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Abstract. A three-state non-homogeneous Markov chain (MC) of order 0≥m , denoted 

M(m), was previously introduced by the author. The model was used to analyze work 

resumption among sick-listed patients.  It was demonstrated that wrong assumptions about the 

Markov order m and about homogeneity can seriously invalidate predictions of future health 

states. In this paper focus is on tests (estimation) of m and of homogeneity. When testing for 

Markov order it is suggested to test M(m) against M(m+1) with m sequentially chosen as 0, 1, 

2,…, until the null hypothesis can’t be rejected. Two test statistics are used, one based on the 

Maximum Likelihood ratio (MLR) and one based on a chi-square criterion. Also more formal 

test strategies based on Akaike’s and Baye’s information criteria are considered. Tests of 

homogeneity are based on MLR statistics. The performance of the tests is evaluated in 

simulation studies. The tests are applied to rehabilitation data where it is concluded that the 

rehabilitation process develops according to a non-homogeneous Markov chain of order 2, 

possibly changing to a homogeneous chain of order 1 towards the end of the period. 
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1. Introduction 

In an earlier paper the author introduced a three-state Markov chain (MC) model for 

analyzing the progress of patient’s health [9]. The states were denoted 2, 1 and 0 and 

represented the development from ‘Acute diseased’ to ‘Improved’ and further to 

‘Healthy’. Another example is progression through the stages: HIV infection, AIDS and 

finally death. The MC model is allowed to be non-homogeneous in discrete time and also 

to have any Markov order m, where m refers to the number of time points back in history 

that has to be considered when assigning a transition probability one step ahead. In [9] it 

was demonstrated that assuming homogeneity, when the MC actually is non-

homogeneous, can seriously invalidate calculations of predictive probabilities two or more 

steps ahead. It was also demonstrated that prediction probabilities are heavily dependent 

on the choice of m. 

     Although correct specifications of both heterogeneity and of Markov order are of 

crucial importance for the analysis, few attempts have been made to compare and evaluate 

various tests that can be used in order to find a proper structure of the MC. In these 

respects one may notice a difference between various disciplines. Econometricians have 

since long ago used non-homogeneous MC models, or models with time varying 

transition probabilities in their terminology (see e.g. Diebold et. al. [ 3] and Van den Berg 

[14]). However, the latter seem to only cover the case m = 1. Among statisticians oriented 

toward natural sciences focus has been on testing for a proper value of m in homogeneous 

MCs ([7], [2], [10], [11]), with a few exceptions (see e.g. [8]).  

     In this paper various tests of Markov order and of homogeneity are considered in the 

three-state MC and the performances of the tests are studied in Monte Carlo simulations. 

The methods are then applied to data of work resumption after rehabilitation. The paper 

ends with a concluding discussion. Throughout the paper the notation M(m) will be used 

for a MC of order m. 

 

2. Assumptions, notations and some basic results 

Let ( ) ,  1, 2,...,m
tX t T=  denote the health state at time t for a MC of order m, with the possible 

outcomes 0 (Healthy), 1 (Improved) and 2 (Acute diseased). The probabilities of these 



outcomes are ( )( ),  0,1, 2m
tP X j j= = .  At t=1 only the states 1 and 2 are available and for 

these initial states the notations ( )
2 1( 2)mP Xπ = =  and 21 π− =  ( )1)(

1 =mXP  are used. From 

one state at time t to the following state at time t+1 only the following transitions are 

possible: 1 1 1 1 12 (2  or 1 ),  1 (1  or 0 ) and 0 0t t t t t t t t+ + + + +→ → → . Here the notation tj  has been 

used to denote that state j is occupied at time t. Transitions to state 2 can thus only take place 

from state 2. Therefore, omitting the index m for simplicity,  

( ) ( )1 12 2 2 2 2t t s t t t tP X X X P X X β+ − += = = = = = =                          (1) 

( ) ( )1 11 2 2 1 2 1t t s t t t tP X X X P X X β+ − += = = = = = = −       

When the last preceding state at time t is 1, the earlier states can be either 1 or 2. Such 

transitions are denoted by tα -probabilities as in Table 1. The latter has to be denoted in such a 

way that they reflect the preceding states. The following notations will be used: 

( )
( )

1 1

1 1

1 1 1 (1 )

1 2, 1 1 (2,1 )

s
t t s t t

s
t t s t s t t

P X X X

P X X X X

α

α
+ − +

+ − − +

= = = =

= = = = =




                             (2) 

 

Table 1 Schematic illustration of probabilities for transitions from the states at time t to the 
states at time t+1. 

State at t+1 

  0 1 2 

State 0 1 0 0 

at t 1 1 tα−  tα  0 

 2 0 1 tβ−  tβ  

 

In general, let ( )s ti j denote the event that a sequence of states is occupied, from state i at 

time s to state j at time t. In analogy with the notations for the transition probabilities in (1) 

and (2) which were designated by Greek symbols, the following notations are used for the 

transition frequencies: 



1

1 t+1

1 t+1

 Number of transitions from (2 ) to (2 ).

(1 )                -"-                    (1 1 ) to (1 )

(2,1 )             -"-                    (2,1 1 ) to (1 )

t t t
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t t s t
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t t s t
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=
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                            (3) 

The state frequencies or risk masses, i.e. the number of persons being in a state just before 

transitions occur, are denoted in the following way: 

1

1

(2)  Number of persons in state 2

(1 )               -"-                        (1 1 )

(2,1 )            -"-                        (2,1 1 )

t t
s

t t s t
s

t t s t

N
N
N

− +

− +

=

=

=





                                    (4) 

The quantities in (3) and (4) are related. If no subjects in the sample disappear between the 

transitions, then e.g. )2(1+= tt NB . Since withdrawals may occur in practice both notations in 

(3) and (4) will be used. The total fixed sample size is denoted by n. An illustration of these 

frequencies is shown in Table 2 for a Markov chain of order m=2, or M(2). Here one may 

notice that 2 2(1 ) (2,1) (1) and (1 ) (2,1) (1)t t t t t tA A A N N N+ = + = . 

