
Retaining efficiency in an embedded system
while introducing Lua as a means to improve
maintainability: an actor model approach
Bachelor of Science Thesis in Software Engineering and Management

R. JOHANSSON

J. TEBRING

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, May 2011



The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish
the Work electronically and in a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures
or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company),
acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party
regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party
to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it acces-
sible on the Internet.

Retaining efficiency in an embedded system while introducing Lua as a means to
improve maintainability: an actor model approach

R. JOHANSSON

J. TEBRING

c© R. Johansson, May, 2011.

c© J. Tebring, May, 2011.

Examiner: HELENA HOLMSTRÖM OLSSON

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone: + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden, May 2011



Retaining efficiency in an embedded system while introducing
Lua as a means to improve maintainability: an actor model

approach

Johansson, R. and Tebring, J.

May 31, 2011

Abstract

Embedded touch display systems with limited
resources still require responsive user inter-
faces, which puts high demands on the effi-
ciency of the software. Embedded systems are
expensive to maintain due to the low-level pro-
gramming languages used for efficiency. By in-
tegrating the Lua scripting language as a com-
plement to C, and using the message passing
semantics of the actor model, maintainability
and modularity can be increased while retain-
ing efficiency. With this approach it is possi-
ble to develop efficient embedded systems with
high maintainability responsive enough to be
used in touch screen systems.

Keywords: embedded system, touch dis-
play, software design, component-based de-
sign (CBD), concurrency, actor model, message
passing, Lua, efficiency, maintainability

1 Introduction

Today touch screens are used in a wide variety
of consumer electronics. From a technological
perspective there is a big difference between for
example a general purpose device, such as a
smartphone, and a special purpose device, such

as a GPS1. These special purpose embedded
devices would become too expensive if fitted
with the same hardware as smartphones, but
they still need to operate within the same re-
sponsiveness constraints. Therefore their soft-
ware needs to be more efficient compared to
that of smartphones.

It is common that new requirements, bug
fixes or optimizations need to be implemented.
A maintainable system decreases the cost and
time required to perform these modifications.
Software maintenance has always been a large
part of the total system cost, and usually
accounts for up to 70% of the total cost
(Brooks, 1975; Kim and Weston, 1988; Pearse
and Oman, 1995; Aggarwal et al., 2005). In a
real-time embedded system the cost of mainte-
nance can be up to four times that of develop-
ment (Sommerville, 2006).

The levels of abstraction, like object orien-
tation, that reduce source code complexity in-
crease maintainability but have a negative ef-
fect on efficiency. Therefore these two quality
attributes are opposed.

Subsequently, the research objective was to
evaluate three hypotheses by developing an em-
bedded touch display system, in which main-

1For instance, the HTC Desire (a smartphone) has
almost four times the computing power and nine times
the memory of the TomTom XL IQ Routes Edition 2
(a GPS device).

1



tainability and efficiency are prioritized. The
hypotheses we have been focused on are the
following; Lua as a complement to C increases
maintainability while retaining efficiency; Mes-
sage passing increases maintainability at the
cost of efficiency; Lua is efficient enough to
manage a touch display in an embedded device.

C is one of the dominating programming lan-
guages in embedded systems, it is very portable
and can be used to write resource efficient soft-
ware. Because of this, it is used as the main
programming language in the system.

The main strategy for improving maintain-
ability is integrating a high-level language as
complement to C and a system design that
simplifies modularity and concurrency. Previ-
ous research has suggested that high-level lan-
guages, which are more productive and produce
less lines of code (Ousterhout, 1998; Prechelt,
2002), improve maintainability (National Bu-
reau of Standards, 1984; Sanner, 1999; Ward,
2003).

Lua was selected as the high-level scripting
language. It can easily be integrated with C.
Two of the major benefits of Lua, compared
to C, is that it has garbage collection and dy-
namic data structures. Lua is used to define
the behavior of the system by connecting other
software modules. This makes the source code
defining behavior shorter and allows it to be
maintained by programmers who are not fa-
miliar with low-level development or memory
management.

The system has been designed so that each
functional module runs in its own process.
Message passing is used for inter-process com-
munication. These concepts derive from the
actor model (Hewitt et al., 1973; Agha, 1986)
which is the concurrency model used by for ex-
ample Erlang. From the programmer’s point
of view the message passing interface is very
simple and transparent (Lieberman, 1981).

The study relies on design research to it-
eratively determine if Lua can be introduced

as a complement to C, in a modular design
using the actor model, in order to increase
maintainability while retaining efficiency. Our
contributions will be to argue a solution and
demonstrate its feasibility through the evalua-
tion of three hypotheses, and by providing re-
sponsiveness measurements of the design arti-
fact. To support our design decisions which
increase maintainability, we have used previ-
ously established guidelines and methods found
in literature. Benchmarks from the system are
provided that show system responsiveness and
resource utilization for both Lua and the mes-
sage passing mechanism.

This paper is structured as follows: Section 2
describes the underlying theory that the arti-
fact’s design was based on. Section 3 presents
the research approach and the method used. In
section 4 the implementation, discoveries and
results are presented. Section 5 discusses the
method used, results, reviews the initial hy-
potheses and suggests further work. Finally,
section 6 gives conclusions of the research.

2 Theoretical foundation of
the design

In this section the theory from which the re-
search is derived can be found. This includes
the background of why certain decisions have
been made and the theoretical foundation of
the system design.

2.1 Quality attributes

There exists different classifications of quality
in software (Boehm et al., 1976; McCall, 1977;
IEEE/ANSI, 1993; ISO/IEC, 1999, 2001).

In this paper we rely on ISO/IEC (2001)
definitions of the different quality attributes.
ISO/IEC (2001) groups all quality attributes
by six characteristics: efficiency, maintainabil-

2



ity, reliability, portability, usability and func-
tionality. Two specific quality attributes have
been target of interest and prioritized in the
system developed during this study, namely ef-
ficiency and maintainability.

The definition of efficiency incorporates time
behavior, resource utilization and efficiency
compliance. Efficiency was prioritized due to
the hardware constraints and because the touch
screen interaction requires high responsiveness.
Like in most systems, as much as possible is
wanted out of the given hardware.

Responsiveness is a part of time behavior
and an important factor when interacting with
a system. It is elusive; in order to assess it in
the system, the definition and formal metrics
provided by Seow (2008) were used. Respon-
siveness is subjective, nonexclusive and relative
to the interaction. Subjective because some
users will be more sympathetic to delays than
others. Nonexclusive since any form of indica-
tion can be interpreted as a response. It is rela-
tive because different forms of interactions will
have different windows of acceptable response
times. For example, if a request is simple, the
user will expect a shorter response time com-
pared to a more complex request. According to
Seow (2008), graphical components that mimic
physical objects, e.g buttons, should show in-
stantaneous responsiveness (less than 0.1 sec-
onds). Other more complex interactions, e.g.
displaying a menu, should show immediate re-
sponsiveness (less than 1 second).

