
Towards a Generic Reference Architecture for Mobile
Applications

Bachelor of Science Thesis in Software Engineering and Management

SAMANEH TORK ABADI

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, May 2011

The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish
the Work electronically and in a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other
material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowl-
edge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the
Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet.

Towards a Generic Reference Architecture for Mobile Applications

SAMANEH TORK ABADI

c©SAMANEH TORK ABADI, May 2011.

Examiner: HELENA HOLMSTRÖM OLSSON

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden

Towards a Generic Reference Architecture for Mobile Applications

Samaneh Tork Abadi
gustorksa@student.gu.se

IT University of Gothenburg
Software Engineering and Management

Gothenburg, Sweden

Abstract

Mobile devices come with a number of challenges that
affect the design of the software architecture for mobile
applications. Some of these challenges can be resolved by
reusable architectural solutions. In this study, we investi-
gate the feasibility of a generic reference architecture for
mobile devices by mapping reference model and architec-
tural patterns. Volvo IT has an existing reference model
used for construction of reference architecture for Java EE
and .NET development tracks; we explore the possibility of
utilizing the outcome of this study at this company by con-
sidering their reference model. Since the proposed solution
does not focus on any mobile technology, this study can be
continued in further design details by considering different
mobile technologies.

Categories and Subject Descriptors D.2.11 [Software En-
gineering]: Software Architectures

Keywords Software Architecture, Reference Architecture,
Reference Model, Architectural Pattern, Mobile Software
Architecture, Mobile SOA

1 Introduction

Many companies like Volvo IT have been developing enter-
prise applications in different development tracks for many
years. Several guidelines and standards covering different
aspects of software application development have been in-
troduced internally in many IT companies such as devel-
opment guidelines, and architectural principles in order to
save time and increase the consistency among all the soft-
ware applications developed within a company.

In recent years, large collection of devices with an in-

creasing number of mobile operating systems has emerged
(Teng & Helps, 2010), and mobile devices have become a
new popular platform for business applications (Natchetoi,
Kaufman & Shapiro, 2008). As mobile applications and
technologies are ubiquitous and powerful nowadays, Volvo
IT like many other companies is adopting mobile technolo-
gies for numerous applications to increase its operational
efficiency, improve its responsiveness and competitiveness,
capitalize on the mobile revolution, and meet new customer
demands (Unhelkar & Murugesan, 2010).

Mobile devices introduce several new challenges like con-
strained resources, e.g., limited battery power, network
bandwidth, processor speed, and memory (Malek et al.,
2009). Fast development of the technologies for mobile
applications also causes design problems (Mazhelis et al.,
2005), and flexible adaptation to new technologies is re-
quired (Ahlgren & Markkula, 2005). Companies intention
is that their products should be used by as many customers
as possible, but given that they can not dictate their cus-
tomers’ choice in mobile devices, they aim for developing
applications for most of the leading platforms. Although
each platform tries to dominate the market by promoting
applications offered in their own application store, none of
the platforms have managed to impose their standards in the
market (Gasimov et al., 2010). Different solutions such as
native (platform dependent), cross-platform, and web-based
exist for developing mobile applications; each of these so-
lutions is based on specific architecture which may or may
not be similar to the others.

Many companies that have commenced developing mobile
applications, seek the expediency of using their existing
standards and guidelines for mobile application develop-
ment as well. Volvo IT, that is the industrial partner of this
study, wants to investigate if the existing reference model
and architectural principles which have been used to create
the reference architecture for Java EE and .NET develop-

1

ment tracks inside the company, can be reused for mobile
application development.

This study contributes in two ways:

• In order to address the described mobile challenges
by an architectural solution and help a software archi-
tect during the design of a software architecture for
a mobile application, we explore the feasibility of a
generic reference architecture for mobile applications
which is independent of any mobile technologies and
can be used for any type of mobile application.
This investigation reveals that it is not possible to
construct a generic reference architecture that suits all
mobile applications’ needs. We conduct the study by
exemplifying four mobile application scenarios and
reasoning how to construct a reference architecture
for each of them. These reference architectures and
the rationale behind them lead to a generic reference
architecture template for mobile applications that can
be reused while designing a software architecture.

• We investigate if it is possible for Volvo IT to utilize
the generic reference architecture template for mobile
applications based on their existing architectural arti-
facts, especially their reference model. We conclude
that their reference model is very similar to the one
selected for this study. Hence, the outcome of this
study can be used at Volvo IT without major modifi-
cation. If other companies are interested in using the
outcome of this study based on their existing architec-
tural artifacts, similar investigation can be performed.

The remainder of this report is structured as follows: The
concepts of software architecture, intermediate stages of
software architecture design, and quality attributes as well
as constraints of mobile devices, and related work to this
study, are introduced in Section 2. We describe the re-
search method that we have used to approach the problem
in Section 3. In order to investigate the feasibility of a
generic reference architecture for mobile applications, we
provide hands on details of constructing this generic refer-
ence architecture and define four different mobile applica-
tion scenarios to exemplify this construction in Section 4.
We present the reference architecture template for mobile
applications which is one of the outcomes of this study as
well as explore the similarities with the provided reference
model from Volvo IT (Section 5). Finally, we conclude in
Section 6.

2 Knowledge Base

In this section, we present the knowledge base of this study
that is produced through reviewing related literatures from

various sources.

2.1 Software Architecture

There are many different definitions of software architec-
ture and there is not one single universal definition that is
deemed correct (Clements et al., 2002). What most of them
have in common is that they include the topics of elements,
structures, and relationships. However, one of the more
popular definitions comes from Bass, Clements and Kaz-
man (2003, p.21) who define software architecture as fol-
lows:

”The software architecture of a program or
computing system is the structure or struc-
tures of the system, which comprise software
elements, the externally visible properties of
those elements, and the relationships among
them. ’Externally visible’ properties are those
assumptions other elements can make of an el-
ement, such as its provided services, perfor-
mance characteristics, fault handling, shared
resource usage, and so on.”

Using the analogy of modern programming languages, this
can be interpreted from an architectural point-of-view that
the public interfaces of the elements are known but the im-
plementation details and elements needed specifically for
the implementation are not known. Thus, a software archi-
tecture is a definition of the software elements to be used,
and the relationship between these elements. Buschmann
et al. (1996) discuss that designing a software architecture
addresses several aspects of software engineering such as
technical, methodological, and process aspects. Clements
et al. (2002) mention that it is always up to the assigned
software architect to decide whether an element is part of
the architecture or not, and he or she makes this decision
based on the different goals of the architecture (e.g., behav-
ioral or quality goals). The implementation details will be
left in the hands of the system designers and developers.

2.2 Quality Attributes

A software architecture should address certain quality re-
quirements on the software. Normally, these are non-
functional requirements, even though they are affected
by functional requirements. An example of this relation
is given in (Bass, Clements & Kazman, 2003) where a
functional requirement may demand to sort an enormous
database, which means it can be impossible to achieve
the required quality attribute of lightning-fast performance.
This also shows that implementation, and architecture both
need to address the quality attributes of an application.

2

A bad architecture can make certain quality attributes im-
possible to achieve during implementation and vice versa
(Buschmann et al., 1996).

