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Percolation: Inference and Applications in Hydrology
Oscar Hammar
Department of Mathematical Sciences
Division of Mathematical Statistics
Chalmers University of Technology and University of Gothenburg

Abstract

Percolation theory is a branch of probability theory describing connectedness
in a stochastic network. The connectedness of a percolation process is gov-
erned by a few, typically one or two, parameters. A central theme in this thesis
is to draw inference about the parameters of a percolation process based on
information whether particular points are connected or not. Special attention
is paid to issues of consistency as the number of points whose connectedness
is revealed tends to infinity. A positive result concerns Bayesian consistency
for a bond percolation process on the square lattice L2 - a process obtained by
independently removing each edge of L2 with probability 1− p. Another re-
sult on Bayesian consistency relates to a continuum percolation model which
is obtained by placing discs of fixed radii at each point of a Poisson process in
the plane, R2. Another type of results concerns the computation of relevant
quantities for the inference related to percolation processes. Convergence of
MCMC algorithms for the computation of the posterior, for bond percola-
tion on a subset of L2, and the continuum percolation, on a subset of R2,
is proved. The issue of convergence of a stochastic version of the EM algo-
rithm for the computation of the maximum likelihood estimate for a bond
percolation problem is also considered.

Finally, the theory is applied to hydrology. A model of a heterogeneous
fracture amenable for a percolation theory analysis is suggested and the frac-
ture’s ability to transmit water is related to the fractures median aperture.

Keywords: percolation, inference, consistency, Markov chain
Monte Carlo, hydrology
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Introduction

This thesis concerns applied percolation theory. The first three papers relate
to statistical inference for percolation processes, focusing on consistency of
such inferential procedures. In the last paper, percolation theory is used to
model and analyse a real world phenomenon in hydrology.

In this introduction we provide with the necessary background. We initiate
this presentation by providing with definitions of the different percolation
models considered in this thesis: bond, site and continuum percolation. We
discuss some central results in percolation theory in relation with the material
in this thesis.

The two main approaches to statistical inference, the Bayesian and the
frequentist, are considered in this thesis. We state the aim of inference in the
two approaches and give some historical view of the development of the central
concept of consistency. The few results on inference for discrete percolation
are reviewed and the more comprehensive literature on inference in a different
set-up than ours for continuum percolation processes is commented on.

The hydrological application in Paper 4 concerns flow of water in a frac-
tured rock. We therefore give some background on earlier use of percolation
theory to describe flow of water in fractured or porous media.

Bond percolation

The origin of percolation theory can be found in Broadbent and Hammars-
ley (1957), where what is today known as bond percolation, is introduced.
Broadbent and Hammersley considered bond percolation on the lattice Ln,
with vertices Zn and edges connecting vertices at a unit Euclidean distance.
This process is given by independently declaring each edge of Ln open with
probability p and closed with probability 1− p.

The motivation for the model was given for n = 3. The authors described
a porous stone by a large subset of L3 imagining the edges of this lattice
being channels which with probability p, are wide enough to transmit water.
The purpose of the model was to answer whether or not the centre of the
stone would get wet if the stone would be put into water. This question
is the prototype for the type of questions percolation theory is concerned
with. Rephrased in terms of the mathematical model the question is: Does
there exist an open path from the origin reaching the boundary of a large
proportion of L3? In the limit, as the size of the subset of L3 tends to infinity
in a suitable way, this question concerns the existence of an infinite open
cluster of connected vertices.
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Although initially considered on Ln, percolation processes living on other
graphs have been studied intensively and classes of graphs where interesting
new phenomena occur have been found, see e.g. Häggström and Jonasson
(2006). However, our primary interest in this work remains on bond percola-
tion processes living on Ln.

