

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, May 2011

STAF-on-Eucalyptus: A Cloud Based Software

Testing Environment for Distributed Systems

Bachelor of Science Thesis in Software Engineering and Management

Johnson Onajite Igugu

Pooja Biltoria

The Author grants to Chalmers University of Technology and University of Gothenburg the non-

exclusive right to publish the Work electronically and in a non-commercial purpose make it

accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not

contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher

or a company); acknowledge the third party about this agreement. If the Author has signed a

copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she

has obtained any necessary permission from this third party to let Chalmers University of

Technology and University of Gothenburg store the Work electronically and make it accessible on

the Internet.

STAF-on-Eucalyptus: A Cloud-Based Software Testing Environment for Distributed

Systems

Johnson Onajite Igugu

Pooja Biltoria

© Johnson Onajite Igugu, May 2011.

© Pooja Biltoria, May 2011.

Examiner: Helena Holmström Olsson

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:

Department of Computer Science and Engineering

Göteborg, Sweden May 2011

Abstract

Cloud computing fundamentally provides

access to computing resources and services

over the internet. It offers potential solutions for

effective testing by provisioning enormous

amount of computing resources to end users.

Utilizing the cloud for testing started around

2002 and has mainly focused on techniques for

online testing, ranking, automated test case

generation, monitoring, simulation, and policy

data provenance (Yu et al, 2010). Commercial

provisioning of testing services in the cloud

today is mainly inclined towards providing a

generic solution that attempts to address a wide

range of testing purposes and therefore is not

applicable in testing unique applications such

as complex distributed systems, neither are they

applicable in running unique test suites. Based

on an industrial problem which is discussed on

section 1.1, this study attempts to find

appropriate strategies aimed at utilizing the

cloud for testing unique applications or running

unique test suites. In this paper, we discuss two

approaches useful in solving this problem; the

migration followed by end-to-end test

automation approach. Finally, we propose a

solution to this problem; STAF-on-Eucalyptus

which is based on the Eucalyptus cloud

computing system (Nurmi et al, 2009) and the

Software testing automation framework

(Cervantes, 2009).

Keywords
Testing-as-a-service, Platform-as-a-service,

Infrastructure-as-a-service, Software-as-a-

service, Cloud computing systems, migrating to

the cloud, System migration, Service-oriented

architecture, migration techniques,

virtualization in the cloud, Operating systems

images, testing in the cloud, parallel test

execution, distributed systems, test automation

in the cloud, automated test generation.

1. Introduction

Software Testing is an investigation conducted

to assess the functionality and correctness of a

program or system, usually done by executing

or analyzing it (Parveen et al, 2010). This study

is based on an industrial case which is described

in section 1.1. Testers at the industry are having

difficulty in testing the performance of a

distributed system under peak load; this is

mainly because there are insufficient computing

resources to support the testing process. This

creates a number of challenges such as

inefficiency in the testing process owing to the

fact that it could take a long period of time to

execute the test (Parveen et al, 2010). A typical

scenario took several days to attain such peak

load, however the test was unsuccessful. Cloud

computing offers a solution to the problem

described above, it supports software testing by

availing computing power and virtualization

that would have been impossible or too

expensive to attain, however it brings along

some issues such as cost with it (Riungu et al,

2010), owing to the fact that resources in the

cloud are paid for per usage. The above implies

that it is necessary to instrument a means to

systematically utilize the resources provided by

the cloud in a cost effective manner.

Commercial provisioning of testing services to

end users has become a prominent practice in

the past; however they mainly aim at providing

a solution that addresses a wide variety of

problems. The above makes it hard to harness

such testing services to test unique systems as

well as running unique tests. In this study, we

consider a case where the system under test is a

complex distributed system that is capable of

simulating a huge amount of load applicable in

testing its own performance (at peak load) by

running unique test suites. Testing a system of

this nature will posse a difficult challenge since

the one-size-fits-all testing services that are

provided as services in the cloud will become

inadequate. It becomes relevant to ask the

questions; what are the best strategies

applicable in utilizing the cloud for effective

testing while reusing the existing test suites?

Moreover, how can these strategies be realized

and what are the most appropriate tools and

techniques for achieving these objectives? This

paper attempts to resolve this problem using a

combination of two approaches; migration

followed by end-to-end testing automation.

It is necessary to systematically migrate the

tests and the tests suites (described in the

following section) to the cloud since the cloud

environment being different from the

production environment, might not contain all

necessary libraries and dependencies to support

test execution. End-to-end testing automation

reduces lengthy execution of tests as well as

human intervention during the testing process.

Section 2 of this paper shall explore and explain

migration and the end-to-end testing

automation, and in section 3 we shall present

the solution to the problem described in this

paper – the STAF-on-Eucalyptus framework.

In section 4 of this paper we describe how

appropriate research techniques were applied to

gather data and acquire knowledge about

various migration and automation frameworks.

In section 5, we analyze and present our

findings and in section 6, we discuss the

suitability of the STAF-on-Eucalyptus

framework on this specific problem. STAF-on-

Eucalyptus is based on the Eucalyptus system

and the Software testing automation framework,

both being open source and are readily

modifiable.

1.1 The Problem
At the industry, our partners are currently

experiencing increasing demands on its

services, therefore they desire to test and prove

to themselves and their customers that their

system can support such demands. Testing the

performance of the system under peak load is

highly desired since they intend to prove the

capability of the system under test (SUT). They

are faced with a major challenge because

carrying out such tests can require running tests

for several days in order to massively load the

system. This scenario requires a complex

testing framework that must be supported with

a relatively large amount of computing

resources. Cloud computing offers several

advantages for resolving this problem. Other

than the provisioning of enormous computing

resources which has been cited in section 1,

testing in the cloud is attractive since testers do

not need to install any software locally on their

computers but they are hosted on the cloud

platform. Another advantage of cloud

computing is that it is relatively cheaper to

maintain since there is no need to procure and

maintain any hardware infrastructure, but users

can lease services that are paid for per usage.