 

Table 2 Transition- and state frequencies in the three-state model for progress of health when 

the Markov order is m=2. 

State at t+1 

0 1 2 Total 

 (0,0) (0)tN  0 0 (0)tN  

State at (1,1) 2 2(1 ) (1 )t tN A−  2(1 )tA  0 2(1 )tN  

(t-1,t) (2,1) (2,1) (2,1)t tN A−  (2,1)tA  0 (2,1)tN  

 (2,2) 0 (2)t tN B−  tB  (2)tN  

     n 

 

The random marginal quantities to the right in Table 2 will in the sequel be termed working 

sample sizes and these will be used for estimating the  and α β parameters. 



     The likelihood ( )mL  of all observations in the three-state model of Markov order m is rather 

complicated and an expression is therefore omitted here and is given in the Appendix A1. 

(See also [9] for some special cases.) The ML estimators of the parameters are easily found 

from the likelihood, 
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In the homogeneous case,  
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The above relations hold only for the case 1≥m . When 0=m  (independent transitions) 

( ) ( )1 11 1 1 2t t t tP P+ += , from which it follows that (1) 1t tα β+ = . By putting this relation into 

the Likelihood one easily gets the following ML estimate of (1)tα  (under independency 

denoted tα ) 

(1) (2)ˆ
(1) (2)

t t t
t

t t

A N B
N N

α + −
=

+
                                                   (7) 

In the homogeneous case the index t is dropped from the parameter and all terms in the 

numerator and denominator are preceded by a summation symbol, just as in (6). 

     Some properties of the estimators in (5)-(7) are discussed in [9]. It can be shown that they 

are unbiased, but the variances of the estimators do not behave as in the case where the 

sample sizes in the denominators are fixed quantities. 

 

3. Tests of Markov order 

  In this section, first some test statistics based on the Maximum Likelihood Ratio (MLR) 
( , *) ( ) ( *)ˆ ˆ ˆ/m m m mL LΛ =  are presented for testing M(m) against M(m*), m < m* Focus will be on 

the case 1* += mm , with m sequentially chosen as 0,1,2,… . The process is repeated until H0 

can’t be rejected. This strategy is different from the one recommended by Hoel [7], where it is 



instead advocated to start with a large value of m and test successively for lower order. Hoel’s 

approach may be risky because tests of larger values of m are based on more estimated 

parameters of lower precision due to smaller working sample sizes. This in turn decreases the 

power of the tests and opens for the possibility that a large value of m is falsely accepted. 

Various test strategies are discussed in Section 3.3 below. 

     The case m = 0 (independency) is considered first, followed by more general cases. It will 

be assumed that the sample sizes are so large that ˆ2 ln− Λ  has a chi-square distribution under 

H0, with degrees of freedom (df) equal to the difference between the number of estimated 

parameters under H0 and H1 (cf. Ch. 22.7 in Stuart et al. [13]). Also an alternative chi-square 

procedure for testing M(m) against M(m+1) is presented. Finally some criteria for estimating 

a proper Markov order are discussed. Throughout this section focus will be on heterogeneous 

MCs. Expressions for the homogenous case are obtained by simply dropping the indices of 

the estimated parameters and by performing a summation over all frequencies. 

 

 3.1 Maximum Likelihood Ratio tests of M(m) against M(m+1) 

Consider first test of M(0) against M (1). From the Likelihood given in Appendix A1 it is 

easily shown that the MLR statistic based on transitions from time i to time i+1, i =1…T-1 

can be written 
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Here the parameter estimates are given in (5)-(7). Under H0, (0,1)ˆ2 ln t− Λ  has an asymptotic 

2 (1)χ -distribution and H0 is rejected at the 5 % level if (0,1)ˆ2 ln t− Λ exceeds the 95 % percentile 

of the (2) (1)χ -distribution. When the same hypothesis is tested for a sequence of transitions 

from time 1s ≥  to time 1t T≤ −  the MLR-statistic is  

∏
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 Now H0 is rejected at the 5 % level if (0,1)
,

ˆ2 ln s t− Λ  exceeds the 95 % percentile of the 

2 ( 1)t sχ − + -distribution. 



     In the homogeneous case the statistic corresponding to (9) is 

∑∑








−
−

∑∑










−

∑








 −∑








=Λ

−−
i

i
i

i
i

i
i

i
i

i
i

i BNBNBA

ts

)1()2()1(
)1,0(

, )1(ˆ1
ˆ1

ˆ1
ˆ

ˆ
ˆ1

)1(ˆ
ˆˆ

α
α

β
α

β
α

α
α              (10)  

Under H0 )1,0(
,

ˆln2 tsΛ− now has a )1(2χ -distribution. 

     The MLR test statistic based on transitions from time i to time i +1, i = m+1…T-1, for 

testing M(m) against M(m+1), 1≥m , in the non-homogeneous case can be expressed as 
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The expression in (11) is obtained after simple but somewhat tedious calculations where the 

relations )1()1,2()1( and )1()1,2()1( 1
1

1 m
i

m
i

m
i

mm
i

m
i NNNAAA =+=+ ++

 have been used. 

Under H0, )1,(ln2 +Λ− mm
i has an asymptotic )1(2χ -distribution. When the hypothesis is tested 

for a sequence of transitions from time 1  to1 −≤+≥ Ttms the MLR statistic is analogous to 

that in (9) and has the same asymptotic distribution. The test statistic in the homogeneous case 

is obtained in the same way as in (10). 

     A general expression of ),( *ˆ mm
iΛ for testing M(m) against M(m*), m < m*, is given in the 

Appendix A2. 