Albin (2003) states that a quality attribute is a property of a
product or process that can have some quantitative or quali-
tative value, and that can be measured or observed. There is
not one single list of quality attributes available, but rather
several theories and models to compare. However, most
of the models address fairly the same topics. Once again,
one of the most popular quality models comes from Bass,
Clements and Kazman (2003) that defines three categories
of quality attributes: system, business, and architecture (Ta-
ble 1). Not all of these quality attributes can be addressed
by the software architecture alone and it is often up to the
software architect to capture the quality requirements, since
they are not always specified clearly in the system require-
ments (Albin, 2003).

Table 1. Classification of quality attributes by Bass,
Clements and Kazman (2003)

Availability
System Modifiability
Quality Performance
Attributes Security

Usability
Testability
Time to market

Business Cost and benefit
Quality Projected lifetime of the system
Attributes Targeted market

Rollout schedule
Integration with legacy systems

Architectural Conceptual integrity
Quality Correctness and completeness
Attributes Buildability

2.3 Intermediate Stages of Software Ar-
chitecture Design

Bass, Clements and Kazman (2003) explain that design
of a software architecture is started from bare box-and-
line sketches, and is continued by binding of architectural
choices during several stages. The final outcome of this
process is a full-fledged architecture with all of the appro-
priate information about a system filled in. They describe
reference model, architectural pattern, and reference archi-
tecture as three intermediate design stages that are very
useful in their own right. Figure 1 illustrates the relation

and order of these stages. We describe each one of these in
the following subsections.

Figure 1. The relationship between reference models, ar-
chitectural patterns, reference architectures, and soft-
ware architectures (Adapted from Bass, Clements and
Kazman (2003))

2.3.1 Architectural Pattern

Architectural pattern is a template for concrete software ar-
chitecture that expresses a fundamental structural organi-
zation schema for software systems (Gamma et al., 1995).
According to Microsoft Patterns & Practices Team (2009a),
an architectural pattern is a number of principles that pro-
vides an abstract framework with solutions to well known
and recurring problems. An architectural pattern adds cer-
tain constraints on the elements of an architecture, as well as
on the relationships between these elements (Albin, 2003;
Bass, Clements & Kazman, 2003). With the help of an ar-
chitectural pattern, different stakeholders of a system can
discuss the overall architecture using a common language
without diving into technical details (Microsoft Patterns &
Practices Team, 2009a).

An architectural pattern also highlights certain quality at-
tributes such as known solutions to performance problems
(Bass, Clements & Kazman, 2003). A software architect
can combine several architectural patterns for a software ar-
chitecture, when decomposing an architecture a number of
different patterns can be applied between different elements
(Buschmann et al., 1996). For instance, the relationship
between a UI and a server element can be described us-
ing the client-server architectural pattern (Clements et al.,
2002; Microsoft Patterns & Practices Team, 2009a), and
the different server elements can be described using the lay-
ered structure architectural pattern (Clements et al., 2002;
Fowler et al., 2002; Microsoft Patterns & Practices Team,
2009a). Thus, an architectural pattern can apply to a small
group of elements as well as to a complete application.
Other examples of architectural patterns include, but are not

3

limited to, Component-based Architecture, N-Tier Archi-
tecture, and Service-Oriented Architecture (SOA) (Table 2).

Table 2. List of common architectural patterns (Microsoft
Patterns & Practices Team, 2009a)

Category Architectural Pattern

Communication Service-Oriented Architecture (SOA)
Message Bus

Deployment Client-Server
N-Tier/3-Tier

Domain Domain Driven Design

Structure
Component-Based
Object-Oriented
Layered Architecture

In this study, we cover some of the architectural patterns
that we found during the literature review to be most com-
mon as well as applicable for mobile application architec-
ture. The following architectural patterns are used in the
construction phase, so we briefly describe them here.

Client-Server The client-server architectural pattern de-
scribes a distributed system with separate client and
server systems connected by a network (Microsoft
Patterns & Practices Team, 2009a). The simplest
form of this pattern consists of one server with one
or more clients. The most common use of this pat-
tern is a web based application that is running in a
web browser, and is connected to a web server. This
type of client is referred to as a thin client as op-
posed to a rich client that is usually more complex,
and can have for instance business and data layer
on the client side (Fowler et al., 2002). van Gurp,
Karhinen and Bosch (2006) illustrate the direct influ-
ence of three different architectural approaches that
are client-server with native client, mobile Java client,
and mobile thin client on the design, development,
and deployment of an exemplified mobile applica-
tion. Some of the quality attributes achieved while
using the client-server pattern are centralized data ac-
cess, higher security, and ease of maintenance (Mi-
crosoft Patterns & Practices Team, 2009a).

N-Tier/3-Tier Microsoft Patterns & Practices Team (2009a)
describes this pattern as a separation of functional-
ity over several tiers where each tier is deployed in
separate nodes. By using this pattern to divide func-
tions onto different tiers, resources can be used much
more efficiently. In the case of a mobile application
for example, a heavy calculation can be processed in
one tier located on a server with the result being pre-

sented on the mobile device. By using this pattern,
scalability, maintainability, flexibility, and availabil-
ity quality attributes are addressed.

Layered A layered architecture groups related functions
within an application into layers, where each layer
consist of functions with something in common such
as a common role or responsibility (Buschmann,
Henney & Schmidt, 2007a; Microsoft Patterns &
Practices Team, 2009a). The layered pattern pro-
motes separation of concerns and supports flexibility,
and maintainability. Each layer may be placed in a
separate tier and be distributed on different physical
computers as described by the N-Tier pattern. The
layered architectural pattern comes with a number of
quality attributes such as reusability, testability, per-
formance, isolation, abstraction, and manageability.

SOA Microsoft Patterns & Practices Team (2009a) argues
that the service-oriented architectural pattern pro-
motes the functionality being exposed as services,
which in turn can be used by applications using these
services. The main principles of SOA are that ser-
vices are autonomous (e.g., developed separately),
distributable (i.e., located anywhere in a network or
locally), loosely coupled (i.e., independent of others),
and are compatible based on policy (e.g., protocol).
SOA adds the quality attributes abstraction, discover-
ability, interoperability, domain alignment, and ratio-
nalization.

Message Bus This pattern describes software systems that
can receive and send messages from/to other sys-
tems without knowing any specific details about
the sender/receiver (Microsoft Patterns & Practices
Team, 2009a). The pattern promotes using asyn-
chronous message patterns like publish/subscribe for
sending messages over a common bus. Benefits of us-
ing the message bus architectural pattern are flexibil-
ity, loose coupling, scalability, application simplicity,
low complexity, and extensibility.

2.3.2 Reference Model

A reference model is a functional decomposition of a prob-
lem in the form of components and their connectors (Albin,
2003). It is a basic view of a problem and shows how that
particular problem can be solved. It is used in conjunction
with architectural patterns to shape a reference architecture.
While we were reviewing the related literature, we found
several reference models but in this report we present two
models that we found interesting for this work.

4

Figure 2. Common Mobile Application Architecture (Adapted from Microsoft Patterns & Practices Team (2009b))

Figure 3. Enterprise Reference Model (Adapted from Al-
bin (2003))

Figure 2 is the common mobile application architecture by
Microsoft Patterns & Practices Team (2009b). This team
presents a comprehensive architectural guide for designing
mobile applications. It should be highlighted that this archi-
tectural guide holds a close resemblance to the Volvo Group
Target Architecture (VGTA). The other example is Figure 3
from Albin (2003) which shows a set of components and
the relationships between them.

