

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, June 2011

Introducing the three tier model for app security and

reliability in critical systems

An exploratory practical approach

Bachelor of Science Thesis in the Programme Software Engineering and

Management

PER LUNDIN

Erik Kinding

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Introducing the three tier model for app security and reliability in critical systems

An exploratory practical approach

Per Lundin

Erik Kundin

© Per Lundin, June 2011.

© Erik Kinding, June 2011.

Examiner: Helena Holmström Olsson

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2011

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, June 2011

I N T R O D U C I N G T HE T HR E E T I E R
M O D E L F O R A P P S E C U R I T Y A N D

R E L I A BI L I T Y I N CR I T I CA L S Y S T E M S

AN E X PL OR AT O RY P R ACTI CA L AP P R OACH

 Per Lundin Erik Kinding
 Dept. of Computer Science & Engineering Dept. of Computer Science & Engineering
 Chalmers Univ. of Technology Chalmers Univ. of Technology
 Forskningsgången 6 Forskningsgången 6
 Gothenburg, Sweden Gothenburg, Sweden
 luper@student.chalmers.se erikkinding@gmail.com

Academic supervisor: Carl Magnus Olsson
Industrial supervisor: Gunnar Andersson

May 2011

ABSTRACT

THE MODERN APP PHENOMENON HAS
SPREAD FAST AND WIDE WITH THE MAJOR
SPREAD OF SMARTPHONES. THIS
PHENOMENA IS NOW TREADING NEW
GROUND, AND STARTS TO SURFACE IN
OTHER MARKETS. WHILE THIS IS
HAPPENING, THERE IS LIMITED RESEARCH
DONE ON THE SECURITY ASPECTS OF THESE
APPS ON THE PLATFORM THEY INHABIT.
LIKE THE PARASITES OF BIOLOGY THESE
APPS COULD EVENTUALLY PROVE TO BE
EITHER HARMFUL OR USEFUL FOR THE
PLATFORM. THIS PAPER WILL LOOK AT
SOME OF THE CHALLENGES FACING THE
DEVELOPMENT OF APPS AND OF THE
PLATFORMS THEY INHABIT.

INTRODUCTION

The in-vehicle infotainment(IVI) systems of
modern cars are moving towards the rest of
our mobile devices such as netbooks, tablets
and smartphones in terms of functionality. A
very clear example of this is the Android
based platform recently released by Saab,
called Saab IQon (Saab automobile, 2011).
This platform includes the functionality
found in any modern smartphone and even
allows the customer to continually extend
the functionality by downloading so called
‘apps’ (small lightweight applications, that
usually fulfill a single purpose).

About a year ago, project MeeGo was
launched (MeeGo 2010). It was a merge
between two separate projects aimed at
mobile platforms, Intel's Moblin and Nokia's
Maemo. The new platform would also come
to include a branch for in-vehicle devices,
known as MeeGo IVI (Schroeder, 2010).

mailto:luper@student.chalmers.se
mailto:erikkinding@gmail.com

 Page 4

MeeGo is an open source project, running on
a Linux kernel, which give developers and
users good possibilities to configure it to
their own preferences.

A company in the automotive industry
(CarComp) was interested in if MeeGo IVI
has the capability to provide a secure and
reliable platform for third party
applications. An investigation of this new
platform would have to consider many
factors. Two of these, which are common
concerns with any software supposed to run
in a car, are security and reliability. As
understood by the mere existence of Saab
IQon and the now noticeable success of the
app concept , (Sharma 2010) it is of course
highly interesting to investigate the
possibilities of letting a user run third-party
software, which they can download from the
internet, in their car. The concern of this
paper is how third-party software can be
developed for MeeGo IVI in respect to
security and reliability concerns? The
security and reliability became the main
focus based on discussions we had with an
engineer at CarComp. An example that
usually was stated was that an app
malfunctioning should not be able to disable
the breaks on a running car. It’s from these
discussions the concern for this paper was
born.

In our effort to answer this we used a
methodology called design research. This
will be thoroughly explained in the method
section of this paper. The data we collected
was both qualitative and quantitative.
Qualitative data that was collected was
chronically written descriptions of the
implementation effort. The quantitative data
that was collected was in the form of
security and reliability requirements. The
requirements was linked and traced in the
development effort as well as the prototype
artifact.

The outcome of this research is in the form
of a proof-of-concept app environment
operating on the MeeGo IVI platform. The
prototype should encompass all the security

and reliability issues that will be presented
in this thesis.

Following this introductory section we will
present our theoretical framework, the lens
through which we look at our problem.
Further, we will present the method used,
the result of the research process and then
discuss these findings under the light of our
specified framework. Lastly, we sum the
paper up in a concluding and discussing
section.

THEORETICAL FRAMEWORK

The research in this thesis was done at the
infotainment department at CarComp.
CarComp is interested in the new IVI
platform, MeeGo. The application we
produced will help CarComp evaluate
MeeGo as a viable platform for future IVI
systems.

