
Evaluating Model Transformation
Technologies
An exploratory case study

Bachelor of Science Thesis in Software Engineering and Management

K. M. ARIF AZIZ

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, May 2011

The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive
right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain
text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a com-
pany), acknowledge the third party about this agreement. If the Author has signed a copyright agreement
with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Evaluating Model Transformation Technologies

An exploratory case study

K. M. ARIF AZIZ

c© K. M. Arif Aziz, May, 2011.

Examiner: HELENA HOLMSTRÖM OLSSON

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone: + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden, May 2011

. .

Evaluating Model Transformation Technologies

K. M. Arif Aziz
Software Engineering and Management

University of Gothenburg
Department of Computer Science and Engineering

Gothenburg, Sweden
arifaziz@student.gu.se

Abstract

Model transformation is one of the primary activities within model driven software engineering. Several model trans-
formation languages have been proposed and implemented providing different approaches, programming paradigms, and
tools to solve common tasks related to model transformations. While several of these languages exist, little guidance is
provided to software industries to select a language that will suit their needs. This paper presents the results of a case
study of exploring three model transformation technologies at a department of Ericsson AB. The findings of this study
can be used when judging the applicability of a particular model transformation technology.

. .

1 Introduction

The application of Model Driven Software Engineer-
ing (MDE) is growing within software industry. The
major vision of MDE is that models are used as pri-
mary artefacts during different phases of software
development starting from requirements elicitation
through implementation and deployment to main-
tenance. MDE enables development using concepts
closer to the problem domain, leads further towards
automation, and allows work at a higher level of ab-
straction.

Model driven architecture (MDA) is one approach
to MDE. The primary goals of MDA are portabil-
ity, interoperability and reusability through archi-
tectural separation of concerns [Miller, 2003; Kleppe
et al., 2003]. MDA supports specification of the op-
eration of a system being separated from the de-
tails of its platform. One first specifies the system
independently of the platform; the specification is
then transformed for the given platform. Specifi-
cations of systems and platforms are expressed in
modeling languages (e.g. UML, EMF, SysML), and
transformations in transformation languages. Several
transformation languages have been proposed and
implemented (e.g. ATL, QVT, Java APIs) providing
different approaches, programming paradigms, and
sets of tools to solve common tasks related to model
transformations.

However, little guidance has been provided for
software industries adopting model transformation.
Model transformation technologies are often sophis-
ticated, vary in ease of use, capacity, and require ex-
pensive training. Software industries need support
for choosing suitable model transformation tech-
nologies for their MDA projects.

This study looks into qualities of model transfor-
mation technologies from an industrial perspective.
The paper aims to answer the following research
questions:

• RQ1: What qualities of available model trans-
formation technologies are important to MDA
engineers in the software industry?

• RQ2: To which degree do available model
transformation tools have these qualities?

• RQ3: Which of the found qualities (in RQ1) are
most important to MDA users in industry?

The research uses the exploratory case study method-
ology [Benbasat et al., 1987; Easterbrook et al., 2008;
Runeson and Höst, 2009; Yin, 2003]. The study was
performed at a department of Ericsson AB, Gothen-
burg, Sweden, which uses model driven develop-
ment as its core for software development. Erics-
son is a leading provider of telecommunication and
data-communication systems for the international
market. This paper presents the findings of the case
study in the form of a quality model, a quality rank,
and a transformation technology ranking for the trans-
formation technologies used in the study.

The paper is organized as follows: Section 2 de-
scribes the design of the case study. The main prin-
ciples of MDA are discussed in Section 3, while the
results of the study are presented in Section 4. Sec-
tion 5 provides with discussion. Section 6 presents
the related work. In Section 7 conclusions are drawn
and future work is suggested.

1

2 Research Design

We used exploratory case study as a method for this
study [Benbasat et al., 1987; Easterbrook et al., 2008;
Runeson and Höst, 2009; Yin, 2003]. The research
was a single case study with a real world model
transformation problem as the case and model trans-
formation technologies as its embedded units of analy-
sis [Yin, 2003]. In the study, we investigated a cer-
tain phenomena (qualities important to the indus-
try), built a theory (a quality model for model trans-
formation technologies) while collecting qualitative
data (interviews) to validate the theories and our
findings.

2.1 Research Site

The research was performed at a department of Eric-
sson AB, Gothenburg, Sweden. The department re-
quired a model transformation solution to automate
the transformation of their models (expressed in the
Unified Modeling Language (UML) and UML pro-
files) to target code in a variety of programming lan-
guages. Before this study, a project was performed
that provided a solution to the model transforma-
tion problem: a program written in a general pur-
pose programming language (Java). The department
grew interested in other model transformation solu-
tions that could be applied, but faced the need to
evaluate the qualities of the model transformation
technologies first.