The critical probability pc

The central question in percolation theory concerns the forming of clusters.
With a path defined as an alternating sequence of vertices and edges connect-
ing consecutive vertices, a path is said to be open respectively closed if all
its edges are open respectively closed. Open and closed clusters are defined
as sets of vertices connected by open respectively closed paths. To study the
open clusters formed by a bond percolation process on Ln it is natural to
define C to be the open cluster containing the origin of Ln. Of particular
interest in percolation theory is the possibility of an infinite open cluster. To
study this, the percolation probability is defined as

θ(p) = Pp(|C| = ∞),

where Pp denotes the probability measure on the set of all configurations
of open and closed edges of Ln when retention parameter p is used. It is
intuitively clear, and easily proved using a standard coupling argument, see
e.g. Lindvall (1992), that θ(p) is increasing in p. It is therefore natural to
define the critical probability as

pc = sup{p : θ(p) = 0}.

Much of the interest in percolation theory steams from the fact, proved by
Broadbent and Hammarsley (1957), that pc is non-trivial, i.e. that 0 < pc < 1,
for bond percolation on Ln for n ≥ 2. It is intuitively clear (and follows from
the translation invariance of the lattice Ln and the probability measure Pp)
that if θ(p) = 0 then any vertex belongs almost surely to a finite open cluster
and thus all open clusters are almost surely finite. It is also possible to show
that if θ(p) > 0, then an infinite open cluster almost surely exists. This phase
transition property, i.e. the drastic change in the macroscopic behaviour of
the process at a critical value, is central to percolation theory.

Bond percolation on L2

We now turn to bond percolation on L2 which is the process considered in
Paper 2. The value of pc for this process attracted a lot of attention during
the first decades following the introduction of percolation theory in 1957.
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Hammersley (1959) proved that 0.35 < pc < 0.65 and the lower bound was
soon enhanced to 0.5 ≤ pc when Harris (1960) proved θ(0.5) = 0. Although
generally believed, it turned out to be hard to prove that pc = 0.5. A great
moment in the history of percolation theory was when Kesten (1980) finally
proved this long standing conjecture. Except for the trivial case n = 1, n = 2
is the only dimension of Ln for which the exact value of pc is known.

Of particular interest for our application of percolation in Paper 2 is the
question of possible co-existence of infinite open and closed clusters for bond
percolation on L2. Combined with the result of Harris that θ(0.5) = 0 the
Kesten result (pc = 0.5) implies that there is almost surely no infinite open
cluster at pc. By symmetry of the labellings ’open’ and ’closed’ this rules
out the possibility of co-existence of infinite open and closed clusters for all
p ∈ [0, 1] almost surely.

Site percolation

There is an alternative way of introducing randomness in a graph. A site
percolation model on a graph is given by independently declaring each vertex
open with probability p and closed with probability 1 − p. The physical
interpretation is that fluid can flow through the open vertices and the edges
but not through the closed vertices. Also site percolation processes posses
phase transitions and the exact value of the critical probability pc for site
percolation is known for a few lattices. In particular, for site percolation
on the triangular lattice, which is considered in Paper 4, it was proved by
Wierman (1981) that pc = 1/2.

Continuum percolation

Bond and site percolation processes are discrete in the sense that the positions
of the sites are fixed. In contrast, the positions of the sites of a continuum
percolation model are randomly spread out in a continuum such as R2. The
first continuum percolation model was the Poisson blob model introduced by
Gilbert (1961). The basic version of this model is given by placing discs of
fixed radius ρ at each point of a Poisson process in the plane, R2.

Gilbert introduced the Poisson blob model to describe the transmission of
information between telecommunication stations. The stations are distributed
randomly (in the plane) and each station can communicate with other stations
within distance 2ρ. The percolation theoretic question asked by Gilbert was
whether or not there exists an infinite cluster of communicating stations.

While there are other ways of defining continuum percolation models,
the Poisson blob model is the most well-studied. There are also numerous
possible generalisations of the basic Poisson blob model. One generalisation
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considered by Gilbert is to let the discs have random radii. Other natural
generalisations are to consider the Poisson blob model in higher dimensions
and allowing more general sets than discs or spheres. However, our focus is
on the basic Poisson blob model in R2 with discs of fixed radii, which is the
model considered in Paper 3.