CarComp is now facing questions
concerning the security and reliability of the
underlying system structure. How can an
application execute in a safe environment,
especially if it’s developed by third party
developers? The area looked at in this thesis
was framed from a security and reliability
perspective. McGraw(2004) describes some
examples of handling security, one of which
is sandboxing, which would play a major
part of the development effort.

Saab has recently released an IVI system
with the focus on letting third party
developers develop applications for it. The
idea for this thesis was to develop a secure
application environment for third party
developers. The focus was on how to do this
in a secure and reliable fashion. We have
concluded that normal software security
and stability requirements, such as
Sommerville(2007) suggests authorization
requirements, integrity requirements,
intrusion detection requirements are not
viable for this kind of system. The same goes
for reliability requirements and metrics.
This is because of the nature of the
application, and the fact that it is intended

 Page 5

to run on a critical system. In the app
environment that was produced, security
and reliability were the main requirements.

Desmet et al.(2007) describe five important
architectural requirements for this kind of
system (1) secure execution of third-party
applications (2) support for the security-by-
contract paradigm (3) flexible integration of
enforcement techniques (4) optimized for
resource-restricted devices (5)
compatibility with legacy applications. The
first architectural requirement states that a
software running should not be able break
the underlying structure. The second
focused on security-by-contract, that
security of the system can be based on
contracts. The third states that on-device
security enforcements should be flexible.
The fourth is about the resource
requirements needed. And finally the fifth
states that the architecture should be able to
work with legacy software. We will focus on
the first, third and fourth. This is because of
the focus of this thesis, namely security and
reliability. These three architectural
requirements were the ones that was best
suited for the application. Secure execution
of third-party applications is also identified
as the primary requirement for this kind of
system. This does not mean that the other
architectural requirements will not be
satisfied. As Desmet et al.(2007) explains,
the architecture of the underlying structure
must make sure that the application can’t
jeopardize the reliability of the system it is
run on. From this we extracted our two
main focuses, security and reliability. We
will use parts of the suggested architectural
design for safe application execution that is
suggested by Desmet et al.(2007) in our
development efforts. The following two
sections discuss the focus of the security
and reliability concerns.

SECURITY

Every decision made in the development
process was made from a security
perspective. For the implementation
process the security aspect would be

evident in the following description: An
application should not jeopardize the
foundation system that it is run on, it should
not be able to access data that is not
intended for that application. The
sandboxing plays a major role in the
security aspect, as it will limit the execution
of applications.

RELIABILITY

As with security the reliability aspect would
color the entire development process, as
well as the research process. When it comes
to implementation process the following
definition is used: if an application is badly
written and crashes, the underlying
structure should realize this and shut it
down. Sandboxing would play a role in
reliability, since applications run in the
sandbox environment should not be able to
halt the entire underlying structure.
Sandboxing is a term used in computer
science when an application is run in a
closed off or simulated part of a system.
Developers can usually create a sandboxed
environment where an application cannot
harm the underlying systems core
functionality. This is done mainly to
maintain reliability, but also for security,
such as running untested or unsafe files
(Prevelakis & Spinellis 2001). Sandboxing
was one of the key areas that we explored. It
was important to look at how sandboxing
can contribute to software security and
reliability.

Important to keep in mind is the fact that a
completely secure system most likely is a
system turned off or completely
disconnected from the world around it.
Thus, our efforts cannot be seen as solutions
to perfect security but rather attempts to
enhance security where needed and
possible. We have mainly been keeping the
end users (device owner) and app vendors
in mind as key stakeholders of security
aspects.

The implementation effort executed during
our study attempted to shed light on issues
related to the implementation of an app

 Page 6

environment. Studying how other platforms
solved this issue, we set out to implement
and investigate the feasibility of solutions
for the MeeGo platform. A solution should
add value of some kind (in our case security
and reliability) to stakeholders of the
system. Along with the development
oriented parts of the investigation, we
wanted to see how the actual system could
be tweaked and used. Looking at how it has
been done previously, the concept
sandboxing seemed to be a reasonable place
to start.

We looked at different ways to solve the app
environment problem for a critical system,
we studied the way two of the major players
in the app-market solve these issues. The
two that we looked at are Android and
iPhone (iOS). This is in an attempt to gather
more information of how this problem has
been solved before. Whether a mobile
device such as a mobile phone is a critical
system was not the focus of the study.

THE THREE TIER MODEL

This section will introduce a model that we
call the ‘three tier model’ that was
conceptualized during the development, it
will be linked to requirements and show
examples of how specific requirements
were handled in the prototype artifact.

The application of this model is supposed to
be in the area of critical systems. The model
will make sure that the underlying
operating system will not be harmed in any
way by the third party software that the
user run. The model describes three tiers of
security, the idea is to make sure that if one
of the tiers break there will at least be
another one that will make sure that the
underlying system is not harmed. First we
will introduce the thought behind this
model, by shortly describing each tier and
give some examples how it can be
implemented. Later we will show how it was
applied to our prototype artifact.

