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Abstract

This paper analyzes econometric inference in predictive regressions in a panel data setting.

In a traditional time-series framework, estimation and testing are often made difficult by the

endogeneity and near persistence of many forecasting variables; tests of whether the dividend-price

ratio predicts stock returns is a prototypical example. I show that, by pooling the data, these

econometric issues can be dealt with more easily. When no individual intercepts are included

in the pooled regression, the pooled estimator has an asymptotically normal distribution and

standard tests can be performed. However, when fixed effects are included in the specification, a

second order bias in the fixed effects estimator arises from the endogeneity and persistence of the

regressors. A new estimator based on recursive demeaning is proposed and its asymptotic normality

is derived; the procedure requires no knowledge of the degree of persistence in the regressors and

thus sidesteps the main inferential problems in the time-series case. Since forecasting regressions

are typically applied to financial or macroeconomic data, the traditional panel data assumption

of cross-sectional independence is likely to be violated. New methods for dealing with common

factors in the data are therefore also developed. The analytical results derived in the paper are

supported by Monte Carlo evidence.
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1 Introduction

Predictive regressions are important tools for evaluating and testing economic models. Although

tests of stock return predictability, and the related market efficiency hypothesis, are probably the

most common application, many rational expectations models can be tested in a similar manner

(Mankiw and Shapiro, 1986). Traditionally, forecasting regressions have been evaluated in time-series

frameworks. However, with the increased availability of data, in particular international financial and

macroeconomic data, it becomes natural to extend the single time-series framework to a panel data

setting.

It has gradually been discovered that the apparently simple linear regression model most often

used for evaluating predictability in fact raises some very tough econometric issues. The high de-

gree of persistence found in many predictor variables, such as the earnings- or dividend-price ratios

in the prototypical stock return forecasting regression, is at the root of most econometric problems

associated with predictive regressions. The near persistence of the regressors, coupled with a strong

contemporaneous correlation between the innovations in the regressor and the regressand, causes stan-

dard OLS estimates to be inefficient and normal t−tests to have the wrong size. If the regressor is a
unit-root process, the predictive regression becomes a cointegrating relationship and well established

methods for dealing with endogenous regressors can be used. However, if the regressor is not a pure

unit-root process, but rather a so called near-unit-root process, standard cointegration methods can

yield misleading results (c.f. Cavanagh et al., 1995 and Elliot, 1998).1

In this paper, I analyze econometric inference in predictive regressions in a panel data setting, when

the regressors are nearly persistent and endogenous. The main contributions are the development of an

asymptotic theory for pooled estimators in forecasting equations and the proposal of new procedures

for dealing with the bias effects arising from the persistence and endogeneity of the regressors. Some

new results for controlling for the effects of common factors in panels are also derived.

By pooling the data, the econometric issues encountered in the time-series case can be dealt with

more easily. Intuitively, persistent regressors cause no problems when they are exogenous. When pool-

ing the data, independent cross-sectional information makes the regressors behave as if they were, on

average, exogenous. This intuition holds when no individual intercepts, or fixed effects, are allowed in

the specification. In this case, the standard pooled estimator has an asymptotically normal distribu-

tion; the summing up over the cross-section in the pooled estimator eliminates the usual near unit-root

asymptotic distributions found in the time-series case. It follows immediately that test statistics have

standard distributions and normal inference can be performed.

1The literature on time-series forecasting regressions is very large. Some early examples are Mankiw and Shapiro
(1986), Nelson and Kim (1993), and Goetzman and Jorion (1993). Recent work include Cavanagh et al. (1995),
Stambaugh (1999), Lewellen (2003), Campbell and Yogo (2003), Janson and Moreira (2004), and Polk et al. (2004).
Many of these studies are primarily concerned with tests of stock-return predictability, although the results are generally
applicable to more general forecasting regressions.
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However, when fixed effects are allowed for, the asymptotic properties of the pooled estimator

change. The time-series demeaning of the data, which is implicit in a fixed effects estimation, causes

the fixed effects estimator to suffer from a second order bias that invalidates inference from standard

test-statistics. To correct for this bias, I develop an estimator based on the idea of recursive demeaning

(e.g. Moon and Phillips, 1999, and Sul et al., 2003). When demeaning each time-series in the panel,

information after time t is used to form the time t regressor; this induces a correlation between

the lagged value of the demeaned regressor, used in the estimation of the predictive regression, and

the error term in the forecasting equation, which gives rise to the second order bias in the fixed

effects estimator. By using information only up till time t in the demeaning of the regressor and only

information after time t in the demeaning of the dependent variable, the distortive effects arising from

standard demeaning are eliminated. The estimator based on recursively demeaned data is shown to

have an asymptotically normal distribution and standard inference can again be performed.

The standard panel data assumption of cross-sectional independence is often too restrictive. This

is especially true for panels of financial or macroeconomic data that are most often used in forecasting

regressions. Unfortunately, there is, as of yet, no well developed econometric theories for dealing with

general forms of dependence in the cross-section. However, factor models are often used to capture

the co-movement in financial and macroeconomic time-series and I show that the methods developed

above can be extended to a setting where common factors are present in the data. Using first-stage

individual time-series regressions, the factors in the residuals of the forecasting regression can be

consistently estimated. The original data can then be ‘de-factored’, and the estimators described

above can be used, but with the de-factored data instead of the original data.

A separate application of the methods developed in this paper is provided in Hjalmarsson (2004),

where predictability in international stock returns is analyzed.

The rest of the paper is organized as follows. Section 2 describes the model while Sections 3 and

4 derive the main asymptotic properties of the pooled estimators. Section 5 derives a fully modified

pooled estimator (Phillips and Hansen, 1990) for the near-unit root case. This estimator is unfeasible

in general since the modification relies on the exact degree of persistence in the time-series, which is

typically unknown. However, in the special case of identical persistence in all of the time-series, the

estimator becomes practically feasible since the common degree of persistence can then be estimated

by panel methods (Moon and Phillips, 1999). In this case, the fully modified pooled estimator provides

a more efficient alternative to the standard pooled estimator when no individual intercepts are present

and to the recursively demeaned pooled estimator, described above, when fixed effects are included.

In Section 6, methods for controlling for common factors are described. Some results for unbalanced

panels are given in Section 7, and finite sample properties of the procedures developed in this paper are

analyzed through Monte Carlo simulations in Section 8. Section 9 concludes and all technical proofs

are found in the appendices.
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A brief word on notation. Following the work of Phillips and Moon (1999), results for the panel

estimators are first derived heuristically using sequential limits, which usually implies first keeping the

cross-sectional dimension, n, fixed and letting the time-series dimension, T , go to infinity, and then

letting n go to infinity. Such sequential convergence is denoted (T, n→∞)seq. These results are then
shown to hold as n and T go to infinity jointly, denoted (n, T →∞). Otherwise, standard notation is
used. BM (Ω) denotes a Brownian motion with covariance matrix Ω, ⇒ signifies weak convergence,

and →p denotes convergence in probability.

2 Model and assumptions

2.1 The data generating process

Consider a panel model with dependent variables yi,t, i = 1, ..., n, and the corresponding vector of

regressors, xi,t, where xi,t is an m × 1 vector and t = 1, ..., T . The behavior of yi,t and xi,t are

modelled as follows,

yi,t = αi + βixi,t−1 + ui,t, (1)

xi,t = Aixi,t−1 + vi,t, (2)

where Ai = I+Ci/T is an m×m matrix, with diagonal elements 1+ ck,i/T , and off-diagonal elements

ckl,i/T, k, l = 1, ...,m, k 6= l.

The error processes are assumed to satisfy the following assumption.

Assumption 1 Let wi,t = (ui,t, �i,t)
0 and Ft = {wi,s| s ≤ t, i = 1, ..., n} be the filtration generated by

wit, i = 1, ..., n. Then, for all i = 1, ..., n,

1. vi,t = Di (L) �i,t =
P∞

j=0Di,j�i,t−j.
2. Di,j are sequences of real numbers with D̄j ≡ supi ||Di,j || <∞ and

P∞
j=0 j

3
¯̄¯̄
D̄j

¯̄¯̄
<∞.

3. E [wit| Ft−1] = 0.
4. E

£
wi,tw

0
i,t

¯̄Ft−1¤ = Σi = [(σ11i, σ12i) , (σ21i, I)] .
5. suptE

£
u4i,t
¤
<∞ and suptE

h
||�i,t||4

i
<∞.

6. E
£
wi,tw

0
j,s

¤
= 0 for all t, s and i 6= j.

Denote Di = Di (1), D̄ = supi ||Di||, and Ω22i = D2
i .

Assumption 2 Ω22 = limn→∞ 1
n

Pn
i=1Ω22i.

Assumption 1 allows for a linear time-series structure in the errors of the predictor variables and

imposes the usual martingale difference (mds) assumption for the errors in the dependent variables.
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The mds assumption, which is standard in predictive regressions, is often based on some orthogonality

condition from an underlying rational expectations model. For instance, in financial forecasting re-

gressions the mds assumption is motivated by the efficient markets hypothesis. The time-series aspects

of the model formulated by (1) and (2) and Assumption 1 is similar to those of the models studied

by Mankiw and Shapiro (1986), Nelson and Kim (1993), Cavanagh et al. (1995), Stambaugh (1999),

Campbell and Yogo (2003), Lewellen (2003), Jansson and Moreira (2004), and Polk et al. (2004).