2.2 Research Process

As suggested by Runeson and Höst [2009], the re-
search design for an exploratory case study should
be flexible. We adopted the idea of Runeson and
Höst [2009] and kept the research design open
within the study period. However, this said, we had
several distinct activities in the study (See Figure 1).
The first activity was Identification, followed by Ex-
ploration where we had exploratory iterations over
the embedded units of analysis (i.e., one iteration per
technology). Research then moved on to Evaluation
activity where we built a quality model through re-
flections on our experiences from Exploration. The
final phase of the study was Validation through feed-
back (presentation and interviews) from the organi-
zation.

2.2.1 Identification

We identified available model transformation tech-
nologies and selected ones that were of interest to the
department and that appeared to have the most po-
tential (See Section 4.1 for the choice of technologies).
We studied works within the field of transformation

engineering. We gathered necessary artefacts, exist-
ing model transformation solution (written in Java),
existing documentation of the transformation, exem-
plar output of from the existing transformation, and
models in UML and UML profiles used as input for
transformations. These UML models were actual
solutions within the domain of telecommunication
(real world model transformation problem).

2.2.2 Exploration

We selected one tool from the list of model transfor-
mation technologies for an iteration. We gathered
and studied the documentation of the selected tech-
nology. Next, we tried the examples used in the
documentation to be familiar with the approach, the
transformation language, the user interface, and the
workflows of the technology.
Once we learned the technology, we started imple-
menting a model transformation solution for the
case using the MDA approach. For the purpose of
later theory building, we logged our experiences to
act as a data source.

Termination Criteria: Within the Exploration ac-
tivity, we needed to decide when a technology was
sufficiently explored.
For model to model transformation technologies,
we decided that the technologies should produce
identical outputs (sufficiently explored). The time
required to produce these identical outputs could be
used as a data source for theory building.
For model to text transformation, we decided that
the technologies should produce identical C++
source code of the existing model transformation
solution.

2.2.3 Evaluation

Evaluation was our theory building activity. With
ISO 9126 Quality Standards [ISO, 2001] as a start-
ing point and through reflection of our experiences
from the Exploration activity (Section 2.2.2), we con-
structed a quality model that recognized qualities
seemingly important in the context of the case. As
well, we made a quality scale and a model transfor-
mation technology ranking for the found qualities.

2.2.4 Validation

Once the quality model, and the quality scale were
established, the model transformation technologies
and the implemented transformations were pre-
sented to the engineers working with MDA at the
department. The sessions were two hours each and
consisted of the following: a demo in each technol-
ogy for the studied case, a presentation of the im-
plemented transformation, and a discussion of the

2

Iden%fica%on	

• List	
 of	
 technologies	

• Artefacts	

Explora%on	
 • Transforma%on	
 Code	

• Log	

Evalua%on	

• Quality	
 Model	

• Quality	
 Rank	

• Transforma%on	
 Technology	

Ranking	

Valida%on	
 • Updated	
 Quality	

Model	

Figure 1: The figure summarizes the research process; the bullet list gives an overview of the outcomes for
each activity.

quality model. The questions that were used to col-
lect feedback were as follows:

1. Do you miss any qualities?

2. Which of these qualities in the quality model
are of most importance to Ericsson AB? Could
you rank them?

3. Could you also rank the technologies ?

4. Why are they ranked this way?

5. Which technology from model to model trans-
formation or model to text (IBM, ATL, Java
API, Acceleo) has the greatest potential from
your perspective?

6. Is there anything that you would like to reflect
more on Model Transformation?

The feedback collected was taken into account and
the quality model, and the technology ranking was
updated accordingly.

2.3 Threats to Validity

Any qualitative research approach will have threats
to validity which may be internal or external to
the research [Creswell, 2009; Yin, 2003]. During
this study, we identified that our bias was potential
threats to internal validity. Our preference to one
technology over another could affect theory build-
ing. We handled threats to internal validity by not
injecting our opinion during presentations.

3 Concepts

Model transformation involves well known concepts
from the fields of MDE and MDA (See. e.g. Pilone
and Pitman [2005]). Concepts include meta-models
and profiles, platform independent model (PIM), plat-
form specific model (PSM), model transformation, model
to model transformation (M2M), and model to text trans-
formation (M2T). (Note: We use summarized con-
cepts of MDA in this study. Further concepts such
as marking models, PIM-PSM marks, PSM-code marks
[Kleppe et al., 2003] was not applicable for the par-
ticular case studied.)

3.1 Meta-model and Profiles

A meta-model typically defines the language from
which to form a model. It provides syntax and se-
mantics to express a model [Kleppe et al., 2003; Mens
et al., 2005]. Profiles are the standard mechanism to
extend meta-models (in UML). A profile is defined
by a set of stereotypes, a set of related constraints,
and a set of tagged values [Kleppe et al., 2003; Mens
et al., 2005].

