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Abstract 
 
In school algebra, using different methods including factorization to solve quadratic equations 
is one common teaching and learning topic at upper secondary school level. This study is 
about analyzing the algebra content related to solving quadratic equations and the method of 
factorization as presented in Swedish mathematics textbooks with subject matter content 
knowledge (CK) and pedagogical content knowledge (PCK) as analytical tools. Mathematics 
textbooks as educational resources and artefacts are widely used in classroom teaching and 
learning. What is presented in a textbook is often taught by teachers in the classroom. 
Similarly, what is missing from the textbook may not be presented by the teacher. The study 
is based on an assumption that pedagogical content knowledge is embedded in the subject 
content presented in textbooks. Textbooks contain both subject content knowledge and 
pedagogical content knowledge. 
 
The primary aim of the study is to explore what pedagogical content knowledge regarding 
solving quadratic equations that is embedded in mathematics textbooks. The secondary aim is 
to analyze the algebra content related to solving quadratic equations from the perspective of 
mathematics as a discipline in relation to algebra history. It is about what one can find in the 
textbook rather than how the textbook is used in the classroom. The study concerns a teaching 
perspective and is intended to contribute to the understanding of the conditions of teaching 
solving quadratic equations. 
 
The theoretical framework is based on Shulman’s concept pedagogical content knowledge 
and Mishra and Koehler’s concept content knowledge. The general theoretical perspective is 
based on Wartofsky’s artifact theory. The empirical material used in this study includes 
twelve mathematics textbooks in the mathematics B course at Swedish upper secondary 
schools. The study contains four rounds of analyses. The results of the first three rounds have 
set up a basis for a deep analysis of one selected textbook. 
 
The results show that the analyzed Swedish mathematics textbooks reflect the Swedish 
mathematics syllabus of algebra. It is found that the algebra content related to solving 
quadratic equations is similar in every investigated textbook. There is an accumulative 
relationship among all the algebra content with a final goal of presenting how to solve 
quadratic equations by quadratic formula, which implies that classroom teaching may focus 
on quadratic formula. Factorization method is presented for solving simple quadratic 
equations but not the general-formed quadratic equations. The study finds that the 
presentation of the algebra content related to quadratic equations in the selected textbook is 
organized by four geometrical models that can be traced back to the history of algebra. These 
four geometrical models are applied for illustrating algebra rules and construct an overall 
embedded teaching trajectory with five sub-trajectories. The historically related pedagogy and 
application of mathematics in both real world and pure mathematics contexts are the 
pedagogical content knowledge related to quadratic equations. 
 
Keywords: mathematics textbooks, school algebra, solving methods, factorization, solving 
quadratic equations, mathematics teaching, content knowledge, pedagogical content 
knowledge, geometrical models, algebra history, embedded teaching trajectories 
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1. Introduction 

1.1 Personal interests 
 
Being an immigrant researcher, I received my upper secondary mathematics education in the 
People’s Republic of China. During the 1980s, China was not open enough to be able to 
communicate with the outside of world within the field of mathematics education. 
Mathematics teaching at that time was characterized by manipulating algorithm steps without 
the use of calculators or computer programs. Reasoning about the solution of a problem was a 
common teaching approach in mathematics teaching in my school. When I moved to Sweden, 
I repeated my mathematics education at Swedish upper secondary school and later started my 
teacher training within the field of mathematics education at Jönköping University. During 
that time, I was offered opportunities to do my teaching practice in an upper secondary school 
where I found that teaching to solve quadratic equations by using the quadratic formula was 
the essential method. Another method, like factorization, was not in focus. I wondered why 
the factorization method was not emphasized in teaching solving quadratic equations. This 
finding was not only generated from the teaching practice but also from my own experiences 
of studying mathematics at a Swedish upper secondary school and at university. Algebra 
teaching concerning how to solve quadratic equations was different from my Chinese 
educational background, in which I was taught to use factorization as an essential method to 
solve a quadratic equation. The quadratic formula was regarded as a secondary tool in order to 
deal with the quadratic equations that were difficult to be solved by factorization. 
 
The different teaching focuses regarding the topic of solving quadratic equations made me 
curious about what mathematics is taught and why it is taught differently. With these 
questions in my mind, I sought answers. In 2006, I was accepted as a doctoral student by a 
graduate school (the Center for Educational Sciences and Teacher Research) at Gothenburg 
University. I am very grateful to the graduate school for providing me with such an 
opportunity to do research within the field of teaching and learning school algebra. Without 
hesitation, I started by searching for previous research related to teaching quadratic equations 
and factorizations. To my surprise, I have found that I am not alone being interested in these 
topics. Mathematics educators from other countries like Singapore, Thailand, Canada, and the 
USA are interested the same topics. As a result of my research review, I have realized that 
different teaching focuses concerning solving quadratic equations depend on what 
mathematics teaching culture these come from. When related to quadratic expressions, the 
factorization method is emphasized in algebra teaching as a common topic in other countries 
as mentioned above (Bossé & Nandakumar, 2005; Nataraj & Thomas, 2006; Vaiyavutjamai & 
Clements, 2006; Zhu & Simon, 1987). Based on this background, I wondered how Swedish 
mathematics education handled the mathematical topics like quadratic equations and 
factorization at upper secondary school level, and what the teaching of such topics is like. 
Guided by my interests in algebra knowledge and teaching, I needed to analyze empirical 
material that could cover both fields and at the same time represent Swedish mathematics 
culture. Therefore, I decided to investigate Swedish upper secondary mathematics textbooks 
since textbooks themselves are used as important teaching resources at school and contain 
subject knowledge and pedagogical functions. My study focuses on analyzing algebraic 
content as it is presented in the mathematics textbooks. 
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1.2 Subject content and teaching the subject 
 
Research on teaching has in the past been focused on teaching effects related to student 
achievement (Floden, 2001). Most of the research up until the mid-1970s was based on 
looking for associations between measuring students’ learning achievements and variables 
from classrooms such as teachers’ actions in process-product research. Up until 2001, 
process-product research was still a major stream of work, but it declined in the late 1970s. 
However, there are different answers for the question on the effects of teaching associated 
with students’ achievements. Lee Shulman (Floden, 2001) suggests a shift to teacher’s subject 
matter knowledge but encourages all different research approaches that could be used in order 
to improve student performance and learning. Among these, research on examining whether 
the changes of teaching materials can lead to improvement in students’ learning has being 
expanded to complete the effects of a teaching paradigm. Policy studies use methods like 
examining teaching and learning content as well as how much time students spend on learning 
a particular content. Researchers may analyze the content of textbooks, tests or other material 
and compare it with teachers’ instructions recorded by observations, interviews and teacher 
logs. The shift from teachers’ qualification and education to teachers’ subject matter 
knowledge since Shulman’s article in 1986, has made research focus on teaching content, 
instruction and curriculum materials (Floden, 2001). 
 
The common object in research about teaching and learning mathematics is the mathematical 
content. Teaching specific mathematical content requires teachers’ pedagogical content 
knowledge – PCK in short (Shulman, 1986b) – which links content and pedagogy. In addition 
to general pedagogical knowledge and knowledge of the content, teachers need to know 
things like what topics students find interesting or difficult or the representations most useful 
for teaching a specific content idea. Such knowledge intertwines aspects of teaching and 
learning with contents. It is built up by teachers over time as they teach special topics to 
students or by researchers as they investigate the teaching and learning of specific 
mathematical ideas (Ball & Bass, 2000). In this case, content knowledge goes beyond 
mathematical content and it involves pedagogical content knowledge and curricular 
knowledge (Shulman, 1986b). It is common that PCK is studied within the fields of teachers’ 
knowledge and teaching. Following the Shulman’s argument, it should be important to 
investigate how PCK is built in teaching and learning materials. 
 
With its departure from Shulman’s original concept, this study is about investigating possible 
ways of teaching school algebra by analyzing algebra content in mathematics textbooks. In 
the research of school algebra, Kieran (2007) points out that algebra learning has been studied 
more than algebra teaching. Algebra content knowledge has been widely studied and covered 
many areas such as equations, algebraic expressions, algebraic operational rules, simplifying 
algebraic expressions, problem solving, modeling and so on. Among these areas, quadratic 
equations are less studied at upper secondary school level. Algebra is often regarded as a 
difficult area for Swedish students in mathematics studies according to the international test 
results of TIMSS and PISA (Häggström, 2008). Some of the latest studies related to 
classroom discourse have been carried out in this field, from lower to upper secondary schools 
in a Swedish context (Kilhamn, 2011; Olteanu, 2007; Persson, 2010). They have enriched 
research on algebra learning within the areas of negative numbers and conceptual 
understanding of algebra symbols. Based on this background, this study aims at contributing 
to the research of school algebra through studying mathematics textbooks – one of the 
influential factors related to algebra teaching. 
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More precisely, the objective of this study is to study the subject of algebra related to 
factorization and solving quadratic equations in order to uncover the embedded PCK built into 
mathematics textbooks concerning these algebraic content. In Swedish classrooms, students 
spend a substantial part of lesson time on using mathematics textbooks (Johansson, 2006). As 
artifacts (Wartofsky, 1979) and as a major resources for teaching and learning, mathematics 
textbooks often cover topics presented by teachers in classrooms. However, topics which do 
not appear in textbooks are not likely to be presented by teachers (Johansson, 2006). 
“Teaching of the text has always been the teacher’s primary function, with the teacher as 
mediator” (Pepin, Haggarty, & Keynes, 2001, p. 7). The textbook can assist inexperienced 
teachers in deciding what to teach and also in keeping students work at the same pace 
(Selander, 2003). The pedagogical function makes textbooks teaching aids. The essential role 
of mathematics textbooks in Swedish mathematics classrooms is an important background to 
this study on analyzing mathematics textbooks from a teaching perspective.  
 
This study intends to discover pedagogical content knowledge by means of looking for 
embedded teaching trajectories related to algebra content concerning quadratic equations. 
This is based on an assumption that textbooks have embedded teaching trajectories to present 
subject content according to certain orders. The term of embedded teaching trajectory in this 
study derives from the expression of a hypothetical learning trajectory used by Paul Cobb 
(2001). A hypothetical learning trajectory includes both a possible learning route or trajectory 
with important mathematical ideas and the specific actions that might be used to support and 
organize learning along the envisioned trajectory according to Cobb (2001). The envisioned 
trajectory is hypothetical in the sense that it embodies hypotheses about what might be 
possible for students’ mathematical learning in a particular domain (Cobb, 2001). The point 
here is that the hypothetical learning trajectory is imagined rather than how it is manifested. A 
teaching trajectory concerning a special subject involves a mathematics goal and a teaching 
path or developmental progression along which students are expected to learn the subject and 
develop their mathematical competences (Clements & Sarama, 2009). Combining the 
meaning of hypothetical trajectory and teaching trajectory, I use the term of embedded 
teaching trajectory to refer the possible teaching paths with specific mathematical goals built 
into a mathematics textbook. The specific mathematical goal analyzed in this study is to teach 
how to solve quadratic equations. Therefore the content analysis of this study is to examine 
algebra content related to quadratic equations in the textbook by using the concepts content 
knowledge CK (Mirshr & Koehler, 2006) and pedagogical content knowledge PCK (Shulman, 
1986b) as a theoretical framework in order to find the embedded teaching trajectory. 
 

1.2 The aim of the study 
 
The aim of this study is primarily to explore what pedagogical content knowledge regarding 
algebra, in particular quadratic equations, is embedded in the mathematics textbooks used for 
Swedish upper secondary schools. The study relates to both algebra content and pedagogical 
content knowledge in the textbooks. An important step on the way – and a secondary aim of 
my study − is to analyze the algebra content presented in the textbooks. This will be done 
from the perspective of mathematics as a discipline and especially in relation to the historical 
development of algebra as a field of knowledge. It is about what one can find in the textbook 
rather than how the textbook is used in the classroom. This study reflects an analytic interest 
of algebra content knowledge as subject matter content knowledge. In order to combine these 
two aims, I use the CK-PCK framework to analyze the algebra content in the textbook. The 



14 
 

study is intended to contribute to the understanding of the conditions of teaching solving 
quadratic equations.  
 
Research questions are formulated below: 
 
1. What mathematics do Swedish upper secondary mathematics textbooks reflect in their 

presentations of quadratic equations? 
 
To answer the first question the following detailed questions were posed: 
 
a) What algebra content related to quadratic equations is presented in the textbooks?  
b) In which order is quadratic equations and functions presented and do they have 

connections to each other?  
c) What is the most emphasized method for solving quadratic equations presented in the 

textbooks? 
d) How is factorization presented in the textbooks? 
 
The results of the first research question set up a basis for the main in-depth analysis of one 
textbook, in order to answer research questions two. 
 
2. What aspects of pedagogical content knowledge can be traced in the way a Swedish upper 

secondary school textbook presents the algebra content related to quadratic equations? 
 
To answer the second question, I analyzed the mathematical texts, examples, activities and 
exercises of the textbook in detail. Then the following questions were posed:  
 
a) How is mathematical content presented or explained? 
b) What is the character and function of the presented examples and exercises? 
c) What embedded teaching trajectories are built into the presentations of quadratic 

equations in the textbook? How are those trajectories constructed?  
 

1.3 Structure of the thesis 
 
In this part, I will present the organization of the whole thesis. Since it is based on a combined 
CK-PCK (Mishra & Koehler, 2006; Shulman, 1986b) theoretical framework, the thesis will 
be organized according to the two aspects of the framework. 
 
The second chapter begins with a theory of artifact (Wartofsky, 1979) as a general perspective 
of this study and then presents the overall theoretical framework for the study: content 
knowledge and pedagogical content knowledge (Mishra & Koehler, 2006; Shulman, 1986b), 
and mathematical representations (Goldin, 2008; Vergnaud, 1987). A short review on 
mathematics application in mathematics education (De Lange, 1996) is also carried out in this 
chapter. The aim is to show the connections between these theoretical aspects and the study. 
 
The third chapter presents mathematical content relevant for this study. The chapter contains 
three parts: a review of algebra history related to elementary algebra, three approaches to 
solving quadratic equations, and factorization related to abstract algebra. The algebra content 
in this chapter is the core content in the whole study as the subject matter content knowledge 
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(CK) presented in the textbooks. The aim is to seek the historical link and relation to 
mathematics discipline in regard to the algebra content presented in the textbooks.  
  
The fourth chapter consists of two reviews of previous studies in the fields of textbook 
research and school algebra research. Within the area of textbooks, the question why this 
study relates to teaching is answered; two surveys of textbook research are summarized, and a 
review of previous studies on mathematics textbook research is presented. A conclusion of the 
textbook research field will be drawn after the first review. Within the area of algebra 
teaching and learning, previous research on algebra teaching and learning in general will be 
reviewed. Previous studies on teaching and learning factorization and solving quadratic 
equations related to this study will be presented. A conclusion of teaching and learning 
algebra will be drawn after the second review. The aim is to get an insight into the research in 
the two fields: textbook research and school algebra research in order to position my study in 
these two fields.     
 
In the fifth chapter, the research method and process will be presented. I will first introduce 
content analysis as the research method to this study, and then focus on presenting the 
analyzing process containing four rounds of analyses of the investigated mathematics 
textbooks. Afterwards, the analytical tools used for analyzing mathematical texts and 
exercises in the textbook will be presented. Finally, I will reason about the reliability of this 
content analysis. 
 
The sixth chapter presents the results derived from the analyses of the investigated 
mathematics textbooks by relating to the research questions. 
 
The seventh chapter concludes the thesis by discussing the findings and possible implications 
of the findings for teaching algebra related to solving quadratic equations, as well as points of 
interest for the future research. Discussion will be carried out in relation to early research 
within the area of algebra content. 
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2. Theoretical Perspective 
 
This chapter elaborates on the theoretical concepts used in this thesis and they include: artifact; 
pedagogical content knowledge; content knowledge; mathematical representations and 
applications.  
 

2.1 Basic understanding of textbooks 
 
This study makes use of Wartofsky’s idea of artifact (1979) as a general perspective. As an 
education tool, a textbook can be regarded as an artifact (Johansson, 2006). Artifacts are tools 
made by human beings in actions and are applied by (or function as) humans according to 
different needs. Artifacts are the production or reproduction of human beings’ social activities 
(Wartofsky, 1979). The essential character of the artifact is that “its production, its use, and 
the attainment of skill in these, can be transmitted, and thus preserved in a social group, and 
through time, from one generation to the next” (Wartofsky, 1979, p. 201).  
 
Artifacts according to Wartofsky (1979), have characteristics of representations and reflexive 
sense in human perception. Human actions for survival and development in social activities 
throughout history were transmitted and preserved in the forms of symbols and images 
reflecting these actions. Wartofsky categorized artifacts into three kinds. The first of these 
three kinds are primary artifacts, which are directly used in the production of human activities 
(e.g. tools like axes, needles, bowls; modes of social organization; bodily skills and technical 
skills in the use of tools). Secondary artifacts are representations of the modes and skills that 
human beings have used in the production. Tertiary artifacts are “abstracted from their direct 
representational function” (Wartofsky, 1979, p. 209). They constitute free constructions in the 
forms of rules and operations from the actual physical world. They are derived from human 
perceptions of the historical actions but no longer bound to them, but at the same time they 
embody the objectification of human knowledge and intention, according to Wartofsky (1979).   
 
Science theories, books, texts and so on can be regarded as tertiary artifacts since they can 
mediate and transform the embedded meanings and influence the world (Säljö, 2007). In my 
study, mathematics textbooks are analyzed as tertiary artifacts (Wartofsky, 1979) since the 
algebra content presented in textbooks are human products and entail mathematical 
knowledge perceived by human beings. The mathematical knowledge in the textbook is 
taught and learned in order to make learners prepared for the actual or future use of 
mathematical tools. 
 

2.2 Content Knowledge and Pedagogical Content Knowledge 
 
The analytical tools in this study are developed from theoretical concepts advocated by 
Shulman (1986b) and his followers Mishra and Koehler (2006). Traditionally, pedagogical 
knowledge and content knowledge are treated separately in teacher education (Mishra & 
Koehler, 2006). In the introduction of this thesis, it is mentioned that the focus of research on 
teaching has shifted from teacher behavior and process-product studies to teaching and 
teaching content since Shulman declared a new paradigm – pedagogical content knowledge 
(Floden, 2001).  
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What Shulman (1986b) emphasizes is the importance of the teaching content. Shulman argues 
that researchers can not ignore one central aspect of teaching in the classroom: the subject 
matter. This includes how the subject matter is transformed from the knowledge of a teacher 
into the content of instruction and how particular formulations of that content relate to what 
students come to know or misinterpret. This subject matter research has been absent from the 
studies of teaching and is called the “missing paradigm” problem, although historically 
teaching competence involved both knowledge of pedagogy and content. The subject matter 
relates to the content of the lessons taught, the questions asked, and the explanations offered 
according to Shulman (1986b).  
 
Shulman (1986b) advocates that teacher’s content knowledge involves teaching factors and 
the organization of them in a teacher’s mind. The teaching factors are for example: the 
teacher’s understanding of the subject; the sources of the teacher’s knowledge such as 
textbooks, subject literature, teaching material and so on; organization of subject material; the 
teacher’s knowledge of students and their learning; the teacher’s knowledge of curricula etc. 
He has defined three categories of content knowledge: subject matter content knowledge, 
pedagogical content knowledge and curricular knowledge. 
 
Subject matter content knowledge 
 
A teacher’s understanding of subject matter content knowledge requires his or her 
understanding of the facts and concepts of the subject content and the structures of the subject. 
Drawing on Schwab (1978), Shulman (1986b) indicates that the structures of a subject include 
both the substantive and the syntactic structures. The substantive structures refer to ways of 
organizing the basic concepts and principles of the discipline in order to relate them to the 
facts. The syntactic structures refer to a set of ways to establish truth, falseness, validity or 
invalidity of discipline–like rules, in other words a grammar. Shulman (1986b) argues that a 
teacher should be able to define and explain the theory of a discipline as well as relate the 
theory to teaching. The teacher should also be able to judge what is important and less 
important in this discipline in relation to curricula. 
 
What Shulman emphasizes concerning subject matter content knowledge is the concepts, 
principles and rules of the discipline in a subject. There are different understandings of the 
terms produced from Shulman’s work. Mirshra and Koehler (2006) regard subject matter 
content knowledge as content knowledge - “knowledge about the actual subject matter that is 
to be learned or taught” (p. 1026). Mishra and Koehler (2006) agree with Shulman, pointing 
out that content knowledge includes “knowledge of central facts, concepts, theories, and 
procedures within a given field; knowledge of explanatory frameworks that organize and 
connect ideas; and knowledge of the rules of evidence and proof” (p. 1026).  
 
Pedagogical content knowledge 
 
Pedagogical content knowledge “goes beyond knowledge of subject matter per se to the 
dimension of subject matter knowledge for teaching” (Shulman, 1986b, p. 9). What Shulman 
means here is not the pedagogical knowledge of teaching in general, such as classroom 
organization and management. PCK merges subject matter content knowledge with 
pedagogical knowledge according to Shulman: 
 

…the most useful forms of representation of those ideas, the most powerful analogies, 
illustrations, examples, explanations, and demonstrations – in a word, the ways of 
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representing and formulating the subject that make it comprehensible to others. […] 
Pedagogical content knowledge also includes an understanding of what makes the 
learning of specific topics easy or difficult: the conceptions and preconceptions that 
students of different ages and backgrounds bring with them to the learning of those 
most frequently taught topics and lessons. (Shulman, 1986b, p. 9). 

 
Mishra and Koehler (2006) interpret this passage and point out that successful teachers would 
have to confront both content and pedagogy issues at the same time by adapting the aspects of 
content most relevant to its teachability. They emphasize that the core of PCK is that subject 
matter is transformed for teaching. This is done when the teacher interprets the subject matter 
and finds different ways to represent it and make it accessible to learners. For Mishra and 
Koehler, PCK represents the blending of content and pedagogy into an understanding of how 
particular aspects of subject matter are organized, adapted, and represented for instruction. 
 
Similar to Shulman’s PCK, Mishra and Koehler (2006) have developed their PCK which 
includes knowing what teaching approaches that fit the content and how elements of content 
can be arranged for better teaching. Their PCK “is concerned with the representation and 
formulation of concepts, pedagogical techniques, knowledge of what makes concepts difficult 
or easy to learn, knowledge of students’ prior knowledge, and theories of epistemology” (p. 
1027). They emphasize the knowledge of teaching strategies related to appropriate conceptual 
representations in order to address learner difficulties and misconceptions and fostering the 
learner’s meaningful understanding. 
 
Originally, Shulman’s PCK included many more categories such as curriculur knowledge and 
educational context. Curricular knowledge according to Shulman (1986b) refers to the teacher 
understanding and being familiar with the curriculum and various instructional materials 
designed for the teaching of particular subjects and topics at a given level available in relation 
to curriculum programs. 
 
Mishra and Koehler make the distinction between PCK and CK without involving curricular 
knowledge though their idea is consistent with Shulman’s idea. 
   
Since Shulman founded theoretical concept of PCK, thousands of articles, chapters in books 
and reports have studied the notion of pedagogical content knowledge in various subject areas 
(Ball, Thames, & Phelps, 2008). A research survey done by Ball et al. (2008) shows that 
about one fourth of the articles on pedagogical content knowledge are in science education 
with fewer in mathematics education. The field has still made little progress on developing a 
coherent theoretical framework for content knowledge for teaching. It lacks a clear definition 
of pedagogical content knowledge according to Ball et al. (2008). The qualitative study 
carried out by Ball et al. has its point of departure in teaching instead of teachers. They seek 
to develop a practice-based theory of mathematical knowledge entailed by and used in 
teaching. They emphasize what teachers must know in order to carry out the teaching. Their 
focus is both on “pure” mathematics from a disciplinary knowledge point of view and the 
practical world of teaching. Their empirical result suggests that content knowledge for 
teaching includes many aspects and that existing theoretical frameworks need refinement. 
They divide subject matter knowledge into three domains: common content knowledge (CCK), 
horizon content knowledge (HCK) and specialized content knowledge (SCK); and 
pedagogical content knowledge into three other domains: knowledge of content and students 
(KCS), knowledge of content and teaching (KCT) and knowledge of content and curriculum 
(KCC). CCK is defined as the mathematical knowledge that is commonly known among those 
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who know and use mathematics outside of teaching. CCK is not unique to teaching. SCK is 
the mathematical knowledge and skill unique to teaching. Having SCK, teachers are familiar 
with students’ errors and have approaches to work out the problems and therefore make 
teaching effective (Ball et al., 2008). In the KCT domain, teachers design instructions with 
chosen mathematical tasks and set sequences for particular content, for example: which 
examples are used in the beginning of the sequence for the particular content and which ones 
will be used to take the students deeper into the content? Such questions require “an 
interaction between specific mathematical understanding and an understanding of pedagogical 
issues that affect student learning” (Ball et al., 2008, p. 401). The refinement of PCK and CK 
made by Ball et al (2008) has emphasized the detail level of the components of these two 
categories such as CCK and KCT. 
 
To sum up, Shulman (1986b) regards subject matter content knowledge, pedagogical content 
knowledge and curricular knowledge all together as teacher’s content knowledge while 
Mirshra and Koehler (2006) make a distinction between PCK and CK without involving 
curriculum knowledge. Ball et al. (2008) categorize PCK and CK with the refined sub-
domains. In general, PCK intertwines subject content knowledge with pedagogical knowledge. 
It is about knowledge for teaching subject content. PCK involves different ways representing 
and organizing a subject matter in order to make it accessible to learners. It concerns the 
discipline in a subject and pedagogy at the same time. It also involves teacher understanding 
of the subject matter and knowledge of students and curriculum. CK includes concepts, 
principles, rules, and theories of the discipline in a subject.   
  
Well aware of researchers trying to make distinctions between Shulman’s PCK categories, I 
combine Shulman’s PCK with Mishra and Koehler’s CK concept to form a theoretical 
framework CK-PCK as the analytical tools in my study. With this tool I analyze how the 
algebra knowledge in the textbook reflects the historical development of algebra as a 
discipline of mathematics. This includes algebraic concepts, theories, rules and procedures as 
well as mathematical proof. Analyzing how algebra knowledge is presented, explained and 
organized is as important as analyzing this knowledge from a mathematics discipline point of 
view. These two aspects are not isolated from each other in the analysis. I regard CK as pure 
mathematical content from a subject’s discipline and PCK as multiple ways to represent 
algebra knowledge and the particular way to organize it and construct relevant mathematics 
exercises in order to make it accessible to learners. The word “content” is the central term in 
my study and it embodies these two aspects. Thus, my theoretical framework is CK-PCK. 
PCK tool in my framework makes it possible to find the following embedded aspects of PCK 
in the textbooks: 
 
1. How the analyzed mathematics textbooks organize and represent algebra content related 

to solving quadratic equations in order to make this content accessible and 
comprehensible. This includes: examining the explanation and illustrations of algebra 
theory, concepts, rules and used examples as well as the application of algebra; finding 
connections within the algebraic content; discovering implied problems with a certain way 
of presenting algebra content which may cause students difficulties in learning algebra. In 
the application of this tool, the analysis focuses on looking for the embedded teaching 
trajectories in the textbooks.  

 
2. What kind of mathematics exercises in the textbooks which are provided for learners to 

practice the related algebra content and facilitate learning in the embedded teaching 
trajectories; how they are constructed and what pedagogical aims they have. This includes 
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uncovering pedagogical aims of provided mathematics exercises, activities, and problems 
in the textbooks. 

 

2.3 CK-PCK in mathematics textbooks 
 
This study is about analyzing algebra content as CK and pedagogical content knowledge as 
PCK embedded in mathematics textbooks. The textbooks are studied as tertiary artifacts 
(Wartofsky, 1979) as mentioned above. How does a mathematics textbook relate to pedagogy 
then? Stray (1994) implicitly points out the relation between textbooks and pedagogy as 
below: 

 
 … textbooks are the bearers of messages that are multiply-coded. In them the coded 
meanings of a field of knowledge (what is to be taught) are combined with those of 
pedagogy (how anything is to be taught and learned). […] textbooks can be conceived 
as a focal element in processes of cultural transmission (p. 1).  

 
Stray (1994) has emphasized two important characters of textbooks: textbooks reflect subject 
matter content knowledge and pedagogical content knowledge related to a specific subject. 
Textbooks can function as artefacts when they are used by teachers and students. They 
embody and transfer the human knowledge according to theory of artefacts (Wartofsky, 1979; 
Säljö, 2007). Mathematics knowledge is presented in the form of written texts and 
mathematical representations, which constitute units of analysis in my study. As educational 
material, textbooks belong to textual resource materials produced for classroom use and can 
be regarded as pedagogic objects (Love & Pimm, 1996). Mathematics texts in mathematics 
textbooks or other forms of materials carry out two important pedagogical functions:  
 
1. Creating a logical, mathematical progression, from past mathematical knowledge and 

experiences and towards preparing for the future content in the mathematics curriculum. 
2. Embodying the development of cognitive structures in the learner from the conceptual 

aspect (Van Dormolen, 1986 cited in Love & Pimm, 1996). 
 