The final condition of Assumption 1 states the standard panel data assumption that the innovations

are uncorrelated in the cross-section. Some effects of cross-sectional dependence arising from common

factors are discussed later in the paper.

Assumption 3 introduces heterogeneity in the persistence of the regressor variables, but rules out

processes that are too explosive; this is not much of a limitation in practice.

Assumption 3 (Heterogeneous persistence)
1. The local-to-unity parameters Ci are iid across i .

2. maxCi < C̄ for all i.

Two different assumptions on the slope coefficients βi will be considered. The first assumption

allows the individual βis to differ from each other in a general fashion, whereas the second assumption

imposes an identical coefficient β across the whole panel. Clearly, the first assumption is more general,

but many useful results also arise from the study of the homogeneous model.

Assumption 4 (Heterogeneous slope coefficients)
1. βi = β + θi.

2. {θi}ni=1 is iid with mean zero and variance Ωθθ.
3. {θi}ni=1 is independent of wi,t and Ci for all i and t.

Assumption 5 (Homogeneous slope coefficients)
βi = β for all i.

The focus of this paper is inference on the parameter β, which in the heterogeneous case represents

the average relationship in the panel. In the homogeneous case, the βis are all identical and the

estimate of β thus gives an estimate of the slope coefficient in each individual forecasting equation.

This is typically not the case, though, and it is less obvious what the advantages are of using panel

methods to estimate the average parameter β, instead of using time-series estimators to estimate each

individual βi. There are, however, good reasons why panel methods might be useful, even in the

heterogeneous case.

Since the panel based inference analyzed in this paper does not require any knowledge of the

parameters Ci, either for estimation or testing, the nuisance parameter problem arising from Ci in
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time-series inference is no longer an issue. It therefore becomes easy to test hypotheses for β. Of

course, rejecting the null hypothesis of β = 0 does not reveal whether the variable xi,t−1 predicts yi,t
for a specific i, but it does say that on average there is a predictive relationship in the panel. The

interpretation of β as an average relationship in the panel has the advantage of resolving evidence from

individual time-series regressions. It is often the case that, say, stock returns are found predictable in

some countries, but not in others. The interpretations of such results is not straightforward but the

results from a pooled regression provide an answer; if the average slope coefficient β is significant, then

on average there is a significant relationship in the panel.

Predictive regressions are usually employed to test a null of no predictive relationship, and any

deviations from this null hypothesis are often small. Thus, even if the slope coefficients in the panel

are non-identical, they are still likely to be similar to each other in absolute terms. Under such

circumstances, the pooled estimate of the average parameter might provide a point estimate of the

individual intercepts that is at least as useful as the point estimate provided by time-series methods.

Evidence of this is provided by the out-of-sample exercises in Hjalmarsson (2004), where the forecasts

based on the pooled estimates often outperform those based on the time-series estimates.

2.2 Preliminary results

Before analyzing the panel estimator for β, it useful to establish some preliminary results that will

be used repeatedly. Let Ei,t = (ui,t, vi,t)
0 be the joint innovations process. Under Assumption 1, by

standard arguments (Phillips and Solo, 1992),

1√
T

[Tr]X
t=1

Ei,t ⇒ Bi (r) = BM (Ωi) (r) , (3)

where

Ωi =

Ã
σ11i ω12i

ω21i Ω22i

!
, (4)

and ω21i = Di (1)σ12i, ω12i = ω021i, and Bi (·) = (B1i (·) , B2i (·))0 denote a 1 + m−dimensional
Brownian motion. By the continuous mapping theorem, it follows that as T →∞, for all i,

1

T 2

TX
t=1

xi,tx
0
i,t ⇒

Z 1

0

Ji,Ci (r)Ji,Ci (r)
0 dr, (5)

where

Ji,Ci (r) =

Z r

0

e(r−s)CidB2,i (s) = Di

Z r

0

e(r−s)CidW2,i (s) . (6)
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Lemma 1 Under Assumptions 1 and 3,

E

"¯̄̄̄¯̄̄̄Z 1

0

Ji,Ci (r) Ji,Ci (r)
0
dr

¯̄̄̄¯̄̄̄2#
<∞, (7)

for all i.

From Lemma 1 and the cross-sectional independence, it follows that as n→∞,

1

n

nX
i=1

Z 1

0

Ji,Ci (r)Ji,Ci (r)
0
dr →p E

·Z 1

0

Ji,Ci (r) Ji,Ci (r)
0
dr

¸
. (8)

3 The pooled estimator

3.1 Heterogeneous slope coefficients

To estimate the average parameter β under Assumption 4, I consider the traditional pooled estima-

tor. Its asymptotic properties are derived heuristically here, using sequential limit arguments. Formal

proofs of the results for joint limits are found in the Appendix. To keep the arguments more transpar-

ent, I consider first the case where there are no individual effects in equation (1). That is, assume for

now that αi = 0 for all i.2 The case with individual intercepts will be dealt with later.

The pooled estimator of β is now given by

β̂n,T =

Ã
nX
i=1

TX
t=1

yi,tx
0
i,t−1

!Ã
nX
i=1

TX
t=1

xi,t−1x0i,t−1

!−1
(9)

= β +

Ã
1

n

nX
i=1

θi
1

T 2

TX
t=1

xi,t−1x0i,t−1

!Ã
1

n

nX
i=1

1

T 2

TX
t=1

xi,t−1x0i,t−1

!−1

+

Ã
1

n

nX
i=1

1

T 2

TX
t=1

uitx
0
i,t−1

!Ã
1

n

nX
i=1

1

T 2

TX
t=1

xi,t−1x0i,t−1

!−1
. (10)

2The results developed below also hold in the case with a common non-zero intercept α.
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Using sequential limits, for fixed n as T →∞,
√
n
³
β̂n,T − β

´
=

Ã
1√
n

nX
i=1

θi
1

T 2

TX
t=1

xi,t−1x0i,t−1

!Ã
1

n

nX
i=1

1

T 2

TX
t=1

xi,t−1x0i,t−1

!−1

+

Ã
1√
n

nX
i=1

1

T 2

TX
t=1

uitx
0
i,t−1

!Ã
1

n

nX
i=1

1

T 2

TX
t=1

xi,t−1x0i,t−1

!−1

⇒
Ã
1√
n

nX
i=1

θi

Z 1

0

Ji,Ci (r) Ji,Ci (r)
0
dr

!Ã
1

n

nX
i=1

Z 1

0

Ji,Ci (r)Ji,Ci (r)
0
dr

!−1
. (11)

By Lemma 1 and Assumption 4

E

"¯̄̄̄¯̄̄̄Z 1

0

Ji,Ci (r)Ji,Ci (r)
0
dr

¯̄̄̄¯̄̄̄2#
<∞ and E

·
θi

Z 1

0

Ji,Ci (r) Ji,Ci (r)
0
dr

¸
= 0. (12)

Thus, as n→∞, by the weak law of large numbers (WLLN)

1

n

nX
i=1

Z 1

0

Ji,Ci (r)Ji,Ci (r)
0 dr a.s.→ E

·Z 1

0

Ji,Ci (r)Ji,Ci (r)
0 dr
¸
, (13)

and by the Lindeberg-Levy central limit theorem (CLT)

1√
n

nX
i=1

θi

Z 1

0

Ji,Ci (r)Ji,Ci (r)
0 dr

⇒ N

Ã
0, E

"µ
θi

Z 1

0

Ji,Ci (r) Ji,Ci (r)
0
dr

¶0µ
θi

Z 1

0

Ji,Ci (r)Ji,Ci (r)
0
dr

¶#!
. (14)

To simplify the notation, let

Ωxx = E

·Z 1

0

Ji,Ci (r)Ji,Ci (r)
0 dr
¸

(15)

and

Φθxx = E

"µ
θi

Z 1

0

Ji,Ci (r) Ji,Ci (r)
0
dr

¶0µ
θi

Z 1

0

Ji,Ci (r)Ji,Ci (r)
0
dr

¶#
. (16)

In summary, as (T, n→∞)seq,
√
n
³
β̂n,T − β

´
⇒ N

¡
0,Ω−1xxΦ

θ
xxΩ

−1
xx

¢
. (17)
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In general, calculating explicit expressions for Ωxx and Φθxx would require a distributional assump-

tion for the Cis. Under the assumption that Ci = C for all i, however, results can be obtained. For

simplicity, consider the case when the regressors are scalar. It is shown in the Appendix that under

these circumstances,

Ωxx =
1

4
Ω22C

−2 ¡e2C − 2C − 1¢ , (18)

and

Φθxx =
1

16
ΩθθΩ

2
22C

−4 ¡4C2 − 4C + 6e2C + 3e4C − 20Ce2C − 9¢ . (19)

Observe that the limiting distribution is driven by the heterogeneity in the βis and is not directly

affected by the error terms ui,t. To understand this result, write equation (1) as

yi,t = αi + βxi,t−1 + θixi,t−1 + ui,t = αi + βxi,t−1 + Ui,t (20)

where Ui,t = θixi,t−1 + ui,t. The process Ui,t is a near integrated process, and the nearly non-

stationary part of it, θixi,t−1, will thus determine its asymptotic properties. The stationary part, ui,t,
will therefore have no direct effect on the asymptotic properties of the pooled estimator β̂n,T .