3.2 PIM

A platform independent model (PIM) is a model with-
out information about implementation platform.
This model is the result from analysis activity of soft-
ware development using MDA. PIM is modeled at

3

Meta-­‐model	

Model	

Uses	

Produces	

Figure 2: The figure presents the MDA approach summarized from Kleppe et al. [2003] (e.g. PIM-PSM marks
[Kleppe et al., 2003] are not presented as this was not part of the study.)

a high level of abstraction that captures domain re-
quirements. PIMs are usually expressed using UML
and UML Profiles [Kleppe et al., 2003].

3.3 PSM

A platform specific model (PSM) injects the PIM onto a
specific platform. PSM specifies a system in terms of
the software platform architecture, and the implemen-
tation constructs of one technology (e.g. Java, C++,
SQL, HTML). Many PSMs can be expressed for a sin-
gle PIM. A platform specific language is typically en-
gineered during low-level design activity of software
development using MDA [Kleppe et al., 2003; Pilone
and Pitman, 2005].

3.4 Model transformation

Model transformation is the automatic generation of a
target artefact (PSM, code or documentation) from a
source model (PIM), according to a transformation
definition. A transformation definition is a set of trans-
formation rules that together describe how a model
in the source language is transformed into a model in
the target language. Transformation rules describe of
how one or more constructs in the source language
map to one or more constructs in the target language
[Kleppe et al., 2003].
MDA provides an architecture that guides the trans-
formation of a PIM to its PSMs and the PSMs to tar-

get code or documentation for the system. This ar-
chitecture is summarized within Figure 2.

3.4.1 M2M Transformation

In MDA, a model to model transformation (M2M) is
the application of transformation definitions (set of
transformation rules) to a PIM to obtain a PSM (ex-
pressed in the platform specific language). M2M
transformation tools support writing transformation
definitions, running transformations, and produce
PSMs as outputs [Kleppe et al., 2003; Pilone and Pit-
man, 2005].

3.4.2 M2T transformation

In MDA, a model to text transformation (M2T) is
a transformation definition (set of transformation
rules) that transforms an expressed PSM to target
source code or documentation (e.g. C++, Java, C#,
Erlang, HTML). Similar to M2M tool, a M2T trans-
formation tool allows writing transformation defini-
tions, running transformations, and produce texts
(target source code or documentation of a system)
as outputs [Kleppe et al., 2003; Pilone and Pitman,
2005].

4

4 Results

4.1 Results from Identification

We selected the following technologies during Iden-
tification activity:

• Atlas Transformation Language (ATL) [LINA,
2011]. A report by Zeligsoft [Selic et al., 2010]
which evaluated open source MDA technolo-
gies based on business criteria suggested ATL
as a MDA tool having the highest potential
within M2M technologies.

• Acceleo [Obeo, 2011]. The report by Zeligsoft
[Selic et al., 2010] also suggested Acceleo as a
MDA tool having the highest potential within
M2T technologies.

• IBM Transformation Framework (IBM TF) [IBM,
2011]. The framework was part of the IBM
Rational Software Architecture software suite
used by the department at Ericsson AB.

• Java Application Programming Interfaces (Java
APIs) [Eclipse, 2011a,b]. We collected data
from a project at the department that used the
Java APIs for M2M and M2T transformations.

4.1.1 ATL

ATL is a textual language for M2M transforma-
tions. ATL transformations are unidirectional, op-
erate only on read-only source models and produce
write-only target models [Jouault and Kurtev, 2006].
ATL is a hybrid language; it is a mix of declara-
tive and imperative approaches to model transfor-
mation. It uses declarative constructs (rewrite rules,
sets and theoretical computations) with imperative
statements.

4.1.2 IBM TF

IBM TF is part of the IBM Rational Software Archi-
tecture software suite; it provides combinations of
a visual editor (dominant) and a textual language
(generated source code in Java) for M2M transfor-
mation. The visual editor allows to connect source
model elements with target model elements to spec-
ify a transformation rule. Once a transformation is
specified visually, Java source code is generated that
implements the M2M transformations. The gener-
ated source code uses a collection of Java APIs to per-
form M2M transformation, such as UML Java API,
and OCL Java API.

4.1.3 Acceleo

Acceleo is a text based M2T transformation technol-
ogy. Transformation rules are written in templates
that produce text files (source code or documenta-
tion) after execution.

4.1.4 Java APIs

UML Java API, and OCL Java API for Java can be
used for writing Java programs to perform M2M and
M2T transformations.