The three tier model is comprised of three
security levels. The first one is to set

limitations on the development language of
the apps, which means the specific language
the apps are written in. We hypothesized
that this would greatly enhance the security
of the system, by constraining what the
developer can do, but also force the
developer to use specific purpose designed
libraries.

Second level is to have a controller that
handles the different processes that the
apps run in. This affected both of the
identified requirements, security and
reliability. The security requirement benefit
from this by having each app run in a
separate process, so all memory and data
that is used would be local to that app. The
reliability requirement will benefit from this
because if the app process crashes or
freezes it will not interrupt the underlying
operating system. The controller will also
monitor the app process for errors. The
hypothesis behind this level is that each app
needs something that controls it, making
sure it’s not doing something it is not
supposed to do.

The third part is to have a safe place to run
the app in, that is away from the basic
functionality of the underlying operating
system. We hypothesized that this fulfilled
most of the reliability requirement, by
closing off parts of the underlying operating
system, so it can’t be modified in an
undesirable way.

A detailed explanation of each tier will
follow, with examples of how that tier can
be implemented.

 Page 7

FIGURE 1

TIER 1: CONSTRAINTS ON THE
LANGUAGE

This tier focuses on the way that the apps
are written and putting limitations on the
specific language that is used. The idea
behind this is to make sure that the author
of an app can’t call functions that are
potentially harmful to the system. There are
many ways that this is achievable, either
from the use of a scripting language for the
app implementation, or by forcing the
developer to use specific, purpose built
libraries. The idea is not to limit the app
developer, but give more of a rigid
framework for development. Since this
model is meant for critical systems, the idea
of having an open platform is not
recommended. Forcing the developer to use
an API that has limited functionality is
important for the security aspect of the
system. Requirements that are addressed by
this tier is security. This tier covers the
flexible integration of enforcement
techniques described by Desmet et
al.(2007), by letting the developer of the
system easily change the way that security
is enforced on the app development
language. Desmet et al.(2007) discusses
different ways this can be achieved, one of
the ways to let the app developers have
more access is to enforce the use of

signatures. Where registered and trusted
app developers can get a signature to
distribute with their apps, that will allow
the app to use functions that the general
public cannot. This is one example of how
such technique can be implemented in the
model. Another example is enforcing the use
of a specific API(application programming
interface), this API can be formed to only let
the app developer to use specific libraries
when developing. This is more like the
Android approach, where Java is used. Java
is a general purpose programming language,
but has a specific, purpose built
programming API for Android development.
A third example is to force the app
developer to use a specific programming
language, that is either built for the app
development, or restricted for such use.
This is more how iPhone have solved this
problem, by not permitting development for
their platform in other languages than C,
C++ and Objective C. Any of these examples
give a good solution to solving this tier.

TIER 2: PROCESS CONTROL

Even if the developers of the system can put
limitations of how the apps are written, they
cannot limit what the app actually do. This
is why we felt the need for some sort of
controlling mechanism. The idea behind this
tier is to limit the execution of apps, and to
monitor their behavior. If an app starts to
use up too much resources, and starts
slowing down the underlying system the
controller should have the authority to shut
the app down. The same goes for if an app
crashes and becomes unresponsive. Not
being able to control the underlying system
could be considered an extreme reliability
risk. So the main focus for this tier is the
reliability of the system. An example of how
this can be implemented is to have a
program that spawns each app process and
monitors them. This is a good solution,
mainly because there is a separate process
that keeps track of the spawned app
processes. So as long as this process is not
compromised the apps can’t do any harm on
the system. The process controller could

 Page 8

also monitor its own process, and if it is
compromised it will close itself down along
with all the app processes. Another way of
solving this tier is to use a native operating
system constraint on processes. For a
GNU/Linux system, this is quite easy, the
system developer can limit how many
processes that can be run at the same time.
This means that no other processes can
start until another process has been shut
down. This can be achieved with commands
such as ulimit in the GNU/Linux
environment. Since MeeGo is based on Linux
it’s a viable solution for our prototype as
well. A third way of solving this tier is only
to have specific user-groups for specific
functionality. For example having a user-
group that is allowed to use the internet
connection on a platform, and assigning the
app rights to that user-group, and then
monitor that group. If the app abuses the
terms of the user-group it can easily be
unregistered from that group, not allowing
it access to that functionality any more.

TIER 3: CONSTRAINTS ON
OPERATING SYSTEM

Sandboxing is a fairly abstract term which
gathers many techniques used to enhance
computer security and reliability. Using a
sandbox is a common way for running
untrusted software on a system without the
risk of harming the underlying system. An
app, or more generically third party
software, can be considered to be untrusted
software. Our research started out with
investigating so called jails, which
intuitively seemed to be what a sandbox
was all about. Alternatives to this idea was
discovered and investigated.

