations at the 12 and 60-month horizons. In addition, both

kinds of long-run specifications, given in equations (14) and (15), are evaluated. For the 1-month

horizons, time-series with less than 60 observations are not considered, and for the 12 and 60-month

horizons a minimum of 120 and 240 observations is required, respectively.

To control for cross-sectional dependence or, more precisely, common factors in the pooled data, I

use the approach described previously, considering the cases with one, two, or three common factors

in the residuals; the results are fairly similar for all three cases. In general, however, the evidence of

stock return predictability tends to be somewhat stronger when the de-factored data are used. Given

the uncertainty regarding the existence of common factors in the data, I present the somewhat more

conservative pooled estimates and test-statistics obtained when the data are not de-factored.11

The results from the pooled regressions and summaries of the time-series results are presented in

Tables 2-4. The time-series results for individual countries are given in Tables 5 and 6. Each table

contains multiple panels, which correspond to different forecasting variables. To preserve space, not

all of the results for the individual time-series regressions are presented. In particular, I present all the

results for the 1-month horizon, but for the long-run regressions, I only show the 60-month horizon

results for the dividend- and earnings-price ratios. The remaining long-run country level results are

summarized in Tables 2-4, and described briefly in the text; a complete set of results is available

on request. In each case, I present the long-run time-series results based on both the balanced and

unbalanced specifications, as indicated in the tables. The unbalanced long-run specification is given

in equation (14) and regresses long-run future returns onto the current short-run regressor while the

balanced long-run specification is given in equation (15) and regresses long-run future returns onto the

long-run past regressor.

For the pooled short-run regressions, two sets of pooled results are given; the fixed effects estimate

using recursively demeaned data, β̂
rd

n,T , and the corresponding t−statistic, trdn,T , as well as the standard
fixed effects estimate, β̂n,T , and t−statistic, tn,T . The latter t−test is not robust to the endogeneity
and persistence of the regressors, but in the case of the short interest rate and the term spread, it

does in fact provide a conservative test against a negative and positive alternative, respectively. This

follows immediately from the discussion in Section 5 and the average negative correlation between ui,t
and vi,t for the short rate and the average positive correlation for the term spread. For the dividend-

and earnings-price ratio, however, the standard t−test will tend to over-reject the null in favour of a
positive alternative.

For the pooled long-run regressions, the standard long-run fixed effects estimates β̂
U

n,T (q) and

β̂
B

n,T (q) are presented, along with the corresponding pooled t−statistics, tUn,T (q) and tBn,T (q). In

addition, the pooled t−statistics, tU+n,T (q) and tB+n,T (q), from the augmented long-run regressions in

equations (20) and (21), with Ci = 0 for all i, are given. In the case of the dividend- and earnings-

11Bai and Ng (2002) propose a model selection method for determining the number of common factors in a panel.
For the data set used in this paper, these methods seemed to consistently over-parametrize the model, almost always
delivering the maximum number of factors allowed in the procedure.
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price ratios, these will provide conservative tests against a positive alternative. As in the short-run

case, the standard test-statstics tUn,T (q) and tBn,T (q) can be used in evaluating the significance of the

short rate and the term spread given a negative and a positive alternative, respectively. In the tables,

the argument q is suppressed for both the estimators and test-statistics.

The results from the individual time-series regressions are presented in a similar manner to the

long-run pooled regressions. The OLS point estimate, β̂i, or in the long-run, either β̂
U

i (q) or β̂
B

i (q),

is presented along with corresponding standard R2 and scaled t−statistic. Further, the robust and
conservative test-statistic, t+i , or in the long-run, t

U+
i (q)

±√
q or tB+i (q)

±√
q, is given. These are

constructed as described in Section 5, and provide a one-sided conservative test against the particular

alternative hypothesis that is considered; i.e. a positive alternative for the dividend- and earnings-price

ratio as well as the term-spread and a negative alternative for the short interest rate. Finally, for the

short-run regressions, an estimate of the correlation, δ̂i, between ui,t and vi,t in each regression is

given.

In all tables, the robust test-statistic from which proper inference can be drawn is in bold type. The

number of individual time-series regressions that yield significant coefficients according to this test-

statistic, in a one-sided 5%−level test, is indicated for each pooled regression in the column labeled
t+0.05.

7.1 The earnings-price ratio

The results for the earnings-price ratio are presented in Panel A of Tables 2-4. At the 1-month horizon,

there is minimal evidence of a positive predictive relationship. Specifically, pooling the data at either

the Global or OECD levels does not yield a significant coefficient; however, there is evidence of an

on average predictive relationship when pooling at the Non-OECD level. To ensure that the OECD

results are not driven by the longer earnings-price ratio time-series available for the U.K. and the U.S.,

I also estimate these pooled regressions when restricting the sample to observations after 1950. The

individual country time-series results confirm the lack of evidence of a predictive relationship in the

pooled regressions. In particular, in the post-1950 sample, only two of the 38 time-series regressions

(Argentina and the U.K.) yield any significant coefficients.

On the 12-month horizon, there is still no support for a predictive relationship in the pooled

Global or OECD regressions. However, when pooling the Non-OECD countries, there is evidence of

a significant relationship in both the balanced regression, where long-run returns are regressed onto

long-run regressors, and the unbalanced regression, where long-run returns are regressed onto short-

run regressors. In both of these cases, though there is only one country for which the time-series

regressions yield a significant coefficient. For the OECD countries, the balanced and unbalanced time-

series regressions only show a significant predictive relationship in the U.S.

However, there is somewhat stronger evidence of predictability at the 60-month horizon. Pooling at

the Global level delivers a significant coefficient in the full sample balanced regression, but significance

disappears when restricting the analysis to the post-1950 sample. The significant relationship seen at

the Global level is primarily being driven by that seen in the Non-OECD countries, which is evident
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in both the balanced and unbalanced regressions. The time series regressions indicate a significant

predictive relationship for Japan, the Philippines, and Thailand in the balanced specifications and

Japan, South Africa, and the U.K. in the unbalanced specifications.

In summary, there is rather weak evidence that the earnings-price ratio predicts stock returns; the

majority of evidence that does exist is for Non-OECD countries. It is noteworthy that the null of no

predictability would have been rejected in all but three pooled regressions if one relied on non-robust

methods that fail to control for the endogeneity and persistence of the regressors. In particular, at the

short horizons, the discrepancy between the robust and non-robust test statistics is quite large.

7.2 The dividend-price ratio

Panel B in Tables 2-4 shows the results from pooled regressions with the dividend-price ratio as the

regressor. On average, there is no evidence of predictability at a 1-month horizon; this can be seen

in Table 2. Nor does the overall picture depicted by the individual time-series regressions indicate a

pattern of predictability; a significant predictive relationship is only observed for post-WWII Japan,

the U.K., and post-1950 U.S.

Panel B of Table 3 shows that, on average, there is limited evidence of a predictive relationship at

the 12-month horizon in the balanced regression Specifically, the coefficient is significant when pooling

both at the post-1950 Global level and the Non-OECD level. The individual time-series regressions

provide some extra support for predictability, both in OECD and non-OECD countries. Evidence of

predictability at the long-run horizon of 60 months is similar to that seen at the 12-month horizon. At

the 60-month horizon, a significant predictive relationship is seen in either the balanced or unbalanced

time-series regressions for the following countries: Canada, Chile, pre-WWII France and Germany,

Greece, Hong Kong, post-WWII Japan, South Africa, Thailand, and the U.K..

Thus, there is no evidence of ‘on average’ predictability at short horizons and only limited evidence

of such a relationship at longer horizons. The individual time-series regressions provide evidence

of predictability at both short and long horizons, although this evidence is much stronger at the

longer horizons. Though the results for the dividend-price ratio are, in general, parallel to those of the

earnings-price ratio, they appear to be slightly stronger overall due to the greater number of significant

time series results. In addition, as in the case of the earnings-price ratio, the null of no predictability

would have been often rejected when using non-robust tests.

7.3 The short interest rate

In light of the empirical evidence seen in U.S. data, one would expect there to be a negative relationship

between the current short rate and future stock returns. Hence, the robust t−tests are all obtained
under the assumption of a negative alternative. The data used in all interest rate regressions are

restricted to start in 1952 or after, following the convention used in studies with U.S. data.12 The pooled

12 In the U.S., the interest rate was pegged by the Federal Reserve before this date. Of course, in other countries,
deregulation of the interest rate markets occurred at different times, most of which are later than 1952. As seen in
the international finance literature (e.g. Kaminsky and Schmukler, 2002), however, it is often difficult to determine the
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results for the short interest rate are presented in Panel C of Tables 2-4. Three pooled specifications

are considered: Global, OECD, and Non-OECD.

At the 1-month horizon, the null of no predictability is strongly rejected in the pooled sample of

OECD countries. In contrast to the strongly significant negative relationship seen in these countries,

the average relationship in the Non-OECD countries is not significant. Given the rather capricious

character of interest rates in many Non-OECD countries (e.g. Argentina), I focus strictly on the

OECD results. As seen in Panel C of Table 5, this finding of predictability, at the 1-month horizon, is

supported by the results of the individual time-series regressions for the OECD countries. In particular,

a significant predictive relationship is found in eight out of 21 OECD countries, including: Canada,

Germany, the Netherlands, New Zealand, Portugal, Spain, Switzerland, and the U.S.. In addition,

a closer look at the individual country level results further strengthens this pattern; in particular, it

reveals that the estimates for 15 of the OECD countries are more than one standard deviation away

from zero while the robust t−statistic is negative for 18 of the 21 countries.
As seen in Panel C of Table 3, there is also, on average, predictability at the 12-month horizon for

OECD countries. The individual time-series regressions provide some support of this finding, though

the results are weaker than those for the 1-month horizon. At the 60-month horizon, all evidence of

the negative predictive relationship seen in the previous pooled regressions disappears and there is a

tendency for the coefficients to change sign. This is consistent with the simulation results, presented

in Figure 1, for the behaviour of the long-run estimators as the forecasting horizon increases, when

there is in fact a short-run relationship.

For the most part, the predictive ability of the short interest rate appears to be a short-run phe-

nomenon. This conclusion is supported by Ang and Bekaert (2003) who find evidence of a significant

relationship in the short run for the U.S. and Germany. However, my results indicate that their findings

are not limited to these countries, but rather, they are representative of other OECD countries.

7.4 The term spread

Based on the U.S. experience, one would expect there to be a positive predictive relationship, if any,

between the term spread and stock returns. As in the case of the short interest rate, I find a positive

predictive relationship only in OECD countries and primarily in the short run. As shown in Panel D of

Table 2, there is evidence of an average predictive relationship at the 1-month horizon when pooling the

OECD countries. As this relationship is not evident for the Non-OECD countries, I once again focus

on the results for the OECD countries. As seen in Panel D of Table 5, this finding of predictability, at

the 1-month horizon, is supported by the results of the individual time-series regressions for the OECD

countries. For nine of 21 individual time-series regressions, there is a positive and significant predictive

relationship: Canada, France, Germany, Italy, the Netherlands, New Zealand, Spain, Switzerland, and

the U.S.. Furthermore, 13 countries have a coefficient that is more than one standard deviation from

exact date of deregulation. And, if one follows classification schemes, such as those in Kaminsky and Schmukler (2002),
then most markets are not considered to be fully deregulated until the 1980s, resulting in a very small sample period to
study. Thus, the extent to which observed interest rates reflect actual market rates is hard to determine and one should
keep this caveat in mind when interpreting the results.
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zero.

The pooled evidence of predictability is quite similar at the 12-month horizon when using either

the balanced or unbalanced regressions. However, the time-series evidence is somewhat weaker than

that seen at the 1-month horizon. Specifically, in the unbalanced regressions, just five of the 21 OECD

countries have significant coefficients.

In contrast, such evidence of predictability is not found in the pooled or time-series regressions at

the long-run horizon of 60-months. But, similar to the 60-month horizon results for the short interest

rate, there is some indication of a change in the direction of the predictive relationship. Thus, as with

the short interest rate, the term spread has predictive powers in the short run and for OECD countries.

