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Abstract. Markov chains (MCs) have been used to study how the health states of patients 

are progressing in time. With few exceptions the studies have been based on the 

questionable assumptions that the MC has order m=1 and is homogeneous in time. In this 

paper a three-state non-homogeneous MC model is introduced that allows m to vary. It is 

demonstrated how wrong assumptions about homogeneity and about the value of m can 

invalidate predictions of future health states. This can in turn seriously bias a cost-benefit 

analysis when costs are attached to the predicted outcomes. The present paper only 

considers problems connected with model construction and estimation. Problems of testing 

for a proper value of m and of homogeneity is treated in a subsequent paper. Data of work 

resumption among sick-listed women and men are used to illustrate the theory. A non-

homogeneous MC with m = 2 was well fitted to data for both sexes. The essential 

difference between the rehabilitation processes for the two sexes was that men had a higher 

chance to move from the intermediate health state to the state ‘healthy’, while women 

tended to remain in the intermediate state for a longer time. 
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 1. Introduction 

 

The patient’s health state is more or less related to earlier health states. For this reason 

Markov chain (MC) models can be useful to study how the health states of patients are 

progressing in time. In a MC one has to specify the following constituents: (1) time unit 

(e.g. day, month, year), (2) possible states (e.g. diseased, improved, healthy), (3) Markov 

order, i.e. the number of time points back in history that has to be considered when 

assigning a transition probability one step ahead, and finally (4) how the latter transition 

probabilities change with time. The Markov order will in the sequel be denoted by m. If a 

transition to a state is independent of earlier states then m=0, if it depends on the last 

reached state m=1, if it depends on the last two reached states m=2, and so on. Thus, m 

refers to the last history preceding a transition. More general cases where transitions 

depend on other sub-spaces of the history (see e.g. [14]) will not be considered here. When 

the transition probabilities are constant in time the MC is said to be homogeneous and 

otherwise non-homogeneous.  

    In practice, data may be insufficient in order to meet the requirements needed to specify 

a MC correctly. Consider for instance a homogeneous MC with m=2 and with the three 

states 0, 1 and 2. Given the nine possible preceding states (0,0), (0,1),…, (2,2), there is a 

total of 27 transition frequencies to the states 0, 1 and 2. In small samples there is clearly a 

risk of getting zeros in some of the 27 cells and it will be hard to accurately estimate all the 

(27-9=18) linearly independent transition probabilities, or even impossible if marginal cells 

contains zeros. For a non-homogeneous MC these problems become much more severe 

since the number of transition probabilities to be estimated increases rapidly. It is easily 

shown that for a MC of order 1m ≥  with 2s ≥  possible states that is observed at the times 

t=1…T, T>m, there will be 1ms s+ −  non-linearly dependent transition probabilities to 

estimate in a homogeneous MC, while the corresponding number in a non-homogeneous 

MC is [1 ( )( 1)] mT m s s s+ − − − . These expressions being obtained under the assumption 

that transitions to all states are possible and that m r≤ for transitions from a state at time r 

to a state at time r+1.  

    In small samples one may be forced to use a homogeneous MC model with a small value 

of m and a small number of states, without having the possibility to check the validity of 

the model. A typical example of this is the study of Gay and Wong [3] who used a 

homogeneous MC model with m=1 to predict the two states ‘successful’ and 



‘unsuccessful’ in a sample of 71 clients from private rehabilitation agencies. The many-

parameter problem that arises due to a large value of m or due to a large number of states 

can be tackled in several ways. When m is large in a homogeneous MC model the number 

of parameters to estimate can be reduced by fitting autoregressive-like functions to the 

transition probabilities (Raftery and Tavare´ [13]). Such an approach may however be 

questionable if data show signs of a non-homogeneous structure (see comments in Sect. 

4.3 in [13]).  Sometimes it is possible to reduce the number of transition probabilities by 

utilizing prior information. E.g. McLean and Millard [11] used a homogeneous MC model 

with m=1 to study the progression of geriatric patients through the four states ‘Acute care’, 

‘Rehabalitive’, ‘Long-Stay’ and ‘Dead’. Here, 8 transition probabilities could be put equal 

to either 0 or 1, so there were just 4 probabilities left to estimate. A further example of such 

a parsimonious MC model is presented in Section 2 of this paper. 

    Principles for estimation and test of Markov order in homogeneous MC models have 

been known since long ago (Hoel [5]). These results have mainly been applied to 

meteorological data [9, 10] and to DNA sequences [2], just to mention a few examples. 

Few attempts, if any, seem to have been made to test the Markov order of series of health 

states. The value of m gives in fact important information about how the patient’s health 

state depends on history. E.g. a large m tells us that the health state at a time point is 

determined by factors that were present far ago. It is furthermore important that m is 

correctly estimated if the object of a study is to make predictions of the patient’s future 

health. As will be seen in this paper, unrealistic assumptions about the value of m can lead 

to predictions that are seriously biased. This may in turn invalidate a cost-benefit analysis, 

if costs have been attached to the different health states.  

   With few exceptions (see e.g. [6]), the MC models used in natural sciences have been 

homogeneous. This may be a reasonable assumption when analysing meteorological data 

over relatively short periods or DNA sequences, just to take a few examples. But, it can be 

put in question whether this assumption holds for e.g. rehabilitation processes, since it 

implies that the patient at any time has the same chance to move towards the state ‘healthy’ 

during the whole rehabilitation period.  

    The two problems, to test for homogeneity and to determine the Markov order of a 

(possibly) non-homogeneous MC by various test procedures, require an extensive 

investigation that will be communicated in a subsequent paper [7]. In this paper, a non-

homogeneous three-state MC model with Markov order 0m ≥  is introduced for the health 

states (Section 2). Section 3 is devoted to principles for parameter estimation and in 



Section 4 an application is given that compares the different patterns between women and 

men in work resumption during rehabilitation. The paper ends with some final remarks 

(Section 5).  

 

2. Basic properties of the three-state model for progress of health 

2.1 Notations and assumptions for probabilities 

Let ( ) ,  1, 2,...,m
tX t T=  denote the health state at time t for a MC of order m, with the 

possible outcomes 0 (Healthy), 1 (Improved) and 2 (Acute diseased). The probabilities of 

these outcomes are ( )( ),  0,1, 2m
tP X j j= = .  At t=1 only the states 1 and 2 are possible and 

for these initial states the notations ( )
2 1( 2)mP Xπ = =  and 21 π− =  ( )( 1)m

tP X = are used. 