Examples from the previous section, Tier 2,
also qualify as examples for this tier, more
precisely the utilization of mechanisms in
the Linux kernel and software usually found
in GNU/Linux distributions. Creating a
sandbox as part of this tier could mean
setting up restricted user accounts under
which processes run and thus have limited
access to system resources, utilizing the

Linux Security Modules (LSM) framework
for mandatory access control (MAC) or
virtualizing a separate and isolated
filesystem using a software such as Linux-
VServer.

The way users are handled in the Linux
kernel is both a very viable and fairly easy
mechanism to use for restrictions. Users can
be allowed permission to different sets of
system resources and also bundled into
groups sharing the same permissions. This
is for example used in the Android security
model.

Mandatory Access Control. MAC is for
instance used in the iPhone iOS sandbox
where it is based on the TrustedBSD
framework (Dwivedi et al, 2010). To briefly
describe MAC, it is a way for the operating
system to constrain what a program is
allowed to do with a piece of data or other
system resource. As presented in the result
section later in this thesis, MAC can be
implemented in MeeGo and GNU/Linux
systems using software which utilizes the
LSM framework.

So called jails, which immediately drew our
attention to the chroot mechanism, is a
isolated section of a filesystem where a
piece of software is allowed to execute
without interaction with the underlying
system which is thus protected. Chroot in
itself was however discovered to be a poor
choice, but alternatives fulfilling the actual
intention of the jail implementation was
discovered and is presented in the result
section.

This tier also covers the secure execution of
third-party applications requirement
described by Desmet et al.(2007)

METHOD

RESEARCH SETTING

A major part of the research effort
presented in this thesis was executed at the
infotainment department at CarComp. The

 Page 9

intention was to be working in the same
environment as the architects and
requirements engineers at CarComp and
benefit from their knowledge and help.

MeeGo is a platform based on the Linux
kernel and is very similar to other
GNU/Linux distributions, such as Ubuntu
Linux. The aspects of the MeeGo platform
this paper discusses, security and reliability,
can in several ways be taken care of fairly
easy by embracing standard functionality of
a GNU/Linux distribution. MeeGo is bundled
with an IDE based on QT-creator, which
rapidly increased the setup time needed to
get everything in order and to start
developing our solutions.

To get some perspective of how one can
solve the execution of apps on a system we
looked at Android and iPhone.

In large, Android apps are only as secure as
the user wants them to be. They rely heavily
on security permissions that are presented
to the user when the app is installed on the
system. If the user accepts that the app will
have access to a particular system
functionality, the app will have complete
access to it. When an app is installed on an
Android device it is given a specific user id,
Dwivedi(2010), this allows the app only to
use functionality from each specific user
group that it belongs to. The way this is
done is by having specific user groups for
different functionality(such as using
internet connections, or the address book)
and prompt the user if he or she will allow
the app to be a part of the specified user
group. This is not viable in a critical system,
since the ability or non-ability to make an
informed decision should not jeopardize the
system.

iPhones take on security differs from
Androids. Apple have the right to
exclusively control what apps run on their
system, unless the device is ‘jaibroken’, but
this is outside the scope of this thesis.
Apples exclusive domain of what apps are
available to their system is based on the
marketing model of their apps,

Dwivedi(2010). Any developer can develop
apps for iPhone, but if the app you produce
violate any of Apples guidelines for apps the
app will not be available through their
appstore. All the source code for apps are
approved by Apple before they are
published, this kind of security makes it
hard developers to sneak in security or
reliability breaches. But it also hinders the
development of apps, since every app has to
go through the process of being reviewed.
This rigid inflexible system that the iPhone
is using can be viable, based on the
corporate marketing model of the company
that wishes to introduce the system. If the
corporation that is implementing such a
system does not have the resources to check
all incoming apps for security breaches and
unsafe code, it is not practical with such a
solution.

It is in this middle-ground that the idea of
our model was hatched. How can a company
let third party developers develop apps for
their critical system without compromising
that security and reliability, and without
putting the burden of these requirements
upon the user. By experimenting with the
already present concepts of app security on
the MeeGo platform we managed to raise
interesting issues to the surface and present
insights regarding security and reliability
concerns discovered during the research.

RESEARCH PROCESS

This thesis project was executed according
to the design research methodology
(Hevner & Chatterjee 2010,). Design
research was identified as suitable for a
couple of reasons, amongst them the fact
that our research has been dealing with a
fairly new and unexplored domain. The
manner in which design research let us
design, experiment, implement and redo as
needed was very important in the choice of
research process. This section will discuss
the steps in the design research process,
how each step is related to our research and
by this justify the choice of methodology.
Important to keep in mind while reading

 Page 10

about these steps is that they were not
followed exactly or in an as strict manner as
one might think. Again, it was more the
experimental nature of design research
which was appealing rather than the
proposed structure and order found below.

Five steps were identified in the design
cycle (Hevner & Chatterjee 2010,):

AWARENESS OF PROBLEM

The automotive industry is pushing their in-
vehicle infotainment (IVI) systems the same
direction as other mobile platforms in terms
of functionality. MeeGo is a new platform
and one of its intentions is to be used as an
IVI platform. Saab IQon, being based on the
Android platform, is a great example of the
emerging IVI field. An interesting problem is
how third-party software could be handled
on the MeeGo platform, similarly to the apps
available for Saab IQon.