 

3.2 An alternative test of M(m) against  M(m+1)  

A test of Markov order 0 against 1 can be based on the difference between )1(ˆ 1
tα in (5) and 

ˆtα  in (7). For 1m ≥  a test of Markov order m against m+1 may be based on the differences be

)1(ˆ)1,2(ˆor  )1(ˆ)1(ˆ 1 m
t

m
t

m
t

m
t αααα −−+ . In Appendix A3 it is shown that both differences can 

be expressed in terms of 1ˆ ˆ(1 ) (2,1 )m m
t tα α+ − . Under H0: M(m), 1m ≥ , the latter quantity has 

mean 0. Since ( )1 1(1 ) (1 )m m
t tA N+ +  and ( )(2,1 ) (2,1 )m m

t tA N  are independent it follows that a 

roughly unbiased estimator of 1ˆ ˆ( (1 ) (2,1 ))m m
t tV α α+ − under H0 is given by (see Lemma (c) in 

Section 3.3 in [8] 
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It follows that a test of Markov order m against m+1, 1m ≥ , can be based on the statistic 
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1
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where the variance in the denominator is given in (12). Under H0, 2
tX  is asymptotically 

distributed as a chi-square variable with df=1. 

     By similar arguments it follows that a test of (0) against (1) M M can be based on 
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2
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where ˆtα is given in (7), and 2
tX  has the same asymptotic distribution as in (13a).  

 

 

3.3 Test strategies 

The various tests in the preceding sections give no clear-cut answer to the problem of what 

Markov order to chose in a given situation. One way to deal with the problem is to perform all 

possible tests of )(against  )( *mMmM , *for 0 m m≤ < , where *m  is some more or less 

arbitrarily chosen upper limit for the Markov order. This strategy was used by Gabriel and 

Neumann [4] when analyzing the frequently quoted Tel Aviv precipitation data, and they 

drew the conclusion that m=1. No study seems to have been published, where the benefit of 

such a multiple hypothesis strategy is evaluated. When the number of tests involved is large it 

is clear that there is a risk of obtaining biased estimates of m. 

     For a large value of the Markov order the number of parameters to estimate increases 

rapidly. So, in small samples it is especially important that m is small. In the latter situation 

one may use the strategy mentioned in the beginning of Section 3 to sequentially testing for 

higher and higher Markov orders. More formal strategies are Akaike’s information criterion 

(AIC) (Akaike [1]) and Baye’s information criterion (BIC) [12]. A convenient formulation of 



AIC and BIC is the following [10]. Consider the sequence of MLR statistics, 
*( , )ˆ m mΛ , for 

testing M(m) against M(m*) *0,1, , 1m m= − . Let *( , )df m m be the df of the test and put 
*

*

( , ) *

( , ) *

ˆ( ) 2 ln 2 ( , )
ˆ( ) 2 ln ln(  ) ( , )

m m

m m

AIC m df m m

BIC m sample size df m m

= − Λ −

= − Λ − ⋅
                           (14) 

The estimate of m based on AIC, ˆ AICm , is chosen such that ˆ( ) min ( )AICAIC m AIC m= , while 

the estimate based on BIC, ˆ BICm , is similarly obtained from ˆ( )BICBIC m =  min ( )BIC m . The 

only difference between ( ) and ( )AIC m BIC m is that different penalty functions are used, and 

it is seen that ( ) ( )AIC m BIC m> for sample sizes larger than 8. In the case when transitions 

are possible to all states, ‘sample size’ in (14) is simply synonymous with n, the total sample 

size. In the present model it will be clear from the simulation study in Section X that ‘sample 

size’ should be put equal to the working sample size (cf. Section 2). 

     The asymptotic properties of AIC- and BIC criteria are well known when applied to 

Markov chains. The AIC criterion has been proved to be inconsistent as the sample size tends 

to infinity and overestimates the true Markov order, while BIC is consistent [10]. In finite 

samples the picture is somewhat unclear. For the Tel Aviv precipitation data mentioned 

above, Gates and Tong [5] obtained ˆ 2AICm =  while Katz [9] got ˆ 1BICm = , both using * 3m = .  

     In the last cited study simulations of a two-state Markov chain were performed with m=1. 

The AIC- and BIC criteria were then applied simultaneously in order to estimate m from 

samples of various sizes. It was found that both criteria gave estimates of m that were heavily 

dependent on the sample size. In small samples both criteria suggested the estimates ˆ 0m =  

with highest probability. As sample sizes increased both criteria tended to favor the estimate 

ˆ 1m = . But this process went slower for the BIC criterion than for the AIC criterion. In fact, 

sample sizes of 1000 and more were needed in order for the BIC criterion to give the estimate 

ˆ 1m =  the highest chance, while the AIC criterion only required sample sizes of 300 and more. 

Thus, although BIC seems to work better than AIC in very large samples, it is not clear that 

this is the case in small sample cases. 

 

4. Tests of homogeneity 

When facing the problem whether a MC is homogeneous or not, it is a good advice to first 

plot estimates of the various transition probabilities against time, as in Figure 2 in [9]. Such a 

plot may be accompanied by a table showing the results from tests of homogeneity in an 



interval from time 11 ,  time to −≤<≤ Tvuvu . An example of the latter is given in Table 11 

of Section 6. Let any subset of [ ]1,...,1 −T  be denoted by S. Test of homogeneity can be 

performed for the parameters )1( , s
tt αβ  and )1,2( s

tα . Below the MLR statistics for these 

tests are given. 
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By inserting the estimators in (5) and (6) into the likelihood given in Appendix X one gets the 

MLR-statistic 
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Under H0 Λ− ˆln2 has an asymptotic chi-square distribution. The degrees of freedom (df) is 

the difference between the number of estimated parameters in the numerator and denominator. 

E.g. if [ ]1,...,1 −= TS  then df is (T-1)-1 = T-2. 
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In this case the largest subset S is [ ]1,... −Ts  in which case df in the asymptotic chi-square 

distribution is 1−− sT . Test of homogeneity of ( )s
t 1,2α  is performed in a similar way.     

 

 

 



5. Comparative simulation studies 

The performance of the various tests that were presented in Sections 3-4 will be studied by 

simulations. First, the conditions under which the simulations were carried out are given. 

Then results about the power of some tests of Markov order are presented, followed by a 

section where the AIC and BIC procedures in Section 3.3 are compared. Finally, the power 

functions of the proposed tests of homogeneity are studied. 

 

5.1 Design of the simulation studies 

Tests of Markov order were applied to the following cases: M(0) against M(1), M(0) against 

M(2) and M(1) against M(2). The tests were studied by simulating realizations of tX ( Cf. 