7.5 Stability over time

How robust are these patterns of predictability to different sample periods? To analyze this, I consider

rolling pooled regressions for the OECD countries. Based on the evidence above, I use the 60-month

horizon for the dividend- and earnings-price ratios. For these variables, a new country is added to

the rolling regression when there are fifteen years of observations available. However, for the interest

rate variables, just five years of data are required since the 1-month horizon is used. Conservative

confidence intervals, with a 90% coverage rate, are calculated in a manner analogous to the conserva-

tive test statistics described above. For the dividend- and earnings-price ratios, the long-run pooled

estimates β̂
B+

n,T (q) and β̂
U+

n,T (q), evaluated at Ci = 0 for all i, are presented together with a conser-

vative confidence interval. Although the standard long-run pooled estimates, β̂
B

n,T (q) and β̂
U

n,T (q),

are presented in Tables 2-4, I show β̂
B+

n,T (q) and β̂
U+

n,T (q) here since they tend to be less variable over

time and better reflect the actual variation in the predictive relationship over time; the confidence

intervals are, of course, not affected. Similarly, for the interest rate regressions, the standard short-run

fixed effects estimate is used rather than the pooled estimator for recursively demeaned data since

recursive demeaning of the often short time-series in the panels could lead to noisy estimates; again,

conservative confidence intervals are presented. Since the upper and lower bounds of the conserva-

tive confidence intervals are based on two different test-statistics, that yield conservative tests in the

respective direction, the confidence bounds are generally not symmetric.

The results are presented in Figure 2. The confidence interval from the unbalanced regressions for

the earnings-price ratio lies above zero during most of the sample period after 1950; the results for

the balanced specification are less conclusive. The confidence bounds for the dividend-price ratio are

virtually centered around zero, both in the balanced and unbalanced regressions, for the whole sample

period. Even though the time-series evidence for the earnings- and dividend-price ratios presented

above indicates that the dividend-price ratio is a somewhat better predictor, this is not supported by

the rolling pooled regressions for the OECD sample. In fact, the opposite appears to be true.

The term spread coefficient fluctuates around zero until the late 1970s, after which the lower

bound of the confidence interval hovers above zero. It is only for the short rate that the coefficient is

significantly different from zero during the whole sample period that is analyzed. In addition, I present

rolling regression estimates for the short interest rate, with corresponding conservative confidence
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intervals, in Figure 3, for the twelve OECD countries with the longest sample periods; thus, these

plots are based on the time-series rather than the pooled estimates. For all of the countries considered,

except Japan, a very similar pattern is evident. After around 1980, the estimated coefficients and

confidence intervals stabilize; in most cases, this occurs on or below zero, indicating a significant or

near significant negative relationship. The main exception is Sweden, where the point estimate is

actually above zero for most of the period after 1980.

In summary, this analysis solidifies the case for the predictive ability of the interest rate variables

and, in particular, for the short rate. But, it also gives further evidence that the earnings-price ratio

does have some predictive ability, even though it may have weakened over the past ten years.

7.6 The U.S. effect

As seen above, the interest rate variables appear to be the strongest predictors of stock returns. Given

the global influence of the U.S. economy, it is natural to ask whether the U.S. interest rate has predictive

power in other markets. To this end, I estimate individual country forecasting regressions and pooled

regressions using either the U.S. short rate or the U.S. term spread as predictors. A summary of

these results are presented in Panels E and F of Tables 2-4. Since the same regressor is used for

all countries, the analytics for the pooled regressions are somewhat different than those described

previously. It is easy to show that for exogenous regressors the same test-statistics as before can be

applied, even though the actual asymptotic distributions differ; for the case of endogenous regressors

the situation becomes somewhat more complicated. However, since both the U.S. short rate and the

U.S. term spread are almost exogenous (the average correlations between the residuals are 0.031 and

0.033, respectively), there will be only minor effects from ignoring the endogeneity. Consequently, only

the standard test-statistics are presented for the pooled estimates.

Though somewhat weaker, the results for the U.S. short rate and term spread are similar to those of

their domestic counterparts. Using either the U.S. short rate or term spread, at the 1-month horizon,

there is a significant predictive relationship in 7 of the 39 countries considered. These country level

results are also supported by very strong significance in the pooled inference. As in the case of the

domestic interest rates, the pooled evidence is strongest for the OECD countries. As in the case of

the domestic variables, the predictive ability of the U.S. interest rate variables is primarily seen in the

short run.

When using the U.S. short rate and term spread as predictors, the results vary greatly depending

on whether the dependent variable is defined as domestic excess stock returns or dollar transformed

excess returns over the U.S. short interest rate. In contrast to the results described in the preceding

paragraph, evidence of the predictive ability of U.S. interest rate variables becomes much stronger

when using dollar transformed excess returns. In fact, the U.S. short rate is a significant predictor in

24 out of the 39 countries considered. However, this result is somewhat misleading since a substantial

share of that predictive ability can be attributed to predictions of the change in the exchange rate

rather than predictions of the excess stock returns.13

13Complete results for these regressions using dollar transformed excess returns over the U.S. short rate are available

25



8 Out-of-sample evidence and economic implications

Goyal and Welch (2003a,b, 2004) present what appears to be a very strong critique against the presence

of stock return predictability. They argue that the significant evidence of predictability found in U.S.

data, based on traditional ‘in-sample’ statistical econometric procedures, does not hold up in out-

of-sample exercises. In particular, they conclude that forecasting the next-period stock returns with

the historical sample mean of past returns will almost always outperform a conditional forecast based

on an estimated forecasting regression, using any of the standard forecasting variables proposed in

the literature. Since significant in-sample results coupled with a lack of out-of-sample results are

usually a sign of data-mining, the results already presented in this paper go a long way towards

addressing the Goyal and Welch critique by analyzing large amounts of new data. Nevertheless, it

is interesting to explicitly consider the out-of-sample implications of the above results and give an

economic interpretation of the importance of the predictable component that stock returns do seem

likely to possess.

Campbell and Thompson (2004) also show that the evidence against stock return predictability

presented by Goyal andWelch might not be as relevant as it seems. In the out-of-sample tests performed

by Goyal and Welch, it is assumed that the investor mechanically forecasts stock returns using either

the historical average of past returns or the estimated regression equation. In both cases, the forecasts

are based on estimates using data available up to the time of the forecast. The estimates are updated

each period, incorporating the latest data. Campbell and Thompson (2004) argue that by imposing

some weak, but common sense, restrictions on the forecasts, their performance can be vastly improved.

Specifically, if an estimated coefficient does not have the expected sign, they set it equal to zero, and if

the forecast of the equity premium is negative, the forecast is set equal to zero. Using U.S. aggregate

data, they show that forecasts based on forecasting variables with significant in-sample coefficients

typically outperform the forecasts based on the historical sample mean of past returns.

Here I use international data to perform an analysis similar to that of Campbell and Thompson

(2004). Specifically, I present results concerning the out-of-sample performance of the domestic short

rate and term spread, which yielded the best in-sample performance. To allow for a sufficient sample

size in the out-of-sample analysis, which requires an initial ‘training-sample’ to obtain the estimates

on which the first round of forecasts is based, I exclude all countries with less than 40 years of data;

this allows for a 20-year training period and a minimum of a 20-year forecasting period.

The out-of-sample exercise is performed as follows. The first twenty years in each time-series is used

to form the initial estimates of the regression coefficients. In each period following the first twenty

years of observations, the coefficients are re-estimated, with the latest observations included. Next

period’s returns are forecasted based on the estimated regression equation; the restrictions suggested

by Campbell and Thompson (2004) are imposed in every period. These ‘conditional’ forecasts, based on

the regression model, are compared to the ‘unconditional’ forecasts, which in each period are identical

to the sample mean of the then available past returns; the restriction of a positive forecast of the equity

premium is imposed on the unconditional forecasts as well. To compare the statistical performances

upon request.
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of the conditional and unconditional forecasts, an out-of-sample R2 is calculated. This is defined as

R2i,OS = 1−
PT

t=s (yi,t − ŷi,t)
2PT

t=s (yi,t − ȳi,t)
2
, (27)

where ŷi,t and ȳi,t are the conditional and unconditional forecasts, respectively, and s is the length of

the training sample. The R2i,OS statistic will be positive when the conditional forecast outperforms

the unconditional one. Thus, the out-of-sample R2 is positive when the root mean squared error of

the conditional forecast is less than that of the unconditional forecast. Given that the out-of-sample

R2 and a comparison of the root mean squared errors yield identical qualitative results, I focus on

the out-of-sample R2 since it is measured in comparable units to the in-sample R2. In addition, I

consider out-of-sample forecasts that are based on both the time-series and pooled estimates of the

slope coefficients in the forecasting regressions. Although in the general case of non-identical slope

coefficients the latter estimate only identifies the average coefficient, it is possible that it yields better

out-of-sample performance if the time-series estimate is imprecise due to fewer available observations.

The results are presented in Table 7. As a comparison to the out-of-sample measures just described,

the standard in-sample R2 from the time-series regressions is provided. Again, one should note that,

due to insufficient sample sizes, not all of those countries for which significant in-sample evidence was

seen in Table 5, are considered in the out-of-sample analysis. As seen in Panel A of Table 7, there

are five countires for which the domestic short rate has a significant negative predictive realtionship:

Canada, Germany, the Netherlands, Spain, and the U.S.. With the exception of Japan and Sweden,

the coefficients for the other countries have the correct sign. For the five countries in which there is

a significant in-sample relationship, the out-of-sample R2 are all positive, although typically smaller

than the in-sample R2; this holds true when using conditional forecasts that are based either on the

time-series or pooled estimates. In all of the remaining countries but Australia, Japan, and Sweden,

the out-of-sample R2 is also positive for both the time-series and pooled cases. The results for Japan

and Sweden are not surprising given that the corresponding full-sample estimates have the wrong

sign. Thus, for 11 of the 12 countries for which the full-sample estimates have the correct sign, the

conditional forecasts that are based on the time series estimates beat the unconditional forecasts. This

pattern is even stronger when considering the pooled conditional forecasts; in this case, the conditional

forecasts beat the unconditional in all 12 countries.

Panel B of Table 7 presents the results for the term spread. In this case, a significant in-sample

predictive relationship is seen in seven countries. Again, only Japan and Sweden exhibit the wrong

sign. The pattern of out-of-sample results is similar to that of the short rate, although the results

for the forecasts based on the time-series estimates are somewhat weaker; in only five of the seven

countries, for which there is a significant in-sample relationship, does the conditional forecast beat the

unconditional forecast. The pooled results, however, are stronger in that the conditional forecast beats

the unconditional one in all seven of these countries. In addition, the out-of-sample R2 are positive

for all countries but Japan, Sweden, and the U.K. when using the pooled estimates in the forecast.

Overall, the results in Table 7 provide evidence that a significant in-sample relationship is associated
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with out-of-sample predictive power. In general, it also seems that forecasts based on the pooled

estimates out-perform forecasts based on the time-series estimates. Thus, it is possible that pooled

methods could be useful in reducing risk when using conditional forecasts in portfolio choice. Lastly,

this out-of-sample evidence strengthens the previous conclusions, i.e. that the interest rate variables,

and in particular the short rate, are robust predictors of excess stock returns. Although not presented

here, these strong results are not present when the forecast restrictions of Campbell and Thompson

are not imposed.

Campbell and Thompson (2004) show how the out-of-sample R2 can be directly related to the eco-

nomic gains for a myopic log-utility investor. In particular, the absolute difference in expected returns

for a myopic investor who uses the conditional forecasts and for one who relies on the unconditional

forecasts is approximately equal to the out-of-sample R2; the proportional increase in expected returns

is approximately equal to R2i,OS/S
2
i where Si is the Sharpe ratio for market i. Since the increase in

expected returns is partly due to the investor taking on more risk, it does not represent a pure welfare

gain for a risk-averse investor. However, the welfare gain for the log-utility investor, from using the

conditional forecast, turns out to be equivalent to the welfare gain from increasing the real risk-free

interest rate by one half of the increase in absolute expected returns.