Further, a set of important software
qualities concerning IVI systems were
discussed. It became evident that security
and reliability was of outmost importance.
The output of this step is intended to be a
proposal for a new research effort. We
ended up with the following research
question: "How can third-party developed
software be run on MeeGo IVI and respect
security and reliability concerns?".

SUGGESTION

From discussions with an employee at
CarComp and by looking into existing
knowledge on the area, an implementation
of a sandboxing solution was suggested.
Initially this was a spontaneous suggestion
which seemed to be appropriate and
literature confirmed this suggestion,
Prevelakis & Spinellis(2001),
McGraw(2004).

DEVELOPMENT

During this phase, we developed and
researched a solution to our identified

problem. Design is of big importance in this
step and the goal was not only running code
on the target platform but also ideas
regarding architecture and further
development. This together would
constitute the model presented and
discussed throughout this thesis.

EVALUATION

During this step, which in this specific
project ended up to be very much like the
next and final step, our main contribution to
the thesis was reached. Collected data,
assumptions regarding design, deviations
from our expectations and personal
reflections was gathered and discussed.
Design research executed by the book
would end this step by starting over at the
suggestion phase with knowledge gained
throughout the last loop in the design
research cycle. Due to our narrow time
frame the next step, reflection, was reached
immediately after this step.

REFLECTION

Loose ends and still unsatisfied
requirements from our development effort
was noted and the discussion section of this
thesis was finished up. Here suggestions for
future research efforts on our topic was
identified and presented. These suggestions
can be found in the end of the discussion
section.

DATA COLLECTION AND DATA
ANALYSIS

As can be figured out from the example-like
description of our work process above,
essentially two categories of data was
collected: logbook notes and data from the
evaluation step as described in the design
research methodology.

We documented our work progress on a
daily basis. Each logbook entry was written
in a structured, pre-defined, format to easily
let us make use of the notes. Our thoughts
during the project were important as our

 Page 11

perception of the MeeGo platform became
part of the evaluation process.

During the research, data in form of
requirements which can ensure or help a
system (of the studied kind) to be secure
and reliable was collected. During analysis
and also during data collection,
requirements like this appeared. The key to
gain such knowledge is through deeper
insight, which in turn was given by
interaction with the platform. Interaction in
this case would mean development for the
MeeGo platform. This knowledge that was
analyzed using our theoretical framework
would specify a model which can help to
assure security and reliability of the studied
system, but also systems sharing its
technical characteristics, such as the fact
that MeeGo is a GNU/Linux system.

LIMITATIONS

A system operating in a car needs to take a
lot of different technical concerns in to
consideration, especially from a safety
perspective. Systems should not be able
interfere with and cause each other to crash.
This could have lethal consequences if, for
instance, a system controlling the breaks all
of a sudden would crash.

This project was carried out using hardware
unattached to a car and nothing of what we
implement or investigate is taking in to
account the communication or
infrastructure of in-vehicle electronics. This
thesis puts a focus on software engineering
and hardware aspects could not fit in the
scope nor time frame of the project.

It was decided to keep the scope of the
thesis to third-party software in relation to
security and reliability. This is not a narrow
scope, but it will keep the project on track
while still being as permitting within its
boundaries as our exploratory research
would require.

RESULT

Here we will present the result of the
development and research effort. In this
section, the details of the implementation
are not discussed in very much depth. If you
wish to get a deeper understanding of the
implementation, please see Apendix A for
the entire source code, including example
code for an app.

THREE TIER MODEL IN PRACTICE

Here we will describe how we implemented
the three tier model in our proof of concept
prototype. We will go through each tier like
the previous section and show how it was
implemented.

TIER 1

In our prototype we took the first approach
exemplified in the theoretical framework
section, and implemented a Lua interpreter
in the code that would run each app. Lua
(Lua 2011) is a lightweight scripting
language, written in C, and proved to be
really useful for this application. And since
MeeGo IVI is Linux based and the
implementation language used for our app
environment was C++, Lua provided us with
the functionality to not include specific
libraries that could be harmful to the
system, such as IO and OS libraries. If such
functionalities that the IO library provides
would be needed, we would implement a
function that would mimic that functionality
and export it to be used by Lua. But the
functionality of such a function would be
controlled by the system, and not by the
app. This also provided us with the ability to
build a specific GUI controller for the app,
which greatly improved the ability to write
graphical apps. The more non-API functions
that can be mimicked in the API of the app
development language, the more secure the
app environment will become. Since our
prototype is just a proof-of-concept, we
decided only to include about 10-15
functions, such as rendering, image handling

 Page 12

and events. Another idea behind this
approach is the ability to check all the input
that the app handles and reject input that
could be harmful for the system. What we
realized after exporting functions to Lua,
was that even though we exported a small
amount of functions we could accomplish
running apps in MeeGo. The result from this
tier, proves the idea behind this tier, by
allowing the developer to write an app that
can’t be harmful to the system, because of
the limitations we made to the language. We
tested this by creating an app that tries to
use a library that we wouldn’t allow it to
access. This resulted in the app closing
down with an appropriate error message.