The critical density λc

A realisation of the basic Poisson blob model partitions R2 in an occupied
and a vacant component, where a point belongs to the occupied component
if and only if it is covered by at least one disc. A connected subset of the
open component is referred to as an occupied cluster and we denote by W
the occupied cluster containing the origin. With Pλ denoting the probability
distribution corresponding to the basic Poisson blob model on R2 with inten-
sity λ and radii 1 and d(D) = supx,y∈D |x− y| denoting the diameter of a set
D ⊂ R2, a percolation probability can be defined as

θ(λ) = Pλ(d(W ) = ∞). (1)

Gilbert considered a related quantity, θ′(λ), defined as the Pλ-probability that
the number of points in W of the underlying Poisson process is infinite. It is
easy to prove that θ′(λ) coincides with θ(λ) and we, from now on write θ(λ) for
both. Gilbert proved that θ(λ) = 0 for sufficiently small λ and that θ(λ) > 0
for sufficiently large λ, thereby proving the existence of a non-trivial, i.e.
positive and finite, critical density λc = inf{λ : θ(λ) > 0}. Straightforward
arguments were used to derive rough bounds on λc.

The upper bound on λc was derived by comparing the Poisson blob model
on R2 with a bond percolation process on L2 and using the critical value pc

for the latter model to derive a bound on the critical density of the former
model. With the best bound pc < 0.65 established at the time, the analysis
of Gilbert yielded λc < 2.10 and with pc = 0.5 it yielded pc < 1.38.

To derive a lower bound on λc, the number of points in W of the un-
derlying Poisson process was compared to the number of points of a simple
branching process. With S(r, x) denoting the closed disc with radius r cen-
tred in x and with 0 denoting the origin of R2, the first generation of points of
the branching process is given by a Poisson process on S(1,0) with intensity
λ. If q1, . . . , qK denotes the nth generation of points of the branching process,
then the (n + 1)th generation of points is given by independent Poisson pro-
cesses with intensity λ on S(1, qk) for k = 1, . . . ,K. The probability that this
branching process generates at least n points is clearly larger than the prob-
ability that W contains at least n points of the Poisson process underlying
the Poisson blob model. Since a disc with radius 1 has area π it is intuitively
clear, and a basic result in branching processes theory (Asmussen and Hering,
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1983), that if λ < π−1, then there will almost surely be only finitely many
points generated by the branching process. Refining this argument slightly,
Gilbert arrived at 0.140 < λc. The bounds derived by Gilbert have been
enhanced but the interval of possible values of λc is still relatively wide. The
best rigorous bounds, 0.174 < λc < 0.843, are derived in Hall (1985) using
techniques similar to those of Gilbert.

The critical density λ?
c

There is another natural notion of clusters in the Poisson blob model. As
well as asking whether there exists an infinite occupied cluster one might ask
whether there exists an infinite vacant cluster, i.e. a connected subset of the
vacant region. With V denoting the vacant cluster containing the origin, a
percolation probability for the vacant cluster can be defined as

θ?(λ) = Pλ(d(V ) = ∞).

Results concerning the critical density λ?
c = sup{λ : θ?(λ) > 0} for a vacant

cluster have turned out to be much harder to prove than those concerning λc.
For the special case where the radii of discs in a Poisson blob model are given
by an almost surely bounded random variable, it was proven by Roy (1990)
that λc = λ?

c .
A crucial issue in Paper 3 is the possibility of co-existence of an occupied

and a vacant infinite cluster in the basic Poisson blob model on R2 with discs
of fixed radii. For this model, we have λc = λ?

c and it was proven by Alexander
(1996) that θ(λc) = θ?(λc) = 0, which rules out co-existence of an occupied
and a vacant infinite cluster almost surely in this case.