2.3.3 Reference Architecture

Reference architecture is not a software architecture and is
only the outcome of early design decisions. It provides a
proven template solution for an architecture of a particular
domain (Bass, Clements & Kazman, 2003). Reference ar-
chitecture is the result of mapping reference model and ar-
chitectural patterns, and is composed of software elements
which jointly solves the problem defined by the reference
model (Bass, Clements & Kazman, 2003). As a reference
architecture can be defined at different levels of abstraction,
it should be generic enough to be used in a family of sys-
tems, and not only for one specific system (Clements et al.,
2002).

5

2.4 Design Pattern

While the architectural pattern provides a subsystem view
of the application, the design pattern breaks down a subsys-
tem into smaller architectural units, and their relationships
(Buschmann et al., 1996). Design pattern provides an ab-
stract description of a commonly recurring design problem
in the form of a template that can be applied in many differ-
ent situations (Gamma et al., 1995). Design patterns do not
affect the fundamental structure of the software architec-
ture, and are usually independent of programming language
(Buschmann et al., 1996).

Ahlgren and Markkula (2005) address the challenges and
constraints of mobile applications by utilizing design pat-
terns. They illustrate synchronization and remote proxy
patterns as two examples of many design patterns that can
solve some of the constraints of mobile devices. Natchetoi,
Kaufman and Shapiro (2008) also applied caching pattern in

their work in order to address the limitation in availability of
network connection. Furthermore, they describe two differ-
ent approaches for the caching pattern, reactive and proac-
tive. Reactive caching only caches information that has
been requested by demand of the application, while proac-
tive caching predicts what information the application will
need next; the information is then pushed from the server to
the local cache.

Roth (2002) presents a pattern hierarchy which is called
Mobility Patterns (Figure 4). Each branch of this hierar-
chy addresses one mobile application development chal-
lenge, then one or several patterns for solving this problem
are suggested. He elaborates more on two mobile applica-
tion challenges that are mobile service usage, and mobile
data. He suggests proxy and synchronization patterns for
confronting these challenges. It is evident that mobility pat-
terns are focused on a more detailed level, and closer to the
mobile technology by involving design patterns.

Figure 4. Mobility Patterns (Adapted from Roth (2002))

Microsoft Patterns & Practices Team (2009c) exemplifies a
mobile application scenario, and deliberates on designing
this example by suggesting the most suitable architectural
patterns, and subsequently adding design patterns on each
architectural unit. Although this work was only published
on a technical web site, we decide to include this research
since it is highly related, and has some unique concepts. It
is worth to note that, in spite of the effort to find related
work, this is the most important input for this study. This
team explains the reasoning behind each architectural deci-
sion during all steps of design process for this example.

2.5 Characteristics of Mobile Devices

During the construction of an application for a mobile
device, there are several challenges that are specific for
these particular devices in comparison with most other tar-
get platforms. Some of these challenges can be limited
battery power (Buschmann, Henney & Schmidt, 2007b),
small screen size (Unhelkar & Murugesan, 2010), small
and different input devices (Ahlgren & Markkula, 2005),
limited memory and CPU capacity (Malek et al., 2009),
security issues (Natchetoi, Kaufman & Shapiro, 2008),

6

platform diversity (Roth, 2002), different network proto-
cols (Unhelkar & Murugesan, 2010), limitations of wire-
less network such as restricted bandwidth and availabil-
ity (Mazhelis, Markkula & Jakobsson, 2005; Natchetoi,
Kaufman & Shapiro, 2008), adapting to frequent disrup-
tions in connectivity and service quality, and maintain-
ing cache consistency across disconnected network nodes
(Buschmann, Henney & Schmidt, 2007b). The mobile in-
dustry is also constantly evolving which puts higher de-
mand on the software’s ability to rapidly adapt to changes
(Ahlgren & Markkula, 2005; Mazhelis, Markkula & Jakob-
sson, 2005; Roth, 2002). Due to these factors certain quality
attributes such as modifiability, and performance (Mazhe-
lis, Markkula & Jakobsson, 2005), may need to be carefully
considered when constructing a software architecture for a
mobile device.

2.6 Architectural Openness Model for
Mobile Software Platforms

Anvaari (2010) introduces the architectural openness model
for mobile software platforms that defines how much and

under which conditions the application developers can ac-
cess different layers and components of the platform and
extend its functionality. This layered model consists of the
following layers:

• Applications layer, this layer is divided into two sub-
layers which are:

– Native Applications: applications that are de-
veloped by device manufacturer

– Extended Applications: applications that are
developed by application developers, and de-
vice users

• Middleware layer, this layer consists of main libraries
and services of the platform such as data storage, and
virtual machine.

• Kernel layer, this layer is the core of the platform that
consists of the lower level components of the plat-
form like device drivers, power management frame-
work, and security framework.

Figure 5. Architectural Openness Model for Android Platform (Adapted from Anvaari (2010))

7

Figure 6. Architectural Openness Model for iPhone Platform (Adapted from Anvaari (2010))

In this model, Anvaari (2010) defines the concept of inte-
grating, extending and modifying components in the men-
tioned layers as a means to clarify the openness notion in
the architecture of the mobile platforms. By integrating a
layer, he means to use existing components of a layer via
e.g., API or service call; extending a layer refers to enhanc-
ing the functionality of the components of a layer and mod-
ifying a layer means to replace or change the components of
a layer, for instance writing your own device driver. As the
scope of this study is limited to Android and iPhone mobile
devices, only the architectural openness model for Android
(Figure 5), and iPhone (Figure 6) are depicted here. These
two pictures show the openness of architecture for integrat-
ing, extending, and modifying in different layers of Android
and iPhone platforms.

3 Research Approach

This section introduces the case for this study that is from
Volvo IT (Section 3.1) and then describes all the provided
input documents from this company (Section 3.2). Subse-
quently, we provide detailed description about the process
of creating a generic reference architecture in Section 3.3.

3.1 Research Setting

This research is a result of 10 weeks qualitative study
(Creswell, 2009; Seaman, 1999) and has been performed
as a collaboration between IT University of Gothenburg
and Volvo IT in Gothenburg. Volvo IT, which is part of
the Volvo Group, is a global company that was created in
1998 but its root dates back to the 1920s with the intro-
duction of punch card machines at Volvo (Volvo IT, 2011).
Volvo IT has around 5000 employees that are located in dif-
ferent offices in more than 35 locations around the world.
Volvo IT has active customers in approximately 60 coun-
tries. Volvo Group as one of these customers, is one of the
world’s largest suppliers of transport solutions and its cus-
tomers are active in more than 180 countries.

Volvo Group IT Governance promotes some standards and
guidelines for designing, and developing software applica-
tions. Volvo Group Target Architecture (VGTA) and Volvo
Group Architectural Principles (VGAP) are two examples
of these guidelines that are independent of any platform,
and has been used by both Java EE and .NET development
tracks in Volvo IT. Recently, Volvo IT has started to develop
mobile applications for different mobile devices while still
being active in developing software applications in Java EE

8

and .NET development tracks. Volvo IT is interested in us-
ing VGTA and VGAP as much as possible in mobile devel-
opment track in order to maintain the consistency of soft-
ware architectures between all three development tracks.