The fact that Ui,t is nearly integrated also explains the
√
n−convergence rate of the pooled estimator

in the completely heterogeneous case. As is well known, typical time-series estimators of βi, such as

the standard OLS estimator, have a convergence rate T . In a homogeneous panel, where βi = β,

for all i, a
√
nT−convergence rate can be obtained for the pooled estimator, as will be shown below.

However, in the case when the βis are heterogeneous, the residuals in the fitted regression (20) will be

nearly non-stationary. This slows down the rate of convergence since the expression for β̂n,T − β now

involves the sum
PT

t=1 xi,t−1x
0
i,t−1 in addition to the standard sum

PT
t=1 uitx

0
i,t−1. The former sum

requires a standardization of 1/T 2 while the latter only requires a 1/T standardization. The division

by T 2, as opposed to T , explains the slow down from
√
nT in the homogeneous case to

√
n in the

heterogeneous case.

The results derived heuristically above, using sequential limit arguments, continue to hold under

joint limits.

Theorem 1 Under Assumptions 1-4,
(i) β̂n,T →p β as (n, T →∞), where β is the average slope coefficient in the panel.
(ii) √

n
³
β̂n,T − β

´
⇒ N

¡
0,Ω−1xxΦ

θ
xxΩ

−1
xx

¢
.

as (n, T →∞) with n/T → 0.

The limiting distribution of β̂n,T depends on Ωxx and Φ
θ
xx. To perform inference, estimates of these
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parameters are required. Let ûi,t = yi,t − β̂n,Txi,t−1, and define

Φ̂θxx =
1

n

nX
i=1

1

T 4

TX
t=1

TX
s=1

¡
ûi,tx

0
i,t−1

¢0 ¡
ûi,sx

0
i,s−1

¢
, (21)

and

Ω̂xx =
1

n

nX
i=1

1

T 2

TX
t=1

xi,t−1x0i,t−1. (22)

The estimators Φ̂θxx and Ω̂xx are thus the panel equivalents of standard HAC estimators for long-run

variances.

Standard tests can now be performed. For instance, the null hypothesis βk = βk,0, for some

k, can be tested using a t−test. Using the results derived above, it follows easily that under the
null-hypothesis,

tk =

√
n
³
β̂k,n,T − βk,0

´
q
a0Ω̂−1xx Φ̂θxxΩ̂

−1
xx a

⇒ N (0, 1) , (23)

in sequential limits, as (T, n→∞)seq, where a is an m × 1 vector with the k’th component equal to
one and zero elsewhere. More general linear hypotheses can be evaluated using a Wald test. Suppose

the null hypothesis is H0 : Qβ = b, where rank(Q) = q. Then, under the null

WQ,b = n
³
Qβ̂n,T − b

´0 ³
QΩ̂−1xx Φ̂

θ
xxΩ̂

−1
xxQ

0
´−1 ³

Qβ̂n,T − b
´
⇒ χ2q, (24)

as (T, n→∞)seq. The t−test and Wald test are complete analogues of their time-series correspondents
when robust HAC estimators for the covariance matrix are used. These results can also be verified for

joint limits.

Theorem 2 Suppose Assumptions 1-4 hold. Then, as (n, T →∞) with n/T → 0,

(i) tk ⇒ N (0, 1) under the null hypothesis βk = βk,0, and

(ii) WQ,b ⇒ χ2q under the null hypothesis Qβ = b, where rank(Q) = q.

3.2 homogeneous slope coefficients

Consider again the case with αi = 0, for all i. Then, under Assumption 5, the pooled estimator β̂n,T
satisfies

√
nT
³
β̂n,T − β

´
=

Ã
1√
n

nX
i=1

1

T

TX
t=1

ui,tx
0
i,t−1

!Ã
1

n

nX
i=1

1

T 2

TX
t=1

xi,t−1x0i,t−1

!−1
. (25)
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Using sequential limits and arguments similar to those in the heterogeneous case, as (T, n→∞)seq,
√
nT
³
β̂n,T − β

´
⇒ N

¡
0,Ω−1xxΦuxΩ

−1
xx

¢
. (26)

where

Φux = E

"µZ 1

0

dBi,1JCi (r)
0
¶0µZ 1

0

dBi,1JCi (r)
0
¶#

. (27)

The limiting covariance matrix of β̂n,T is similar to that found in the heterogeneous case, although

the rate of convergence is different. In the case of scalar regressors, with Ci = C for all i, it is shown

in the Appendix that,

Φux =
1

4
σ11Ω22C

−2 ¡e2C − 2C − 1¢ . (28)

Combined with the result for Ωxx derived above, it follows that in this case the limiting variance

satisfies

Ω−1xxΦuxΩ
−1
xx = 4σ11Ω

−1
22 C

2
¡
e2C − 2C − 1¢−1 . (29)

Analogous to the heterogeneous case, let

Φ̂ux =
1

n

nX
i=1

1

T 2

TX
t=1

TX
s=1

¡
ûi,tx

0
i,t−1

¢0 ¡
ûi,sx

0
i,s−1

¢
. (30)

A t−test for H0 : βk = βk,0, can be formed, and as (T, n→∞)seq,

t0k =

√
nT
³
β̂k,n,T − βk,0

´
p
a0Ω̂−1xx Φ̂uxΩ̂−1xx a

⇒ N (0, 1) . (31)

Since Φ̂ux = T 2Φ̂θxx, it follows that

t0k =

√
nT
³
β̂k,n,T − βk,0

´
p
a0Ω̂−1xx Φ̂uxΩ̂−1xx a

=

√
n
³
β̂k,n,T − βk,0

´
q
a0Ω̂−1xx Φ̂θxxΩ̂

−1
xx a

= tk (32)

and the t−tests in the homogeneous and heterogeneous cases are identical. The same also holds for
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the more general Wald test,

W 0
Q,b = nT 2

³
Qβ̂n,T − b

´0 ³
QΩ̂−1xx Φ̂uxΩ̂

−1
xxQ

0
´−1 ³

Qβ̂n,T − b
´

= n
³
Qβ̂n,T − b

´0 ³
QΩ̂−1xx Φ̂

θ
xxΩ̂

−1
xxQ

0
´−1 ³

Qβ̂n,T − b
´

= WQ,b. (33)

Thus, although the rates of convergence are different in the heterogeneous and homogeneous case,

there is no practical difference when performing inference. This is a convenient result, since one need

not make any assumptions on the degree of homogeneity in the panel before performing inference.

Of course, the interpretation of the results are somewhat different depending on whether the panel is

homogeneous or heterogeneous.

The following two theorems show that these results also hold in joint limits.

Theorem 3 Under Assumptions 1-3, and 5,
(i) β̂n,T →p β as (n, T →∞) .
(ii) √

nT
³
β̂n,T − β

´
⇒ N

¡
0,Ω−1xxΦuxΩ

−1
xx

¢
.

as (n, T →∞) with n/T → 0.

Theorem 4 Suppose Assumptions 1-3, and 5 hold. Then, as (n, T →∞) with n/T → 0,

(i) t0k = tk ⇒ N (0, 1) under the null hypothesis βk = βk,0, and

(ii) W 0
Q,b =WQ,b ⇒ χ2q under the null hypothesis Qβ = b, where rank(Q) = q.

4 Individual effects

In the above analysis, the individual intercepts in equation (1) were all assumed to be equal to zero.

This section considers the effects on the pooled estimator when the αis are no longer zero and are

allowed to vary across the panel.

Let y
i,t
and xi,t denote the time-series demeaned data. That is, xi,t = xi,t − 1

T

PT
t=1 xi,t−1 and

y
i,t
= yi,t − 1

T

PT
t=1 yi,t. The pooled estimator, allowing for individual intercepts, is then given by

β̃n,T =

Ã
nX
i=1

TX
t=1

y
i,t
x0i,t−1

!Ã
nX
i=1

TX
t=1

xi,t−1x
0
i,t−1

!−1
. (34)

The next two sub-sections analyze the asymptotic properties of β̃n,T in the homogeneous and

heterogeneous cases.
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4.1 The heterogeneous case

Under Assumption 4, as (T, n→∞)seq, using the same arguments as previously,
√
n
³
β̃n,T − β

´
⇒ N

³
0,Ω−1xxΦ

θ
xxΩ

−1
xx

´
, (35)

where

Ωxx = E

·Z 1

0

J i,Ci (r)J i,Ci (r)
0
dr

¸
, (36)

Φθxx = E

"µ
θi

Z 1

0

J i,Ci (r) J i,Ci (r)
0 dr
¶0µ

θi

Z 1

0

J i,Ci (r)J i,Ci (r)
0 dr
¶#

, (37)

and

J i,Ci (r) = Ji,Ci (r)−
Z 1

0

Ji,Ci (r) dr. (38)

Estimates of Ωxx and Φ
θ
xx can be formed in the same manner as above, using the demeaned data. The

test statistics using these estimates are still valid with the same asymptotic distributions under the

null hypothesis. Apart from using demeaned data, there are no practical changes to the inference. As

in the case with no intercepts, these results can also be shown to hold in joint limits, although the

results are not repeated here.