Power laws

The phase transition property of percolation processes has made these models
attractive to physicists in their quest to understand this empirically known
phenomenon. A lot of the early research in percolation theory (e.g. Kirk-
patrick (1973), Sur et al. (1976)) focused on the function θ(p) for values just
above the critical value where these phase transitions take place. Simulations
indicated that for p just above pc, θ(p) behaves roughly as a power of p− pc,
i.e. θ(p) ≈ (p − pc)β for some critical exponent β. Power laws were also
suggested for quantities other than θ(p).

The only rigorously proved power laws are given by Smirnov and Werner
(2001) whose results concern the special case of site percolation on the trian-
gular lattice. They proved the existence of the conjectured critical exponent
β = 5/36 relating θ and p− pc for this special case. In addition, they proved
a power law that is crucial to our analysis of flow in a fracture in Paper 4.
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This result concerns the correlation length ξ of a percolation process, which
in terms of the retention parameter p is defined as

ξ(p) =
(

lim
n→∞

− 1
n

log Pp(0 ↔ n)
)−1

,

where Pp(0 ↔ n) denotes the probability of an open path from the origin to
a point n steps away along the x-axis when each site is open with probability
p (Grimmett, 1999). Smirnov and Werner (2001) proved that for the special
case of site percolation on the triangular lattice,

lim
p→pc

ξ(p) = (p− pc)ν+o(1) where ν = −3/4. (2)

Statistical inference

A problem of statistical inference starts with a question concerning some
real world phenomenon. In order to answer this question a model of the
phenomenon is assumed and data are collected. The process of choosing a
model that accurately describes reality and is amenable for analysis is an
important step. However, the main part of this thesis concerns the step of
the inference process after a statistical model has been accepted.

A statistical model for data, X, is a collection of probability distributions
P = {Pθ : θ ∈ Θ} on X , where X is the sample space of X, i.e., the set of all
possible outcomes of X. In this thesis we consider only parametrized models
which means that the parameter θ is finite dimensional. The aim of statistical
inference is to use data X to draw inference about θ ∈ Θ.

Types of statistical inference

There are two main frameworks for statistical inference: the Bayesian and
the frequentistic. The Bayesian approach to inference is the older of the two,
having its roots in a paper by Thomas Bayes in 1763, and was the dominant
approach until the frequentist school emerged during the first half of the twen-
tieth century. The main figure in the development of the frequentist school
was Ronald Fisher who, in a series of publications leading up to a famous
paper (Fisher, 1922), laid down a new framework for statistical inference. In
this famous paper, the concept of consistency was introduced which, with
its Bayesian counterpart is a central theme in Papers 1-3. Other important
contributors to the frequentist school were Jerzy Neyman and Egon Pear-
son who formulated the method of hypothesis testing (Neyman and Pearson,
1933) and Kolmogorov who formulated the axioms of probability on which
the frequentist school is based (Kolmogorov, 1933).
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The new frequentistic ideas about inference stimulated a formalization
of the old Bayesian ideas about inference. The most comprehensive frame-
work for the Bayesian approach to inference was formulated by Savage (1954),
where a non-frequentist alternative to Kolmogorov’s axioms of probability was
stated. During the second half of the twentieth century the statistical com-
munity was divided into frequentists and Bayesians with, sometimes heated
debates between proponents of the two schools. Nowadays, while the debate
is still ongoing, more statisticians conform to a pragmatic view where the
two approaches are seen as complementary (Bayarri and Berger, 2004). In
the subsequent sections we demonstrate the main differences between the two
approaches.

Different interpretations of probability

Statistical methods are based on probability theory and the discrepancy be-
tween the Bayesian and the frequentistic schools emerges already at the in-
terpretation of the fundamental concept of probability. Simply stated, in
the Bayesian context probability can be assigned to any event, which al-
lows probabilities to be used to express personal degree of belief concerning
events. Such a use of the probability concept is not accepted in the freqentist
context. Here probabilities are only assigned to events resulting from some
’experiment’. The probability of an event is then interpreted as the limiting
frequency of times the event occurs, as the number of identical experiments
conducted tends to infinity.