These results are shown in the last two time-series and pooled columns of Table 7. The second

to last column shows the proportional increase in expected returns, calculated as R2i,OS/S
2
i , and is

expressed as a percentage increase. The last column shows the increase in the real annual risk free

rate, calculated as 12× R2i,OS/2 and expressed in percentage points, that is equivalent to the welfare

gain from using the conditional forecasts. Thus, a myopic log-utility investor investing in, say, the U.S.

stock-market and using conditional forecasts based on the pooled estimates for the short rate would

have increased her average returns by approximately 39%, or, equivalently, enjoyed the welfare gain

of an increase by about three annual percentage points in the real risk-free rate. Overall, the gains

from using the interest rate variables as predictors are economically significant and typically lead to

substantial increases in expected returns; in most cases, the average returns increase by at least 20%,

and sometimes considerably more. More importantly, however, are the risk-adjusted welfare gains,

expressed as equivalent increases in the annual real risk-free interest rate. In most countries, the

welfare gains for an investor investing in that country, are similar to at least a one to two percentage

point increase in the annual real risk-free rate. Historically, the U.S. real risk-free interest rate, for

instance, has been around 1% annually (Campbell and Thompson, 2004), so the one to two percentage

point equivalent increase is rather substantial.

In summary, the results found using traditional in-sample methods appear to hold up well in an

out-of-sample analysis, which also illustrates the great economic importance of these results.

9 Conclusions

The predictability of stock returns by lagged regressors is probably one of the most researched empirical

topics in financial economics. Despite this interest, relatively little is known about the evidence in
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international data; almost all stylized ‘facts’ are based more or less on the U.S. experience. Ang and

Bekaert (2003) are an important recent exception, and they consider a data set with four additional

countries, apart from the U.S. In this paper, I consider a large global data set with data from 40

different markets and I develop new econometric methods to analyze the data. In particular, I derive

several new results for long-run regressions, that use overlapping observations, when the regressors

are endogenous and nearly persistent. I show how to properly correct for the overlap in the data in

a simple manner that obviates the need for auto-correlation robust standard error methods in these

regressions. Further, when the regressors are persistent and endogenous, I show how to correct the

long-run OLS estimators and test procedures in a manner similar to that proposed by Campbell and

Yogo (2003) for the short-run case.

The empirical analysis delivers three main findings: (i) Traditional valuation measures such as

the dividend- and earnings-price ratios have very limited predictive ability in international data. It is

evident, however, that using methods that do not account for the persistence and endogeneity of these

variables would lead one to vastly misjudge their predictive powers. (ii) Interest rate variables are

more robust predictors of stock returns, although their predictive power is mostly evident in OECD

countries. The interest rate variables are primarily short-run predictors, with the strongest evidence

found at a 1-month horizon, and the short rate tends to be a better predictor than the term spread.

In addition, the U.S. interest rate variables have some predictive power, but it is not as strong as that

of the domestic interest rate variables. (iii) The domestic short rate and term spread also have out-

of-sample predictive power that is economically significant; the welfare gains to a log-utility investor

who uses their predictive ability to make portfolio decisions are substantial.

The international results for the interest rate variables are similar to those of the U.S. while the

overall findings for the earnings- and dividend-price ratios are substantially weaker. As in the U.S.,

there is some evidence that the earnings- and dividend-price ratios significantly predict stock returns

in Japan and the U.K.; thus, restricting the analysis to such major economies may not give a repre-

sentative picture of global stock return predictability. In summary, the results presented in this paper

provide strong evidence that there is a predictable component in stock returns, which is captured

at least partially by interest rate variables, and that it is large enough to be practically useful and

economically meaningful for investors.
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A Derivation of the long horizon results

Proof of Theorem 1. For ease of notation, the i subscript is suppressed, and the case with

no intercept is treated. The results generalize immediately to regressions with fitted intercepts by

replacing all variables by their demeaned versions. All limits as q, T →∞ are under the condition that

q/T → 0.

1. (a) Under the null hypothesis,
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U
(q) =

Ã
TX
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ut+q (q)x
0
t

!Ã
TX
t=1

xtx
0
t

!−1
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By standard arguments,
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as q, T →∞, such that q/T → 0, since for any h > 0,
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(b) Under the null hypothesis,
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By some algebraic manipulations,
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By standard arguments (Phillips and Solo, 1992), for any fixed k and h,

γ̂kxx (h)⇒ γxx (h) =

Z 1

0
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0
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since q/T = o (1). Now, using Skorohod’s representation theorem, there exists a probability space with
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n
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o
, for which
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where ‘≡’ denotes distributional equivalence. Since the asymptotic limit of γ̂k∗xx (h) is identical for all
k,

γ̂k∗xx (h) = γ̂∗xx (h) + oa.s. (1) ,

and
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by Toeplitz’s lemma and the assumption that q/T = o (1). On the original probability space, therefore,
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Combining these results,
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Further,
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as q →∞. Thus as q, T →∞,
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(b) As in part 2.(a),
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Let βB (q) = βAq−1 and consider

T

q

³
β̂
B
(q)− βB (q)

´
=

Ã
β
1

q3T

TX
t=1

qX
p=2

Aq−pvt+p−1 (q)xt (q)
0 +

1

q3T

TX
t=1

ut+q (q)xt (q)
0
!Ã

1

q2T 2

TX
t=1

xt (q)xt (q)
0
!−1

.

Since, as q, T →∞,
1

q2T

TX
t=1

ut+q (q)xt (q)
0 ⇒

Z 1

0

dB1J
0
C ,

it follows that
1

q3T

TX
t=1

ut+q (q)xt (q)
0
= op

¡
q−1

¢
.

Next,

1

q3T

TX
t=1

qX
p=2

Aq−pvt+p−1 (q)xt (q)
0
=
1

q

qX
p=2

Aq−p 1

q2T

TX
t=1

vt+p−1 (q)xt (q)
0
.

Again, let γ̂vx (h) = T−1
PT

t=1 vtx
0
t−h and use the Skorohod construction, such that

γ̂∗vx (h)
a.s.→ γ∗vx (h) + Λ22 (h) =

Z 1

0

dB∗2J
∗0
C + Λ22 (h)

where

γ̂∗vx (h) ≡ γ̂vx (h) and
Z 1

0

dB∗2J
∗0
C ≡

Z 1

0

dB2J
0
C .

By similar arguments as in 1.(b),

1

q

qX
p=2

Aq−p 1

q2T

TX
t=1

vt+p−1 (q)xt (q)
0 ≡ 1

q

qX
p=2

Aq−p 1
q

q−1X
h=−q+1

µ
1− |h|

q

¶
γ̂∗vx (p− 1 + h) + oa.s. (1) .

Since Λ22 (h)→ 0 as h→∞ and Λ22 (h)→ Ω22 =
P∞

k=−∞E
¡
vi,kv

0
i,0

¢
as h→ −∞, it follows that

1

q

q−1X
h=−q+1

µ
1− |h|

q

¶
Λ22 (p− 1 + h)→ Ω22

as q →∞, for any p, and thus

1

q

qX
p=2

Aq−p 1
q

q−1X
h=−q+1

µ
1− |h|

q

¶
γ̂∗vx (p− 1 + h) + oa.s. (1)

a.s.→
Z 1

0

dB∗2J
∗0
C +Ω22.
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On the original probability space

1

q

qX
p=2

Aq−p 1

q2T

TX
t=1

vt+p−1 (q)xt (q)
0 ⇒

Z 1

0

dB2J
0
C +Ω22,

and
T

q

³
β̂
B
(q)− βB (q)

´
⇒ β

µZ 1

0

dB2J
0
C +Ω22

¶µZ 1

0

JCJ
0
C

¶−1
.

Proof of Theorem 2. 1. (a) Let rq+q = (r1+q (q) , ..., rT (q))
0 be the T × 1 vector of observations,

and define xq and vq+q analogously. The OLS estimator of β
B (q) in (21) is now given by

β̂
B+
(q) =

¡
rq0+qQvqx

q
¢
(xq0Qvqxq)

−1
.

where Qvq = I − vq+q
¡
vq0+qv

q
+q

¢−1
vq0+q. Under the null-hypothesis,

Qvqr
q
+q = Qvq

¡
vq+qγ

0 +
¡
uq+q − vq+qγ0

¢¢
= Qvqu

q
+q

and

T
³
β̂
B+
(q)− 0

´
=
¡
q−2T−1uq0+qQvqx

q
¢ ¡
q−2T−2xq0Qvqxq

¢−1
.

As q, T →∞,

(qT )
−2
xq0Qvqxq = (qT )

−2
xq0xq−qT−1 ¡q−2T−1xq0vq+q¢ ¡q−1T−1vq0+qvq+q¢−1 ¡q−2T−1vq0+qxq¢⇒ Z 1

0

JCJ
0
C ,

since q/T → 0. Next,

Qvqiu
q
+q = uq+q − vq+q

¡
vq0+qv

q
+q

¢−1
vq0+qu

q
+q

= uq+q − vq+q
Ã
1

qT

TX
t=1

vt+q (q) vt+q (q)
0
!−1Ã

1

qT

TX
t=1

ut+q (q) vt+q (q)
0
!
.

Let

γ̂vv (h) =
1

T

T−q+1X
t=q

vtv
0
t−h, and γ̂uv (h) =

1

T

T−q+1X
t=q

utv
0
t−h,
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and define γ̂kvv (h) and γ̂kuv (h) in an analogous manner to the previous proof. As above,

1

T

TX
t=1

vt+q (q) vt+q (q)
0

= γ̂1vv (0) + γ̂2vv (0) + ...+ γ̂q−1vv (0) + γ̂qvv (0)

+γ̂2vv (−1) + γ̂3vv (−1) + ...+ γ̂qvv (−1)
...

+γ̂qvv (− (q − 1)) + γ̂1vv (q − 1)
...

+γ̂q−1vv (1) + γ̂q−2vv (1) + ...+ γ̂1vv (1) ,

and it follows that as q, T →∞,

1

qT

TX
t=1

vt+q (q) vt+q (q)
0
=

q−1X
h=−q+1

µ
1− |h|

q

¶
γ̂vv (h) +Op

³
qT−1/2

´
→p Ω22,

by standard results (e.g. Andrews, 1991), since qT−1/2 = o (1). By identical arguments, as q, T →∞,

1

qT

TX
t=1

ut+q (q) vt+q (q)
0
=

q−1X
h=−q+1

µ
1− |h|

q

¶
γ̂uv (h) +Op

³
qT−1/2

´
→p ω12.

Again, using the same methods as in the proof of part 1.(b) in Theorem 1, it follows that

1

q2T
vq0+qx

q =
1

q2T

TX
t=1

vt+q (q)xt (q)
0 ⇒

Z 1

0

dB2J
0
C .

Thus,

q−2T−1uq0+qQvqx
q = q−2T−1uq0+qx

q − ¡q−1T−1uq0+qvq+q¢ ¡q−1T−1vq0+qvq+q¢−1 ¡q−2T−1vq0+qxq¢
⇒

Z 1

0

dB1J
0
C − ω12Ω

−1
22

Z 1

0

dB2J
0
C

=

Z 1

0

dB1·2J 0C ,

and

T
³
β̂
B+
(q)− 0

´
=
¡
q−2T−1uq0+qQvqx

q
¢ ¡
q−2T−2xq0Qvqxq

¢−1 ⇒ Z 1

0

dB1·2J 0C

µZ 1

0

JCJ
0
C

¶−1
.
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1. (b) Denote x1 = x. The OLS estimator of βUi (q) in (20) is now given by

β̂
U+
(q) =

¡
rq0+qQvqx

¢
(x0Qvqx)

−1
.

Under the null hypothesis,

Qvqr
q
+q = Qvq

¡
vq+qγ

0 +
¡
uq+q − vq+qγ0

¢¢
= Qvqu

q
+q,

and thus
T

q

³
β̂
U+
(q)− 0

´
=
¡
q−1T−1uq0+qQvqx

¢ ¡
T−2x0Qvqx

¢−1
.