4.2 The homogeneous case

As was just shown in the heterogeneous case, using demeaned data causes no changes for practical

inference with the pooled estimator. However, some caution is required since the same result does

not hold for the homogeneous case. Under Assumption 5, the pooled estimator with individual effects

satisfies

β̃n,T − β =

Ã
1

n

nX
i=1

1

T 2

TX
t=1

ui,tx
0
i,t−1

!Ã
1

n

nX
i=1

1

T 2

TX
t=1

xi,t−1x
0
i,t−1

!−1
. (39)

Clearly, the estimator is still consistent. Its asymptotic distribution, however, will be affected by the

demeaning. For fixed n, as T →∞,

T
³
β̃n,T − β

´
⇒
Ã
1

n

nX
i=1

Z 1

0

dB1,iJCi (r)
0
!Ã

1

n

nX
i=1

Z 1

0

JCi (r)JCi (r)
0
dr

!−1
. (40)

13



Let ω12 = limn→∞ n−1
P

ω12i, and observe that

E

·Z 1

0

dB1,iJCi (r)
0
¸

= E

·Z 1

0

dB1,iJi,Ci (r)
0 −
Z 1

0

dB1,i

Z 1

0

Ji,Ci (r)
0 dr
¸

= −E
·Z 1

0

Z 1

0

dB1,i (s)Ji,Ci (r)
0 dr
¸

= −E
·Z 1

0

Z 1

0

Z r

0

E
£
dB1,i (s) dB2,i (q)

0¤ e(r−q)Cidr¯̄̄̄Ci

¸
= −ω12

Z 1

0

Z r

0

E
h
e(r−s)Ci

i
dsdr

6= 0, (41)

whenever ω12 6= 0. Thus, as (T, n→∞)seq,

T
³
β̃n,T − β

´
→p −

µ
ω12

Z 1

0

Z r

0

E
h
e(r−s)Ci

i
dsdr

¶
Ω−1xx , (42)

and the estimator suffers from a second order bias from the demeaning process. The second order bias

arises because the demeaning process induces a correlation between the innovation processes ui,t and

the demeaned regressors xi,t−1.3 Intuitively, ui,t and xi,t−1 are correlated because, in the demeaning
of xi,t−1, information available after time t− 1 is used. One solution is to use recursive demeaning of
xi,t and yi,t (e.g. Moon and Phillips, 1999, and Sul et al., 2003). That is, define

xdi,t = xi,t − 1
t

tX
s=1

xi,s, (43)

and

ydd
i,t
= yi,t − 1

T − t

TX
s=t

yi,s, xddi,t = xi,t − 1

T − t

TX
s=t

xi,s. (44)

The process xdi,t−1 now only relies on information up till time t−1, and yddi,t only depends on information
from t to T ; the recursive demeaning will not induce a correlation between ui,t and xdi,t−1. The process
xddi,t is used to properly balance the estimator, as shown below. By the CMT, as T →∞ for a fixed i,

xdi,t√
T
=

xi,t√
T
−
µ
t

T

¶−1
1

T

tX
s=1

xi,s√
T
⇒ Ji,Ci (r)− r−1

Z r

0

Ji,Ci (u) du = JdCi (r) , (45)

3The phenomenon is analogous to that found by Moon and Phillips (1999), when analyzing estimation of local-to-unity
roots in panels with incidental trends.

14



and

xddi,t√
T
=

xi,t√
T
−
µ
T − t

T

¶−1
1

T

TX
s=t

xi,s√
T
⇒ Ji,Ci (r)− (1− r)−1

Z 1

r

Ji,Ci (u) du = JddCi (r) . (46)

Consider the following pooled estimator, using the recursively demeaned data,

β̃
rd

n,T =

Ã
nX
i=1

TX
t=1

ydd
i,t
xd0i,t−1

!Ã
nX
i=1

TX
t=1

xddi,t−1x
d0
i,t−1

!−1
. (47)

Theorem 5 Under Assumptions 1-3, and 5,
(i) β̃

rd

n,T →p β as (n, T →∞) .
(ii) As (n, T →∞) with n/T → 0,

√
nT
³
β̃
rd

n,T − β
´
⇒ N

µ
0,
³
Ωrd0xx

´−1
Φrdux

³
Ωrdxx

´−1¶
, (48)

where

Φrdux = E

"µZ 1

0

dBdd
1,i (r)J

d
Ci (r)

0
¶0µZ 1

0

dBdd
1,i (r) J

d
Ci (r)

0
¶#

, (49)

dBdd
1,i (r) = dB1,i (r)− (1− r)

−1
(B1,i (1)−B1,i (r)) , (50)

and

Ωrdxx = E

·Z 1

0

JrrCi (r)J
r
Ci (r)

0
dr

¸
. (51)

The usual test-statistics can now be formed. Specifically, let

ũddi,t = ydd
i,t
− β̃

rd

n,Tx
dd
i,t−1, (52)

and form

Φ̃
rd

ux =
1

n

nX
i=1

1

T 2

TX
t=1

TX
s=1

¡
ũddi,tx

d0
i,t−1

¢0 ¡
ũddi,tx

d0
i,s−1

¢
, (53)

and

Ω̃
rd

xx =
1

n

nX
i=1

1

T 2

TX
t=1

xddi,t−1x
d0
i,t−1. (54)

The t−test and Wald-test based on Φ̃rduxand Ω̃
rd

xx will satisfy the usual properties. The results follow

in the same manner as above and, as previously, these tests will also work for the heterogeneous case.

As evidenced by the Monte Carlo simulation in Section 8, the second order bias effect arising from
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demeaning the data is also present in panels that exhibit moderate degrees of heterogeneity in the slope

coefficients. Thus, the estimator β̃
rd

n,T seems, in general, to be a safer choice when fitting fixed effects

than the plain fixed effects estimator, β̃n,T , since the former works well in both the homogeneous and

heterogeneous cases.

5 A fully modified pooled estimator

One of the main advantages of the pooled estimators described above is their asymptotic normal dis-

tributions, which enables correct inference without the knowledge of the nuisance parameters {Ci}ni=1.
However, when there is some knowledge available about {Ci}ni=1, efficiency gains can be made.
The fully modified OLS (FM-OLS) estimator for cointegrated time-series regressions was developed

by Phillips and Hansen (1990) to correct for the presence of endogeneity and serial correlation in the

OLS estimator. Phillips and Moon (1999) extend this idea to a panel data setting and derive a pooled

fully modified (PFM) estimator for the pure unit-root case, when Ci = 0 for all i. In this section, I

generalize the PFM estimator to the case of nearly integrated regressors.

As pointed out before, the individual Cis are not estimable in general, so an estimator based on

the knowledge of Ci is typically unfeasible in practice. However, as shown by Moon and Phillips

(1999), when the Cis are identical across the panel, then Ci = C can be estimated. This estimator is

thus feasible when the Cis are all identical. The modifications to the pooled estimator will have no

asymptotic effects under the heterogeneous slope coefficients of Assumption 4; only the homogeneous

case described by Assumption 5 is therefore considered. As in the case of individual effects, however,

for panels that exhibit only a limited degree of heterogeneity, the modifications are still likely to have

some effect.

Define the quasi-differencing operator

∆Cixi,t = xi,t − xi,t−1 − Ci

T
xi,t−1 = vi,t, (55)

and let

y+i,t = yi,t − ω̂12iΩ̂
−1
22i∆Cixt, Λ̂

+
12i = −ω̂12iΩ̂−122iΛ̂22i, (56)

where Λ22i =
P∞

k=1E
¡
vi,kv

0
i,0

¢
, and ω̂12i, Ω̂22i, and Λ̂22i are estimates of ω12i, Ω22i, and Λ22i, respec-

tively. The pooled FM (PFM) estimator is given by

β̂PFM =

Ã
nX
i=1

TX
t=1

³
y+i,tx

0
i,t−1 − Λ̂+12i

´!Ã nX
i=1

TX
t=1

xi,t−1x0i,t−1

!−1
. (57)
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As T →∞, for fixed n,

√
nT
³
β̂PFM − β

´
⇒
Ã
1√
n

nX
i=1

µZ 1

0

dBi,1·2Ji,Ci (r)
0
¶!Ã

1

n

nX
i=1

Z 1

0

Ji,Ci (r)Ji,Ci (r)
0
dr

!−1
,

where Bi,1·2 = Bi,1−ω12iΩ−122iBi,2 = BM (σ11·2,i) and σ11·2,i = σ11i−ω12iΩ−122iΩ21i. As (T, n→∞)seq,
√
nT
³
β̂PFM − β

´
⇒ N

¡
0,Ω−1xxΦux·xΩ

−1
xx

¢
(58)

with

Φux·x = E

"µZ 1

0

dBi,1·2JCi (r)
0
¶0µZ 1

0

dBi,1·2JCi (r)
0
¶#

. (59)

As before, let ûi,t = yi,t − β̂n,Txi,t−1 and define ûi·2,t = ûi,t − ω̂12iΩ̂
−1
22ivi,t. Then

Φ̂ux·x =
1

n

nX
i=1

1

T 2

TX
t=1

TX
s=1

¡
ûi·2,tx0i,t−1

¢0 ¡
ûi·2,sx0i,s−1

¢→p Φux·x, (60)

as (T, n→∞)seq. The PFM estimator is more efficient than the standard pooled estimator since

Φux·x < Φux. Observe also that for βPFM , using demeaned data will not cause a second order bias

effect. The fully modified pooled estimator thus provides a more efficient alternative also in the case

when individual effects are included. These results could also be shown to hold in joint limits, with

some extra rate restrictions, but the results are omitted here for brevity.