Volvo IT is a major stakeholder in this research since this
company is interested in potential applicability of the ar-
tifacts produced during this study. The access to the in-
tellectual property of the company in the form of the ex-
isting AVS, JVS, NVS, VGTA, and VGAP documents are
all important contributions from Volvo IT to this research;
although the author was required to sign a non-disclosure
agreement (NDA) in order to have access to these sources.
The author is required to be committed to this agreement
while sharing the result of this study. However, it should be
mentioned that nothing substantial relevant to the research
question has been lost due to the NDA.

3.2 Volvo IT Documents

In this section, we describe the internal Volvo IT documents
in general terms by considering the restriction of sharing the
intellectual property of this company.

3.2.1 Volvo Group Target Architecture (VGTA)

Volvo Group Target Architecture (VGTA) is a generic ar-
chitecture created within Volvo IT and promoted by the
Volvo Group IT Governance. It is a high-level architecture
with several elements, and connectors that shows the de-
pendency between these elements. Using terminology pre-
sented earlier, the VGTA can best be described as a refer-
ence model. As it is mentioned in Section 3.2.3, the Ar-
chitecture for Volvo Systems (AVS) was influenced by this
reference model.

3.2.2 Volvo Group Architectural Principles (VGAP)

Volvo Group IT Governance has set up 10 architectural
principles that should be carefully considered when design-
ing new applications and application architectures. Some
examples of these 10 principles are simplicity in solutions
and work methods, and maintainable solutions. The VGAP
can roughly be compared to quality attributes as described
in Section 2.2.

3.2.3 Architecture for Volvo Systems (AVS)

Architecture for Volvo Systems (AVS) is a reference archi-
tecture that is influenced by both the VGTA and VGAP in
pretty much the same way as any other reference architec-
ture is influenced by reference model and architectural pat-

tern(s) as was described in Section 2.3.3. In this case how-
ever, VGAP is not a set of architectural patterns, but rather
a set of quality attributes that affects the design choices in
the reference architecture. Figure 7 shows an overview of
this relationship.

AVS as a reference architecture is used as base for the Java
EE for Volvo Systems (JVS) and .NET for Volvo Systems
(NVS) reference architectures, described in the following
sections.

Figure 7. AVS Reference Architecture

3.2.4 Java EE for Volvo Systems (JVS)

Java EE for Volvo Systems (JVS) is the Java reference ar-
chitecture implementation of the AVS. JVS further details
elements and relationships defined in the AVS, and also pro-
vides solutions and documentation to common architectural
issues that every software architect must deal with when
designing a Java EE system. JVS provides detailed infor-
mation about, for example layering, Java package names,
where to use EJB’s, and so on. JVS is used as a reference
architecture for all Java EE systems built within Volvo IT.
The relation to the AVS can be seen in Figure 8.

Figure 8. JVS Reference Architecture

9

3.2.5 .NET for Volvo Systems (NVS)

Similar to JVS, .NET for Volvo Systems (NVS) is a ref-
erence architecture for the .NET development track. NVS
further details the AVS reference architecture and adds tech-
nical information applicable for .NET applications within
Volvo IT. NVS relation to the AVS can be observed in Fig-
ure 9.

Figure 9. NVS Reference Architecture

3.3 Research Process

This study is approached as a design oriented research work
which is fundamentally a problem solving paradigm. We
believe that this research lies within the constructive re-
search method (Kasanen, Lukka & Siitonen, 1993) as well
as the pragmatic school of thoughts (Creswell, 2009) since
this study is problem centered and aims for creating a solu-
tion for a known real world problem. Hevner et al. (2004)
discusses that design research addresses unsolved problems
in unique or innovative ways, and has its roots in engineer-
ing and the sciences of the artificial. This study utilizes the
build and evaluate processes in several iterations in forms
of assessment and refinement. Figure 10 illustrates how we
adapted these processes to suit this research. The build pro-
cess consists of two phases which are knowledge base pro-
duction and construction of the research artifact.

Knowledge base production is divided into two steps that
are data collection and data analysis. These two tightly
related steps are collaborating with each other in many it-
erations before the construction phase begins. When the
research artifact is built during the construction phase, all
the collected and analyzed data from the previous phase is
applied. The two phases are iterated when it is required
in order to gain enough knowledge to build the research
artifact. The produced research artifact is assessed by the
stakeholders of this research work in the evaluation pro-

cess and if any refinement is needed, the build process is
revisited. The iterations between the build and evaluate pro-
cesses are finally terminated due to the defined scope and
time limitation of this study. If the stakeholders of this the-
sis work suggest any refinement which is out of the scope,
it can be considered as a continuation of this work.

Figure 10. Research Process

3.3.1 Knowledge Base Production Approach

In this study, a set of information about software architec-
ture in general, a collection of previous studies related to
mobile application architecture as well as a list of suitable
architectural patterns for mobile applications are collected
by means of literature review. In order to perform a system-
atic and organized literature review, appropriate keywords
are identified such as software architecture, reference archi-
tecture, reference model, architectural pattern, mobile soft-
ware architecture, and mobile SOA.

Related research in this area has been published in differ-
ent outlets such as books, journals, conferences, magazines,
blogs, web sites and technical reviews. This study collects
data from literatures in the form of books, journals, con-
ferences, and a few technical web sites. It should be noted
that a group of academic databases are selected for gath-
ering related papers from journals and conferences, for in-
stance IEEE Xplore, SpringerLink, Elsevier and ACM. As
mobile’s world changes rapidly, we decide to choose mate-
rials that were published after year 2001. However, there are
some exceptions that are not directly related to mobile ap-
plication design and development; these sources are either

10

related to the basic concept of software architecture or the
selected research methodology for this study. Apart from
the books in software architecture field that are used as the
foundation of this study, we also search for relevant papers.
The review process of these papers is started by reading the
abstract section, and if the author find it interesting and re-
lated to the research study then it is fully reviewed. Lit-
erature review assists in discovering major sources in soft-
ware architecture, mobile fields, and also defining the na-
ture, scope and structure of the knowledge in these fields.
Besides, it helps to reveal the challenges and constraints of
mobile applications that should be considered in this study.

References used by many authors, including but not lim-
ited to (Bass, Clements & Kazman, 2003), (Albin, 2003),
(Ahlgren & Markkula, 2005), (Roth, 2002), (Microsoft
Patterns & Practices Team, 2009a), (Microsoft Patterns &
Practices Team, 2009b), and (Microsoft Patterns & Prac-
tices Team, 2009c), are found to be tremendously useful for
this study.

3.3.2 Construction Approach

The construction phase of this study begins during knowl-
edge base production phase since it acts as an infrastructure
for this construction. According to Figure 1, the construc-
tion of a generic reference architecture proceeds with iden-
tifying and choosing the most suitable reference model and
architectural patterns for mobile applications, and mapping
them onto a reference architecture. While producing the
knowledge base of this study, we found out that mobile con-
straints and challenges also affect this construction but due
to research limitation of this work, we narrowed them down
to a few choices. We used all these choices and bound them
together in order to assess the construction of the reference
architecture.

3.3.3 Evaluation Approach

Unlike other research methods that collect empirical data,
constructive research method considers the validity of the
produced outcome in a practical example as its empirical
data. Before evaluating the produced outcome of the study,
fail and success states should be defined. According to
Kasanen, Lukka and Siitonen (1993), a successfully pro-
duced outcome is the one that satisfies all stakeholders of
the study as well as fulfilling the needs of a real world prob-
lem. The main stakeholder of this study is Volvo IT which
verifies whether the produced outcome is satisfactory by
testing this generic reference architecture in different pos-
sible scenarios that mobile applications should handle.