1.1.1 The System under test (SUT)
The system is a distributed system consisting of

four main sub-systems that can execute

independently and in parallel, the systems

communicate by using a clearly defined

protocol over a network. The system has been

hierarchically designed with three layers on its

architecture. The first layer consists of the

corporate system that performs complex tasks.

Figure 1.0 below is the architecture of the

system showing various component systems.

The Corporate system operates by receiving

reference data on its inbox and performing

computations on such data, calling external web

services to perform financial tasks and finally

updating its data base with the information. The

reference data is sent from the lowest layer by

the sales clients. The performance of the system

is given as the time taken from when the

reference data was sent by the sales clients until

the database of the corporate system is

completely updated. Factors such as internet

topology and internet traffic may affect the

system performance.

 Figure 1.0: The System under test

To test the performance of the corporate system

at peak load, a tester needs to start a designated

number of sales clients belonging to a specific

sales server in a faked-mode which enables the

clients to read inputs from a preconfigured text

file, the result being the simulation of mass load

upon the corporate system inbox. All that was

required by testers is to manually configure the

text file and start the clients in a faked-mode

using appropriate commands. The peak load in

this case varies from one sales server to the

other, but typically, there are 400 sales clients

per sales server approximately. Therefore a

typical corporate system peak load test will

require running over 800 sales clients, this

results in reference data being sent in mass to

the corporate system inbox. The time taken to

handle this mass loaded data is of primary

interest to the testers, although there are other

interests.

This study considers deploying the sales system

(consisting of the sales server and its sales

clients) unto the cloud. The cloud resources are

then used to massively execute several sales

Servers together with their multiple clients in

parallel. This important mainly because there is

a need to rapidly generate the reference data in

question; another motive is that it may take the

corporate system a considerable amount of time

to handle all reference. This serves as an

advantage since the cloud testing environment

can be disengaged immediately the required

reference data was attained which goes a long

way to managing the leasing cost of the cloud.

Another advantage of doing this is that, the

accuracy of the testing process is improved

since the corporate system will execute in its

normal operating environment during the test.

1.1.2 Previous Testing attempts
Testing was conducted to verify the

performance and stability of the corporate

system during continuous peak load periods by

setting up a local testing environment on a

windows server. The results of the tests show

that the test was unsuccessful because the

testing environment was unable to support the

necessary computing resources needed to

execute the tests.

A second attempt was done on the Amazon

EC2 cloud platform, testers succeeded in

migrating and deploying the distributed system

on the cloud.

Each sub- system would be installed and run on

separate nodes in the cloud; this is needed to

ensure that the resources needed to execute the

tests can be supported at every node. The cloud

proved promising for testing their system but

there were major impediments (1) Copying files

onto each node in the cloud each time testing

was needed can be a challenging and a time

consuming task, (2) setting up and tearing down

the testing environment can take a significant

effort and time, (3) there was the need to

systemically manage the time taken to execute

tests. Testers concluded that a proper testing

framework was needed for their testing process,

setting up and tearing down the testing

environment should take a minimal human

intervention and shouldn’t take more that 3

minutes.

2.Background

2.1 Cloud-Computing
Cloud Computing is defined as “A model for

enabling convenient, on-demand network

access to a shared pool of configurable

computing resources (e.g. networks services,

storage, application and services) that can be

rapidly provisioned and released with minimal

management effort or service provider

interaction” (Riungu et al, 2010). Kienle et al,

2010 elaborates on various service models

provided in the cloud as shown below.

(A.) Software-as-a-Service (SaaS): this type of

service involves providing a service in the form

of an application to an end user, e.g.

GoogleApps.

(B.) Platform-as-a-Service (PaaS): the client in

this case develops and deploys his application

by utilizing a set of computing services offered.

An example is Microsoft’s Azure.

(C.) Infrastructure-as-a-Service (IaaS): under

this category fundamental services for a cloud

environment are offered as a Service, an

example is Windows Azure’s storage services

API (Kienle et al, 2010).

Software testing in the cloud has become

attractive because the user does not need to

install any testing resources locally but rather

they are hosted remotely (Parveen et al, 2010).

Commercial provisioning of testing as a service

to end users has become a prominent practice

since recent years, Lian et al, 2010 outlines

Testing-as-a-Service as a new model to provide

testing capabilities (such as auto-generation of

test cases, test auto-execution and test

evaluation) to end users. The following section

of this paper explores Software Testing in the

Cloud.

2.2 Software testing in the Cloud
Riungu et al, 2010 defines Software Testing-as-

a-Service (STaaS) as “a model of software

testing used to test an application as a service

provided across the internet”. According to

Fernandez et al, 2010, there are three major

layouts for utilizing the cloud for testing, they

are as follows:

(1.) Test System – In the cloud: there is an

onsite internal application (in data center) and a

need for temporary test system.

(2.) Application – in the cloud: internet or

online application (e-commerce) to be tested

with an internal testing resource.

(3.) Application and test system - in the cloud:

there is an internet application which needs

temporary test systems.

This study is mainly interested in the first

alternative (Test system – in the cloud), we aim

to leverage cloud-based infrastructure to deploy

the sales clients which are explained section 1.1

Riungu et al, 2010, states various examples of

testing services that are already being deployed

in the cloud today to include but not limited to,

Cloud9 (Ciortra et al, 2009), D-Cloud (Banzai

et al, 2010) (Hanawa et al, 2010), and the York

extensible testing infrastructure (YETI) (Oriol

et al, 2010).