From one state at time t to the following state at time t+1 only the following transitions are 

possible: 1 1 1 1 12 (2  or 1 ),  1 (1  or 0 ) and 0 0t t t t t t t t+ + + + +→ → → . Here the notation tj  has been 

used to denote that state j is occupied at time t. Transitions to state 2 can thus only take 

place from state 2. Therefore, omitting the index m for simplicity, the outcome 

( 2, , 2)t s tX X− = = is equivalent to the outcome ( 2)tX =  for any 1s ≥ , and this in turn 

implies that 

( ) ( )1 12 2 2 2 2t t s t t t tP X X X P X X β+ − += = = = = = =                          (1) 

( ) ( )1 11 2 2 1 2 1t t s t t t tP X X X P X X β+ − += = = = = = = −       

 

When the last preceding state at time t is 1, the earlier states can be either 1 or 2. Such 

transitions are denoted by tα -probabilities as in Table 1. The latter has to be denoted in 

such a way that they reflect the preceding states. The following notations will be used: 

( )
( )

1 1

1 1

1 1 1 (1 )

1 2, 1 1 (2,1 )

s
t t s t t

s
t t s t s t t

P X X X

P X X X X

α

α
+ − +

+ − − +

= = = =

= = = = =




                             (2) 

 
Table 1 Schematic illustration of probabilities for transitions from the states at time t to the 
states at time t+1. 
 

State at t+1 
  0 1 2 
State 0 1 0 0 
at t 1 1 tα−  tα  0 
 2 0 1 tβ−  tβ  



The Markov order m of the model is defined as the Markov order of transitions to 11t+ , 

where the transition probabilities are given in (2). 

 

2.2 Some expressions for transition- and state probabilities 

The t-step transition probabilities ( )( ) ( )
1 1

m m
tP X j X i+ = =  can be used for predicting the 

future state t steps ahead. In this section some expressions for the latter are given that will 

be used in subsequent sections. For transitions from state 2 to state 1, results are only 

presented for m=1, 2 and 3, since the expressions are quite extensive. Results for chains of 

higher order can easily be deducted from the latter. For simplicity the following notation is 

introduced: 

For 1j ≥ , put 
1

1

1

(1 ),          for 1

(1 ) ,  for 2
j

j
j i

i

j

j

β

β β
−

=

− =
Φ =  − ≥


∏
. 

 

2.2.1 Transition probabilities in the non-homogeneous case 

Transitions from state 2: 

( )( ) ( )
1 1

1

2 2
t

m m
t j

j

P X X β+
=

= = =∏        

( )
1

(1) (1) 1
1 1

1 1

,                             1
1 2

(1),  2
tt

t
t j i

j i j

t
P X X

tα
−

+

= = +

Φ =
= = = Φ + Φ ≥


∑ ∏
 

( )
( )(1) (1)

1 1

(2) (2)
1 1 2 1 2

2
2

1 1
1 2

1 2 ,                                    1

1 2 (2,1),                                              2

(2,1) (2,1) (1 ),  3

t

t
tt

t t t j j i
j i j

P X X t

P X X t

t

α

α α α

+

+

−

− +
= = +


 = = =
= = = Φ +Φ =

Φ +Φ + Φ ≥


∑ ∏

 

( )
( )(2) (2)

1 1

(3) (3)
1 1

1 2 ,                                                                         1, 2                                                                                      

1 2
t

t

P X X t

P X X
+

+

= = =

= = = 2
3 2 3 1 2 3

         

(2,1) (2,1) (2,1 ),                                                     3                                                                                                      

t

tα α αΦ +Φ +Φ =

Φ +
3

2 2 3
1 2 1 1 2

1 3

(2,1) (2,1) (2,1 ) (2,1) (2,1 ) (1 ),                                                                                                     
tt

t t t t t j j j i
j i j

α α α α α α
−

− − − + +
= = +






 Φ +Φ + Φ


∑ ∏
                                          4t ≥  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 10 2 1 1 2 2 2m m m m m m

t t tP X X P X X P X X+ + += = = − = = − = =   for 1t ≥ .   



Transitions from state 1: 

( )

( ) ( )

1( ) ( )
1 1

1 1

( ) ( ) ( ) ( )
1 1 1 1

(1 ),                   
1 1

(1 ) (1 ),  1

0 1 1 1 1

t
i

i
im m

t m t
i m

i i
i i m

m m m m
t t

t m
P X X

t m

P X X P X X

α

α α

=
+

= = +

+ +


≤= = = 

 ⋅ ≥ +


= = = − = =

∏

∏ ∏                   

                                                

Notice that ( ) ( )( ) ( ) ( ) ( )
1 1 1 11 2 1 2  for 1m m t t

t tP X X P X X t m+ += = = = = ≤ − . This is simply 

because the m:th order Markov property can not be applied on transitions that are smaller 

than m.  

    Proofs of the above expressions are straightforward but tedious. Consider e.g. the 

expression for ( )( ) ( )
1 11 2m m

tP X X+ = = with m=t=3. ( )(3) (3)
4 1 11 2 / (2 )P X X S P= = = , where 

1 2 3 4(2 , 2 , 2 ,1 )S P= + 1 2 3 4 1 2 3 4(2 , 2 ,1 ,1 ) (2 ,1 ,1 ,1 )P P+ . Here, 

1 2 3 4(2 , 2 , 2 ,1 )P  = ( ) ( ) ( ) ( )4 3 3 2 2 1 11 2 2 2 2 2 2P P P P = ( )
2

3 1
1

(1 ) 2i
i

Pβ β
=

− ⋅∏ , 

( ) ( ) ( ) ( ) ( )1 2 3 4 4 3 3 2 2 1 12
2 , 2 ,1 ,1 1 2 ,1 1 2 2 2 2P P P P P= = ( )3 2 1 1(2,1)(1 ) 2Pα β β− , 

( ) ( ) ( ) ( ) ( )1 2 3 4 4 1 2 3 3 1 2 2 1 12 ,1 ,1 ,1 1 2 ,1 ,1 1 2 ,1 1 2 2P P P P P= = ( )2
3 2 1 1(2,1 ) (2,1)(1 ) 2Pα α β− , 

and from this the result follows. 

 

2.2.2 Transition probabilities in the homogeneous case 

Various degree of homogeneity occurs when the  and α β transition probabilities do not 

change with time. Here, results will only be given for the case when all transition 

probabilities are constant at all the times 1 1t T= − . The corresponding expressions for 

various cases with partial homogeneity are easily obtained from the results in Section 

2.2.1. Introduce the ratios 2
1 2 3(1) / ,  (1 ) / ,  (2,1) /r r rα β α β α β= = = , 3

4 (1 ) /r α β=  and 

2
5 (2,1 ) /r α β= .   Then one gets the following. 