The definition of maintainability incorpo-
rates analyzability, changeability, stability,
testability and maintainability compliance.
This means that maintainability is the ease
with which software can be changed to sat-
isfy user requirements or can be corrected when
deficiencies are detected (National Bureau of
Standards, 1984).

Because the system was built from scratch,
maintainability was important because of the
initial time investment required. The system

will be durable over a longer period of time and
it will also be easier to extend and reuse soft-
ware modules in a modular design. Maintain-
ability is a big portion of the total system cost
(Brooks, 1975; Kim and Weston, 1988; Pearse
and Oman, 1995; Aggarwal et al., 2005) and
by increasing maintainability, money will be
saved over time. In accordance with the guide-
lines established by National Bureau of Stan-
dards (1984), the focus on maintainability ex-
isted since the beginning of the system design,
and feedback from iterative development, has
been used to improve it:

If the software is designed and de-
veloped initially with maintenance in
mind, it can be more readily changed
without impacting or degrading the
effectiveness of the system. This can
be accomplished if the software design
is flexible, adaptable, and structured
in a modular, hierarchical manner.

National Bureau of Standards, 1984

Efficiency and maintainability are in some
cases working against each other. One reason
for this are the levels of abstractions, like object
orientation, used by the developers to increase
maintainability consumes more hardware re-
sources which in turn decreases efficiency. A
typical example is the use of low-level program-
ming languages (like assembly) compared to a
high-order language (like Lua). It is possible to
implement a very efficient system in a low-level
programming language, but it will decrease the
maintainability in the sense of code readability
and understandability (levels of abstractions
are added to make it simpler for humans to
understand).

The other quality attributes defined by
ISO/IEC (2001) have also been given consider-
ation, but have not been prioritized as highly
as efficiency and maintainability during this re-
search.

3



One of these attributes is reliability which
is the system’s capability of performing as in-
tended over a period of time. The ISO/IEC
(2001) definition of reliability includes matu-
rity, fault tolerance, recoverability and reliabil-
ity compliance. Reliability will be indirectly
improved if the modularity, testability and an-
alyzability aspects introduced through main-
tainability are used in the quality assurance of
the system.

Portability consists of adaptability, installa-
bility, co-existence, replaceability and portabil-
ity compliance. The portability of the system
is improved because of the use of ANSI C (Lua
is written in ANSI C as well). Programs writ-
ten in C can be compiled for a wide number of
hardware architectures. The modular design of
the system makes it easy to change hardware
components simply by writing a new driver.

Usability contains understandability, learn-
ability, operability, attractiveness and usability
compliance. This attribute will be more impor-
tant later on when designing the graphical user
interface (GUI) and other higher level applica-
tions. It is favored by how well the software
can mimic physical objects (Seow, 2008). By
prioritizing efficiency and the responsiveness of
the touch display it is also possible to improve
usability.

The final quality attribute functionality,
which includes suitability, accuracy, interoper-
ability, security and functionality compliance,
is an important quality attribute for any sys-
tem. By allowing the behavior of the system to
be defined in a highly maintainable way, suit-
ability and accuracy will be easier to increase
as a result. The message passing mechanism in
the system could be expanded, to allow mes-
sages to be received from remote systems and
passed on to the local components transpar-
ently, greatly increasing interoperability.

2.2 C and Lua

Based on the two quality attributes prioritized,
efficiency and maintainability, the program-
ming language C and the scripting language
Lua were selected for implementation.

C was selected because it gives full control
of resources, like memory usage or other hard-
ware, and can thus be used to create very ef-
ficient software. It is commonly used in em-
bedded systems and there exists compilers for
a variety of hardware architectures making it
very portable. Other candidates were C++
and Java, which are both object oriented but
not comparable to C when it comes to effi-
ciency (Prechelt, 2000), furthermore object ori-
entation was only considered necessary in the
application layer and not in the whole system.

To increase the system’s maintainability a
scripting language was selected as a comple-
ment to C. In opposition to C, a scripting
language produces in most cases less lines of
code and is more productive (Ousterhout, 1998;
Prechelt, 2002), which increases maintainabil-
ity (National Bureau of Standards, 1984; San-
ner, 1999; Ward, 2003). The lines of code is the
most important factor affecting maintainability
according to Ward (2003). Memory manage-
ment related bugs are common when writing
programs in C. Code written in a scripting lan-
guage that automatically manages memory can
be maintained by programmers that are not fa-
miliar with memory management.

Scripting languages come at a cost: they are
less efficient (Ousterhout, 1998) requiring more
resources (Prechelt, 2002). The combination of
C and a scripting language allows a compro-
mise between efficiency and maintainability: C
is used where efficient resource utilization is re-
quired (e.g. drivers). And Lua is used where
flexibility and productivity is important (e.g.
application writing).

There exists many scripting languages, but
few which are fit for embedded systems. For

4



example, Lisp and Scheme were excluded be-
cause they are not adapted for embedded de-
vices, quite uncommon these days and their
syntax was unfamiliar. Perl and Python were
excluded due to the big footprint. A Python
related project called python-on-a-chip could
have worked on the hardware but it was ex-
cluded due to its GPLv2 copyleft license, which
is not compatible with the proprietary license
of the system used in this research. Tcl was
excluded because of its primitive syntax, slow
performance, lack of data types and it does not
offer good support for data description (Ierusal-
imschy et al., 1995, 2007). The final choice
stood between Rexx and Lua. Lua has been
used successfully in embedded systems before
(Clark, 2009). Furthermore, it is widely used
in the gaming industry, for instance used in
the games World of Warcraft and The Sims
(Ierusalimschy et al., 2007). Clark (2009) de-
scribes how Lua has been embedded in to smart
instruments allowing users to access all the un-
derlying instrument commands through a Lua
interpreter. Lua is a good complement to C ac-
cording to Roberto Ierusalimschy, one of Lua’s
authors, who describes it this way (Ierusalim-
schy, 2006):

Lua is a tiny and simple language,
partly because it does not try to do
what C is already good for, such
as sheer performance, low-level
operations, and interface with third-
party software. Lua relies on C for
these tasks. What Lua does offer
is what C is not good for: a good
distance from the hardware, dynamic
structures, no redundancies, ease of
testing and debugging. For this, Lua
has a safe environment, automatic
memory management, and good
facilities for handling strings and
other kinds of data with dynamic size.

Roberto Ierusalimschy, 2006

Since version 5.0, Lua is released under the
MIT license, which allows Lua to be integrated
with proprietary software2 and altered in any
way. Additionally, it is still under development
(5.2 alpha released Nov 23, 2010) and com-
piles on all platforms that have an ANSI/ISO
C compiler, which makes it very portable. Lua
can easily be configured to use a custom mem-
ory allocation function. This can be an ad-
vantage in an embedded system to assure Lua
is not consuming more memory than allowed,
which can not be controlled or monitored using
the standard function in C.