2.3 Migrating Software testing to the

Cloud
According to Parveen et al, “when migrating

software testing to the cloud, the artifacts that

are involved in the testing process needs to be

migrated to a newer environment while still

being in sync with the development process”.

They suggested that a disciplined migration

process needs to be followed in order to achieve

success. Parveen et al, 2010 also stated the

characteristics of a program that makes it

feasible for its testing process to be migrated to

the cloud to include: (1.) test cases that are

independent from one another or whose

dependencies are easily identifiable, (2.) a self-

contained and easily identifiable operational

environment, and (3.) programmatically

accessible interface that is suitable for

automated testing.

Three essential components are necessary for

the success of most testing processes (the test

code, the application under test, and libraries as

well as other dependencies), to migrate such

tests to the cloud means that these components

must reside or be accessible in the cloud for

testing to be possible (Parveen et al, 2010).

2.4 Cloud Computing and Virtualization

Virtualization devices a means to create a

virtual rather than actual version of a hardware

platform, operating system, storage device or a

network service (Intel, 2005). In recent times

virtualization software have enabled new

mechanisms for providing resources to users

(Nurmi et al, 2009). Currently a combination of

improved hardware design and machine

virtualization projects has provided an

environment that supports transparent operating

system hosting (Nurmi et al, 2009).

In cloud computing virtualization means that

cloud users can choose to host any operating

system of their choice, this goes a long way to

simplify the migration process (Intel, 2005)

while alleviating the complications that are

inherent in migrating to the cloud as identified

in the previous section. In commercial cloud

computing systems, virtualization aids cloud

vendors (Amazon EC2/S3, Google AppEngine,

SalesForce.com, and others) provision their

services. The Eucalyptus cloud computing

system is an open source cloud computing

framework that offers similar virtualization as

most commercial cloud computing systems

(Nurmi et al, 2009). Eucalyptus lends itself to

experimentation as a result of its modularity, its

being open source and its accessibility through

a user interface which is common with Amazon

EC2 / S3. The above makes Eucalyptus

relatively important since users can easily

transition seamlessly between the Eucalyptus

platform and the Amazon EC2 by modifying

environmental variables or by using command

line arguments to instruct the client application

about where to send its messages (Nurmi et al,

2010). The following section shall explore the

potentials of the Eucalyptus cloud computing

system.

2.5 The Eucalyptus Cloud-Computing

System

Eucalyptus is an open-source software

framework for cloud computing that

implements Infrastructure-as-a-Service (IaaS).

Eucalyptus provides users with the ability to

run and control entire virtual machine (VM)

instances deployed across a variety of physical

resources (Nurmi et al, 2009) such as the cloud.

According to Nurmi at al, 2009, Eucalyptus has

been practically put to use and it was found that

it enables users that are familiar with existing

Grid systems to explore new cloud computing

functionality while maintaining access to

existing, familiar application development

software and Grid middleware. Eucalyptus

offers several advantages by addressing a

variety of issues with cloud computing such as:

Virtual machine (VM) instance scheduling, VM

and user data storage, cloud computing

administrative interfaces, construction of virtual

networks, defining and execution of several

level agreements (Cloud / User and Cloud /

Cloud), and cloud computing user interfaces

(Nurmi et al, 2009).

 Fig. 2.0: The Eucalyptus System

Eucalyptus focuses on the lowest layer of cloud

computing systems; Infrastructure-as-a-service

(IaaS). This implies that it can provide a

foundation on top of which service-, and

application level cloud computing systems can

be explored and built (Nurmi et al, 2009). As

highlighted in the previous section, one of the

striking characteristics of the Eucalyptus system

that makes it easy to explore is its modularity

and openness to experimental instrumentation.

Modularity means that the system is built on

several components that interact through a well

defined interface (Nurmi et al, 2009).

According to Nurmi et al, 2009, the architecture

of the Eucalyptus system is simplistic and

flexible; it is hierarchically designed, reflecting

common resource environments similar to those

found in the academic settings.

Each high level component of the eucalyptus

system is a stand alone web service, this is

beneficial in the sense that each web service

exposes a well defined language-agnostic API

and also resolves security issues during inter-

component communication by employing the

WS-Security policies for secure communication

(Nurmi et al, 2009). The architecture of the

eucalyptus system is shown in figure 2.0 below.

Node Controller: controls the execution,

inspection, and termination of VM instances

running on separate nodes.

Cluster controller: This is a storage system that

implements Amazons S3 Interface, and

provides a system for storing and accessing VM

images as well as user data.

Cloud controller: is the entry point for ordinary

users and administrators of the system. Its

major function is querying nodes managers for

information about resources, making high level

scheduling decisions, and implementing them

by making requests to cluster controllers.

On the overall, users of the Eucalyptus system

are able put the system to use by utilizing the

same tools and interfaces that they will use to

interact with Amazon EC2 services. The

Eucalyptus system having the same interface

with the Amazon EC2 means that, users can

choose to experiment on the Eucalyptus

platform and later transit easily to the Amazon

EC2 where they may choose to lease services.

2.6 Testing Automation in the Cloud
Massive simulation or emulation of load for

testing purposes can require a huge amount of

computing resources. One approach for

increasing efficiency in the testing process is to

generate such loads rapidly thereby assuring

that mass load is achievable by executing the

testing program in as short time as possible.