Love and Pimm (1996) claimed that the mathematics texts are often logically structured in a 
linear form to evoke the sequential learning. They mentioned that mathematics textbooks are 
written to teach mathematics to learners. Textbook authors often regard the student as the 
main reader, and so they write the textbook from the teacher’s position (Kang & Kilpatrick, 
1992). There seems to be “a ghostly presence of the teacher” in texts for students (Love & 
Pimm, 1996, p. 385).  
 
As Shulman (1986b) argued that PCK links both subject content and pedagogy, Love and 
Pimm (1996) found that textbooks have pedagogical functions when they present knowledge 
of subjects. A textbook is regarded as curriculum material in teaching and learning a subject. 
Thus in my study, a mathematics textbook does not only contain the knowledge of algebra as 
subject matter knowledge but also specific pedagogical content knowledge built into it by 
authors to formulate and represent algebra with most powerful illustrations, representations 
and examples as well as exercises in order to make algebra comprehensible and learnable. For 
example, distributive law is represented by a rectangle consisting of different small rectangles 
in order to visualize an abstract rule. Using geometrical representations is part of the 
embedded PCK in the textbook.  
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Geometrical representations like different combinations of rectangles and squares applied in 
the textbook are artifacts (Wartofsky, 1979) that embody algebra history and the fact that 
algebra often originated from geometrical ideas. They represent algebraic rules of operation 
and abstract representations such as quadratic equations and quadratic formula. Through these 
illustrations the algebra knowledge in the textbook has its connection with algebra history. 
 

2.4 Other theoretical terminologies 
 
Since the content analysis in this study involves both elementary algebra, abstract algebra and 
application of algebra, I here present a short background related to pure and applied 
mathematics by referring to De Lange (1996). De Lange pointed out that the dichotomy 
between pure and applied mathematics existed already in Euclid’s Elements. The goal of 
mathematics was to study nature. In ancient Greek, geometric principles were embodied in the 
entire structure of the universe. Mathematics was recognized to embody the physical elements 
in the real world. In the 20th century, pure mathematics was created as a result of the 
expansion of mathematics and science. The idea that mathematics was not only a body of 
truths about nature, made mathematicians move their attentions to abstract mathematics 
isolated from problems of the real world. Abstraction, generalization and specialization are 
the three types of activity undertaken by pure mathematicians. Pure mathematics was 
regarded as good while applied mathematics was bad at that time. But, in recent decades, this 
attitude has changed. Applied mathematics received positive recognition with the 
development of information technology. Many social scientific fields saw mathematics as a 
useful tool. Social needs and technological requirements developed mathematical knowledge 
in society. This applied point of view appeared also in school mathematics in order to 
motivate students’ interests in mathematics (De Lange, 1996). Teaching mathematics 
modeling relates to application of mathematical models (Lingefjärd, 2000).  De Lange (1996) 
reported that after the 1980s, modeling and applications on one hand and problem solving on 
the other were merged together. People became convinced that students would benefit from 
applications and usefulness of mathematics. In the 1990s, the applied mathematics and pure 
mathematics were still an issue for discussions in the mathematics society. Based on an 
applied mathematics point of view, mathematics teaching linked the applications’ real world 
to the students’ own real world aiming at integrating mathematics learning with real world 
concepts. The learning process for developing mathematical concepts was assumed to start 
from the real world or concrete experience, to proceed to abstract conceptualization through 
reflective observation and active experimentation. This process was called conceptual 
mathematization (De Lange, 1996). 
 
It was Freudenthal who grounded what came to me the theoretical frame work of RME: 
realistic mathematics education (De Lange, 1996). In the RME, the learning process starts 
with exploration of real appearances of mathematical concepts and structures, using reality as 
a source for mathematization. The characteristic of mathematization in RME is that it 
provides students with real world activities in which mathematics is explored during the 
“doing” process. The doing-activity process involves:  first identifying the specific 
mathematics in a general context aiming at transferring the problem to a mathematically 
stated problem; then trying to discover regularities and relations through schematizing and 
visualizing the problem in different ways; when the problem is transferred into a 
mathematical problem, the problem is dealt with using mathematical tools which means that 
mathematical models are constructed; reflecting and refining mathematical models; finally 
generalizing the mathematical models in a more abstract conceptual way. Therefore, 
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mathematization in RME is a synonym of modeling. Mathematics learning occurs through 
students solving real world problems. Teaching has to be reflexive and adapted, and 
organizing and facilitating students are the focus (De Lange, 1996). 
 
In my study, algebra content analysis includes analyzing application of algebra that relates to 
the concept of modeling. Modeling refers to the construction of models or meaningful 
structures within one or more representational systems (Goldin, 2008). Aspects of models and 
modeling are used in RME (Van Den Heuvel-Panhuizen, 2003). In RME, Van Den Heuvel-
Panhuizen (2003) claims that models play the role of bridging the gap between the informal 
understanding connected to the real and imagined reality on one hand and the understanding 
of formal systems on the other hand. In order to support learning processes, models have to be 
related to realistic, imaginable contexts and at the same time can be applied on a more 
advanced and general level (Van Den Heuvel-Panhuizen, 2003). For RME, mathematics 
occurs when students develop effective ways to solve problems (De Lange, 1996).   
 
A model perspective is related to applications and usefulness of mathematics in mathematics 
education, in contrast with a pure mathematics perspective (De Lange, 1996). The concept of 
models used in the analysis of my study does not have quite the same sense as Realistic 
Mathematics Education models (Van Den Heuvel-Panhuizen, 2003) since there is neither any 
connection with realistic mathematics nor a relation with students directly, but they are related 
to algebra history and applied as pedagogical models. For example, the used rectangles and 
squares in the analyzed textbook are not only the geometrical figures for expressing areas, 
which originated from algebra history, but also models for representing the distributive law 
and the square rule. They have a common function of offering readers, including both 
teachers and students, visual illustrations that make sense of learning the distributive law and 
the completing square method as well as quadratic expressions. 
 

2.5 Summary 
 
To sum up, in this study, I analyze the mathematical content related to algebra in particular 
quadratic expressions and equations presented in the mathematics textbooks as tertiary 
artifacts (Wartofsky, 1979). The analytical framework applied for this study is CK-PCK 
(Mishra & Koehler, 2006; Shulman, 1986b).  Analyzing the algebra content presented in the 
textbook does not only focus on examining the content from the point of view of mathematics 
as a discipline concerning the subject matter content knowledge, it also looks for embedded 
PCK regarding content organization and teaching trajectories. In many places of this thesis, I 
use expressions embedded teaching trajectories and teaching progression. The word 
“teaching” in these expressions refers to teaching in a hypothetical meaning, which is possible 
and imagined rather than how it unfolds in classroom interaction. 
 
I hope that my study will be useful for understanding of teaching quadratic equations from a 
PCK point of view. I examine the content of quadratic equations and seek the embedded 
teaching trajectories with the goal of teaching quadratic equations. I ask the questions: What 
is presented in the textbook? Why is the content in the textbook organized as it is?  
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3. Related Mathematical Content 
 
The core content analyzed in this study contains elementary algebra related to quadratic 
equations; such as quadratic polynomials, multiplication of two binomials, distributive 
property, factorization, completing the square, and quadratic formula. Factorization is 
discussed in relation to both elementary and advanced algebra. A literature review related to 
these topics is carried out and presented in this chapter. The review study finds that the 
algebra content in the textbooks has strong connections with the history of algebra. In this 
chapter, the core content will be presented in three parts: 3.1 The history of algebra 
3.2 Different approaches to solving quadratic equations, and 3.3 Factorization in abstract 
algebra. 
 

3.1 A review of algebra history and its development 
 
This part of chapter three aims at introducing algebra history in relation to solving quadratic 
equations. Algebra has a long history in mathematics development. Quadratic equations and 
polynomials belong to the area of algebra in mathematics. What is algebra? Colin Maclaurin 
in his 1748 algebra text defined it like this:  

“Algebra is a general method of computation by certain signs and symbols which 
have been contrived for this purpose, and found convenient. It is called a universal 
arithmetic, and proceeds by operations and rules similar to those in common 
arithmetic, founded upon the same principles.” (Katz & Barton, 2007, p. 185).  

Leonhard Euler, in his own algebra text in 1770, defined algebra as “the science which 
teaches how to determine unknowns’ quantities by means of those that are known.” (ibid., p. 
185). 
 
Katz and Barton (2007) categorize the historical development of algebra in four stages: the 
rhetorical stage, the syncopated stage, the symbolic stage and the purely abstract stage, but 
they also name another four conceptual stages: 

“the geometric stage, where most of the concepts of algebra are geometric; the 
static equation-solving stage, where the goal is to find numbers satisfying certain 
relationship; the dynamic function stage, where motion seems to be an underlying 
idea; and finally the abstract stage, where structure is the goal” (p. 186). 

As an old science, algebra has a complicated historical background according to Katz and 
Barton (2007). Algebraic procedures have developed slowly. There are different opinions 
about where the evolution of the term “algebra” started. It is commonly believed that algebra 
first appeared among the Egyptians, the Babylonians, the Greeks or the Arabs. The 
geometrical influence on algebraic reasoning was strong in ancient Greece. However, the 
word algebra originated in Baghdad, where the Arabic scientist al-Khwarizmi (A.D. 780-850) 
published a short book about calculating with the help of al-jabr and al-muqabala1. Today’s 
algebra has its root in Arabic algebra. Western mathematics tended to turn algebraic 

                                                 
1 Al-jabr means restoration and al-muqabla means reduction. 
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operations into symbols and later developed abstract algebra. The process of algebra 
development was slow and the whole history lasted 4000 years (Katz & Barton, 2007). 

The rhetorical stage originated from geometry ideas 

In his book Unknown Quantity, Derbyshire (2006) points out that algebra began very early in 
recorded history. The first algebra texts are dated to the first half of the second millennium 
BCE, from 37 or 38 centuries ago, and were written by people living in Mesopotamia and 
Egypt. During the Hammurabi period from about 1790 to 1600 BCE, the Babylonians started 
their civilization by pressing written words in patterns called cuneiform or wedge-shaped 
stylus into wet clay. Many tablets in cuneiform had mathematical algebraic content. Their 
mathematical texts were of two kinds, table texts and problem texts. The table texts were lists 
of multiplication tables, tables of squares and cubes as well as advanced lists like the famous 
Plimpton 322 tablet, which is about Pythagorean triples. At that time, the Babylonians had 
neither defined zero nor negative numbers. 
 
The Babylonians of Hammurabi’s time had no proper algebraic symbolism. All mathematical 
problems were expressed in words, for example unknown quantity in Sumerian’s Akkadian 
text, was expressed as igum (length) and igibum (width) as reciprocal (Derbyshire, 2006). The 
application of algebra might have had its reason in the need of measuring land areas. At the 
rhetorical stage, all mathematical statements and arguments were made in words and 
sentences (Derbyshire, 2006). Babylonian mathematics has two roots, one is accountancy 
problems and the other one is a “cut and paste” geometry (Katz & Barton, 2007, p. 191), 
probably developed for understanding the division of land. Many ancient Babylonian clay 
tablets contain quadratic problems of which the goal was to find such geometric quantities as 
the length and width of a rectangle. As an example, a clay tablet text tells that the sum of the 
length and width of a rectangle is 6½, and the area of the rectangle is 7½ (Derbyshire, 2006; 
Katz & Barton, 2007). What are the length and the width of this rectangle? The tablet 
describes in detail the steps the writer went through. 
 
First, the writer halves 6½ to get 3¼. Next, he squares 3¼ to get 109⁄16. From this area, he 
subtracts the given area 7½, leaving 3 1⁄16. The square root of this number is extracted: 1¾. 
Finally, the length is 3¼ + 1 ¾ = 5, while the width is 3¼ − 1¾ = 1½ (Katz & Barton, 2007). 
The whole process can be translated into part of a quadratic formula, shown in a below. Since 
the Babylonians did not know about negative numbers, the only solution for them was 
positive, hence their algorithm did not deliver the two solutions to the quadratic equation, so 
their formula is slightly different from the modern quadratic formula, as shown in b below 
(Derbyshire, 2006): 
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If we denote the sum of the length and the width of the rectangle as b and the given area as c, 
this formula will be as shown in c, which is the modern quadratic formula.  
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Even though there are different interpretations of Neugebauer and Saches’ translation of the 
Babylonian’s tablets for this text on finding the length and width of a rectangle (Katz & 
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Barton, 2007), it is clear that the text from the tablets is dealing with a geometric procedure. 
The problem was solved in words but with geometric ideas. This was the beginning of algebra. 
 
According to Katz and Barton (2007), the Greek mathematician Euclid (300 B.C.) in his Book 
II of Elements solved some algebraic problems by manipulating geometric figures, but based 
on clearly stated axioms. The geometrical method is more explicit in Euclid’s work Data than 
in Elements. The following example illustrates how Euclid solved a quadratic equation using 
a geometrical method. Euclid defined “proposition 1” which is like axiom 1: “If two straight 
lines contain a given area in a given angle, and if the sum of them be given, then shall each of 
them be given (i.e., determined)” (Katz & Barton, 2007, p. 189). Euclid set up a rectangle 
ACFS with the two sides x = AS and y = AC. Then a line was drawn from point S to a point B 
so that BS = AC and the completed rectangle was ACDB (Figure 1). Suppose that AB = x + y 
= b  was given and the area of rectangle ACFS was given denoted as c, what were the two 
sides x and y of the rectangle ACFS? 
 
         A          x          S       y       B 

 
 
 
 
 
           C                     F                D 

 
Figure 1. The first step in using geometrical figures to solve a quadratic equation according to 
Euclid (Katz & Barton, 2007, p. 189). 
 
In order to find the length and the width of the rectangle, Euclid bisected AB at E, constructed 
the square on BE, then claimed that this square was equal to the sum of the rectangle ACFS 
and the little shadow square at the bottom (Figure 2). 
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Figure 2. The second step in using geometrical figures to solve a quadratic equation according 
to Euclid (Katz & Barton, 2007, p. 189). 
 
According to Euclid, the area of the rectangle ACFS was given, which was c, and the area of 
the new square EGDB was also given which was (b/2)² since: 
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The equivalent relationship between the areas can be formulated as a quadratic equation: 
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The critical step in solving the problem is that Euclid found this equivalent relationship 
geometrically and made use of this relationship to find the solutions of the problem, so the 
length and width of the rectangle ACFS are:  
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These two formulas are almost identical with the Babylonians’ solutions in rhetoric 
expressions. The difference is that Greek algebra was based on geometric manipulation while 
Babylonian algebra was based on rhetoric manipulation with geometrical ideas. In general, 
the early stage of algebra from ancient Babylon and Egypt to Greek was mainly geometrical. 

The syncopated stage–the beginning of the static equation-solving stage 

Derbyshire (2006) presents that in Roman Egypt, probably in the second or third century CE, 
algebra was at the syncopated stage which means written algebraic texts were expressed in 
words but involved in special symbols-abbreviations. According to the history of recorded 
mathematics, one of the pioneers in using these special symbols to solve equations with only 
numbers but no connection with geometry was Diophantus who lived in Alexandria in Egypt 
around the third century. Diophantus used the Greek alphabet for writing numbers. He wrote a 
treatise titled Arithmetica, of which less than half has been maintained today. The surviving 
part of his work consists of 189 problems in which the object was to find numbers, or families 
of numbers, satisfying certain conditions. In mathematics today, Diophantus’ mathematical 
analysis is known as number theory (Smith, 2006). He wrote the coefficient after the variable, 
instead of before it as we do. He used the Greek letter ς for an unknown quantity, in modern 
algebra written as x. Most of his book dealt with indeterminate equations which contained 
more than one unknown and a potentially infinite number of solutions. His problem was that 
he could not represent more than one unknown; instead he solved quadratic equations with 
two unknowns through substituting one by another. Diophantus did not use negative numbers 
but used elementary principles of expansion, factorization, gathering up of like terms and 
simplification. Diophantus created his own literal symbolism with the use of special letter 
symbols for the unknown and its powers, for subtraction and equality (Derbyshire, 2006). 
 
From Diophantus, algebra history moved into another conceptual stage, the equation-solving 
stage according to Katz and Barton (2007). In India, quadratic formula appeared without any 
geometric support. Brahmaggupta (598-665) was one of the first mathematicians who could 
systematically handle negative numbers and zero. He gave a general solution to quadratic 
equations and realized that there were two roots for a quadratic equation. It was possible that 
one of the roots was a negative number. Baskharacharya (1114-1185) solved mathematics 
problems with quadratic equations in his book Siddhanta Siromani (Mathematical Pearls). 
They presented an algorithm to reduce a quadratic equation to a first degree equation (Olteanu, 
2007). 
 
It is commonly believed that the first true algebra text was the work on al-jabr and al-
muqabala by Mohanmmad ibn Musa al-Khwarizmi (780-850), written in Baghdad around 
825 (Katz & Barton, 2007). The word algebra came from the title of this work. The word al-
jabr means restoration or reestablishment that is to eliminate negative terms through adding 
the same terms to both sides of equations. The word al-muqabalas means balance, which is to 
divide every term in a quadratic equation by the coefficient of the second degree’s term 
(Josephs, 1991 in Olteanu, 2007). The first part of his book is a manual for solving linear and 
quadratic equations. Al-Khwarizimi classified equations into six types, three of which were 
mixed quadratic equations. For each type, he presented an algorithm for its solution. Five of 
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the six types of equations were quadratic equations which can be expressed in modern forms, 
ax2 = bx; ax2 = c; ax2 + bx = c; ax2 + c = bx; ax2 = bx + c. Here is an example of how  
Al-Kwarizimi would solve the equation x2 + 10x = 39: 

Take the half of the number of the things, that is five, and multiply it by itself, you 
obtain twenty-five. Add this to thirty-nine, you get sixty-four. Take the square 
root, or eight, and subtract from it one half of the number of things, which is five. 
The result, three, is the thing. (Kvasz, 2006, p. 292) 

Like Babylonian mathematicians, al-Khwarizimi’s algorithm is entirely verbal. The 
geometrical explanations of al-Khwarizimi’s algorithm can be translated into today’s “square 
completing method” (Olteanu, 2007). Using the example of the solving quadratic equation  
x2 + 10x = 39, the completed geometrical procedures are illustrated below in figures 3, 4, and 
5 (Olteanu 2007, p. 30). 
 
                   x 

 
         x² 

 
Figure 3. A square used by al-Khwarizmi for solving quadratic equations  
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Figure 4. The second step for completing a square according to al-Khwarizmi  
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Figure 5. The third step for completing a square according to al-Khwarizmi  
 
According to Olteanu (2007), al-Khwarizimi started with a square whose side is x and area is 
x² (see Figure 3). Then he added four equal rectangles whose areas in total were 10x along 
each side of the square, that is 10x = 4 · (5/2) · x. Each rectangle’s area is thus (5/2) ∙ x with 
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its length x and its width 5/2 (see Figure 4). The sum of the big square and four rectangles was 
given, that was 39. The equivalence relationship was: x² + 10x = 39. Finally, Figure 4 was 
completed by adding four small equal squares which had an area of the size (5/2) · (5/2) = 
25/4 for each small square and the sum of them was 25. Through adding this sum to both 
sides of the equation, the area of the biggest square in Figure 5 obtained was 64. Written as an 
equation: 

4
25439

4
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The side of the biggest square was 8 and had its relation with other sides of different squares 
expressed in the first degree equation, 8 = (5/2) + x + (5/2), and then x was 3. With “cut-and-
paste” geometry (Katz & Barton, 2006, p. 191), al-Khwarizimi reduced the second degree 
equation to a first degree equation and thereafter solved it. 

The symbolic stage 

At this stage of algebra, “all numbers, operations, relationships are expressed through a set of 
easily recognized symbols, and manipulations on the symbols take place according to well-
understood rules” (Katz & Barton 2007, p. 186). The ancient algebra and geometry had 
developed simultaneously in Egypt, Persia, Greece, India and China. Following Medieval 
Islamic scholars, who gave us the word “algebra,” Western Europe began the struggle for the 
development of algebra starting with some algebraists from Italy. 
 
Derbyshire (2006) states that Italian mathematician Leonardo Pisano, later known as 
Fibonacci, in the 12th and 13th centuries had traveled in Persia, India and China. When he 
returned to Italy, he brought back wider knowledge of arithmetic and algebra. His book Liber 
abbaci was the best math textbook since the end of the Ancient World. His book was credited 
with having introduced Indian numerals, including zero, to the West, and his algebraic skills 
were shown in two other books after this one. With the arrival of printed books during the 
second half of the 15th century, the development of algebra speeded up. Several Italian 
mathematicians, including Girolamo Cardano, had figured out how to solve cubic and 
quadratic equations. Algebra became purely abstract with some exceptions, for example the 
English mathematician Robert Recorde who lived in the 16th century and created quadratic 
problems from real world experiences (Derbyshire, 2006). 
 
It was in France that algebra developed into a well-organized literal symbolism. In his work 
In artem analyticem isagoge, French mathematician Franςois Viète (1540-1603), was the first 
mathematician to use letters representing numbers systematically and effectively in the late 
16th century (Derbyshire, 2006). He made a range of letters available for many different 
quantities. This was the beginning of modern literal symbolism. Viète’s unknown quantity 
was divided into two classes. Unknown quantities, which means “things sought,” were 
denoted by vowels like A, E, I, O, U, and Y; while “things given” were denoted by constants 
like B, C, D etc. For example, his A is our unknown x. Viète was a pioneer in the study of 
equations. His two papers on the theory of equations were published twelve years after his 
death. In the second paper, titled De equationem emendatione (On the perfecting of equations), 
Viète opened up the line of inquiry that led to the study of the symmetries of an equation’s 
solutions to Galois theory, the theory of groups, and of all modern algebra. He found the 
relationship between the solutions of the equation and the coefficients for the first five 
degrees of equations in a single unknown. To explain this in our modern symbols, we suppose 
that the two solutions of the quadratic equation x2 + px + q = 0 are α and β which means that 
x1 = α; x2 = β. Since only α and β , and no other values of x, make this equation true, the 
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following must be true: (x – α) · (x – β). This is just a rewritten form of the same equation. If 
we multiply out those parentheses, this rewritten equation turns to be: x2 – (α + β)x + αβ = 0. 
Compared to the original equation, the relationships between the solutions and the coefficients 
lead to the conclusion that α + β = -p; αβ = q (Derbyshire, 2006). It is said that Viète 
discovered the solution formula today called “quadratic formula for general quadratic 
equations,” which is: 

a
acbbx
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=   

for a general quadratic equation ax² + bx + c = 0, a ≠ 0.  
 
Another French mathematician and philosopher who had strong influence in the history of 
algebra was René Descartes (1596-1650). His idea to use the Cartesian system of coordinates, 
which was named after the Latin form of his name, has developed both algebra and geometry. 
In his work La géométrie (1637), by using numbers to identify points in Cartesian coordinates, 
Descartes connected geometrical objects to algebraic numbers and made the classical 
geometry become analytical geometry. He took up the plus and minus signs from the German 
Cossists of the previous century and also the square root sign. From Descartes’ time, the 
symbol of an unknown has become represented by x (Derbyshire, 2006). 
 
Descartes developed the idea of functions in Cartesian coordinates though ideas about 
function can be traced back to the Islamic mathematician Sharaf al-Din al-Tusi from Persia  
(Katz & Barton, 2007) and Klaudius Ptolemaios about 2,000 years ago (Olteanu, 2007). 
Descartes declared that every curve in a Cartesian coordinate system has an equivalent 
equation which can represent the points on the curve or vice versa and every equation 
containing x and y can be represented by a curve through its coordinate points. However, the 
word function was introduced by Gottfried Wilhelm Leibniz in 1693 and the definition of 
function was stated by Leonhard Euler in his work Introductio analysin infinitorium in 1748. 
Euler had also introduced the symbol f(x) denoting f as a function relying on a variable x 
(Olteanu, 2007). In the 18th century, since the discovery of the calculus by Newton and 
Leibniz, algebra went into an area of analysis: the study of limits, infinite sequences and 
series, functions, derivatives, and integrals (Derbyshire, 2006). 

The purely abstract stage – algebraic structure 

Katz and Barton (2007) point out that since the 17th century, algebra has not solely been about 
finding solutions for different degrees of equations anymore, instead mathematicians started 
to integrate algebra with astronomy and physics. Johann Kepler and Galileo Galilei were 
interested in curves and finding a mechanism for representing motion instead of quantity with 
numbers. However, their arguments are not algebraic symbolic but geometric. It was Fermat 
and Descartes, now regarded as the fathers of analytic geometry, who showed how to 
represent a curve described verbally with numbers and algebraic symbols.  Analytic geometry 
thus became a mechanism for representing motion. Newton, in his Principia, picked up on 
Fermat and Descartes’ representation and developed the calculus. With the invention of the 
calculus, mathematical problems were solved by curves, not just points. Algebra grew more 
and more to present paths of motion. In order to be able to judge if the algebraic 
manipulations were correct, axioms were formulated for arithmetic applied for algebraic 
manipulations. Late in the 18th century, Lagrange introduced the idea of permutations into the 
search for solutions. Thereafter, Galois developed methods for determining under what 
conditions polynomial equations are solvable. New abstract algebraic concepts were found 
like “field” and “group” during the early 19th century. In 1854, Ceyley gave an axiomatic 
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definition of a group. During the 1890s, this definition entered textbooks along with the 
axiomatic definition of a field, an idea which had roots in the work by Galois. At the 
beginning of the 20th century, algebra became less about finding solutions to equations and 
more about looking for common structures in many mathematical objects defined by sets of 
axioms (Katz & Barton, 2007). 

Summary on the review of algebra history  

This review has focused on some essential moments related directly to the algebra content 
presented in the analyzed textbook in the present study: 

• Solving quadratic equations by completing-the-square approach originated from a 
geometrical cut-and-paste approach used by ancient Babylonians whose geometrical 
ideas were written on clay tablets. 

• Quadratic formula had its origin in ancient Babylon but was developed by Euclid with 
a geometrical method. The geometrical figures based on his method represent the 
procedures of constructing quadratic formula. 

• Relations between roots of a quadratic equation and the coefficients and a constant of 
the equation were discovered by the French mathematician Viète. These relations can 
be described as α + β = -p; αβ = q if α and β are two roots of a quadratic equation  
x2 + px + q = 0. 

• In the 17th to 18th centuries, the concept and definition of function was created  
• During 19th and the beginning of 20th century, algebra became more and more abstract 

and algebra structure was the focus. 
 
This review has recognized algebra content presented in the textbook related to the history of 
algebra, in particular the use of geometrical ideas and methods of solving quadratic equations. 
This geometrical approach is the origin of the completing the square method. The quadratic 
formula has been found to relate to Euclid’s geometrical method. The relations between roots 
and the coefficients and constant of an equation were discovered by Viète. 
 

3.2 Three approaches to solving quadratic equations 
 
In the previous part of chapter three, I have reviewed the rhetorical and geometrical 
approaches of solving quadratic equations in the history of algebra. In order to get more 
insights into quadratic equations’ solving approaches–such as quadratic formula, completing 
square, and factorization–I have carried out another literature review study in the area of 
factorization and different approaches of solving quadratic equations. This part presents three 
common methods for solving quadratic equations discussed in secondary mathematics 
educational fields in some previous studies (Allaire & Bradley, 2001; Bossé & Nandakumar, 
2005; Hoffman, 1976; Leong et al., 2010; Kemp, 2010; Kennedy & et al., 1991; Nataraj & 
Thomas, 2006; Vaiyavutjamai & Clements, 2006; Vinogradova, 2007; Zhu & Simon, 1987): 
1) Completing the square 2) Factorization 3) The quadratic formula. The reason to present 
these three methods is that they are not only common topics for discussion in the articles 
searched in this area concerning mathematics education at upper secondary school but also 
presented in the analyzed mathematics textbook in my study. 
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1) Completing the square 

Some mathematics education articles advise mathematics teachers to simplify ancient-time 
mathematician al-Khwarizmi’s method of completing the square based on geometrical ideas 
and then present the simplified version to students (Allaire & Bradley, 2001; Vinogradova, 
2007). By doing so, the teachers relate mathematics quantity to physical objects in a visual 
way. Didactically, teachers can start with a concrete example in which students can 
understand the content visually. Later, from the concrete example, the teachers lead the 
students to another example expressed in algebraic symbols. As an example: study a rectangle 
whose area is x(x + 10) and suppose this area is 39, that is x(x + 10) = 39. Four steps are 
followed to build a new square, which is actually called completing the square. 
 
            x                       10 

 
 
 
 
 
 
 
 

Figure 6. A rectangle representing a quadratic equation 
 
              x                 5 

 
 
 
 
 
 
 
 
 

Figure 7. The procedures of completing the square for solving quadratic equations using a 
geometrical approach: 
 

A. Begin with a rectangle of the area x(x + 10), that is with the short side as x and the 
long side (x + 10). The shaded area is 10x (Figure 6). 

B. Divide the rectangle x10  into two small equal rectangles with the size 5x each and 
move them to each adjacent side of the x² square (Figure 7). The total area including 
the big blank area and the area of two shaded rectangle is still 39 = x(x + 10).    