4.2 Results from Exploration

The PIM model, and the Platform specific language
resulting from the exploration are presented as tree
views in Figure 5 and Figure 6 respectively in Ap-
pendix A. In Appendix B, the output PSM model
resulting from both the M2M transformation tech-
nologies (ATL and IBM TF) is presented in Figure
7 as a tree view and textually in XML Metadata In-
terchange (XMI) format along with the output (C++
code) from the M2T transformation tool (Acceleo).
An example transformation rule in IBM TF and ATL
are presented in Figure 3 for the PIM, and the Plat-
form Specific Language in Appendix A. An example
transformation in Acceleo is provided in Figure 4.
We do not present the details of the the implemen-
tation (Projects in ATL, IBM TF, and Acceleo) as it is
beyond the scope of this paper. However, reflections
from the exploration are presented below:

ATL

ATL is textual. The mix imperative and declara-
tive constructs negatively affects learnability, under-
standability, and suitability, but the mix makes the
language powerful and compact. Once the learning
barrier is passed, the operability is very high as it
allows a user to author code with full control: an ad-
vantage. One can use Object Constraint Language
(OCL) [OMG, 2010] directly with the constructs of
ATL to query model elements: an advantage. If
the code has errors causing execution failures, it is
very easy to debug as the compiler reports on them,
which gives it a better analyzability: an advantage.
If the PSM meta-model has been updated, the ATL
module senses these changes and reports on them,
thus providing positive experiences for changeabil-
ity: an advantage. The PIM models that were used
for transformations had to be exported (a disadvan-
tage) to their plain UML definitions from the IBM
Modeling projects (used by the department at Eric-
sson AB) to be used for transformations. This adds
an extra step (a disadvantage) and could be difficult
to synchronize source models in case changes have
been made in between: a disadvantage. As well,

5

(a) Visual Editor in IBM TF showing the mapping between top-level Model element from PIM to top-level Root element in PSM

(b) Code in ATL with OCL constructs showing transformation rule to transform top-level Model element from PIM to top-level Root
element in PSM.

Figure 3: M2M transformation in IBM TF and ATL. Transformation rules in 3a and in 3b produce the same
results. The PIM model, and the Platform Specific language are shown in Figures 5 and 6 in Appendix A.

6

Figure 4: M2T transformation in Acceleo. The figure presents part of the Acceleo module which produces the
output shown on page 17 in Appendix B.

there is no graphical support for the exported UML
apart from a tree view: a disadvantage. We had to
study the ATL documentation, the OCL specification
[OMG, 2010], and perform some examples to write
transformations in ATL for the given case.

IBM TF

IBM TF provides a visual editor: a great advan-
tage. Once mapping of objects from PIMs and PSMs
is specified visually, the framework allows genera-
tion of code in Java. Along with learning the fea-
tures and functionalities of the visual tool, one has
to learn the Java APIs for full control over the trans-
formation: a disadvantage. This affects negatively
on the learnability, understandability and operabil-
ity of the tool. In addition to the generated transfor-
mation code, the tool generates the code to run as
an Eclipse plugin environment (in a separate pack-
age) which affects negatively on analyzability of the
generated code: a disadvantage. Changes to the
PSM meta-model is not reflected in the visual editor
which gives changeability a negative experience: a
disadvantage. However, these negative experiences
are compensated with suitability of this tool as one
has to deal with a single programming paradigm: an
advantage. The IBM Modeling projects could be di-
rectly fed into transformations without the need to
export them: an advantage. We had to study the
documentation for IBM TF, UML API for Java, and
OCL API for Java in order to write transformations

in this framework for the given case.

Acceleo

Acceleo was the single M2T tool used for this study.
Documentation and support provided for this tool
was extraordinary: an advantage. It required min-
imum effort to implement and execute M2T trans-
formations, giving an overall positive experience: an
advantage. We had to study parts of the documen-
tation and go through some examples to write M2T
transformations for the case.

4.3 Results from Evaluation

The results from Evaluation are given in Table 1 and
Table 2. Two of the leftmost columns in Table 1 list
the qualities and subqualities found. Table 2 defines
a generic scale for assessment of all qualities and
subqualities.

4.4 Results from Validation

Table 1 is the finalized and updated quality model
with the ranking of the transformation technologies
after three sessions of presentation and feedback
with four participants from the Validation phase
(Section 2.2.4) of the study. Answers to the feedback
questions are presented in Table 3.

7

Quality Sub-characteristics Transformation Technologies
M2M M2T

ATL IBM Transformation Acceleo Java APIs

Usability

Understandability ++ ++ +++ +++
Learnability - - ++ +++ ++
Operability +++ ++ +++ ++

Overall + ++ +++ ++

Maintainability
Analyzability ++ - ++ -
Changeability ++ - ++ +

Overall ++ - ++ -

Functionality

Suitability ++ +++ +++ +
Accuracy +++ +++ +++ +++
Overall ++ +++ +++ ++

Scalability Overall +++ ++ +

Table 1: Quality model and ranking for model transformation technologies.