 Fig. 2.1: The STAF framework

The later places even more demands on

computing resources, the same is the case for a

distributed system that may be deployed on a

variety of environments, and hence we expect

tests to be conducted in a multiple combination

of OSs and environments. Automation of tests

helps gather and disseminate information about

tests quickly, to give developers a fast feedback

(Cervantes, 2009). The two main objectives of

automating tests are; quick detection of

destabilizing changes in the new builds and

quick exposure of regression defects

(Cervantes, 2009). Cervantes, 2009, explains

that test automation gives a tester the possibility

of achieving unattended testing capabilities and

with end-to-end test automation a tester can

schedule tests to run autonomously. Test

automation also enables testers to run multiple

tests simultaneously and in parallel (Cervantes,

2009) (Duarte et al, 2009).

According to Hanawa et al, 2010, the only way

to speed up software testing is that a lot of tests

are performed massively in parallel. Cervantes,

2009, also explains that test automation means

that testing can be conducted 24 X 7 and there

will be no need to put an end to testing

activities at the end of workdays. Furthermore,

Cervantes, 2009, presented the idea that one

prospect for enabling and improving the

practice of automating tests is the use of

software test automation framework (STAF).

The main objective of the Test automation

framework is to provide the infrastructure that

testers need in order to facilitate the

development of automated test solutions.

In this study, we are mainly interested in

reducing the execution time of the testing

process and minimizing human intervention

during the testing process, the above is

achievable by automatically deploying the tests

or test cases in parallel on separate nodes in the

cloud. In this study the sales clients must be

executed in parallel in order to rapidly mass

load the corporate system (see section 1.1). The

Software Testing automation framework

(STAF) helps to realize the objectives stated

above, we explore STAF in details in the next

section.

2.7 The Software Testing Automation

Framework (STAF)
The Software testing automation framework

(STAF) is an open source project that provides

a collection of general test services that testers

can use to develop automated test cases

(Cervantes, 2009). Cervantes, 2009, further

explains that automation tools such as STAF

can help testers develop end-to-end testing

automation. STAF was developed by IBM but

made open-source because of their use in Linux

testing (Sourceforge, 2011). STAF is supported

in most operating systems for example,

windows, Linux, MVS etc.

STAF offer the opportunity to automate tests by

using services that are applicable in a similar

manner as a programmer would use built in

functions in most modern programming

languages such as Java and C++. In addition to

these services STAF also allows testers and

users to develop custom services specified to

their testing environment (Cervantes, 2009).

STAF is able to run tests that are unaware of it;

this implies that it is possible for testers to use

existing test cases without making changes to

the tests or making calls to the STAF APIs.

Figure 2.1 above shows the high level

components of the STAF framework.

STAF is made up of 3 main components, these

are: the STAF services, the STAF daemon, and

the STAF API. STAF also has an optional

component called STAX (Cervantes, 2009).

STAF and STAX are designed to provide

general testing capabilities to facilitate the

development of end-to-end automated testing.

STAF Services

These are the sets of reusable test functions that

are available to be used by testers in order to

facilitate the process of creating automated test

cases (Cervantes, 2009). STAF services provide

common methods that programmers may utilize

to create automated tests. Some examples of

STAF services are: LOG services, VAR

services, and QUEUE services, each of these

services are used to perform varying functions

(Sourceforge, 2011). It is beyond the scope of

this paper to explain what these services do.

STAF services can be extended by using

templates for developing custom services.

According to Cervantes, 2009, STAF allows

testers and developers to create custom services

that can be plugged into the STAF framework

as an external service, this being important

since the default services are meant to enhance

general purpose testing only.

STAF Daemon

The STAF daemon distributes STAF services to

STAF enabled machines on a network. They

exist as processes on each machine waiting for

a STAF service request from a local or remote

host. A daemon receiving requests will parse

the request (STAF string) and perform the

request on the local host it executes on

(Cervantes, 2009). The above means that testers

can perform tests simultaneously and in parallel

since they can distribute the tests on different

machines while being able to manage the

testing process.

STAF API

This is the development interface provided for

developers using the system, the STAF API is

used to interact with and use the STAF services.

By using the API, it is possible to develop tests

in programming languages such as C++,

Python, and Java (Cervantes, 2009).

STAX

An optional component of STAF which is a

programming language specifically designed

for testing. STAX is composed of three

technologies; XML, Python, and STAF. STAX

is an execution engine which can help in the

thorough automation, distribution, execution,

and results analysis of test cases. According to

Cervantes et al, 2009, various steps need to be

taken in order to successfully automate a

system test, they are shown figure 2.2 below.

 Figure 2.2: STAF automation steps

Finally there is evidence as presented by

Cervantes, 2009, that with STAF it is possible

to automate the entire testing process and

eliminate the interaction of a tester to do any

form of manual testing, and this means that

tests can be scheduled to run 24 X 7.

 Fig. 3.0: the STAF-on-Eucalyptus framework

3. STAF-on-Eucalyptus

This paper presents the STAF-on-Eucalyptus

testing environment which is a combination of

the Software testing automation framework

(STAF) and the Eucalyptus cloud computing

system that have been described in section 2,

both are open source software hence they are

open to modification. Figure 3.0 below is a

representation of the system.

The major purpose of the STAF-on-Eucalyptus

system is to ensure that it is possible to

automate and reuse existing tests in the cloud.

The combination is tailored to run on the cloud

using the Eucalyptus open source cloud

computing system as the main platform. One of

the main motives behind this proposal is to

achieve a distributed and parallel testing

process, using the resources of the cloud. The

distributed and parallel testing technique has

been tested and proven by (Hanawa et al, 2010),

(Liu et al, 2010), (Ciortea et al, 2010), (Parveen

et al, 2010), (Oriol et al, 2010), (Duarte et al,

2006), (Ganon et al, 2009), and (Yu et al,

2010), thus there is adequate evidence to

suggest that the STAF-on-Eucalyptus system

will offer an accelerated testing environment for

mass generation or simulation of load within a

short period of time.