C. In Figure 7, a new square is shaped in the lower-right hand corner with the side 5 and 
area 25. By adding this small square to the geometrical figure, the large square with an 
area of x2 + 2(5x) + 25 is “completed.” Therefore, we can write 39 + 25 = x(x + 10) + 
25 or x2 + 2(5x) + 25 = 64. The area of the large square is now (x+5)2 since the side 
has a length of x + 5. Therefore (x + 5)2 = 64  x + 5 = 8  x = 3. 

                                                  
After these three steps, a solution to this quadratic equation is derived by completing the 
square geometrically (Allaire & Bradley, 2001). This geometrical approach has actually its 
origin in al-Khwarizimi’s algorithm for solving quadratic equations using geometrical ideas 
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which was presented in the first part of this chapter. The didactic purpose of using the 
geometrical figures here is to visually offer opportunities for the student to understand the 
process of approaching the method of completing the square. 

2a) Factorization of quadratic expressions 

Factorization has been discussed as an alternative way to solve quadratic equations 
(Vaiyavutjamai & Clements, 2006). This is often related to teaching factorizing quadratic 
expressions first. Factorizing quadratic expressions is a common didactic topic at secondary 
level in mathematics education (Bossé & Nandakumar, 2005; Hoffman, 1976; Leong et al., 
2010; Kemp, 2010; Kennedy & et al., 1991; Nataraj & Thomas, 2006; Zhu & Simon, 1987). 
 
Hoffman (1976) presents two approaches (A and B) for factorizing quadratic expressions 
through observing and grouping. By taking the second degree polynomial 3x2 + 7x + 2 as an 
example, the following steps are carried out to factorize this polynomial. 
 
A. Decomposition of the linear term. 
 
1) Multiply 3x2 and 2 to get 6x2. 
2) Decompose 7x into the sum of two terms whose product is 6x2.  

This gives 7x = 6x + x. Factorize 3x2 + (6x + x) + 2: 
3x2 + (6x + x) + 2 
= (3x2 + 6x) + (x + 2)  
= 3x(x + 2) + 1(x + 2)  
= (x + 2)(3x + 1)  
 

The approach is based on the observation of distributive law (a) and the commutative and 
associative laws (b): 
a) bdxbcadacxbdbcxadxacxdcxbax +++=+++=++ )())(( 22   
b) ).)(())(( 22 bcxadxacbdxbdacx ==  
In this approach, observing the relationships between coefficients to 2x and x as well as the 
constant is the important starting point. It is often called the “guess-and-check” method 
(Kemp, 2010). 
 
B. Making the coefficient of the quadratic unknown become 1 (i.e. a  = 1 in ax2 + bx + c).  
In this case (Hoffman, 1976):  

273 2 ++ xx  = = = ( )( )132 ++ xx . 

It may be confusing to some students why the polynomial has to multiply with 3 and is 
divided by 3 at the same time which means 3 · (1/3) = 1. The operational procedures are 
associated with distributive and associative laws of integers. 
 
These two approaches of factorization are dependent on skills in multiplication and division 
which expose students’ knowledge of arithmetic and the number theory. Factoring quadratic 
expressions is the first step to solve a quadratic equation. Solving the quadratic equation  
3x2 + 7x + 2 = 0 by factorization is actually to decompose the polynomial into a factoring 
form (x+2)(3x+1) = 0 which is equivalent to the polynomial form. The essential step to solve 
this equation is to follow the null-factor law2 (Gennow, Gustafsson, & Silborn, 2005b, p. 106), 
                                                 
2 nollprodukt in Swedish 
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that is: for real numbers p and q; p · q = 0 if and only if p = 0 or q = 0. It means that either of 
the binomials on the left side of the equation has to be equal to zero in order to satisfy the 
equivalent relation of this quadratic equation. The solutions of two roots x1 = -2 and x2 = -(1/3) 
are obtained through making either x + 2 = 0 or 3x + 1 = 0. 
These two approaches are not the only ways to factorize quadratic expressions. There are 
many methods discussed in the field of mathematics didactics. The three following studies are 
being presented to show the different methods for doing factorization. 
  
Study one: Teaching factorizing quadratics is influenced by the different cultures where it is 
taught (Kemp, 2010). In the same classroom, different cultures contribute to the richness of 
using different methods for factorizing quadratic expressions. According to Kemp (2010), 
Russian students use the standard quadratic formula to factorize quadratic polynomials: 
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Students from China and Hong Kong use the cross multiplication method based on the guess-
and-check process to work with factorization. For example, factorizing the quadratic 
expression 276 2 ++ xx  by looking at the factors of the coefficient of 2x which can be 
factorized as factors 6 and 1 or 3 and 2; and factors of the constant which can be 2 and 1 or -2 
and -1. Then the process of finding the value of the coefficient to x, in this case 7, is carried 
out by cross-multiplying these factors written in a matrix and adding the two multiplications 
until finding the value 7, as shown in figures 8 and 9 (Kemp, 2010, p. 44). 
 

 
 
Figure 8. The cross multiplication method for factorization quadratics by Chinese students 
 
 

 
 
Figure 9. The value of the coefficient to x is found after a few steps of trying. 
 
The cross multiplication procedure is halted when the value 7 is reached, the factorized form 
is derived by reading along the rows: (3x+2)(2x+1). 
 
Study two: A Singaporean project was carried out as a lesson study about teaching factorizing 
quadratic expressions through the use of concrete algebra tiles (Leong et al., 2010). The cross 
multiplication method to factorize quadratic expressions is evidenced to be arbitrary and fails 
to make sense for students in their pre-test of the lesson study. In order to make a pedagogical 
change and improve students’ learning of this topic, the lesson study team works out a 
teaching approach of using algebra tiles (Howden, 1985; Norton, 2007) to factorize quadratic 

3x             2               1                   -1                      -2 
                
2x            1                2                  -2                       -1 
               = 7x                          

6x             2               1                   -1                      -2 
                
x               1               2                  -2                       -1 
                8x             13x               -13x                   -8x 
            = 2x + 6x     = x + 12x      = -x + -12x        = -2x + -6x 
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expressions with small integers as coefficients and checking the factorization result by 
changing the used algebra tiles into an equivalent rectangle diagram (see Figure 10). 
 

 
 
Figure 10. From algebra tiles to a rectangle diagram in factorization in the Singapore project 
(Leong et al., 2010, p. 22) 
 
Figure 10 shows how a quadratic expression x2 + 3x + 2 is factorized by using algebra tiles 
consisting of a bigger square x2 and two small same squares in the value of 1 each as well as 
three same rectangles in the value of x each. The factors of the expression are found through 
adding a rectangle to a square vertically and adding a rectangle to the two small equal squares 
horizontally, that is (x+1)(x+2). The three identical rectangles are the three units represented 
as coefficient 3 and the two identical squares are the two units represented as constant 2 in the 
used algebra tiles in Figure 10. In order to see the link between the two representations of 
factorizing x2 + 3x + 2, a rectangle diagram equivalent to the used algebra tiles is derived (see 
Figure 10). In the rectangle diagram, the total area of the bigger rectangle is the sum of three 
different rectangles and a square. By cross-adding 2x and x, students can check the result of 
factorization. Factorizing quadratic expressions with negative coefficients can also be carried 
out by labeling the sides of a rectangle with negative numbers. 
 
The post-test after the two lessons shows significant improvements and evidences of 
successful use of algebra tiles and rectangle diagram in factorizing quadratic expressions. The 
pedagogical purpose of this study is to help students understand manipulating factorization 
through a concrete and visual geometrical representation of factorization and improve their 
awareness of the link to symbolic algebra (Leong et al., 2010). 
 
Study three: Jackman (2005) demonstrates a systematic procedure for factorizing second 
degree polynomials. A second degree polynomial can be written as: 
ax² + bx + c = (px + q)(rx + s) where a, b, c, p, q, r, s are all integers.  
By multiplying the parentheses, the polynomial becomes: 
(px + q)(rx + s) = prx² + (ps + qr)x + qs, so that a = pr, b = ps + qr, c = qs.  
Writing the factors of a and c on two lines: 
p       q 
    ×  
r        s 
Finding the right pairs of factors for a and c is done by listing the groups of  products of 
different factors, for example in the polynomial 6x2 + 5x – 4, the factor pairs for 6 are (6, 1); 
(1, 6); (3, 2); (2, 3) and the factor pairs for (-4) are (4, -1); (-4, 1); (2, -2); (-2, 2); (1, -4);  
(-1, 4). Writing them on two lines creates the matrix:  
p   6  1  3  2          q   4  -4  2  -2  1  -1   
                      ×  
r    1  6  2  3          s   -1  1  -2  2  -4  4 
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In the next step, the values of ps and qr are calculated until the value of b = 5 is obtained. 
… 
 
2 · (-1) + 3 · 4 = 10;   
2 · 1 + 3 · (-4) = -10;   
2 · (-2) + 3 · 2 = 2;   
2 · 2 + 3 · (-2) = -2;  
2 · (-4) + 3 · 1 = -5;   
2 · 4 + (-1) · 3 = 5. 
… 
 
After a tiresome procedure, two computing results obtain the same value of 5. They are: 
 3 · (-1) + 4 · 2 = 5; 2· 4 + (-1) · 3 = 5. The polynomial can be factorized into (3x+4)(2x−1) 
and (2x−1)(3x+4) based on these two computing results which are the same. The roots are x1= 
- (4/3); x2 = (1/2). The shortcoming of this method is that it is ineffective and complicated. 
The addition of matrixes is almost impossible and unbearable. This study describes the same 
procedure as the cross multiplication method described above in Study one (Kemp, 2010). 
However factorization can be carried out in different ways. Which method that is the more 
efficient one depends on the integers of the quadratic expression. Mathematics classrooms in 
different cultures teach different methods for factorization. 

2b) Five different kinds of quadratic equations solved by factorization 

Different kinds of quadratic equations have been generalized in a study of the factorability of 
factorization as an approach to solving quadratic equations (Bossé & Nandakumar, 2005). 
Based on those different kinds of quadratic equations, I will list five different kinds and solve 
them by factorization in order to make clear how different factorizations depend on various 
kinds of quadratic equations. 
 
The coefficients a, b, p, q and constant c illustrated in the following quadratic equations are 
defined not to be equal to zero, that is a ≠ 0 b ≠ 0 c≠ 0…. 
 
Type 1. The first kind is the obviously factorable type (Bossé and Nandakumar, 2004):  
ax2 + bx = 0. The equation is factorized as x(ax + b) = 0  where the roots are x1 = 0; x2 =  
- (b/a). 
 
Type 2. The second kind of quadratic equations is (ax)2 – b2 = 0. The factors of this second 
degree polynomial are (ax)2 – b2 = (ax + b)(ax – b), so the roots to this type of quadratic 
equations are x1,2 = ±(a/b). This kind of factorization is based on using the difference-of-
squares formula. For example, 9x2 – 4 = 0 can be solved by factorizing into (3x + 2)(3x – 2), 
and then the roots are x1 = -(2/3); x2 = (2/3). This kind of factorization is also obviously 
factorable. 
 
Type 3. The third kind of quadratic equations is (ax)2 ± 2abx + b2 = 0. This type of equations 
can be solved directly by factoring into two identical binomials: 

0))(()(2)( 222 =±±=±=+± baxbaxbaxbabxax .  
The double roots obtained from this factorization are x1,2 = ±(b/a). This method utilizes square 
rules. For example, 4x2 – 4x + 1 = 0 can be solved by factorizing into two identical factors: 
(2x–1)(2x–1) = 0, the roots are x1,2 = (1/2). 
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Type 4. The fourth kind of quadratic equations is x2 + px + q = 0. In this equation, the 
coefficient of the 2x -term is 1 with p and q as positive or negative integers. Type 4 equations 
can always be solved by the approaches of completing the square and quadratic formula. 
However, they can be solved by factorization, too, since the quadratic expressions are 
factorable by using distributive laws reversely. The factorization methods presented in 2a of 
this chapter can be applied for this kind of quadratic equations. The roots are obtained through 
finding two factors for q, for which the sum is equal to -p. This way, the two factors become 
two roots of a quadratic equation. Denoting the two factors or two roots as r1 and r2, the 
relationship between coefficient and constant is: q = r1 · r2; p = -(r1 + r2). Quadratic equations 
can be written as the product of two first degree binomials or factoring form: 

0))(()( 212121
22 =−−=++−=++ rxrxrrxrrxqpxx . 

Through the factoring form, the roots of this equation are obtained, that is x1 = r1; x2 = r2. The 
core of factorizing type 4 equations is seeking the connections between coefficients and roots 
by making use of basic arithmetic skills. It is often more effective in this case to use 
factorization than to use quadratic formula or completing the square if the constant q in the 
equations is easily factorized into two factors which satisfy relations such as q = r1 · r;  
p = -(r1+r2). This can be shown with the example x2 – 12x + 35 = 0. In this equation,  
p = (-5) + (-7) = -12, and q = (-5)(-7) = 35. By making use of this relation, the equation can be 
solved by the factorization method. Factorizing the left side of the equation obtains the 
product (x − 5)(x − 7), the equation can be rewritten into factorized form (x − 5)(x − 7) = 0. 
According to the null-factor law, the roots obtained are x1 = 5; x2 = 7. It is often a problem 
with the negative numbers in this kind of factorization. In order to check if the solution is 
correct, multiplying the two factorized binomials by distributive law will show if the 
expanded polynomial is the same as the original quadratic equation. 
 
Type 5. The fifth kind of quadratic equations is ax2 + px + q = 0. Still, the methods of 
completing squares and quadratic formula can be applied for all type 5 equations, but 
factorization can also be used for solving this type of equations though it may be complicated 
and requires systematic work. Taking the example of 6x2 + 5x + 4 = 0, this quadratic equation 
can be solved by the factorization method as mentioned in study three in 2a according to 
Jackman (2005), but it is too complicated and troublesome. However, the use of a guess-and-
check factorization method can sometimes be very efficient for solving the equation, making 
use of arithmetic skills and a good number sense. 
 
Among these five kinds of quadratic equations, the first three types are easy to solve by 
factorization while types 4 and 5 are more difficult and tedious. 

3) Applying the quadratic formula for solving quadratic equations 

Solving quadratics equations by factorization is constrained within the simple quadratic 
equations over the whole integers and rational numbers as coefficients. What happens when 
quadratic equations have coefficients that belong to an irrational domain or big quantity?  
 
The quadratic formula is a solution to such a situation. As mentioned previously, the French 
mathematician François Viéte discovered the standard quadratic formula which is applicable 
for all kinds of quadratic equations (Olteanu, 2007): 
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This quadratic formula is believed to have its origin in ancient Babylon (Kvasz, 2006). The 
Greek mathematician Euclid (Kvasz, 2006) used a geometrical method to derive this quadratic 
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formula (see Figure 2). In Swedish textbooks, this formula is written in PQ form by making  
a = 1 in the equation x2 + px + q = 0, that is: 

qppx −

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Olteanu (2007) shows that Swedish students’ difficulties in using algebraic symbols are no 
longer the problem. On the contrary, how to handle the parameters or coefficients in quadratic 
equations like ax2 + bx + c = 0 and rewrite them in the equivalent form x2 + px + q = 0 with p 
and q being real numbers becomes obstacles for the students when they study the algebra 
course at upper secondary level. In the USA, the standard quadratic formula is regarded as the 
standard method for solving quadratic equations (Obermeyer, 1982). Obermeyer presents a 
way of deriving this formula by completing squares in 11 steps. All the methods mentioned so 
far are based on square rules: (a ± b)2 = a² ± 2ab + b2. The standard method or PQ form might 
be regarded as an efficient and direct method, but it may lead students to solve quadratic 
equations in a mechanical way; besides there is also the problem with the troublesome symbol  
± (Stover, 1978). Both Stover (1978) and Olteanu (2007) have suggested using a graph of 
quadratic functions to solve quadratic equations as an alternative method. 
 

3.3 Factorization and polynomials in abstract algebra 
 
The algebra content at Swedish upper secondary school includes interpreting, simplifying, 
reformulating quadratic expressions and solving as well as applying quadratic equations 
according to the mathematics syllabus (Skolverket, 2000). The algebra content in the 
investigated Swedish mathematics textbooks covers topics like polynomial, operational rules 
for computing polynomials, factorization of simple quadratic expressions by using square 
rules and the difference-of-square formula inversely, solving quadratic equations. How are 
quadratic expressions like polynomials and quadratic equations related to factorization? In 
order to find mathematics links among these topics and trace them back to abstract algebra, 
this part presents a mathematical review by referring to two books concerning algebra 
structure (Vretblad, 2000; Durbin, 1992) and a research study (Bossé and Nandakumar, 2005). 

Factorization and polynomial equations 

A quadratic equation ax2 + bx + c = 0 , (a ≠ 0), can also be regarded as polynomial equation. 
Solving quadratic equations is related to finding a zero point3  for the polynomial equation 
(Alfredsson, Brolin, Erixon, Heikne, & Ristamäki, 2007, p. 107). 

The polynomial ax2 + bx + c is a second degree polynomial. A polynomial consists of 
coefficients in whole numbers, rational numbers, real numbers or complex numbers and 
variables (sometimes called unknowns) in different degrees as well as constants. In the 
general form of an n-degree polynomial, f(x) = a0 + a1x + a2x2 + … anxn, the numbers a0. 
a1….an are coefficients. If all ak are zero for k ≥ 1, then f(x) = a0  is constant. If all ak  are zero, 
then we say the f is a zero polynomial. If f is a polynomial, the equation f(x) = 0 is called an 
algebraic equation or polynomial equation at n-degree (Vretblad, 2000). A solution or a root 
of this equation is a number α so that f(α) = 0. Such a number is even called a zero point of 
the polynomial f which means when x = α, the value of the polynomial is zero. 
 
                                                 
3 nollställe in Swedish 
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Factorizing polynomials is analogue to factorizing integers but also related to the concept of 
ring in the field of abstract algebra structure. According to Durbin (1992), the definition of a 
ring is: 

A ring is a set R (any nonempty set) together with two operations on R, called addition 
(a + b) and multiplication (ab), such that each of the following axioms is satisfied:  
R with addition is an Abelian group a + (b + c) = (a + b) + c for all a, b, c ∈R, there is 
an element 0∈R such that a + 0 = 0 + a = a for each a∈R, for each  there is an 
element -a ∈R such that a + (-a) = (-a) + a = 0, a + b = b + a for all a, b∈R, 
multiplication is associative a(bc) = (ab)c for all a, b, c ∈R, and distributive laws a(b 
+ c) = ab + ac and (a + b)c = ac + bc for all a, b, c ∈R. (p. 110) 

 
It can be noticed that representations of these operations are presented as operational rules 
called commutative, associative and distributive laws in the investigated mathematics 
textbooks, for example in Matematik 4000 B (the Blue book) (Alfredsson et al., 2007). There 
are different kinds of rings depending on what domain coefficients of polynomials belong to. 
The ring of integers Z consists of integers as elements, and factorization works for cases like 
12 = 3 ⋅ 4. The different polynomial rings are, for instance, Q[x]: the ring of polynomials in 
one variable with rational numbers as coefficients, R[x]: the ring of polynomials in one 
variable with real numbers as coefficients, C[x]: the ring of polynomials in one variable with 
complex numbers as coefficients. In a ring you can multiply any two elements, but you cannot 
always divide. Factorization is a way to deal with this fact in order to exclude the elements 
from a ring. For example, in Z a division like 7/3 or Q[x] a division like (x2 − 2x + 5)/(x − 3) 
cannot be performed since there is no element in the ring which can be multiplied by the 
denominator to construct the numerator. In such cases, factorizing cannot be done. The 
elements are excluded from the ring. In contrast, (12/3) = 4 and (x2 − 1)/(x − 1) = (x + 1) can 
be expressed by the factorizations 12 = 3 ⋅ 4 and (x2 − 1) = (x − 1)(x + 1).4 
 
A ring consists of a set with two operations, which are a sum and a product of two elements as 
defined above. Any polynomial from zero to n-degree polynomials can be written or operated 
on through addition and multiplication of the elements over a field F including whole 
numbers or integers, rational numbers, real numbers and complex numbers. There is a unique 
monic polynomial (a polynomial with the leading coefficient 1, for example the monic 
polynomial x2 − 2x + 1 which is the greatest common divisor of the product of any other two 
polynomials over a field F if not both the polynomials are zero polynomials. This unique 
monic polynomial can be irreducible (prime) or reducible, for example x2 − 2 is irreducible 
over the field of rational numbers since there is no more divisor, but it is treated as reducible 
over real numbers since x2 − 2 = (x + √2) (x − √2). If a polynomial of degree at least one has 
no other divisors, then it is considered to be irreducible or prime (Durbin, 1992). 
 
Any polynomial can be written as a product of other polynomials and the sum of a polynomial 
through polynomial division, that is: f(x) = (x − α)q(x) + r(x). The term r is a constant when 
its polynomial is zero degree. It can be noticed that (x − α) is a first degree polynomial. When 
the rest r is zero, the value of the polynomial f(x) is zero, something which also is expressed 
as that the polynomial has a zero point when x = α (Vretblad, 2000). Taking the example  
x2 − 2 = (x + √2) (x − √2), both (x − √2) and (x + √2) are irreducible polynomials with degree 
one which implies that the polynomial x2 − 2 has zero points when x = √2 or x = -√2. In this 

                                                 
4 Fainsilber, personal communication, March 9, 2009 
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way, the polynomial equation x2 − 2 = 0 can be solved by factorization and its roots are these 
zero points: x = ±√2. 
 
In this way, solving a quadratic equation can be handled through finding the first degree 
factors for the second degree polynomial equation and thereafter finding the roots of the 
quadratic equation. Therefore, the factorization method is one of the alternatives to solve 
quadratic equations. Using factorization for solving quadratic equations has rich connections 
with arithmetic operations, number concept and algebra structure. 
 
For algebra beginners, factorization can be traced back to students’ early years of 
mathematics education, when students not only work with multiplication but also on factoring 
integers, for example 56 = 8 ∙ 7 = 2 ∙ 2 ∙ 2 ∙ 7 = 4 ∙ 14 = 2 ∙ 28.  In this example, two 
operations are included: multiplication and division. Multiplication operation may help 
students to understand the multiplicative structure of the integers, while factoring integers 
may become meaningful when it is related to divisibility, divisors, and prime numbers. These 
two operational skills, or competences, are major techniques for simplifying fractions and 
finding common denominators. Being able to understand and operate factoring integers has 
possibly laid the essential grounds for algebra beginners to study factorization of 
polynomials. 5  Thus, it is possible to assume that factorization reunites students’ early 
mathematics knowledge of factoring integers with later knowledge of algebra structure. 

Factorability 

In a study on factorability by Bossé and Nandakumar (2005), the probability of factorability is 
reasoned through investigating the range of integers as coefficients of quadratic equations. In 
a quadratic equation ax2+ bx + c = 0, a ≠ 0, a, b and c are randomly generated integers within 
a determined range r such that x ≤ r ≤ y where x and y are integers. When b2 – 4ac is a perfect 
square or where )4( 2 acb − is an integer, quadratics are factorable. The study shows that as 
the range for a, b and c increases, the probability of factorability of a quadratic with randomly 
selected integer values for a, b and c decreases. Bossé and Nandakumar have confirmed that 
as the range for coefficients expands to -∞ < r < ∞, the probability of factorability of a 
quadratic with randomly selected integer values for coefficients approaches zero. The data of 
the study collected from college algebra courses and textbooks demonstrates that about 15% 
of the quadratics with integer coefficients -10 ≤ r ≤ 10 are factorable. Thus, about 85% of all 
quadratics can not be factorized. In spite of the limitation of factorability, within the exercises 
concerning factoring practice, selected from 27 surveyed college algebra textbooks, about 
94% of the problems were factorable. Within the textbooks, 55% of the quadratic expressions 
to be factorized are within the range [-10, 10]. Even if many quadratic equations are 
factorable, choosing the right factor pairs is time consuming, for example the equation  
36 x2 + 59 x + 24 = 0  has to be factorized by choosing the right pairs of factors among nine 
pairs for 36 and eight pairs of factors for 24. Comparing the three different methods for 
solving quadratic equations in their study, Bossé and Nandakumar (2005) suggest that 
completing the square and quadratic formula are more effective, informative and useful than 
factorization. 
 

                                                 
5 Fainsilber, personal communication, March 9, 2009 
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3.4 Conclusion 
 
This chapter has presented core content in the investigated mathematics textbooks: 
completing the square, factorization, quadratic formula, and the relations between roots and 
coefficients as well as constant in a quadratic equation. Early ideas of algebra originated from 
geometrical ideas on finding the sides of a square or rectangle by Babylonian mathematicians. 
Using completing the square approach to solving quadratic equations has its roots in the 
geometrical method. Euclid developed the geometrical method and solved quadratic equations 
by making use of the equivalence relation between the completed square and a rectangle. In 
such a way, the quadratic formula derived through a geometrical method which was expressed 
in words by the Babylonians. It was al-Khwarizmi (Kvasz, 2006) who wrote the first text on 
solving quadratic equations, although he used the same geometrical method. In the late 16th 
century when algebra came into the symbolic stage, French mathematician Viète found the 
relationship between the solutions of the equation and the coefficients for first five degrees of 
equations with one variable (Derbyshire, 2006) and discovered the quadratic formula for 
solving quadratic equations written in algebra symbols (Olteanu, 2007). In the 17th century, 
algebra went into the abstract stage where functions and algebra structure became the main 
focuses (Derbyshire, 2006). Historically, algebra was developed from geometrical ideas to 
symbols and manipulation rules, and later to abstract axioms and structure. The process took 
about 4000 years (Kvasz, 2006). The core content presented in the textbooks has many 
similarities with the history of algebra. 
 
The approaches of completing the square and quadratic formula are the common topics taught 
in school algebra (e.g. Allaire & Bradley, 2001; Bossé & Nandakumar, 2005). Using 
factorization to solve quadratic equations or simplifying quadratic expressions is taught in 
different ways in different cultures (Kemp, 2010). For example, there is a guess-and-check 
method based on observing the structure of quadratic equations or expressions and a cross 
multiplication method based on looking for factors of the coefficients (Kemp, 2010). Using 
algebra tiles as concrete material to teach students factorization is another method based on 
geometrical ideas (Leong et al., 2010). Factorization is not only used in elementary algebra 
but also applied in advanced algebra. In algebra structure, factorization is related to operations 
in a ring (Durbin, 1992). The principle to use factorization to solve quadratic equations is that 
a quadratic equation can be written into two factors by using the distributive law in reverse. 
This is called the null-factor rule (Alfredsson et al., 2007). Bossé and Nandakumar (2005) 
have categorized five different quadratic equations solved by the factorization method. The 
simple quadratic equations can be solved by using the square rule and the difference-of-two-
squares rule inversely. But the general quadratic equations are difficult to handle by 
factorization. Then completing the square method and the quadratic formula can be used for 
all kinds of quadratic equations. 
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4. Research Reviews 
 
This study is about analyzing algebra content presented in textbooks and involves three 
research areas: textbooks, algebra related to Pedagogical Content Knowledge; PCK (Shulman, 
1986b) and algebra related to Subject Matter Content Knowledge; CK (Mishra & Koehler, 
2006).  
 
Algebra content knowledge related to this study has been presented in Chapter 3. In order to 
gain insight into research within these three areas, I have systematically searched articles and 
handbooks to review previous research. In this chapter, I will summarize my findings of 
previous research within the areas of textbook research and algebra teaching and learning.  
 
This chapter consists of two parts including two research reviews. The first part focuses on 
previous studies on textbook research including mathematics textbooks. The second part 
focuses on previous studies on teaching and learning school algebra, in particular factorization 
and quadratic equations. 
 

 4.1 Review on previous textbook studies 
 
This first research review begins with the relation between textbooks and teaching. The 
purpose is to show why I relate content analysis to teaching and subject content knowledge. 
Thereafter, a survey of previous research on textbooks will be presented by referring to 
Johnsen (1993) and Selander (2003) in order to get an overview of the field. Then the main 
part will focus on some previous textbook studies by relating to a teaching and learning 
perspective as well as subject content. The conclusion will be given after the first review on 
textbook research. 
 
A short background of textbook inspection in Sweden 
 
Sweden has a long tradition of examining and control of school textbooks by the state 
(Långström, 1997). Ever since the 17th century, school books have been examined and 
inspected by the Swedish government or by the church so that none of the books contained 
heresies. In 1868, all textbooks in geography and history for elementary schools were 
inspected. During the interwar period, the textbook issue was discussed and investigated. 
 
In 1938, a government textbook commission was established. The inspection of textbooks 
was extremely extensive, detailed and covered most of the teaching aids including not only 
content and style but also price and even the quality of the paper. Working teachers and 
experts in the respective fields carried out the inspection and examined the books according to 
the directives stated by their commission. Textbook investigation by the government has 
continued. In 1974, the SIL (Statens institut för läromedelsinformation - “The Swedish 
Institute for Teaching Aid Information”) was established to examine the objectivity level of 
all teaching aids used in social studies. In the latter half of the 1980s, a few inspections on 
different themes were carried out. In 1991, the SIL ceased its work and the board of education 
took over. However, inspection of textbooks at government level in Sweden met its end in 
1996. Today, the quality of textbooks is decided by the demands of the market (Långström, 
1997). 
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4.1.1 How does a textbook relate to teaching? 
 