For 1t ≥ : 

( )( ) ( )
1 12 2m m t

tP X X β+ = = =  

( )
1 1

1(1) (1)
1 1 1

1
1

(1 )(1 ) ,  1
1 2 (1 )

(1 ) ,             1

t
t

t
t

r r
P X X r

t r

β β

β β

−

+
−

 −
− ≠= = = −

 − =

 



For 2t ≥ : 

( )
[ ]

1
1 3 2

2(2) (2)
21 1

1
3 2

(1 )(1 ) 1 ,  1
(1 )1 2

(1 ) 1 ( 1) ,        1

t
t

t
t

r r r
rP X X

t r r

β β

β β

−
−

+
−

  −
− + ≠  −= = =   

 − + − =

     

For 3t ≥ : 

( )
[ ]

2
1 4

3 3 5 4(3) (3)
41 1

1
3 3 5 4

(1 )(1 ) 1 ,  1
(1 )1 2

(1 ) 1 ( 2) ,       1

t
t

t
t

rr r r r
rP X X

r t r r r

β β

β β

−
−

+
−

  −
− + + ≠  −= = =   

 − + + − =

 

 

Finally,                                                         

( ) 1( ) ( )
1 1

1

(1 ),                         
1 1

(1 ) (1 ) ,  1

t
i

im m
t m t mi m

i

t m
P X X

t m

α

α α

=
+

−

=


≤= = = 

  ⋅ ≥ + 

∏

∏
                                                                   

 

2.2.3 Probabilities of the states 0, 1, 2 

 One easily gets the following relations, 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
1 2 1 1

( ) ( ) ( ) ( ) ( )
1 2 1 1 2 1 1

2 2 2  and 

1 (1 ) 1 1 1 2 ,

m m m
t t

m m m m m
t t t

P X P X X

P X P X X P X X

π

π π

+ +

+ + +

= = = =

= = − = = + = =
 

where the t-step transition probabilities are given in 2.2.1 above. Also, 

( ) ( ) ( )( ) ( ) ( )
1 1 10 1 1 2m m m

t t tP X P X P X+ + += = − = − = . 

             

2.3 Effects of miss-specifying homogeneity and Markov order 

Non-homogeneous high order MCs may contain many parameters. Even for the 

parsimonious model considered in this paper, the number of parameters can be large. From 

the expressions in Section 2.2 it is seen that with m=1 and t transitions there are 2t 

parameters to estimate in the non-homogeneous case, compared to just two parameters in 

the homogeneous case. Since the parameters in a many-parameter model are estimated 

with less accuracy, it may be tempting to deliberately specifying a homogeneous model of 

low Markov order. However, this can lead to seriously biased results. 

    To illustrate the effect of wrongly assuming a homogeneous model, consider the 

following simple example with m=1. For t=1…7, let the true β -parameters change 



according to 1/ 30.5t tβ = ⋅  so that the parameters β  increas from 1 0.50β =  to 7 0.96β = , 

and let (1) 0.50tα = , t=1…7. From the expressions in Section 2.2.1 for the non-

homogeneous case one gets ( )(1) (1)
1 7 11 2 0.04P X X+ = = = . On the other hand, by using the 

same values of (1)tα  but with 0.77tβ =  (assuming homogeneity and taking the average of 

1 7...β β ) one gets ( )(1) (1)
1 7 11 2 0.13P X X+ = = =  which is more than three times larger than the 

former value. 

    MC models with different values of m can give rise to large differences between the t-

step transition probabilities. It is extremely complicated to compare the latter probabilities 

for various m in general, because many parameters are involved. Here only the simple 

cases ( )( ) ( )
3 10 2m mP X X= = with m=1 and m=2 are compared. To make the comparison fair 

one also has to impose the restriction that the one-step transition probabilities at time 2 to 

time 3 are the same. This is achieved by following the advice in Appendix A1. 

Consider ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
3 1 3 1 3 10 2 1 1 2 2 2m m m m m mP X X P X X P X X= = = − = = − = = .  

Here ( )( ) ( )
3 1 1 22 2m mP X X β β= = =  for m=1,2 (cf. Section 2.2.1), while 

( )(1) (1)
3 1 2 1 1 21 2 (1 ) (1 ) (1)P X X β β β α= = = − + −

( )(2) (2)
3 1 2 1 1 21 2 (1 ) (1 ) (2,1)P X X β β β α= = = − + −  

From this one gets the ratio 

( )
( )

(2) (2)
3 1 2 2

2(1) (1)
2 2 2 2 23 1

0 2 1 (2,1) 1 (2,1)
1 (1) 1 (1 ) (2,1)(1 )0 2

P X X
R

W WP X X
α α
α α α

= = − −
= = =

−  − + −= =  
, 

where 1 2
2

1 2 1 2

(1)(1 )
(1)(1 ) (1 )

W α π
α π β π

−
=

− + −
. It is easily seen that R=1 only if 2

2 2(1 ) (2,1)α α= . 

When the latter probabilities are different, R can be much smaller or larger than 1. This is 

illustrated in Figure 1a and Figure 1b where 2 (2,1)α varies between 0.1 and 0.9. In both 

figures the ratio R is five times larger at the beginning than at the end. The conclusion is 

that it is important that m is correctly specified when t-step transition probabilities are to be 

computed, even when t is small. For larger values of t and for larger differences between 

the Markov orders, the ratio R can be much larger.  

 

 



 

1a 
 

 
 
 

1b 

 
 

Figure 1 The ratio ( ) ( )20/20 )1(
1

)1(
3

)2(
1

)2(
3 ===== XXPXXPR as a function of )1,2(2α . 

(a) When 1.0)1( and 5.0 2
2 == αW . (b) When 9.0)1( and 9.0 2

2 == αW . 

 



3. Estimation of parameters 

3.1 Notations for frequencies and an expression for the Likelihood 

In general, let ( )s ti j denote the event that a sequence of states is occupied, from state i at 

time s to state j at time t. In analogy with the notations for the transition probabilities in (1) 

and (2) which were designated by Greek symbols, the following notations are used for the 

transition frequencies: 

1

1 t+1

1 t+1

 Number of transitions from (2 ) to (2 ).