On the Eucalyptus graphical user interface a

user can upload a guest OS image to the

controller node and boot these OSs via the

Eucalyptus GUI. With the OS now running on

the target nodes, the user can install the STAF

system on each target node and copy the system

under test and dependencies unto the cloud.

This automatically creates the text file

(STAF.cfg) which can be used to configure the

system. Figure 3.1 below shows a basic

configuration file for the STAF-on-Eucalyptus

system. With an appropriate configuration a

tester can achieve end-to-end testing

automation.

Fig. 3.1: The STAF.cfg file

4. Methods

This research mainly aimed at finding the most

suitable strategies applicable in utilizing the

cloud for testing a distributed application whose

test cases are unique (see section 1.1). A major

hindrance in this study was that, it was difficult

to gain qualitative insight into the composition

and architecture of commercial cloud

computing systems; hence this study attempts to

collect information firstly from forums and

blogs, and finally from published materials in

the academic community as well as unpublished

journals and various white papers. In order to

achieve the objectives of this research, we have

selected the qualitative research approach

(Creswell, 2002). Qualitative research is

explained in the next section.

4.1 Qualitative approach

Qualitative research may be described as

research that attempts to increase understanding

of why things are the way they are in social

context, and why people behave the way they

do (Hancock et al, 2006). In the beginning of

this research, we had little or no information or

knowledge about this area of concern neither

did we know the appropriate sources to obtain

information from. Thus the qualitative research

approach which is exploratory and explanatory

in nature has been chosen.

4.2 The research Process
This research was divided into two main

phases; the first phase was conducted as a field

study in conjunction with forum and blog

search, the semi-formal interview method was

used as data collection technique. The second

phase focused mainly on finding potential

information from archives and published

literature, by using keywords that where

generated or developed from the first phase to

search the archives. Figure 4.0 below illustrates

the research process.

4.2.1 Phase 1: Field Observation and Forum

study

As explained in section 1.1, the personnel and

staff at the industry have made repeated

attempts at adapting and utilizing the services

of Amazon EC2 to test the performance of a

distributed system at peak load, but they have

found difficulties in doing so. During this part

of the research, we made several visits to the

industrial partner with a view to understanding

what the problem was. Why was testing in the

cloud seen as a better alternative? What was

unique with the system under test (SUT) and

the test cases that the commercially provisioned

testing services provided today in the cloud is

unable to cater properly for their purpose?

During this time we examined test reports and

other documents found at the company and

notes where made using a pen and paper,

should a question arise, a semi-structured

interview was done and notes were taken. The

Semi-structured interview was less formal and

hence it was suitable to use especially when we

had to develop most interview questions

immediately and on site when we came across

an interesting document or piece of

information.

 Figure 4.0: The research process

We performed the forum and blog search side

by side with the field observation; that is we

started with the field observation and data was

collected and systematically analyzed as shown

in figure 4.0. As soon as the analysis of data

produced an interesting idea, we searched the

cloud computing and standards forum

(LinkedIn, 2011) using keywords that have

been formulated (by applying the grounded

theory technique). The grounded theory

methodology will be explained in the following

section. We searched the forum thoroughly to

find discussion threads that discuss or partly

contain information about what we desired to

learn about. On the cloud computing and

standards forum, open questions where posted

and notes made from the answers we received.

Several forum members also posted external

links mainly to personal blogs, these links

where visited and searched thoroughly for

important discussions matching keywords and

data was collected.

There were a total of 4 iterations in this phase

each producing important themes which were

again used as basis to discuss with the industrial

partner or to search the forums. Data collection

was done side by side with analysis to facilitate

the development of themes and keywords

iteratively; this was of importance in this stage.

The grounded theory technique helped to

further refine the themes to form ideas and

keywords which were the major products of this

phase. The ideas and themes are necessary in

order to search for proper literature in the next

stage.

4.2.1.1 Grounded Theory
Grounded theory is a research method that

seeks to develop theory that is grounded in data

which has been systematically collected and

analyzed (Association for Information systems,

2011), it is also seen as an inductive and

discovery methodology that allows the

researchers to develop a theoretical account of

general features of a topic while simultaneously

grounding the account on empirical data and

observations (Association for Information

systems, 2011).

The main objectives of applying the grounded

theory methodology in this research was to

develop new ideas while simultaneously

collecting and analyzing data as shown in figure

4.0 above. In this phase of the research, data

was iteratively collected from field observation

(using semi-structured interviews) and the

forums and blogs (using the questionnaire

method: open ended questions). The open

ended question where formulated depending on

previous observations and or developed ideas

from forums and the field observation. When

data was collected, the data was read several

times by us and after brainstorming for a while,

we would write down notes.

The written notes would be later refined by

comparing them with other information found

on the forums, or other sources. On a few

occasions we had to post questions on the

forums and the reply to such questions were

also used to compare and contrast the ideas

contained in the written notes. When it was

possible to corroborate ideas, this ideas where

written down as keywords.

Several keywords were developed after 4

iterations; they are listed on the section

keywords.

4.3 Phase 2: Literature study
In this part of this research, we focused mainly

on obtaining information from earlier literature.

In order words we intended to get inspiration

from the results of past authors. The above was

justifiable because we were poorly informed

about the area, and hence it became necessary

to secure all available data sources to ensure

that we had adequate knowledge and data to

understand all dimensions of the problem.