Section 2.) for .4,...,1=t  Frequencies of the original state 1X were obtained by assigning the 

states 2 and 1 to each subject in a sample of size n with probabilities 22 1 and ππ − , 

respectively. n was chosen as 100, 200, 500 and 1000 whereas 2π was 0.5 and 0.9. The 

probabilities tβ of remaining in state 2 were 70.0 and 65.0 ,60.0 321 === βββ . When testing 

M(0) against M(1) the probability that a subject remains in state 1 was chosen as 
)1(1)1( δβα +−= tt . Here 0)1( =δ corresponds to M(0) or independent transitions whereas 

0)1( ≠δ gives rise to various M(1)-models. For tests of M(0) against M(2) and M(1) against 

M(2) the tα -probabilities were ( ) ( ) ( ),11 3,2for  and 11
212)1(

11 δβαδβα +−==+−= ttt

)1,2(1)1,2( δβα +−= tt . Here ( ) ( ) ( ) ( ) 0 models,-M(0) gives 0 1,211,21 22

≠=== δδδδ gives M(1)-

models and ( ) ( )1,212

δδ ≠ gives M(2)-models. The values of the δ -parameters that were chosen 

in the simulations are given in Tables 3-5 below. 

     When comparing the AIC and BIC criteria for estimating the Markov order m the estimates 

BICAIC mm ˆ and ˆ were computed from the same simulated data sets. The actual Markov orders 

were chosen as 2 ,1 ,0=m , and for each value of m the relative frequencies of BICAIC mm ˆ and ˆ

were observed. The tt αβ  and parameters were chosen as in the last paragraph above with 

( ) ( ) chain. M(1) in the 15.0 andchain  M(0) in the 0 11 == δδ In the M(2) chain the values of the 

)1,2( and )1( 2
tt αα parameters for t = 2,3 were chosen such that the transition probabilities 



( )11 )2()2(
1 ==+ tt XXP  were roughly the same as )1(tα in the M(1) model. (See Appendix A1 for 

details.) 

     For the estimation of m based on BIC the ‘sample size’ in (14) was put equal to the total 

working sample size )2()1( tt NN + . In this way the performance of the method based on BIC 

was much improved compared to when the fixed total sample size n was used. 

     To study tests of homogeneity only M(1)-models were used with 9.02 =π . Realizations of 

tX were obtained at t = 1,…,7, and the tt αβ  and  -parameters were chosen as either constant 

(0.60) or increasing (0.60,…(0.05)…,0.90). Thus there were four different cases in total. 

Power functions of the tests were calculated for gradually increasing time sets, from S = [1,2] 

to S = [1,…,7]. The chosen values of the parameters were of about the same magnitude as 

those that were observed in empirical data (cf. Section 6.) 

     A stumbling block when simulating MCs is the possibility of getting zero frequencies due 

to extinction of certain states. In the present three-state model where diseased subjects 

successively become more healthy there is clearly a risk for zeros in the numerators in (5), or 

even in the denominators which in turn leads to missing values. In the tests for Markov order 

it was found that the proportion of missing estimates never exceeded 2 %, the largest 

proportion being obtained with n = 100. However, in the tests for homogeneity the proportion 

of missing estimates could be nearly 30 % obtained for S = [1,…,7] and n = 100. 

     Throughout Section 5 each reported figure is based on 10,000 simulations, disregarding the 

missing estimates just mentioned. About 99 % of all values of the test powers are found 

within reported value 005.0± for powers close to 0.05 and 0.95, and within reported value 

012.0± for powers near 0.50. 

 

5.2 Power of some tests of Markov order 

Table 3 summarizes the results for test of M(0) against M(1). From top to bottom there are 

three chi-square statistics and three MLR statistics based on transitions at the single times 1, 2 

and 3. These are followed by two MLR statistics based on transitions at times (1, 2) and (2, 

3). Finally, there is one MLR statistic based on transitions at the times (1, 2, 3). 

     



Table 3. Simulated powers of various statistics for testing M(0) against M(1) at the 5 % 

significance level. (1)δ is the difference between the parameters under M(0) and M(1). Two 

values of the null power that are suspiciously large are shown within parentheses. 

 

 

 
 

2 0.5π =  2 0.9π =  
n = n = 

Statistic (1)δ  100 200 500 1000 100 200 500 1000 
 

2
1X  

0 
0.10 
0.15 

.052 

.172 

.338 

.051 

.296 

.574 

.047 

.617 

.927 

.048 

.887 

.998 

.041 

.096 

.150 

.046 

.141 

.255 

.052 

.282 

.539 

.051 

.484 

.819 
 

2
2X  

0 
0.10 
0.15 

.051 

.135 

.254 

.052 

.231 

.453 

.050 

.484 

.825 

.048 

.777 

.985 

.049 

.175 

.311 

.050 

.280 

.550 

.049 

.603 

.912 

.052 

.871 

.997 
 

2
3X  

0 
0.10 
0.15 

.047 

.105 

.189 

(.058) 
.178 
.333 

.051 

.367 

.688 

.050 

.629 

.931 

.050 

.145 

.265 

.050 

.243 

.468 

.052 

.506 

.851 

.048 

.811 

.989 
 

(0,1)
12 ln− Λ  

 