4 Reference Architecture Construction

In order to investigate the feasibility of a generic refer-
ence architecture for mobile applications, we thoroughly
describe the procedure of constructing a generic reference
architecture for mobile applications along with introducing
all the influential factors on this construction. After dis-
cussing the result of this investigation, this section is con-
ducted with defining four different mobile applications sce-
narios in order to construct a reference architecture for each
scenario. As it is mentioned in Section 3.3.2, this construc-
tion is built upon the knowledge base of this study which is
a result of data collection and analysis in several iterations.

4.1 Influential Factors in Construction

The software architecture helps both software development,
and maintenance being productive, and it should be empha-
sized that there is a direct correlation between the quality of
an application and its software architecture. Hence, the soft-
ware architecture should be designed properly to fulfill all
the expected requirements for an application, and address
possible challenges. However, creating a software architec-
ture from scratch for every system can be a time-consuming
task. A software architect strives for reusing as much as
possible from both knowledge gained from his or her ear-
lier work and also from the experience of other people. As
described in Section 2.3, the process of designing a software
architecture normally begins with drawing a rough outline
based on requirements from different stakeholders, and then
enrich the design using different architectural choices in
several intermediate stages. The software architect may
choose to build his or her architecture based on a reference
architecture, which in turn is influenced by reference model
and architectural patterns, in order to save time and cost.
Besides, using experience and lessons learned from previ-
ous similar projects can be beneficial while designing the
software architecture for a new project.

In this section, we discuss the process of constructing a ref-
erence architecture for mobile applications that aims to ad-
dress some of the constraints of mobile devices that chal-
lenge mobile application development. It is worth to men-
tion that this reference architecture is intended to be built
irrespective of any mobile technologies. Therefore, we aim
to describe how to construct a generic reference architec-
ture that is applicable for any mobile development solution.
The desired outcome is a generic reference architecture that
can be specialized for different target mobile development
solutions in the next level as shown in Figure 11.

As described earlier in Section 2.3, reference model and ar-
chitectural patterns are mapped onto reference architecture.
Hence, the major influence of reference model and archi-

11

tectural patterns on reference architectures is obvious. For
mobile devices, these are not the only factors that affect
a reference architecture. While producing the knowledge
base of this study, we realized the important role of mobile
constraints and challenges during the design of a reference
architecture for mobile applications.

In the rest of this section, we gradually describe the neces-
sary steps for constructing a reference architecture for mo-

bile applications using the described influence factors. In
each step according to the knowledge base of this study, we
make one or more architectural decisions and discuss the
rationale behind them. During several steps, these architec-
tural decisions are bound together and subsequently direct
this investigation towards a conclusion whether it is possi-
ble to construct a generic reference architecture for mobile
applications.

Figure 11. The relationship between mobile constraints and challenges, reference model, architectural patterns, reference
architectures, and software architectures for mobile applications

4.1.1 Constraints and Challenges of Mobile Devices

In addition to the many benefits that mobile devices brought
for their users, there are still several challenges and con-
straints that should be kept in mind while designing mobile
applications. In Section 2.5 of this report, the characteristics
of mobile devices are described in detail. In this study, we
find network availability, limited bandwidth, limited mem-
ory, and limited battery power the most common and im-
portant challenges among all mobile devices. Estimation of
battery power usage per different types of transactions is out
of the scope of this study due to time limitation of this the-
sis work. Also battery power usage is mainly dependent on
the target mobile device and technology, and as such is hard
to address in a high level reference architecture. Figure 12
displays that our focus in this study is limited to network
availability, limited bandwidth and limited memory.

As it is illustrated in Figure 12, mobile applications experi-
ence three states of network connection that are connected,
occasionally connected, and disconnected. The term lim-
ited bandwidth deals mainly with the limitations in speed,
but can also include limitations on the amount of data that

may be transferred due to different cell phone operator
plans. However, technologies such as 4G makes the speed
limitation less of an issue. Mobile devices normally comes
with a limited amount of memory, both RAM memory to
use during execution but also for storage, so for example
you may not be able to store a complete database on the
mobile device.

Figure 12. Constraints and Challenges of Mobile Devices

12

4.1.2 Reference Model

In section 2.3.2, we introduced two reference models that
we found interesting. By comparing these two examples,
we can see that there are similarities between them. For
example, they both have presentation component, business
component, and data component as well as some cross-
cutting utility components. Since this study focuses on ref-
erence architecture for mobile applications, the model from
Microsoft Patterns & Practices Team (2009b) addresses
some issues that are extra interesting for this study. In order
to continue the construction, we choose to build the pos-
sible generic reference architecture based on the common
mobile application architecture from Microsoft Patterns &
Practices Team (2009b).

4.1.3 Architectural Pattern

One of the major decisions that a software architect should
make is about choosing the most appropriate architectural
approach for the structure of an application. For a mobile
application, this first decision is what type of application to
build, for instance if it should be a client-server or a stand-
alone application. If client-server is selected, the next de-
cision is whether it should be a thin or a rich client. In or-
der to choose a suitable architectural approach for a mobile
application that fulfills all the expected requirements and
functionalities on your target platforms, we suggest to ex-
plore the mobile platform accessibility and extension mech-
anisms as described in section 2.6. As the iPhone platform
is more restricted than the Android platform, the differ-
ences between the openness of architecture of these plat-
forms should be kept in mind while the software architect
chooses an architectural approach for a mobile application.
Since the reference architecture is intended to be generic, it
is possible in some rare cases that a specific target platform
can not use the generic solution as a result of insufficient
architectural support for openness in that platform.

As we learned while producing the knowledge base of this
study, the utter suitable architectural pattern can address
constraints and challenges of mobile application, and en-
hance achieving the required quality attributes. The fact that
each mobile application based on its nature introduces some
of these challenges, e.g., demands on network availability,
makes us incapable of choosing specific architectural pat-
tern(s) that can be suitable for all kind of applications. For
example, while one application that relies on data from a
server may have requirements to be completely usable even
while being disconnected from the network, another appli-
cation may require a constant network connection in order
to function. These two application examples will need to be
approached with different architectural patterns. We aimed
to construct a reference architecture that can be applicable

and practical for designing any sort of mobile application.
When we started this construction, we made an assump-
tion that this is a linear process which is about choosing
reference model and architectural pattern(s) by considering
the challenges and constraints of mobile applications that
affect on these decisions. We also assumed this reference
architecture would suit entire needs for all sorts of mobile
applications (Figure 11). As it turns out, it seems not pos-
sible to find one generic reference architecture that can be
applied for all types of mobile applications. We realize that
we need one reference architecture per type of mobile ap-
plication, so the linear construction process we started with
must be divided into different branches depending on the
type of mobile application. Then similar types of mobile
applications should follow the relevant branch (Figure 13).
In order to proceed this construction process, we exemplify
four of these branches by defining four mobile application
scenarios, and illustrate how to reason when constructing a
reference architecture for each of them.

Figure 13. Construction Process

4.2 Exemplified Scenarios

In this part, we introduce some common mobile applica-
tion scenarios that are defined based on the knowledge base
of this study; they exemplify some possible mobile appli-
cations by considering mobile constraints and challenges
(Figure 12), required quality attributes, and suitable archi-
tectural patterns. It is worth to note that this is just a few
of the many possible scenarios and should only be treated
as examples. Each scenario is interpreted as a branch in the
construction process as depicted in Figure 13. The construc-
tion process is continued and leads to a specific reference ar-
chitecture per branch. The scenarios address different qual-
ity attributes, however some quality attributes are common

13

for all scenarios. For example maintainability and reusabil-
ity are common quality attributes among all scenarios, and
can be partly addressed by using layered architectural pat-
tern.