(1 )                -"-                    (1 1 ) to (1 )

(2,1 )             -"-                    (2,1 1 ) to (1 )

t t t
s

t t s t
s

t t s t

B
A
A

+

− +

− +

=

=

=





                            (3) 

The state frequencies or risk masses, i.e. the number of persons being in a state just before 

transitions occur, are denoted in the following way: 

1

1

(2)  Number of persons in state 2

(1 )               -"-                        (1 1 )

(2,1 )            -"-                        (2,1 1 )

t t
s

t t s t
s

t t s t

N
N
N

− +

− +

=

=

=





                                    (4) 

The quantities in (3) and (4) are related. If no subjects in the sample disappear between the 

transitions, then e.g. 1
1 1(2) and (1 ) (1 )s s

t t t tB N A N +
+ += = . Since withdrawals may occur in 

practise both notations in (3) and (4) will be used. The total fixed sample size is denoted by 

n. An illustration of these frequencies is shown in Table 2 for a Markov chain of order 

m=2. Here one may notice that 2 2(1 ) (2,1) (1) and (1 ) (2,1) (1)t t t t t tA A A N N N+ = + = . 

 

Table 2 Transition- and state frequencies in the three-state model for progress of health 

when the Markov order is m=2. 

 
State at t+1 

0 1 2 Total 
 (0,0) (0)tN  0 0 (0)tN  

State at (1,1) 2 2(1 ) (1 )t tN A−  2(1 )tA  0 2(1 )tN  
(t-1,t) (2,1) (2,1) (2,1)t tN A−  (2,1)tA  0 (2,1)tN  

 (2,2) 0 (2)t tN B−  tB  (2)tN  
     n 

 
 



)2( and )1,2( ),1( t
s

t
s

t NNN  will in the sequel be termed working sample sizes and these 

will be used for estimating the - and - βα parameters. The working sample sizes will 

gradually become smaller as persons move to state 0. 

    The likelihood ( )mL  of all observations in the three-state model of Markov order m can 

be expressed as 
1

(2)( ) ( ) ( )

1

(1 )t t t

T
B N Bm m m

t t
t

L C F Gβ β
−

−

=

= ⋅ − ⋅ ⋅∏                                          (5) 

 

Here C is a constant that does not depend on the - and α β -parameters, and  

[ ] [ ]
1

(1) (1) (1)

1( )
1 1(1 ) (1 ) (1 ) (1 ) (1 ) (1 )

1

(1) 1 (1) ,                                               if 1

(1 ) 1 (1 ) (1 ) 1 (1 ) ,  if 2

t t t

t t t m m m
t t t t t t

T
A N A

t t
tm

m TA N A A N At t m m
t t t t

t t m

m
F

m

α α

α α α α

−
−

=

− −− −

= =


− =

= 
       − − ≥       

∏

∏ ∏





  

1 1 1( ) 1 (2,1 ) (2,1 ) (2,1 )1 1

2

1,  if 1                                                                                  

(2,1 ) 1 (2,1 ) ,  if 2
i i i

t t t
m m T A N Ai i

t t
i t i

m
G

mα α
− − −− −− −

= =

=
=     − ≥    
∏∏

 

 

A proof of the above relations is outlined in the Appendix A1. 

    Some special cases are, for m=1, 2: 

[ ]

[ ]

1
(1) (1)(2) (1)(1)

1

(1) (1)(2) (1)

(1 ) [ (1)] 1 (1) (Homogeneous case)

= (1 ) [ (1)] 1 (1)

t tt t t t

t tt t t t

T
N AB N B A

t t t t
t

N AB N B A

L C

C

β β α α

β β α α

−
−−

=
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3.2 Maximum Likelihood estimation of the parameters 

By taking the derivatives of the logarithm of ( )mL in (5) with respect to the unknown 

parameters and equating to zero, one easily finds the following Maximum Likelihood 

(ML) estimators of the parameters.  
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In the special case when m=0, one has the restriction that 1)1( =+ tt βα . (This is because 

( ) ( ) ( ) )1(111121122 111 tttttttt PPP αβ −=−=−== +++ .) The ML estimator of the single 

linearly independent parameter )1(tα is 

)2()1(
)2()1(

)(ˆ
tt

ttt
t NN

BNA
t

+
−+

=α                                                (8) 

In the homogeneous case all terms in (8) are preceded by summation signs, as in (7). 

 

    Special cases of the α -estimators  for m=1,2,3 
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t
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 , where the summation is from t=2 to t=T-1. 
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N N N
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. The latter sums are 

computed from t=3 to t=T-1. 

     
3.3 Properties of  ML estimators 

To study some properties of the ML estimators, a lemma will be used that is a 

generalization of well known results for proportions based on fixed sample sizes. Introduce 

the notation X~ ( )θ,nB for a random variable X that has a binomial distribution with integer 

parameter n and proportion θ .  

 

Lemma.  If X~ ( )NpnB ,  and the conditional random variable ( )NX ~ ( )XpNB , then  

(a) X~ ( )XN ppnB ,  . 

(b) ˆ X
Xp
N

=  is unbiased for Xp  with ( )1ˆ( ) (1 )X X XV p p p E N −= − . Furthermore, 

ˆ ˆ(1 )ˆ ˆ( )
1

X X
X

p pV p
N
−

=
−

 is an unbiased estimator of ˆ( )XV p . 

Also, if iN ~ ( ) ( )iiN NXpnB
i

 and , ~ ( )
iXi pNB , , i=1,2, where ( ) ( )1 1 2 2 and X N X N are 

independent, then 

(c) 
1 2

1 2

1 2

ˆ ˆX X
X Xp p
N N
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X Xp
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+
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+
 is unbiased for Xp  and ( )1 1

1 2ˆ ˆ(1 )X Xp p N N− −− +  is an approximately 

unbiased estimator of ( )1 2
ˆ ˆX XV p p− . 

For a proof of the above relations, see Appendix A2. 

     To apply the lemma on the estimator ˆ
tβ  in (6), notice that )2(tN ~ ( ))2(, )( =m

tXPnB , 

where ( )( 2)m
tP X =  can be obtained from the results in Sections 2.2.1 and 2.2.2. Since 

( ))2(tt NB ~ ( )ttNB β),2( it follows that ˆ
tβ  is unbiased for tβ  and also that 
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In a similar way it is easily seen that ˆ (1 )s
tα  and ˆ (2,1 )s

tα  in (6) are unbiased with unbiased 

variance estimators  
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By the same arguments it can be shown that the estimators in the homogeneous case in (7) 

are unbiased. In the latter case an unbiased estimator of ( )ˆV β  is  

ˆ ˆ(1 )ˆˆ ( )
(2) 1t

V
N

β ββ −
=

−∑
                                              (11) 

 

The variances of the other estimators in (7) are estimated analogously. 