The API between Lua and C is bi-
directional, this makes Lua both an extension
and extensible language (Ierusalimschy et al.,
2007). Embedding Lua in a system gives it a
mature, powerful scripting facility and it can
create and control as many Lua virtual ma-
chines as required (Hirschi, 2007). Moving be-
havior to Lua scripts gives many advantages:
logic can be loaded on demand, tests can be
set up faster, behavior becomes more accessible
making it more convenient to review and the
overall product evolves easier (Hirschi, 2007).

Lua includes a full suite of standard li-
braries, that are internally linked to the stan-
dard ANSI-C libraries (Clark, 2009). Some of
the libraries are: I/O, string, math, OS, debug.
It is possible to select which libraries should be
included in order to reduce the footprint by re-
moving unused libraries.

The scripts executed through Lua can be eas-
ily sandboxed, so embedding Lua in a system
does not come at the expense of security. Sand-
boxing can be done by not loading libraries
or by overriding individual functions using clo-
sures (Ierusalimschy, 2006).

Object oriented programming can be done
in Lua using tables and metamechanisms
(de Figueiredo et al., 1996). Inheritance is also

2On the condition that the license is distributed with
the software.

5



possible through fallbacks that allow the value
of an absent field to be looked up in another
table (its parent) (de Figueiredo et al., 1996).

2.3 System design

The system used, for exploring how maintain-
ability can be improved while retaining effi-
ciency, is an embedded touch screen device
(specification in Section 3.1).

The system uses a layered architecture. It is
one of the most common architectures in em-
bedded systems and it has proved to work well
(Bass et al., 2003; Noergaard, 2005).

The layered architecture helps to create lev-
els of abstractions in the system which in-
creases maintainability. For example, hard-
ware drivers are implemented separately in one
layer and controlled by components in the layer
above. The system has an underlying real-time
operating system (RTOS), which makes it pos-
sible to run modules as separate processes con-
currently with full preemption.

In order to deal with the added complexity
of using two programming languages and still
improve maintainability, a modular design was
used to integrate all software components (Na-
tional Bureau of Standards, 1984; Sommerville,
2006). There is a strict separation between
what is written in C and what is written in
Lua. The software modules are written in C
and then applications, that define how these
modules should behave and interact, are writ-
ten in Lua.

National Bureau of Standards (1984) states
three basic design principles software modules
should be constructed with to increase main-
tainability; Modules should perform only one
principal function; Interaction between mod-
ules should be minimal; Modules should have
only one entry and one exit point.

These three design principles have been
taken into account while designing the sys-
tem. Modules are decomposed by functional-

ity (Sommerville, 2006), for instance each hard-
ware driver is a separate module (the touch dis-
play is represented by two: one for input and
one for output). The interaction between the
modules are represented by delta changes and
events, to decrease the amount of messages. As
entry and exit points message passing (send
and receive) is used.

2.4 Actor model

The touch display system greatly benefits from
using concurrency, for instance, the display can
be re-rendered while reading input from the
touch screen. Another example is that the GUI
can work independently and does not freeze
while receiving serial data.

The actor model (Hewitt et al., 1973; Agha,
1986) was used in the design to handle con-
currency and to support a modular design. It
was used because it provides a low complexity
concurrency model and allows an intuitive and
process-safe way of sharing data between pro-
cesses. In the actor model each concurrent pro-
cess is called an actor and the actors commu-
nicate with each other through message pass-
ing. The actor model also supports dynamic
creation and destruction of processes at run-
time, but this has not been implemented nor
used during this study since it was not required
in order to accomplish the research objective.
The operating system is capable of prioritizing
processes, in our case actors, which can be used
in order to assure that important modules are
executed as intended.

Lieberman (1981) argues that the actor
model allows parallelism and synchronization
to be implemented transparently, so that par-
allel and synchronized resources can be used
as easily as their serial counterparts. As a re-
sult, each module’s code, interacting with other
modules, becomes less complex and more read-
able. The concept of message passing can be
compared to e-mail. To send an e-mail all that

6



is needed is the address of the recipient and in-
coming messages will be put in an inbox. Sim-
ilarly, the messaging API consists of 2 func-
tions, one for sending messages and one for
retrieving messages from the inbox. Just like
e-mail, all messages are sent asynchronously.
This makes the sending actor independent of
the receiving actor (given it has the receiver’s
identifier). However, it is still possible to sim-
ulate synchronous calls: the receiver replies to
the sender who in turn waits for a response af-
ter sending the message. A problem with asyn-
chronous message passing is that the system
becomes non-deterministic (Berry, 1989). It is
impossible to predict the state of the system at
any given time when actors are interacting. A
reason for this is that an actor is not required to
handle the incoming messages at all nor within
a certain time. The number of pending mes-
sages can not be determined in advance. Fur-
thermore, each message must be handled before
the next in the queue (in the normal case, but
it is up to the actor’s implementation), which
may also differ in time depending on message
type.

Different kinds of actors can easily be imple-
mented in the system. An example would be
the future actor (Lieberman, 1981), which can
be initialized with a computation to be calcu-
lated. It will calculate the result and return it
to the sender when done. In this way larger
calculations can be executed in parallel with-
out locking the acquiring actor. Shared mem-
ory, like the blackboard pattern, can also easily
be implemented as an actor with the advantage
of being process-safe (Lieberman, 1981). This
means that shared memory can be replaced, in-
creasing maintainability (Sommerville, 2006),
with an actor instead and the risks for dead-
locks decreases. Busy wait can easily be used
simply by waiting for incoming messages with
infinite timeout. This causes the process to
sleep until a message is placed in its message
inbox.

The actor model gives a strict, but yet sim-
ple, interface between for instance a C module
and a Lua module. This separation makes it
easy for Lua developers to only focus on Lua,
but still be able to pass messages to the rest of
the system. It is also possible to integrate mod-
ules written in other programming languages in
the design, simply by writing a wrapper for the
actor model interface.

3 Research approach

This section introduces the research method
which was used during the study. It also de-
scribes the conditions under which the research
was performed, the contributions made and the
limitations of the research.

3.1 Research setting

The research was conducted during two months
in the beginning of year 2011 after which this
report was written. The study was performed
at a company that engineers security solutions.
The problem the company faced was to have a
highly responsive embedded touch display sys-
tem while keeping it maintainable, adaptable
and extendable for future changes. Addition-
ally, third party application development was
a requirement, which puts high demands on
ease of integration and sandboxing. The sys-
tem setup and requirements were established
by the company before this study started.