6 Cross-sectional dependence

In many cases, the assumption of cross-sectional independence is restrictive. It is imposed because there

is yet no satisfactory model or theory for dealing with general cross-sectional dependence. However,

factor models are often used as a proxy for more general cross-sectional dependencies. The effects

of common factors on panel data methods are relatively straightforward to analyze and this section

provides some results along these lines. For ease of exposition, assume that αi = 0, for all i.

To study the effects of common factors in the returns process, suppose that equation (1) is replaced

by

yi,t = βixi,t−1 + γiΛt + ui,t, (61)

where the idiosyncratic error terms ui,t still satisfy Assumption 1, but the common factor Λt is now a

17



part of the data generating process. Further, let the regressor process satisfy

xi,t = zi,t + δiΠt, (62)

where

zi,t = Aizi,t + vi,t, (63)

and

Πt = GΠΠt−1 + ηt. (64)

The following high-level assumption states the properties of the common factors Λt and Πt.

Assumption 6 1√
T

Pt
s=1 Λs ⇒ BΛ (r) and Πt√

T
⇒ JΠ (r) =

R r
0
e(r−s)CΠdBΠ (r) , for t = [Tr].

That is, Λt is assumed to be stationary whereas Πt is a nearly integrated process. Consider first

the pooled estimator in the case of homogeneous slope coefficients and no intercepts,

√
nT
³
β̂n,T − β

´
=

Ã
1√
n

nX
i=1

1

T

TX
t=1

ui,tx
0
i,t−1

!Ã
1

n

nX
i=1

1

T 2

TX
t=1

xi,t−1x0i,t−1

!−1

+

Ã
1√
n

nX
i=1

1

T

TX
t=1

γiΛtx
0
i,t−1

!Ã
1

n

nX
i=1

1

T 2

TX
t=1

xi,t−1x0i,t−1

!−1
. (65)

By Assumption 6, the first term satisfies,

1√
n

nX
i=1

1

T

TX
t=1

ui,tx
0
i,t−1

=
1√
n

nX
i=1

1

T

TX
t=1

ui,tz
0
i,t−1 +

1√
n

nX
i=1

δi
1

T

TX
t=1

ui,tΠ
0
t−1

⇒ 1√
n

nX
i=1

µZ 1

0

dB1,iJ
0
i,Ci + δi

Z 1

0

dB1,iJ
0
Π

¶
, (66)

as T →∞, for a fixed n. Conditional on the common shock, Π, the random variables
R 1
0
dB1,iJ

0
Π are

iid with mean zero, and thus

1√
n

nX
i=1

µZ 1

0

dB1,iJ
0
i,Ci + δi

Z 1

0

dB1,iJ
0
Π

¶
⇒MN (0,Φux +ΦuΠ +ΦuxΠ +Φ

0
uxΠ)

18



where

ΦuΠ = E

"µ
δi

Z 1

0

dB1,iJ
0
Π

¶0µ
δi

Z 1

0

dB1,iJ
0
Π

¶¯̄̄̄
¯Π
#
, (67)

and

ΦuxΠ = E

·µZ 1

0

dB1,iJi,Ci

¶
δi

µZ 1

0

dB1,iJ
0
Π

¶¯̄̄̄
Π

¸
. (68)

Further, it follows that under Assumption 6, as (T, n→∞)seq,

1

n

nX
i=1

1

T 2

TX
t=1

xi,t−1x0i,t−1

→ pE

"Z 1

0

Ji,CiJ
0
i,Ci + δi

Z 1

0

JΠJ
0
i,Ci +

µ
δi

Z 1

0

JΠJ
0
i,Ci

¶0
+ δi

µZ 1

0

JΠJ
0
Π

¶
δ0i

#
≡ ΩzΠ. (69)

However, as T →∞, for a fixed n,

1

n

nX
i=1

1

T

TX
t=1

γiΛtx
0
i,t−1

=
1

n

nX
i=1

γi
1

T

TX
t=1

Λtz
0
i,t−1 +

1

n

nX
i=1

γiδi
1

T

TX
t=1

ΛtΠ
0
t−1

⇒ 1

n

nX
i=1

γi

Z 1

0

dBΛJi ,Ci +
1

n

nX
i=1

γiδi

µZ 1

0

dBΛJ
0
Π

¶
. (70)

Define

lim
n→∞

1

n

nX
i=1

γiδi = γδ, (71)

and it follows that

T
³
β̂n,T − β

´
→p γδ

µZ 1

0

dBΛJ
0
Π

¶
Ω−1zΠ. (72)

With common factors in the error terms and the regressors, the pooled estimator thus suffers from

a second order asymptotic bias. This can be controlled for in the following manner: (i) Estimate

βi with time-series OLS and estimate the residuals, γiΛt + ui,t for all i. (ii) From the estimated

residuals, estimate the common factor γiΛt. (iii) Subtract the common factor from yi,t, and create
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the ‘de-factored’ data,

ydfi,t = yi,t − γ̂iΛ̂t = βixi,t−1 + γiΛt − γ̂iΛ̂+ ui,t = βixi,t−1 + ui,t + op (1) . (73)

(iv) Use ydfi,t instead of yi,t in the pooled estimation.

It follows that

β̂
df

n,T =

Ã
1√
n

nX
i=1

1

T

TX
t=1

ydfi,tx
0
i,t−1

!Ã
1

n

nX
i=1

1

T 2

TX
t=1

xi,t−1x0i,t−1

!−1
, (74)

satisfies √
nT
³
β̂
+

n,T − β
´
⇒MN

¡
0,Ω−1zΠ (Φux +ΦuΠ +ΦuxΠ +Φ

0
uxΠ)Ω

−1
zΠ

¢
, (75)

as (T, n→∞)seq. As also noted in Jin (2004), in the presence of common shocks the limiting dis-
tribution becomes mixed normal but the rate of convergence remains identical, although only after a

de-factoring of the data in the case considered above. Again, these results can also be shown to hold

in joint limits, but the details are omitted.

Results for the case with heterogeneous slope coefficients can be obtained in the same manner.

However, it is easy to see that no de-factoring is necessary in this case, given that the asymptotic results

are driven by the nearly non-stationary residuals arising from the heterogeneous slope coefficients, as

discussed previously.

7 Unbalanced panels

In applied work, it is often the case that data for the individual time-series that make up the panel

are available over different periods of time. If all the available data in such a panel is to be utilized,

estimators dealing with the unbalanced nature of the panel is needed.

Suppose time-series i has Ti observations and let T = maxi Ti. Further, assume that for all i,

Ti/T → ri ∈ (0, 1] as Ti →∞ for all i. Define the unbalanced pooled estimator as follows,

β̂
ub

n,T =

Ã
nX
i=1

TiX
t=1

yi,tx
0
i,t−1

!Ã
nX
i=1

TiX
t=1

xi,t−1x0i,t−1

!−1
. (76)

Consider first the heterogeneous case under Assumption 4, with no intercepts. Using sequential limits,
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as (T, n→∞)seq,

√
n
³
β̂
ub

n,T − β
´

=

Ã
1√
n

nX
i=1

1

T 2

TiX
t=1

θixi,t−1x0i,t−1

!Ã
1

n

nX
i=1

1

T 2

TiX
t=1

xi,t−1x0i,t−1

!−1

+

Ã
1√
n

nX
i=1

1

T 2

TiX
t=1

ui,tx
0
i,t−1

!Ã
1

n

nX
i=1

1

T 2

TiX
t=1

xi,t−1x0i,t−1

!−1
⇒ N

³
0,
¡
Ωubxx

¢−1
Φub,θxx

¡
Ωubxx

¢−1´
, (77)

where

Ωubxx = lim
n→∞

1

n

nX
i=1

E

·Z ri

0

Ji,Ci (r) Ji,Ci (r)
0 dr
¸
, (78)

and

Φub,θxx = lim
n→∞

1

n

nX
i=1

E

"µ
θi

Z ri

0

Ji,Ci (r)Ji,Ci (r)
0
dr

¶0µ
θi

Z ri

0

Ji,Ci (r)Ji,Ci (r)
0
dr

¶#
. (79)

As in the balanced case, these can be easily estimated using the following estimators,

Ω̂ubxx =
1

n

nX
i=1

1

T 2

TiX
t=1

xi,t−1x0i,t−1, (80)

and

Φ̂ub,θxx =
1

n

nX
i=1

1

T 4

TiX
t=1

TiX
s=1

¡
ûi,tx

0
i,t−1

¢0 ¡
ûi,sx

0
i,s−1

¢
. (81)

The homogeneous case follows in a completely analogous manner and is not detailed here.

8 Finite sample evidence

To evaluate the small sample properties of the panel data estimators proposed in this paper, a Monte

Carlo study is performed. In the first experiment, the properties of the point estimates are considered.