Making clear what a textbook is and how textbooks relate to teaching and pedagogy is an 
important issue in my study. I choose to present the relationship in Section 4.1.1. To do this, I 
refer to a research paper (Stray, 1997), a previous study (Julin Svensson, 2000) and a survey 
(Selander, 2003) as well as some handbook studies (Doyle, 1992; Venezky, 1992). 
 
In general, textbooks and other teaching resources are often included in the classroom 
contexts according to Dunkin and Biddle (1974, cited in Shulman, 1986a). Alongside other 
learning material, textbooks are used as instructional material in a particular subject (Gagné, 
1977; Reints, 1997; Venezky, 1992). Belonging to the whole teaching process, teachers are 
provided with textbooks for planning and teaching lessons (Abell, 2007). 
 
The relationship between textbook and teaching has been claimed to be curriculum related 
(Venezky, 1992). Venezky claims that a textbook is regarded as a replacement of the 
curriculum including subject content, hidden curriculum and pedagogical approaches since it 
offers arranged topics, didactic methods, and instructional manual for a particular subject. He 
argues that a textbook influences teaching, but also that curricula have strong influence on 
textbook content through the publishers. Textbooks connect knowledge domains to school 
subjects by transforming content into curriculum (Doyle, 1992). 
 
Going to the details about a textbook, I find the connections among a textbook, a subject and 
pedagogical functions in its definition. The Longman Dictionary of Contemporary English 
(2005) defines that a textbook is “a book that contains information about a subject that people 
study, especially at school or college” (p. 1714). 
 
Some researchers in the field of textbook research have discussed the issue of how to define 
“textbook.” To answer this question, Stray (1997) means that several answers can be taken 
into account. There are textbooks produced for use in instructional sequences, but on the other 
hand there are textbooks produced by authors who do not have such instructional sequence 
intentions. For example Shakespeare’s plays can be used in a classroom. Textbooks and 
schoolbooks can be distinguished: textbooks are designed and produced specifically for 
instructional use while schoolbooks also can be used for instructions but are less closely tied 
to pedagogic sequences. “Schoolbook is first attested in the 1750s, and more commonly from 
the 1770s. Textbook does not appear until the 1830s” (Stray, 1997, p. 57). 
 
Textbooks have been related to teaching for a hundred years as a teaching instrument and they 
link teachers, students and the searched knowledge (Julin Svensson, 2000). Textbooks are 
regarded as part of teaching materials 6 (Julin Svensson, 2000; Selander, 2003). Teaching 
materials including books, instruments and other assistant materials are intended for students’ 
study in main school subjects in order to reach the set aim of the curriculum (Julin Svensson, 
2000). In Sweden, textbooks have been categorized as basic teaching materials by SIL, 7 
according to Selander (2003). The difference between textbooks and other teaching materials 
is that textbooks can be used both in and outside school while other teaching materials are 
restrained within school situation (Selander, 2003). 
  

                                                 
6 Läromedel in Swedish 
7 Statens institut för läromedelsinformation - “The Swedish Institute for Teaching Aid Information” 
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The essential feature of a textbook is what is presented in the textbook, or in other words 
content in the textbook. Furthermore, content in the textbook is mainly expressed by texts. 
Such texts are regarded as pedagogical texts (Selander, 1997, 2003; Julin Svensson, 2000). 
Pedagogical texts differing from other kinds of texts are produced for institutionalized use in 
an educational system that has its own spatial, time, and social organization such as classes 
and lessons etc (Julin Svensson, 2000). By referring to Grepstad (1997), Selander (2003) 
emphasizes that pedagogical texts in textbooks or other teaching materials do not aim at 
creating new knowledge but reproducing available knowledge. He continues that they are 
structured with certain pedagogical needs to explain something; at the same time the 
knowledge represented by the texts should be able to be applied or controlled by teachers in a 
relatively easy way. Selander (2003) regards pedagogical texts as tertiary artifacts since they 
are produced for students, and even by students in a teaching situation. He points out that 
school knowledge depends mostly on textbooks that are treated as standard. In an example 
used by Selander (2003), he argues that textbooks’ function is not just for mediating the facts 
of subject matter knowledge but encouraging active learning through reconstructing the 
knowledge with a pedagogical idea of utilizing the subject matter knowledge as a process 
rather than an amount of facts. 
 
In this study, the analysis of mathematics textbooks focuses on algebra content presented by 
mathematical texts in the textbooks. In this meaning, the mathematical texts are pedagogical 
texts that have the pedagogical functions of explaining the knowledge of algebra. 
 

4.1.2 Two influential surveys of previous textbook research 
 
In this part I will present two surveys of textbook research made by Johnsen (1993) and 
Selander (2003) in order to get an overall picture of previous research in this field. 
 
Johnsen (1993) uses the metaphor of a kaleidoscope to describe the complexity of a textbook 
since it consists of many different aspects related to curriculum, instruction, and knowledge. 
His survey covers research material from Germany, France, the Nordic countries, the UK and 
the USA, and includes history textbooks, grammar books, writing skill books and textbooks 
for social studies. By referring to Woodward, Elliott and Nagel (1988), Johnsen (1993) 
applies three main categories of textbook analysis approaches: process-oriented textbook 
research, use-oriented textbook research and product-oriented textbook research. The process-
oriented approach consists of conceptualization, writing, editing, agreement (by the publisher), 
marketing, selection and distribution before it comes to a user such as a pupil. This type of 
research has been scarce. The use-oriented approach refers to studying the use of textbooks by 
teachers and students when textbooks are regarded as educational instruments in school. The 
research questions are about the textbooks’ authority, accessibility and effectiveness. This 
kind of research is growing but is not as common as the content analysis. The product-
oriented approach refers to the fact that textbooks are produced as a product intended to 
provide information about a particular subject. Research has been carried out in the areas of 
content analysis, the selection of material and readers’ attitudes. 
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Johnsen finds that content analyses have dominated textbook research. He writes: 
 

Little research has been done on the writing, development and distribution of 
textbooks. Most of the literature consists of articles criticizing either the approval 
systems or the role of the publisher.  
         Book use has received slightly more attention, but so far the primary focus has 
been on textbook analyses based on readability theories rather than on classroom 
surveys. The results are conclusive on several points: Textbooks have been and 
continue to be the most widely-used teaching aid. Although it is hard to pinpoint 
exactly how textbooks are used in the classroom, it is clear that practices vary 
considerably. The way in which pupils read and use textbooks has not yet been studied 
adequately, but existing reports tell of poor accessibility and questionable 
effectiveness. (Johnsen, 1993, p. 328) 

 
Compared to conventional educational research, referring to Westbury (1990), Selander (2003) 
points out that textbook research has been invisible in spite of the textbook’s important role in 
education. However, textbook research has started to get more attention during the last 15 
years in many nations like Germany, France, Japan, England, Norway, Sweden, Austria, the 
USA and Australia (Selander, 2003). Selander categorizes textbook studies within three areas, 
very similar to the areas described by Johnsen (1993): process-oriented, for example textbook 
production, distribution and utilization; production-oriented relating to content, social and 
cultural aspects such as linguistics and didactical aspects; reception-oriented, for example, 
how students understand texts according to French researcher Alain Choppin (as cited in 
Selander, 2003). The survey shows that textbook production and distribution are the least 
studied area because of unwilling cooperation from publishers (Selander, 2003). Textbook 
research has been focused on studying textbook content, but studies on how they are used and 
how they can contribute to learning are needed (Selander, 2003). Within the product-oriented 
research area relating to textbook content, subject-didactical studies8 and critical discourse 
analysis have been studied and developed, according to Selander. He explains that the subject-
didactical studies treated as pedagogical research in Sweden, have involved subjects like 
history, geography, civics, physics, biology, religion, mathematics, literature and music. 
 
One finding in the survey of research on textbook and teaching materials by Selander (2003) 
is that pedagogical texts today tend to be created with “learner-centered design (LCD)”  
(p. 217), which is considered a pedagogy against passive learning. In such pedagogical texts, 
tasks or assignments offered to students are not too complicated or difficult but designed at 
different levels in order to adapt various needs from students and encourage the student’s 
learning (Selander, 2003). In contrast to the traditional and normative pedagogy, the pedagogy 
reflected in these kinds of teaching materials contains more activities and requires more 
cooperation (Selander, 2003). 
 
The influence of textbooks and teaching materials on teaching has been studied within 
Swedish contexts (Englund, 1999; Johnsson Harrie, 2009; Julin Svensson, 2000). The role or 
function of textbooks in schools has been treated differently depending on subjects and 
teachers (Englund, 1999). Looking at a study by Gustafsson (1980), Englund (1999) points 
out that in the subjects of English and science courses, textbooks play an important role as 
information transformers providing plain facts and as organizers of the subject contents, while 
civics or social studies depend less on textbooks. The positive influence of the textbook may 

                                                 
8 ämnesdidaktiska studier in Swedish 
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be that textbooks are helpful when applying teachers’ teaching methods and content 
sequences while they may negatively affect students’ learning from a textbook language and 
ideology aspect. Agreeing with some Swedish studies, Englund supports the idea that 
textbooks define teaching aims and what teachers present mostly comes from textbooks. 
Another function of textbooks is to keep students busy during the lesson. On the other hand, 
textbooks do not represent an independent agent. It is teachers who decide what they intend to 
use from textbooks and who find pedagogical aims and structures in textbooks. When 
teachers lack subject knowledge, they depend heavily on textbooks. Mathematics textbooks 
have a strong influence on both teachers and students because of its content and sequences. 
Similar to Englund’s result, some American studies from the 1980s (Doyle, 1992) indicate 
that teachers’ dependence on textbooks varies depending on the subject they teach. 
 
To sum up, the general findings of previous research are that textbooks production and 
distribution as well as writing have been studied very little; most of the studies have focused 
on analyzing textbook content related to its subject matter knowledge, whereas textbook use 
in classrooms and how textbooks influence students’ learning have not received much 
attention. (Johnsen, 1993; Selander, 2003). In the textbook content analysis research, the 
pedagogical idea related to learner-centered design built into the textbook has been found 
according to Selander (2003). My study can be positioned in the last category: textbook 
content analysis research but with focus on studying the embedded pedagogical content 
knowledge. 
  

4.1.3 Review of previous research on mathematics textbooks 
 
The review in this section is based on a study of previous textbook research. I carried out my 
search for literature about textbook research by using three databases and library resources. 
During the searching process, two areas were focused upon: textbook research in general and 
mathematics textbooks research in particular. In order to get a general insight into textbook 
research, the review covers both articles and dissertations related to different subjects 
including mathematics. Three categories (Johnsen, 1993; Selander, 2003), of textbook 
research were taken into account: textbook content, textbook use, and textbook production. In 
addition, I investigated if the studies involved analyses of pedagogical intentions in textbooks 
from a teaching perspective, and what analytic frameworks were applied for content analysis. 
Among the searched articles and dissertations, 21 studies were chosen for reading in detail 
and they include the different subjects: language learning (3); history (2); social studies (2); 
geography (1); science (3) and mathematics (8). Two of the twenty-one studies were excluded 
because of their irrelevance to content analysis of textbooks. 
 
In the twenty-one studies, eight studies are related to mathematics textbook research but only 
one study (Jakobsson-Åhl, 2006) is about analyzing algebra content in textbooks. Analyzing 
mathematics tasks in the textbooks (Brändström, 2005) is a study within the area of textbook 
content analysis. Two of the eight studies are about both textbook content analysis and the use 
of the textbook in mathematics classrooms in relation to teaching (Johansson, 2006; Pepin et 
al., 2001). Comparison of mathematics tasks from the textbooks across different nations has 
been found among these studies (Vincent & Stacey, 2008). Of these twenty-one studies, 90% 
are textbook content analysis and a few of them are about both content analysis and the use of 
textbooks in relation to curriculum. Two textbook content analyses in mathematics and 
science (Chiappetta & Fillman, 2007; Vincent & Stacey, 2008) have applied TIMSS (The 
Third International Mathematics and Science Study) analytical criteria concerning conceptual 
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framework for analyzing content in textbooks. Other research methods for analyzing textbook 
content involve variation theory (Jakobsson-Åhl, 2006), and a mix of quantitative and 
qualitative methods (Chiappetta & Fillman, 2007). However, there are no general findings 
among the twenty-one studies except that most of the studies are about textbook content 
analysis. 
 
In the following part, the review of five relevant studies will be organized according to PCK-
CK (Shulman, 1986b; Mishra & Koehler, 2008) principles and entitled subject teaching and 
learning (as PCK) and algebra content (as CK). I add the third title content analysis 
framework (related to PCK-CK) to the review since analytical frameworks are relevant for 
this study. 
 
Subject teaching and learning 
 
Johansson (2006) has studied mathematics textbooks in relation to curriculum and teaching. 
In her study, she examines Swedish textbooks and the national curriculum and then observes 
how the investigated textbooks are used in three Swedish classrooms. Johansson finds that the 
development of the curriculum is only partly reflected in the development of the textbooks. 
Teachers and students are the most crucial factors relating to mathematics textbooks. They are 
the users and readers, textbooks become artifacts in the mathematics classrooms. In her study, 
Johansson carries out the investigation of content analysis of a series of mathematics 
textbooks from Swedish lower secondary schools with focus on the influence of curriculum 
development in these textbooks. The content analysis consists of special mathematics topics 
from the mathematics textbooks for grade seven in lower secondary schools and the aim is to 
examine the link between the intended curriculum: “The analysis shows that there are very 
few instances in the textbooks where mathematics as a scientific discipline is discussed” 
(Johansson, 2006, p. 24). 
 
When it comes to the use of mathematics textbooks, Johansson (2006) claims that 
mathematics teachers in Sweden have an influence on the development of textbooks because 
they decide which textbook they will use. Her finding reveals that teachers (two out of the 
three teachers in her study) use their textbooks as the main sources for both teaching and 
students’ individual work during the whole lesson in the classrooms (Johansson, 2006). The 
teachers’ presentations of mathematical definitions, rules and problem solving procedures as 
well as examples are portrayed in the textbook. Johansson also exposes that tasks and their 
constructions influence the teacher-student interaction. When the teacher and the textbooks 
have different answers, the teacher often avoids arguing against the textbook, which causes 
ambiguity and makes the students confused about how to understand the mathematics subject, 
according to Johansson. 
 
Johansson’s study supports findings from another study (Gustafsson, 1980), that teachers 
depend heavily on mathematics textbooks in their teaching and that mathematics textbooks 
are the main sources of mathematical knowledge that teachers present. There is an authority 
status of mathematics textbooks even though mathematics textbooks have not emphasized 
mathematics as a scientific discipline (Johansson, 2006; Pepin, Haggarty & Keynes, 2001). 
Another factor is that mathematics textbooks reflect the development of curriculum and cover 
the same topics as in the curriculum (Johansson, 2006; Venezky, 1992; Pepin et al., 2001). 
 
In an international textbook study (Pepin et al., 2001), content analysis of mathematics 
textbooks has been carried out in England, France and Germany associated with their use by 
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teachers in mathematics classrooms at lower secondary level. The analysis in this comparative 
study considers four areas in terms of textbook content and structure: the mathematical 
intentions; pedagogical intentions; sociological contexts; and the culture traditions represented 
in textbooks. Their study aims at exploring the mathematics classroom teaching and learning 
culture against a background of a textbook analysis and teachers’ use of them. The motivation 
behind their study came from findings of a TIMSS study that included large-scale cross-
national analyses of mathematics curricula and textbooks in almost 50 nations. Schmidt et al 
(1997, cited in Pepin et al., 2001) pointed out that textbooks are shown to reflect official 
intentions of the national curriculum. They argued against research on text analyses that were 
distanced from their context of use. Thus, they chose to analyze textbooks not only in terms of 
their content and structure but also their use in classrooms by teachers and students. 
 
Textbook analyses conducted by Pepin, Haggarty and Keynes (2001) focus on the 
mathematical intentions and pedagogical intentions implicated in the textbooks. The 
mathematical intentions cover three areas: what mathematics is represented in textbooks; 
beliefs about the nature of mathematics implicated in textbooks; and the presentation of 
mathematical knowledge. In their previous literature reviews, Pepin et al. (2001) put forward 
different views on mathematics taught in schools and mathematics in the academic world. 
Against the view of regarding school text material as a special version of mathematics, they 
seem to agree with Love and Pimm (1996) that both so called “real” or scholar mathematics 
as well as school mathematics with pedagogical intentions should be seen as different 
versions of mathematics for a particular purpose (Pepin et al., 2001, p. 4). However, this does 
not clearly show what their views of mathematics are when analyzing textbooks. Their beliefs 
in the nature of mathematics implicit in textbooks are based on Van Dormolen (1986), who 
means that acquisition of knowledge with activities in textbooks is one kind of goal and 
acquisition of process skills with content knowledge growth is another goal. With these two 
goals, mathematics textbooks may be written so as to explore and encourage students for 
acquisition of new knowledge; or in a way that puts focus on a large amount of exercises with 
few connections with concepts. Compared with the view of mathematics as rule-bound and 
convention-bound from Van Dormolen, Pepin et al. (2001) give another opinion on 
understanding according to Schmidt et al. (1996, 1997) associated with cross-nation research: 
understanding content has much to do with topic, developmental and cognitive complexities, 
especially the last complexity generalized through activities like recognizing, recalling, 
performing, solving and developing and so on. In such a way, Pepin et al’s comparison study 
explores the diversity in textbooks in three countries. 
 
The criteria applied for analyzing pedagogical intentions of textbooks by Pepin et al. (2001) 
are based on Van Dormolen’s idea and mixed with those of Schmidt et al. In the previous 
studies review, Pepin et al. (2001) agree that textbooks are used extensively in the classroom 
and that textbooks characterize authorities in different ways such as legitimating knowledge, 
being major resources in the classroom, transmitting knowledge and so on. They claim that 
“teaching of the text has always been the teacher’s primary function, with the teacher as 
mediator” (Pepin et al., 2001, p. 7). Accordingly, it is often teachers who decide which 
textbook to use, where and when to use it in the classroom. They argue that research on 
textbooks should put focus on the use of textbooks too, which may provide a representative 
picture of a country’s education culture. 
 
The research carried out by Pepin et al. (2001) is organized in three parts: analyzing 
mathematics textbooks in three countries; interviewing teachers about their views on using 
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textbooks; and classroom observations. According to Pepin et al. (2001), the primary findings 
point out some differences and similarities between the three countries. 
 
French textbooks consist of activities (small investigations and cognitive activities), essential 
exercises (essential parts for teaching and learning including working examples), and 
accommodating exercises (graduated in order of difficulty). The activities are intended to 
guide students to a new notion. French textbooks reflect the tradition of Piaget’s 
constructivism and intend to develop students’ mathematical thinking including exploring, 
understanding concepts and mathematical reasoning. All students had textbooks and the same 
textbook was used by all the students in the same year-group with the purpose that every 
student is offered the same opportunity, something which reflects the educational tradition of 
entitlement, an egalitarian view. Teachers relied on textbooks mainly in terms of exercises 
and cognitive activities, sometimes as an essential part. 
 
German textbook investigations at lower secondary level consist of three different textbooks 
adapted for three different school forms. All the textbooks are constructed into two parts: 
introductory exercises and the main notion followed by an extensive range of exercises. The 
level of difficulty in complexity and coherence is high with respect to mathematical logic and 
structure, but representations show little variety according to Pepin et al. (2001). The 
textbooks were needed in every lesson, but teachers had to help low achieving students to 
understand the content in the books in some schools. Teachers used textbooks mainly in terms 
of exercises in school and for homework. 
 
British textbooks seemed simple in terms of complexity and coherence according to Pepin et 
al. (2001). Straightforward questions are put forward before the worked examples. The taught 
method is applied in poor and “non-real” contexts in the form of “routine-type” (Pepin et al., 
2001, p. 16).  The contexts rarely required deeper levels of thinking. Students’ access to 
textbooks was limited. Teachers used textbooks only for exercises and were less dependent on 
them than in the other researched countries, but they also at times tended to increase using 
textbooks because of lack of time. Teaching was student-centered and concerned a more 
individualistic approach. 
 
Drawing upon the findings from Pepin et al. (2001), mathematics textbooks are designed and 
constructed differently depending on different pedagogical culture but they are generally 
applied for the pedagogical activity of doing exercises and mathematical activities. For 
example, French textbooks embed pedagogical ideas of encouraging students’ thinking and 
reasoning mathematics. French textbooks emphasize that everyone should learn the same 
thing. German textbooks provide difficult and complicated mathematics tasks while British 
textbooks emphasize routine exercises without requiring deep level of thinking from students. 
Teachers in British schools depend less on mathematics textbooks. How the analysis criteria 
of mathematics content presented in the textbooks work in their study from methodology 
aspect has not been reported. 
 
According to the findings of three mathematics textbook studies (Brändström, 2005; Pepin et 
al., 2001; Vincent & Stacey, 2008), there is an implied pedagogical idea that mathematics 
tasks or exercises offered by textbooks should not be too difficult or complicated for students. 
 
A study carried out by Australian researchers applies the TIMSS Video Study criteria to 
analyze Australian eight-grade mathematics textbooks (Vincent & Stacey, 2008). The aim of 
the study is to compare mathematics textbooks’ content (what is taught from the textbooks) 
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with the findings of the TIMSS video study to determine whether the general picture revealed 
by the 1999 video study would arise if all lessons followed textbooks exactly. Vincent and 
Stacey (2008) point out that Australian mathematics classrooms heavily depend on textbooks 
and worksheets which take up 90 per cent of the lessons. Their purpose is also to find if it is 
possible to identify the differences between textbooks when they use the Video Study criteria. 
In their review of previous results from the TIMSS Video Study, they emphasize that the 
Japanese lessons have focused on making connections and so do their textbooks. Several 
negative trends in the development of mathematics learning have been noted in their review. 
For example, the US mathematics curricula of the 1970s called for teaching students to master 
basic mathematics procedures. Schoenfeld (2004, cited in Vincent & Stacey, 2008) argued 
that the focus on process without attention to skills deprives students of the tools needed for 
fluid and competent performance. The Australian researchers selected the 2006 best-selling 
eighth-grade textbooks in four Australian states. The investigated topics were addition and 
subtraction of fractions, solving linear equations and geometry concerning triangles and 
quadrilaterals. The researchers investigated the numbers of mathematics tasks in every book 
in their analyses. They classified the tasks according to five criteria: procedural complexity at 
three levels (low, moderate, or high procedural complexity), type of solving processes (using 
a procedure, stating a concept, making connection), degree of repetition, proportion of 
application (sometimes called real world) problems, proportion of problems requiring 
deductive reasoning. 
 
Vincent and Stacey (2008) expose that lower procedural complexity tasks are in majority in 
most of the textbooks, but it does not necessarily imply lower quality of tasks in terms of 
challenging students to make connections or to reason or vice versa. There is a lower level of 
making connection tasks in several books. They argue that there needs to be a balance 
between acquiring mathematical skills and experiencing the processes enabling students to 
use mathematics. Advice is given by their study that using the percentage of problems in each 
category as the basic measure may be misguiding since time spending on different complex 
level of tasks varies much. Low-level tasks need less time than tasks with high procedural 
complexity or tasks that require students to make connections. Therefore, it is worth 
examining the percentage of time spent on tasks. The result also shows a broad similarity 
between textbook problems and the Australian Video Study lesson problems. They suggest 
that it is important that textbooks provide students with sufficient problems so that procedures 
may be practiced and become a secure part of a student’s mathematical toolbox. A certain 
level of repetition is useful. Their result does not show which tasks are so called good tasks 
and there is no evidence marking if a task provokes or does not provoke mathematical thought. 
They point out that a full range of task types and a balance task types are important for all the 
students, and that textbooks should have an accompanying teachers’ guide focusing on the 
pedagogical intentions of the textbooks material. 
 
In contrast to the Australian study, Brändström (2005) exposes that the tasks in the textbooks 
used in Swedish lower secondary schools are not totally related to the educational demands 
and that the level of challenge is low. She has analyzed the levels of difficulty for tasks in 
mathematics textbooks from years 7 to 9 used for Swedish lower secondary school. The study 
focus is differentiation among presented tasks in the textbooks. In her analysis, Brändström 
uses two perspectives (Anderson and Krathwohl, 2001; Smith and Stein, 1998) to study the 
thought process expected of a student when solving a task. 
 
Through describing the structure of one chapter in each of the analyzed textbooks, 
Brändström (2005) illustrates the strands of the different difficulty levels of the tasks in three 
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textbooks and compares them with an applied analytical framework. She reveals that the three 
analyzed textbooks have a similar structure grouping tasks by difficulty levels, but the tasks 
have low challenge level that does not reach the educational demands. She suggests that the 
constructed analytical framework or tool can be used to study differences between tasks in 
mathematics. 
 
Low level tasks offered in the mathematics textbooks are found in the three studies mentioned 
above (Brändström, 2005; Pepin et al., 2001; Vincent & Stacey, 2008). This exposes the 
pedagogical idea that everybody should learn something in their first step to study 
mathematics. Requiring students to perceive mathematical connections is found in the study 
by Vincent and Stacey (2008). Encouraging students’ mathematical thinking is reflected in 
French mathematics textbooks, according to the study by Pepin et al. (2001). 
 
Content analysis framework 
 
This review has found that different kinds of analytical frameworks or criteria have been 
applied when analyzing mathematics content presented in textbooks. The analysis criteria 
applied for analyzing pedagogical intentions of textbooks by Pepin et al. (2001) are based on 
a view of mathematics presented by by Van Dormolen (1986) and blend with those of 
Schmidt et al. (1996, 1997) as mentioned before. They consist of three themes considering 
learners’ understanding (Pepin, et al., 2001, p. 4): 

 
1. Ways in which the learner is helped (or not) within the content of the text to learn the 

materials 
2. Ways in which the learner is helped (or not) within the methods included in the text 
3. Ways in which the learner is helped (or not) by the rhetorical voice of the text.  

 
In short, the criteria concerns how content, methods and the rhetorical voice in textbooks are 
represented in regard to a learner. The criteria based on Schmidt et al. include investigating 
topics as well as developmental and cognitive complexities like recognizing, recalling, 
performing, solving and developing and so on (Pepin, et al., 2001). These criteria concern a 
learning perspective from a basic level to a complex level. 
 
The analytical framework used in Brändström’s study (2005) includes two perspectives. One 
perspective is based on the revised version of Bloom’s taxonomy (1956) by Anderson and 
Krathwohl (2001). Bloom’s taxonomy was originally “created to represent the intended 
outcome of the educational process and categories the students’ behavior” (ibid., p. 27). 
Bloom’s taxonomy has been regarded as a framework for classifying what teachers expect 
students to learn as a result of instruction according to Krathwohl (2001) (as cited in 
Brändström, 2005). According to her interpretation of Bloom’s taxonomy, Brändström (2005) 
mentions three domains of educational activities identified in the taxonomy: cognitive, 
affective and psychomotor with focus on the cognitive domain. 
 
The cognitive domain refers to practicing activities demonstrated by knowledge recall and 
intellectual skills (e.g. understanding ideas and applying knowledge). There are six 
hierarchical categories in this domain beginning from the simple behavior and building to the 
most complex: knowledge, comprehension, application, analysis, synthesis, and evaluation. 
Brändström (2005) claims that a student performing at a higher level demonstrates a more 
complex level of thinking. However, criticism of using the taxonomy arises during its 
application such as difficulty in interpreting the categories; the independence of content from 
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process; and categories isolated from any context (Brändström, 2005). Considering the 
revised version of Bloom’s taxonomy, Brändström (2005) emphasizes the importance of the 
categories consisting of remembering, understanding, applying, analyzing, evaluating, and 
creating. She claims that the last two categories are interchanged with the orders because of 
increased complexity. These categories indicate students’ thinking at different levels from the 
low level remembering to the highest level creating. She compares these categories with 
another perspective from Smith and Stein’s framework (1998) to study the thought process of 
a student when solving a task, pointing out four similarities between them: i) memorization ii) 
procedures with connections to concepts or meaning iii) procedures without connections to 
concepts or meaning iv) doing mathematics. 
 
Brändström (2005) adapts Anderson and Krathwohl’s categories and Smith and Stein’s 
framework in creating her analytical framework. She investigates the processes and demands 
of the tasks in the textbook according to four perspectives: pictures (none; decorative; 
functional); operations (one operation or more than one operation); processes (remembering, 
understanding, applying, analyzing, evaluating, and creating); and demands (memorization, 
connections, no connections and doing mathematics). 
 