The following system setup was selected by
the company for the new system:

• ARM7 72MHz (512KB internal flash)
• 8MB SDRAM
• 4.3" TFT Touch Screen (272x480 pixels)
• USB interface
• Micro SD card reader
• Real-Time Operating System (RTOS)
• Note: no GPU nor FPU

7



The research is positioned in the design seg-
ment of the software engineering area. Specif-
ically the research focus is about balancing
quality attributes in a newly developed concur-
rent system using a component-based design
(CBD).

3.2 Research design

Based on the reliance on iterative exploration
as the means for theoretical and practical re-
flection, this study relies on design research
(Hevner et al., 2004). Design as a process is
a sequence of activities that produces an inno-
vative product (i.e. the design artifact, which
is design as a product).

The iterative nature of continuously improv-
ing the design artifact, by shifting perspective
between design processes and the designed arti-
fact, supports a problem-solving paradigm that
can be used to solve complex problems.

Through build and evaluate we can use de-
sign research while designing the system to con-
tinuously monitor to which extent the main-
tainability improvements affects efficiency. The
benefit of being able to continuously monitor
the impact of design decisions is that the ar-
tifact can be directed as new knowledge about
the problem is gathered.

The build and evaluate was divided into iter-
ations and were carried out based on the model
proposed by Vaishnavi and Kuechler (2008).
The iterations were started by identifying a
problem with the current design. Once a prob-
lem was identified a solution was proposed,
which was then applied to the design artifact.
The resulting artifact was evaluated based on
system requirements and the new knowledge
gathered fed back into the design process. The
concluding phase of the iterations was used to
determine if the artifact can be used to evalu-
ate the hypotheses. In which case, the iterative
phase of the design research ended; otherwise
a new iteration was carried out.

This study was design research and not rou-
tine design or system building because the re-
search addresses an existing problem in an in-
novative way. Compared to routine design,
which is the application of existing knowl-
edge to organizational problems, we have con-
tributed with new knowledge about how com-
bining a complementary high-order language
and the actor model in an embedded interac-
tive system can increase maintainability while
retaining efficiency.

Two iterations were executed before it was pos-
sible to evaluate the hypotheses and accom-
plish the research objective. At which point the
iterative phase of the design research ended.

The problem targeted in the first iteration
was to establish an initial system design that
would result in higher maintainability. The so-
lution was to integrate Lua as a complement to
C in a modular design using the actor model’s
message passing semantics. This was imple-
mented on the embedded device and evaluated
in terms of maintainability and hardware re-
source utilization. The design artifact’s utility
was evaluated using informed argument with
regards to maintainability based on the exist-
ing knowledge base. At this point it was only
possible to measure the responsiveness of the
touch display and the efficiency of the message
passing qualitatively, and it seemed to be fast
enough for its purpose. The reason for not
being able to measure the responsiveness, an
emergent system property, was because the UI
process which has a central role in the system
had not been implemented. A way to quantita-
tively measure the responsiveness of the touch
display was required, and a new iteration was
started.

The second iteration’s problem was the in-
ability to measure crucial aspects of the sys-
tem’s efficiency. In order to accomplish this
an initial implementation for a UI process was

8



required. The solution was to design and im-
plement a basic UI process to handle touch dis-
play events and render graphical components.
Benchmarks were also set up to measure time
behavior in different aspects of the system.
The responsiveness of the GUI was measured
and compared to established guidelines of hu-
man perceived responsiveness. Static and dy-
namic analysis were used to evaluate the de-
sign. Static analysis was used to examine that
the structure of the artifact followed the theo-
retical foundation. Dynamic analysis was used
to measure time behavior of the message pass-
ing implementation and responsiveness of both
the touch display and the UI process. After
the second iteration, results supporting the re-
search objective became evident, thus halting
the iterative work in order to focus on reflecting
on the findings.

3.3 Research contributions

The main contribution of the research is the
evaluation of an instantiation, the design ar-
tifact. The design artifact combines existing
knowledge in a modern embedded system de-
sign. It demonstrates the feasibility of using
Lua as a complement to C, combined with the
actor model in a modular design. The fea-
sibility of the solution is shown through the
evaluation of three hypotheses, and by provid-
ing responsiveness measurements and support
our design decisions by using previously estab-
lished methods found in literature. Additional
benchmarks contribute to enable concrete as-
sessment of the design artifact. These contri-
butions show that the solution is suitable to its
intended purpose: as a maintainable and re-
sponsive embedded touch display system. The
solution is not specific to embedded touch dis-
play systems and could be applied to any em-
bedded system. However, we believe that the
approach is particularly useful in interactive
embedded systems.

3.4 Research limitations

The impact of maintainability as a measure-
ment over time will not be performed during
this study. Instead, previously proved solutions
to increase maintainability will be used in the
software design (see Section 2.1).

There was no need to implement a fully func-
tional actor model during this study. The con-
current message passing was the subset of it
implemented (see Section 4.7). Properties like
starting and stopping actors dynamically at
runtime can easily be implemented in the fu-
ture if the system requires it.

Real time constraints of the system is out of
scope for this study but may have been plausi-
ble (see Section 5.7).

4 Software construction

This section shows the discoveries and results
found during the study. It starts by explain-
ing the Lua integration on the embedded de-
vice, continues with a system overview before
describing the actor model implementation. Fi-
nally, the Lua and GUI processes are described
and the touch display responsiveness bench-
mark is presented.

4.1 Software setup

All software was written in ANSI C (ISO, 1999)
and Lua 5.2 alpha (which also is implemented
in ANSI C). The system was compiled, with
arm-eabi-toolchain3 using newlib4 as C library,
to one binary file (monolith) which fits in the
CPU flash where it is executed. Compiler flags
to strip unused data from the data segment and
functions were used to decrease the application
footprint. Lua was compiled with the optimiza-

3https://github.com/jsnyder/
arm-eabi-toolchain

4http://sourceware.org/newlib/

9



tion level two flag (-02), which is the default
setting.

4.2 Getting Lua to run

There were some minor problems integrating
Lua and the operating system. The first issue
was that the default process stack size was too
small in the operating system and by increasing
it Lua worked fine. The second issue was that
the Lua environment required a process-safe
memory allocation function, this was solved by
using a different function when instantiating
it. This will block the scheduler and prevent
all other processes from being executed during
the allocation, which in turn slows down the en-
tire system. But it is required and we did not
consider it slow enough to implement our own
process-safe memory allocation method. When
these issues were solved Lua’s garbage collector
executed as intended despite of the operating
system’s preemption. Noteworthy is that Lua
uses double as standard data type for all its
calculations but can be recompiled for other
numeric types, which means an optimization
can be made in the target embedded system
(which may lack a FPU) by using fixed point
numbers instead.