Equations (1) and (2) are simulated for the case with a single regressor. The innovations (ui,t, vi,t)

are drawn from normal distributions with mean zero, unit variance, and correlations δ = 0,−0.4,−0.7,
and −0.95; there is no cross-sectional dependence. The slope parameters, βi, are drawn from a normal
distribution with mean β = 0.05, and with a standard deviation that is also equal to 0.05. The

sample size is set to T = 100, n = 20, and the local-to-unity parameters Ci are drawn from a uniform

distribution with support [−10, 0]. The small value of β is chosen in order to reflect the fact that
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most forecasting regressions are used to test a null of β = 0, and any plausible alternative is often

close to zero. The intercepts αi are set equal to zero but individual effects are still fitted in each

regression, to evaluate the second-order bias effects arising from demeaning. All results are based on

10,000 repetitions.

Three different estimators are considered: the recursively demeaned pooled estimator, β̃
rd

n,T , the

unfeasible fully modified pooled estimator, β̂PFM , and the pooled estimator using standard demeaning,

β̃n,T . The estimator β̂PFM is formed using the fact that there is no serial correlation in the data,

so that simple sample variance and sample covariance estimates are used rather than their long-run

counterparts, and relies on knowledge of the true values of the Cis. The results are shown in Table 1

and Figure 1. By the results in Panel A of Table 1, all estimators, except β̃n,T , are virtually unbiased.

The estimator β̃n,T , which uses standard demeaning to account for individual effects, exhibits a rather

substantial bias when the absolute value of the correlation δ is large, however. From Panel B of Table

1 and the graphs in Figure 1, it is apparent that the unfeasible estimator β̂PFM outperforms the other

estimators. The recursively demeaned estimator, β̃
rd

n,T , suffers from a lack of efficiency, but it is well

centered around the true value.

The second part of the Monte Carlo study concerns the size and power of the pooled t−tests. The
same setup as above is used but the average slope coefficient β now varies between −0.05 and 0.05; the
slope coefficients, βi, are drawn from a normal distribution with mean and standard deviation equal

to β. Figure 2 shows the average rejection rates of the t−tests resulting from the recursively demeaned
and fully modified pooled estimators, evaluating a null of β = 0. Since β̃n,T does not have a proper

asymptotic distribution, no test is provided for this estimator. Again, the results are based on 10,000

repetitions. The power curves from the two panel data based t−tests are compared to that of the
time-series t−test corresponding to the unfeasible maximum likelihood (ML) estimator of βi described
in Campbell and Yogo (2003); the ML time-series estimator and test are unfeasible since they rely on

knowledge of the true value of Ci, but the resulting test provides a good benchmark against which

the panel tests can be compared.4 In terms of size, all tests perform well, although the test from the

fully modified pooled estimator tends to overreject somewhat. The test based on the estimator using

recursively demeaned data, β̃
rd
, has good size for all values of δ and also exhibit acceptable power

properties, as compared to the unfeasible time-series test.

In summary, the simulation evidence shows the importance of controlling for the second order bias

arising from fitting individual intercepts in the pooled regression; the estimator based on recursive de-

meaning appear to do so well and result in test-statistics with correct size and decent power properties.

Substantial efficiency gains can also be achieved by considering a fully modified estimator. Although

this estimator is unfeasible in the simulation exercise just described, it is feasible in the special case of

identical persistence in the time-series.

4By Campbell and Yogo, this t−test is refered to as the unfeasible Q−test.
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9 Conclusions

A panel data extension of the traditional linear forecasting model is considered. I analyze a setup

where the regressors are nearly persistent processes and potentially endogenous, which captures the

essential characteristics of many empirical situations. It is shown that when no fixed effects are present

the standard pooled estimator is asymptotically normal and standard inference can be performed; the

cross-sectional information effectively dilutes the endogeneity effects that are present in the standard

time-series case and as the cross-sectional dimension grows large, these effects disappear altogether.

However, when individual intercepts, or fixed effects, are estimated, the endogeneity of the regressors

cause the pooled estimator to have a second order bias. To control for these effects, an alternative

pooled estimator based on the concept of recursive demeaning is proposed. Monte Carlo evidence

suggests that this estimator has good finite sample properties and also shows that in a typical setup,

the distortions to the standard fixed effects estimator can be quite severe when the regressors are

endogenous. Some new methods for dealing with cross-sectional dependence, in the form of common

factors, in panels are also developed.

The results in this paper provide an important extension to the existing literature on time-series

methods for predictive regressions and shows that also in the panel data case a careful analysis of the

impact of nearly persistent and endogenous regressors is required.
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A Joint limit theory

The following two theorems, from Phillips and Moon (1999), provide useful conditions for establishing

joint convergence.

Theorem 6 Suppose that Yi,T = CiQi,T , where the (m× 1) random vectors Qi,T are iid across i =

1, ..., n for all T , and the Ci are (m×m) nonrandom matrices for all i. Assume that

(i) Qi,T ⇒ Qi as T →∞ for all i;

(ii) ||Qi,T || is uniformly integrable in T for all i; and

(iii) supi ||Ci|| <∞, infi ||Ci|| > 0, and C = limn→∞ 1
n

Pn
i=1Ci.

Then 1
n

Pn
i=1 Yi,T →p CE [Qi] as (n, T →∞).

Theorem 7 Suppose that Yi,T = CiQi,T , where the (m× 1) random vectors Qi,T are iid (0,ΣT ) across

i = 1, ..., n for all T , and the Ci are (m×m) nonzero and nonrandom matrices. Assume the following

conditions hold:

(i) Let σ2T = λmin (ΣT ) and lim infT σ2T > 0,

(ii) maxi≤n||Ci||2
λmin(

Pn
i=1 CiC

0
i)
= O

¡
1
n

¢
as n→∞,

(iii) ||Qi,T ||2 are uniformly integrable in T , and

(iv) limn,T
1
n

Pn
i=1CiΣTC

0
i = Ω > 0.

Then,

Xn,T =
1√
n

nX
i=1

Yi,t ⇒ N (0,Ω) as n, T →∞.

Given the sequential limit results derived earlier, establishing the joint limit results is done by

verifying the conditions in Theorem (6) or (7). Typically the main challenge lies in establishing the

uniform integrability condition. Three useful results for establishing uniform integrability are given

next.

(i) If XT ⇒ X as T →∞, then uniform integrability of ||XT || is equivalent to E ||XT ||→ E ||X|| as
T →∞.

(ii) If there exists a sequence of random variables UT , such that UT ≥ ||XT || almost surely, then
uniform integrability of UT implies uniform integrability of ||XT ||.

(iii) If XT = WTZT and ||WT ||2 and ||ZT ||2 are uniformly integrable, then ||XT || is uniformly inte-
grable.
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B A BN decomposition

Assumption 1 allows for the following BN decomposition of the innovations vi,t,

vi,t = Di�i,t + ṽi,t−1 − ṽi,t, (82)

where ṽi,t =
P∞

j=0 D̃i,j�i,t−j and D̃i,j =
P∞

k=j+1Di,k (Phillips and Solo, 1992). By the definition of a

nearly integrated process, xi,t can be written as

xi,t =
tX

s=1

e
t−s
T Civi,s + e

t
T Cixi,0. (83)

Using the BN decomposition of vi,t, the following decomposition of xi,t now holds,

xi,t = zi,t +Ri,t, (84)

where

zi,t =
tX

s=1

e
(t−s)
T CiDi�i,s (85)

and

Ri,t =
tX

s=1

e
t−s
T Ci ṽi,s−1 −

tX
s=1

e
t−s
T Ci ṽi,s + e

t
T Cixi,0

= e
t−1
T Ci ṽi,0 +

t−1X
s=1

³
e
t−s−1
T Ci − e

t−s
T Ci

´
ṽi,s − ṽi,t + e

t
T Cixi,0.

Lemma 2 Let M denote a generic constant. Under Assumptions 1-3, the following hold,

(a)
1

T
E ||zi,t||2 < M,

(b)

E ||Ri,t||2 < M.

Proof. The result follows by applying the same arguments as in Moon and Phillips (1999), and the
fact that Ci ≤ C̄.
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C Proofs

Proof of Lemma 1. By Assumptions 1 and 3,

E

"¯̄̄̄¯̄̄̄Z 1

0

Ji,Ci (r) Ji,Ci (r)
0 dr
¯̄̄̄¯̄̄̄2#

= E

"¯̄̄̄¯̄̄̄
Di

µZ 1

0

JWi,Ci (r)J
W
i,Ci (r)

0 dr
¶
D0
i

¯̄̄̄¯̄̄̄2#
<∞.

Derivation of Φθux, Ωxx and Φux in the scalar case, with Ci = C for all i. (i) For scalar

regressors,

Φθxx = Ωθθ

Z 1

0

Z 1

0

E
h
Ji,Ci (r)

2
Ji,Ci (p)

2
i
dpdr.

By Moon and Phillips (1999),

E
h
Ji,Ci (r)

2 Ji,Ci (p)
2
i

= Ω222

µZ r

0

eC(2r−2x)dx
Z p

0

eC(2p−2x)dx+
Z r∧p

0

eC(r+p−2x)dx
Z r∧p

0

eC(r+p−2x)dx

+

Z r∧p

0

eC(r+p−2x)dx
Z r∧p

0

eC(r+p−2x)dx
¶

= Ω222

µZ r

0

Z p

0

e2C(r+p−x−y)dxdy + 2
Z r∧p

0

Z r∧p

0

e2C(r+p−x−y)dxdy
¶
.