As T →∞,

T−2x0Qvqx = T−2x0x− qT−1
¡
q−1T−1x0vq+q

¢ ¡
q−1T−1vq0+qv

q
+q

¢−1 ¡
q−1T−1vq0+qx

¢⇒ Z 1

0

JCJ
0
C ,

since q/T → 0. The desired result now follows by the same arguments as in part 1.(a).

2.(a) Observe that under the alternative hypothesis,

Qvqr
q
+q = Qvq

¡
xq+q−1β

0 + vq+qγ
0 +
¡
uq+q − vq+qγ0

¢¢
= Qvqx

q
+q−1β

0 +Qvqu
q
+q

and

β̂
B+
(q) = β

¡
xq0+q−1Qvqx

q
¢
(xq0Qvqxq)

−1
+
¡
uq0+qQvqx

q
¢
(xq0Qvqxq)

−1

Recall that

xt+q−1 = Aq−1xt (q) +
qX

p=2

Aq−pvt+p−1 (q) .

Thus,

xq0+q−1Qvqx
q =

Ã
Aq−1xq0 +

qX
p=2

Aq−pvq0+p−1

!
Qvqx

q = Aq−1xq0Qvqxq +
qX

p=2

Aq−pvq0+p−1Qvqx
q,

and

β̂
B+
(q) = βAq−1 + β

qX
p=2

Aq−p ¡vq0+p−1Qvqxq¢ (xq0Qvqxq)−1 + ¡uq0+qQvqxq¢ (xq0Qvqxq)−1 .
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Define βB (q) = βAq−1 and write

T

q

³
β̂
B+
(q)− βB (q)

´
= β

1

q

qX
p=2

Aq−p ¡q−2T−1vq0+p−1Qvqxq¢ ¡q−2T−2xq0Qvqxq¢−1
+q−1

¡
q−2T−1uq0+qQvqx

q
¢ ¡
q−2T−2xq0Qvqxq

¢−1
= β

1

q

qX
p=2

Aq−p ¡q−2T−1vq0+p−1Qvqxq¢ ¡q−2T−2xq0Qvqxq¢−1 + op
¡
q−1

¢
.

Consider

q−2T−1vq0+p−1Qvqx
q = q−1T−1

h³
q−1vq0+p−1 −

¡
q−1T−1vq0+p−1v

q
+q

¢ ¡
q−1T−1vq0+qv

q
+q

¢−1
q−1vq0+q

´i
xq.

By standard arguments, as q, T →∞,

q−1T−1vq0+p−1v
q
+q →p Ω22 and q−1T−1vq0+qv

q
+q →p Ω22.

Observe that,

vt+p−1 (q)− vt+q (q) =

q−pX
h=0

vt−h −
q−pX
h=0

vt+q−h,

and

1

q3T

TX
t=1

qX
p=2

Aq−p
Ã
q−pX
h=0

vt−h −
q−pX
h=0

vt+q−h

!
xt (q)

0 + op (1)

=
1

q3T

TX
t=1

qX
p=2

Ã
q−pX
h=0

vt−h −
q−pX
h=0

vt+q−h

!
xt (q)

0
+Op

¡
T−1

¢
=

1

q3T

TX
t=1

Ã
qX

p=2

q−pX
h=0

vt−h −
qX

p=2

q−pX
h=0

vt+q−h

!
xt (q)

0 +Op

¡
T−1

¢
=

1

q2T

TX
t=1

Ã
q−2X
h=0

µ
1− h

q

¶
vt−hxt (q)

0 −
q−2X
h=0

µ
1− h

q

¶
vt+q−hxt (q)

0
!
+Op

¡
T−1

¢
⇒ 1

2

Z 1

0

dB2J
0
C +

1

2

Z 1

0

dB2J
0
C

=

Z 1

0

dB2J
0
C ,

as q, T →∞. Thus,

T

q

³
β̂
B+
(q)− βB (q)

´
⇒
µZ 1

0

dB2JC

¶µZ 1

0

JCJ
0
C

¶−1
.
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2. (b) Denote x1 = x. The OLS estimator of βUi (q) in (20) is then given by

β̂
U+
(q) =

¡
rq0+qQvqx

¢
(x0Qvqx)

−1
.

Observe that, by the arguments above,

rq0+q = βU (q)x0 + β

q−1X
j=1

qX
p=q−j+1

Aq−pv0+p−q+j + u
q0
+q.

Thus,

T

q2

³
β̂
U+
(q)− βU (q)

´
= β

1
q

q−1X
j=1

qX
p=q−j+1

Aq−p ¡q−1T−1v0+p−q+jQvqx¢
 ¡T−2x0Qvqx¢−1

+q−1
¡
q−1T−1uq0+qQvqx

¢ ¡
T−2x0Qvqx

¢−1
= β

1
q

q−1X
j=1

qX
p=q−j+1

Aq−p ¡q−1T−1v0+p−q+jQvqx¢
 ¡T−2x0Qvqx¢−1 + op

¡
q−1

¢
.

Consider

q−1T−1v0+p−q+jQvqx = q−1T−1
³
v0+p−q+j −

¡
q−1T−1v0+p−q+jv

q
+q

¢ ¡
q−1T−1vq0+qv

q
+q

¢−1
vq0+q

´
x.

Observe that under the martingale difference assumption,

q−1T−1v0+p−q+jv
q
+q =

1

qT

TX
t=1

vt+q (q) v
0
t+p−q+j =

1

qT

TX
t=1

(vt+1 + vt+2 + ...+ vt+q) v
0
t+p−q+j = Op

¡
q−1

¢
.

Further,

q−1T−1vq0+qv
q
+q =

1

qT

TX
t=1

vt+q (q) vt+q (q)
0 →p Ω22,

and

q−1T−1vq0+qx⇒
Z 1

0

dB2J
0
C ,

as q, T →∞. Thus,

q−1T−1v0+p−q+jQvqx = q−1T−1v0+p−q+jx−
¡
q−1T−1v0+p−q+jv

q
+q

¢ ¡
q−1T−1vq0+qv

q
+q

¢−1
q−1T−1vq0+qx

= q−1T−1v0+p−q+jx+Op

¡
q−1

¢
.

The result now follows in the same manner as above, noting that Λ22 = 0 under the martingale

assumption.
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Proof of Corollary 1. Observe that under the null hypothesis,

σ̂U11·2 =
1

qT

TX
t=1

ûU+t (q)
2
=

1

qT

TX
t=1

³
ut+q·2 (q) +Op

³ q
T

´´2
=

1

qT

TX
t=1

ut+q·2 (q)
2 +

1

qT

TX
t=1

Op

³ q
T

´2
+ 2Op

³ q
T

´ 1

qT

TX
t=1

ut+q·2 (q)

=
1

qT

TX
t=1

¡
ut+q (q)− ω12Ω

−1
22 vt+q (q)

¢2
+Op

³ q
T

´
→ pσ11·2.

Identical arguments hold for σ̂B11·2. The following t−statistics can now be formed

T
q

³
β̂
U+
(q)− βU,0i,k (q)

´
r
σ̂U11·2T−2a0

³PT
t=1 ztz

0
t

´−1
a

=
β̂
U+
(q)− βU,0i,k (q)r

q2σ̂U11·2a0
³PT

t=1 ztz
0
t

´−1
a

= tU+ (q) /
√
q,

and

T
³
β̂
B+
(q)− βB,0i,k (q)

´
r
σ̂B11·2 (qT )

−1 a0
³PT

t=1 zt (q) zt (q)
0´−1 a =

β̂
B+
(q)− βB,0i,k (q)r

q2σ̂B11·2a0
³PT

t=1 zt (q) zt (q)
0´−1 a = tB+ (q) /

√
q,

where tU+ (q) and tB+ (q) are the standard t−statistics corresponding to β̂
U+
(q) and β̂

B+
(q). The

results now follow directly from the asymptotically mixed normal distributions of the estimators.

Proof of Theorem 3. Let rq0i,+q, x
q
i , and xi denote the time-series demeaned data. Define,

β̂
B+

n,T (q) =

Ã
nX
i=1

rq0i,+qQvqi x
q
i

!Ã
nX
i=1

xq0i Qvqi x
q
i

!−1
, (28)

and

β̂
U+

n,T (q) =

Ã
nX
i=1

rq0i,+qQvqi xi

!Ã
nX
i=1

x0iQvqi xi

!−1
. (29)
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Start with β̂
B+

n,T (q). By the derivations in the proof of Theorem 2,

√
nT
³
β̂
B+

n,T (q)− 0
´

=

Ã
1√
n

nX
i=1

q−2T−1uq0i,+qQvqi x
q
i

!Ã
1

n

nX
i=1

q−2T−2xq0i Qvqi x
q
i

!−1

⇒ 1√
n

nX
i=1

µZ 1

0

dBi,1·2J 0i,Ci

¶Ã
1

n

nX
i=1

Z 1

0

J i,CiJ
0
i,Ci

!−1
⇒ N

¡
0,Ω−1xxΦu·v,xΩ

−1
xx

¢
,

in sequential limits as (T, n→∞)seq, where

Ωxx = E

·Z 1

0

J i,CiJ
0
i,Ci

¸
and

Φu·v,x = E

"µZ 1

0

dBi,1·2J 0i,Ci

¶µZ 1

0

dBi,1·2J 0i,Ci

¶0#
.

Similarly, as (T, n→∞)seq,

√
n
T

q

³
β̂
U+

n,T (q)− 0
´

=

Ã
1√
n

nX
i=1

q−1T−1uq0i,+qQvqi xi

!Ã
1

n

nX
i=1

T−2x0iQvqi xi

!−1

⇒ 1√
n

nX
i=1

µZ 1

0

dBi,1·2J 0i,Ci

¶Ã
1

n

nX
i=1

Z 1

0

J i,CiJ
0
i,Ci

!−1
⇒ N

¡
0,Ω−1xxΦu·v,xΩ

−1
xx

¢
.

Proof of Corollary 2. Let ûUi,t (q) and ûBi,T (q) be the estimated residuals. Form the t−statistic,

tB+n,T (q) =

√
nT
³
β̂
B+

n,T (q)− 0
´

r
a0
³
Ω̂
B

xx

´−1
Φ̂
B

u·v,x
³
Ω̂
B

xx

´−1
a

Φ̂
B

u·v,x =
1

n

nX
i=1

1

q4T 2

TX
t=1

TX
s=1

¡
ûBi,t+q (q) zi,t (q)

0¢0 ¡ûBi,s+q (q) zi,s (q)0¢
→ pE

"µZ 1

0

dBi,1·2J 0i,Ci

¶µZ 1

0

dBi,1·2J 0i,Ci

¶0#
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and

Ω̂
B

xx =
1

n

nX
i=1

1

q2T 2

TX
t=1

zi,t (q) zi,t (q)
0 →p E

·Z 1

0

J i,CiJ
0
i,Ci

¸
.

It follows that,

tB+n,T (q) =

√
nT
³
β̂
B+

n,T (q)− 0
´

r
a0
³
Ω̂
B

xx

´−1
Φ̂
B

u·v,x
³
Ω̂
B

xx

´−1
a

=

√
nT
³
β̂
B+

n,T (q)− 0
´

q
a0Ω̂
−1
xx Φ̂u·v,xΩ̂

−1
xx a

,

where Ω̂
−1
xx and Φ̂u·v,x are the standard estimates of Ω

−1
xx and Φu·v,x, respectively, formed as above

but without any standardization by q. The tU+n,T (q) is formed analogously and the result follows in an

identical manner. Observe that these pooled t−statistics are standard heteroskedasticity and auto-
correlation robust t−tests as described in Baltagi (1995).
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Table 1: Data summary. The first two columns give the country and the longest available sample
for that country. The O column indicates whether a country is included in the OECD panels. The
remaining columns give summary statistics of the data. The first two of these show the mean and
standard deviation of the excess log-returns over the domestic short interest rate (re). The last four
give the sample means of the logged dividend price ratio (d − p), earnings price ratio (e − p), short
interest rate (rs), and term spread (y − rs). The summary statistics are calculated using the longest
available samples for all variables except the short interest rate and the term spread, for which only
data after 1952 is used, since that is the sample period considered in the forecasting regressions using
these variables.