TIER 2

We implemented a controller in to our
prototype that would spawn each apps
process and monitor the resources used by
it. If an app would start using too much
resources in the form of memory or process
power the controller would simply close
down that running app. The implementation
of the controller was not a really hard task
to complete because of the way MeeGo IVI is
built. This made it really easy to spawn
processes and control them using the native
Linux implementation of the proc tree. The
controller was imperative for an app
running on a critical system, if the system is
malfunctioning safety and security of the
user can be at risk. Even a slowdown of such
a system, for example a process consumes
too much process power, can put the system
at risk. Having each app run in its own
process is a major benefit when working
with multiprocessing operating systems,
such as Windows or Linux. It gives stability
that even if the process somehow crashes or
freezes, the underlying system is not
particularly effected, and can continue
execution. We deemed this necessary
because of the domain that this system
would run in, which is a moving car. The
idea of running each app in a separate
process is used by other developers such as
Android. This along with our prototype
shows that it is a good solution. For

additional security it’s possible to have
certain functionality tied to specific user
groups, Dwivedi(2010) describes the way
Android have solved this issue, but also
points out some of the downsides with it, as
mentioned earlier Android bases a lot of the
security on the user’s ability to make correct
assumptions about the software. This was
something we deemed as a security risk for
our prototype, and we decided on
developing the above mentioned interfacing
with an API instead. Figure 5.1 shows our
process controller in action. In this instance
the app called memory hogger used up more
memory than what was allowed and was
forced to shut down. This shows what we
intended for this tier. The app is able to run
as long as it’s not consuming more memory
than we allowed it to consume. When the
memory usage exceeded the threshold set
for it, the app was closed down and an
approriate error message was shown.

FIGURE 2

TIER 3

On an early stage, we decided to go with a
mechanism called chroot (‘change root’).
This mechanism has been around for a long
time and is a common feature in Unix and
GNU/Linux systems. A chroot "jail" would
let us run an app in an isolated section of the
system and thus prevent it from harming
the underlying system. However, it was
discovered that there is really nothing
preventing a running process from leaving
the jail and cause damage or other kinds of
unwanted behavior. Further reading on the
topic would lead us to dismiss the idea.

 Page 13

This statement was backed up by quotes
from the manual of chroot which states that
the current working directory (cwd) of the
process remains the same. Due to this fact, it
is possible to break out of the jail. Also, the
fact that only root (UID 0) has the ability to
use chroot leaves the door to the jail fully
open in practice. Examples of how this can
be done is more elaborately shown at the
homepage of the Linux-VServer project
(Linux Vserver, 2009,). Our understanding
is that chroot can be used to create a
separate section of your system where you
can run software you do not trust or want to
test. However, the protection the chroot
environment offers does not help if the
software you do not trust knows that it is
running in a chroot jail and can break out.

We spent quite some time (a major part of
the time dedicated for implementation)
trying to propose a chroot based sandbox on
MeeGo. Once the problems, or facts, became
apparent to us, we started to investigate
related software and other ways in which
sandboxing could be done.

Alan Cox mentioned in the same thread on
kerneltrap that software has been built for
the purpose of security upon the idea or
concept of chroot, Linux-VServer and
FreeBSD Jail are examples. There are more
alternatives than these. Here we present
four of them and briefly try to describe their
purpose and functionality. All are developed
for Linux systems which makes them
possible candidates for the MeeGo platform.

Linux-VServer adds an extra barrier to
overcome the previously mentioned issues
with a chroot jail and thus make it more apt
for a security oriented purpose. This
software makes it possible to run several,
separated, virtual servers on one physical
machine. In the context of this paper, this
functionality would more or less do the

exact same thing we intended to do with
chroot. One virtual server, which is isolated
from the underlying system would
constitute the jail. (Linux Vserver, 2009)

There are no sources indicating the
feasibility of using Linux-VServer on MeeGo,
but in a discussion on a Maemo project (one
of the predecessors to the MeeGo project)
forum (Maemo, 2011) it was mentioned as a
possible candidate for setting up a jail
environment.

Another candidate for this section was
SELinux, but from our understanding based
on various online discussions, it is perceived
as hard to use and maintain (Linux 2006).
An alternative to SELinux suggested on the
Maemo discussion boards was AppArmor. It
was only briefly mentioned but caught our
attention. Apparently, AppArmor is easier to
use than SELinux, one of the main selling
points of AppArmor seems to be the ease of
use (AppArmor 2011). The two differs on a
fundamentally technical level, but this has
not been investigated in any closer detail.

There seems to be no information on the
possibility of using AppArmor on MeeGo
and we have not tried this ourselves during
the project but there is nothing indicating
that an implementation would be
impossible. As long as MeeGo is used with a
kernel version supporting LSM this option is
interesting.