4.3 Lua footprint

Lua is said to have a small footprint of around
100kB, but we were not able to match that
during this study. The footprint of the whole
system with and without the Lua process was
measured. This made it possible to see the dif-
ference in size when Lua was not used to make
an assumption of the footprint impact. Lua’s
default configuration with all its libraries in-
cluded was used while measuring. The results
are shown in Figure 1.

The table shows that Lua increases the foot-
print of the system with around 240kB (Lua
uses -O2 by default) in our implementation,

.text .data .bss
Without Lua 104592 2384 20776
With Lua 401752 2640 21300
With Lua (-O2) 342840 2640 21300
With Lua (-Os) 319608 2640 21300

Figure 1: Lua footprint impact (in bytes)

which is acceptable considering the additional
advantages of the scripting facilities. Lua uses
no static data, and the size decrement of the
data and bss segments is stripped away soft-
ware related to the Lua process itself.

4.4 Load Lua environment

The Lua environment is accessed through a sin-
gle variable and can easily be instantiated in
different concurrent processes. This makes it
possible to execute several Lua environments
(e.g. scripts) in parallel. It is also possible
to pass a Lua script as an actor message to a
Lua process which interprets and executes the
script in an existing environment.

A benchmark of loading the Lua environ-
ment was performed to determine the actual
startup time of Lua. To remove the varia-
tions in the scheduler, these tests were exe-
cuted without an operating system as a single
application. Lua scripts of different sizes were
loaded and executed in a new environment. At
the bottom of each script the same function
was placed, and it was called directly after the
script was loaded.

The time measured is the time it took to cre-
ate a new Lua environment, load the script and
call the function. The results of the benchmark
are shown in Figure 2.

Scripts of different sizes were used because
we wanted to see how the size affected the load-
ing and execution time in the Lua environment.
None of the scripts were loaded from a disk but
instead compiled statically into the program.
This was done to avoid deviations in I/O ac-

10



Script size Load time
State only 0 bytes 15 ms
Tiny 32 bytes 16 ms
Small 535 bytes 23 ms
Medium 1478 bytes 32 ms
Large 5224 bytes 64 ms
Huge 18210 bytes 212 ms

Figure 2: Lua environment loading time

cesses, but may not reflect the actual time it
takes to load the script compared to if it was
loaded from for instance an SD card.

4.5 Lua memory consumption

Lua has a garbage collector (GC) which man-
ages the memory used in the Lua environment.
This could be dangerous in an embedded device
if the GC is not properly executed and results
in allocated but unused memory.

The dynamic memory usage of a Lua envi-
ronment has been observed to see how much
memory is allocated before it is freed. In our
implementation, it seems that Lua starts at a
level of around 40kB allocated which increases
up to around 150kB at a maximum. When
reaching the upper level the GC is executed
and the memory usage drops to around 100kB
and around 50kB is freed. A cycle from where
the memory is freed until it is freed again,
takes about ten seconds. It is also possible to
force the GC to be executed which releases even
more memory than if it was executed on a nor-
mal basis.

4.6 System overview

The system design has been kept simple just
because it increases maintainability (National
Bureau of Standards, 1984). It is easy to un-
derstand and grasp the concept if one is new
to the system. There are low-level parts which
are designed to be very efficient, and not that

maintainer friendly, but this is where the com-
promise between efficiency and maintainabil-
ity is revealed. Based on the assumption that
the parts which are efficient, like the hardware
drivers, are rarely altered. On the other hand,
the application logic which has been developed
to be very flexible through Lua can easily be
modified and maintained.

As mentioned in Section 2, a layered archi-
tecture was used in the design. The hard-
ware drivers are located at the bottom as static
methods and data. These are then used by pro-
cesses, one for each driver or hardware compo-
nent. This also makes it very easy to simulate
hardware: create a process sending and receiv-
ing the same messages as the real hardware
driver. It is also easy to change the underlying
hardware: create a new hardware driver and
replace the old one behind the process (which
hopefully can use the same message passing in-
terface). Because of the abstract message pass-
ing interface it is easy to integrate other pro-
gramming languages in the system, simply by
writing a wrapper for it.

A part of the modular system design can
be seen in Figure 3. The named circles repre-
sent concurrent processes which communicates
through asynchronous message passing, here
shown by solid arrows. The dashed arrows rep-
resent synchronous data flows from and to the
lower layers in the design. The input (touch
function) and output (rendering) were sepa-
rated in the touch display driver to make mes-
sage passing even simpler.

4.7 Message passing

The operating system used has a data queue
that passes data safely between processes, how-
ever we found that the interface was not conve-
nient enough, we wanted to introduce the actor
model’s message passing semantics. In the im-
plementation, a queue is created to act as a
message inbox for each process when the pro-

11



Figure 3: System overview

cess is created. A centralized queue would have
had a negative impact on efficiency, by becom-
ing a bottleneck during heavy load. Further-
more, it would have made the message pass-
ing implementation more complex, reducing
maintainability. A simple send/receive inter-
face hiding the queues was created to make it
easy to manage messages. If a process wants
to pass a message to another process, the mes-
sage is enqueued to that process’ inbox queue
by passing the target process’ identifier to the
interface along with the message. Each process
is responsible for continuously dequeuing the
messages from its inbox queue through the in-
terface. How the messages are passed through
the inbox queues can be seen in Figure 4. This
message passing interface has been made avail-
able to both C and Lua.

Figure 4: Message passing queues

To avoid flooding the amount of messages
is minimized by only sending delta changes or
events. The messages passed between processes
are kept small because they are passed by copy
for inter-process safety. A message consists of

following: 1 byte for sender id, 4 bytes for con-
trol bits and 4 bytes of data. This makes the
total size of any message 9 bytes.

Currently the sender byte is set by the sender
itself, but this will later on be automatically set
behind the scenes to make it more secure.

The control field is used for describing what
kind of message it is. The first byte is generic
for all messages and the other three are message
specific. The three message specific bytes can
also be used for passing data if required.

Sending larger amounts of data is possible by
passing a pointer stored in the data variable.
A bit in the generic control byte tells that a
data pointer is passed instead of the data it-
self. Also, setting the corresponding bit in the
control field tells the receiver to free the mem-
ory when not needed any more. If the same
bit is not set the contents of the passed data
pointer is read-only.

To get insight in how long it takes to pass
messages, a benchmark environment was setup.
A message was passed from one module to an-
other which passed it back again through the
send and receive interface. This was performed
multiple times to get an average of the time it
took to do one pretended synchronous message
passing. The results are shown in Figure 5.

Delay
C to C 0.181ms
C to Lua 0.359ms
Lua to C 0.286ms
Lua to Lua 0.428ms

Figure 5: Message passing delay time

An example implementation of an actor can
be found in Figure 6. The actor will read its
inbox and reply the sender with the same mes-
sage, but with the sender identifier exchanged
to its own.