Country Sample O µ (re) σ (re) µ (d− p) µ (e− p) µ (rs) µ (y − rs)

Argentina 1988.3− 2004.6 40.250 71.605 -3.913 -2.807 30.333 7.519
Australia 1882.12− 2004.6 O 7.292 13.292 -2.814 -2.723 6.574 1.033
Austria 1970.2− 2004.6 O 1.422 18.531 -3.751 -3.428 6.466 0.682
Belgium 1952.1− 2004.6 O 2.559 14.813 -3.304 -2.604 6.572 0.452
Brazil 1988.3− 2004.5 15.681 56.361 -3.654 -2.706 111.820 -9.436
Canada 1934.3− 2004.6 O 4.737 15.207 -3.319 -2.852 6.169 1.033
Chile 1983.3− 2004.6 11.835 23.829 -3.124 -2.616 16.083 -
Denmark 1970.2− 2004.6 O 2.079 17.631 -3.639 -2.721 10.235 -0.074
Finland 1962.3− 2004.6 O 6.344 21.705 -3.233 -3.257 8.410 0.209
France 1898.1− 1914.7 O 2.342 8.081 -3.246 - - -

1919.2− 1940.3 O 4.880 19.935 -3.302 - - -
1941.5− 2004.6 O 6.412 20.314 -3.469 -2.822 6.638 0.757

Germany 1872.9− 1942.3 O -5.310 38.852 -3.033 - - -
1953.2− 2004.6 O 4.975 17.329 -3.425 -2.733 4.544 1.963

Greece 1977.3− 2004.6 O 4.945 30.394 -2.919 -2.630 12.725 0.538
Hong Kong 1973.1− 2004.6 6.263 36.287 -3.338 -2.661 5.336 1.541
Hungary 1993.12− 2004.6 5.506 35.817 -4.202 -3.220 16.939 -1.824
India 1988.3− 2003.12 7.733 31.677 -4.179 -2.994 10.092 0.883
Ireland 1990.7− 2004.6 O 5.024 18.960 -3.809 -2.677 6.559 0.216
Israel 1994.1− 2004.6 -2.135 25.173 -3.726 -2.626 10.179 -
Italy 1925.3− 2004.6 O 4.045 25.862 -3.461 -3.384 8.098 0.784
Japan 1922.1− 1942.1 O 4.521 14.168 -2.739 - - -

1949.7− 2004.6 O 6.592 19.947 -3.890 -3.289 4.742 1.396
Jordan 1988.2− 2003.2 -0.148 14.743 -3.472 -2.671 6.117 -
Luxembourg 1985.2− 1994.12 O 7.453 14.771 -3.273 - - -
Malaysia 1973.1− 2004.6 3.001 31.271 -3.820 -3.060 4.597 2.293
Mauritius 1997.1− 2002.12 -0.921 11.895 -2.903 -2.159 9.421 -
Mexico 1988.3− 2004.6 4.886 28.924 -4.113 -2.565 23.849 0.340
Netherlands 1969.9− 2004.6 O 5.252 17.705 -3.134 -2.336 4.606 1.624
New Zealand 1987.1− 2004.6 O -5.441 20.811 -3.064 -2.730 9.059 -0.630
Norway 1970.2− 2001.9 O 1.805 24.799 -3.620 -2.661 8.334 0.130
Philippines 1982.3− 2004.5 1.287 31.559 -3.992 -2.684 14.451 0.029
Poland 1993.12− 2004.5 -7.625 41.668 -4.479 -2.511 21.289 -2.793
Portugal 1988.4− 2004.6 O -2.330 19.345 -3.689 -2.861 7.884 0.700
Singapore 1973.1− 2004.6 1.168 28.376 -3.953 -3.045 3.807 1.625
South Africa 1960.4− 2004.6 6.452 22.308 -3.337 -2.368 8.812 1.750
Spain 1940.6− 1968.12 O 7.762 13.893 -3.221 - - -

1981.3− 2004.6 O 7.512 22.136 -2.931 -2.680 7.830 0.736
Sweden 1919.2− 2004.6 O 4.548 17.713 -3.295 -2.591 6.607 0.766
Switzerland 1966.4− 2004.6 O 4.215 16.885 -3.798 -2.665 3.568 0.883
Taiwan 1988.3− 2004.1 1.256 39.475 -4.709 -3.271 5.136 0.721
Thailand 1976.1− 2004.6 4.011 32.504 -3.313 -2.467 8.030 1.346
Turkey 1986.4− 2004.6 7.302 59.953 -3.482 -2.705 50.398 -35.619
UK 1836.1− 1916.12 O 0.219 5.585 -3.337 - - -

1924.2− 2004.6 O 4.874 16.789 -3.089 -2.419 7.213 0.548
USA 1871.3− 2004.6 O 4.464 16.720 -3.183 -2.663 5.106 1.165
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Table 2: 1-month horizon pooled results. The first column indicates which panel is being used, with
(1950.1-) denoting that all observations before 1950 are dropped from that panel. The next two
columns give the number of individual time series and total number of observations in the panel.
The following four columns report the pooled estimate based on recursive demeaning of the data, the
standard fixed effects estimate, and the two corresponding t−statistics. The last column gives the
number of significant coefficients in the individual time-series regressions performed on each of the
time-series in the panel. The robust t−statistics from which proper inference can be drawn are printed
in bold type.

Panel n # obs β̂
rd

n,T β̂n,T trdn,T tn,T t+0.05
Panel A. The earnings-price ratio

Global 38 13,610 0.004 0.010 1.394 4.079 2
Global (1950.1-) 38 12,400 0.003 0.010 0.998 3.905 2
OECD 21 9,395 0.000 0.003 0.127 2.531 1
OECD (1950.1-) 21 8,185 -0.002 0.003 -0.729 2.400 1
Non-OECD 17 4,274 0.013 0.026 2.464 6.832 1

Panel B. The dividend-price ratio
Global 46 20,594 -0.005 0.006 -1.155 3.352 2
Global (1950.1-) 41 14,947 -0.007 0.009 -1.311 4.742 3
OECD 28 16,245 -0.006 0.003 -1.346 1.739 2
OECD (1950.1-) 23 10,598 -0.012 0.005 -1.601 5.231 3
Non-OECD 18 4,349 -0.003 0.015 -0.399 3.074 0

Panel C. The short rate
Global 39 15,260 -0.140 0.100 -1.604 0.494 11
OECD 21 10,642 -2.049 -0.946 -5.268 -3.956 8
Non-OECD 18 4,618 -0.082 0.135 -0.717 0.597 3

Panel D. The term spread
Global 35 13,048 14.174 0.902 0.106 1.247 11
OECD 21 10,470 1.752 1.932 3.026 3.799 9
Non-OECD 14 2,578 -0.212 0.338 -0.087 0.374 2

Panel E. The U.S. short rate
Global 39 15,260 - -1.207 - -4.414 7
OECD 21 10,642 - -1.199 - -8.172 4
Non-OECD 18 4,618 - -1.230 - -1.211 3

Panel F. The U.S. term spread
Global 35 13,060 - 2.636 - 5.365 7
OECD 21 10,471 - 2.001 - 4.183 6
Non-OECD 14 2,589 - 5.047 - 3.446 1
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Table 3: 12-month horizon results for the pooled regressions. The first column indicates what sample
is being used, and the next two columns give the number of separate time-series in the panel and the
total number of observations. The following four columns state the results from the balanced long-run
regressions: the pooled estimate of the slope coefficient, the corresponding standard t−statistic, the
robust, and conservative, tB+n,T−statistic, and the number of significant slope coefficients found in the
individual time-series regressions, based on the conservative t−statistics. The final four columns give
the corresponding results for the unbalanced long-run regression. The robust t−statistics from which
proper inference can be drawn are printed in bold type.

Balanced regression, q = 12 Unbalanced regression, q = 12

Panel n # obs β̂
B

n,T tn,T tB+n,T tB+0.05 β̂
U

n,T tn,T tU+n,T tU+0.05
Panel A. The earnings-price ratio

Global 37 13,528 0.010 4.736 0.850 2 0.126 4.426 0.427 2
Global (1950.1-) 37 12,318 0.010 4.525 0.683 1 0.126 4.275 0.293 1
OECD 21 9,395 0.005 3.273 -0.962 1 0.057 3.864 -1.488 1
OECD (1950.1-) 21 8,185 0.005 3.032 -1.311 0 0.053 3.684 -1.843 0
Non-OECD 16 4,133 0.025 5.306 2.940 1 0.291 4.479 2.164 1

Panel B. The dividend-price ratio
Global 45 20,522 0.010 6.528 1.397 7 0.111 4.684 -0.273 7
Global (1950.1-) 39 14,756 0.012 8.478 2.995 5 0.141 6.295 0.772 7
OECD 28 16,245 0.008 5.377 -0.039 4 0.069 3.608 -1.139 3
OECD (1950.1-) 22 10,479 0.010 9.486 0.704 2 0.103 9.536 -0.389 3
Non-OECD 17 4,277 0.017 5.073 2.763 3 0.206 3.696 1.396 4

Panel C. The short rate
Global 39 15,260 0.175 1.067 1.289 2 1.887 1.049 1.261 6
OECD 21 10,642 -0.205 -1.173 -2.317 1 -6.972 -2.770 -3.728 3
Non-OECD 18 4,618 0.192 1.058 1.270 1 2.169 1.084 1.321 3

Panel D. The term spread
Global 27 12,222 1.138 2.657 3.460 3 16.446 3.206 3.793 6
OECD 21 10,470 1.475 4.122 5.229 3 19.580 4.297 5.106 5
Non-OECD 6 1,752 -0.167 -0.136 0.586 0 5.042 0.363 0.916 1

Panel E. The U.S. short rate
Global 39 15,260 -0.552 -2.734 - 2 -8.864 -3.105 - 3
OECD 21 10,642 -0.636 -3.777 - 1 -10.259 -6.365 - 2
Non-OECD 18 4,618 -0.251 -0.349 - 1 -4.222 -0.371 - 1

Panel F. The U.S. term spread
Global 28 12,346 4.044 9.121 - 3 35.470 9.571 - 4
OECD 21 10,471 3.950 9.658 - 2 35.765 14.827 - 3
Non-OECD 7 1,875 4.535 2.632 - 1 33.947 1.779 - 1
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Table 4: 60-month horizon results for the pooled regressions. The first column indicates what sample
is being used, and the next two columns give the number of separate time-series in the panel and the
total number of observations. The following four columns state the results from the balanced long-run
regressions: the pooled estimate of the slope coefficient, the corresponding standard t−statistic, the
robust, and conservative, tB+n,T−statistic, and the number of significant slope coefficients found in the
individual time-series regressions, based on the conservative t−statistics. The final four columns give
the corresponding results for the unbalanced long-run regression. The robust t−statistics from which
proper inference can be drawn are printed in bold type.