By simple calculations

Z 1

0

Z 1

0

Z r

0

Z p

0

e2C(r+p−x−y)dydxdpdr =

¡−1− 2C + e2C
¢2

16C4
,

and,

2

Z 1

0

Z 1

0

Z r∧p

0

Z r∧p

0

e2C(r+p−x−y)dxdydpdr = 4

Ã
−5 + 4e2C + e4C − 4C ¡1 + 2e2C¢

32C4

!
.

Summing up,

Φθxx = ΩθθΩ
2
22

1

16C4
¡
4C2 − 4C + 6e2C + 3e4C − 20Ce2C − 9¢ .

(ii) By Phillips (1987),

Ωxx =

Z 1

0

E
h
Ji,Ci (r)

2
i
dr = Ω22

Z 1

0

µ
1

2C

¡
e2rC − 1¢¶ dr = Ω22

1

4C2
¡
e2C − 2C − 1¢ .
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(iii) Since,

dBi,1 (r) = dBi,1·2 (r) + ω12iΩ
−1
22idBi,2 (r) ,

it follows that,

Φux = E

·Z 1

0

Z 1

0

JCi (r)JCi (s) dBi,1 (r) dBi,1 (s)

¸
= E

·Z 1

0

Z 1

0

JCi (r)JCi (s) dBi,1·2 (r) dBi,1·2 (s)
¸

+ω212Ω
−2
22 E

·Z 1

0

Z 1

0

JCi (r)JCi (s) dBi,2 (r) dBi,2 (s)

¸
.

By Lemma 5(b) in Moon and Phillips (1999),

ω212Ω
−2
22 E

·Z 1

0

Z 1

0

JCi (r) JCi (s) dBi,2 (r) dBi,2 (s)

¸
= ω212

Z 1

0

Z r

0

e2C(r−s)dsdr = ω212
1

4C2
¡
e2C − 2C − 1¢ .

Further,

E

·Z 1

0

Z 1

0

JCi (r)JCi (s) dBi,1·2 (r) dBi,1·2 (s)
¸

=

Z 1

0

Z 1

0

E [JCi (r)JCi (s)]E [dBi,1·2 (r) dBi,1·2 (s)]

=
¡
σ11 − ω12Ω

−1
22 ω21

¢ Z 1

0

Z 1

0

E
h
JCi (r)

2
i
dr

=
¡
σ11Ω22 − ω212

¢ 1

4C2
¡
e2C − 2C − 1¢ .

Summing up,

Φux = σ11iΩ22
1

4C2
¡
e2C − 2C − 1¢ .

It follows that

Ω−1xxΦ
θ
uxΩ

−1
xx = Ωθθ

¡
e2C − 2C − 1¢−2 ¡4C2 − 4C + 6e2C + 3e4C − 20Ce2C − 9¢ ,

and

Ω−1xxΦuxΩ
−1
xx = σ11iΩ

−1
22

µ
1

4C2
¡
e2C − 2C − 1¢¶−1 .

The following lemmas, proved at the end of this Appendix, help establish the main results.

Lemma 3 Under Assumptions 1-3, as (n, T →∞),
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(a)

Ω̂xx =
1

n

nX
i=1

1

T 2

TX
t=1

xi,tx
0
i,t →p Ωxx. (86)

Lemma 4 Under Assumptions 1-3, as (n, T →∞) with n/T → 0, then

(a) if Assumption 4 also holds,

1√
n

nX
i=1

θi
1

T 2

TX
t=1

xi,t−1x0i,t−1 ⇒ N
¡
0,Φθxx

¢
, (87)

(b)

1√
n

nX
i=1

1

T

TX
t=1

ui,tx
0
i,t−1 ⇒ N (0,Φxx) . (88)

Lemma 5 Under Assumptions 1-3, as (n, T →∞) , then
(a) if Assumption 4 also holds,

1

n

nX
i=1

θi
1

T 2

TX
t=1

xi,tx
0
i,t →p 0, (89)

(b)

1

n

nX
i=1

1

T 2

TX
t=1

ui,tx
0
i,t−1 →p 0. (90)

Lemma 6 Under Assumptions 1-3, as (n, T →∞) , then
(a) if Assumption 4 also holds,

Φ̂θxx =
1

n

nX
i=1

1

T 4

TX
t=1

TX
s=1

¡
ûi,tx

0
i,t−1

¢0 ¡
ûi,tx

0
i,s−1

¢→p Φ
θ
xx, (91)

(b) if Assumption 5 also holds,

Φ̂ux =
1

n

nX
i=1

1

T 2

TX
t=1

TX
s=1

¡
ûi,tx

0
i,t−1

¢0 ¡
ûi,tx

0
i,s−1

¢→p Φux. (92)

Proof of Theorem 1. Part (i) follows directly from Lemma 3, Lemma 5(a), and Slutsky’s theorem.

By combining the results of Lemma 3 and Lemma 4(a), part (ii) follows.

Proof of Theorem 2. The results follow by Theorem 1, Lemma 3 and Lemma 6(a).

Proof of Theorem 3. Lemma 3 and Lemma 5(b) provide the result in (i). Lemma 3 and Lemma

4(b) give (ii).
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Proof of Theorem 4. The results follow by Theorem 3, Lemma 3 and Lemma 6(b).

Proof of Theorem 5. I first establish the result in sequential limits.

(i) Observe that

ydd
i,t

= yi,t − 1

T − t

TX
s=t

yi,s

= β

Ã
xi,t − 1

T − t

TX
s=t

xi,s

!
+ ui,t − 1

T − t

TX
s=t

ui,s

= βxddi,t + uddi,t.

Using sequential limits, as (T, n→∞)seq,

β̃
rd

n,T =

Ã
nX
i=1

TX
t=1

ydd
i,t
xd0i,t−1

!Ã
nX
i=1

TX
t=1

xddi,t−1x
d0
i,t−1

!−1

=

Ã
nX
i=1

TX
t=1

¡
βxddi,tx

d0
i,t−1 + uddi,tx

d0
i,t−1

¢!Ã nX
i=1

TX
t=1

xddi,t−1x
d0
i,t−1

!−1

= β +

Ã
1

n

nX
i=1

1

T 2

TX
t=1

uddi,tx
d0
i,t−1

!Ã
1

n

nX
i=1

1

T 2

TX
t=1

xddi,t−1x
d0
i,t−1

!−1
→p β.

(ii) For fixed n, as T →∞,

√
nT
³
β̃
rd

n,T − β
´

=

Ã
1√
n

nX
i=1

1

T

TX
t=1

uddi,tx
r0
i,t−1

!Ã
1

n

nX
i=1

1

T 2

TX
t=1

xddi,t−1x
r0
i,t−1

!−1

⇒
Ã
1√
n

nX
i=1

Z 1

0

dBdd
1,i (r)J

d
Ci (r)

0
!Ã

1

n

nX
i=1

Z 1

0

JddCi (r) J
d
Ci (r)

0
dr

!−1
,
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since

1

T

TX
t=1

uddi,tx
d0
i,t−1 =

1

T

TX
t=1

Ã
ui,t − 1

T − t

TX
s=t

ui,s

!
xd0i,t−1

=
1

T

TX
t=1

ui,tx
d0
i,t−1 −

1

T

TX
t=1

Ã
T

T − t

1

T

TX
s=t

ui,s

!
xd0i,t−1

=
1

T

TX
t=1

ui,tx
d0
i,t−1 −

1

T

TX
t=1

µ
T − t

T

¶−1Ã
1√
T

TX
s=t

ui,s

!
xd0i,t−1√

T

=
1

T

TX
t=1

ui,tx
d0
i,t−1 −

1

T

TX
t=1

µ
T − t

T

¶−1Ã
1√
T

Ã
TX
s=1

ui,s −
t−1X
s=1

ui,s

!!
xd0i,t−1√

T

⇒
Z 1

0

dB1,i (r)J
d
Ci (r)

0 −
Z 1

0

(1− r)
−1
(B1,i (1)−B1,i (r))J

d
Ci (r)

0
dr

=

Z 1

0

dB1,i (r)

µ
Ji,Ci (r)− r−1

Z r

0

Ji,Ci (u) du

¶0
−
Z 1

0

(1− r)−1 (B1,i (1)−B1,i (r))

µ
Ji,Ci (r)− r−1

Z r

0

Ji,Ci (u) du

¶0
dr

=

Z 1

0

dB1,i (r)Ji,Ci (r)
0 −
Z 1

0

dB1,i (r)

µ
r−1

Z r

0

Ji,Ci (u) du

¶0
−
Z 1

0

(1− r)
−1
(B1,i (1)−B1,i (r)) Ji,Ci (r)

0
dr

+

Z 1

0

(1− r)
−1
(B1,i (1)−B1,i (r))

µ
r−1

Z r

0

Ji,Ci (u) du

¶0
dr

=

Z 1

0

dBdd
1,i (r)J

d
Ci (r)

0
. (93)

by standard arguments. By the independent increments property of the Brownian motion, it fol-

lows that the expectation of (93) is equal to zero. By similar arguments as in the main text, as

(T, n→∞)seq,
√
nT
³
β̃
rd

n,T − β
´
⇒ N

µ
0,
³
Ωrd0xx

´−1
Φrdux

³
Ωrdxx

´−1¶
.