Further, we found SMACK and TOMOYO
Linux. Both are a bit more interesting than
AppArmor since they seem to have been
used in practice on the MeeGo platform in
one way or another. Regarding TOMOYO
Linux there is not much to say. It is a
software used for MAC, similar to
AppArmor. However, a tutorial (Tomoyo
Linux 2011) on how to run TOMOYO on
MeeGo was found. This is a life sign and
TOMOYO might be a suitable tool for MAC
on MeeGo. We have however not been able
to try this out in practice during the project.

Finally, we started to look at SMACK. Edge
(2010) reports from a conference for
lwn.net that SMACK is decided to be the tool

"chroot is not and never has been

a security tool"

(Alan Cox, Kerneltrap 2006).

 Page 14

used for access control. This is further
confirmed in the MeeGo projects wiki page
on architecture (MeeGo wiki 2011) This
option seems to be the official choice for
MAC this far. The author of SMACK,
Schaufler (2007) describes his software in
more depth in his paper.

CONCLUSION

The main contribution of this thesis is the
three tier model, but also the collection of
thoughts and ideas that arose during the
development and research processes. The
model is not the complete solution to the
problem of app security, but it can at least
give CarComp, and others who are in the
process of implementing an app
environment, some idea of what to consider.

The suggestion of app environment on the
MeeGo platform we have proposed
manifests itself to work in practice and
theory. Parts of it in mere practice shown by
our implementation effort, parts in theory
which led to conclusions based on research.
The proposed environment is not a
complete app environment, but it contains,
along with the presented ideas in this paper,
a foundation for a body of knowledge which
could be used to further develop an app
environment on MeeGo or, as far as we have
seen, any other GNU/Linux system
providing the same amount of functionality.

Because of the way we implemented Lua
and the way we wrote our app-environment
the entire system is really lightweight,
which makes it usable for systems with
limited resources. And since the apps are
written in a script language the apps are
lightweight as well. This is because all the
heavy GUI implementations are already
implemented in MeeGo. Furthermore the
app environment that we produced covers 1
(secure execution of third-party
applications),3 (flexible integration of
enforcement techniques) and 4 (optimized
for resource-restricted devices) of Desmet
et al.(2007) architectural requirements,
which we identified as the relevant ones for

this thesis. So through our research and
development of our prototype, we can
conclude that these architectural
requirements are the important
requirements in developing an app-
environment.

Working with MeeGo was not a challenge in
itself, since it is based on Linux. Writing
code and compiling for MeeGo was quite
straightforward.

REFLECTION

The model that we have proposed in this
thesis works in theory, and in practice in
our application. This does not mean that it is
totally fool-proof. Further research into
each of the tiers focus area is needed for this
model to provide a really solid framework
for app-security.

What we have seen during the study is that
there are many benefits with MeeGo when it
comes to security issues. This is likely due to
the fact that it is based on the Linux kernel.
As presented in this paper, several tools
with potential to aid a secure app
environment on MeeGo exist as generic
Linux applications. There is also an ongoing
discussion regarding the various tools in the
many Linux and security oriented forums,
mailing lists and blogs. A lot of information
on the subject remains to be collected and
analyzed. Our research merely scratched the
surface.

As shown in the MeeGo project wiki, access
control is currently handled using SMACK.
Time would not allow us to actually try its
features in practice but it sure feels
promising that SMACK is a default feature in
the MeeGo platform. How it can be utilized
in the design of an app environment
remains to be seen, but the MAC concept
taken care of by SMACK is used in other app
environments, Apple iOS being one.

 Page 15

PROPOSITION FOR FURTHER
RESEARCH:

During the project we came across the
problem of how software is authenticated
on the client side after being downloaded.
Our contact person at CarComp expressed
the importance of this functionality. Fully
understanding this issue is not what this
paper was about and time would not permit
us to investigate the matter very closely.
However, making sure that downloaded
software is what one assumes it to be adds a
fourth tier of protection to our proposed
three tiers. It would also be a necessary step
to take if further development of an app
environment on the MeeGo platform is
considered.

Guaranteeing software authenticity is not
something new and has been discussed in
many corners of the internet and by
researchers. A lot of information is available
on the topic. Something that came to our
minds during the research process was that
existing app environments, like Android
Market and Apple's App Store share some
fundamental characteristics with the
package managers commonly found in
GNU/Linux distributions (Aptitude, RPM,
pacman, etc), namely that of distributing
software. Recently, package managers even
have nice graphical user interfaces (e.g.
Ubuntu) and there is a resemblance to the
app store clients when it comes to usage:
search, find, download and install. A
GNU/Linux package manager usually
handles updates and dependencies between
packages. Also, last but not least, software
authentication is more or less handled
automatically in these package managers.

To sum this up, our suggestion is that a
future project our research effort would try
to utilize a widely used package manager
such as RPM or Aptitude and build an app
solution based on it. Exactly what that needs
to be added has to be figured out for the
specific case. MeeGo IVI comes shipped with
RPM installed so perhaps that is a good
starting point.