Balanced regression, q = 60 Unbalanced regression, q = 60

Panel n # obs β̂
B

n,T tn,T tB+n,T t+0.05 β̂
U

n,T tn,T tU+n,T t+0.05
Panel A. The earnings-price ratio

Global 23 10,921 0.005 2.317 1.661 3 0.230 2.514 1.273 3
Global (1950.1-) 23 9,711 0.005 2.098 1.444 3 0.222 2.342 1.010 2
OECD 17 8,639 0.003 1.667 1.048 1 0.132 1.514 0.291 2
OECD (1950.1-) 17 7,429 0.003 1.408 0.796 1 0.116 1.314 -0.002 1
Non-OECD 6 2,282 0.022 3.348 2.125 2 0.937 8.900 4.472 1

Panel B. The dividend-price ratio
Global 30 17,884 0.006 3.635 1.023 8 0.377 4.473 1.082 6
Global (1950.1-) 25 12,208 0.007 3.950 0.993 4 0.493 7.470 2.358 4
OECD 23 15,354 0.004 2.898 0.075 5 0.262 3.408 -0.137 4
OECD (1950.1-) 18 9,678 0.005 3.109 -0.248 1 0.368 7.155 0.478 2
Non-OECD 7 2,530 0.016 4.823 2.489 3 0.882 8.716 5.200 2

Panel C. The short rate
Global 25 12,650 0.430 2.476 1.981 0 18.116 1.800 0.769 0
OECD 18 10,040 0.567 3.206 1.600 0 12.142 1.431 -0.636 0
Non-OECD 7 2,610 -0.270 -0.840 -0.128 0 32.867 1.349 2.106 0

Panel D. The term spread
Global 20 10,967 -0.586 -0.712 -0.910 1 15.342 1.218 1.382 1
OECD 17 9,727 -1.288 -1.669 -1.944 0 9.224 0.703 1.454 1
Non-OECD 3 1,240 5.615 2.432 2.545 1 52.133 1.296 0.168 0

Panel E. The U.S. short rate
Global 25 12,650 0.769 2.956 - 0 11.380 1.234 - 0
OECD 18 10,040 0.503 2.187 - 0 0.392 0.056 - 0
Non-OECD 7 2,610 2.270 2.405 - 0 62.964 1.615 - 0

Panel F. The U.S. term spread
Global 20 10,968 -0.765 -0.773 - 0 53.014 5.372 - 0
OECD 17 9,727 0.029 0.033 - 0 54.934 4.888 - 0
Non-OECD 3 1,241 -6.633 -1.746 - 0 40.166 7.006 - 0
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Table 5: 1-month horizon country level results. The first and second columns indicate the country and
sample period, respectively, on which the estimates are based. The next four columns show the OLS
estimates, the OLS R2 expressed in percent, the OLS t−statistics, and the robust test-statistic, t+i .
In the last column, the correlation between the residuals in the regressand and the regressor is given.
The robust t−statistics from which proper inference can be drawn are printed in bold type.

Country Sample β̂i R2i ti t+i δ̂i

Panel A. The earnings-price ratio
Argentina 1988.1− 2004.6 0.041 2.577 2.277 1.992 -0.085
Australia 1962.1− 2004.6 0.010 0.423 1.468 0.407 -0.665
Austria 1981.11− 2004.6 0.002 0.066 0.423 0.013 -0.258
Belgium 1969.9− 2004.6 0.012 0.408 1.305 0.121 -0.563
Brazil 1988.3− 2004.5 0.022 1.361 1.632 1.485 -0.239
Canada 1956.3− 2004.6 0.000 0.001 0.064 -0.748 -0.464
Chile 1988.3− 2004.6 0.024 2.709 2.324 1.467 -0.513
Denmark 1970.1− 2004.6 0.001 0.007 0.165 -0.197 -0.214
Finland 1988.3− 2004.6 -0.005 0.195 -0.615 -1.408 -0.408
France 1971.11− 2004.6 -0.001 0.003 -0.112 -0.997 -0.359
Germany 1969.9− 2004.6 0.008 0.442 1.359 0.758 -0.570
Greece 1977.3− 2004.6 -0.003 0.028 -0.302 -1.940 -0.471
Hong Kong 1973.1− 2004.6 0.060 3.349 3.610 0.182 -0.755
Hungary 1993.3− 2004.6 0.001 0.006 0.088 -0.083 -0.074
India 1988.3− 2003.12 0.025 1.411 1.640 0.790 -0.639
Ireland 1990.7− 2004.6 0.034 1.773 1.731 0.580 -0.563
Italy 1981.3− 2004.6 0.005 0.330 0.959 0.433 -0.229
Japan 1956.3− 2004.6 0.006 0.598 1.864 0.942 -0.555
Jordan 1988.3− 2003.2 0.025 1.763 1.787 1.362 -0.320
Malaysia 1973.1− 2004.6 0.022 0.637 1.553 -1.783 -0.720
Mauritius 1996.3− 2002.12 0.003 0.063 0.225 0.342 -0.699
Mexico 1988.1− 2004.6 0.017 0.467 0.959 -0.466 -0.574
Netherlands 1969.9− 2004.6 0.002 0.046 0.439 -0.171 -0.574
New Zealand 1988.3− 2004.6 -0.007 0.491 -0.979 -1.699 -0.177
Norway 1970.1− 2001.9 -0.004 0.154 -0.764 -1.242 -0.304
Philippines 1982.3− 2004.5 0.011 0.264 0.837 0.408 -0.300
Poland 1992.3− 2004.5 0.025 1.331 1.398 0.140 -0.573
Portugal 1988.3− 2004.6 0.010 0.356 0.832 -0.333 -0.464
Singapore 1973.1− 2004.6 0.041 2.073 2.821 -0.045 -0.639
South Africa 1960.3− 2004.6 0.020 0.969 2.277 1.275 -0.734
Spain 1980.1− 2004.6 0.018 0.671 1.405 -0.357 -0.645
Sweden 1969.9− 2004.6 0.002 0.028 0.343 -0.058 -0.298
Switzerland 1969.9− 2004.6 -0.006 0.185 -0.879 -2.492 -0.558
Taiwan 1988.3− 2004.1 0.043 1.614 1.761 0.532 -0.655
Thailand 1975.6− 2004.6 0.013 0.485 1.300 0.089 -0.366
Turkey 1986.3− 2004.6 0.035 3.250 2.706 1.438 -0.473
UK 1928.1− 2004.6 0.010 0.662 2.471 1.347 -0.831

1950.1− 2004.6 0.011 0.960 2.513 1.779 -0.847
USA 1871.3− 2004.6 0.011 0.718 3.398 3.121 -0.564

1950.1− 2004.6 0.007 0.536 1.874 -0.034 -0.822
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Table 5: 1-month horizon country level results (continued).

Country Sample β̂i R2i ti t+i δ̂i

Panel B. The dividend-price ratio
Argentina 1988.3− 2004.6 -0.003 0.026 -0.224 -0.884 -0.378
Australia 1882.12− 2004.6 0.005 0.138 1.416 0.193 -0.567

1950.1− 2004.6 0.013 0.560 1.916 0.868 -0.721
Austria 1970.2− 2004.6 0.001 0.009 0.196 -1.444 -0.733
Belgium 1952.1− 2004.6 0.003 0.077 0.694 -0.874 -0.769
Brazil 1988.3− 2004.5 0.000 0.000 -0.016 -0.962 -0.426
Canada 1934.3− 2004.6 0.006 0.300 1.592 0.899 -0.747

1950.1− 2004.6 0.007 0.336 1.483 0.217 -0.885
Chile 1983.3− 2004.6 0.019 1.926 2.234 1.645 -0.388
Denmark 1970.2− 2004.6 0.000 0.001 0.071 -1.400 -0.705
Finland 1962.3− 2004.6 -0.004 0.109 -0.742 -1.749 -0.413
France 1898.1− 1914.7 0.048 1.413 1.681 0.438 -0.845

1919.2− 1940.3 0.018 0.262 0.813 -2.050 -0.900
1941.5− 2004.6 -0.001 0.016 -0.353 -1.910 -0.609
1950.1− 2004.6 0.004 0.107 0.836 -0.919 -0.742

Germany 1872.9− 1942.3 0.035 0.538 2.123 1.520 -0.143
1953.2− 2004.6 0.003 0.033 0.451 -2.505 -0.762

Greece 1977.3− 2004.6 0.003 0.078 0.505 0.127 -0.272
Hong Kong 1973.1− 2004.6 0.070 4.295 4.108 1.433 -0.826
Hungary 1993.12− 2004.6 0.017 0.607 0.874 -0.437 -0.529
India 1988.3− 2003.12 0.036 2.538 2.213 1.034 -0.616
Ireland 1990.7− 2004.6 0.047 4.434 2.775 1.447 -0.659
Israel 1994.1− 2004.6 0.018 1.036 1.139 0.901 -0.151
Italy 1925.3− 2004.6 -0.006 0.276 -1.623 -2.038 -0.145

1950.1− 2004.6 0.006 0.150 0.988 -0.696 -0.593
Japan 1922.1− 1942.1 -0.008 0.185 -0.665 -2.226 -0.549

1949.7− 2004.6 0.006 0.921 2.474 2.083 -0.528
Jordan 1988.2− 2003.2 0.013 1.783 1.802 1.479 -0.281
Luxembourg 1985.2− 1994.12 -0.007 0.224 -0.512 -0.592 -0.067
Malaysia 1973.1− 2004.6 0.042 2.009 2.776 -0.233 -0.717
Mauritius 1997.1− 2002.12 0.004 0.377 0.515 0.078 -0.148
Mexico 1988.3− 2004.6 0.037 2.594 2.273 1.459 -0.468
Netherlands 1969.9− 2004.6 0.004 0.124 0.720 -0.713 -0.776
New Zealand 1987.1− 2004.6 0.039 2.458 2.290 0.314 -0.691
Norway 1970.2− 2001.9 0.008 0.232 0.937 -0.704 -0.783
Philippines 1982.3− 2004.5 0.003 0.152 0.635 -0.053 -0.359
Poland 1993.12− 2004.5 0.045 4.618 2.451 1.377 -0.478
Portugal 1988.4− 2004.6 -0.004 0.070 -0.367 -1.349 -0.441
Singapore 1973.1− 2004.6 0.034 1.921 2.714 0.395 -0.810
South Africa 1960.4− 2004.6 0.018 0.798 2.063 0.919 -0.423
Spain 1940.6− 1968.12 0.002 0.015 0.230 -0.758 -0.558

1981.3− 2004.6 0.003 0.146 0.638 -0.156 -0.565
Sweden 1919.2− 2004.6 -0.002 0.028 -0.532 -2.075 -0.587

1950.1− 2004.6 0.006 0.199 1.140 -0.946 -0.755
Switzerland 1966.4− 2004.6 0.001 0.002 0.091 -1.509 -0.708
Taiwan 1988.3− 2004.1 0.024 2.469 2.188 1.640 -0.415
Thailand 1976.1− 2004.6 0.004 0.113 0.620 -0.710 -0.576
Turkey 1986.4− 2004.6 0.041 3.219 2.687 1.284 -0.673
UK 1836.1− 1916.12 0.006 0.258 1.585 0.822 -0.497

1924.2− 2004.6 0.018 0.908 2.970 2.372 -0.638
1950.1− 2004.6 0.026 1.896 3.550 2.389 -0.756

USA 1871.3− 2004.6 0.004 0.076 1.105 -1.387 -0.767
1950.1− 2004.6 0.009 0.801 2.294 2.929 -0.954
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Table 5: 1-month horizon country level results (continued).