Inference in the Bayesian context

The different interpretations of probability leads inevitably to different ideas
of how to use data to draw inference about θ ∈ Θ. With the Bayesian interpre-
tation it is natural to express knowledge about θ by a probability distribution
over Θ. The knowledge about θ before data have been observed is expressed
by a prior distribution and the aim of Bayesian inference is to use data to
update the prior distribution to a posterior distribution which reflects an
enhanced knowledge about θ.

A prior distribution Π defines, together with the statistical model {Pθ :
θ ∈ Θ}, a probability distribution ∆Π over X ×Θ. The posterior distribution
Π( · |X) is the ∆Π-probability of θ given data X, which is computed using
Bayes’ Theorem, i.e. for a suitable subset A of Θ,

Π(A|X) = ∆Π(A|X) =
∆Π(A ∩X)

∆Π(X)
. (3)

An accumulation of the probability mass of the posterior in a certain region
of Θ signifies an increased belief of the value of θ being in that region.
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Inference in the frequentistic context

In the frequentist context there is an unknown θ0 ∈ Θ and data are assumed
to be generated under Pθ0 . The aim of inference is to use data to conclude
the most plausible value or values for θ0. For this, an estimator, which is
a function of the data X, is used. An important class of estimators were
introduced by Fisher in terms of the likelihood function, which for given data
X, is Pθ(X) viewed as a function of θ. The maximum likelihood estimator
(MLE) ĥ(X) maximizes this function, i.e.,

ĥ(X) = arg max
θ∈Θ

Pθ(X). (4)

Usually more than a point estimate is reported, e.g. a confidence interval or
a decision to reject or accept a hypothesis. In this case the notion of proba-
bility is used very differently from the way it is used in the Bayesian context.
Whereas in the Bayesian context probability statements are made about θ the
probability statements in the frequentist context are made about the proce-
dures by which inference is drawn, i.e. 0.95 is the limiting frequency of times
a 95% confidence interval covers θ0, as the number of intervals constructed
tends to infinity.

Consistency

Consistency is an asymptotic property of an inference procedure which guar-
antees that the correct inference is drawn in the limit as the amount of
data tends to infinity. In the following discussion it is convenient to assume
X = (Xi)∞i=1 and let Xn = (Xi)n

i=1.

Consistency in the Bayesian approach

An example of consistency for independent and identically distributed (i.i.d.)
Bernoulli random variables using a prior with positive and continuous density
on (0, 1) were given already by Laplace in the nineteen century. However, he
did not consider this as an example of a general concept and an early definition
of Bayesian consistency is instead given by Doob (1949).

A sequence Π( · |Xn) of posterior distributions is said to be (strongly)
consistent at θ if for each neighbourhood U of θ,

lim
n→∞

Π( · |Xn) = 1 Pθ-a.s.

This property clearly reflects an increasingly strong correct belief about θ.
Doob (1949) showed a general result on Bayesian consistency under weak
conditions for all parameters in a set with prior measure 1. An alternative is
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to require consistency for all parameters in the parameter space. A central
result on Bayesian consistency in this direction is given by Schwartz (1965)
who proved that, if the prior puts positive probability on every Kullback-
Leibler neighbourhood of the true parameter, then the posterior accumulates
in all weak neighbourhoods of the true parameter. This result is central for
the proofs of Bayesian consistency in Papers 1-3.