This phase was conducted by searching

predetermined search engines such as

(www.scholar.google.com,

www.ieeexplore.ieee.org, and

www.springerlink.com) with keywords that

have been developed from phase 1. A thorough

look at the literature in the underlying areas

matching the keywords (Software Testing,

System Migration and Cloud Computing etc…)

helped in mining answers to some predefined

questions, gave sufficient ground knowledge

which was necessary for enabling further

understanding of concepts and other underlying

complexities. The Literature Study also gave

enough exposure to be able to define the path

for the research i.e. helped identify problem

areas / questions that this area of research had

focused on in the past. For example, how to

increase the effectiveness of Software Testing?

Migration of Software Testing to the Cloud, and

lastly, automation of Testing in the Cloud.

Literature study helped us to understand the

potential issues in migrating to the cloud, as

well as any techniques for resolving such.

During Literature Study different cloud

computing systems and frameworks applicable

in resolving Migration issues, were examined.

Automation of Software Testing was studied

and analyzed. This turned out to lay the base for

the automation framework proposed in this

paper.

For every search made, the abstracts of the first

25 documents were carefully read; we decided

analytically which was important by looking for

keywords that match our interest in the

abstracts. All important literature where stored

in a folder, a total number of 57 important

sources were found.

5. Analysis and Results

Each literature that has been chosen as

important was examined and studied carefully

to reveal the main idea which it conveyed; we

made notes at the end of each literature. The

notes where compared when all 57 sources had

been examined. We found patterns in the

recorded information and then we compared

each findings with the rest, the result produced

two main categories of techniques and concepts

that seems to resolve the problem of utilize the

cloud for testing.

After a careful analysis, we found two

approaches, a handful of sources were

discussing about migrating software testing to

the cloud as a way of utilizing the cloud for

testing. On the other hand, another sets of

sources conveyed information about automation

as a means of deploying testing on the cloud. A

summary of our findings is shown in figure 5.0

below.

Migration

Automation

Other

 Fig. 5.0: Major practices in utilizing the cloud

for testing

As shown in figure 5.0, a substantial number of

the literature which includes but not limited to

(Parveen et al, 2010), (Kienle et al, 2010),

(King et al, 2010), (Smith et al, 2007), (Cetin et

al, 2007) have proposed migration as a strategy

for utilizing the cloud to test complex systems,

that is these authors present a case where the

software under test has existed outside the

cloud and consequently the tests for such

systems where written for use outside the cloud.

In this case, the test suites and frameworks must

be systematically migrated to the cloud for

testing to take place.

Another group of authors including but not

limited to (Nurmi et al, 2009), (Cervantes et al,

2007), (Hanawa et al, 2010), (Banzai eal, 2010),

(Parveern et al, 2009), (Ciortea et al, 2009),

(Duarte et al, 2009) make citation to automation

as a strategy. According to these authors, an

automation framework or software (which is

deployed on the cloud) can enable testers to

have exclusive control over resources in the

cloud, to automatically deploy such tests

amongst machine clusters in the cloud. The

ultimate aim of automation is to minimize tester

interaction and to cut execution time. It is also

worth noting that a lot of sources have

presented mixed practices. That is, they

suggested a cloud computing management

system that is able to provide users with

virtualization and auto execution of tests in the

cloud. Virtualization enables testers or cloud

users to create an appropriate environment such

as the one on which the test has been developed

on the cloud. In this study we are interested in

finding the most suitable approaches for

migrating software testing to the cloud, analysis

of the collected data show that a majority of

sources present a view that virtualization helps

to reduce any potential issues while migrating

to the cloud.

Further analysis of the collected information

from both the forums and literature study

implies that finding the best approach towards

resolving migration issues as well as the best

approach towards the automation of testing

would provide for a good solution for utilizing

the cloud to test complex distributed systems

such as the one described section 1.1. After

considering factors such as the availability of

published information as well as the ease of

modification of each solution and frameworks

suggested in the sources above, we have settled

to look at 3 sources each from migration and

automation. They are presented in tables 5.0

and 5.1 respectively.

Framework Speciality Advantages

Test support

-as-a-service

(STaaS)

Migration Virtualization ,

autonomic self

testing

D-Cloud Migration Ease of use,

automation to a

certain extent

Eucalyptus Migration Modularity,

ease of use,

open source

Table 5.0: Migration frameworks

Framework Speciality Advantages

YETI Automation Readily

applicable on

the cloud

GridUnit Automation 70X speed up

in test

execution,

STAF Automation Modularity,

ease of use,

parallelization

Table 5.1: Automation frameworks

 6. Discussion

Parveen et al 2010, explains that automated

testing will normally require 3 basic essential

components; the test code, the application under

test and libraries as well as dependencies. To

migrate such tests to the cloud means that these

components must reside in the cloud for testing

to be possible. According to Intel, 2005, a key

advantage of virtualization is that it simplifies

the migration of legacy applications onto a new

platform such as the cloud. In cloud computing,

virtualization makes it possible to emulate the

original production environment of the test code

and the SUT in the cloud. Information found in

the cloud computing and standards forum

suggests that virtualization which is

implemented in most commercial cloud

computing software reduces and sometimes

eliminates any potential challenges when

migrating to the cloud. The above being

creditable to the efforts of most cloud

computing systems that are widely in use today,

they allow users to specify the operating

systems suitable for their use, usually done by

uploading bootable OS images on target nodes

in the cloud.

Reducing the execution time of tests is

particularly important in cloud computing since

leasing the cloud platform will normally attract

a fee which is charged per usage. Therefore one

of the strategies for utilizing the cloud for

testing should be to device a mechanism for

running tests in parallel and simultaneously

with a desire to speed up testing and save time.