4.2.1 Scenario 1

Requirement: A mobile application that does not have a re-
liable network connection but still needs to interact with an
application server. The requirements state that this applica-
tion should be functional regardless of network connectivity
state, i.e., even when being disconnected from the network.

Suggested architectural patterns: Since it is given in the
requirements of this scenario that the mobile application
needs to communicate with a server, we suggest to apply
the client-server architectural pattern to describe the rela-
tionship between the mobile application and the server. We
suggest using caching and synchronization, either reactive
or proactive, which can be accomplished by having a local
cache on the mobile device that is synchronized if needed,
as soon as the network is available. In order to use caching,
the application needs to have local storage which can only
be accomplished by a rich client mobile application. Be-
sides, we suggest using the message bus architectural pat-
tern to describe the asynchronous connection to the appli-
cation server.

Solution: To realize the client-server architectural pattern,
we need to have at least 2 tiers, one client and one server.
The server part may have several tiers, such as a database

tier on a separate physical server. This application should
be functional even when being disconnected from the net-
work, hence we need to have a local storage mechanism.

Figure 14 illustrates a reference architecture for this sce-
nario. As described in the scenario description, we use the
layered architectural pattern. Since this is a rich client ap-
plication the presentation layer is located on the mobile de-
vice, it is responsible for accepting user input and rendering
the user interface. The client will also implement a business
layer in order to duplicate some of the business rules from
the application server for better performance and to support
being disconnected from the network. The third layer is the
data access layer, that provides access to data located either
on the mobile device or on the application server. The local
cache is accessed through the data access layer and is syn-
chronized with the application server, in some way, when
the network is available.

Conclusion: The reasoning behind this reference archi-
tecture provides the base for a group of applications that
share similar characteristics such as usage of storage on the
mobile device, demands on high uptime and connection to
an application server. If an application only shares some
of the same characteristics, the reference architecture may
need to be adjusted. For instance, if another application
does not have any demand for a local cache that part of
the reference architecture could be removed, but that may
also lead to other architectural decisions as will be shown
in Scenario 4.2.2.

Figure 14. Reference Architecture for Scenario 1

4.2.2 Scenario 2

Requirement: A mobile application that has a reliable net-
work connection and retrieves information located on an ap-
plication server.

Suggested architectural patterns: The requirements imply
that information is retrieved from an application server, thus
we again suggest using the client-server architectural pat-
tern. However, in this scenario there are no requirements
that make it necessary to build a rich client since for ex-

ample no local services are needed and no data needs to be
stored on the client. The option that we suggest is to build
a thin client in the form of a web based application. All
processing is performed on the application server, and the
result is presented in the web browser. By using the web
browser to run the application, it can be run on most mobile
platforms as long as they have a web browser installed.

Solution: Similar to scenario 1, this scenario uses the lay-
ered architectural pattern on the server side, but in this case
with a presentation layer producing the output that is dis-

14

played in the web browser on the client. Figure 15 shows a
proposed reference architecture for this scenario.

Conclusion: This scenario highlights a group of applica-
tions that are highly dependent on a network connection.
If the network is not available, the application will not
work. Compared to the reference architecture defined in
Scenario 4.2.1, the proposed reference architecture for this
scenario is quite different even though the major change

between the applications is only the demand of local stor-
age. There may be other demands on the client that makes
an adjusted version of the reference architecture in Sce-
nario 4.2.1 without local storage a better option, e.g., if
there are requirements that the application should use the
GPS or accelerometer built into the mobile device a web
based client is probably not applicable.

Figure 15. Reference Architecture for Scenario 2

4.2.3 Scenario 3

Requirement: A mobile application that does not require
any network connection.

Suggested architectural patterns: All services related to
the application is available on the mobile devices, thus a
stand-alone application should be designed. Apart from the
layered architectural pattern, we do not introduce any other
architectural patterns.

Solution: Since the application does not utilize the network
in any way; all data needed during the lifetime of the appli-
cation resides on the mobile device. Depending on require-
ments of the application, the different layers and database
may or may not be needed in order to fulfill the specified
requirements. The reference architecture for this scenario
(Figure 16) uses local storage and thus contains all mo-
bile device layers and components as is described in Sce-
nario 4.2.1.

Figure 16. Reference Architecture for Scenario 3

Conclusion: This group of applications is completely self-
contained and even though they may not require access to

the network, there may be a need to connect to local ser-
vices on the mobile device. This group of applications is
very similar to the one discussed in Scenario 4.2.1 and uses
the same architectural patterns to describe the reference ar-
chitecture on the client side, excluding the network connec-
tivity.

4.2.4 Scenario 4

Requirement: A mobile application that has a reliable net-
work connection and requests information from several net-
work resources as well as accessing local services like the
phone book on the mobile device.

Suggested architectural patterns: Since the requirements
include access to local services, the application must be a
rich client. The difference compared to Scenario 1 is that
the network connection is reliable, thus no data has to be
stored locally on the mobile client. In order to retrieve in-
formation from different sources, both network and local,
we suggest using the SOA architectural pattern.

Solution: Figure 17 depicts a reference architecture that
fulfills this scenario. Just like the reference architecture
seen in scenario 1, the proposed reference architecture for
this scenario consists of a layered architecture on the mobile
device using three layers. In scenario 1 the application had
to store data on the mobile device, which is not a require-
ment for this scenario thus the local database is removed
from the architecture. The access to the different service
providers is done through the data access layer using prede-
fined interfaces.

15

Conclusion: A family of applications that needs data from
one or more servers that is not dedicated to the mobile ap-
plication and thus not under the software architects control.
This type of application can be combined with for instance,
the application family described in Scenario 4.2.1 but the
server may then be considered as orchestrator of calling the
different services required in order to reduce the complexity
on the mobile client.

Figure 17. Reference Architecture for Scenario 4

5 Generic Reference Architecture for Mobile
Applications

This study set out to explore the feasibility of a generic
reference architecture for mobile applications which saves
time, solves similar problems, and increases consistency
among different applications. While this study has been
progressing, it has become clear that there can not be one
single reference architecture, which can satisfy all require-
ments for all types of mobile applications. As each ap-
plication is unique and have different requirements, the
reference architecture must address these differences even
though some parts of the architecture may be similar for a
family of applications that share the same characteristics.
In Section 4.2, we constructed the reference architecture for
four example scenarios. As it can be observed, there are
similar components among them, and we also concluded
that the reference architecture for each scenario can be ad-
justed in order to suit different needs for slightly different
application scenarios. By changing the requirements of the
exemplified application scenarios even just a little bit, we
argued how to reason when choosing between the scenarios
and how to adapt the reference architectures.

In Section 5.1, we want to use the components defined by
the application scenarios and generalize them in order to
build a reference architecture template that can be used for
designing any type of mobile application. Subsequently,
we discuss the similarities between our findings and Volvo
Group Target Architecture (VGTA) as well as Volvo Group
Architectural Principles (VGAP) in Section 5.2.