In agreement with Pepin et al. (2001), Brändström (2005) considers the development of 
learning a process from a low to a high level. Analysis criteria related to process and demands 
of mathematics tasks have also been applied by Vincent and Stacey (2008). However, they 
have further added the tasks’ procedural complexity, real world application, and demand of 
deductive reasoning to their criteria. Thus, I have found that content analysis of mathematics 
tasks or exercises in textbooks in these three previous studies focuses on the cognitive domain 
(Brändström, 2005) from a learning perspective in terms of pedagogy. Analyzing mathematics 
tasks also takes mathematics application into account. 
 
When textbook analysis concerns content presented in the textbook as a subject matter, the 
analytic framework applied is of a different kind. Chiapetta and Fillman (2007) focus their 
content analysis of textbooks on subject matter related to concepts. They study five high 
school biology textbooks used in the United States. They claim that the role of textbooks in 
the US educational system is very important since textbooks help define school subjects and 
represent school disciplines to students. They find that science textbooks are often used as the 
primary organizer of the subject matter and 90% of secondary school teachers use science 
textbooks for classroom instruction and homework. Their study relates to four themes of the 
nature of science: science as a body of knowledge; science as a way of investigating; science 
as a way of thinking; science and interactions with technology and society. The aim of their 
study is to see if biology textbook authors and publishers responded to the recommendations 
of national reform committees and scholars with regard to teaching students a more authentic 
view of the nature of science. Chiapetta and Fillman (2007) claim that using a conceptual 
framework to guide textbook analyses is the most critical aspect. They take science content 
and recommended science instructional criteria into account when considering both the 
content and the instructional approach from a teaching perspective. 
 
Other analyzing criteria used by Chiapetta and Fillman (2007) are based on a study carried out 
by Valverde et al. (2002) who have analyzed 630 mathematics and science textbooks 
throughout the world as part of the Third International Mathematics and Science Study 
curriculum analysis. Chiappetta and Fillman (2007) consider the following criteria:  
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a) physical features (number of pages and graphics) 
b) textbook structure (sequencing content) 
c) content presentation (coherence, fragmentation, and complexity) 
d) performance expectations (reading, recall of information, answering questions, and 

engaging in hands-on activities)  
e) lessons (the text segment devoted to a single main topic) 

(Chiappetta & Fillman, 2007, p. 1853) 
 
Chiappetta and Fillman (2007) also find that the American textbooks contain more pages and 
topics than those in other countries and have a large percentage of fragmented themes. The 
content analysis method applied by Chiappetta and Fillman (2007) is to code units according 
to four themes: knowledge, investigation, thinking, and science/technology/society. They 
argue that using the conceptual framework to analyze biology textbooks has offered more 
specific and detailed analyses when examining, for example, the authenticity of science in a 
textbook, the tentative nature of science, and so on. They find that the present biology 
textbooks contain enough information necessary to comprehend the fundamental ideas of the 
topics under study. They point out: “the textbook itself is a direct and concrete reflection of 
how that publishers and author choose to represent the nature of science” (Chiappetta & 
Fillman, 2007, p. 1864). 
 
Differing from the previous mathematics textbook research mentioned before, Chiapetta and 
Fillman (2007) analyze the subject content presented in the textbooks, which include not only 
tasks but also content presentations. By focusing on biological concepts in the science 
discipline, they investigate the content structure and presentations in relation to topics and 
sequences. Thus, they analyze the textbooks from a teaching perspective and subject matter 
knowledge (Shulman, 1986b). 
 
Algebra content 
 
Algebra content analysis was found in one textbook study (Jakobsson-Åhl, 2006). Jakobsson-
Åhl (2006) examines algebra content presented in two sets of upper secondary mathematics 
textbooks published in Sweden during the period 1960-2000. She has investigated literal 
calculi and algebraic theory as well as explicit descriptions of the concept of algebra in 
general in eleven algebra textbooks. Her investigation of the books includes algebraic 
definitions, descriptions, worked examples and exercises according to three categories: the 
Pre-New Math, New Math and Post-New Math eras. The methodologies adapted in her study 
are phenomenography and hermeneutics with the intention of describing the variation of 
school algebra in the textbooks from a second-order perspective. The aim of the study by 
Jakobsson-Åhl (2006) is to gain an insight into the variation of algebra in the period  
1960-2000 in mathematics textbooks and their revisions when affected by curricular reforms. 
Her focus is on analyzing algebra content in school mathematics from four different points of 
view on algebra: operational symbolism; algebraic way of thinking; generalized arithmetic; 
algebra structure. 
 
Jakobsson-Åhl (2006) has found a great change of algebra presented in the textbooks over the 
years. She points out that the pre-new math textbooks emphasize algebraic manipulation by 
use of literal symbols and algebra expressions, and that operational symbols are the central 
feature in these textbooks. Such complicated algebraic manipulation disappeared in the 1968 
textbooks. Tabular and graphical representations have since then dominated and number 
structures became important. She continues that there was a shift of focus from algebra 
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expressions to algebraic structures in the new math era. The algebraic structure approach 
disappeared in the 1970s. Instead, the use of numerical examples increased in the post-new 
math era while other changes in this period were that the real-life word problems appeared 
and equations were linked to the idea of relations and patterns. She also points out that there is 
a shift from algebra manipulations to multiple representations like functions, and tasks are 
related to real world and social contexts. Jakobsson-Åhl (2006) claims that the treatment of 
functions does not belong to the realm of algebra in Swedish textbooks and some of the 
specific aspects that traditionally belonged to algebra are now treated in the theory of 
functions. She argues how removing literal symbols takes away the opportunity to do 
algebraic manipulation. She suggests that algebra at the upper secondary level would benefit 
from being more closely related to requirements from universities. The importance of basic 
mathematics procedural skills are emphasized by Jakobsson-Åhl (2006) in her study. 
 
Accordingly, algebra content in Swedish textbooks has been changed by moving focuses over 
time. Old textbooks put focus on algebra manipulation by use of algebraic symbols and rules. 
Algebra structures were also emphasized in older textbooks. When the complicated algebra 
manipulation and algebra structures disappeared from the old textbooks, table and graphical 
representations were greatly applied in the new textbooks. Numerical examples were 
employed and multiple representations like functions appeared in the new textbooks. Relating 
algebra to numbers, patterns, graphs and real-life situations became the focus of the new 
textbooks. 
 

4.1.4 Conclusion on previous textbook research 
 
Textbook research has mostly focused on content analysis while the use of textbooks related 
to teaching and learning has not received much attention in the field (Johnsen, 1993; Selander, 
2003). The previous textbook research in this review belongs to a content analysis category 
(Johnsen, 1993; Selander, 2003) with two studies (Johansson, 2006; Pepin et al., 2001) 
involving the use of textbooks. Findings support earlier results that textbooks are teaching and 
curriculum related, for example, topics presented in textbooks often cover what teachers 
present in classrooms (e.g. Julin Svensson, 2000; Doyle, 1992). In the subjects of 
mathematics and science, textbooks are used extensively in teaching for organizing 
mathematical activities and providing students with mathematics exercises and teachers with 
teaching instructions (Johansson, 2006; Pepin et al., 2001; Chiappetta & Fillman, 2007). 
Textbooks embody pedagogy regarding both teaching and learning perspectives, for example 
subject content is organized in sequences (Chiappetta & Fillman, 2007); mathematics 
exercises or tasks are designed at low level in order to encourage everybody to learn 
something (e.g. Brändström, 2005). It has been criticized that some textbooks provide 
students with low-level tasks and lack motivating students’ mathematical thinking 
(Brändström, 2005; Pepin et al., 2001). On the other hand, it is argued that providing students 
with low-level problems containing conceptual connections is necessary since students need 
opportunities to practice essential mathematical procedural skills (Vincent & Stacey, 2008). 
Mathematics textbooks reflect different pedagogical traditions depending on in which culture 
they are produced (Pepin, et al., 2001), for example French textbooks aim at fostering 
students’ mathematical thinking and reasoning due to the influence of Piaget’s constructivism. 
 
In this review on textbook research, I have found that analytical frameworks or criteria 
applied in the four studies (Brändström, 2005; Chiappetta & Fillman, 2007; Pepin et al., 2001; 
Vincent & Stacey, 2008) partly include a cognitive perspective regarding thinking processes: 
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remembering, understanding, applying, analyzing, connecting, evaluating and creating based 
on Bloom’s taxonomy (1956). These criteria are applied when analyzing tasks or exercises in 
textbooks. Criteria for analyzing subject content presented in textbooks utilize a conceptual 
framework and focuses on aspects such as content sequences, coherence and topics 
(Chiappetta & Fillman, 2007). In such a way, these criteria relate to a teaching perspective in 
textbook content analysis. There seems to be a relationship between analytical criteria or 
framework and content parts (presentations and exercises) in the textbook. However, 
application of PCK-CK (Mishra & Koehler, 2006; Shulman, 1986b) as analytical framework 
or criteria is absent from the previous studies on mathematics textbook analysis according to 
this research review. 
 

4.2 Research review in the field of school algebra  
 
In this part of the chapter, I will present a literature review of previous studies in the field of 
teaching and learning algebra. I first summarize a review written by Carolyn Kieran (2007) 
who gives an overall view in the field of school algebra. Then I will present a review of 
previous studies related to teaching and learning factorization and quadratic equations. A 
conclusion will be drawn at the end of this part. The aim of this part of the literature review is 
to find what previous studies have shown in the field of algebra teaching and learning in 
relation to pedagogical content knowledge (Shulman, 1986b) and content knowledge (Mishra 
& Koehler, 2006). The review involves both teaching and learning algebra since both of them 
are related to algebra content knowledge of factoring quadratic expressions and solving 
quadratic equations. 
 

4.2.1 A general overview of learning and teaching school algebra 

Kieran (2007) claims that research topics on school algebra in secondary schools have been 
discussed extensively in education for two centuries. For example, from the 1800s to the 
1900s, procedures for manipulating symbols had great impact on school algebra. From the 
1970s, focus has moved to algebra meaning for students. Research in algebra learning and 
teaching has gone on for decades in different fields such as: skill-based approaches during the 
1960s and 1970s, influenced by Piaget’s ideas on cognitive development; algebraic letters and 
structures during the 1970s and 1980s; and socio-democratic and computing technology 
influences since the 1980s. With the increase in digital tools in algebra learning, classroom 
discourse studies increased. At the same time, the mediating role of cultural tools drew 
research attention. 

Kieran continues that research in the field of school algebra has had its emphasis on students’ 
learning and understanding of algebraic concepts, ideas and methods for the beginners of 
algebra, or on the transition from arithmetic to algebra, but less focus on algebra teaching. 
Research studies conducted on algebra learning among the upper secondary and college level 
students are fewer compared to elementary and lower secondary level students. (Häggström, 
2008; Kieran, 2007). Kieran reveals that algebra content has been taught with different 
focuses ranging between traditional and reforming ways. For example, the Japanese 
curriculum emphasizes symbolizing mathematical relationships from elementary level but 
with higher requirements at secondary level. Some other countries introduce algebra within 
the context of problem situations, sometimes including traditional word problems and 
sometimes realistic modeling problems which less emphasize symbolic manipulation. 
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Students from some countries like China, Russia, Singapore and South Korea, study algebra 
involving not only the development of algebraic reasoning and generalization, but also the use 
of algebraic symbols and solving of equations as early as in the fourth grade (Kieran, 2007). 

Considering algebra content knowledge, Kieran (2007) categorizes research studies of school 
algebra according to three areas regarding algebra as an activity: generational, 
transformational, and global/meta-level. The generational activities of algebra refer to the 
forming of the expressions and equations that are the objects of algebra. For example, 
equations representing problem situations containing an unknown; expressions derived from 
geometric patterns or numerical sequences; expressions of rules governing numerical 
relationships. The transformational activities mainly refer to rule-based activities including, 
for instance, simplifying expressions, factoring, expanding, substituting, adding and 
multiplying polynomial expressions, exponentiation with polynomials, solving equations, 
working with inequalities or equivalent expressions, and so on. The transformational activity 
is not just training of skills but includes conceptual elements that arise during the process of 
learning transformations. The global/meta-level activities refer to problem solving, modeling, 
working with patterns which can be generalized, justified and proved, making predictions and 
conjectures, looking for relationships or structure and so on. Sometimes, the last kind of 
activities can be done without using any letter-symbolic algebra at all. 

According to Kieran (2007), at the upper secondary level, research studies in the area of 
general activities focus on the letter-symbolic form including structure, parameters, multiple 
representations like function-graphical representations, and so on. In the area of 
transformational activity, research studies include equations and inequalities. Kieran points 
out that linear equations have received a great deal of research attention, but that quadratic 
equations have not–with the exception of a few studies. However, factoring expressions 
(factorization) have received research attention as a result of the emergence of computer 
algebra system (CAS) technology. This kind of factorization refers to factoring high degree 
polynomials which are higher than the third degree. There are also studies on integrating 
graphical and symbolic representations when, for example, finding roots of quadratic 
functions, solving linear and quadratic equations or translating quadratic functions. In the area 
of global/meta-level activities, studies involve problem-solving related to technological tools 
and modeling by using computer software systems. The role of realistic word problems in 
algebra instructions are problematic since research studies reported disparate results; some 
researchers reported advantages of experience with realistic word problems and modeling 
situations in algebraic activities while others did not (Kieran, 2007). 
 
In research studies on algebra teaching, Kieran (2007) found that research studies on teaching 
algebra were less emphasized compared to research on learning algebra until the early 1990s, 
but there has been an increase in this field since then. She points out that some studies focused 
on what teachers of mathematics knew rather than what the teachers did in the classrooms. 
She criticizes that research studies have involved exploring algebra teachers’ knowledge and 
beliefs such as teachers’ pre-existing views and expectations in teaching practice but focused 
little on the learning process of algebra teachers. Kieran also puts forward the contrasting 
views revealed by different studies. One of them, conducted by Even (1990, as cited in Kieran, 
2007), exposed the teachers’ lack of understanding the concept of function and suggested that 
pedagogical content knowledge should include different representations, alternative ways of 
approaching the concept, a basic repertoire of examples, knowledge and understanding of the 
concept, and knowledge of mathematics; while another study conducted by Nathan and 
Petrosino (2003, as cited in Kieran, 2007) found that strong content knowledge among algebra 
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teachers caused their teaching to heavily depend on the structure of mathematical domain 
rather than the actual ways in which students think. In spite of the imbalance in views from 
different studies, the overall view was that both knowledge and beliefs shaped teachers’ 
teaching practice. What Kieran wants to emphasize is that some teachers have good 
pedagogical knowledge but lack of subject matter knowledge while some other teachers have 
good subject matter knowledge but lack of pedagogical knowledge of student learning. 
 
Kieran (2007) points out that the gap between research on the learning of school algebra and 
the teaching of school algebra still remains. “However, researchers still know relatively little 
about what constitutes effective algebra teaching and how algebra teachers learn to develop 
their craft” (p. 749). Teachers’ knowledge of students’ actual algebraic thinking is limited 
according to research studies. 
 
To sum up Kieran’s review, previous research studies on teaching and learning school algebra 
have covered many areas in algebra as disciplinary knowledge, both concerning beginners and 
advanced learners. Previous research on algebra teaching seems to focus mostly on teachers’ 
knowledge and beliefs but less on algebra teaching. It has also been found that few studies are 
carried out concerning quadratic equations. Research in the area of factorization using a 
paper-pencil technique is not found in Kieran’s review. Kieran (2007) has mentioned that 
manipulating algebraic rules and symbols from early school years reflect cultural differences 
from different countries, something which may answer my question in the beginning of the 
introduction in this thesis: why factorization is not a focus when teaching how to solve 
quadratic equations in Swedish upper secondary classrooms. Studies on applying pedagogical 
content knowledge as a theoretical frame to analyze mathematics material including teaching 
instructions and mathematics textbooks are not included in her review. 
 
PCK in algebra teaching 
 
Ferrini-Mundy et al. (2003) have carried out a research project of studying teacher knowledge 
relevant for teaching school algebra in order to conceptualize knowledge for algebra teaching. 
They developed a two-dimensional analytic framework with three additional overarching 
categories for analyzing teachers’ PCK in algebra teaching. The aim of the research is to find 
connections between teachers’ mathematical knowledge and student outcomes in algebra 
through using and experimenting on the designed framework. Their empirical work includes 
interviews of algebra teachers, analyses of algebra instructional materials and analyses of 
videotaped algebra lessons. Based on teachers’ and researchers’ experiences as well as 
previous literature, the framework is designed and organized as a two-dimensional matrix 
with a third aspect containing three overarching categories to permeate the matrix. 
 
In their framework, Ferrini-Mundy et al. (2003) combine one dimension containing categories 
of knowledge of algebra for teaching with another dimension containing tasks of teaching that 
identify actions in which teachers use mathematical knowledge. The three overarching 
categories labeled decompressing, trimming and bridging have an effect through all elements 
of knowledge of algebra for teaching. 
 
In the first dimension containing categories of knowledge, Ferrini-Mundy et al. (2003) apply 
six categories. The first out of the six categories is teachers’ algebra core content knowledge 
including algebra concepts such as variable, equation, expression, slope, and linear function; 
procedures such as solving linear equations, factoring, or simplifying expressions; and algebra 
connections or relationship. The second category is representation, which refers to various 
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forms and models for concepts and procedures such as function graphs, algebra tiles, tabular 
or verbal descriptions of relationships between variables. The third category is content 
trajectories, which refers to organizing content in a particular order by knowing the origins 
and extensions of core concepts and procedures in order to support student learning. Using 
alternative teaching approaches and choosing powerful examples are included in content 
trajectories. The fourth category, applications and contexts, refers to whether teachers are 
aware of realistic mathematics education (Freudenthal, 1991) and provide students with real 
world problems related to different contexts and situations. The fifth category, language and 
conventions, refers to syntactic knowledge of the discipline of mathematics related to 
mathematics conventions, axiom, alternative terms or definitions of algebra concepts and so 
on. For example, knowing the operational order for multiplication of two binomial 
expressions as FOIL (first, outside, inside, last). Finally, the sixth category, mathematical 
reasoning and proof, refers to knowledge of the special vocabulary of reasoning, the ability to 
use various proof techniques within an axiomatic system to make convincing arguments, and 
the knowledge of standard conventions for algebraic arguments or justifications. For example, 
teachers should know that the processes used in simplifying algebraic expressions rely on the 
properties of rings of polynomials, including distributivity of multiplication over addition, 
additive inverses and associativity. 
 
The dimension of the teaching tasks is categorized from teaching practices according to 
Ferrini-Mundy et al. (2003). The framework containing the two dimensions of their study is 
used as a guide for analyzing instructional materials, interpreting teacher interviews and for 
assessing teachers’ knowledge in the project. One of the findings of their research points out 
that keeping a subject matter as focus for teaching is challenging. They have found that the 
framework lacks distinctions between mathematical knowledge, mathematical knowledge for 
teaching, pedagogical knowledge, curricular knowledge, pedagogical content knowledge and 
so on, but also that the most useful models reflect an intertwining and integration of those 
areas. It is impossible to take apart the categories of knowledge from tasks used for teaching 
practices in the empirical work. However, the framework used for the research shows 
potential for measuring teachers’ knowledge of algebra for teaching, although it needs to be 
further developed (Ferrini-Mundy et al., 2003). 
 

4.2.2 Previous studies on teaching and learning factorization and quadratic 
equations 
  
I have carried out a literature review study of research on algebra in general and on 
factorization of quadratic equations in particular, with focus on studies related to teaching and 
learning algebra. This work has been done through the use of three scientific databases and a 
search engine. In total, 113 articles have been investigated. Since the focal content of my 
empirical study is different approaches to solving quadratic equations, I have limited the 
investigation to this area after an extensive overview. 
 
From the extensive searching of previous studies, I have found that the following aspects have 
been studied: algebraic thinking and reasoning (e.g. Johanning, 2004); understanding the 
transition from arithmetic to algebraic reasoning (e.g. Linchevski & Herscovics, 1996; Van 
Dooren, Verschaffel, & Onghena, 2002; Warren, 2003); conceptual understanding, such as 
symbols and variables (Asquith, Stephens, Knuth, & Alibali, 2007; Berry, Fentem, Partanen, 
& Tiihala, 2004; Hough, O’Rode, Terman, & Weissglass, 2007; Olteanu, 2007); and 
structural reasoning, such as equivalence and equal signs (Asquith et al., 2007; Hamdan, 
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2006). Areas reflected in those studies include symbols, equivalences, linear equations, graphs, 
use of calculators, algebraic concepts, algebraic thinking, and transition from arithmetic to 
algebra. These areas have been mentioned in Kieran’s review, discussed in section 4.2.1. 
  
Regarding algebra content knowledge related to quadratic expressions and equations, I have 
found that topics such as simplifying quadratic expressions and solving quadratic equations 
are often discussed as teaching ideas and strategies, shared by mathematics educators in 
different countries. Most of the articles related to quadratic equations found in the search are 
reports on teachers’ teaching ideas or experiences rather than research findings. The topics 
from a mathematics teaching perspective include, for example, using geometric approaches to 
solve quadratic equations (Allaire & Bradley, 2001); utilizing completing squares 
(Vinogradova, 2007); factoring quadratics (Leong et al., 2010; Kotsopoulos, 2007; Rauff, 
1994) and using factorization, completing the square, and graphical methods to solve 
quadratic equations (Bossé & Nandakumar, 2005; MacDonald, 1986; Vaiyavutjamai & 
Clements, 2006). It is surprising that only a few of these topics relate to research studies (e.g. 
Bossé and Nandakumar 2005; Leong et al., 2010; Vaiyavutjamai and Clements 2006). 
      
Factorization has been discussed as a difficult aspect of algebra learning among students 
because of the limitation of memory (Kostsopoulos, 2007). Kostsopoulos (2007) links 
cognitive reasoning to pedagogical problems appearing in the mathematics classrooms in her 
article. Based on her teaching experiences, Kostsopoulos is aware of the fact that her 
pedagogical strategies lack insight into students’ difficulties of multiplication and 
factorization of quadratics. She assumes that “students’ problems with factorization and with 
identifying varied representations of the same quadratic relationship” may be linked to the 
ways in which the brain constructs cognitive representations (p. 19). Factoring of quadratics is 
the rewriting of higher degree polynomials as a product of lower degree polynomials. It 
requires students to have both a conceptual understanding of multiplication of polynomials 
and the effective procedural knowledge of basic multiplication facts. Phenix and Campbell 
(2007) declared that the order matters in the brain’s ability to relate to number facts. From 
Phenix and Campbell’s point of departure, Kostsopoulos (2007) conjectures that students’ 
ability to access the appropriate long-term semantic memory is limited when they are 
confused by mixing the order and varied forms of quadratics. She provides a possible 
explanation as to why factorization is difficult to learn. 
 
Teaching factorization based on students’ own construction of the concept is a pedagogical 
approach used in one study (Rauff, 1994). With Von Glasersfeld’s radical constructivism and 
Peter Gärdenfors’ epistemic semantics theory as his theoretical frameworks, Rauff (1994) 
claims that belief-based teaching can be successful in teaching factorization. From the point 
of view of constructivist learning, Rauff (1994) emphasizes that learning occurs when 
students construct their own beliefs and knowledge of mathematics and later change their 
belief set. Referring to belief set theory from Gärdenfors (1988), Rauff (1994) points out that 
“a belief set is expanded when a new belief is added to it, and contracted when a proposition 
is no longer believed and is removed from the set” (ibid, p. 421). He continues that expansion, 
contraction and revision are three components to comprise basic mechanisms of changes of 
belief. When examining and comparing students’ (ages 18-20) own definitions of factoring, 
Rauff (1994) analyzes the errors of their definitions with constructivism and epistemic 
semantics as analyzing tools. The result of his study exposes that the approach to teaching 
factoring, which relies heavily upon what a student believes about factorization, is quite 
productive in two ways. First, it reveals the source of nonstandard factorization; second, it 
provides a starting point for modification of the student’s underlying conceptions of 
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factorization. The pedagogy of belief-based teaching is suggested by Rauff (1994) to teaching 
other aspects of algebra such as polynomial multiplication. 
 
Teaching to use a factorization approach to solve quadratic equations is regarded as an 
improper pedagogy by Bossé and Nandakumar (2005). Bossé and Nandakumar argue, on the 
basis of investigations of college courses and 27 college algebra textbooks, that the 
employment of factorization is not efficient compared to utilizing the quadratic formula or 
completing the square. They have found that only 15% of quadratics with integer coefficients 
at range of [-10, 10] among problems and examples from the textbooks are factorable. The 
probability of factorability of a quadratic with randomly selected integer coefficients from the 
textbooks was small. Bossé and Nandakumar (2005) criticize the teaching of factorization 
prior to other methods according to the conventional curriculum based on NCTM 
recommendations in US schools. They argue that it “entertains a false dichotomy, pitting 
mathematics against pedagogy” (ibid, p. 147). By demonstrating the strengths of using the 
techniques of completing the square and the quadratic formula as well as solving quadratic 
functions in graphs, Bossé and Nandakumar declare that these methods are useful for all kinds 
of quadratic equations and more efficient and informative than factorization which “is only 
appropriate for quadratic equations with rational roots” (ibid, p. 151). 
 
Not only is factorization viewed as less useful by the study mentioned above, another study 
(Vaiyavutjamai & Clements, 2006) claims that using a factorization approach to solving 
quadratic equations does not help students to understand quadratic equations. Vaiyavutjamai 
and Clements carried out a study involving 231 students from two government secondary 
schools in Thailand. The aim of their study was to investigate how traditional lessons on 
quadratic equations–in particular when teaching grade 9 students to solve quadratic equations 
by factorization, by completing the square and by the quadratic formula–influence students’ 
understanding of quadratic equations. Their study consisted of 18 lessons of 50 minutes each 
with observations recorded on audiotape, pre- and post-teaching tests as well as 18 interviews 
for exploring students’ understanding of quadratic equations and their unknowns. They point 
to the lack of research on the learning of quadratic equations in association with 
understanding variables in quadratic equations. Vaiyavutjamai and Clements (2006) declare 
that “[s]tudent thinking in such contexts appeared to be dominated by a need to achieve 
procedural mastery, and usually there was no guarantee that relational understanding was 
achieved” (p. 49). With Skemp’s (1976) instrumental understanding and relational 
understanding as their theoretical framework, they aim to investigate if a traditional teaching 
approach does improve students’ relational understanding of quadratic equations. 
 
Vaiyavutjamai and Clements (2006) reveal misconceptions regarding variables as obstacles 
for the students in understanding quadratic equations. The students have difficulties in 
discerning x² − 8x + 15 = 0 and (x – 3)(x – 5) = 0. These two equations are actually equivalent. 
The factoring form is just another form of the quadratic equation. The students do not think 
that x in (x – 3)(x – 5) = 0 represents different variables. They do not really understand the 
null-factor law (using factorization approach to solving quadratic equations). Many students 
obtained correct solutions but had serious misconceptions about what quadratic equations 
actually are from a mathematical point of view. Their study also exposes that the traditional 
teaching approach may improve students’ rote knowledge and performance skills but do not 
help their relational understanding of quadratic equations. They suggest teaching quadratic 
equations within the teaching of functions using modern technology such as graphic 
calculators. 
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In contrast with the two previously described studies, Leong et al. (2010) argue that 
factorization can be taught using a concretizing approach through applying algebra tiles or 
geometrical representations. In order to make a change of teaching factorization in the 
traditional way, they have carried out a lesson study including pre- and post-tests. Their study 
result shows the improvement of students’ learning of factorization through the application of 
algebra tiles in teaching.  
 
Research on the use of graphical representations to solve quadratic equations is found in a 
Swedish study (Olteanu, 2007). Olteanu (2007) focuses on algebra content analysis of 
learning quadratic equations and functions in algebra classrooms. She uses variation theory 
(Marton & Booth, 1997) as an analytical framework. The aim of her study is to analyze and 
explain the handled and learned object related to conceptual understanding of the algebraic 
symbol x in quadratic equations and functions. She finds that it is essential that students 
develop their ability of discerning three concepts–parameters, the unknown quantity and 
function–in order to understand the relation between quadratic formula, a quadratic equation 
and a quadratic function. Using graphical representations helps students to understand 
quadratic equations. She suggests that the extreme point of a quadratic function could be 
handled by using the derivate, which may be more comprehensible for students. 
 

4.2.3 Conclusion of previous research on teaching and learning algebra  
 
Kieran’s (2007) summary of research on algebra teaching and learning shows that school 
algebra has been studied considering aspects of algebra generation, transformation, and 
modeling. At upper secondary level, research focus has been on algebra structure, parameters, 
multiple representations and the use of visualizing graphical representations. Research studies 
on linear equations have received great attention, but no studies have been done on quadratic 
equations and factorization with paper-pencil techniques. Factoring of high degree 
polynomials has received attention because of the use of computer algebra system. There is no 
common agreement about the role of real world problems in algebra teaching. Algebra 
learning has been much more widely studied than algebra teaching. Research on algebra 
teaching has been focusing mostly on teachers’ knowledge and beliefs but less on algebra 
teaching. The same algebra content has been taught with different focuses depending on 
which culture or country it is taught in. 
 