Another goal of testing automation was

highlighted by (Yu et al, 2010), as significantly

reducing human error and cost of software

testing.

One of the characteristics of a testing

application that determines how easy it is to

migrate onto other platforms is the ease with

which it may be automated (Parveen et al,

2010). In this research we have considered

testing automation as one of the major

strategies in order to successfully utilize cloud

computing for testing. The result of the

collected data shows clearly in Table 5.1 above,

three main automation frameworks and some

advantages which they offer.

The York extensible testing infrastructure

(YETI) is a random testing automation tool that

is capable of executing over a million method

calls per minute, this is applicable for testing

large applications in the cloud by running tests

in parallel sessions. On the other hand GridUnit

is able to speed up the time to execute tests up

to 70X (Duarte et al, 2006). However much

effort is needed to adapt the GridUnit on the

cloud environment.

Section 5 presents data that has been obtained

from literature, and the analysis of this data

reveals two key approaches and strategies that

must be adopted in order resolve the problem

explained in section 1. Factors such as ease of

use, modularity, availability of information,

ease of automation, modifiability have

motivated this study to adopt two frameworks

(Eucalyptus and the STAF frameworks) which

Figure 6.0: Deployment diagram of STAF-

on-Eucalyptus

have been combined to form the STAF-on-

Eucalyptus testing environment as a solution

towards utilizing the cloud to test distributed

systems, this is applicable in testing the system

described in section 1.2. The STAF-on-

Eucalyptus system has been explored in section

3, it is capable of deploying tests on target

nodes in the cloud automatically; aiding testers

to perform testing in parallel. In this study, we

specifically aim at deploying the sales clients

components of the system under test into the

cloud. With parallel execution, it is possible to

simulate a massive amount of load in a short

time. Figure 6.0 below shows the deployment

diagram of the STAF-on-Eucalyptus system.

The system is easy to use since the eucalyptus

cloud computing framework on which it is built

provides virtualization support, and the users

can interact with the system using the same

client translation API as Amazon EC2 (Nurmi

et al, 2009). As stated before, STAF is able to

automate tests which are not aware of it. This

implies that testers can install STAF on target

nodes of the Eucalyptus platform and then

automate the execution of the sales clients

without making alterations to the sales clients

or making calls to STAF API. STAF is able to

deploy the sales clients in parallel on designated

nodes. Finally, with proper configuration,

STAF can help in test management and analysis

of the test results (Cervantes, 2009).

7. Related Work

In the past, there have been successful

approaches at utilizing the cloud to test

complex systems; D-cloud (Banzai et al, 2010)

(Hanawa et al, 2010) provides an environment

for testing parallel and distributed system, using

the cloud technology. D-cloud enables fault

injection by causing device faults in virtual

machines (Banzai et al, 2010). The fault

injection capabilities and the fact that D-cloud

offers a comprehensive front end makes this

software suitable for testing distributed systems

in the sense that the system (D-cloud) is able to

emulate hardware failures.

Ganon et al, 2009 presents a cloud-based

performance testing framework for network

management systems. This framework relies on

the instantiation of virtual network elements in

the cloud; this enables the performance testing

of large-scale network management systems.

Cloud9 (Ciortra et al, 2009) offers a parallel

and symbolic execution engine that is able to

scale to large clusters of machines, thus

harnessing the computing resources of the cloud

to perform thorough automated testing of real

software in a short amount of time.

Testing as a cloud service is a new model that

provides testing capabilities such as auto

generation of test cases and test auto execution /

test auto-evaluation to end users (Yu et al,

2010). Testing as a cloud service utilizes

scheduling and dispatch algorithms to improve

the utilization of computing resources in the

cloud (Yu et al, 2010).

The frameworks mentioned in this section have

offered solutions which are tailored to solve

different problems; these problems may range

from fault injection to auto generation and

evaluation of test cases. However, it is difficult

to adapt these solutions to run unique tests such

as the tests described in section 1.2. This paper

has discussed a framework towards resolving

this problem; STAF-on-Eucalyptus which has

been explored in section 3.

8. Conclusion

In this study we have examined the best

approaches aimed at utilizing the cloud to test

complex distributed systems. We have proposed

the use of the open source eucalyptus software

in conjunction with the Software testing

automation framework. An overview of these

frameworks has also been explored in this

study, therefore we conclude by saying that this

study has fulfilled its objective mainly by

gaining knowledge from the results of past

authors.

A major limitation of this study is that it has not

included the experimental validated of the

proposed framework, we recommend that

further work be done in this area to put the

STAF-on-Eucalyptus framework to use in a

systematic and controlled way so that its

advantages can be measured and analyzed.

Furthermore, there will be a need to practically

explore the eucalyptus system in order to device

a proper means of configuring the testing

environment (IP addressing and environmental

variable configuration). We also see the need to

further explore the STAF and Eucalyptus

frameworks to ensure that the combination of

both will be bug free.

8. References

Association for Information systems, (2011),

“Qualitative research in information systems”,

viewed may 10 2011,

<http://www.qual.auckland.ac.nz/>

Banzai, T., Koizumi, H., Kanbayashi, R.,

Imada, T., Hanawa, T. and Sato, M. (2010), “D-

Cloud: Design of a Software Testing

Environment for Reliable Distributed Systems

using Cloud Computing Technology”, 2010

10th IEEE/ACM International Conference on

Cluster, Cloud and Grid Computing (CCGrid),

Cervantes, A., (2009) “Exploring the Use of a

Test Automation Framework”, 2009 IEEE

Aerospace conference, March 7-14, 2009

http://www.qual.auckland.ac.nz/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5492934

Cetin, S., Altintas, N., Oguztuzun, H., Dogru,

A., Tufekci, O., and Suloglu, S., (2007)

“Legacy Migration to Service-Oriented

Computing with Mashups”, International

Conference on Software Engineering Advances

(ICSEA 2007), Aug 25-31.