5.1 Reference Architecture Template

As it is discussed in Section 4.2, the similarities between
the example scenarios are apparent and the same functions
are reused in different tiers of the application depending on
each scenario. By presenting these four scenarios, we con-
veyed the rationale behind mapping the reference architec-
ture according to the set of architectural decisions for each
of these scenarios. The reasoning behind the architectural
solution for each of these scenarios can be applied for con-
structing a reference architecture for any type of mobile ap-
plication. We suggest a template that presents a generic
scheme for its solutions and describes one or several solu-
tions for each particular recurring design challenge in mo-
bile application design context. We believe that this tem-
plate can help a software architect to commence the design
of an appropriate reference architecture. As it is depicted in
Figure 18, this template consists of several building blocks
where each of them represents a group of functionalities.

For any new family of mobile applications, the whole pro-
cess of constructing a reference architecture which is illus-
trated in Figure 13 should be followed, and the most suit-
able architectural pattern(s) should be chosen at the third
level. The reference architecture template should be ad-
justed based on the selected architectural patterns. After
the template has been adjusted, the next step can be to spe-
cialize a reference architecture per target platform and mo-
bile solution as described in Figure 11. This can be ac-
complished by further enhancing the reference architecture
through involving mobile technologies and solutions, and
introducing design patterns in for example the form of mo-
bility patterns to this reference architecture.

We mentioned that the goal of this work was to find out if
it is possible to have a generic reference architecture for all
families of mobile applications. The outcome of this explo-
ration showed that it is not possible to have a generic refer-
ence architecture and instead we propose using a reference
architecture template. It might be controversial that the pro-
posed reference architecture template have been constructed
based on a limited collection of architectural choices. We
are well aware of the influence of restricting the architec-
tural decision regarding reference model into just two in-
stances. In addition, we accept the fact that not all of the ex-
isting architectural patterns have been included in this con-
struction process. We think that the outcome of this work
may differ if another reference model, more architectural
patterns and mobile constraints and challenges were con-
sidered in this construction. However, it is worth to men-
tion that we chose the most common and appropriate ar-
chitectural decisions, as well as the most common mobile
constraints and challenges considering the time limitation
of this study. We believe that this thesis work should be

16

utilized as a starting point for constructing a comprehensive
reference architecture template, which addresses all possi-

ble mobile constraints and challenges by including design
patterns.

Figure 18. Generic Reference Architecture Template

5.2 VGTA and VGAP

In this part of the study, we describe briefly how similar the
reference model used as input for constructing the reference
architecture for mobile applications is with the existing ref-
erence model, VGTA, used at Volvo IT. As it is mentioned
in Section 3.1, the author has signed a non-disclosure agree-
ment and therefore can not share the detailed information
about the structure of the Volvo IT reference model and re-
lated documents. However, the author can share the result
of this comparison without going into details.

We compared the building blocks of VGTA, with the ref-
erence model described in Figure 2. The reference models
are similar as each of them consists of several components
and relations between them; it is also worth to note that they
have several of these components and relations in common.
Due to these similarities we argue that the VGTA can be
used in the second step of the construction process (Fig-
ure 13) in order to build a generic reference architecture as
part of the mobile solution for Volvo IT.

As we can not go into details about VGAP in this report,
we can only mention that these architectural principles are
valuable input while enriching the findings of this study. We
believe that these architectural principles can be roughly in-
terpreted as quality attributes, and all of them can be consid-
ered for mobile application development as well. However,
since VGAP had been defined before Volvo IT started mo-
bile application development, some of these architectural
principles can not be fully applied. Mobile development

track needs to grow, gain experience, and possibly intro-
duce new services and guidelines in order to fulfill all of
these principles.

6 Conclusion

The purpose of this thesis work was to explore the feasibil-
ity of a reference architecture to be utilized for designing
all types of mobile applications, in order to help a software
architect with the work of designing a software architecture
for one or several mobile applications. In addition, we in-
vestigate the possibility of using the findings of this thesis
work in Volvo IT considering their existing architectural ar-
tifacts.

During the construction process, we came to the conclusion
that there can not be one reference architecture which ful-
fills the needs of all types of mobile applications, due to the
challenges and the very nature of different mobile applica-
tion devices. For example, if a mobile application requires
data from a server to function but may not always have
a network connection; local data storage may be needed
which in turn puts certain requirements on the architecture
of the application.

In order to address the problem that there can not be one
single reference architecture to cover all possible mobile
applications, we presented a reference architecture template
in Section 5.1 as a mean to create a reference architecture
for each individual mobile application. The template shows

17

a layered structure and the relationship between different
types of clients, for example rich or thin, and the relation-
ship with a dedicated application server or other online ser-
vices. We used four different mobile application scenarios
in Section 4.2 in order to reason and explain how to cre-
ate a reference architecture for a family of mobile applica-
tions. We reasoned how a minor change to the requirements
would impact the proposed reference architecture, and also
explained how close to each other the different scenarios are
from a requirements point of view even though the reference
architecture may differ quite a lot.

In conclusion, the deliverable of this thesis is both the ref-
erence architecture template, and a way of thinking and
reasoning behind each architectural decision that should be
made at different stages of software architecture design. We
believe that the outcome of this study can, to some extent,
ease the process of creating a software architecture for a
mobile application. We also believe that the template can be
further enriched by adding design patterns and considering
other architectural artifacts as input to the described process
of creating a reference architecture for an application.

The study investigated architectural artifacts used at Volvo
IT for developing software applications in different devel-
opment tracks, in order to find out if the generic reference
architecture template for mobile applications can be utilized
for the mobile development track. The result of the study
proved the potential of using the reference architecture tem-
plate as well as the existing reference model and architec-
tural artifacts at Volvo IT as inputs for this template. Since
Volvo IT has started to incorporate mobile application de-
velopment as a new development track into the company,
we suggest to continue this study and enrich the proposed
reference architecture template by involving mobility pat-
terns, and considering other architectural choices compared
to the ones made in this study. Furthermore, as the main
focus of Volvo IT is on Android and iPhone platforms, both
the mobility patterns and the proposed reference architec-
ture template should be specialized for each of these plat-
forms.

Other companies that have similar architectural artifacts
as has been used as input for the work described in this
report, can compare for example their existing reference
model with the one used in this thesis work to see if there
are enough similarities for it to be considered as it is, or
adapt either their existing reference model or the template
provided in this report accordingly.

Acknowledgment The author would especially like to
thank Micael Andersson and Peter Nordlander at Volvo
IT for their valuable contribution to this research, Gerardo
Schneider, Helena Holmström Olsson, Carl Magnus Ols-
son, and Agneta Nilsson at IT University of Gothenburg

for their thoughtful guiding of this thesis work, and Henrik
Utter for his technical insights and continuous constructive
discussions during this study.

References

[Ahlgren & Markkula, 2005] Ahlgren, R., & Markkula, J.
(2005). Design Patterns and Organisational Memory in
Mobile Application Development. In Bomarius, F., &
Komi-Sirvi, S. (Eds.), Proceedings of the 6th Interna-
tional Conference on Product Focused Software Pro-
cess Improvement (Profes2005), LNCS 3547, (pp. 143-
156). Berlin, Germany: Springer-Verlag.

[Albin, 2003] Albin, S. T. (2003). The Art of Software
Architecture: Design Methods and Techniques. Indi-
anapolis, IN, USA: Wiley Publishing, Inc.