0 
0.10 
0.15 

.052 

.172 

.338 

.051 

.296 

.574 

.048 

.617 

.927 

.048 

.887 

.998 

.045 

.098 

.150 

.049 

.138 

.249 

.053 

.277 

.533 

.052 

.478 

.815 
 

(0,1)
22 ln− Λ  

0 
0.10 
0.15 

.053 

.140 

.260 

.053 

.235 

.457 

.050 

.487 

.826 

.048 

.778 

.985 

.051 

.175 

.311 

.051 

.280 

.550 

.050 

.602 

.915 

.051 

.870 

.997 
 

(0,1)
32 ln− Λ  

0 
0.10 
0.15 

.051 

.116 

.201 

(.060) 
.185 
.341 

.052 

.375 

.693 

.050 

.634 

.932 

.052 

.149 

.270 

.051 

.246 

.472 

.052 

.507 

.852 

.049 

.811 

.990 
 

(0,1)
122 ln− Λ  

0 
0.10 
0.15 

.053 

.210 

.419 

.050 

.369 

.711 

.054 

.758 

.986 

.051 

.968 
1.000 

.048 

.172 

.322 

.050 

.287 

.584 

.050 

.639 

.946 

.052 

.911 

.999 
 

(0,1)
232 ln− Λ  

0 
0.10 
0.15 

.052 

.164 

.317 

.054 

.285 

.572 

.051 

.610 

.930 

.052 

.898 
1.000 

.053 

.208 

.411 

.051 

.376 

.713 

.049 

.759 

.985 

.051 

.970 
1.000 

 
(0,1)
132 ln− Λ  

0 
0.10 
0.15 

.053 

.225 

.463 

.056 

.409 

.767 

.050 

.816 

.993 

.052 

.985 
1.000 

.051 

.205 

.421 

.052 

.383 

.736 

.053 

.787 

.991 

.052 

.979 
1.000 

  

 

When ( ) 01 =δ  the null power should be 0.050. However, in Table 3 there are two values of 

the null power that are too large in order to be accepted and these are given within 

parentheses. Notice the close agreement between the powers of the chi-square statistic and the 



MLR statistic., although the latter seems to have slightly larger power. As expected, the non-

null power increased with increasing n for given ( )
2

1  and πδ . 

     One can note that that the powers behaved differently for 9.0 and 5.0 22 == ππ . Consider 

e.g. the power of 3,2,1 ,ˆln2 )1,0( =Λ− tt , for a specific value of ( ) 01 >δ . When 5.02 =π the 

power steadily decreased with increasing t, but when 9.02 =π the power was largest for t = 2. 

There is a simple explanation for this, namely that it can be shown that in the former case the 

expected working sample size, ( ))1(tNE , is strictly decreasing with t, whereas in the latter 

case it has a maximum at t = 2. A further conclusion from Table 3 is that the power was 

increased if transitions from several time points were used. 

     The behavior of four power functions for testing M(0) against M(2) is illustrated in Table 

4. Two powers are based on transitions from the separate time points 2 and 3, one power is 

based on transitions at (2,3) and one power from transitions at (1,2,3). The null power was 

close to 0.05 except when n = 100, in which case the null power sometimes was far below 

0.05. This unwanted performance of the MLR test, with a local bias of the test, is well known 

(see e.g. [6]). But it is interesting that this pattern occurred more frequently with test of M(0) 

against M(2) than with test of M(0) against M(1). This raises the question whether tests of 

M(m) against M(m*) in general tend to be more biased as m* deviates from m. 

     Table 5 shows some values of the power function when testing M(1) against M(2). The 

case 0 ,0 )1,2()1()1( 2

==≠ δδδ corresponds to the situation under M(1). Also here there was a 

close agreement between the powers based on the statistics .3,2 ,ˆln2 and )2,1()2,1( =Λ− tX tt  As 

in Tables 3 and 4 the power was increased if data from more time points were used. (There 

was one exception from this when .100 and 9.02 == nπ ) Comparing the non-null powers in 

Table 5 with those in Table 4 where test of the more deviating hypothesis M(0) against M(2) 

was considered, it is striking that the powers in Table 4 always dominated the powers in Table 

5. 

 

 



Table 4. Simulated powers of some statistics for testing  M(0) against M(2) at the 5 % 

significance level. The δ -parameters express the differences between the parameters under 

H1 and H0 (see Section 4.1). Figures within parentheses show null powers that deviate too 

much from the scheduled value 0.050. 

 
2 0.5π =  2 0.9π =  
n= n= 

Statistic 2(1) (1 ) (2,1)δ δ δ  100 200 500 1000 100 200 500 1000 
(0,2)
22 ln− Λ

 
0      0     0 

.10   .15   .05 
.052 
.161 

.0.53 
.286 

.051 

.614 
.048 
.905 

(.030) 
.073 

.045 

.143 
.050 
.299 

.051 

.559 
(0,2)
32 ln− Λ

 
0     0     0 

.10   .15   .05 
(.042) 
.127 

.053 

.220 
.051 
.508 

.050 

.814 
.050 
.141 

.053 

.255 
.052 
.550 

(.055) 
.856 

(0,2)
232 ln− Λ

 
0     0     0 

.10   .15   .05 
.047 
.185 

.053 

.365 
.050 
.779 

.049 

.980 
(.034) 
.130 

.050 

.278 
.052 
.618 

.053 

.921 
(0,2)
132 ln− Λ

 
0     0     0 

.10   .15   .05 
.050 
.240 

.053 

.474 
.049 
.895 

.050 

.997 
(.032) 
.151 

.047 

.303 
.051 
.678 

.051 

.949 
 
 
 
 

Table 5. Simulated powers of some statistics for testing M(1) against M(2) at the 5 % 

significance level. The δ -parameters and the figures within parentheses are interpreted as 

in Table 4. 

 
2 0.5π =  2 0.9π =  
n = n = 

Statistic 2(1) (1 ) (2,1)δ δ δ  100 200 500 1000 100 200 500 1000 
 
2
2X  

.10  .10  .10 

.10  .15  .05 

.10  .25  .05 

.053 

.109 

.260 

.049 

.159 

.470 

.054 

.324 

.858 

.051 

.562 

.988 

(.021) 
.044 
.082 

(.043) 
.094 
.215 

.051 

.162 

.475 

.050 

.278 

.764 
 
2
3X  

.10  .10  .10 

.10  .15  .05 

.10  .25  .05 

.046 

.067 

.174 

.052 

.116 

.326 

.051 

.227 

.682 

.049 

.389 

.928 

.052 

.090 

.230 

.048 

.138 

.401 

.051 

.275 

.764 

.052 

.488 

.968 
 

(1,2)
22 ln− Λ

 

.10  .10  .10 

.10  .15  .05 

.10  .25  .05 

(.055) 
.113 
.265 

.050 

.161 

.473 

.054 

.326 

.858 

.051 

.563 

.988 

(.024) 
.044 
.084 

.051 

.095 

.215 

.054 

.159 

.472 

.051 

.272 

.760 
 

(1,2)
32 ln− Λ

 