Country Sample β̂i R2i ti t+i δ̂i

Panel C. The short interest rate
Argentina 1988.1− 2004.5 2.034 12.794 5.349 6.425 0.333
Australia 1952.1− 2004.3 -0.711 0.254 -1.260 -1.511 -0.162
Austria 1970.1− 2004.5 -1.739 0.337 -1.179 -1.197 -0.062
Belgium 1952.1− 2004.6 -0.514 0.074 -0.682 -0.738 -0.138
Brazil 1988.1− 2004.5 -0.042 0.089 -0.417 -0.425 -0.025
Canada 1952.1− 2004.5 -1.489 1.019 -2.540 -2.868 -0.176
Chile 1983.1− 2004.5 0.770 0.782 1.418 0.883 -0.249
Denmark 1970.1− 2004.5 -0.528 0.204 -0.917 -0.955 -0.148
Finland 1962.1− 2004.5 -1.369 0.466 -1.541 -1.559 -0.055
France 1952.1− 2004.5 -1.022 0.311 -1.399 -1.560 -0.159
Germany 1953.1− 2004.5 -3.201 1.064 -2.572 -2.611 -0.051
Greece 1977.1− 2004.5 1.689 0.630 1.440 1.439 -0.091
Hong Kong 1970.1− 2004.5 -3.076 0.445 -1.355 -1.408 -0.244
Hungary 1991.3− 2004.5 -0.922 0.309 -0.698 -0.735 -0.021
India 1988.1− 2003.12 -1.368 0.331 -0.794 -0.787 -0.121
Ireland 1988.3− 2004.5 -0.338 0.044 -0.292 -0.393 -0.087
Israel 1993.1− 2004.5 2.489 1.088 1.219 1.191 -0.017
Italy 1952.1− 2004.5 -0.886 0.363 -1.512 -1.592 -0.108
Japan 1952.1− 2004.5 1.182 0.221 1.178 1.100 -0.109
Jordan 1988.1− 2003.2 -6.669 6.012 -3.393 -3.394 -0.002
Malaysia 1972.12− 2004.5 -4.135 0.316 -1.091 -1.229 -0.117
Mauritius 1989.9− 2004.5 -7.398 7.019 -3.635 -3.576 0.100
Mexico 1988.1− 2004.6 -0.011 0.000 -0.030 -0.385 -0.025
Netherlands 1952.1− 2004.5 -1.932 0.775 -2.213 -2.381 -0.108
New Zealand 1986.8− 2004.3 -4.346 6.802 -3.915 -4.074 -0.109
Norway 1970.1− 2001.9 -1.589 0.393 -1.223 -1.357 -0.071
Philippines 1982.1− 2004.5 -0.173 0.011 -0.175 -0.188 -0.081
Poland 1991.6− 2004.5 0.039 0.001 0.033 0.129 0.034
Portugal 1988.3− 2004.5 -2.221 2.003 -1.986 -2.049 -0.107
Singapore 1970.1− 2004.5 -0.308 0.006 -0.153 -0.165 -0.115
South Africa 1960.3− 2004.5 -0.991 0.345 -1.354 -1.524 -0.131
Spain 1952.1− 2004.5 -1.609 1.457 -3.045 -3.141 -0.117
Sweden 1952.1− 2004.5 0.475 0.068 0.651 0.527 -0.162
Switzerland 1966.3− 2004.6 -2.492 0.875 -2.010 -2.061 -0.144
Taiwan 1988.1− 2004.1 -4.339 0.332 -0.798 -0.803 0.045
Thailand 1975.6− 2004.6 -5.321 3.485 -3.540 -3.490 0.036
Turkey 1986.3− 2004.6 0.518 0.162 0.595 0.548 -0.159
UK 1952.1− 2004.5 -0.475 0.063 -0.629 -1.181 -0.242
USA 1952.1− 2004.5 -1.825 1.032 -2.558 -2.641 -0.056
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Table 5: 1-month horizon country level results (continued).

Country Sample β̂i R2i ti t+i δ̂i

Panel D. The term spread
Argentina 1997.1− 2004.6 2.682 5.077 2.169 2.249 0.118
Australia 1952.1− 2004.6 1.428 0.177 1.056 1.096 0.047
Austria 1970.1− 2004.6 -0.976 0.029 -0.345 -0.372 -0.018
Belgium 1952.1− 2004.6 0.822 0.021 0.366 0.327 -0.026
Brazil 1994.1− 2004.5 0.006 0.000 0.005 0.226 0.046
Canada 1952.1− 2004.6 3.387 0.960 2.467 2.577 0.058
Denmark 1970.1− 2004.6 0.591 0.066 0.520 0.511 -0.010
Finland 1962.1− 2004.6 2.559 0.355 1.345 1.312 0.073
France 1952.1− 2004.6 2.902 0.430 1.646 1.804 0.067
Germany 1953.1− 2004.6 3.402 0.512 1.780 1.743 -0.032
Greece 1993.3− 2004.6 -4.889 1.084 -1.212 -1.141 0.074
Hong Kong 1994.11− 2004.6 0.271 0.001 0.029 0.477 0.340
Hungary 1997.4− 2004.6 3.692 0.111 0.308 -0.473 -0.252
India 1988.1− 2003.12 1.813 0.459 0.936 0.895 0.099
Ireland 1988.3− 2004.6 0.111 0.002 0.069 0.095 0.050
Italy 1952.1− 2004.6 2.656 0.436 1.659 1.656 -0.002
Japan 1952.1− 2004.6 -3.154 0.631 -1.997 -1.925 0.042
Malaysia 1972.12− 2004.6 3.579 0.220 0.911 0.974 0.117
Mexico 1995.3− 2004.6 -0.488 0.047 -0.227 -0.307 0.020
Netherlands 1952.1− 2004.6 2.922 0.527 1.824 1.858 0.059
New Zealand 1986.8− 2004.6 10.240 7.312 4.099 4.103 -0.002
Norway 1970.1− 2001.9 3.022 0.588 1.497 1.611 0.069
Philippines 1994.11− 2004.5 -0.966 0.097 -0.331 -0.364 -0.025
Poland 1994.4− 2004.5 3.553 0.233 0.529 0.550 0.160
Portugal 1988.3− 2004.6 5.605 0.667 1.142 1.140 -0.001
Singapore 1988.1− 2004.6 11.227 1.011 1.415 1.634 0.229
South Africa 1960.3− 2004.6 2.240 0.382 1.425 1.425 -0.003
Spain 1952.1− 2004.6 3.678 1.973 3.555 3.594 0.085
Sweden 1952.1− 2004.6 -0.106 0.001 -0.061 -0.119 0.092
Switzerland 1966.3− 2004.6 3.234 0.679 1.769 1.856 0.087
Taiwan 1995.3− 2004.1 -4.869 0.143 -0.388 -0.317 0.201
Thailand 1977.2− 2004.6 6.253 1.558 2.275 2.266 -0.044
Turkey 1997.11− 2004.6 -1.474 1.434 -1.065 -1.015 0.033
UK 1952.1− 2004.6 0.941 0.081 0.711 0.780 0.031
USA 1952.1− 2004.6 4.946 1.256 2.826 2.791 -0.041
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Table 6: 60-month horizon country level results. The first and second columns indicate the country
and sample period, respectively, on which the estimates are based. The next four columns show the
long-run OLS estimates, the OLS R2 expressed in percent, the scaled OLS t−statistics, and the scaled
robust test-statistic. The results in each panel are either for the balanced or unbalanced regression, as
indicated by the superscript B or U , respectively. The robust t−statistics from which proper inference
can be drawn are printed in bold type.

Country Sample β̂
B

i R2i tBi
±√

q tB+i
±√

q

Panel A. The earnings-price ratio (Balanced)

Australia 1962.1− 2004.6 -0.001 0.238 -0.125 -0.287
Austria 1981.11− 2004.6 0.009 18.174 0.753 0.637
Belgium 1969.9− 2004.6 0.029 31.373 1.509 1.144
Canada 1956.3− 2004.6 -0.002 3.530 -0.530 -0.498
Denmark 1970.1− 2004.6 -0.006 31.394 -1.500 -1.692
France 1971.11− 2004.6 0.009 15.552 0.915 0.840
Germany 1969.9− 2004.6 0.007 13.411 0.879 0.666
Greece 1977.3− 2004.6 0.046 36.809 1.424 1.632
Hong Kong 1973.1− 2004.6 0.037 20.626 1.059 1.426
Italy 1981.3− 2004.6 -0.002 1.421 -0.197 0.065
Japan 1956.3− 2004.6 0.008 34.984 2.033 1.836
Malaysia 1973.1− 2004.6 0.005 1.422 0.250 -0.393
Netherlands 1969.9− 2004.6 0.005 6.522 0.590 0.320
Norway 1970.1− 2001.9 -0.005 12.948 -0.806 -0.530
Philippines 1982.3− 2004.5 0.030 61.140 1.970 1.754
Singapore 1973.1− 2004.6 -0.013 9.123 -0.658 -1.137
South Africa 1960.3− 2004.6 0.012 21.643 1.379 1.169
Spain 1980.1− 2004.6 -0.012 3.236 -0.312 -0.687
Sweden 1969.9− 2004.6 0.004 4.167 0.465 0.525
Switzerland 1969.9− 2004.6 -0.001 0.088 -0.066 -0.642
Thailand 1975.6− 2004.6 0.038 54.020 2.122 1.778
UK 1928.1− 2004.6 0.007 17.508 1.681 0.774

1950.1− 2004.6 0.007 19.443 1.467 0.280
USA 1871.3− 2004.6 0.005 4.463 1.074 1.116

1950.1− 2004.6 0.003 3.236 0.546 -0.238
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Table 6: 60-month horizon country level results (continued).

Country Sample β̂
U

i R2i tUi
±√

q tU+i
±√

q

Panel B. The earnings-price ratio (Unbalanced)
Australia 1962.1− 2004.6 0.310 11.185 0.972 0.592
Austria 1981.11− 2004.6 -0.074 1.360 -0.221 -0.458
Belgium 1969.9− 2004.6 0.833 25.192 1.418 0.915
Canada 1956.3− 2004.6 -0.058 1.452 -0.357 -0.265
Denmark 1970.1− 2004.6 -0.110 4.670 -0.538 -0.727
France 1971.11− 2004.6 -0.096 1.725 -0.312 -0.698
Germany 1969.9− 2004.6 0.055 0.381 0.151 -0.097
Greece 1977.3− 2004.6 1.396 40.350 1.738 0.400
Hong Kong 1973.1− 2004.6 1.064 35.472 1.707 0.969
Italy 1981.3− 2004.6 -0.375 34.772 -1.398 -0.513
Japan 1956.3− 2004.6 0.454 39.912 2.399 1.816
Malaysia 1973.1− 2004.6 0.879 21.871 1.218 0.275
Netherlands 1969.9− 2004.6 0.253 8.036 0.722 0.506
Norway 1970.1− 2001.9 0.010 0.023 0.035 0.151
Philippines 1982.3− 2004.5 1.370 44.936 1.678 1.335
Singapore 1973.1− 2004.6 0.699 21.190 1.194 0.360
South Africa 1960.3− 2004.6 0.935 58.435 3.326 2.983
Spain 1980.1− 2004.6 0.986 23.961 1.109 -0.181
Sweden 1969.9− 2004.6 0.062 0.506 0.174 0.213
Switzerland 1969.9− 2004.6 -0.119 1.234 -0.273 -1.376
Thailand 1975.6− 2004.6 0.709 12.911 0.845 0.360
UK 1928.1− 2004.6 0.511 35.353 2.796 1.797

1950.1− 2004.6 0.458 35.917 2.356 1.472
USA 1871.3− 2004.6 0.311 6.990 1.389 1.378

1950.1− 2004.6 0.298 10.193 1.060 0.159
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Table 6: 60-month horizon country level results (continued).