12



void actor(void* parameters)
{

pid_t pid = register();
int timeout = 0;
message_t msg;

while (1)
{

sleep(10);

if (recv(pid, &msg, timeout) == 0)
{

pid_t sender = msg.sender;
msg.sender = pid;
send(sender, &msg, timeout);

}
}

}

Figure 6: Example actor written in C

4.8 The Lua process and custom Lua
libraries

The Lua process is general in the sense that
it can run any Lua script that defines an en-
try point, in this system a function called init.
Several instances of this process can be run con-
currently.

Three types of applications are supported.
The first type is a callback application, defined
by returning nil in the init function. When a
Lua process is running a callback application it
will wait for incoming messages and if the Lua
script has provided callbacks for these types of
events they will be executed. Callback type ap-
plications are particularly suitable for GUI ap-
plications, since these often only update when
the user has interacted with the system. The
second type is a tail call application, defined by
returning a function in the init function. Each
subsequent function returns the next function
to be called. Tail call applications can, for ex-
ample, be used to model finite state machines.
The third type of application is a mix of both,
that is, an application that receives callbacks

and executes iteratively. Figure 7 is an exam-
ple of the latter. It continuously increases the
counter value, until the label is pressed (the
reset_counter() function will be executed).

A Lua process can receive scripts through
messages that it will load and execute in its
current Lua environment. Thus an application
to be modified in any way at runtime (vari-
ables and functions can be changed or new ones
added). This feature combined with USB com-
munication allows interactive consoles, upload-
ing scripts and debugging (using Lua’s debug
library) at runtime.

function init()
counter = 0
g = gui.new()
label = g:new_label("Hello world!")
label.position = {50,50}
label.press = reset_counter
return main

end

function main()
counter = counter + 1
label.text = "Hellos: " .. counter
return main

end

function reset_counter()
counter = 0

end

Figure 7: Example Lua application

When designing the custom Lua libraries
used in the system, the focus was on developing
user friendly interfaces to the rest of the sys-
tem. An example application using the library
would be written and when it was as simple
and intuitive as possible then the actual library
would be implemented. This approach is a rec-
ommended way of designing interfaces to make
them more intuitive and maintainable (Martin,
2009). The simplest of the libraries, those that
wrap up messages to other processes, were writ-

13



ten directly in Lua and the more complicated
ones written in C or a combination of both.
Examples of a wrapper and its usage written
in Lua can be found in Figures 8 and 9.

function init()
-- off, during initialization
indicator:set_mode(0)

-- Do some initialization

indicator:set_color(255, 0, 0, 255)
indicator:set_mode(3) -- sinus
return main

end

function main()

-- Main loop

return main
end

Figure 8: LED indicator usage

4.9 The user interface process

The user interface (UI) process is a central part
of the system, responsible for updating GUI
components on screen and passing touch screen
events to a theme library (described below)
and Lua applications. It synchronizes the GUI
components with the touch screen, for instance
when GUI components are updated in a way
that affects the touch screen, a message con-
taining the updated information will be sent to
the touch screen process. The information sent
to the touch screen process is a list of rectan-
gular regions containing flags for the events a
given region is listening for. If an event is gen-
erated within any of these regions, and the flag
for that event has been set, the touch screen
process will report to the UI process. The rea-
soning behind passing the touch events through
the UI process, and not directly to the appli-
cation, is that a theme library can quickly give

StatusLED = {}
StatusLED.__index = StatusLED

-- Constructor
function StatusLED.new(pid)

local led = {}
setmetatable(led, StatusLED)
led.pid = pid
led.timeout = 0
led.mode = 0 -- off
led.r = 255
led.g = 255
led.b = 255
led.a = 255
return led

end

function StatusLED:set_mode(mode)
self.mode = bit32.lshift(mode, 8)
send(

self.pid,
self.mode,
self.r+self.g+self.b+self.a,
self.timeout

)
end

function StatusLED:set_color(r, g, b, a)
self.r = r -- no shift
self.g = bit32.lshift(g, 8)
self.b = bit32.lshift(b, 16)
self.a = bit32.lshift(a, 24)
send(

self.pid,
self.mode,
self.r+self.g+self.b+self.a,
self.timeout

)
end

indication_actor_pid = 2
indicator = StatusLED.new(

indication_actor_pid
)

Figure 9: LED indicator wrapper in Lua

14



user feedback (for instance redrawing a button
in an active state or playing a sound) indepen-
dently of any delay caused by the application
written in Lua.

The theme library is configured through Lua;
it sets the appearance and behavior of standard
components such as buttons, labels and sounds.
Sounds will be used to give complementary user
feedback but have not yet been implemented in
the system.

In addition to relying on a theme library the
UI process also relies on a GUI library to render
graphical components to the screen. The GUI
library is a very simple library that draws di-
rectly on the framebuffer and it only knows how
to draw bitmaps and texts. The components
appearing in the GUI are accessed through an
array that indexes them by their id, and up-
dated through messages from the controlling
application. This makes it efficient to update
a given component and iterate over all compo-
nents to redraw them. The controlling appli-
cation does not need to know anything about
how or when components are redrawn, it all
happens internally in the GUI library, thus a
GUI application can be as simple as the one
shown in Figure 7. More complex components
are made up of a combination of bitmaps and
texts, for instance a button contains a bitmap
as background and a text as label. Those two
basic components are implemented in C and
the rest are implemented in Lua.

4.10 GUI responsiveness

Using the formal metrics suggested by Seow
(2008), the responsiveness of the GUI can be
evaluated. Simple user input events, such as
pressing down on a button, should in order
to avoid having a negative impact on usabil-
ity provide user feedback instantaneously (less
than 0.1 seconds). The tolerance for clicking
(release after pressing down) a button is higher,
since this is a slightly more complex operation

the user feedback should be immediate (less
than 1 second).

The benchmarks shown in Figure 10 are from
a Lua application that has two buttons (182x51
pixels) and a long text. The benchmarks
started from when the touch process sent the
event and ended when the UI process had up-
dated the display. The text spans 12 lines and
covers about two thirds of the screen. Pressing
down either of the buttons will cause them to
be redrawn in an active state, i.e. the back-
ground image of the button is changed. When
clicked they cause the text to be changed.

Response time Limit
Button down 9 ms 100 ms
Button clicked 79 ms 1000 ms

Figure 10: GUI response times

5 Discussion

This section discusses the results of the re-
search found in the previous section. It will
revisit and review the hypotheses stated ear-
lier in the paper. Furthermore, it will bring up
issues that are not covered in this research, but
which we have found interesting.

5.1 Research approach

The iterative structure of design research
helped us to focus on single issues, developing
and improving the design artifact one step at a
time while trying to retain efficiency.

During both iterations a lot of time was
spent on project setup, configuring the oper-
ating system, developing hardware drivers and
software resource management (images and
fonts). This made the iterations consume more
time than expected but not to a problematic
extent.