.10  .10  .10 

.10  .15  .05 

.10  .25  .05 

.050 

.075 

.185 

.054 

.125 

.333 

.052 

.228 

.685 

.050 

.394 

.929 

.056 

.094 

.238 

.049 

.139 

.405 

.051 

.275 

.765 

.053 

.488 

.968 
 

(1,2)
232 ln− Λ

 

.10  .10  .10 

.10  .15  .05 

.10  .25  .05 

.054 

.110 

.314 

.054 

.183 

.575 

.052 

.392 

.947 

.052 

.677 

.990 

(.038) 
.075 
.214 

.049 

.147 

.445 

.053 

.298 

.842 

.052 

.541 

.990 
  



5.5 Comparison between AIC and BIC 

Table 6 summarizes the performance of the AIC and BIC procedures for estimating the 

Markov order m. For m = 0 it is evident that BIC performed better than AIC. The latter was 

not improved as n increased, thus showing the same inconsistency that was noticed in [10]. It 

is also peculiar that AIC placed Markov order 2 in front of Markov order 1. For m = 1 both 

procedures gave poor estimates unless n was 500 or larger. In this case, as well as for m = 2 

 

Table 6. Comparison between the AIC and BIC procedures for estimating the Markov 

order m. The m-values to the left are those that were used in the simulations, while the six 

columns to the right show the relative frequencies (%) of the estimates of m. 

 

 
ˆ AICm =                        ˆ BICm =  

2 0.5π =  n 0 1 2 0 1 2 
 

0m =  
 

100 
200 
500 
1000 

81.6 
78.1 
78.9 
78.6 

7.8 
7.5 
7.5 
7.7 

10.6 
14.4 
13.6 
13.7 

97.4 
97.4 
98.7 
99.2 

2.4 
2.4 
1.2 
0.8 

0.2 
0.2 
0.1 
0.0 

 
1m =  

100 
200 
500 
1000 

56.1 
40.3 
13.1 
1.6 

33.2 
47.1 
71.8 
82.6 

10.7 
12.6 
15.1 
15.8 

75.8 
68.2 
42.5 
14.2 

21.5 
29.6 
55.7 
84.4 

2.7 
2.2 
1.8 
1.4 

 
2m =  

100 
200 
500 
1000 

13.2 
0.9 
0.0 
0.0 

4.0 
0.4 
0.0 
0.0 

82.8 
98.7 

100.0 
100.0 

34.0 
8.0 
0.0 
0.0 

5.0 
0.8 
0.0 
0.0 

61.0 
91.2 

100.0 
100.0 

2 0.9π =  n 0 1 2 0 1 2 
 

0m =  
 

100 
200 
500 
1000 

77.6 
78.7 
78.2 
78.4 

8.2 
7.1 
7.9 
7.9 

14.2 
14.2 
13.9 
13.7 

96.6 
97.4 
98.6 
99.3 

2.8 
2.3 
1.2 
0.7 

0.6 
0.3 
0.2 
0.0 

 
1m =  

100 
200 
500 
1000 

47.2 
28.4 
5.2 
0.2 

41.2 
58.5 
79.1 
84.0 

11.7 
13.1 
15.8 
15.8 

70.3 
56.5 
24.0 
3.6 

26.9 
41.0 
74.0 
95.1 

2.8 
2.5 
2.0 
1.3 

 
2m =  

100 
200 
500 
1000 

24.2 
5.0 
0.0 
0.0 

14.2 
5.4 
0.1 
0.0 

61.6 
89.6 
99.9 

100.0 

49.6 
24.0 
1.0 
0.0 

14.4 
10.3 
1.2 
0.0 

36.0 
65.7 
97.8 

100.0 
  



 

AIC performed better. 

     As was mentioned in Section 3.3, the BIC criterion has been found to be superior to AIC in 

large samples for homogeneous MCs of order less than three. In the present study, where the 

parameter values varied in time, a somewhat different conclusion is reached.  

 

5.6 Power of some tests of homogeneity 

Tests of homogeneity for the case m = 1 can be based on the statistics in Section 4. Tests can 

be performed for one of the two type of parameters, or for both. The four parameter settings 

are described in Table 7, where the notation tPS is used for a set of parameter values that 

gradually increase from 0.60 to 0.60+0.05(t-1), t =2,…,7. 

 

Table 7. Summary of some desired properties of the power when performing various tests of 

homogeneity in the parameter settings (A)-(D). 

 
Homogeneity of 

tβ  (1)tα  ,  (1)t tβ α  
 (A) (1) 0.60t tβ α= =  .05 .05 .05 

Parameter (B) ,  (1) 0.60t t tPSβ α∈ =  >.05 .05 >.05 
Setting (C) 0.60,  (1)t t tPSβ α= ∈  .05 >.05 >.05 

 (D) ,  (1)t t t tPS PSβ α∈ ∈  >.05 >.05 >.05 
  

 

The results from the simulations are given in Table 8. It is seen that the null-power behaved as 

desired, possibly with a few exceptions when 6or  200 ≥≤ tn . In the latter case the random 

sample sizes )2( and )1( tt NN were too small for the chi-square approximation to hold, and 

sometimes even zero. On the whole the non-null power increased with n and also with t. The 

largest power was obtained when homogeneity of both )1( and tαβ t was tested and there was 

a true shift in both parameters. 



Table 8. Values of the power when testing for homogeneity in the four parameter settings 

(A)-(D) given in Table 7. 