[Anvaari, 2010] Anvaari, M. (2010). Architectural Sup-
port for Openness in Mobile Software Platforms. Un-
published master’s thesis, University of Gothenburg,
Gothenburg, Sweden.

[Bass, Clements & Kazman, 2003] Bass, L., Clements, P.
& Kazman, R. (2003). Software Architecture in Prac-
tice (2nd ed.). Boston, MA, USA: Addison-Wesley.

[Buschmann et al., 1996] Buschmann, F., Meunier, R.,
Rohnert, H., Sommerlad, P. & Stal, M. (1996). Pattern-
Oriented Software Architecture, Volume 1, A System of
Patterns. Chichester, UK: Wiley.

[Buschmann, Henney & Schmidt, 2007a] Buschmann, F.,
Henney, K. & Schmidt, D. C. (2007a). Pattern-Oriented
Software Architecture: A Pattern Language for Dis-
tributed Computing, Volume 4. Chichester, UK: Wiley.

[Buschmann, Henney & Schmidt, 2007b] Buschmann, F.,
Henney, K. & Schmidt, D. C. (2007b). Past, Present and
Future Trends in Software Patterns. Software, IEEE,
24(4), 31-37.

[Clements et al., 2002] Clements, P., Bachmann, F., Bass,
L., Garlan, D., Ivers, J., Little, R., Nord, R., & Stafford,
J. (2002). Documenting Software Architectures: Views
and Beyond. Boston, MA, USA:Addison-Wesley.

[Creswell, 2009] Creswell, J. W. (2009). Research De-
sign: Qualitative, Quantitative and Mixed Methods Ap-
proaches (3rd ed.). Thousand Oaks, CA, USA: Sage.

[Fowler et al., 2002] Fowler, M., Rice, D., Foemmel, M.,
Hieatt, E., Mee, R., & Stafford, R. (2002). Patterns
of Enterprise Application Architecture. Boston, MA,
USA: Addison-Wesley Professional.

18

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R.,
& Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Boston, MA,
USA: Addison-Wesley.

[Gasimov et al., 2010] Gasimov, A., Tan, C. H., Phang, C.
W., & Sutanto, J. (2010). Visiting Mobile Application
Development: What, How and Where. Mobile Business
and Global Mobility Roundtable (ICMB-GMR) (pp. 74-
81). Athens, Greece: IEEE.

[Hevner et al., 2004] Hevner, A., March, S., Park, J., &
Ram, S. (2004). Design Science in Information Systems
Research. MIS Quarterly, 28(1), 75-105.

[Kasanen, Lukka & Siitonen, 1993] Kasanen, E., Lukka,
K., & Siitonen, A. (1993). The constructive approach
in management accounting research. Journal of Man-
agement Accounting Research, 5(1), 243-264.

[Malek et al., 2009] Malek, S., Edwards, G., Brun, Y., Ta-
jalli, H., Garcia, J., Krka, I., Medvidovic, N., Mikic-
Rakic, M., & Sukhatme, G.S. (2009). An Architecture-
Driven Software Mobility Framework. Journal of Sys-
tems and Software, 83(6), 972-989.

[Mazhelis, Markkula & Jakobsson, 2005] Mazhelis, O.,
Markkula, J., & Jakobsson, M. (2005). Specifying
Patterns for Mobile Application Domain Using General
Architectural Components. In Bomarius, F., & Komi-
Sirvi, S. (Eds.), Proceedings of the 6th International
Conference on Product Focused Software Process
Improvement (Profes2005), LNCS 3547, (pp. 157-172).
Berlin, Germany: Springer-Verlag.

[Microsoft Patterns & Practices Team, 2009a] Microsoft
Patterns & Practices Team (2009a). Microsoft
R©Application Architecture Guide (2nd ed.). n.p.,

USA:Microsoft Press.

[Microsoft Patterns & Practices Team, 2009b] Microsoft
Patterns & Practices Team (2009b). Mobile Application
Architecture Guide. Retrieved April 04, 2011 from
http://apparch.codeplex.com/releases/view/19798

[Microsoft Patterns & Practices Team, 2009c] Microsoft
Patterns & Practices Team (2009c). App Pattern:

Three-Tier Mobile Application Scenario. Retrieved
April 04, 2011 from
http://apparch.codeplex.com/wikipage?title=App%20
Pattern%20-%20Three-Tier%20Mobile%20Applicati
on%20Scenario&referringTitle=Application%20Patte
rns

[Natchetoi, Kaufman & Shapiro, 2008] Natchetoi, Y.,
Kaufman, V., & Shapiro, A. (2008). Service-Oriented
Architecture for Mobile Applications. Proceedings
of the 1st international workshop on Software archi-
tectures and mobility/ International Conference on
Software Engineering (pp. 27-32). Leipzig, Germany:
ACM.

[Roth, 2002] Roth, J. (2002). Patterns of Mobile Interac-
tion. Personal and Ubiquitous Computing, 6(4), 282-
289.

[Seaman, 1999] Seaman, C. B. (1999). Qualitative Meth-
ods in Empirical Studies of Software Engineering.
IEEE Transactions on Software Engineering, 25(4),
557-572.

[Teng & Helps, 2010] Teng, Ch., & Helps, R. (2010). Mo-
bile Application Development: Essential New Direc-
tions for IT. Information Technology: New Generations
(ITNG) (pp. 471-475). Las Vegas, NV: IEEE.

[Unhelkar & Murugesan, 2010] Unhelkar, B., & Muruge-
san, S. (2010). The Enterprise Mobile Applications De-
velopment Framework. IT Professional, IEEE Com-
puter Society, 12(3), 33-39.

[van Gurp, Karhinen & Bosch, 2005] van Gurp, J., Karhi-
nen, A., & Bosch, J. (2005). Mobile Service Oriented
Architectures. Proceedings of the 6th IFIP WG 6.1
International Conference on Distributed Applications
and Interoperable Systems (DAIS 2006), LNCS 4025,
(pp. 1-15). Bologna, Italy: Springer.

[Volvo IT, 2011] Volvo IT (2011). Volvo IT company pre-
sentation 2011 [PDF]. Retrieved April 04, 2011 from
http://www.volvoit.com/SiteCollectionDocuments/
Volvo%20IT/documents/other/Volvo%20IT %20com-
pany%20presentation.pdf

19

	Towards a Generic Reference Architecture for Mobile Applications
	Copyright
	Introduction
	Knowledge Base
	Software Architecture
	Quality Attributes
	Intermediate Stages of Software Architecture Design
	Architectural Pattern
	Reference Model
	Reference Architecture

	Design Pattern
	Characteristics of Mobile Devices
	Architectural Openness Model for Mobile Software Platforms

	Research Approach
	Research Setting
	Volvo IT Documents
	Volvo Group Target Architecture (VGTA)
	Volvo Group Architectural Principles (VGAP)
	Architecture for Volvo Systems (AVS)
	Java EE for Volvo Systems (JVS)
	.NET for Volvo Systems (NVS)

	Research Process
	Knowledge Base Production Approach
	Construction Approach
	Evaluation Approach

	Reference Architecture Construction
	Influential Factors in Construction
	Constraints and Challenges of Mobile Devices
	Reference Model
	Architectural Pattern

	Exemplified Scenarios
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4

	Generic Reference Architecture for Mobile Applications
	Reference Architecture Template
	VGTA and VGAP

	Conclusion
	Acknowledgment
	References