Scale Explanation
+++ Very positive experience
++ Positive Experience
+ Somewhat positive; improvements can be

made
- Negative experience

- - Bad experience, but not a fundamental prob-
lem; can be fixed by tool vendor or in-house
project

- - - Bad experience; cannot be resolved.

Table 2: Generic scale used for assessment of qualities and sub-qualities of model transformation technologies.

8

Questions Answers

Participants 1 & 2 Participant 3 Participant 4
1. Do you miss any

qualities?
No, the given qual-
ities are good.

No, these qualities
are enough.

Yes, Performance and Ex-
pandability.

2. Which of these
qualities in the quality
model are of most
importance to Ericsson
AB? Could you rank
them?

1. Maintainability 1. Usability 1. Functionality
2. Usability 2. Maintainability 2. Usability
3. Functionality 3. Functionality
4. Scalability 4. Scalability

3. Could you also rank
the technologies ?

1. IBM TF Frame-
work

1. IBM TF Frame-
work

Preferred functionality

2. Acceleo 2. Acceleo over usability
3. ATL 3. ATL given any tool
4. Java API 4. Java API

4. Why are they ranked
this way?

All the participants had similar opinions that the tool should be of high us-
ability (graphical interface for IBM TF framework), have long-term support
and have the ability to support extensions to the transforms.

5. Which technology
from model to model
transformation (IBM,

ATL, Java API) or model
to text has the greatest

potential from your
perspective?

Acceleo and ATL
due to its open
source nature
[EPL, 2011]

Accelo and ATL
due to its open
source nature
[EPL, 2011]

Mature version of IBM
TF technology or the one
that gains the wider ac-
ceptance.

6. Is there anything that
you would like to reflect

more on Model
Transformation?

All the participants agreed that model transformation technology should be
applied in practice, although concerns about scalability was expressed.

Table 3: Feedback Questions and Answers

9

5 Discussion

We set out to explore available model transforma-
tion technologies from an industrial perspective. We
found qualities that were important to industry for
the particular case, assessed these qualities using our
experiences from exploring the technologies and val-
idated our assessment through feedback with MDA
engineers working in the industry. We discuss our
findings here and relate them to our research ques-
tions and research problem.

The qualities and the sub-qualities in Table 1 are
those we found to be important for the case (an-
swering RQ1: What qualities of available model
transformation technologies are important to MDA
engineers in the software industry?). The evalua-
tion scale (Table 2) applied to each of these qualities
for each model transformation technology give the
opportunity to argue for one technology over the
other (answering RQ2: To which degree do available
model transformation tools have these qualities?).
Table 3 provides insights on the quality model, eval-
uation scale, and the model transformation tech-
nologies from users point of view (answering RQ3:
Which of the found qualities are most important to
MDA users in industry?). The choice of a single
technology here is a tradeoff. Answers to Question 2
from Table 3 (Which of these qualities in the quality
model are of most importance to Ericsson AB? Could
you rank them?) is important while making the
choice of a technology for any particular case. For
our case, we can see that each participant answered
differently, although usability ranked highest fol-
lowed by either functionality or maintainability.

5.1 Rationale for the choice of model
transformation technology

5.1.1 Java API is not the choice

Although the Java API approach accounts for better
understandability, it is clearly seen from the results
of the Exploration and the feedback received during
Validation (Tables 1 and 3) that advantages of M2M
and M2T tools outweigh the advantages of Java APIs
for model transformations.

Furthermore, the participants acknowledged that
the guidance provided by M2M and M2T technolo-
gies, for solving model transformation problems,
is a significant advantage over just using Java APIs
(which gives no such guidance), thus M2M and M2T
technologies are preferable to Java in practice (ques-
tion 6 in Table 3).

This excludes Java API as a candidate technology for
both M2M and M2T transformation problems.

5.1.2 ATL is preferable over IBM TF

M2M technologies against each other, we appre-
ciated the mixed programming paradigm in ATL
(which supported compact programming), but also
the visual interface of the IBM TF (which was intu-
itive and easy to work with). However, taking learn-
ability and maintainability into account, ATL seems
to outscore IBM TF.

Learnability
Engineers within the department had strong prefer-
ence for IBM TF, thanks to its use of the Java API,
which the engineers had used extensively, and thus
were familiar with and liked.

From a learnability perspective, IBM TF does not
require a paradigm shift, which however ATL does
(for these engineers). For ATL, learnability is ham-
pered by two factors: documentation is hard to read;
the mixed programming paradigm is non-intuitive.
However, these limitations are not serious: docu-
mentation can be fixed either by an in-house project
or by contacting the vendor directly for support; the
mixed programming paradigm can be learned by a
little training.

Maintainability
The engineers ranked maintainability as the second
prioritized quality for M2M technology (question 2
in Table 3).