There was no way of quantitatively measur-
ing the efficiency of the system during the first

15



iteration, simply because everything was devel-
oped from scratch and it is difficult to measure
things which do not work properly. Instead
qualitative measurements were used in the first
iteration to assure the system continued to be
efficient and responsive. In the second itera-
tion enough software was developed and quan-
titative measurements were setup. After this
iteration and by the help of design research,
we managed to get the results we were look-
ing for to evaluate the initial hypotheses and
to make a final conclusion.

5.2 System design

The design was kept simple because it increases
maintainability. Also the interfaces and APIs
were designed to be simple. As an example,
the interfaces were designed the way we wanted
the Lua application to interact with the rest
of the system before they were implemented.
This approach is normally not the easiest when
it comes to implementation, but when done, it
makes the API look like and work as one would
expect it to (think of a black box interface).

Because it was not a proof of concept (throw-
away) prototype, we were forced to dig deeper
and learn more in-depth, so the learning out-
come was greater. It would have been easier
to make a proof of concept only by creating
a prototype for a special purpose. An exam-
ple would be just running Lua on an embed-
ded device. But this may not have proved if it
actually is possible to control a touch display
through Lua with high responsiveness. There
are too many factors which impact the effi-
ciency of the system to make a proper eval-
uation of prototype with only Lua in it. The
resulting design artifact developed during this
study is the core of a complete embedded touch
display system system which is going to be used
in industry.

5.3 Actor model

In the actor model implementation the focus
was on the message passing mechanism. A full
implementation of the actor model was not re-
quired during this study. But it should not
be a problem to implement the missing parts
of the actor model like dynamic creation and
destruction of processes at run time. The mes-
sage passing of the actor model was success-
fully implemented in the system. It works
as intended and programmers can easily pass
messages transparently between different con-
current processes. The concurrent software
components are decomposed by functionality
and uses message passing to communicate with
each other. This makes it easy to perform
component based testing by passing test mes-
sages to a component and observing how it be-
haves. Component simulation is another pos-
sible thing which is easily made by creating a
simulator interacting with message passing like
the original component. The actor model im-
plementation does not care about the program-
ming language used. Which makes it possible
to implement a component in any language and
make it communicate simply by writing a wrap-
per for the actor model interface. This is how
Lua was integrated with the rest of the system.

All these aspects improve maintainability of
the system as a whole if properly used.

We have not been able to do more in depth
testing of how the implementation behaves dur-
ing heavy load. But we have tried to fore-
see where the load will be and optimized these
parts. Also decisions like only passing deltas
(no spamming or polling) and the event mech-
anism decreases the overall load significantly.
Collection of message passing statistics (for in-
stance messages sent, received and lost) and
process scheduler statistics (for example CPU
time) were implemented and can easily be used
during debugging to locate for instance bottle-
necks in the system.

16



5.4 Reflecting on the use of Lua

After some minor calibrations Lua executed
fine on the embedded touch display device. Lua
works as intended and so far we have not dis-
covered any problems in using it together with
C in the embedded system. Actually, Lua is a
very good complement to C because it does not
do what C is good for but the parts where C
lacks ease of use, for example, garbage collec-
tion and dynamic data types. The footprint of
Lua, including all libraries and dependencies,
in the system is around 240kB. If required, the
size could be decreased by removing unused li-
braries. The Lua environment is rather quick
to load even with larger scripts which is an ad-
vantage of Lua. Lua’s GC executes as intended
and works well with dynamic memory alloca-
tions. The fact that Lua uses double as stan-
dard data type for all numbers, and that the
embedded device does not have an FPU, de-
creases the efficiency but has not been a prob-
lem in our system.

5.5 Lua as an actor

It was very easy to integrate Lua with the actor
model (in this case the message passing), only
by creating wrappers for the interface. This
allows Lua developers to safely communicate
with the rest of the system through a simple
interface. Sandboxing for third party applica-
tions is easy because sandboxing is an inherent
feature of Lua. The delays in the message pass-
ing mechanism are negligible even for messages
passed between two Lua processes.

So far, we have not seen any significant ef-
ficiency sufferings from using Lua in some of
the system modules. The responsiveness tests
performed show that it is fast enough for the
touch display purpose.

A software module was also implemented
which can receive data from a computer over
USB and pass to another process as a message.

Messages can also be received and passed back
to the computer over USB. This was used to
pass Lua scripts to the Lua process and the
print method of Lua was mapped to pass back
the printout. It made it more convenient to do
execution testing while developing without the
need of recompiling and flashing the embedded
device. Furthermore, Lua scripts can be loaded
from an SD-card dynamically, which simplifies
updates and software changes compared to re-
flashing the embedded device.

5.6 Reviewing the hypotheses

— Lua as a complement to C in-
creases maintainability while retaining
efficiency: Lua as a scripting language in-
creases the productivity of the developers
(Ousterhout, 1998; Prechelt, 2002). It also pro-
vides a dynamic way of simply alter the appli-
cation without recompilation. Sandboxing is
another strength of Lua which makes it pos-
sible to sandbox applications to make them
safer to execute. The dynamic data structures
and GC makes it easy to manage data, for in-
stance strings, which could be cumbersome in
C and comes with a risk of introducing mem-
ory leaks. The ability to update the Lua appli-
cations at runtime over USB greatly decreases
the required time to perform updates during
development. No maintainability prediction
techniques or models were used. Of the mod-
els proposed in literature few are supported
with accuracy measures, use any form of cross-
validation or have evidence for external valid-
ity (Riaz et al., 2009). Due to this, we chose to
use guidelines from literature instead of predic-
tion models. Efficiency can be retained where
required by implementing parts using C in-
stead of Lua. The responsiveness benchmarks
proves that we successfully use Lua to define
the system behavior without sacrificing respon-
siveness.

17



— Message passing increases maintain-
ability at the cost of efficiency: The mes-
sage passing creates a concurrency transparent
and simple interface for developers. It also de-
creases the coupling of the modules with asyn-
chronous calls and forces modularity which im-
proves maintainability. The actor model can
be interfaced from any programming language
able to wrap up the C message passing inter-
face. Modularity makes component based test-
ing and module simulation easier which also
increases maintainability. Efficiency suffers be-
cause it is a level of abstraction and it would
have used less hardware resources by calling
functions directly. But that would have raised
other problems with concurrency, like shared
memory, instead.

— Lua is efficient enough to manage a
touch display in an embedded device: Af-
ter integrating Lua using actor model the effi-
ciency is still at an acceptable level, supported
by our measurements. In the modules of the
system where real efficiency is required, it is
still possible to use C (or any other program-
ming language fit for the purpose) in the de-
sign.