Cloud computing standards forum, (2011),

“Cloud computing standards forum”, viewed

may 14 2011,

http://www.linkedin.com/home?trk=hb_tab_ho

me_top>

Ciortea, L., Zamfir, C., Bucur, S., Chipounov,

V. and Candea, G., (2010), “Cloud9: A

Software Testing Service”, ACM SIGOPS

Operating Systems Review, 43

Davy, D. and Valecillos, C., (2009), “Summary

of a Literature Review of Qualitative Research

in Technical Communication from 2003 to

2007”, IEEE International Professional

Communication Conference. IPCC 2009, July

19-22, 2009

Fernandes, J., Genner, F., (2010), “Application

testing on the cloud: Smart testing for agile

enterprises”, Oracle white paper, Oracle

(2010).

Duarte, A., Cirne, W., Brasileiro, F. and

Machado, P., (2006) “GridUnit: Software

Testing on the Grid”, ICSE, May 20-28, 2006,

Universidade Federalde Campina Grande,

Campina Grande, Brazil, 2006.

Ganon, Z. and Zilbershtein, I., (2009), “Cloud-

based Performance Testing of Network

Management Systems”, IEEE 14th

International Workshop on Computer Aided

Modeling and Design of Communication Links

and Networks (CAMAD 2009)

Hancock, B. (2002). “An introduction to

qualitative research”, Trent Focus for research

and development in Primary Health Care.

Hanawa, T., Banzai, T., Koizumi, H.,

Kanbayashi, R., Imada, T. and Sato, M. (2010),

“Large-Scale Software Testing Environment

using Cloud Computing Technology for

Dependable Parallel and Distributed Systems”,

Third International Conference on

SoftwareTesting, Verification, and Validation

Workshops (ICSTW) (2010): 428.

Hansen, B., & Kautz, K., (2005) “Grounded

Theory Applied – Studying Information Systems

Development Methodologies in Practice”,

Proceedings of the 38th Hawaii International

Conference on System Sciences – 2005

Intel, (2005), “Intel. Enhanced Virtualization on

Intel Architecture-based Servers”, Intel

Solutions White Paper, March 2005.

Kienle, H., Di Lucca, G., and Tilley, S., (2010),

“Research Directions in Web Systems

Evolution IV: Migrating to the Cloud”,

International Symposium on Web Systems

Evolution (WSE 2009: Sept. 25-26, 2009;

Edmonton, Canada).

King, T.M. and Ganti, A., (2010), “Migrating

Automatic Self-Testing to the Cloud”, 2010

Third International Conference on Software

Testing, Verification, and Validation

Workshops (ICSTW), April 6-10,

Li, Y., Dong, T., Zhang, X., Song, Y. and

Yuan, X., (2006), “Large-Scale Software Unit

Testing on the Grid”, IEEE International

Conference on Granular Computing

Liu, H. and Orban, D., (2010), “Remote

Network Labs: An On-Demand Network Cloud

for Configuration Testing”, ACM SIGCOMM

Computer Communication Review 2010: 83-91.

Manuel, O., & Faheem, U., (2010), “Yeti on the

Cloud”, Third International Conference on

Software Testing, Verification, and Validation

Workshops,IEEE 2010.

http://www.linkedin.com/home?trk=hb_tab_home_top
http://www.linkedin.com/home?trk=hb_tab_home_top

Nurmi, D., Wolski, R., Grzegorczyk, C.,

Obertelli, G., Soman, S., Youseff, L. and

Zagorodnov, D., (2009), “The Eucalyptus

Open-source Cloud-computing System”, 9
th

IEEE/ACM International Symposium on Cluster

Computing and the Grid, 2009.CCGRID’09

2009: 124.

Oriol, M. and Ullah, Faheem., (2010), “Yeti on

the cloud”, 2010 Third International

Conference on Software Testing, Verification

and Validation Workshops (ICSTW) 2010: 434.

Parveen, T., Tilley, S., Daley, N., and Morales,

P., (2009), “Towards a Distributed Execution

Framework for JUnit Test Case”, IEEE

International Conference on Software

Maintenance 2009: 425.

Parveen, T., & Tilley, S., (2010), “When to

Migrate Software Testing to the Cloud”, Third

International Conference on Software Testing,

Verification, and Validation Workshops

(ICSTW),

Parveen, T., & Tilley, S., (2010), “Migrating

Software Testing to the Cloud”, 26
th
 IEEE

International Conference on Software

Maintenance in Timisoara, Romania.

Riungu, L., Taipale, O., & Smolander, K.,

(2010), “Research Issues for Software Testing

in the Cloud”, 2nd IEEE International

Conference on Cloud Computing Technology

and Science (2010): 557-564.

Smith, D., (2007), “Migration of Legacy Assets

to Service-Oriented Architecture Environment”,

29th International Conference on Software

Engineering - Companion, 2007 (ICSE 2007)

Companion,

Sourceforge, (2011), “Software Testing

automation framework”, Welcome to STAF,

viewed may 15 2011,

<http://staf.sourceforge.net/index.php>

Yu, L., Tsai, W., Chen, X., Liu, L., Zhao, Y.,

Tang, L., & Zhao, W., (2010), “Testing as a

Service over Cloud”, 2010 Fifth IEEE

International Symposium on Service Oriented

System Engineering, 181–188.