My review of previous research in this field has found different pedagogical views on 
teaching students to learn factorization. Factorization has been considered as procedural 
focused rote knowledge and less efficient (Bossé & Nandakumar, 2005; Vaiyavutjamai & 
Clements 2006), but it has also been shown that factorization can be taught by concrete 
geometrical representations to bridge the learning of abstract algebra symbols (Leong et al., 
2001). Belief-based teaching as PCK for teaching factorization is found productive (Rauff, 
1994). PCK has to be studied together with subject matter content knowledge both in general 
and in a teaching context (Ferrini-Mundy et al., 2003). Solving and understanding quadratic 
equations with a graphical approach has been suggested but needs further research (Bossé & 
Nandakumar, 2005, Olteanu, 2007). Previous research on teaching and learning quadratic 
equations is scarce. Vaiyavutjamai and Clements (2006) find that being able to solve 
quadratic equations procedurally does not improve students’ understanding of quadratic 
equations. Application of completing the square and the quadratic formula methods for 
solving quadratic equations is recommended since they are more efficient than factorization, 
according to Bossé & Nandakumar (2005). 
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5. Analyzing procedure and methods 
 
In this chapter, I describe the research method for the empirical study. This chapter includes: 
5.1. Content analysis and the analyzing process, including the choice of mathematics 
textbooks; 5.2. Analytical criteria and categories, including the choice of mathematics 
textbooks; 5.3. Quality in this study; 5.4. The clarification of some terms used when analyzing 
the chosen textbook. 
 

5.1 Content analysis and the analyzing process 
 
The empirical approach in this research is inferred from content analysis (Cohen, Manion, & 
Morrison, 2007; Krippendorff, 2004; Weber, 1990). Referring to Weber (1990), Cohen et al. 
(2007) point out that content analysis was originally derived from analysis of mass media and 
public speeches, but the use of content analysis has spread to examination of any form of 
communicative material, both structured and unstructured. They claim that content analysis as 
a research tool can be applied for any written material, from documents to interview 
transcriptions, from media products to personal interviews. They criticize the fact that the 
term content analysis has been used quite carelessly. Cohen et al. (2007) agree that content 
analysis defines a systematic set of procedures for rigorous analysis, examination and 
verification of the contents of written data. It involves procedures like coding, categorizing, 
comparing and concluding (Cohen et al., 2007). 
 
Quantitative content analysis often deals with texts through counting textual elements but 
may miss syntactical and semantic information embedded in the texts according to Cohen et 
al. (2007). Hsieh and Shannon (2005) state that qualitative content analysis involves not only 
counting words from texts but also attempting to explore the meanings underlying the texts 
and to generate theory. The process of qualitative content analysis uses inductive reasoning. 
They mention that the conventional approach is that researchers code categories derived 
directly and inductively from raw data. Another approach is that researchers initially code text 
using a theory or relevant research findings and then allow themes to emerge from the data in 
order to validate a conceptual framework or theory (Hsieh & Shannon, 2005). Summative 
content analysts start with counting words and then finding the latent meanings and themes in 
an inductive manner (Hsieh & Shannon, 2005). Krippendorff (2004) points out that 
“qualitative researchers tend to apply criteria other than reliability and validity in accepting 
research results” (p. 88). There are many alternative criteria for qualitative content analysis 
such as trustworthiness, credibility, transferability, embodiment, accountability, reflexivity, 
and emancipator aims (Denzin & Lincoln, 2000). However, the content analysis methodology 
in my study is not an attempt to do quantitative analysis through counting coded words, but 
instead it is closer to qualitative approaches to text interpretation that is interpretive and 
shares certain characters with the content analysis approach in terms of coding algebraic 
contents in textbooks. The analog characteristics are for example a close reading of relatively 
small amounts of texts and interpreting given texts into analytical narratives (Krippendorff, 
2004). The analysis consists of my interpretation of mathematical texts in the textbooks using 
criteria derived from previous research on mathematics textbooks. 
 
The empirical material for this study consists of mathematics textbooks. I use the term 
algebra content to refer to mathematics as a discipline. Algebra content topics are 
polynomials, distributive law, factorization, square rule, the difference-of-two squares, 
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quadratic formula and so on. These topics are the titles of different content parts in the 
textbooks. Mathematical textual presentations refer to explanations of mathematics concepts 
and rules in the textbooks. The empirical analysis is done in four rounds of analyses as 
described in the following sections. 
 
The first round of analyses 
 
To explore the embedded pedagogical content knowledge of teaching algebra, I chose to start 
by investigating what algebra content topics that are presented and if the topic of factorization 
is present in eight textbooks. The eight mathematics textbooks available in the university 
library collection were selected with one book from each textbook series. By looking at all 
algebra topics, including both quadratic equations and quadratic functions, which are 
presented in these eight textbooks, I have obtained an overall view of which algebra content 
topics related to solving quadratic equations and functions that are presented in textbooks at 
the course B level. The result shows that all algebra content topics related to solving quadratic 
equations in each textbook are the same and factorization for the standard quadratic 
polynomial like 2x² + x – 6 = (2x – 3)(x – 2) is absent in every textbook. The algebra content 
topics are presented in different order in the eight books. Some books have the chapter on 
quadratic equations before the chapter on quadratic functions and some the other way around. 
 
The second round of analyses 
 
Based on the result from the investigation of the eight textbooks, three of the eight books were 
chosen for a more detailed analysis. The selection of the three mathematics textbooks was 
based on the demands of the textbook market in Sweden in 2008 when my analyzing work 
started. Textbook market investigation was carried out through e-mail contacts with three 
large Swedish publishers. The three selected mathematics textbooks for mathematics course B 
were Matematik 4000 (the Blue book) (Alfredsson et al., 2007), used by students who study in 
the science and technology programs and who will continue to study advanced mathematics 
later; Matematik 3000 (Björk et al., 2000), used by students who study in the social and 
vocational programs and who may continue with further studies of mathematics in the future; 
and Exponent B (the red book) (Gennow et al., 2005b), used by students who study in the 
science and technology programs and who will continue to study advanced mathematics later. 
Another reason to choose these three books is that two of them have rich exercise alternatives 
and are designed for the above-average level mathematics students and one of them is 
designed for the average level mathematics students. 
 
To carry out detailed analyses of the three selected mathematics textbooks, I have used a CK-
PCK (Mishra & Koehler, 2008; Shulman, 1986b) framework, combined with different criteria 
derived from the previous studies on textbook research as analytical tools (Brändström, 2005; 
Pepin et al., 2001; Van Dormolen, 1986). I have analyzed the first textbook by describing 
what is presented in the related sections of algebra, considering textual presentations, 
examples and exercises in detail page by page; then compared the first book with the second 
and third selected mathematics textbooks. The preliminary empirical data of the content 
analysis has resulted in three descriptive analytical texts of the three selected textbooks. 
 
The third round of analyses 
 
The detailed analyses of the three textbooks did not alone provide enough material to answer 
my research questions. I decided to go back to a general comparison again among the eight 
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selected textbooks and also widen the range. At this time, I went through all the published 
mathematics textbooks for mathematics course B published by four big Swedish publishers, 
and added four more selected textbooks to the eight previously chosen. The selection was 
intended to cover various mathematics levels to the highest degree possible. In total, there 
were now twelve selected textbooks (see Appendix 1) for the third round of analyses. The 
investigation of the twelve books covers two mathematics areas: algebra and functions. The 
analyzed objects in this round of analyses are content table and content elements9 in every 
textbook. All the content elements, including mathematical content and pedagogical activities, 
are coded in short but clear phrases or words in order to be easily compared in every table 
(see Appendix 2). Twelve tables (one table for each investigated textbook) are used to 
compare the analyzed objects. 
 
The aim of this round of analyses was to see if there are links between quadratic equations 
and functions by investigating the order of the presentations of quadratic equations and 
functions. In the history of algebra, function came after quadratic equations (Kvasz, 2006), 
but in Swedish textbooks, function is not treated in the area of algebra (Jakobsson-Åhl, 2006). 
If functions are presented before quadratic equations, there could be some pedagogical 
intention to do so. Could that influence the presentation of quadratic equations? This would 
relate to the first research question: What mathematics do Swedish upper secondary textbooks 
reflect in its presentations of quadratic equations? Guided by this idea, I investigated the logic 
of presentation orders and organization of the textbooks, concerning both mathematics as a 
discipline (CK) and pedagogical content knowledge (PCK) aspects. 
 
In this round of analyses, I focused on the order of the presentations of the algebra content 
and content complexity as well as content connections in every book. During the work of 
analyzing, I have again reduced the number of textbooks from twelve to eight, a reduction due 
to the content complexity of mathematics in the books. I excluded another four textbooks out 
of the twelve because they either contained less mathematics topics or they were aimed for 
students who will not continue to study advanced mathematics later in upper secondary school. 
From the limited data, a pattern of essential content elements emerged for each textbook. 
 
The result coheres with the result derived from the first round of analyses and it indicates that 
all the mathematical content in these books are similar since they have the same content topics, 
but that the textbooks present the content in different order. Five out of the eight textbooks 
present quadratic equations before quadratic functions. Three of the eight textbooks present 
quadratic functions before quadratic equations, but only one of those three books explicitly 
presents the relationship between quadratic function graphs and solving quadratic equations. 
Without considering the different order of presenting quadratic equations and functions, I 
excluded four books out of the eight ones since they are similar in content structures. The four 
textbooks differing mostly from each other are left for the next round of analyses. They are: 
Matematik 4000 B (the Blue book) (Alfredsson et al., 2007), Exponent B (the red book) 
(Gennow et al., 2005b), Origo B (Szabo et al., 2008) and Räkna med Vux B (Danielsson et al., 
2002). Among these four chosen books, I needed to select one of them for a deep analysis. 
Based on the result of the five books presenting quadratic equations before quadratic 
functions, I decided to choose either Matematik 4000 B (the Blue book) (Alfredsson et al., 
2007) or  Exponent B (the red book) (Gennow et al., 2005b) for the fourth round of analyses. 
                                                 
9 Content elements in a mathematics textbook refer to all parts in every unit and come after every chapter. They 
are often parts like: new mathematical content presentation, examples, exercises at three levels after the 
presentation, historical background of the related mathematical content, chapter review, mathematics activities 
before and after a chapter or unit, test, and a mixed exercise set et cetera. 
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The fourth round of analyses 
 
Starting with the two textbooks selected from the third round analysis, I have been in contact 
via e-mail and telephone interviews with the related Swedish publishers. According to their 
information, Matematik 4000 was regarded as the most used mathematics textbook in Sweden. 
at the time when I interviewed them. Therefore I decided to focus on Matematik 4000 (the 
Blue book) (Alfredsson et al., 2007) for the more detailed content analysis. Grounding data of 
Matematik 4000 (the Blue book), including analysis of algebra content textual presentations 
and of exercises and activities, was generated in the second round of analyses. Based on these, 
the textbook Matematik 4000 B (the Blue book) has been analyzed three times with different 
focuses: 
1. Detailed analysis of the content elements including content textual presentations and 

exercises as well as activities and tests in the sections of algebra and functions. This 
analysis has been done page by page in a descriptive way. In total 85 pages of the 
textbook have been analyzed. The analytical criteria used in the analysis are based on the 
criteria derived from previous studies in the field of textbook research (Brändstöm, 2005; 
Pepin et al., 2001; Van Dormolen, 1986). Algebra concepts, definitions and operational 
rules presented in Chapter 3 were used as references in the analysis. When examining the 
exercises and activities in the textbooks, I solved them step by step the way a student is 
expected to, and thus I investigated the mathematical complexity of the tasks in relation to 
concepts and procedures as well as demands on the student. The aim of this analysis was 
to find the subject content knowledge of algebra (CK) presented in the textbook. 

2. Analysis of the same content elements with focus on connections between content 
elements presented in the textbook and algebra history presented in Chapter 3.1, with the 
aim of finding historical connection between algebra content in the textbook and algebra 
history. 

3. Analysis of the organization of the content elements in search of an embedded teaching 
trajectory. One result of the previous rounds of analyses revealed a cumulative sequence 
for organizing the algebra content related to quadratic equations since each part is a 
development of the previous part and linked to another logically by geometrical and 
algebra representations. To explore the embedded teaching trajectory, I decided to limit 
the content elements to the sections of quadratic equations on 48 pages with focus on 
geometry models and algebra representations as well as mathematics applications. The 
three important organizing categories used in this analysis are: 1. Mathematical content 
(examining algebra content from a mathematics as a discipline point of view (Van 
Dormolen, 1986) and an applied mathematics point of view (De Lange, 1996); 2. 
Pedagogical activities (what has been done in order to present algebra content and make it 
comprehensible); 3. Other notes (mathematical consistency and clarity through language 
use and definitions as well as mathematics correctness). The categories used in this 
analysis will be presented in the next part. 

 

5.2 Analytical criteria 
 
The overall analytical framework used in the empirical study of analyzing algebra content in 
mathematics textbooks is CK-PCK (Mishra & Koehler, 2008; Shulman, 1986b) as presented 
in Chapter 2.2. The content analysis involves algebra content knowledge as subject matter 
content knowledge from mathematics as a discipline aspect. When examining the algebra 
content textual presentations, examples, exercises and activities, I have applied combined 
analytic criteria from a previous study in this area (Pepin et al., 2001). These criteria are 
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derived from a combination of the classification aspects used by Van Dormolen (1986) and 
Schmidt et al. (1997) in a cross-nation textbook analysis study. Pepin et al. (2001) consider it 
important to investigate intended views of the nature of mathematics projected in textbooks. 
Referring to Van Dormolen (1986), they mean that an analyst might look for the following 
aspects when analyzing mathematics textbooks: 
 

[…] a theoretical aspect (theorems, definitions, axioms); an algorithmic aspect 
(explicitly how to do…); a logical aspect (rules about how we are and are not allowed 
to handle theory); a methodological aspect (how to do…more heuristically, for 
example how to use mathematical induction); a communicative aspect (conventions, 
or how to write down an argument, for example). Schmidt et al. on the other hand, 
classify an understanding of the content in terms of its: topic complexity (which topics; 
when; which emphasized; with what conceptual demands); developmental complexity 
(ways of sequencing and developing topics across lessons and across the whole 
curriculum for example, focused and concentrated or a spiral of revisiting topics); 
cognitive complexity (the pedagogical intention for the topic i.e. what you want the 
students to do as a result of having learnt the topic). (Pepin et al., 2001, p. 4) 

 
Van Dormolen’s classification seems to be intended to explore the nature of mathematics 
representing a teaching perspective while Schmidt et al. focus their classification on a 
learning perspective. Based on their classification and the CK-PCK overall framework, the 
following criteria have been considered for analyzing algebra content textual presentations10, 
examples, and different activities in my study: 
 
1. Consistency and clearness of Mathematical content: A mathematical text should be 

consistent and clear to the reader. “There must be no errors, either of computation or of 
logic. Proofs might be incomplete, but not false. Conventions must be used consistently. 
[…] the content must be clear to the intended reader.” (Van Dormolen, 1986, p. 151). 

2. Mathematical theoretical aspects: This criterion concerns knowledge elements such as 
mathematical theorems, rules, definitions, methods and conventions. Such mathematical 
knowledge is called “kernels” (Van Dormolen, 1986, p. 146). By means of this criterion, I 
investigate what and how mathematical concepts or terms, definitions, methods, rules and 
theorems as well as examples are defined and explained in algebra content textual 
presentations foregoing every exercise set in the textbook. In such a way, I answer the two 
sub-questions of the second research question: 2a) How is mathematical content presented 
or explained? 2b) What are the character and function of the presented examples and 
exercises? 

3. Mathematical content development and connections: This criterion is based on the 
classification of Schmidt et al. (1997). By means of this criterion, I investigate how 
mathematical content topics relate to each other in the chapter of algebra. The aim is to 
explore the embedded teaching trajectory related to quadratic equations. I seek if “there is 
a logical progression in the sense that students need to know some kernels in order to be 
able to understand others” in the mathematics text in the textbook (Van Dormolen, 1986, 
p. 152). In other words, I consider if the textbook presents the origins and extensions of 

                                                 
10 An algebra content textual presentation refers to a core part of every unit in a mathematics textbook. In this 
core part, new mathematics concepts or rules or mathematical procedures are introduced in words and 
mathematical formula. After the content textual presentation, some related examples with procedural steps and 
answers are often illustrated in order to make readers understand what has just been presented. 
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core concepts by following pedagogical ideas of developing a progression from a basic to 
a more abstract level. If so, what is the final goal of the progression? 

4. Mathematical representations and applications: Aspects of mathematical representations 
and applications are taken into account since they often reflect different views. A 
formalistic view regards mathematics as a set of concepts, rules, theorems and structures. 
Mathematics applications are often regarded as informal view. In an informal view 
students are encouraged to engage in activities like generalizing, classifying, formalizing, 
ordering, abstracting, exploring patterns and so on, and new ideas are encouraged (De 
Lange, 1996; Freudenthal, 1991; Goldin, 2008; Pepin et al., 2001; Van Dormolen, 1986; 
Vergnaud, 1987). With this criterion, I search the character and functions of the presented 
examples and exercises in the textbook, and look for the embedded pedagogical content 
knowledge in order to answer the second research question: What aspects of pedagogical 
content knowledge can be traced in the way a Swedish upper secondary school textbook 
presents the algebra content of quadratic equations? 

5. Language use: In which way are mathematical theorems, definitions, and rules explained 
and illustrated: formally in a mathematical language or pedagogically in combination with 
everyday language, in order to make sense for a student reader? For example, factorization 
procedure is explained by special expressions “inversely” and “breaking out” (Alfredsson 
et al., 2007, p. 21) in the textbook. Such expressions are close to everyday language. This 
criterion is not applied independently but is involved in criterion one and two above.  

To analyze different kinds of mathematics exercises, activities and problems as well as tests in 
the textbook, I have applied some ideas from a framework used in a previous study and which 
has been mentioned in Chapter 4.1.3 (Brändström, 2005). To involve exercise analysis in 
algebra content analysis is to see the wholeness of the analysis in regard to the aims of this 
research: investigating the algebra content as subject content knowledge and exploring the 
embedded teaching trajectory for teaching quadratic equations. The following categories are 
taken into account in the analysis of different exercises and activities. 

A. Routine exercises refer to the kind of exercises that require students to use newly 
presented mathematical concepts, rules or algorithmic procedures illustrated in examples, 
in order to get familiar with the content. This kind of exercises is often at a basic level and 
requires simple and similar operations or reasoning to those just presented. For example, 
when the difference-of-two squares formula and square rules (as algebra content) have 
been presented in the textbook, one of the offered exercises is (Exercise 1145): “Extend 
with the help of the difference-of-two squares formula: a) )3)(3( −+ xx …” (Alfredsson et 
al., 2007, p. 19). The operating procedure only consists of one step for this task and the 
formula has just been presented in this part. 

B. Exercises that require students to evaluate, analyze and reason mathematically instead of 
merely computing mechanically (Brändström, 2005). Such exercises intend to encourage 
students to understand the integration of mathematics concepts and procedures (Hiebert & 
Carpenter, 2007; Hiebert & Lefevre, 1986). For example, one of the exercises after 
presenting quadratic formulas in the section of quadratic equations in the book is Exercise 
1228 (Alfredsson et al., 2007, p. 30): 

Louis and Nille want to solve the equation 022 =−+ xx  with quadratic formula. 

Lois: “One of the coefficients of x is missing, p is 0.” 
Nille: “We have one x, p is 1.” 
a) Who is right? 
b) Solve the equation. 
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This exercise concerns the understanding of number sense and the concept of the coefficients 
of the variable x. Many students might not be able to tell the difference between x  and x1 . If 
p is 0, what is implied for x? Realizing x0  = 0 is different from xx =1 . The exercise also 
requires students to be able to judge what is right or wrong and tell the difference.  The 
equation can be solved using any of three previously learned algebraic solving methods or a 
graphical method. This exercise is related to both conceptual understanding of the structure of 
quadratic equations and to computation procedures. 
 
C. Exercises that require students to understand the structure of quadratic equations. This 

kind of exercises is often introduced by giving some information for a quadratic equation 
or polynomial while leaving something unknown, which requires the student to find the 
unknown value. One example is Exercise 1232 (Alfredsson et al., 2007, p. 30): “For 
which value of a does the equation have no real roots? 4) 2 =+ axa    012) 2 =+− axxb ”.  
 
This exercise requires the student to find that the two equations could be rewritten in the 
form of ??)( 2 =+x and equivalent relationship between them. The principle is that the 
perfect square trinomial is always positive. When the value of a perfect square trinomial is 
negative, the equation lacks real roots. Therefore the discriminant11 must be positive. This 
exercise requires a mathematical analysis. The procedure is carried out by using either the 
method of completing the square or square root or the quadratic formula. The exercise 
provides students with an opportunity to analyze and understand the relationship between 
a quadratic equation’s roots of real numbers and its coefficients and constants from an 
algebraic structure aspect. 

 
D. Exercises that are related to real world contexts. Such exercises are often word problems 

(or called real world problems) and the pedagogical reason of using them is to bring 
reality into the mathematics classroom, to create occasions for learning and practicing the 
different aspects of applied problem solving without the practical contact with the real 
world situation (Chapman, 2006). They reflect the view of mathematics applications in 
real-life situations as mentioned in point 4 above (De Lange, 1996; Freudenthal, 1991; 
Goldin, 2008; Pepin et al., 2001; Van Dormolen, 1986; Vergnaud, 1987). Exercise 1251 
serves as an example (Alfredsson et al., 2007, p. 36). 

       
In a 2000-year-old Chinese writing “Nine chapters calculation art” (“Nine chapters 
arithmetic”), we find the following problem: “In the middle of a square lake with its 
side at s meters, there is a reed growing h meters over the surface of the lake. If the 
reed is dragged toward the side of the lake, it reaches exactly the surface of the lake. 
The depth of the lake is d meters. Show that: 

28

2 h
h

sd −=  

 
This problem requires at least five solving steps: 1. Reading the word problem and 
understand it. 2. Drawing a picture of the lake and reed, marked with given data. 3. 
Drawing a right-angled triangle derived from the interpretation of the first two steps. 4. 
Setting up a quadratic equation with the help of the third step and Pythagoras’ theorem. 5. 
Algorithmic calculating of the quadratic equations by symbols only and carrying out the 
proof. 

                                                 
11 Discriminant is the expression of b² - 4ac to a quadratic equation. It is part of the quadratic formula and can be 
used to analyze the roots situation of a quadratic equation (Great Source Education Group, 2000).  
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E. Mathematical proofs are often purely symbolic computations according to rigorous 
algorithmic procedures. Generalizing and inductive reasoning are needed in such exercises 
or activities. As an example one can look at exercise 1234 (Alfredsson et al., 2007, p. 30): 
 

In other countries, “abc formula” is used instead of our “the pq-formula.” Show that 
the equation ax2 + bx + c = 0  has the solutions: 

a
acbbx

2
42 −±−

= . 

    
F. Different possible methods for solving quadratic equations are considered in the exercises 

related to solving quadratic equations since this is the essential algebra content. As an 
analyst, I go through all the exercises and solve quadratic equations provided by the 
textbook with different solving methods in order to see how many potential solving 
methods that can be used and which one is efficient. To judge if the solving method is 
efficient or not, I examine how many procedural steps need to be taken to solve a 
quadratic equation. According to a previous study (Bossé & Nandakumar, 2005), the 
solving method depends on the type of quadratic equations that are decided by the 
coefficients and constants of a quadratic equation.  To examine the relation between 
solving methods and different kinds of quadratic equations, I categorize them according to 
equation types; solving methods and the number domain of coefficients and roots (see 
Table 2). After all the related solving methods have been presented in the textbook, there 
is an exercise set providing 14 exercises and containing in total 28 quadratic equations in 
which students are to practice the recently presented solving methods. The following table 
shows my analysis of 19 out of 28 quadratic equations for seeking the most efficient 
solving methods according to my categories. Nine out of the 28 equations are not included 
here since they have either constants or coefficients expressed by pure algebraic symbols 
instead of numbers, for example ax² + bx + c = 0. 
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Table 2 
 
The selected 19 out of 28 quadratic equations applied for practicing four solving methods12 
(Alfredsson et al., 2007, p. 30) 
  
Tasks SQR13 CSQ14 NF15 PQ16 Number 

of 
Methods 

Roots 

0562 =+− xx  No Yes Y(NF) easiest Yes 3 Integers 
0562 =++ xx  No  Yes Y(NF) easiest Yes 3 Integers 
01242 =−+ xx  No Yes Y(NF) easiest Yes 3 Integers 

010155 2 =+− xx  No  Yes Y(NF) easiest Yes 3 Integers 
096444 2 =−+− xx  No Yes Y(NF) easiest Yes 3 Integers 

0142 =+− xx  No  Yes No Yes 2 Real 
074242 2 =++ xx  No  Yes No Yes 2 Irrational 

0288 2 =+− zz  Yes  Yes Y(NF) Yes 4 Double 
roots, 
rational 

39)10( =+AA  No  Yes Y(NF) easiest Yes 3 Integers 
022 =−+ xx  No  Yes Y(NF) easiest Yes 3 Integers 

1222 2 =+x  Yes No No Yes 2 Real 
510 2 =− yy  No Yes 

(best) 
No Yes 2 Real 

014 2 =− xx  No Yes NF direct Yes 3 Integers 
0132 =+− xx  No Yes No Yes 

easiest 
2 Real 

052
5
3 2 =−− xx  

No Yes Y (difficult but 
effective) 

Yes 
easiest 

3 Rational 

012,14,0 2 =−+ xx  No Yes No Yes 
easiest 

2 Real 

0156 2 =+−− nn  No Yes 
(more 
difficult) 

Y (difficult but 
effective) 

Yes 
easiest 

3 Rational 

01122 =++ zz  No Yes 
(easiest) 

No Yes  2 Real 

01082 2 =−− xx  No  Yes Y (easiest) Yes 3 Integers 
Total: 19 equations 2/19 17/19 12/19 19/19   
 

                                                 
12 Four solving methods are presented in these two sections in the book. They refer to the square root method; 
null-factor law method (or factorization); completing the square method and a quadratic formula (or the pq-
formula). 
13 SQR represents the square root method for solving quadratic equations. 
14 CSQ represents the completing the square method for solving quadratic equations. 
15 NF represents the null-factor law method for solving quadratic equations. It is actually a method of 
factorization. 
16 PQ represents the quadratic formula method for solving quadratic equations and is often called the pq-formula 
at school. 
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5.3 Conclusion of the analyzing process 
 
The first round of analyses of the eight selected textbooks answers the research question: 
What algebra content related quadratic equations are presented in the investigated 
mathematics textbooks? What is the most emphasized solving method for solving quadratic 
equations presented in the textbooks? The second round of analyses contains three descriptive 
and comparative analyses in detail and answers the research question on how factorization is 
presented in the textbooks. The derived analytical data set up a base for the in-depth analysis 
later. The third round of analyses explores the order and connections in organizing 
mathematics content related to quadratic equations and functions. The result of this process 
has helped to narrow down the number of selected textbooks. In short, the first three rounds of 
analyses aimed at answering the first research question and setting up a basis for the fourth 
round of analyses regarding the embedded teaching trajectory. 
 
Based on the results derived from the first three rounds of analyses, the fourth round of 
analyses was narrowed down to one selected textbook to be analyzed in more detail. The 
fourth round of analysis is carried out with three different focuses in order to answer the 
research questions two and three: What aspects of pedagogical content knowledge can be 
traced in the way a Swedish upper secondary school textbook presents the algebra content of 
quadratic equations? Is there any embedded teaching trajectory (sequence) built in the 
presentations of quadratic equations in the textbook? How can that embedded teaching 
trajectory be described? To carry out the second and fourth rounds of analyses, I have used 
the above described five analytical criteria (1-5) for analyzing algebra content textual 
presentations and mathematical examples; and six categories (A-F) for analyzing exercises 
and activities. The answers to the last two research questions have been yielded after the last 
detailed analysis of the textbook Matematik 4000 B (the Blue book) (Alfredsson et al., 2007). 
 

5.4 Quality in this study 
 
The empirical objects in this content analysis are mathematical texts presented in textbooks. 
Differing from other kinds of texts, mathematical texts are often short and instructional. In the 
texts, there are mathematical terms and rules as well as examples that serve as introductions to 
new mathematical content like instructions used for the purpose of teaching. In analyzing, I 
do not intend to code words for quantitative analyses, but instead I seek the links between 
mathematics contents and so I interpret mathematical texts and exercises according to what 
mathematics content they represent or infer, considering both mathematics as a discipline and 
pedagogical perspectives. Therefore, I code mathematical content presented in the 
investigated textbooks into simple phrases in order to find the links between the contents 
among the textbooks (see Appendix 1). My interpretations of mathematics content are 
described in words and mathematics symbols, representations and geometrical figures. Such 
interpretations are written in a form of descriptive texts using the described analytical criteria 
and categories. Thus, the study results yield descriptive texts, which describe what I have 
interpreted and coded from the textbooks, both at an overall level and detailed level, in a 
narrative way. 
 