 
Homogeneity of tβ  Homogeneity of (1)tα  Homogeneity of 

,  (1)t tβ α  
n =  n =  n =  

 t 100 200 500 1000 100 200 500 1000 100 200 500 1000 
 
 

A 

2 
3 
4 
5 
6 
7 

.050 

.052 

.055 

.050 

.042 

.028 

.049 

.051 

.051 

.050 

.051 

.047 

.050 

.052 

.052 

.053 

.052 

.053 

.052 

.050 

.052 

.054 

.054 

.054 

.047 

.046 

.048 

.048 

.049 

.049 

.056 

.052 

.050 

.054 

.052 

.053 

.047 

.048 

.047 

.047 

.048 

.046 

.053 

.051 

.049 

.052 

.053 

.053 

.045 

.052 

.051 

.050 

.043 

.028 

.053 

.049 

.048 

.050 

.054 

.034 

.049 

.052 

.050 

.051 

.050 

.054 

.052 

.052 

.053 

.053 

.055 

.035 
 
 

B 

2 
3 
4 
5 
6 
7 

.093 

.139 

.225 

.325 

.429 

.531 

.130 

.252 

.436 

.649 

.835 

.945 

.268 

.578 

.861 

.977 

.999 
1.000 

.472 

.885 

.995 
1.000 
1.000 
1.000 

.045 

.046 

.048 

.048 

.047 

.051 

.056 

.052 

.051 

.053 

.054 

.054 

.051 

.050 

.051 

.050 

.049 

.053 

.051 

.050 

.049 

.050 

.051 

.051 

.073 

.109 

.162 

.231 

.309 

.247 

.111 

.187 

.329 

.519 

.714 

.649 

.205 

.463 

.763 

.943 

.995 

.991 

.370 

.798 

.982 
1.000 
1.000 
1.000 

 
 

C 

2 
3 
4 
5 
6 
7 

.055 

.055 

.055 

.054 

.042 

.030 

.054 

.056 

.052 

.052 

.053 

.046 

.051 

.049 

.051 

.052 

.050 

.049 

.051 

.051 

.053 

.050 

.051 

.050 

.060 

.090 

.155 

.275 

.470 

.729 

.073 

.128 

.264 

.521 

.810 

.977 

.102 

.281 

.629 

.934 

.999 
1.000 

.151 

.493 

.916 
1.000 
1.000 
1.000 

.061 

.081 

.124 

.207 

.344 

.277 

.067 

.105 

.201 

.401 

.691 

.623 

.085 

.209 

.506 

.866 

.993 

.988 

.119 

.388 

.842 

.997 
1.000 
1.000 

 
 

D 

2 
3 
4 
5 
6 
7 

.089 

.138 

.220 

.324 

.427 

.538 

.128 

.252 

.435 

.641 

.831 

.946 

.259 

.568 

.855 

.979 

.998 
1.000 

.476 

.879 

.993 
1.000 
1.000 
1.000 

.062 

.087 

.148 

.256 

.438 

.666 

.073 

.133 

.260 

.495 

.787 

.963 

.111 

.269 

.610 

.917 

.997 
1.000 

.153 

.493 

.905 

.998 
1.000 
1.000 

.084 

.142 

.254 

.425 

.638 

.571 

.119 

.264 

.512 

.801 

.967 

.952 

.247 

.619 

.936 

.998 
1.000 
1.000 

.464 

.924 
1.000 
1.000 
1.000 
1.000 

 
 

 

 

6. An application: Test of Markov order and homogeneity in rehabilitation data 

6.1 Markov order 

 In a Swedish study 2440 sick-listed women and 1801 sick-listed men were followed after 

start of a rehabilitation period. At the beginning of each quarter t = 1,…,8 each person was 

classified into one of the states 0 (Healthy), 1 (Improved) and 2 (Acute diseased) and initially 



all persons were in state 1 or 2. The classification into the states was made by social insurance 

authorities. Results from the study, including further details about data, estimated transition 

probabilities and prediction probabilities, have been reported earlier [9]. In this paper focus 

will be on tests. 

     A first step in the analysis was to get knowledge about the dependency structure. Tables 9a 

and 9b show values of the chi-square statistics 1,(2 ˆln2 statistic MLR  theand +Λ− mm
ttχ for 

testing M(m) against M(m+1), m = 0,1,2. Both statistics have an asymptotic chi-square 

distribution with 1 degree of freedom under the null hypothesis M(m). Since the 95 % 

percentile in the latter distribution is 3.84 the Markov orders 0 and 1 were rejected in most 

cases, but not Markov order 2. Two exceptions from this were obtained for the MLR test at 

quarter 6 for women and quarter 7 for men. But here one has to take into consideration that  

the working sample sizes were very small, e.g. )1,2(tN was far below 20 for both sexes. When 

testing M(1) against M(2) for a sequence of transitions from quarter 2 to quarter 6 the MLR 

statistic for women was 44, to be compared with 11.07 which is the 95 % percentile of the 

chi-square distribution on 5 ( 6-2+1) degrees of freedom. So Markov order 1 is strongly 

rejected. On the other hand, when M(2) was tested against M(3) the MLR statistic was 3.7 

which is far below the rejection limit 9.45 (df = 6-3+1) so there was no reason to reject a 

Markov order of 2. Similar results were obtained for men. 

     The use of AIC and BIC criteria for estimating Markov order gave a somewhat unclear 

picture, as is seen in Table 10. In most cases a Markov order of 2 is suggested. But there are 

exceptions at the quarters 6 and 7 where a Markov order of 1 is suggested in a similar way as 

was seen in Table 9b. The total AICs computed from all quarters were for women 9629 (m = 

0), 18 (m = 1), -6.3 (m = 2) and for men 5855 (m = 0), 58 (m = 1), -4.8 (m = 2), thus 

suggesting that m = 2.  



 

Table 9a. Chi-square statistics for tests of Markov order. 

Quarter 

Sex Markov order 1 2 3 4 5 6 7 

 M(0) vs M(1) 1134 1406 1581 1559 1612 1609 1497 

Women M(1) vs M(2) - 11.4 8.6 14.9 21.3 4.3 8.1 

 M(2) vs M(3) - - 0.19 0.95 0.99 0.17 0.39 

 M(0) vs M(1) 707 816 928 938 955 995 956 

Men M(1) vs M(2) - 21.7 27.5 12.6 29.2 55.0 4.6 

 M(2) vs M(3) - - 0.20 0.01 1.93 0.30 0.29 

 

 

Table 9b. MLR statistics for tests of Markov order. 