Consistency in the frequentist approach

A desirable property of an estimator hn = h(X1, . . . , Xn) of θ is that it is
unbiased, i.e. that Eθ[h] = θ, where Eθ denotes expectation under Pθ. This,
together with a small variance for the estimator, guarantees that the estimated
value is close to the true value with high probability. A milder requirement is
to demand that a sequence of estimators (hn)∞n=1, where hn = h(X1, . . . , Xn),
is unbiased in the limit as n tends to infinity, i.e. that limn→∞Eθ[hn] = θ.
If additionally the variance of hn tends to zero as n tends to infinity, then
the sequence of estimators is consistent. In this case an estimated value of
θ, based on a large sample, is close to the true value with high probability.
Formally, (hn)∞n=1 is said to be (strongly) consistent if limn→∞ hn = θ almost
surely.

Early results for consistency of MLE’s were given by Fisher. These results
were elaborated during many years and the conditions under which consis-
tency holds were not always clear. Rigorous proofs of consistency of MLE’s
were given by Wald (1949) and Cramer (1946b,a). These results concern the
i.i.d. case. In Paper 1 we prove consistency for the MLE for data that are
independent but not identically distributed.

Inference for percolation processes

Results in the literature on inference for discrete percolation processes are lim-
ited. We present some of the few exceptions. Meester and Steif (1998) consid-
ered estimation of various quantities such as θ(p) and I{θ>0} from a realisation
of a bond percolation process on Ld observed in a B(n) = [−n, n]d ⊂ Ld and
showed that their frequentistic estimation procedure is consistent as the size
n of the box B(n) tends to infinity.

Larson (2010) considered an inference problem for a first passage per-
colation process. This is a time dependent version of ordinary percolation,
introduced by Hammersley and Welsh (1965). A flow, e.g. water, is spreading
on a graph between neighbouring vertices via the edges. The passage times,
i.e. the times it takes for the flow to spread between neighbouring vertices,
are independent and identically distributed random variables. The process of
how the vertices are wetted is observed but the process of the edges trans-
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mitting the water is unobserved. Consequently, when a vertex with several
wet neighbours is wetted it is not known where the flow came from. The ob-
jective is to estimate the distribution of passage times based on this limited
information. The inference problem and the type of data studied by Larson
are similar to what we consider in Papers 1-3.

Inference for the Poisson blob model, especially in two dimensions, has
been studied a lot. Often Poisson blob models with general random sets, i.e.
not necessarily discs, centred at the points of a Poisson process are considered.
However, the main challenge is the same. In the general set-up, a Poisson blob
model on R2 is observed in a finite box B(n) = [−n, n]2 and the intensity of
the underlying Poisson process, as well as parameters governing the random
sets, are sought to be estimated. The main difficulty arises as some sets
might be completely covered by other sets. The literature on suggestions of
inference procedures in presence of this difficulty is quite large and consistent
estimators in the frequentist context of the intensity of the underlying Poisson
process are available (Molchanov, 1995).

Percolation and hydrology

Although Broadbent and Hammersley used a motivating example of hydraulic
flow when introducing their model in 1957, the adoption of percolation theory
in hydrology was initially slow. The first serious attempts to use percolation
theory to describe flow in heterogeneous media were made in the eighties. Two
examples are Wilke et al. (1985) who evaluated the permeability of a fractured
rock by a percolation model using simulations and Halperin et al. (1985)
who used heuristic arguments to estimate critical exponents relating fluid
permeability of a disordered media to percolation parameters. In addition,
a method called critical path analysis, originally developed for analysis of a
current flow, was adopted for the analysis of hydraulic flow.

Critical path analysis

Ambegaokar et al. (1971) introduced critical path analysis (CPA) in the con-
text of electronic transport. They considered a large volume consisting of
randomly distributed sites. Each site has a given energy and sites i and j
are connected by a conductance Gi,j depending on their relative positions
and energies. Electrons are hopping between sites i and j with an intensity
depending on Gi,j .