From Table 1, it is clear that transformations in IBM
TF are hard to maintain compared to ATL transfor-
mations (analysability and changeability). Fixing
these issues require an entirely new architecture for
the generated code, which can only be done by the
vendor (IBM) if it can be done at all. This makes ATL
a better choice in terms of maintainability (given that
developers have the sufficient training to work with
ATL).

5.1.3 Accelelo is the choice for M2T

For the same reasons, Acceleo is the preferred choice
for M2T transformations: usability and maintain-
ability is better than for Java APIs. (Again, modulo
some minor initial training.)

6 Related Work

Past studies of model transformation is not new.
Mens et al. [2005] in their summary of discussions in
a seminar recognize characteristics, success criteria,
quality requirements, and programming paradigms

10

of model transformation tools. Within their success
criteria, they present important functional require-
ments of a model transformation tool or a language.
Within quality requirements, they suggest usability,
suitability, and scalability as the key quality require-
ments within model transformation tools. They also
suggest that accessing models by means of API’s
could be an advantage since the programmers will
not require extra training. They conclude by say-
ing that a model transformation technology should
be selected based on its application domain, which
is what our case study provides specific methods for.

Van Gorp and Eshuis [2010] addresses model trans-
formation from the perspective of programming
paradigms. The study done in 2010 specifies that the
the study of the strengths and weaknesses of trans-
formation approaches across community boundaries
(compiler community, program transformation com-
munity and business process management commu-
nity) is relatively new. They also support finding
strengths and weaknesses of approaches to transfor-
mation for particular application domains. In their
study, they report on strengths and weaknesses of
a transformation program written in Java compared
to a rule based program (GrGen) in the domain of
business process management. They find that rule
based languages are more appropriate for model
transformations for that domain. They address as-
pects of model transformations such as runtime per-
formance, and code optimization. Our study sup-
plements their research work by providing further
quality aspects of model transformation technolo-
gies.

Sendall and Kozaczynski [2003] also studied de-
sirable characteristics that a model transformation
language should have. They find preconditions,
composition, form, and usability to be desirable
characteristics of model transformation languages.
They also suggest that a transformation language
should be able to support the approach Object Man-
agement Group is trying to standardize (the MDA
approach), which confirms our findings: MDA tools
(ATL, Acceleo and IBM TF) are preferred over using
general purpose programming languages for model
transformations (Java APIs).

7 Conclusion

We set out to explore model transformation tech-
nologies in an industrial setting. Our research ques-
tions were:
RQ1: What qualities of available model transforma-
tion technologies are important to MDA engineers in
software industries?
RQ2: To which degree do available model transfor-
mation tools have these qualities?
RQ3: Which of the found qualities are most impor-

tant to MDA users in industry?
In our Exploration activity (Section 2.2.2), we an-
swered our RQ1 by finding important qualities for
the explored model transformation technologies. We
ranked each of the technologies against the found
qualities, answering our RQ2 during Evaluation
(Section 2.2.3). In our Validation activity (Section
2.2.4), we validated and updated these assessments
by the feedback received from the users for this par-
ticular case. The feedback gave us qualities that were
important to these users and answered our RQ3 for
a particular context within Ericsson AB. By answer-
ing the research questions, we were able to provide
rationales for the choice of technology for our in-
dustrial case. Our findings contribute to the area of
model transformations where we confirm that meth-
ods for systematic selection of model transformation
technologies are needed, and we provide concrete
guidance on which qualities of model transforma-
tion technologies to investigate, and how to inves-
tigate these in an industrial setting. The method de-
signed for this study can be applied for similar eval-
uation in different application domains and for dif-
ferent model transformation technologies.

Acknowledgments

I would like to thank Lars Pareto for his constant su-
pervision, advice, and direction over the course of
my research. I would like to express my gratitude
to Staffan Ehnebom, Peter Eriksson R., and Hen-
ric Stenhoff at Ericsson AB for their guidance and
support without which this study would not have
been possible. I would also like to thank Helena
Holmström, Carl Magnus Olsson, Agneta Nilsson,
Miroslaw Staron and the engineers at Ericsson AB
for their valuable time and feedback throughout this
research. Last but not least, I would like to thank
my parents, K. M. Azizul Bari and Meher Aziz for
providing me the opportunity to be where I am and
supporting me throughout my life.

References

Software engineering-Product quality-Part1: Quality
Model. ISO/IEC 9126-1, 2001.

Eclipse public license, May 2011. URL http://
www.eclipse.org/legal/epl-v10.html.

I. Benbasat, D. K. Goldstein, and M. Mead. The
case research strategy in studies of information
systems. MIS Quarterly, 11(3):pp. 369–386, 1987.
ISSN 02767783. URL http://www.jstor.org/
stable/248684.