    Notice that the variances of the above estimators differ from the variances of the 

corresponding estimators based on fixed sample sizes. Consider for instance ˆ( )tV β  in (9). 

With a fixed sample size it is well known that the latter has a maximum for 1/ 2tβ = . But, 

in the present case the variance depends on ( )1/ (2)tE N , which in turn is a function of tβ .  

Here, ( )1/ (2)tE N  can be obtained from a Taylor expansion, using the fact that ( )(2)tE N  

( )( )( =2) and (2)m
t tn P X V N= ⋅ = ( ) ( )( 2) 1 ( 2)m m

t tn P X P X ⋅ = − =  . In the last two 

expressions ( )( 2)m
tP X = = 

1

2
1

t

j
j

π β
−

=
∏  (cf. Sections 2.2.1 and 2.2.3). Assume for simplicity 

that all tβ ’s are approximately equal to β . Then ( ) ( ) 11
21/ (2) t

tE N nπ β
−−≈ , omitting terms 

of order 2n− and smaller. In this case it is easily seen that ˆ( )tV β  is a strictly decreasing 

function of β when 3t ≥  that tends to infinity as β approaches 0, and tends to 0 as β

approaches 1.  

 

3.4 Confidence intervals for parameters 

Conditionally on the working sample sizes, all numerators in (6) and (7) have Binomial 

distributions, e.g. tB ~ ( )ttNB β),2( . CI’s for the parameters can thus be constructed by 



using the relation between the Binomial and F distributions noticed by Jowett [8]. In this 

way the 95 % lower and upper confidence limits for tβ , ( ) ( )ˆ ˆ and L U
t tβ β , respectively, are 
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                      (12) 

 

 

In (12) the notation .975 1 2( , )F n n  is used for the 97.5 percentile in the F-distribution with 1n

and 2n  degrees of freedom. CIs for other parameters are constructed in a similar way. The 

CIs constructed in this way are conservative in the sense that the actual coverage rate is at 

least 95 %. 

 

3.5 A simulation study 

To study the performance of the proposed estimators in Section 3.2-3.4 some simulations 

were carried out for MCs of order 1≤m . The probabilities for remaining in state 1 were 

3,2,1 ,1)1( =+−= ttt δβα  with )1( 15.0 and )0( 0 ==== mm δδ . The β -parameters 

were gradually increasing from 0.30 at t = 1 to 0.40 at t = 3 and from 0.60 at t = 1 to 0.70 

at t = 3. Frequencies of the initial state at t = 1were obtained by assigning the states 2 and 1 

for each subject in a sample of size n with probabilities 5.01 and 5.0 22 =−= ππ . n was 

chosen as 100, 500 and 1000. Each simulation consisted of 10 000 replicates. 

     The results are shown in Table 3. Here only the figures for the case 15.0=δ  are given 

since no essential difference between the two cases was seen. In the table one notices that 

the bias of the β -estimators and of the estimated variances can be neglected. As n 

increases from 100 to 1000 there is a considerably reduction of the variance of the 

estimators and also of the average length of the CI intervals. This is of course a result of 

the fact that by increasing n, the working sample sizes )2(tN become larger. Notice that 

the 95 % CIs given by (12) are conservative and that the coverage rate can be much higher 

than 95 % in small samples, which in terms imply wider CIs. 

     Results for estimators of the α -parameters show a similar pattern and are therefore not 

presented. 

 



 

 

 
40.0  ,35.0  ,30.0 321 === βββ  

Bias of tβ̂  Variance of tβ̂  Estimated variance of tβ̂  
n t = 1 t = 2 t =3 t = 1 t = 2 t = 3 t = 1 t =2 t= 3 
100 .00 .00 .00 .0042 .0161 .0566 .0043 .0175 .0638 
500 -.00 -.00 .00 .0008 .0031 .0096 .0008 .0031 .0099 

1000 -.00 -.00 .00 .0004 .0015 .0046 .0004 .0015 .0048 
 

40.0  ,35.0  ,30.0 321 === βββ  
Mean of )2(tN  Mean CI-level for tβ  Mean of CI-length  

n t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 
100 50 15 5 96.7 97.4 97.5 .27 .50 .75 
500 250 75 26 95.9 96.2 96.8 .12 .23 .39 

1000 500 150 52 95.3 96.0 96.6 .08 .16 .28 
 
 

70.0  ,65.0  ,60.0 321 === βββ  

Bias of tβ̂  Variance of tβ̂  Estimated variance of tβ̂  
n t = 1 t = 2 t =3 t = 1 t = 2 t = 3 t = 1 t =2 t= 3 
100 -.00 .00 .00 .0049 .0078 .0111 .0049 .0080 .0119 
500 -.00 .00 -.00 .0009 .0015 .0023 .0010 .0015 .0022 

1000 -.00 .00 .00 .0004 .0008 .0011 .0005 .0008 .0011 
 

70.0  ,65.0  ,60.0 321 === βββ  
Mean of )2(tN  Mean CI-level for tβ  Mean of CI-length  

n t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 
100 50 30 20 96.4 96.6 97.7 .28 .36 .42 
500 250 150 98 95.8 96.1 96.1 .12 .16 .19 

1000 500 300 195 95.2 95.6 96.6 .09 .11 .13 
 
 
Table 3 Results from the simulation studies with two sets of the β -parameters. (See text.) 

 

 

4. An application: Work resumption among sick-listed women and men 

 
In Sweden the annual costs for sick absence increased from 15 billion Euro in 1997 to 26 

billion Euro in 1999, costs for production losses not included [4]. The growing awareness 

of these raising costs initiated several surveys in order to deal with the problem. One of 



these was a survey performed in the county of Vastra Gotaland in Sweden to study work 

resumption among long-termed sick-listed persons who participated in various 

rehabilitation programs. After start of the rehabilitation the health states 0 (Healthy), 1 

(Improved) and 2 (Acute diseased) were recorded for each person at the beginning of each 

quarter t = 1,2,...8. The classification into the states was made by social insurance 

authorities. In order to illustrate the results in previous sections, only different patterns in 

work resumption between the sexes will be examined. The time unit was originally one 

month (30 days), but there were several reasons for using quarter instead. One was that the 

transition frequencies changed very little between months. A further reason was that the 

unit quarter gave rise to the structure of Table 1, where no transitions from state 2 to state 0 

were obtained. This structure was violated if longer periods than quarter were used. 