This research effort could potentially
benefit the free open source software
(FOSS) community, which has to be
considered a good thing for the general
public, if the project would develop or
modify the existing systems to fit the
purpose of an app store solution. Further,
the FOSS community could potentially
benefit from the existence of such a solution
as it would enable new ways of using FOSS
commercially. The problem with making
money from FOSS has been a common
criticism but an app store for FOSS
distribution might just be what could solve
this problem. The general idea has already
been adopted by Apple and the Mac App
Store, which is an appstore for their laptops
and desktop computers.

Another suggestion would be to look closer
to mandatory access control, SMACK in
particular, and how this can be used to solve
issues regarding safety and reliability in an
app environment. A potential study could
compare different tools for MAC and
evaluate how suitable they are for various
kinds of systems. Several options exist and it
might be of value to industry to read a
comparison discussion them. Also, this
could be interesting to the developers of the
different software projects in order to get
new ideas which could be used to improve
their products.

REFERENCES:

Hevner, A.R., Chatterjee, S, 2010, Design
Research in Information Systems, Integrated
Series in Information Systems, Volume 22,
Springer.

Prevelakis, J., Spinellis, D., 2001.
Proceedings of the FREENIX, 2001 USENIX
Annual Technical Conference. Berkeley(CA,
USA)

McGraw, G., 2004. Software Security, IEEE
Security & Privacy, 2(2), pp.80-83.

Shroeder, S., 2010, Introduction to MeeGo,
IEEE Pervasive Computing, 9(4), p.4

 Page 16

Desmet, L., Joosen, W., Massacci, F., Naliuka,
K., Philippaerts, P., Piessens, F.,
Vanoverberghe, D., A 2007. Flexible
Security Architecture to Support Third-
party Applications on Mobile Devices,
CSAW’07 Proceedings of the 2007 ACM
workshop on Computer security architecture.
New York(NY, USA)

Sommerville, I., 2007. Software engineering.
8th ed. Pearson Education Limited

Sharma, C., 2010, Sizing up the global mobile
apps market.[online], Industry Study
Commissioned by Getjar. Available at: <
http://telecomcircle.com/wp-
content/uploads/2009/05/Sizing_up_the_Gl
obal_Mobile_Apps_Market.pdf> [Accessed at
18 March 2011]

Saab automobile, 2011, Saab IQon -
infotainmentsystem genom öppen innovation.
Press release, 1 March 2011. Available
at:<http://media.saab.com/sv/press-
releases/2011-03-01/saab-iqon-
infotainmentsystem-genom-ppen-
innovation> [Accessed at 18 March 2011]

Dwivedi, H., Clark, C., Thiel, D., 2010. Mobile
application security.MCGRAW-HILL

MEEGO, 2010, MEEGO WEBSITE, [ONLINE]

AVAILABLE AT: <https://meego.com>

[ACCESSED 9 MAY 2011]

Lua, 2011, Lua Website,[online] Available at:
< http://www.lua.org/> [Accessed 10 May
2011]

Linux Vserver, 2009, Secure chroot Barrier,
[online] Available at < http://linux-
vserver.org/Secure_chroot_Barrier>
[Accessed 10 May 2011]

Maemo, 2011, Maemo website, [online]
Available at: <http://maemo.org/>
[Accessed 10 May 2011]

Linux, 2006, SELinux: Comprehensive
security at the price of usability, [online]
Available at:
<http://www.linux.com/learn/tutorials/30
5764-selinux-comprehensive-security-at-
the-price-of-usability> [Accessed 10May
2011]

Edge, J., 2010, The MeeGo security
framework, [online] Available at:
<http://lwn.net/Articles/416771/>
[Accessed 10 May 2011]

App Armor, 2011, AppArmor wiki, [online]
Available at:
<http://wiki.apparmor.net/index.php/Main
_Page> [Accessed 10 May 2011]

Kernel Trap, 2006, Abusing chroot, [online]
Available at:
<http://kerneltrap.org/Linux/Abusing_chro
othttp://lwn.net/Articles/416771/>
[Accessed 10 May 2011]

 Tomoyo Linux, 2011, TOMOYO Linux on
MeeGo 1.1, [online] Available at:
<http://tomoyo.sourceforge.jp/1.8/meego-
x86.html.en> [Accessed 10 May 2011]

MeeGo Wiki, 2011, Security/Architecture,
[online] Available at:
<http://wiki.meego.com/Security/Architect
ure#Access_Control> [Accessed 10 May
2011]

Shaufler, C., 2008, The Simplified Mandatory
Access Control Kernel [online] Available at:
<http://schaufler-
ca.com/data/SmackWhitePaper.pdf>
[Accessed 10 May 2011]

 Page 17

APPENDIX A

Through this URL you can download a zip-file containing all code produced during the project.
The archive does not include makefiles or anything helping you to compile the code, but this
should not be too hard to manage if you have some experience with programming.

http://erikks.se/thesis/source.zip