J. W. Creswell. Research design: Qualitative, quanti-
tative and mixed methods approaches. Sage Publica-
tions, 3rd edition, 2009.

11

http://www.eclipse.org/legal/epl-v10.html
http://www.eclipse.org/legal/epl-v10.html
http://www.jstor.org/stable/248684
http://www.jstor.org/stable/248684

S. Easterbrook, J. Singer, M.-A. Storey, and
D. Damian. Selecting empirical methods for
software engineering research. In F. Shull,
J. Singer, and D. I. K. Sjøberg, editors, Guide
to Advanced Empirical Software Engineering,
pages 285–311. Springer London, 2008. ISBN
978-1-84800-044-5. URL http://dx.doi.
org/10.1007/978-1-84800-044-5_11.
10.1007/978− 1− 84800− 044− 511.

Eclipse. Ocl java api, May 2011a. URL
http://www.eclipse.org/modeling/
mdt/?project=ocl#ocl.

Eclipse. Uml java api, May 2011b. URL http:
//wiki.eclipse.org/MDT-UML2.

IBM. Ibm transformation framework, May 2011.
URL http://publib.boulder.ibm.com/
infocenter/rsahelp/v8/index.jsp?
topic=/com.ibm.xtools.transform.
authoring.doc/topics/ttransm2mover.
html.

F. Jouault and I. Kurtev. Transforming mod-
els with atl. In J.-M. Bruel, editor, Satel-
lite Events at the MoDELS 2005 Conference, vol-
ume 3844 of Lecture Notes in Computer Science,
pages 128–138. Springer Berlin / Heidelberg,
2006. URL http://dx.doi.org/10.1007/
11663430_14. 10.1007/1166343014.

A. Kleppe, J. Warmer, and W. Bast. MDA Explained,
The Model-Driven Architecture: Practice and Promise.
Addison Wesley, 2003.

A. I. . LINA. Atlas transformation language, May
2011. URL http://wiki.eclipse.org/ATL/
User_Guide.

T. Mens, K. Czarnecki, and P. V. Gorp. 04101 discus-
sion – a taxonomy
of model transformations. In J. Bezivin and
R. Heckel, editors, Language Engineering for
Model-Driven Software Development, number 04101
in Dagstuhl Seminar Proceedings, Dagstuhl, Ger-
many, 2005. Internationales Begegnungs- und

Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany. URL http://drops.
dagstuhl.de/opus/volltexte/2005/11.

M. J. Miller, J. Mda guide. 2004, 2003.

Obeo. Acceleo, May 2011. URL http://www.
acceleo.org/pages/home/en.

OMG. Object constraint language, 2010. URL http:
//www.omg.org/spec/OCL/2.2/PDF/.

D. Pilone and N. Pitman. UML 2.0 in a Nutshell.
O’Reilly Media, July 2005.

P. Runeson and M. Höst. Guidelines for conducting
and reporting case study research in software
engineering. Empirical Software Engineering, 14:
131–164, 2009. ISSN 1382-3256. URL http://
dx.doi.org/10.1007/s10664-008-9102-8.
10.1007/s10664-008-9102-8.

B. Selic, K. Hussey, and T. McClean. An
extended survey of open source model-
based engineering tools, May 2010. URL
http://wiki.eclipse.org/images/d/
dc/Report.external.bvs.pdf.

S. Sendall and W. Kozaczynski. Model transforma-
tion: the heart and soul of model-driven software
development. Software, IEEE, 20(5):42 – 45, Sept.-
Oct. 2003. ISSN 0740-7459. doi: 10.1109/MS.2003.
1231150.

P. Van Gorp and R. Eshuis. Transforming process
models:
executable rewrite rules versus a formalized java
program. In D. Petriu, N. Rouquette, and Ø. Hau-
gen, editors, Model Driven Engineering Languages
and Systems, volume 6395 of Lecture Notes in
Computer Science, pages 258–272. Springer Berlin
/ Heidelberg, 2010. URL http://dx.doi.
org/10.1007/978-3-642-16129-2_19.
10.1007/978− 3− 642− 16129− 219.

R. K. Yin. Case Study Research Design and Methods.
Sage Publications, 3rd edition, 2003. Applied So-
cial Research Methods Series, Vol 5.