    The process tX  with the state space (0,1,2), t=1…8, will for simplicity be called the 

rehabilitation process. The sample consisted of 2440 women and 1801 men and the initial 

probability of being in state 2 was 2 0.45π =  for women and 2 0.47π =  for men. The 

percentage of the persons being in the different states is summarized in Table 4.  

 

Quarter 

Sex State 1 2 3 4 5 6 7 8 Total 

 2 45 37 34 33 32 32 31 30  

Women 1 55 55 50 47 45 43 42 42 2440 

 0 - 8 16 20 23 25 27 28  

 2 47 40 36 34 33 32 31 30  

Men 1 53 48 43 39 35 33 32 32 1801 

 0 - 12 21 27 32 35 37 38  

 

Table 4 Percentage of women and men that were in the different health states at the 

beginning of each quarter. 

 

4.1 Transition probabilities 

Tests of homogeneity and of Markov order m are considered in [7] and these suggested a 

non-homogeneous MC of order m = 2 for both sexes, possibly with a shift to m = 1 at the 

quarters 6 and 7. In a non-homogeneous MC of order 2 there are three transition 

probabilities, )1,2( and )1( , 2
ttt ααβ to estimate at each 2t ≥ . Figure 2a shows the estimates 



of tβ , the probability of remaining in the state 2 at time t. The differences between the 

estimates for the two sexes were very small. The probability of remaining in state 2 was 

smallest during the first quarter and increased during the first year until it reached a stable 

level of about 0.98, disregarding a small decrease at the last quarter. Transitions from the 

most acute disease phase 2 to a less severe state 1 was thus most likely to take place at the 

start of the rehabilitation period, and if no transition has taken place during the first year 

the chance of such an event during the second year was small. 

    The two probabilities of remaining in state 1, )1,2( and )1( 2
tt αα , are shown in Figure 2b. 

The two probabilities differed markedly for both sexes, and the probability of remaining in 

state 1 was larger if the subject had previously remained in state 1, compared to if the 

subject had moved from state 2 to state 1. The two probabilities of remaining in state 1 

were also constantly larger for women, except for the last two quarters. The estimates of 

)1,2(tα are however more unreliable than the estimates of )1( 2
tα , since (2,1)tN  were 

considerably smaller than 2(1 )tN . E.g. for women )1( 2
tN  decreased from 1158 at t =2 to 

1012 at t = 7, while )1,2(tN decreased from 177 at t =2 to just 10 at t =7.  

     From expressions like the one in (11) one may calculate the 95 % CI’s for the 

parameters 2,  (1 ) and (2,1)t t tβ α α . At t=4 the latter are (0.956, 0.981), (.918, 0.947) and 

(0.537, 0.889) for women, and (0.958, 0.985), (0.855, 0.906) and (0.513, 0.825) for men. 

Here one may notice that all CIs overlap except for the CIs for 2(1 )tα . In general it turned 

out that the lengths of the confidence intervals for (2,1)tα were 5-15 times wider than those 

for )1( and 2
tt αβ .  

 

4.2 r-step transition probabilities (predictions) computed under various assumptions 

Given that a subject is in a state at some time, one may compute the probability that the 

subject is in a certain state at a future time, r steps ahead. Consider the probability of a 

transition from state 2 at the initial time 1 to state 0 at the times r=3…8, denoted by 

( )( ) ( )
10 2m m

rP X X= = . The latter reflects how the probability of moving from the most 

acute disease state 2 at the start of the rehabilitation to the healthy state 0 develops in time,  

 

 

 



 

(a) 
 

 
 
 

(b) 

 
Figure 2. (a) Estimates of tβ , the probability of remaining in state 2 at t = 1...7, for 
women (unfilled circles) and men (filled circles). (b) Estimates of )1( 2

tα (upper two 
curves) and of )1,2(tα (lower two curves), the two probabilities of remaining in state 1 
depending on previous history, for women (unfilled circles) and men (filled circles). 
 
 



from the first quarter of the rehabilitation to the r:th quarter. These probabilities can be 

estimated from the observed relative frequencies, but also by inserting the estimates for the 

α - and β -parameters into the expressions for ( )( ) ( )
10 2m m

rP X X= =  given in Section 

2.2.1. The former estimates will be called model-free and the latter model-dependent. 

    Figure 3 shows the model-free estimates together with the model-dependent estimates 

for women when m=1 and m=2. The agreement between the model-free estimates and the 

model-dependent estimates was poor when m=1 but quite good when m=2. Given that a 

woman started in state 2, the probability of reaching state 0 at the last quarter r=8 was 

0.114 (model-free estimate). The corresponding probability for men was about 50 % 

higher, 0.173. For both sexes these figures were considerably smaller than the probability 

of moving from the intermediate state 1 at quarter 1 to the state 0 at quarter 8, 0.409 for 

females and 0.552 for males. 

 

 

 
 
Figure 3. Estimates of the r-step probabilities p = ( )20 )(

1
)( == mm

r XXP , r =3...8, for 

women. Empirical model-free estimates (*), estimates assuming m = 2 (○) and estimates 

assuming m = 1 (●). 

 

    To compare the r-step transition probabilities between women and men, introduce for 

the moment the notations ( ) ( ) ( ) ( )
10 20 10 20(1, ),  (1, ) and (1, ),  (1, )W W M Mp r p r p r p r for the probabilities 



for women and men, respectively, to move from 10  to 1r  and from 10  to 2r . Let 
( ) ( ) and W M
i in n , i=1,2, be the number women and men, respectively, who are in state i at the 

first quarter and let all estimates be model-free. Then it follows from large-sample theory 

that the statistic 
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( ) 1 ( ) 1
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can be used for testing the hypothesis ( ) ( )
10 10(1, ) (1, )W Mp r p r= . The latter is rejected for large 

values of the test statistic which in large samples can be treated as a chi-square variable 

with 1 degree of freedom. A test of the hypothesis ( ) ( )
20 20ˆ ˆ(1, ) (1, )W Mp r p r=  is treated 

similarly.  

    In the present data the hypothesis of equal r-step transition probabilities for women and 

men was rejected at the 5 % level for all r =3…8 regarding transitions from 1 to 0, and for 

all r=4…8 regarding transitions from 2 to 0. In all cases men had higher probabilities. The 

only non-significant difference was obtained for transitions from state 2 at time 1 to state 0 

at time 3, where the value of the chi-square statistic was 3.45, corresponding to the p-value 

0.063. In the present data, consisting of persons that had participated in rehabilitation 

programs, there is thus massive evidence for the fact that men have a higher chance than 

women to reach the final healthy state 0 within 2 years. 