Lester and Lambdin (1998) provide some criteria for evaluating quality of mathematics 
educational research: worthwhileness, coherence, ethics, credibility, and other qualities.  
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Worthwhileness mainly indicates: 
 

The study generates good research questions, the study contributes to the development 
of rich theories of mathematics teaching and learning, the study is clearly situated in 
the existing body of research on the question under investigation, and the study 
informs or improves mathematics education practice (Lester & Lambdin, 1998, p. 420). 

 
Coherence has to do with validity (Johansson, 2006). Simply, it means that research questions 
and methods should match each other. It is about “whether a research design will generate 
evidence that is appropriate for the question being asked” (Lester & Lambdin, 1998, p. 421). 
 
Ethics concerns “(a) the manner in which research has been conducted in relation to the 
research subjects (often students or teachers), and (b) acknowledgement of contributions of 
others” (Lester & Lambdin, 1998, p. 422). 
 
Credibility is a synonym of trustworthy. Research findings should be based on or grounded in 
data or evidence. The claims and conclusions drawn should be justified and reasonable 
without purely relying on rhetoric. It should be possible to verify and refute the arguments 
and interpretations written in the research report (Lester & Lambdin, 1998). 
 
Other qualities of good research reports have insubstantial characters such as: lucid, clear, 
well organized, concise and direct. By referring to Kilpatrick (1993) and Sierpinska (1993), 
Lester and Lambin (1998) have mentioned originality for good quality research which 
indicates that such research provides a new technique of analysis and a new interpretation for 
old data. 
 
With regard to worthwhileness, this study on mathematics textbook analyses attempts to 
contribute to the mathematics community, in particular the areas of teaching algebra and the 
topic of solving quadratic equations and even textbook writing. As mentioned in Chapter 
4.2.1, research on quadratic equations in the area of school algebra has not received much 
attention yet (Kieran, 2007). Studies on analyzing mathematics textbooks with a CK-PCK 
focus are also few. This study tries to combine both algebra content as CK aspect and 
pedagogical intentions as PCK aspect in the analyses. Considering originality, it is the 
researcher’s ambition to intend to bring these two traditional fields into the field of textbook 
analysis. 
 
With regard to coherence, this study has followed its general aims to study algebra content 
and pedagogical intentions presented and implied in textbooks. Every round of analyses tries 
to seek the answers to the research questions. The design of my study is based on the research 
questions. 
 
With regard to ethics, this study uses all the textbooks available from the libraries of the 
university where the researcher works and they are all published in Sweden and distributed on 
an open market. As a researcher, I have informed the related publishers and sent them my 
acknowledgement of their contributions of market information. 
 
Regarding credibility, I follow the principle ‘let the data speak’ when I am analyzing the 
textbooks. The findings from this study are derived after four rounds of analyses of a number 
of the textbooks. Deeper analyses of one book have been carried out and seven descriptive 
analyzing texts have been written until answers to the research questions have emerged from 
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the analyzed data. To some extent, the analyses are limited since my interpretations of algebra 
content and pedagogical intentions are based on my own experiences as an upper secondary 
school mathematics teacher and college student in the subject of algebra. With assistance 
from my supervisors and colleagues who have read and discussed the analyzed texts, I have 
revised my analysis many times in order to make the interpretations as trustworthy as possible 
(Kilpatrick, 1993). The theoretical aspects and analytical categories applied to my study are 
derived from previous research studies in order to be reliable. The mathematical links with 
abstract algebra in Chapter 3.3 have been discussed with a university lecturer of mathematics 
with specialty in algebra in order to be mathematically correct. 
 
Considering cumulative aspect of this study, I have carried out four rounds of analyses 
including twelve textbooks. The first round of analyses has found the answers to research 
questions 1a), 1c) and 1d) within the eight mathematics textbooks for mathematics B course. 
The second round of the analyses found more detailed answers to research question 1d) and 
the part of question 2c) related to embedded teaching trajectory within the three selected 
mathematics textbooks. When the evidence was not enough to answer all the sub-questions to 
the first research question, I decided to carry out the third round of the analyses, including 
four more textbooks, in order to find an answer to research question 1b) and to look for the 
final goal of the embedded teaching trajectory. The third round of analyses helped to narrow 
down the number of selected textbooks. Based on the previous results derived from the first 
three rounds of analyses, I narrowed down the number of textbooks to one textbook for the 
detailed analysis of algebra content and exploration of embedded pedagogical intentions and 
teaching trajectory. In the fourth round of analyses, the same textbook content has been 
analyzed with three focuses in order to find answers to the second research question. After the 
fourth round of the analyses, the evidence generated is enough to answer research questions 2. 
In such a way, this study contains a cumulative process in the analyses. 
 
The number of the textbooks chosen changes depending on the need for the analyses and the 
change follows this order: 8 → 3 (chosen from the first 8 books) → 12 (after adding 4 more 
books to the first 8 ones) → another 8 (after deselecting 4 books from the 12 ones) → 4 (after 
deselecting another 4 books from the 8 books this time) → 2 (after deselecting 2 books from 
the 4 books) → 1 (after deselecting 1 book from the 2 books). 
 
To explain this procedure, I first investigated eight mathematics textbooks for the B course in 
order to obtain an overall view of algebra content related to quadratic equations. In the second 
round of analyses, I chose three out of the eight textbooks to make detailed analyses. In the 
third round of analyses, I added four more books to the first eight textbooks and then the 
number of the investigated textbooks became twelve. After a selection among the twelve 
textbooks, I deselected four books, leaving another eight textbooks left for the third round 
analysis. These eight textbooks, however, are not exactly the same as the first eight books 
from the first round of analyses. After the third round of analyses, I deselected another four 
textbooks from the second set of eight. I then chose two of the four textbooks for the fourth 
round of analyses. In the fourth round of analyses, I finally chose one out of the two books to 
analyze deeply. 
 

5.5 Clarification of some terms in the fourth round of analyses 
 
Some terms, such as mathematical “exercise” and “task,” “real world problem,” “word 
problem” etc, used in this analysis need to be clarified in order to assist the readers. It should 
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be noted that these notions are defined within the analysis and they can not be used in a 
general sense. The purpose of giving meanings of these terms is not to make epistemological 
concepts but to provide working definitions for this analysis. 
 
A unit is a component of a section in the textbook. A unit consists of three parts: textual 
presentation of mathematical content, examples illustrating the presented content in the 
textual presentation part, and exercises offered for students to practice the newly presented 
mathematical content. 
 
Textural presentation of mathematical content refers to the first part of every unit before 
given exercises. It consists first of a presentation of mathematical content related to a 
mathematical topic in every unit and then illustrated examples with given answers consisting 
of all procedural steps. This part includes statements of mathematical concepts, terms or 
operational rules or methods and illustrated examples. Such a presentation is equivalent to the 
Swedish word “genomgång” which means to work out or go through mathematical contents in 
a pedagogical way. 
  
Exercises refer to all the mathematical tasks provided in the book after the textual 
presentation of mathematical contents in every unit. They are divided into a, b and c levels. 
Sub-exercises are a number of mathematics tasks or questions included in one exercise. An 
exercise part (or sometimes called exercise set) contains the three levels of exercises, 
including routine exercises or decontextual exercises and contextual ones. Sometimes the 
exercises are word problems with or without contexts. 
 
Tasks refer to mathematics exercises offered in tests at the end of every chapter. Tasks and 
exercises are similar, but a task in this analysis is based on the interpretation from Haladyna 
(1997) that a task can be an instruction or question requiring a student’s response under 
certain conditions and specific scoring rules. 
 
Activities refer to those mathematical activities provided at the beginning and at the end of a 
section with the pedagogical purpose of organizing students to work in groups solving a 
number of mathematical exercises or problems. 
 
Tests refer to the mathematics tasks provided at the end of every chapter. They are similar to 
mathematical national tests at this level. 
 
Problems for everybody refer to mathematics problems provided after tests at the end of every 
chapter. Those are all word problems including both contextual and decontextual ones. 
 
Boesen (2006) has pointed out the multi-meanings of the term “problem”: 
 

The term “problem” is used with many different meanings, and can in principle mean 
everything from a dressed up exercise to front-line research. […] Whether a task 
constitutes a problem or not depends both on the solver and the task. What might be a 
problem for one student might not be so for another. (Boesen, 2006, p. 4) 

 
His interpretation is based on the discussion from Schoenfeld (1985): 
 

Being a “problem” is not a property inherent in a mathematical task. Rather, it is a 
particular relationship between the individual and the task that makes the task a 
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problem for that person. The word problem is used here in this relative sense, as a task 
that is difficult for the individual who is trying to solve it. Moreover, that difficulty 
should be an intellectual impasse rather than a computational one. […] If one has 
ready access to a solution schema for a mathematical task, that task is an exercise and 
not a problem (as cited in Boesen, 2006, p. 74). 

 
In this analysis, the objective is not to study students, and in that sense it is difficult to judge if 
a mathematical task is a problem or an exercise. Therefore, the analysis tries to follow the 
terms given in the textbook. Exercises after every presentation part are called exercises. 
Different activities offered after every section is called activity, though it consists of a number 
of exercises. Tests containing a number of tasks offered after every chapter are called tests. 
Problems offered after tests are called problems for everybody. In my analysis, however, I 
regard exercises that are given in words and have either daily or mathematical contexts as 
word problems without following Schoenfeld’s interpretation of problem (1985). 
   
Word problems refer to mathematical problems that are presented in verbal form combined 
with mathematical symbolic and pictorial forms. In mathematics classroom research, real 
world problems are viewed as word problems related to daily life contexts: 
 

Word problems can be used as a basis for application and a basis of integrating the real 
world in mathematics education. They can provide practice with real life problem 
situation, motivate students to understand the importance of mathematics concepts and 
help students to develop their creative, critical and problem solving abilities (Chapman, 
2006, p. 212). 

 
Real-world problems are understood, by some scholars, as mathematical problems involved in 
“the rest of the world outside mathematics, i.e. school or university subjects or disciplines 
different from mathematics, or everyday life and the world around us” (Blum & Niss, 1991,  
p. 37). 
 
The pedagogical intentions of using real world problems are discussed by some scholars. By 
referring to Verschaffel (2002), Chapman (2006) points out that the pedagogical goal of using 
word problems is to bring reality into the mathematics classroom, to create occasions for 
learning and practicing the different aspects of applied problem solving without the practical 
contact with the real world situation. Similarly, according to Boaler (1994) and referred to by 
Chapman (2006), the purposes of using such problems are to “provide students with a familiar 
metaphor, to motivate and interest students, and to enhance the transfer of mathematical 
learning through a demonstration of links between school mathematics examples and real 
world problems” (p.212). 
 
This analysis uses the term real world problems to represent mathematical problems, 
exercises or tasks related to real-life situations and other school subjects than mathematics. 
The real world problems belong to word problems. However, word problems can also refer to 
exercises within a mathematical context if they are expressed in words. 
 
Decontextual exercises refer to mathematics exercises isolated from any context except for 
pure mathematics and presented only in symbolic form, with short instructions to guide 
students in doing the exercises. For example, “Simplify,” “Factorize,” “Solve the equations” 
etc. Such mathematical exercises are routine ones at the A-level and often placed in the 
beginning of every exercise part, using procedures that have been illustrated in the previous 



75 
 

presentation of new mathematical contents and examples. Routine exercises can be carried out 
easily using similar operational procedures or algorithmic steps as the ones illustrated in the 
examples. In contrast to decontextual ones, contextual exercises refer to exercises that are 
described and constructed within a certain mathematical or daily life related context in mostly 
words and some mathematical expressions and sometimes pictures as well. The contextual 
exercises should be regarded as the same as the word problems mentioned before. They have 
the same meaning in this thesis. 
 
The expressions “easy” and “difficult” regarding mathematics exercises or problems contain 
the following meanings: easy mathematics exercises or problems refer to those routine ones 
mentioned above. The solution procedures are often available in the previous presentation 
parts. Students can solve them by looking for and copying or imitating procedures earlier in 
the same textbook section without any deeper understanding (Boesen, 2006). Those can also 
be word problems requiring one or two solving steps. 
 
Difficult mathematics exercises or problems refer to non-routine ones which are rare or not 
found in the previous presentation parts or require complicated procedures, often in more than 
three steps. They may require such cognitive activities as judging, finding or correcting 
mistakes, reasoning, generalizing, proving etc. They can be decontextual problems or abstract 
problems that focus on pure algebraic symbolic operations requiring many complicated steps. 
On the other hand, they can also be contextual problems requiring fewer operational steps but 
a phase of interpretation into algebraic expressions. 
 
Some mathematics problems may require students’ creative thinking which is related to deep, 
flexible knowledge. It is often difficult for students to find out solving methods or paths for 
such mathematics problems directly since they are not obviously related to what has just been 
presented in the book, at the same time as more than one solving approach can be used. These 
creative mathematics problems require that students really understand mathematical meanings 
conveyed by the problems and thereafter find a relevant solving approach without being 
limited by the actual mathematical knowledge presented. The term creative thinking in my 
analysis of exercises has been borrowed from the concept of creative mathematically founded 
reasoning (CR in short) in Boesen’s study (2006) without sharing the exact meaning of CR. 
 
The expressions abstract and concrete in this analysis have their literal meanings. “Abstract” 
refers to a mathematical problem or exercise that is expressed or instructed only through 
mathematical symbols without being related to any context while “concrete” is the antonym 
to abstract. 
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6. Results 
 
In this chapter, I will present study results of the four rounds of analyses of mathematics 
textbooks according to the order of the research questions asked in the first chapter and 
concerning both mathematics as a discipline and pedagogical content knowledge. The whole 
chapter consists of three parts in which the two research questions will be answered followed 
by a summary. 
 

6.1 What mathematics do Swedish upper secondary mathematics 
textbooks reflect in the presentations of quadratic equations? 
 
The first three rounds of analyses aim at answering the first research question: What 
mathematics do Swedish upper secondary mathematics textbooks reflect in its presentations 
of quadratic equations? 
a) What algebra content related to quadratic equations is presented in the investigated 

textbooks?  
b) In which order is quadratic equations and functions presented and do they have 

connections to each other?  
c) What is the most emphasized solving method for solving quadratic equations presented in 

the investigated mathematics textbooks? 
d) How is factorization presented in the investigated textbook? 
 
The results derived from the first round of analyses have answered the research question 1a), 
1c), and partly 1d). The first round analysis shows that the algebra content relating to 
quadratic equations and quadratic functions are similar in all the eight investigated 
mathematics textbooks since they have the same algebra content topics. The same result was 
obtained in the second and third rounds of analyses. Algebra content elements related to 
quadratic equations are: simplifying polynomials, binomial multiplications, distributive law, 
the difference-of-two squares formula, square rules, solving simple quadratic equations with 
the square root method, null-factor law (factorization), solving general quadratic equations 
with the completing the square method and the quadratic formula. Among these core content 
elements, solving quadratic equations with the quadratic formula is always presented at the 
end. The embedded pedagogical content knowledge is revealed when these core algebra 
content elements make up the necessary pre-knowledge for a student when learning quadratic 
equations and their solving methods. Presentation of different kinds of quadratic equations is 
restrained within simple and complete quadratics of the type )0,0(,02 ≠≠=++ qpqpxx  in 
all the books. General quadratic equations of the type of 0,02 ≠=++ acbxax  are absent in 
six books. The transformation from general quadratic equations to complete quadratic 
equations is absent in all the eight books. Every book has presented four different solving 
methods: null-factor law (factorization) and square root method for solving simple quadratic 
equations; completing the square method and the quadratic formula (also called the pq-
formula in Swedish mathematics classrooms) for completing quadratic equations of the type 
of x² + px + q = 0 (p ≠ 0, q ≠ 0). All the textbooks put emphasis on the two methods: 
completing the square and the quadratic formula which means that these two content 
elements are explained in more detail and take more space than other solving method 
presentations. Factorization is given little space among and is related to the null-factor law. 
Factorization is used only for solving simple quadratic equations by making use of the 
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distributive law, the square rule, and the difference-of-two squares formula reversely. The 
factorization method for general quadratic equations presented in Chapter 3.2.2b) is absent in 
all the eight textbooks.  
  
The findings from the third round of analyses have answered the research question 1b). 
Connections between quadratic equations and quadratic functions are shown in two ways:  
 
A. Quadratic equations are presented in the chapter of quadratic functions in the context of 

finding the symmetry line and x-intercepts of a quadratic function with an algebraic 
method through solving quadratic equations. However, it is presented as a mathematical 
tool and has no other influence on the presentation of quadratic functions. 

B. In some textbooks (two of the eight investigated textbooks) quadratic equations are 
introduced by making connections with quadratic functional graphs. 

 
In addition, quadratic equations and functions are treated separately in two different chapters. 
Application of quadratic equations and functions as mathematical models are presented in 
some textbooks. In four of the eight textbooks, quadratic equations are introduced through 
connections with geometry. 
 
Two kinds of organization orders are found depending on if quadratic functions are presented 
before or after the presentation of quadratic equations. The third round of analyses shows that 
more than half of the investigated textbooks (five of the eight textbooks) present quadratic 
equations before quadratic functions. Three of the eight textbooks present quadratic functions 
before quadratic equations but only one out of the three explicitly explains the relationship 
between quadratic functions and equations. The relationship is that quadratic equations can 
be solved through finding coordinates of x-intercepts in a graph of a quadratic function 
(Szabo, Larson, Viklund, & Marklund, 2008). 
   
The second round of analyses shows that the algebra content elements are presented in such 
an order that every new algebra content element builds on the previous one. For example, 
multiplication of two binomials is based on the four operational rules for simplifying 
polynomials; the difference-of-two squares formula and the square rule formula are the main 
techniques applied for factorization through using distributive law inversely. The last element 
in this algebra content is always the presentation of the quadratic formula which can be 
regarded as a final goal of the progression. The same result was also found in the first round 
of analyses.  
 
It was found in the second round of analyses that factorization in these three textbooks is 
presented for factoring algebra expressions, either of the type: acabcba +=+ )(  or 22 ba − , 

22 2 baba +± . It was also found that factorization presented as an operational procedure and 
lacks a detail definition. This finding is identical to the result from the first and third rounds 
analyses derived from the other textbooks. For example, factorization is described as breaking 
out the greatest common factor (GCF) from a quadratic polynomial in the first textbook 
(Björk et al., 2000) where a third degree polynomial xxx 36189 23 +− is given for factoring. 
The factoring procedure of this polynomial is described in the following five steps: 

)1263(3 23 xxx +− ; )42(9 23 xxx +− ; )36189( 2 +− xxx ; )1263(3 2 +− xxx ; )42(9 2 +− xxx . 
After the demonstration of these steps, the last result of factorization is regarded as the most 
correct one according to the textbook: “[…] by factorization, we prefer the last case because 
we break out the greatest common factor (9x) as much as possible” (Björk et al., 2000, p. 85). 
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In a second textbook (Alfredsson et al., 2007), factorization is presented in relation to using 
the difference-of-two squares formula and square rules in reverse:  
 

We can write a number or an expression as a product of factors. When we write: 
131171001 ⋅⋅= , we factorize the number 1001. )3)(3(92 −+=− xxx  We factorize the 

polynomial 92 −x . Factorizing of algebraic expressions can be used for simplifying 
and solving equations. We show two methods for factorizing polynomials. 
1. Factoring out the greatest common factor. )23(2462 22234 −+=−+ xxxxxx .  
2. Using the difference-of-two squares formula and the square rules inversely. 
(Alfredsson et al., 2007, p. 21) 

 

             
Figure 12. The difference-of-two squares formula and the square rules written in 
reverse in Matematik 4000 B (Alfredsson et al., 2007, p. 21). 

 
In the third textbook (Gennow et al., 2005b), factorization is described as breaking out the 
greatest common factor through using distributive law in reverse:  
 

When a factor is multiplied in a pair of parentheses, the distributive law is used, that is 
a(b + c) = ab + ac The terms on the right side of the equal sign have a common factor 
a. That means the distributive law can be used backwards (in reverse) if there are 
common factors in ab + ac = a(b + c). The expression is divided into factors or 
factorized. It is even said that the factor a has been “broken out” (Gennow et al., 
2005b, p. 88). 

 
To compare these three different descriptions of factorization with an established definition, I 
here use a quotation from the website Wikipedia: 
 

Factorization (also factorisation in British English) or factoring is the decomposition 
of an object (for example, a number, a polynomial, or a matrix) into a product of other 
objects, or factors, which when multiplied together give the original. For example, the 
number 15 factors into primes as 3 × 5, and the polynomial 42 −x factors 
as )2)(2( +− xx . In all cases, a product of simpler objects is obtained. 
       The aim of factoring is usually to reduce something to “basic building blocks,” 
such as numbers to prime numbers, or polynomials to irreducible polynomials. 
Factoring integers is covered by the fundamental theorem of arithmetic and factoring 
polynomials by the fundamental theorem of algebra. Viète’s formulas relate the 
coefficients of a polynomial to its roots. 
       The opposite of factorization is expansion. There is the process of multiplying 
together factors to recreate the original, “expanded” polynomial. 
       Integer factorization for large integers appears to be a difficult problem. There is 
no known method to carry it out quickly… (Wikipedia, 2010). 
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A detailed definition of factorization is absent in all the investigated textbooks. 
The common result obtained from the first three rounds of analyses shows that factorization 
in these textbooks is applied only for solving simple quadratic equations of the type ax² + bx = 
0 (a ≠ 0; b ≠ 0), or an expanded form derived from the difference-of-two squares formula 
such as 012 =−x , or an expanded form of square rules such as 0122 =+± xx . There is an 
absence of factoring general quadratic equations with small integers, for example 

)2)(32(62 2 −−=−+ xxxx  though it is possible to use this absent factorization in some 
exercises. The second round of analyses has found that 69% of the quadratic equations in an 
exercise set in Matematik 3000 B (Björk et al., 2000) and 63% of the quadratic equations in 
another exercise set in Matematik 4000 B (the Blue book) (Alfredsson et al., 2007) could have 
been solved by using the absent factorization method. Using the absent factorization is more 
effective than using the quadratic formula to solve the quadratic equations because the 
procedural steps in the factorization method are fewer than in the quadratic formula. 
 

6.2 What aspects of pedagogical content knowledge can be traced 
in a Swedish upper secondary school textbook? 
 
In order to present the results derived from the fourth round of analyses on textbook 
Matematik 4000 B (the Blue book) (Alfredsson et al., 2007), I here first introduce the 
structure of the investigated textbook in 6.2.1 before I present the results in 6.2.2, 6.2.3 and 
6.2.4 according to the order of the three sub-questions of the second research question. A 
short conclusion will be given after every result part. 
 

6.2.1 The structure of Matematik 4000 B (the Blue book) 

Matematik 4000 B (the Blue book) (Alfredsson et al., 2007) is used for the science and 
technology programs in the Mathematics B course at Swedish upper secondary school. As 
earlier mentioned, there is also a teacher’s material or teacher’s handbook for this book 
although the publisher says that there is not. However, there is a teacher’s handbook for 
Matematik 3000 B (Björk et al., 2000) and a teacher’s handbook for Matematik 4000 A 
(Alfredsson, Erixon, & Heikne, 2008a). I use these two teacher’s handbooks as references 
when I am analyzing Matematik 4000 B (the Blue book) which lacks a teacher’s handbook. 
Matematik 4000 B (the Blue book) (Alfredsson et al., 2007) has three chapters in total. Every 
chapter consists of: an introduction activity; mathematical units where every unit contains  
presentations of mathematical contents, solved mathematical problems as illustrated examples, 
three-level exercises;  activities (four kinds: investigating, discovering, doing laboratory work 
and discussing) as well as historical notes at the end of each chapter; homework exercises 
including previous mathematical contents; a summary of the whole chapter; mixed three-level 
tasks consisting of two tests (also including contents from the previous chapter) which are 
similar to national tests; Problems for everybody for students independent work; and finally 
repetition exercises at the end of the book. The following diagram illustrates the structure: 
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Figure 11: A brief structure of the content in every chapter in Matematik 4000 B (the Blue 
book) (Alfredsson et al., 2007). 
 
It is said in the teacher’s handbook for Matematik 4000 A, that the different mathematical 
moments in Matematik 4000 A are divided into small units to function as lesson plans for the 
teachers and therefore is more effective for teaching (Alfredsson et al., 2008a). These small 
units can be interpreted as presentations of mathematical content (textual presentation and 
examples) with relevant exercises in every section of Matematik 4000 B. This analysis 
follows the division order according to the textbook, namely chapters → sections → units. 
The whole textbook contains three chapters: 1. Algebra and geometry; 2. Functions;  
3. Probabilities and statistics. 
 
Since this analysis includes only algebraic content, the analysis focus will be put on the major 
part of the first chapter and a small part of the second chapter in the textbook. 
 
Every chapter begins with a picture and an introduction activity, consists of sections of small 
units as the core content, then ends with a discussion activity, homework exercises, a 
summary of the whole chapter, two mixed exercises (A + B) and problems for everybody. In 
other words, between the introduction activity and the general exercises at the end of the 
chapter, the sections are filled up with two kinds of contents: one is in the form of activities 
like a discovering activity or an investigating activity; and one is the core content which 
consists of a textual presentation of mathematical content with examples and relevant 
exercises. 
 
The chapter on algebra, excluding geometry, in the textbook consists of ten units and three 
activities as well as a presentation of some important mathematicians in algebra history. 
Every unit presents an algebra topic covering certain algebra content. The algebra content in 
the ten units is: 
  
1. Introduction of different polynomials and terms related to polynomials 
2. The value of a polynomial (decided by the value of the variable in the polynomial) 
3. Polynomial computing laws: commutative law; associative law; distributive law;    

parenthesis rule 
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4. Multiplication of two binomials 
5. The difference-of-two squares formula and square rules 
6. Factorization by using the difference-of-two squares formula and square rules inversely 
7. Using the square root method and null-factor law to solve simple quadratic equations 
8. Using the approach of completing the square to solve pq-quadratic equations of the type 

0,0,02 ≠≠=++ qpqpxx . 
9. The general formula called quadratic formula or the pq-formula used for solving quadratic 

equations of the types 0,0,02 ≠≠=++ qpqpxx  and 0,02 ≠=++ acbxax . 
10. Application of Pythagoras’ theorem and quadratic equations in solving geometrical and 

“real world” problems 
 
At the beginning of the chapter, there is an introduction activity (investigating activity) 
containing four exercises related to geometrical representations and algebra rules. 
 
Between units 6 and 7, a group-work activity (investigating activity) is presented concerning 
finding and generalizing as well as applying and proving rules or algebraic models for 
calculating multiplications of big numbers. 
 
At the end of unit 10, another group-work activity (discovering activity) is presented 
concerning finding and proving relations between roots, coefficients and constants of 
quadratic equations; generalizing the rules from the findings; and applying the rules to solve 
quadratic equations. 
 
Algebraic history includes five mathematicians and their solving methods for solving the 
third-, fourth- and fifth-degree equations presented after the discovering activity. 
 
There are in total nine units with mathematical content textual presentations including 
exercises and one unit on algebraic applications as well as three activities in the whole 
presentation related to solving quadratic equations as a final goal. Among these 10 units, 151 
exercises containing A, B, and C levels and three activities are offered for students to practice 
the newly presented mathematical content. At the end of the first chapter, more exercises are 
provided. They are: one discussion activity, one set of homework exercises, two mixed tests 
and an exercise set of Problems for everybody which is related to both algebra and geometry. 
 

6.2.2 How is mathematical content presented or explained? 
 
The history of mathematical ideas is an important aspect of mathematics that should permeate 
mathematics teaching, according to the Swedish national mathematics curriculum at upper 
secondary schools (Skolverket, 2010). In Matematik 4000 B, the algebra development in 
history is reflected in some presentations. 
 
This study has found that some algebra content presented in the textbook (Alfredsson et al., 
2007) are illustrated and explained by relating to algebra history since they can be traced 
back to the historical idea of solving quadratic equations by “cut and paste” geometry 
(Derbyshire, 2006, pp. 25-27). In the textbook, algebra content like the distributive law and 
expanding the product of two binomials as well as completing the square method are 
illustrated by the use of cut and paste geometry. The application of this historical idea as a 
pedagogical approach is embedded in the beginning of the chapter on algebra and appears 
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several times in the chapter. The details will be presented in section 6.2.4 on embedded 
teaching trajectory. 
 
Historically related pedagogy is applied in the background presentation following the part on 
quadratic equations in the textbook. It is done through a presentation of five mathematicians 
and the third, fourth and fifth degree-equations solved by them. For example, the origin of 
solving quadratic equations is mentioned in one sentence: “Babylonian clay tablets have 
shown that solving quadratic equations was known 4000 years ago” (Alfredsson, 2008 p. 32).  
After the presentations of different mathematicians, three algebraic word problems are offered 
with the intention to inspire the students to solve those problems with the third degree solving 
formula. An embedded PCK is exposed that is intended to encourage students to dare use 
formulas as solving tools, even if the formulas are even beyond their current comprehension. 
 
Historically related pedagogy is also reflected in some word problems such as an old Chinese 
classical problem of using Pythagoras theorem to solve a practical problem and a Babylonian 
clay tablet problem. 
 