12

http://dx.doi.org/10.1007/978-1-84800-044-5_11
http://dx.doi.org/10.1007/978-1-84800-044-5_11
http://www.eclipse.org/modeling/mdt/?project=ocl#ocl
http://www.eclipse.org/modeling/mdt/?project=ocl#ocl
http://wiki.eclipse.org/MDT-UML2
http://wiki.eclipse.org/MDT-UML2
http://publib.boulder.ibm.com/infocenter/rsahelp/v8/index.jsp?topic=/com.ibm.xtools.transform.authoring.doc/topics/ttransm2mover.html
http://publib.boulder.ibm.com/infocenter/rsahelp/v8/index.jsp?topic=/com.ibm.xtools.transform.authoring.doc/topics/ttransm2mover.html
http://publib.boulder.ibm.com/infocenter/rsahelp/v8/index.jsp?topic=/com.ibm.xtools.transform.authoring.doc/topics/ttransm2mover.html
http://publib.boulder.ibm.com/infocenter/rsahelp/v8/index.jsp?topic=/com.ibm.xtools.transform.authoring.doc/topics/ttransm2mover.html
http://publib.boulder.ibm.com/infocenter/rsahelp/v8/index.jsp?topic=/com.ibm.xtools.transform.authoring.doc/topics/ttransm2mover.html
http://dx.doi.org/10.1007/11663430_14
http://dx.doi.org/10.1007/11663430_14
http://wiki.eclipse.org/ATL/User_Guide
http://wiki.eclipse.org/ATL/User_Guide
http://drops.dagstuhl.de/opus/volltexte/2005/11
http://drops.dagstuhl.de/opus/volltexte/2005/11
http://www.acceleo.org/pages/home/en
http://www.acceleo.org/pages/home/en
http://www.omg.org/spec/OCL/2.2/PDF/
http://www.omg.org/spec/OCL/2.2/PDF/
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8
http://wiki.eclipse.org/images/d/dc/Report.external.bvs.pdf
http://wiki.eclipse.org/images/d/dc/Report.external.bvs.pdf
http://dx.doi.org/10.1007/978-3-642-16129-2_19
http://dx.doi.org/10.1007/978-3-642-16129-2_19

A Models and Meta-models used as input

Figure 5: The figure presents the PIM model used as an example source in the study.

13

Figure 6: The figure presents the Platform Specific Language developed for the purpose of this study.

14

B Output from the technologies

Figure 7: The figure presents the PSM model produced by the M2M tools.

15

The XMI representation of the PSM model is provided below:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xmi:XMI xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI" xmlns:protocol="http://protocol/1.0">

<protocol:DataClass name="SetupCfmD">
<itsProperty name="result" type="Boolean"/>

</protocol:DataClass>
<protocol:DataClass name="SetupReqD">

<itsProperty name="configParams" type="String"/>
<itsProperty name="uid" type="String"/>

</protocol:DataClass>
<protocol:DataClass name="SetupRejD">

<itsProperty name="errorCode" type="int"/>
</protocol:DataClass>
<protocol:DataClass name="SetupFwdD">

<itsProperty name="msg" type="String"/>
</protocol:DataClass>
<protocol:SOProtocol name="Ex1_iwuP">

<itsInEvents name="Ex1_iwuP">
<itsInOperation name="setupCfm" parameterName="data">

<itsDataClass name="SetupCfmD"/>
</itsInOperation>
<itsInOperation name="setupRej" parameterName="data">

<itsDataClass name="SetupRejD"/>
</itsInOperation>
<itsInOperation name="setupInd"/>

</itsInEvents>
<itsOutEvents name="Ex1_iwuP˜">

<itsOutOperation name="setupReq" parameterName="data">
<itsDataClass name="SetupReqD"/>

</itsOutOperation>
<itsOutOperation name="setupFwd" parameterName="data">

<itsDataClass name="SetupFwdD"/>
</itsOutOperation>

</itsOutEvents>
</protocol:SOProtocol>

</xmi:XMI>

16

The C++ source code provided below was generated by the M2T transformation tool, Acceleo, from the PSM
model (the code presented below is for DataClasses only):

#ifndef Ex1_IWU_DATATYPES_HPP_
#define Ex1_IWU_DATATYPES_HPP_
namespace Ex1_IWU
{

/* ExceptionS */
struct ExceptionS{

int errorCode
};
/*SetupCfmD*/
struct SetupCfmD{

Boolean result
};
/*SetupReqD*/
struct SetupReqD{

String configParams
String uid

};
/*SetupRejD*/
struct SetupRejD{

int errorCode
};
/*SetupFwdD*/
struct SetupFwdD{

String msg
};

}
#endif /* Ex1_IWU_DATATYPES_HPP_ */

17

	Introduction
	Research Design
	Research Site
	Research Process
	Identification
	Exploration
	Evaluation
	Validation

	Threats to Validity

	Concepts
	Meta-model and Profiles
	PIM
	PSM
	Model transformation
	M2M Transformation
	M2T transformation

	Results
	Results from Identification
	ATL
	IBM TF
	Acceleo
	Java APIs

	Results from Exploration
	Results from Evaluation
	Results from Validation

	Discussion
	Rationale for the choice of model transformation technology
	Java API is not the choice
	ATL is preferable over IBM TF
	Accelelo is the choice for M2T

	Related Work
	Conclusion
	Models and Meta-models used as input
	Output from the technologies