    A similar analysis of the difference between the sexes regarding the transition 

probabilities from state 2 at time 1 to state 1 at r=2…8, showed no significant differences. 

Possible explanations of these different patterns are discussed below.  

    Finally, it may be instructive to demonstrate what would happen if the data were 

analysed by assuming a homogeneous MC of order m=1. For men one gets the estimates 

ˆ ˆ0.936 and (1) 0.868β α= = , and from the results in Section 2.2.2 it is now possible to 

compute the probabilities 

( ) ( ) ( )(1) (1) (1) (1) (1) (1)
1 1 1 1 1 10 2 1 1 2 2 2t t tP X X P X X P X X+ + += = = − = = − = = . 

With t=3 the latter probability is 0.023 implying that only 2.3 % of the men who started in 

the most acute phase 2 could be expected to become healthy during the first year. The 

corresponding probability based on a non-homogeneous MC of order m=2 was 0.088, 

which is close to the empirical value 0.091.  



 

 

5. Some final remarks 

 

This paper has considered some aspects of model building when using Markov Chains for 

analyzing the progression of patient’s health states.  

     First, that the specification of time unit, state space, Markov order and how the 

transition probabilities change with time, are closely connected. In the example of Section 

4 the time unit was chosen as quarter which resulted in a non-homogeneous MC of order 2. 

Other choices of time unit would have given other options.  

     Second, there is a problem with high order MCs since they require large samples in 

order to estimate all transition probabilities accurately, especially when they are non-

homogeneous. Very few rehabilitation processes are in fact homogeneous and this argues 

for that parsimonious models with few states should be used, at least in a first step. In the 

example of Section 4 a significant difference between the sexes was noticed for the 

parameter ).1,2(for not but  )1( 2
tt αα However, this was likely caused by the fact that the 

working sample size for estimating the former parameter was much larger. When planning 

a MC study of this kind one should not just focus on the total sample size n, but also try to 

get information about the magnitude of the working sample sizes. 

     The present study should be viewed as a first step for analyzing progression of patient’s 

health states. In a second step one may go further and model how the transition 

probabilities depends on a number of covariates, such as age and diagnosis. This approach 

is of importance if predictions of future health are at the individual level and not just for 

groups. The three-state MC model with transition probabilities that are schematically 

illustrated in Figure 1 can be used also in other contexts, e.g. when studying transition from 

HIV infection to AIDS and further to death or transition from healthy to diabetes and 

finally to death, just to take a few examples. 
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Appendix 

 

(A1) Derivation of the expressions that follows from the requirement that Markov 

chains of order 1 and 2 have the same one-step transition probabilities, 

( ) ( )(1) (1) (2) (2)
1 11 1 1 1 ,  2,3t t t tP X X P X X t+ += = = = = = . 

Let tj denote the event that state j is occupied at time t. For a Markov chain with m=2,  

( ) ( ) ( )3 2 2 3 21 1 1 ,1 / 1P P P= , where 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2 2 1 1 2 1 1 1 2 1 21 1 ,1 2 ,1 1 1 1 1 2 2 (1)(1 ) (1 )P P P P P P P α π β π= + = + = − + − , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 1 2 3 1 2 3 3 1 2 2 1 1 3 1 2 2 1 11 ,1 1 ,1 ,1 2 ,1 ,1 1 1 ,1 1 1 1 1 2 ,1 1 2 2P P P P P P P P P= + = +

= 2
2 1 2 2 1 2(1 ) (1)(1 ) (2,1)(1 )α α π α β π− + − . Thus, 

 

( ) ( )(2) (2) 2
3 2 2 2 2 21 1 (1 ) (2,1) 1P X X W Wα α= = = + − ,                              (i) 

                                 where 1 2
2

1 2 1 2

(1)(1 )
(1)(1 ) (1 )

W α π
α π β π

−
=

− + −
 

 
In the same way it is easily shown that 
 

( ) ( )(2) (2) 2
4 3 3 3 3 31 1 (1 ) (2,1) 1P X X W Wα α= = = + − ,                             (ii) 

                                 where 
2

2 1 2 2 1 2
3 2

2 1 2 2 1 2 2 1 2

(1 ) (1)(1 ) (2,1)(1 )
(1 ) (1)(1 ) (2,1)(1 ) (1 )

W α α π α β π
α α π α β π β β π

− + −
=

− + − + −
      

 
If the two expressions in (i) and (ii) are put equal to 2 (1)α  and 3(1)α , respectively, it is 
guaranteed that the one-step transition probabilities are the same when m=1 and m=2. 
 
 
(A2) Derivation of the expression for the Likelihood in (5) 

Let 1( )Tp x x be the joint probability function of the states 1 Tx x . Then the likelihood of 

a Markov chain of order m can be written 

( ) ( ) ( ) ( ) ( )

( ) ( )

( )
1

1 2 1 3 1 2 1 1 1 1 1

1 1

1 1 1 1 1
1

( )

( )

( )

m
T

m m m m T T m T

m T

t t t t m t
t t m

L p x x

p x p x x p x x x p x x x p x x x p x x x

p x p x x x p x x x

− + − −

− −

+ + − +
= =

= =

=

⋅∏ ∏



    

 

 



Here 1( )p x = 2 1(1) (1)
2 2(1 )N Nπ π− , ( )2 1p x x = [ ] 1 11 1 1 1

(1) (1)(2) (1)
1 1 1 1(1 ) (1) 1 (1) N AB N B Aβ β α α −−− − , and 

( )3 1 2p x x x = 

[ ]
2 22 2 2 2 22 2 2 2 2

(1 ) (1 ) (2,1) (2,1)(2) (1 ) (2,1)2 2
2 2 2 2 2 2(1 ) (1 ) 1 (1 ) (2,1) 1 (2,1)

N A N AB N B A Aβ β α α α α
− −−  − − −  . 

The general form of ( ) ( ) and m mF G  follows by repeating the argument. 

 

(A3) Proof of (a)-(c) of the lemma in Section 3.2 

To prove (a), notice that the probability generating function (pgf) of X is 

( ) ( )( ) ( ) ( )
( ) 1

1)1()1(

XNXN

n
NNXX

N
XXN

X
N

X

pppzp
pppzppzpENzEEzE

−+

=−+−+=−+==
 

and the latter is the pgf for X~ ( )XN ppnB ,  . 