Quarter 

Sex Markov order 1 2 3 4 5 6 7 

 M(0) vs M(1) 1236 1609 1890 1885 2003 2018 1825 

Women M(1) vs M(2) - 10.1 6.7 9.4 11.5 2.6 4.0 

 M(2) vs M(3) - - 0.02 0.84 1.9 0.15 0.76 

 M(0) vs M(1) 766 920 1082 1134 1167 1241 1184 

Men M(1) vs M(2) - 19.1 20.9 9.7 16.2 23.3 2.8 

 M(2) vs M(3) - - 2.5 0.01 1.6 0.58 0.56 

 
 

 

6.2 Homogeneity 

In a non-homogeneous MC of order 2 there are three transition probabilities to estimate at 

each 2≥t , )1,2( and )1( , 2
ttt ααβ . Plots of the latter against t were presented in Figure 2 in 

[9], where it is apparent that the transition probabilities are non-stationary at earlier quarters. 

Table 11 summarizes the results from tests of homogeneity by means of the MLR statistics 

suggested in Section 4. Test of stationarity of )1,2(tα was not performed due to very small 

working sample sizes. The results in Table 11 agree very well with the pattern that was 

noticed in the plots, i.e. a non-homogeneous pattern at early quarters that later turns into a  



Table 10. Estimation of Markov order by means of the AIC and BIC criteria, (a) for 

women and (b) for men. The smallest values of the AIC- and BIC statistics at each quarter 

are marked by an asterisk.  

(a) 

 

Quarter 

Criterion Markov order 3 4 5 6 7 

 0 1890 1889 2011 2015 1824 

AIC 1 2.7 6.3 7.5 -3.24* -1.2 

 2 -2.0* -1.2* -0.08* -1.9 -1.3* 

 0 1875 1874 1996 2000 1809 

BIC 1 -7.5* -3.8 -0.53 -11.2* -9.1* 

 2 -7.1 -6.2* -5.1* -6.8 -6.2 

 

(b) 

 

Quarter 

Criterion Markov order 3 4 5 6 7 

 0 1099 1138 1178 1259 1181 

AIC 1 19.4 5.7 11.8 17.9 -2.7* 

 2 0.52* -1.9* -0.42* -1.4* -1.4 

 0 1085 1124 1165 1246 1168 

BIC 1 10.1 -3.4 4.9 11.1 -9.4* 

 2 -4.1* -6.6* -4.9* -5.8* -5.8 

  

 

homogeneous pattern. In Table 11 one may notice that it is easier to reject homogeneity 

during longer periods. E.g. in Table 11 (a) for women, homogeneity was not rejected at 

transitions from 3 to 4, from 4 to 5 and from 5 to 6, but homogeneity was strongly rejected if 

transitions from 2 to 6 were considered. 

 



Table 11. MLR statistics for testing homogeneity from quarter u to quarter v among men 

and women, (a) for tβ  and (b) for 2(1 )tα . Values within parentheses indicate non-

significance at the 5 % level. 

(a) 
 

Women Men 
v v 

  2 3 4 5 6 7 2 3 4 5 6 7 
 1 53 121 171 231 279 283 15 36 83 115 140 145 
 2  11 18 35 47 50  (3.5) 24 36 45 45 
u 3   (.32) 5.7 9.3 20   9.6 13 15 17 
 4    (3.1) (4.7) 18    (.01) (.01) (5.1) 
 5     (.03) 18     (.01) (4.4) 
 6      13      (3.4) 

 
(b) 

 
Women Men 

v v 
  3 4 5 6 7 3 4 5 6 7 
 2 9.8 18 37 57 78 10 12 24 63 99 
u 3  (.70) 8.5 17 28  (.35) (5.2) 31 53 
 4   4.1 8.7 14   4.9 27 44 
 5    (.66) (2.3)    8.9 15 
 6     (.48)     (.59) 

  

 

 

7. Conclusions 

In [9] it was demonstrated that a correct specification of Markov order and homogeneity is 

highly important. It is therefore interesting to study to which degree it is possible to make 

correct specifications based on tests. In Section 6 one statistic based on the chi-square 

criterion and one based on the MLR criterion was evaluated when testing for Markov order m. 

Also the use of AIC and BIC was studied for obtaining an estimate of m. From Tables 3 and 5 

it is concluded that a sample size (n) of at least 500, or even 1000, is needed in order to reach 

an acceptable level of the power. The procedures based on AIC and BIC also require large 

sample sizes in order to be reliable. However, even with n = 1000 AIC works less well when 



estimating Markov orders less than 2. The difference in power between the two statistics for 

test of Markov order was small, possibly with a slight advantage for the MLR statistic. 

     When testing for homogeneity the largest power was obtained when (i) a long period of 

transitions was used and (ii) homogeneity of several different parameters were considered 

simultaneously, and there actually was a shift in all of them. In the application (Section 6) it 

was found that homogeneity was rejected when the test was based on a long period of 

transitions, but not when the test was based on a single transition mostly towards the end of 

the studied period. The latter might be explained by the fact that there actually was a 

stabilization of the parameters towards the end, but this could not be detected by a ‘long-

period test’. 

     In conclusion, it is recommended to use all procedures that were considered in Sections 3 

and 4 in the same way as was done in Section 6. One should also be aware of the fact that 

failure of rejecting a hypothesis may be due to a small working sample size, even if the fixed 

total sample size (n) is large. 
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Appendix 

A1. The Likelihood of the three-state Markov chain of order m 

    The likelihood ( )mL  of all observations in the three-state model of Markov order m can 

be expressed as 
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A proof of the above expression is outlined in the Appendix A1 in [9]. 

 

A2. The MLR statistic for testing M(m) against M(m*), 0<m<m* 

By the same arguments that were used in Section 3.1 it follows that the MLR statistic is 
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Under the hypothesis of M(m), *),(ˆln2 mm
iΛ− has a chi-square distribution with df = m* - m. 

When the same hypothesis is tested for a sequence of transitions from 1  to1 −≤+≥ Ttms , 
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where *),(

,
ˆln2 mm

tsΛ− is chi-square distributed with df = 

(m* - m)(t – s +1). 



 

A3. Proof of the relations leading to the test statistic in (13a) 

In Section 3.2 it was stated that two differences between estimators can be expressed in terms 

of one common difference. The ML estimator of )1( m
tα is 
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