The authors argued that when the conductances vary over many orders
of magnitude the network of conductances can be considered to be composed
of three parts. The first part consists of isolated regions of high conductivity,
the second part is a set of relatively few resistors of moderate conductivity
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connecting the isolated regions of high conductivity and the third part con-
sists of resistors with low conductivity which has limited contribution to the
systems conductivity. The first two parts make up what is called the critical
subnetwork. The resistors in the part with moderate conductances define a
critical conductance Gc which is the lowest conductance of the critical sub-
network. Ambegaokar and co-authors argued that this critical conductance
governs the conductance of the whole system.

Developments of critical path analysis

Critical path analysis was refined by Shante (1977) who argued that the con-
ductance of the system is governed by an optimal conductance somewhat
smaller than the critical conductance given by Ambegaokar and co-authors.
Starting from the critical subnetwork given by Ambegaokar and co-authors,
he added all resistors with conductances somewhat smaller than the critical
conductance. The created subnetwork contains worse conductors than the
critical subnetwork considered in Ambegaokar et al. (1971), but the number
of paths through the system is increased. Shante argued that this is the rele-
vant subnetwork to consider. An optimization procedure is carried out to find
the optimal conductance, which balances between large conductances along
the paths and a large number of paths.

Katz and Thompson (1986) translated the ideas of CPA for transport
of electrons to transport of fluid flow in porous media. This work as well
as other attempts, by e.g. Charlaix et al. (1987) and Hunt (2005), to use
CPA to describe fluid flow relies on a conjectured power law relating the
transport capacity of a percolation process to the difference p− pc. In Paper
4 a critical path analysis is carried out for the transport of water in a single
heterogeneous fracture. This critical path analysis is not based on conjectured
critical exponents. We model a single fracture with a site percolation process
on the triangular lattice and use one of the rigorously proven power laws given
by Smirnov and Werner (2001).
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Summary of papers

Summary of Paper 1 - Inference in a Partially Observed Per-
colation Process

A type of inference problem relating to percolation processes is introduced
and a first special case is analysed. A distinguishing feature from earlier work
on inference for percolation process is the type of data that is considered.
The data are defined in terms of a set of observation points, which for a bond
percolation process is a subset of the vertices of the graph on which the process
lives. Each data point is specified to carry the information on whether or not
a particular pair of observation points are connected by an open path. This
situation is referred to as the percolation process being partially observed as
opposed to the situation when a full realisation of a percolation process on a
subgraph is observed.

Both Bayesian and frequentist consistency is considered for inference in
a partially observed bond percolation process. In order to prove consistency
results, the bond percolation process is restricted to live on a particular class
of graphs consisting of identical copies of isolated finite subgraphs. With
this imposed restriction the data from the partially observed process has a
structure similar to i.i.d. observations, a fact used to prove consistency.

In addition to the focus on consistency, another issue is the computa-
tion of relevant quantities for the inference procedures. Theses quantities,
i.e. the maximum likelihood estimate (MLE) in the frequentist approach
and the posterior distribution in the Bayesian approach, does not allow di-
rect computations. Instead, algorithms approximating these quantities are
needed. We implement a Markov chain Monte Carlo (MCMC) algorithm for
the computation of the posterior distribution and a stochastic version of the
EM algorithm for the computation of the MLE and present proofs that these
algorithms converge in a suitable sense. The paper also contains an extensive
simulation study which evaluates the Bayesian and frequentist approach with
respect to accuracy and computation load. It is found that the stochastic EM
algorithm introduces some bias due to problems with finding initial values in
presence of a phase transition of the model.

Summary of Paper 2 - Bayesian Consistency in a Partially Ob-
served Percolation Process on the Infinite Square Lattice

In this paper the issue of Bayesian consistency for inference in a partially
observed bond percolation process is explored further. Here we consider the
more challenging and physically more interesting case of bond percolation on
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the infinite square lattice L2. In this setting the connectedness of pairs of
observation points are not independent which leads to dependent data. The
basic idea for handling this problem is to, for each of a number of pairs of
observation points, place a box around the pair and to consider connectedness
of the pair of points by a path within the box. With non-overlapping boxes
these events are clearly independent. By considering pairs of observation
points within larger and larger boxes and applying results from percolation
theory we can control the dependence. It is shown that if each element of Z2 is
included independently in the set of observation point with some probability
r > 0 and if the prior has full support on the parameter space, then there is
Bayesian consistency for all parameters in a set of prior measure 1.