5.7 Further work

During this study we have found an other in-
teresting part of the area which can be re-
searched upon. We have used an RTOS as
a scheduler but without any real-time con-
straints. We also know for sure that our design
(with asynchronous message passing and non-
determinism) using Lua (with its garbage col-
lector and dynamic data types) may be risky
to use where real-time constraints exists. It
may be possible to use this approach and still
live up to real-time constraints. An example
of where asynchronous message passing is used
with real time constraints is Enea OSE5 (the

5http://www.enea.com/

signals used). Berry (1989) brings up real-
time constraints in combination with the ac-
tor model, but he does not use a high-order
(scripting) language in his work.

6 Concluding remarks

The goal of this research was to increase main-
tainability in an embedded touch display sys-
tem while retaining efficiency, in order to meet
responsiveness constraints. Through the use of
Lua as a complement to C and the message
passing semantics of the actor model in the
design of a embedded touch display system,
we have found that this approach is applica-
ble in order to improve maintainability, with-
out sacrificing responsiveness of the touch dis-
play. These findings contribute to the knowl-
edge area of software design and development
of embedded systems used for human computer
interaction. Our focus has been on quality at-
tributes, specifically efficiency and maintain-
ability, which is likely to be of importance to
producers of embedded touch display systems.
As further work we suggest to evaluate the
use of this approach in embedded systems with
real-time constraints.

18



References

Aggarwal, K. K., Singh, Y., Chandra, P., and
Puri, M. (2005). Measurement of software
maintainability using a fuzzy model. Journal
of Computer Science, 1:538–542.

Agha, G. (1986). Actors: a model of con-
current computation in distributed systems.
MIT Press, Cambridge, MA, USA.

Bass, L., Kazman, R., and Clements, P. (2003).
Software Architecture in Practice. Addison-
Wesley Professional, 2nd edition edition.

Berry, G. (1989). Real time programming: Spe-
cial purpose or general purpose languages. In
World Computer Congress, pages 11–17.

Boehm, B. W., Brown, J. R., and Lipow, M.
(1976). Quantitative evaluation of software
quality. In Proceedings of the 2nd interna-
tional conference on Software engineering,
ICSE ’76, pages 592–605, Los Alamitos, CA,
USA. IEEE Computer Society Press.

Brooks, Jr., F. P. (1975). The mythical man-
month. SIGPLAN Not., 10:193–.

Clark, D. L. (2009). Powering intelligent in-
struments with lua scripting. Technical re-
port, Round Rock, TX 78681 USA.

de Figueiredo, L. H., Ierusalimschy, R., and Ce-
les, W. (1996). Lua: an extensible embedded
language. Dr. Dobb’s Journal, 21(12):26–33.
http://www.lua.org/ddj.html.

Hevner, A. R., March, S. T., Park, J., and
Ram, S. (2004). Design science in infor-
mation systems research. MIS Quarterly,
28(1):75–105.

Hewitt, C., Bishop, P., and Steiger, R. (1973).
A universal modular actor formalism for ar-
tificial intelligence. In Proceedings of the

3rd international joint conference on Arti-
ficial intelligence, pages 235–245, San Fran-
cisco, CA, USA. Morgan Kaufmann Publish-
ers Inc.

Hirschi, A. (2007). Traveling light, the lua way.
IEEE Software, 24:31–38.

IEEE/ANSI (1993). Recommended practice for
software requirements specifications. Inter-
national Standard 830-1993.

Ierusalimschy, R. (2006). Programming in Lua.
Lua.org, 2nd edition edition.

Ierusalimschy, R., de Figueiredo, L. H., and Ce-
les, W. (2007). The evolution of lua. In Pro-
ceedings of the third ACM SIGPLAN confer-
ence on History of programming languages,
HOPL III, pages 2–1–2–26, New York, NY,
USA. ACM.

Ierusalimschy, R., de Figueiredo, L. H., Hen-
rique, L., Waldemar, F., and Filho, W. C.
(1995). Lua - an extensible extension lan-
guage. Software: Practice & Experience,
26:635–652.

ISO (1999). ISO/IEC 9899:1999: Program-
ming Languages — C.

ISO/IEC (1999). ISO/IEC 14598. Software en-
gineering – Product evaluation. ISO/IEC.

ISO/IEC (2001). ISO/IEC 9126. Software en-
gineering – Product quality. ISO/IEC.

Kim, C. and Weston, S. (1988). Software main-
tainability: perceptions of edp professionals.
MIS Q., 12:167–185.

Lieberman, H. (1981). Thinking about lots
of things at once without getting confused:
Parallellism in act 1. Technical report, Mas-
sachusetts Institure of Technology.

Martin, R. C. (2009). Clean Code: A hand-
book of agile software craftsmanship. Pren-
tice Hall.

19



McCall, J. (1977). Factors in Software Quality:
Preliminary Handbook on Software Quality
for an Acquisiton Manager, volume 1-3. Gen-
eral Electric.

National Bureau of Standards (1984). Guide-
line on software maintenance. Technical re-
port, FIPS Pub 106, U.S. Dept. of Com-
merce.

Noergaard, T. (2005). Embedded Systems Ar-
chitecture: A Comprehensive Guide for En-
gineers and Programmers. Elsevier, Oxford.

Ousterhout, J. K. (1998). Scripting: Higher-
level programming for the 21st century.
Computer, 31:23–30.

Pearse, T. and Oman, P. (1995). Maintainabil-
ity measurements on industrial source code
maintenance activities. In Proceedings of the
International Conference on Software Main-
tenance, ICSM ’95, pages 295–, Washington,
DC, USA. IEEE Computer Society.

Prechelt, L. (2000). An empirical comparison of
c, c++, java, perl, python, rexx, and tcl for a
search/string-processing program. Technical
report, Universitat Karlsruhe, Fakultat fur
Informatik, D-76128 Karlsruhe, Germany.

Prechelt, L. (2002). Are scripting languages
any good? a validation of perl, python, rexx,
and tcl against c, c++, and java. Advances
in Computers, 58.

Riaz, M., Mendes, E., and Tempero, E. (2009).
A systematic review of software maintain-
ability prediction and metrics. Empirical
Software Engineering and Measurement, In-
ternational Symposium on, 0:367–377.

Sanner, M. F. (1999). Python: A programming
language for software integration and devel-
opment. J. Mol. Graphics Mod, 17:57–61.

Seow, S. C. (2008). Designing and Engineering
Time: The Psychology of Time Perception
in Software. Addison-Wesley Professional, 1
edition.

Sommerville, I. (2006). Software Engineering.
Addison-Wesley, 8th edition edition.

Vaishnavi, V. and Kuechler, W. (2008). Design
research in information systems. Order A
Journal On The Theory Of Ordered Sets And
Its Applications, 48(2):1–393.

Ward, M. P. (2003). Language oriented pro-
gramming. Language, 15(4):1–21.

20