ˆ Xp  in (b) is unbiased because ˆ( ) X
X N N X

X NpE p E E N E p
N N

    = = =        
 . The variance 

of ˆ Xp  is 

( )( ) ( )( ) ( ) 1(1 )ˆ ˆ (1 ) ( ) 0X X
N X N X N N X X X

p pE V p N V E p N E V p p p E N
N

−− + = + = − + 
 

. 

Finally, to show that ˆ ˆ( )XV p is unbiased for ˆ( )XV p , consider ˆ ˆ(1 )
1

X Xp pE
N
− 

 − 
= 

2 2 2

2 2

( (1 ) )
( 1) ( 1) ( 1) ( 1)

X X X X
N N

X X Np Np p N pE E N E
N N N N N N N N

    − +
= − = − =    − − − −    

 

( )1 ˆ(1 ) ( )X X Xp p E N V p−= − = . 

     (c) is proved in the same way as (b). The suggested estimator of ( )1 2
ˆ ˆX XV p p−  

presupposes that 1 2 and N N  are so large that 1 2

1 2

1 1N N
N N
+ −

≈
+

.    

(A4) Proof of the proposition about the difference between the estimates in Section 

3.3.2 

The ML estimator of (1 )m
tα  is 

1 1 1

1 1

ˆ ˆ(1 ) (1 ) (2,1 ) (1 ) (1 ) (2,1 ) (2,1 )
(1 ) (1 ) (2,1 ) (1 ) (2,1 )

m m m m m m m
t t t t t t t

m m m m m
t t t t t

A A A N N
N N N N N

α α+ + +

+ +

+ +
= =

+ +
, 

and from this it follows that 



1 1 (2,1 )ˆ ˆ ˆ ˆ(1 ) (1 ) [ (1 ) (2,1 )]
(1 )

m
m m m m t

t t t t m
t

N
N

α α α α+ +− = − ⋅  

In the same way it is easily shown that 
1

1 (1 )ˆ ˆ ˆ ˆ(2,1 ) (1 ) [ (2,1 ) (1 )]
(1 )

m
m m m m t

t t t t m
t

N
N

α α α α
+

+− = − ⋅  



 



Research Report 
 

2007:1 Andersson, E.:  Effect of dependency in systems for multivariate 
surveillance. 

2007:2 Frisén, M.:  Optimal Sequential Surveillance for Finance, Public 
Health and other areas. 

2007:3 Bock, D.:  Consequences of using the probability of a false alarm 
as the false alarm measure. 

2007:4 Frisén, M.:  Principles for Multivariate Surveillance. 

2007:5 Andersson, E., Bock, 
D. & Frisén, M.: 

 Modeling influenza incidence for the purpose of on-
line monitoring. 

2007:6 Bock, D., Andersson, 
E. & Frisén, M.: 

 Statistical Surveillance of Epidemics: Peak Detection 
of Influenza in Sweden. 

2007:7 Andersson, E., 
Kuhlmann, S., Linde., 
A &Frisén, M.: 

 Predictions by early indicators of the progress of the 
influenza in Sweden. 

2007:8 Bock, D., Andersson, 
E. & Frisén, M.: 

 Similarities and differences between statistical 
surveillance and certain decision rules in finance. 

2007:9 Bock, D.:  Evaluations of likelihood based surveillance of 
volatility. 

2007:10 Bock, D. & Pettersson, 
K.: 

 Explorative analysis of spatial aspects on the Swedish 
influenza data. 

2007:11 Frisén, M. & 
Andersson, E.: 

 On-line detection of outbreaks. 

2007:12 Frisén, M., Andersson, 
E. & Schiöler, L.: 

 A non-parametric system for on-line outbreak 
detection of epidemics. 

2007:13 Frisén, M., Andersson, 
E. & Pettersson, K.: 

 Estimation of outbreak regression. 

2007:14 Pettersson, K.:  Unimodal regression in the two-parameter exponential 
family with constant dispersion parameter. 

2007:15    



Research Report 
 

2008:1 Frisén, M.  Introduction to financial surveillance. 

2008:2 
 
 
2008:3 

Jonsson, R. 
 
 
Andersson, E. 

 When does Heckman’s two-step procedure for 
censored data work and when does it not? 
 
Hotelling´s T2 Method in Multivariate On-Line 
Surveillance. On the Delay of an Alarm. 

2008:4 Schiöler, L. & Frisén, M.  On statistical surveillance of the performance of 
fund managers. 

2008:5 Schiöler, L.  Explorative analysis of spatial patterns of 
influenza incidences in Sweden 1999—2008. 

2008:6 Schiöler, L.  Aspects of Surveillance of Outbreaks. 

2008:7 Andersson, E &  
Frisén, M. 

 Statistiska varningssystem för hälsorisker 

2009:1 Frisén, M., Andersson, E. 
& Schiöler, L. 

 Evaluation of Multivariate Surveillance 

2009:2 Frisén, M., Andersson, E. 
& Schiöler, L. 

 Sufficient Reduction in Multivariate Surveillance 

2010:1 Schiöler, L  Modelling the spatial patterns of influenza 
incidence in Sweden 

2010:2 Schiöler, L. & Frisén, M.  Multivariate outbreak detection 

2010:3 Jonsson, R.  Relative Efficiency of a Quantile Method for 
Estimating Parameters in Censored Two-
Parameter Weibull Distributions 

2010:4 Jonsson, R.  A  CUSUM  procedure for detection of outbreaks 
in Poisson distributed medical health events 

2011:1 Jonsson, R.  Simple conservative confidence intervals for 
comparing matched proportions 

2011:2 Frisén, M  On multivariate control charts 

2011:3 
 
2011:4 
 
 
2011:5 

Frisén, M 
 
Knoth, S &Frisén, M 
 
 
Marianne Frisén 

 Methods and evaluations for surveillance  in 
industry, business, finance, and public health 
Minimax Optimality of CUSUM for an 
Autoregressive Model  

Inference principles for multivariate surveillance 


	framsida RR116 111030MF
	Report innehåll 2011 6 Jonsson
	Department of Economics, Goteborg University, Box 640, 405 30 Goteborg, Sweden
	Transitions from state 2:
	Transitions from state 1:


	Special cases of the  -estimators  for m=1,2,3
	Acknowledgements
	References

	Appendix

	tomsida
	SSGRÖN2007
	baksida RR116 111030MF