Summary of Paper 3 - Bayesian Consistency in a Partially Ob-
served Continuum Percolation Process

In this paper inference for a partially observed percolation process is elabo-
rated futher by considering a two-parameter percolation process. The infer-
ence problem considered in Papers 1 and 2 is translated to a continuum by
instead of bond percolation study the basic Poisson blob model with discs
of fixed radii. In this context the set of observation points is a subset of R2

and the data consist of information on connectedness of pairs of observation
points by curves entirely contained in the occupied region.

Inference is drawn about the two dimensional parameter (λ, ρ), where λ is
the intensity of the underlying Poisson process and ρ is the radii of the discs
centred at the points of the Poisson process. As in Paper 2 the data from the
model are non-independent. However, the main challenge is the dimension of
the parameter (λ, ρ). It is shown that if the observation points are given by
a homogeneous Poisson process independent of the Poisson blob model and
if the prior has full support on the parameter space then there is Bayesian
consistency for all parameters in a set of prior measure 1.

An algorithm for the computation of the posterior distribution is presented
and proved to converge in a suitable sense. Moreover, we present some infer-
ence on simulated data which indicates that it is relatively easy to infer the
covered area proportion, but it is harder to decide whether there are many
small discs or few larger ones.

Summary of Paper 4 - Relating the hydraulic aperture and the
median physical aperture for rock fracture with large aperture
variance using percolation theory

Paper 4 is quite different from Papers 1-3 and does not relate to inference
for percolation processes. Instead, we model a fracture with highly varying
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physical aperture and use percolation theory to evaluate its ability to transmit
water. The aim is to relate the median physical aperture, ac, to the fracture’s
transmissivity T , i.e. the rate of water flow through the fracture. This relation
is used to relate ac to a measurable quantity b (the hydraulic aperture) with
a known relation to T . The varying physical aperture is captured by a model
where the fracture is partitioned into hexagonal cells and each cell is assigned
independently a log normally distributed aperture.

If a fracture has constant aperture, then a physical law (the cubic law) is
applicable for relating its transmissivity to its aperture. This law is applied to
each cell of the model to transform its assigned aperture to a local transmis-
sivity. For fractures with the level of variation of physical aperture considered
in the paper the ratio between the 90th and the 50th percentile of the distri-
bution of local transmissivities is of order 100. With this large difference
between well and really well transmitting cells the flow through the fracture
naturally takes place in a few dominant paths. The transmissivity of one of
these dominant paths is determined by the worse cell along the path. With
the highly varying local transmissivities it is important to carefully determine
the level of transmissivity of the dominant paths, which is done using critical
path analysis. This analysis includes strong simplifications and the result is
a lower bound, rather than an exact value, on the fractures transmissivity
under the model.

The hydraulic aperture, b, of a fracture is related to the transmissivity T
of the fracture by the cubic law, i.e. for for some constant C,

T = Cb3. (5)

The critical path analysis yields a relation between the median physical aper-
ture, ac, and the transmissivity, T , of the fracture:

T > C(dac)3. (6)

Combining (5) and (6), the reciprocal of the factor d gives a bound of the
factor of overestimation when using b as an estimate of ac. The value of d
depends on the level of variance in physical aperture and for the fractures
we consider, the analysis gives d−1 ∈ (3.34, 4.03). We use simulations to
get a rough estimate on the level of underestimation of the transmissivity
introduced by the CPA. Compensating by this estimated factor we arrive at
d−1 ∈ (1.97, 2.36) for the fractures considered.
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