The result in joint limits now follows in the same manner as in the previous theorems; the details

are omitted.
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Proof of Lemma 3. (a) Use the decomposition in (84) to write

1

n

nX
i=1

1

T 2

TX
t=1

xi,tx
0
i,t

=
1

n

nX
i=1

1

T 2

TX
t=1

(zi,t +Ri,t) (zi,t +Ri,t)
0

=
1

n

nX
i=1

1

T 2

TX
t=1

¡
zi,tz

0
i,t + zi,tR

0
i,t +Ri,tz

0
i,t +Ri,tR

0
i,t

¢
=

1

n

nX
i=1

1

T 2

TX
t=1

zi,tz
0
i,t +

1

n

nX
i=1

1

T 2

TX
t=1

zi,tR
0
i,t

+
1

n

nX
i=1

1

T 2

TX
t=1

Ri,tz
0
i,t +

1

n

nX
i=1

1

T 2

TX
t=1

Ri,tR
0
i,t

=
1

n

nX
i=1

Qi,T +
1

n

nX
i=1

P1,T +
1

n

nX
i=1

P2,T +
1

n

nX
i=1

P3,T .

To prove (86), I show that 1n
Pn

i=1Qi,T →p Ωxx = E
hR 1
0
Ji,Ci (r) Ji,Ci (r)

0
dr
i
and that 1n

Pn
i=1 Pk,T →p

0, k = 1, 2, 3, as (n, T →∞). Start with 1
n

Pn
i=1Qi,T . By Theorem 6, it is sufficient to show that

||Qi,T || is uniformly integrable in T for all i. By the triangle inequality

||Qi,T || ≤ 1

T 2

TX
t=1

||zi,t||2 .

As T →∞,
1

T 2

TX
t=1

||zi,t||2 ⇒
Z 1

0

||Ji,Ci ||2 ,

and

E

"
1

T 2

TX
t=1

||zi,t||2
#
= tr

Ã
1

T 2

TX
t=1

E
£
zi,tz

0
i,t

¤!→ E

·Z 1

0

||Ji,Ci ||2
¸
.

Thus ||Qi,T || is uniformly integrable. Next, to show that 1
n

Pn
i=1 Pk,T →p 0 as (n, T →∞) , it is
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sufficient to show that E ||Pk,T ||→p 0 as (n, T →∞), for k = 1, 2, 3. Start with k = 1,

E ||P1,T || = E

¯̄̄̄
¯
¯̄̄̄
¯ 1T 2

TX
t=1

zi,tR
0
i,t

¯̄̄̄
¯
¯̄̄̄
¯

≤ 1

T 2

TX
t=1

E [||zi,t|| ||Ri,t||]

≤ 1√
T

1

T

TX
t=1

s
E

¯̄̄̄¯̄̄̄
zi,t√
T

¯̄̄̄¯̄̄̄2
E ||Ri,t||2

= O

µ
1√
T

¶
,

where the first inequality follows from the triangle inequality and ||AB|| ≤ ||A|| ||B||, the second
inequality follows from the Cauchy-Schwarz inequality, and the last step follows from Lemma 2. An

identical argument holds for k = 2. For k = 3, by the triangle inequality and Lemma 2,

E ||P3,T || = E

¯̄̄̄
¯
¯̄̄̄
¯ 1T 2

TX
t=1

Ri,tR
0
i,t

¯̄̄̄
¯
¯̄̄̄
¯ ≤ 1

T 2

TX
t=1

E
h
||Ri,t||2

i
= O

µ
1

T

¶
.

Proof of Lemma 4. (a) Similar to above, write

1√
n

nX
i=1

θi
1

T 2

TX
t=1

xi,tx
0
i,t

=
1√
n

nX
i=1

θi
1

T 2

TX
t=1

(zi,t +Ri,t) (zi,t +Ri,t)
0

=
1√
n

nX
i=1

θi
1

T 2

TX
t=1

¡
zi,tz

0
i,t + zi,tR

0
i,t +Ri,tz

0
i,t +Ri,tR

0
i,t

¢
=

1√
n

nX
i=1

(Qi,T + P1,i,T + P2,i,T + P3,i,T )

where

Qi,T = θi
1

T 2

TX
t=1

zi,tz
0
i,t,

P1,i,T = θi
1

T 2

TX
t=1

zi,tR
0
i,t,
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P2,i,T = θi
1

T 2

TX
t=1

Ri,tz
0
i,t,

and

P3,i,T = θi
1

T 2

TX
t=1

Ri,tR
0
i,t.

I show that
1√
n

nX
i=1

Qi,T ⇒ N (0,Φxx) ,

and
1√
n

nX
i=1

Pk,i,T →p 0

as (n, T →∞) with n/T → 0. By the independence assumption of θi, it immediately holds that

E [Qi,T ] = 0.

Also,

E
£
Q0i,TQi,T

¤
= E

Ãθi 1
T 2

TX
t=1

zi,tz
0
i,t

!0Ã
θi
1

T 2

TX
t=1
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where it easily follows that Φxx,T → Φxx as T →∞. The Qi,T are thus iid sequence with mean zero

and covariance Φxx,T . Conditions (i), (ii), and (iv) of Theorem 7 are clearly satisfied. To prove that

||Qi,T ||2 is U.I. note that by the CMT, as T →∞,

||Qi,T ||2 ⇒ ||Qi||2 =
¯̄̄̄¯̄̄̄
θi

Z 1

0

Ji,Ci (r) Ji,Ci (r)
0
dr

¯̄̄̄¯̄̄̄2
and

E ||Qi,T ||2 = tr
¡
E
£
Q0i,TQi,T

¤¢
= tr (Φxx,T )→ tr (Φxx)

= tr (E [Q0iQi]) = E ||Qi||2 .

33



It follows that ||Qi,T ||2 is U.I. It remains to show that 1√
n
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i=1 Pk,i,T →p 0, for k = 1, 2, 3, as

(n, T →∞) with n/T → 0. I do this by showing that
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where the first inequality follows from the independence of θi, the second from the triangle inequality

and ||AB|| ≤ ||A|| ||B||, the third from the Cauchy-Schwarz inequality. The last two equalities follow

from Lemma 2 and the assumption that n/T → 0. The same argument holds for P2,i,T also. Using

similar arguments,
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where the first inequality holds by ||AB|| ≤ ||A|| ||B|| and the independence of θi, the second inequality
follows from the triangle inequality and the last two equalities follows from Lemma 2 and n/T → 0.
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(b) By the BN decomposition,
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As in the proof of (a), I show that
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as (n, T →∞) with n/T → 0. Observe first that
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by the martingale property of ui,t. Further,
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where Φux,T → Φux as T →∞. The Qi,T are thus iid sequences with mean zero and covariance Φux,T .

Conditions (i), (ii), and (iv) of Theorem 7 are again satisfied and it remains to show that ||Qi,T ||2 is
U.I. By the CMT,
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It follows that ||Qi,T ||2 is U.I. Since E [Pi,T ] = 0,
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where the inequality follows from the martingale property of ui,t.

Proof of Lemma 5. The results follow directly from Lemma 4.

Proof of Lemma 6.
(a) By definition,
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It follows that
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The proof now proceeds in a manner analogous to those above and is not detailed here; likewise for

part (b).
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Table 1: Bias results from the Monte Carlo study. Panel A shows the average bias of the estimator
based on recursive demeaning, the fully modified pooled estimator, and the plain fixed effects estimator.
Panel B shows the corresponding results for the standard deviation of the bias.

Estimator δ = 0.0 δ = −0.4 δ = −0.7 δ = −0.95
Panel A: Mean of bias

β̃
rd

n,T −0.00082 −0.00060 0.00069 0.00171

β̂PFM −0.00017 0.00061 0.00079 0.00095

β̃n,T −0.00019 0.01152 0.01992 0.02696

Panel B: Std. dev. of bias

β̃
rd

n,T 0.0506 0.0474 0.0297 0.0499

β̂PFM 0.0158 0.0157 0.0148 0.0138

β̃n,T 0.0158 0.0161 0.0162 0.0165
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Figure 1: Estimation results from the Monte Carlo study. The graphs show the kernel density estimates
of the estimated slope coefficients. The automatic bandwidth selection rules described in Pagan and
Ullah (1999) were used in the kernel density estimation. The solid lines, labeled Pooled (rec.) in the

legend, show the results for the estimator based on recursive demeaning, β̃
rd

n,T ; the dashed lines, labeled

PFM, show the results for the fully modified pooled estimator β̂PFM ; and the dotted lines, labeled
Pooled (non-rec.), show the results for the standard pooled estimator with individual intercepts, i.e.
the standard fixed effects estimator, β̃n,T .
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Figure 2: Size and power results from the Monte Carlo study. The graphs show the average rejection
rates for a two-sided 5% t−test of the null hypothesis of β = 0. The x−axis shows the true value of
the average parameter β, and the y−axis indicates the average rejection rate. The solid lines, labeled
Pooled, give the results for the t−test corresponding to the estimator based on recursive demeaning,
β̃
rd

n,T ; the dashed lines give the results for the t−test corresponding to the (unfeasible) fully modified
pooled estimator, β̂PFM ; and the dotted lines give the results for the t−test corresponding to the
(unfeasible) time-series maximum likelihood estimator described in Campbell and Yogo (2003). (They
call this t−test the Q−test.) The flat lines indicate the 5% rejection rate.
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