Country Sample β̂
B

i R2i tBi
±√

q tB+i
±√

q

Panel C. The dividend-price ratio (Balanced)
Australia 1882.12− 2004.6 0.007 7.766 1.371 0.982

1950.1− 2004.6 0.006 5.945 0.751 0.407
Austria 1970.2− 2004.6 0.006 9.847 0.732 0.119
Belgium 1952.1− 2004.6 0.009 13.476 1.152 -0.112
Canada 1934.3− 2004.6 0.009 23.099 1.905 1.723

1950.1− 2004.6 -0.002 0.820 -0.272 -0.676
Chile 1983.3− 2004.6 0.016 24.881 0.870 0.575
Denmark 1970.2− 2004.6 -0.005 15.658 -0.954 -2.318
Finland 1962.3− 2004.6 -0.001 0.214 -0.118 -0.835
France 1919.2− 1940.3 0.099 58.484 1.780 4.081

1941.5− 2004.6 -0.001 0.309 -0.182 -2.674
1950.1− 2004.6 0.006 9.283 0.955 -0.927

Germany 1872.9− 1942.3 0.032 6.356 0.900 1.148
1953.2− 2004.6 0.011 9.732 0.946 0.385

Greece 1977.3− 2004.6 0.022 59.873 2.280 2.448
Hong Kong 1973.1− 2004.6 0.034 25.397 1.212 2.199
Italy 1925.3− 2004.6 -0.001 0.050 -0.083 -0.662

1950.1− 2004.6 0.003 1.086 0.313 -0.072
Japan 1922.1− 1942.1 0.009 3.235 0.261 -0.567

1949.7− 2004.6 0.005 32.349 2.076 1.229
Malaysia 1973.1− 2004.6 0.011 4.037 0.426 0.381
Netherlands 1969.9− 2004.6 0.010 16.310 0.985 -0.213
Norway 1970.2− 2001.9 -0.001 0.272 -0.109 -0.634
Philippines 1982.3− 2004.5 0.012 64.051 2.096 1.204
Singapore 1973.1− 2004.6 0.002 0.872 0.195 -0.434
South Africa 1960.4− 2004.6 0.017 40.002 2.140 1.706
Spain 1940.6− 1968.12 0.004 1.292 0.221 -0.183

1981.3− 2004.6 -0.010 27.329 -1.005 -1.703
Sweden 1919.2− 2004.6 0.002 0.936 0.378 0.564

1950.1− 2004.6 0.006 6.757 0.804 -0.011
Switzerland 1966.4− 2004.6 0.005 3.079 0.424 -0.666
Thailand 1976.1− 2004.6 0.025 57.914 2.262 2.519
UK 1836.1− 1916.12 0.007 24.299 2.136 2.661

1924.2− 2004.6 0.017 23.667 2.091 2.091
1950.1− 2004.6 0.015 19.824 1.485 0.923

USA 1871.3− 2004.6 0.008 9.677 1.626 1.549
1950.1− 2004.6 0.005 5.622 0.729 -0.061
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Table 6: 60-month horizon country level results (continued).

Country Sample β̂
U

i R2i tUi
±√

q tU+i
±√

q

Panel D. The dividend-price ratio (Unbalanced)
Australia 1882.12− 2004.6 0.440 13.799 1.932 1.282

1950.1− 2004.6 0.622 23.656 1.751 1.175
Austria 1970.2− 2004.6 0.162 2.467 0.386 -0.452
Belgium 1952.1− 2004.6 0.405 13.191 1.201 -0.277
Canada 1934.3− 2004.6 0.457 23.551 2.006 1.796

1950.1− 2004.6 0.340 13.769 1.257 0.615
Chile 1983.3− 2004.6 1.464 71.073 2.833 3.169
Denmark 1970.2− 2004.6 -0.056 0.643 -0.195 -1.042
Finland 1962.3− 2004.6 0.097 0.469 0.188 -0.525
France 1919.2− 1940.3 1.229 14.541 0.742 -0.425

1941.5− 2004.6 0.025 0.094 0.105 -1.475
1950.1− 2004.6 0.455 16.810 1.414 -0.394

Germany 1872.9− 1942.3 1.059 6.167 0.921 1.987
1953.2− 2004.6 0.656 15.458 1.303 -0.091

Greece 1977.3− 2004.6 0.758 37.688 1.644 1.641
Hong Kong 1973.1− 2004.6 1.413 52.768 2.433 1.412
Italy 1925.3− 2004.6 -0.110 1.121 -0.411 -1.509

1950.1− 2004.6 0.390 6.830 0.852 -0.062
Japan 1922.1− 1942.1 -0.242 2.316 -0.267 -1.278

1949.7− 2004.6 0.353 45.823 2.908 2.177
Malaysia 1973.1− 2004.6 1.452 53.204 2.455 0.987
Netherlands 1969.9− 2004.6 0.399 10.853 0.852 -0.278
Norway 1970.2− 2001.9 0.334 10.901 0.808 0.194
Philippines 1982.3− 2004.5 0.729 71.488 2.941 1.295
Singapore 1973.1− 2004.6 0.765 34.956 1.688 0.441
South Africa 1960.4− 2004.6 0.965 64.647 3.789 2.679
Spain 1940.6− 1968.12 0.804 29.543 1.406 0.607

1981.3− 2004.6 0.250 9.656 0.626 -0.011
Sweden 1919.2− 2004.6 0.041 0.144 0.153 -0.855

1950.1− 2004.6 0.277 6.215 0.810 -0.525
Switzerland 1966.4− 2004.6 0.261 3.930 0.522 -1.482
Thailand 1976.1− 2004.6 0.715 21.798 1.145 1.057
UK 1836.1− 1916.12 0.282 12.554 1.477 1.099

1924.2− 2004.6 1.075 50.992 3.962 3.616
1950.1− 2004.6 1.014 53.273 3.360 2.692

USA 1871.3− 2004.6 0.371 8.816 1.575 0.733
1950.1− 2004.6 0.445 20.194 1.583 0.852
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Table 7: Out-of-sample results at the 1-month horizon. The first and second columns indicate the
country and the sample period that are available, respectively. The next two columns give the in-
sample robust t−statistic and standard in-sample R2 expressed in percent that is obtained when using
the entire sample. The following three columns show the out-of-sample results based on the time-
series estimates. The first of these states the out-of-sample R2 expressed in percent. The second gives
the ratio of the out-of-sample R2 to the squared Sharpe ratio, which is approximately equal to the
proportional increase in expected returns, expressed in percent, for a log-utility investor utilizing the
predictive power of the short rate or the term spread. The third column shows the increase in the real
annual risk free rate, calculated as 12×R2OS/2 and expressed in percentage points, that is equivalent to
the welfare gain from using the conditional forecasts. The final three columns give the corresponding
out-of-sample results based on the pooled estimates.

In-sample Time-series Pooled
Country Sample t+i R2i R2i,OS R2i,OS/S

2
i 6×R2i,OS R2i,OS R2i,OS/S

2
i 6×R2i,OS

Panel A. The short interest rate
Australia 1952.1− 2004.3 -1.511 0.254 -0.149 -19.036 -0.892 0.150 19.195 0.900
Belgium 1952.1− 2004.6 -0.738 0.074 0.008 3.343 0.050 0.117 47.053 0.702
Canada 1952.1− 2004.5 -2.868 1.019 0.540 155.904 3.243 0.543 156.575 3.257
Finland 1962.1− 2004.5 -1.559 0.466 0.149 21.635 0.894 0.157 22.773 0.941
France 1952.1− 2004.5 -1.560 0.311 0.257 52.282 1.540 0.251 51.039 1.503
Germany 1953.1− 2004.5 -2.611 1.064 0.481 70.773 2.885 0.692 101.913 4.154
Italy 1952.1− 2004.5 -1.592 0.363 0.318 405.937 1.907 0.370 473.047 2.222
Japan 1952.1− 2004.5 1.100 0.221 -0.022 -2.376 -0.134 -0.066 -6.987 -0.394
Netherlands 1952.1− 2004.5 -2.381 0.775 0.097 7.488 0.582 0.260 20.067 1.559
South Africa 1960.3− 2004.5 -1.524 0.345 0.096 14.749 0.575 0.164 25.332 0.987
Spain 1952.1− 2004.5 -3.141 1.457 1.482 226.359 8.889 1.478 225.834 8.869
Sweden 1952.1− 2004.5 0.527 0.068 0.040 4.181 0.241 -0.220 -22.880 -1.320
UK 1952.1− 2004.5 -1.181 0.063 0.181 29.117 1.089 0.219 35.204 1.316
USA 1952.1− 2004.5 -2.641 1.032 0.003 0.269 0.021 0.496 38.711 2.976

Panel B. The term spread

Australia 1952.1− 2004.6 1.096 0.177 0.058 7.262 0.345 0.032 4.068 0.193
Belgium 1952.1− 2004.6 0.327 0.021 -0.085 -34.077 -0.508 0.055 21.959 0.328
Canada 1952.1− 2004.6 2.577 0.960 0.516 146.416 3.097 0.484 137.433 2.907
Finland 1962.1− 2004.6 1.312 0.355 0.300 42.289 1.800 0.572 80.625 3.431
France 1952.1− 2004.6 1.804 0.430 0.204 40.667 1.224 0.272 51.317 1.544
Germany 1953.1− 2004.6 1.743 0.512 0.395 56.860 2.368 0.428 61.697 2.570
Italy 1952.1− 2004.6 1.656 0.436 0.276 331.597 1.657 0.281 337.650 1.687
Japan 1952.1− 2004.6 -1.925 0.631 0.000 0.000 0.000 -0.112 -11.635 -0.675
Netherlands 1952.1− 2004.6 1.858 0.527 -0.123 -9.386 -0.738 0.318 24.304 1.911
South Africa 1960.3− 2004.6 1.425 0.382 -0.129 -20.554 -0.774 0.431 68.665 2.587
Spain 1952.1− 2004.6 3.594 1.973 1.213 183.393 7.278 0.917 138.674 5.503
Sweden 1952.1− 2004.6 -0.119 0.001 -0.421 -43.093 -2.528 -0.361 -36.882 -2.164
UK 1952.1− 2004.6 0.780 0.081 -0.657 -104.714 -3.940 -0.054 -8.548 -0.322
USA 1952.1− 2004.6 2.791 1.256 -1.316 -101.614 -7.894 0.538 41.514 3.225
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Table 8: Stock indices. This table lists the stock-index in each country to which the returns and
dividends- and earnings-price ratios correspond.

Country Stock-index
Argentina BUSE
Australia ASX-All Ordinaries
Austria Vienna SE Return Index
Belgium CBB All-Share
Brazil Sau Paulo IBX-50
Canada Toronto SE-300
Chile Santiago SE Return Index
Denmark Copenhagen KAX
Finland HEX All-Share
France SBF-250
Germany CDAX
Greece Athens Main SE Return Index
Hong Kong Hong Kong SE Return Index
Hungary BUX
India S&P CNX Nifty-50
Ireland ISEQ
Israel Tel Aviv SE Return Index
Italy BCI
Japan Nikko Securities Composite
Jordan Jordan SE Return Index
Luxembourg Luxembourg SE Return Index
Malaysia Kuala Lumpur SE Return Index
Mauritius Mauritius Semdex
Mexico Mexico SE Return Index
Netherlands Netherlands All-Share Index
New Zealand NZSX 50
Norway Oslo SE Return Index
Philippines Philippines SE Return Index
Poland WIG
Portugal BVL
Singapore SEI
South Africa Johannesburg SE Return Index
Spain Barcelona SE-30
Sweden Affarsvärlden Return Index
Switzerland Swiss Performance Index
Taiwan FTSE/TSE-50
Thailand Bangkok SE Return Index
Turkey ISE-100
UK FTA All-Share
USA S&P 500
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Figure 1: Results from the Monte Carlo simulation. The top two graphs, (A1) and (A2), show the kernel

estimates of the densities of the estimated coefficients, using the estimators β̂
B+
(q) , β̂

U+
(q), and

β̂
U+
(q = 1), referred to as Balanced, Unbalanced and Short-run OLS, respectively, in the legend. The

true value of β is equal to 0.05 and β̂
U+
(q) is divided by q to enable comparison between the estimators.

The middle graphs, (B1) and (B2), show the average rejection rates of the t−tests corresponding to
the respective estimators; the flat dashed lines show the 5% level. The bottom two graphs plot the
average estimated values of β as a function of the forecasting horizon q. The true values of β are
0.05, 0.00, and −0.05, representing the upper, middle, and lower lines in the graphs, respectively.
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Figure 2: Rolling regression pooled estimates for the OECD panel. Each graph depicts the pooled
estimate, and the corresponding conservative confidence bounds, with a coverage rate of 90%, that are
obtained when pooling at the OECD level all observations available up until the year in the plot. For
the earnings (e− p) and dividend price ratios (d− p), a time-series is added to the panel when 15 years
of observations become available. For the short rate (rs) and the term spread (y − rs), a time-series
is added when there are five years of available observations. The flat dashed lines indicate a value of
zero.
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Figure 3: Rolling regression estimates for the short interest rate. Each graph depicts the point estimate
and conservative confidence interval, with a coverage rate of 90%, that result from regressing excess
returns, in the country indicated, onto the lagged value of the short interest rate. All regressions are
at the 1-month horizon. The samples used in the estimation include data up till the year shown in the
graph. The flat dashed lines indicate a value of zero.
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