Besides completing the square method, other algebra content, including the quadratic 
formula and factorization as well as a mathematical activity in the textbook, have their 
historical roots in different algebra development stages as presented in Chapter 3 in this 
thesis. The completing the square method originates from the cut-and-paste geometrical ideas 
written on clay tablets in ancient Babylon. The same method was also used by al-Khwarizmi 
at the syncopated stage (Kvasz, 2006). The quadratic formula also has its origin in ancient 
Babylon but was developed by Euclid. Both solving methods belong to the rhetorical stage in 
algebra history (Kvatz, 2007). The order is that geometrical ideas generally came before the 
symbolic representations. In the textbook, a mathematical activity on discovering the 
relationship between roots and coefficients of a quadratic equation has its historical 
connection with the French mathematician Franςois Viète’s finding of 0))(( =−− βα xx in 
the quadratic equation 02 =++ qpxx if βα == xx ; (Derbyshire, 2006). It was Viète who 
used algebraic symbols to write the quadratic formula (Olteanu, 2007). The symbolic 
quadratic formula and the relationship between roots and coefficients of an equation belong to 
the symbolic stage (Kvatz and Barton, 2007). The symbolic stage came after the rhetorical 
and syncopated stage. Factorization is not directly mentioned by Kvatz and Barton (2007) 
though it belongs to the purely abstract stage when it is related to polynomials in the field of 
algebra structure (Durbin, 1992). Thus, the algebra content concerning completing the square 
method, the quadratic formula, and the relationship between roots and coefficients of a 
quadratic equation, has its roots in historical algebra development stages.  
 
It is found that a mathematical concept in the textbook is often presented in the context of a 
mathematical example to illustrate the meaning of the concept. For example, the concept of 
the fourth degree polynomial (Alfredsson, et al., 2007, p. 8) is illustrated in an example (see 
Figure 13). 
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Figure 13. An example of a fourth degree polynomial on page 8 in Matematik 4000 B. 
 
Before this example, the short definitions of polynomials, terms, coefficients and 
polynomial’s degree are presented by three examples to prepare a background for the 
presentation of a fourth degree polynomial. After this example, the other two examples of 
non-polynomials are given to show the contrast between polynomials and non-polynomials. 
 
This pedagogical approach of presenting the new algebra content in the context of 
mathematical examples has been explored in this analysis. A short and everyday language is 
often used to explain a new concept or rule, for example, when the multiplication of two 
binomials is introduced, a rule of signs is given as follows: “the same signs give plus, the 
different signs give minus” (Alfredsson, et al., 2007, p. 15).        
  
The results indicate that some mathematical concepts and expressions need be improved to 
avoid confusion. They involve in the following points: 
• Explicit and detailed definitions are needed. For example, the expressions of polynomials 

and polynomial functions as well as polynomial terms appear on the same page when 
polynomial as a concept is introduced. No distinction among them is given. They are all 
presented in the context of examples with short descriptions as in: “A polynomial is a sum 
of terms”; “Every term is either a variable term or a constant term”; “A variable term of a 
polynomial is a product of a number which is called coefficient, and the variable with a 
positive whole number as the exponent” etc (Alfredsson et al., 2007, p. 8). Factorization 
and quadratic equations are presented without definitions but are illustrated in the 
examples instead. Some mathematical concepts suddenly appear in the exercises but have 
never been presented in the previous theoretical parts. Examples here are the terms of 
double roots and discriminant of quadratic equations.  

 
• Some mathematical expressions need to be more precisely explained. As mentioned above, 

there is a mixed use of polynomials and polynomial functions as well as quadratic 
equations and quadratic functions in the textbook. Another confusing presentation 
concerns the operational sign and number sign before an integer when the the pq-formula 
is explained in words in Unit 9. Mixing the categories of two signs can cause conceptual 
confusion when applying the the pq-formula to solving quadratic equations. The verbal 
explanations for the procedures embodied in the the pq-formula x = - (p/2) ± √[(p/2)² − q)] 
are described as: “x = (half of the coefficient to x with inverted sign) ± √ [(square half of 

1025 4 +− xx  

The forth degree-polynomial  

Constant term 

Variable terms with coefficients 
5 and -2 
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coefficient to x) − (the constant term with inverted sign)]” (Alfredsson et al., 2007, p. 28). 
The last comment on the procedure of minus q in the the pq-formula is explained as the 
constant term with inverted sign. This phrase is written after the subtraction sign which 
can be interpreted as if the constant term with switched sign excludes the subtraction sign. 
Actually, the subtraction sign should be explicitly explained if it is an operational sign or 
number sign, otherwise the description of the explanation is incomprehensible according 
to the book.  
 
There is a problem for the expression of a sign (either minus or plus) before a constant. 
The sign before the constant in the pq-quadratic equation 02 =++ qpxx is an operational 
sign representing addition or subtraction while the sign before symbol q in the description 
of the explanation mentioned above means the sign of a constant representing the negative 
or positive real number. The word of “sign” here has a double meaning. Which meaning 
does the sign in the textbook refer to? Representing operations or number domains? 
Example 1220 has the quadratic equation: 01662 =−+ xx  . To solve this equation, the 
first step is carried out by the book according to the quadratic formula: x = - (6/2) ±  
√ [(6/2)² + 16)]. In the illustration of the procedure, addition of 16 in the square root is 
explained as “the constant term with inverted sign” (Alfredsson et al., 2007, p. 29). The 
sign before 16 is regarded as a positive sign as opposed to the subtraction sign before 16 
in the equation. If the sign represents only operations, the meaning of the sign in the 
solving form is changed to represent a positive number. Where is the operational sign in 
this case? The dual meanings of the sign could be confusing.  

  
• The passage between the two sections needs to be explained. After the first section 

including the first six units on the polynomial concept and operational rules, the second 
section (unit 7, 8, 9 and 10) starts with solving simple quadratic equations. The contexts 
have changed from polynomials to quadratic equations, but there are no explanations as to 
why quadratic equations are presented in this section and how this section relates to the 
first section. 
 

Conclusion 
 
Historically related pedagogy as an aspect of the PCK is built into the presentation of algebra 
content including geometrical models, the quadratic formula and factorization as well as a 
mathematical activity and real world problems. The mathematical concepts in the chapter of 
algebra are often presented in the context of an example. The short and everyday language is 
used for explaining the mathematical concepts, however some terms and formulas need 
explicit explanations.    
 

6.2.3 What is the character and function of the presented examples and 
exercises? 
 
Comparing algebra content textual presentations with activities and exercises in the textbook, 
the analysis shows that the latter takes up a big percentage of the total mathematical content.  
 
Among the 151 exercises divided into A, B and C levels, more than half of exercises are 
intended for routine practice which means that students are expected to practice what has just 
been presented in the previous units. The exercises can often be carried out without much 
difficulty by following operational rules or methods presented in the related content 
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presentations in the units precisely. These exercises have “lower goals – rote skills, simple 
rules and algorithms, definitions” (De Lange, 1996, p. 89). They emphasize procedures and 
are instructed with simple and short expressions. For example, “Simplify,” “Multiply in,” 
“Solve the equations,” “Expand” etc. Short instructions are of the kind “Explain how you 
simplify…,” “What does XX represent?” and so on. 
 
Sometimes however, some exercises are not necessarily simple, and those are exercises that 
demand a more conceptual understanding. For example, Exercise 1150 in Unit 5 on the 
difference-of-two squares formula and quadratic rules: “Which rule can be illustrated by the 
following figure? Explain” (Alfredsson et al., 2007, p. 19). 
 

a               b 
b           

 
 
a 

 
 
 

 
Figure 14. Exercise 1150 on page 19 in Matematik 4000 B. 
 
Although this exercise is on the A level (lower-goal level), mathematical reasoning and 
explanations are required. The lower-goal exercises do not mean that easier exercises are less 
important since more than half of the exercises are of such a kind. The pedagogical intention 
is to reach an education goal where all students can be good at all levels (De Lange, 1996). 
 
The other half (or less than half) of the exercises can be characterized as having the following 
aspects of embedded pedagogical content knowledge: 
 
A. Exercises are provided to develop students’ structure sense of polynomials or quadratic 

equations. They often require students to find unknown coefficients or constants by given 
values of polynomials or quadratic equations. Exercise 1111 serves as an example of this: 
“Let aaxaxxp 112)( 2 +−= . Determine a if p(-2) = 5” (Alfredsson et al., 2007, p. 10). In 
this exercise, a is a coefficient to variable x. The value of the polynomial and variable are 
given. In order to find a, the polynomial is rewritten into an equation with the unknown a. 
By solving the equation, the value of the coefficient a can be obtained. The essential step 
in order to carry out this exercise is to recognize the polynomial structure and change the 
unknown from a variable x to unknown a. 

 
Some of the exercises of this kind require that students analyze and judge the situation of 
the roots of a given quadratic equation. Exercise 1216: “For which value does the equation 

0142 =+− axx  lack real solutions?” (Alfredsson et al., 2007, p. 27). The aim of such 
exercises is to find relationship between roots, coefficients and constants. Mathematical 
analysis, reasoning and judgment are demanded for some of this kind of exercises. 
Exercise 1228: 

       
Louis and Nille want to solve the equation 022 =−+ xx with the quadratic     formula. 
Louis:“One of the coefficients of  x is missing,  p is 0.” 
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Nille: “We have one x, p is 1.” 
Who is right? Solve the equation. (Alfredsson et al., 2007, p. 30) 

   
This exercise tests if students understand x = 1x = 1 · x. A misconception of x = 0x is 
possible. The pedagogical purpose of this exercise is to check students’ concept of 
coefficient with the value of one, which is implicit and never written before an unknown 
or variable. 
 

B. Some exercises are intended for practicing reversed operation procedures, which means 
setting up an equation to fit the given roots. This kind of exercise often overlaps the 
category A about practicing algebra structure sense. An example is exercise 1206: “Give 
your own example of a quadratic equation with the following solutions: a) x = 0 and x = 
12 b) x = 4 and x = 5” (Alfredsson et al., 2007, p. 25). This exercise requires students to be 
able to use the null-factor law in reverse to find the quadratic equations that are based on 

0)12)(0( =−− xx  and (x − 4)(x − 5) = 0 respectively. The complexity of this kind of 
exercises varies. Some are simple operations such as factorization exercises while the 
construction of some is more complex. For example, Exercise 1236: 

 
Indra and Fanny are going to solve an equation of the kind 02 =++ cbxx . Indra 
writes the second term )(bx wrong and gets the solutions -6 and 1. Fanny writes the last 
term )(c wrong and gets the solutions 2 and 3. Which equation are they trying to solve? 
(Alfredsson et al., 2007, p. 30) 
 

This exercise examines algebra structure sense by rewriting the new equations based on 
given roots. The process is complicated and includes five steps: setting up quadratic 
equations; setting up two linear equation systems; solving equation systems and finding 
the value of b and c; setting up new equations according to the obtained value of b and c; 
comparing the new equations and finding the correct one. 
 

C. Some exercises are related to conceptual understanding of newly presented algebra 
content. Those exercises aim at examining students’ understanding of the newly learned 
operational rules, methods or algebraic concepts but they form a minority group. One 
example here is exercise 1227 (Alfredsson et al., 2007, p. 30): 

 
Give an example of a quadratic equation which can be solved by the a) the square root 
method b) the null-factor law (factoring) c) the quadratic formula. 

 
Students need to be familiar with which type of quadratic equations that adopts which 
solving method. This requires that the students are able to generalize different types of 
quadratic equations: 
a) nmx =+ 2)(  b) 02 =+ bxax  c) 02 =++ cbxax  d) 02 =++ qpxx . 
Conceptual understanding of algebraic representations of different types of quadratic 
equations and knowledge of different solving methods as well as operational rules are 
demanded. 

 
D. Some exercises are word problems related to a real world context or other subjects such 

as physics or chemistry, or numerical computations, geometrical problems or even 
historical problems. They are mainly placed in the first unit of polynomials and the last 
unit of algebra applications. Ten out of 151 exercises are real world context problems and 



87 
 

make up a minority group. The aim of such problems is to provide the students with 
opportunities of first interpreting the problems, then setting up quadratic polynomials or 
quadratic equations and finally solving them. Another aim is to encourage the use of 
algebraic quadratic expressions or equations as tools to solve mathematical problems. 
Among these word problems, there are exercises that are short and simple in their 
construction but also complex ones. Exercise 1140 is one example: “Is there any positive 
value for a which gives a rectangle with the sides (x + a) and (x − a) the same area as the 
area of a square with every side x?” (Alfredsson et al., p. 17). 

 
This exercise has a simple construction and requires the setting up of a quadratic equation 
and then analysis of the structure of the equation. However, its aim is also to examine the 
students’ structure sense. The word problems related to real world contexts constructed in 
the most complicated way are a couple of historical problems from ancient China and 
Bagdad. Exercise1251 (Alfredsson et al., 2007, p. 36): 
     

In a 2000-year-old Chinese writing Nine chapters calculation art (Nine chapters 
arithmetic), we find the following problem: “In the middle of a square lake with its 
side at s meters, there is a reed growing h meters over the surface of the lake. If the 
reed is pulled toward the side of the lake, it exactly reaches the surface of the lake. The 
depth of the lake is d meters.” Show that  

28

2 h
h

sd −=  

 
Although it is a mathematical geometrical proof, this word problem requires five steps to 
finish the proof: reading the word problem and interpreting it; drawing a picture of the 
lake and the reed marked with given data; drawing a right-angled triangle derived from 
the interpretations of the first two steps; setting up a quadratic equation with the help of 
the third step and Pythagoras’ theorem; algorithmically calculating the quadratic equations 
by only using symbols and then getting the proof done. Interpreting the words into the 
drawing is an essential but difficult step requiring students’ geometrical imaginations. 
Such word problems are challenging since none of the previous examples are of this kind. 
 

E. A few exercises are about mathematical proofs, which often contain operations of abstract 
symbols related to algebraic formula or operational rules. This can be seen in exercise 
1234 (Alfredsson et al., 2007, p. 30): 

 
In other countries, the “abc-formula” is used instead of our “the pq-formula”. Show 
that the equation 02 =++ cbxax  has the solutions  

a
acbbx

2
42 −±−

= .   

 
F. A couple of the exercises or activities provided in these ten units function as completion of 

the absent mathematical content  from the textual presentation parts so that the related 
mathematical content can be developed to an advanced level by students doing the 
exercises. Exercise 1155 (Alfredsson et al., 2007, p. 19)  serves as an example here: 

 
a) One side of a square is x cm. If the length of two sides increases with 5 cm, how 

much does the square’s area increase? 
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b) In another square, one side of the square increases the length with 5 cm and the 
other side decreases in length with 5 cm. How does this change the area? 

 
The second sub-exercise of this exercise requires students to actually analyze and 
experience how the difference-of-two squares formula works in a varied square model, 
something which is not presented in the previous content presentation parts. So the second 
sub-exercise plays a completing content role here. Another example is a discovering 
activity on finding relationships between roots and coefficients, which have not been 
presented in the previous content presentations. At the same time, this activity indirectly 
presents the factorization method to be used for solving pq-quadratic equations. Such 
factorization is absent in the textbook. Therefore, this discovering activity functions as 
completing the absent mathematics content. Exercise 1234 above also has the same 
function: to develop the the pq-formula into an abc-formula for solving the quadratic 
equation: 02 =++ cbxax . 
 

G. A couple of exercises have a function of linking the content of the previous unit to the 
content of the new unit in the embedded sequences. Exercise 1219, for example, reads: 
“Use completing the square and determine the solutions to the equation 02 =++ qpxx ” 
(Alfredsson et al., 2007, p. 27). This exercise introduces the content of the next unit on the 
pq-formula and provides students with an opportunity to work out this formula themselves 
first before the next unit. At the same time this activity is based on the content of 
completing the square method in the previous unit. So it functions as a connection activity 
between the two units next to each other. 

 
Among these exercises, the most different and advanced exercises are real world problems 
even if the number of such exercises is relatively low in this chapter (16 real world problems 
in total, 10 from the 10 units and 6 from the rest of the chapter). The real world problems are 
not genuine applications like mathematics used for technical sciences or economy etc (De 
Lange, 1996), but they are all formulated by linking to contexts which learners may feel 
familiar with or can imagine. This includes for example changes in shopping prices, change of 
the area of a lawn, and the size of a television screen and so on. This type of context is related 
to daily life. For example, “Malin has two jugs which can hold 3 and 5 liters. How can she 
measure exactly 4 liters of water with these jugs?” (Alfredsson et al., 2007, p. 67). This 
problem can be solved without relating to algebra content presented in this book and it seems 
intended to motivate students’ mathematical creativity. 
 
Other subjects, such as physics and biology, have also been used to formulate mathematics 
problems, which have been presented as examples in the presentation of polynomials. One 
example: “A ball is thrown away upwards at the speed of 30 m/s. What is the speed after x 
seconds?” (Alfredsson et al., 2007, p. 8). Such problems are often provided with given 
mathematical expressions and require students to interpret or compute the speed. The 
pedagogical purpose is to give a message to students that mathematics can be used in other 
subjects. 
 
Real world problems become difficult when they do not have given algebra expressions and 
require students to understand the problem so that they can first interpret it into an algebra 
expression before they compute the result. 
 
One example is the ancient Chinese problem mentioned above, requiring five steps to 
establish the mathematical proof. Mathematics application is reflected in this problem because 
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of the use of Pythagoras’ theorem and setting up a quadratic equation by finding the 
equivalent relationship in the solving process. A similar solving process has not been 
presented in previous examples. Although the real world problems are few, there is an 
embedded pedagogical intention to foster students’ mathematics competence of translating 
word problems to algebraic expressions, which is to apply mathematics. 
 
The result shows that mathematics application in two types of contexts has been explored in 
the exercises. These two types of contexts are real world and pure mathematics. The word 
problems related to real world contexts have been mentioned above as real world problems. 
Another type refers to two mathematics activities presented in the textbook: one investigating 
activity and one discovering activity. The explanation of the two activities related to 
application of mathematics can be found below: 
 
The investigating activity includes four exercises. The pedagogical intention is to make 
students to find an operational rule for numerical multiplications through generalizing the 
patterns of the numerical products. The first exercise is (Alfredsson et al., 2007, p. 23): 
 

1. Study the square of every number ending by 5 
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a) What do all these results have in common? 
b) Can you find a pattern? Formulate an easy rule for the squares of the numbers ended 

by 5.  
c) What about 275  according to the rule? Check with a calculator. 
d) Can you explain why the rule works? 

 
Students are first required to find the common character of the results from the four numerical 
products; then formulate an algebra rule or expression based on the pattern; later test the rule 
with another example and control the result with a calculator and finally explain why the rule 
works in these cases. According to the given patterns, all the expressions can be generalized 
as a perfect square: 2)5( +x . The second task is similar to the first one. The third exercise 
requires students to find the rule for the given products: ,2161812 =⋅  6212723 =⋅  and 
explain why the rule works. The instruction of the third exercise says that the product of two 
numbers has the same ten-digit numbers and the sum of their single-digit numbers is 10. To 
find the rule for this exercise, students need to be creative since the three learned rules from 
the previous part are not useful in this exercise.  
 
My analysis is thus: the products can be written as 12 ∙ 18 = (10 + 2)(10 + 8); and 23 ∙ 27 =  
(20 + 3)(20 + 7). It is said that the sums of the two single-digits are 10: 2 + 8 = 10 and 3 + 7 = 
10 respectively. The products of these two single digits are 2 ∙ 8 = 16 and 3 ∙ 7 = 21 
respectively. There is a special relationship between 2, 8, 10, 16 for the product of 12 and 18. 
The first term in the parentheses are 10, 20, 30 and so on which can be represented by the 
variable x. When x represents 10, the product can be written as: 12 · 18 = (x + 2)(x + 8) =  
x² + 2x + 8x + 16 = x² + 10x + 16. The other product is 23 ∙ 27 = (20 + 3)(20 + 7) = x² + 10x + 
21 when x is 20. The last exercise is about using the square rule for the difference of two 
numbers. 
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The three exercises in this investigating activity has some characters of mathematization (De 
Lange, 1996) since the process of carrying out every exercises includes finding something in 
common according to the given patterns, then formulating a mathematical expression or 
formula, thereafter applying the formulation. But differing from real world contexts, 
mathematics application in this activity is carried out in the context of pure mathematics. 
 
The discovering activity requires the students to work in groups. The whole activity consists 
of seven exercises. The pedagogical purpose of this activity is to make the students to work 
out the relationship between the coefficients p and q and the roots of the quadratic equation  
x² + px + q = 0. The first exercise of the activity requires the students to fill in a table with the 
two roots to each equation (see Table 3). 
 
Table 3 
 
Coefficients and roots to every quadratic equation in a discovering activity (Alfredsson et al., 
2007, p. 30) 
 
Equations            p            q           1x             2x       

0342 =+− xx           -4           3           3             1 
01582 =+− xx           -8          15           3             5 

0862 =++ xx            6           8          -2            -4 
028122 =−+ xx           12          -28          -14             2 

 
Next step, the second exercise requires students to investigate the table and try to find a 
relationship between the coefficients and the roots, and then formulate it by words and 
formula. The formula representing the relationship is later applied to more quadratic equations 
in the next four exercises. The last exercise is about proving the formula.  
 
The relationship between the coefficients and roots can be formulated as: q = 1x ∙ 2x ; p =  
-( 1x + 2x ) which has the historical root in Viète’s finding (Derbyshire, 2006). All the quadratic 
equations in this activity are factorable. They belong to the equation type x² + px + q = 0 and 
can be solved by factorization through the null-factor law. But this kind of factorization is 
absent from the textbook. 
 
The process of the activity includes discovering the relationship between the coefficients and 
the roots; representing the relationship in a formula; using the formula and proving the 
formula. Such procedures share some characters of mathematization but are carried out in 
the context of pure mathematics, which can be regarded as mathematics application. 
 
Conclusion 
 
All the exercises are divided into three different levels from easy to difficult. Compared to the 
mathematical textual presentations, the mathematical exercises and activities as well as 
problems take up a big space in the chapter of algebra in this book. More than half of the 
provided exercises have the character of training students’ basic mathematical procedures. 
These are the routine exercises. Such exercises reflect learner-centered design (LCD) 
pedagogy (Selander, 2003) whose purpose is to adapt various needs from students and 
encouraging learning. The rest of the exercises and activities as well as problems are provided 
for fostering students’ cognitive complexity (Schmidt et al., 1997). Among these exercises, 
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the PCK aspects are explored by the following cognitive complexity: training algebra 
structure sense, reversed operational procedure, conceptual understanding of the algebra rules, 
introducing the advanced activities like mathematics proof and mathematics application 
(Freudenthal 1991; Van Den Heuvel-Panhuizen, 2003) in both real world problems and pure 
mathematics contexts. The mathematics activities in pure mathematical contexts have the 
characters of mathematization (De Lange, 1996). The large amounts of exercises reflect the 
pedagogy of acquisition of knowledge with activities (Van Dormolen, 1986). 
 

6.2.4 What embedded teaching trajectories are built into the presentations of 
quadratic equations? How are those trajectories constructed? 
 
The fourth round of the analyses shows that the algebraic content in the textbook of 
Matematik 4000 B (the Blue book) (Alfredsson et al., 2007) is presented in a particular order 
which has its origin in the introduction activity in the beginning of the textbook and the 
chapter of algebra. The use of the geometrical models, which are often called algebra tiles17 
(Leong et al., 2010; Howden, 1985; Norton, 2007), constructs a few algebra content 
trajectories (Ferrini-Mundy et al., 2003) as embedded teaching trajectories according to a 
part-whole relationship. This part–whole relationship helps to develop a progression on 
learning the distributive law and completing the square rule for solving quadratic equations. 
By organizing and changing the geometrical models in different ways based on the 
introduction activity, the textbook has developed a cumulative sequence consisting of the 
different algebra representations and operational rules with the final goal of presenting 
solving methods for quadratic equations. In such a way, these teaching trajectories function 
like sub-trajectories together construct an overall teaching trajectory with the final goal of 
teaching how to solve quadratic equations by the quadratic formula. 
 
The concept of models in this analysis does not have the same character as Realistic 
Mathematics Education models (Van Den Heuvel-Panhuizen, 2003) since there is neither any 
connection with realistic mathematics nor a relation with students directly. However, they 
have a common function of offering readers (including both teachers and students) visual 
illustrations in order to make sense for learning the distributive law and completing the square 
method as well as quadratic expressions, and finally solving quadratic equations. At the same 
time, the changes of the geometrical models provide a process to develop mathematical 
concepts from the basic level to a more advanced level. The geometrical visual models have 
been used and arranged by authors of the textbook apparently with a pedagogical purpose.  
 
How do these geometrical models in the introduction activity in the beginning of the chapter 
on algebra construct the embedded teaching sub-trajectories and the overall teaching 
trajectory? 
 
Among the ten units of contextual presentations in the chapter on algebra, the first six units 
are restricted to presentations of the second degree polynomials while unit 7, 8, and 9 are 
presentations of quadratic equations. The last unit (10) is about application of mathematics 
related to quadratic expressions and equations in real world context.  
 

                                                 
17 Algebra Tiles are a rectangle or square consisting of a square with a number of equal rectangles and squares. 
They are used to visually illustrate the procedures of distributive law and factorization. 
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The overall teaching trajectory starts with the introduction activity in the beginning of the 
chapter. Evidence from the analyzed data shows that the algebraic content in four exercises in 
the introduction activity exactly reflects the mathematical topics presented later in the 
textbook. Furthermore the way in which the four exercises are sequenced, creates the five 
embedded teaching trajectories which later together construct the overall teaching trajectory. 
 
The function of the introduction activity at the beginning of the chapter plays an important 
role in constructing the ten units of the algebra chapter according to a cumulative sequence 
order and creating the five embedded teaching trajectories and the overall teaching trajectory 
as described below: 
 
Unit 1 and 2 
 
The mathematics content in the first exercise of the introduction activity is about using 
algebra symbols that represent the lengths of the sides of rectangles to express the area of 
rectangles. The aim of the exercise is to find an algebraic expression for the area of a 
rectangle and finding the values of the variable in the expression. Two different sized 
rectangles in Exercise 1 of the introduction activity (see Appendix 3) illustrate the algebraic 
representations of a binomial and a monomial based on the area formula of a rectangle. The 
area formula of a rectangle represents a specific part and whole relationship (written as part-
whole relationship): length ∙ width = area of a rectangle. The length and width of the two 
different sides of the rectangle are the parts of the rectangle and represent two linear factors, 
while the area is regarded as a whole which represents the result of multiplication of the two 
linear factors. 
 
The content in the first introductory exercise can be seen as a preview of or an introduction to 
the topics of unit 1 and 2 which are about the basic terms of polynomials and the value of a 
polynomial. This shapes the first embedded teaching trajectory of the basic knowledge of 
polynomials. The geometrical model of a rectangle area is the most basic model or 
representation (Figure 15) to start the teaching process with multiplication of two linear 
factors in forms of algebraic expressions in this overall teaching trajectory of teaching solving 
quadratic equations.   

                    
 
                         
       
Figure 15. The basic geometrical model of a rectangle area (Model 1) based on the 
introduction activity. 
 
Algebra expressions and geometrical models are the two forms of representations used in 
every exercise in the introduction activity and all content presentations in every unit in the 
chapter of algebra. 
 

                 
 
        Model 1 



93 
 

Unit 3 
 
When the same rectangle is reorganized, the represented algebraic expression is also changed. 
Exercise 2 in the introduction activity based on the same rectangle, makes a slight change by 
dividing it into a square and a small rectangle in order to show the procedure for the 
distributive law for multiplication of a monomial and a binomial (see Appendix 3). By using 
the same rectangle in two forms (Model 1 in Figure 15 and Model 2 in Figure 16), an 
equivalence relationship is set up and the distributive law is illustrated in Exercise 2 by the 
algebraic expression: a(a + 2) = a² + 2a which reflects a part-whole relationship both on the 
geometrical model (Model 2 in Figure 16) and algebraic representation. Two factors represent 
the two sides a and a + 2 of the rectangle as parts. When they multiply with each other, the 
result becomes a second degree polynomial, illustrated by the area of the whole rectangle 
consisting of the two small areas: a square 2a  and a small rectangle 2a. Again the parts in this 
case refer to not only the length of the sides but also the two small areas that form the whole 
or total area. 
 
                    a                    2 
                                          
    
     a 
 
     
 
 
Figure 16. A big rectangle consisting of a small square and a small rectangle constitutes 
Model 2 in the introduction activity.  
 
The content in Exercise 2 is mapping the content of the distributive law in Unit 3 and Model 2 
is used in the same unit. The second embedded teaching trajectory is shaped.   
 
Unit 4 
 
With the same part-whole logic, the geometrical model (Model 3 in Figure 17) in Exercise 3 
is an extension of Model 2 in Exercise 2. Based on Model 2, Model 3 extends side x with 1 
unit so that the whole rectangle consists of a square and three different sized small rectangles 
(see Appendix 3).  
    
                           
 
      x 
 
 
  
      1 
                    
 x                2 
Figure 17. A big rectangle consisting of a small square and three different small rectangles 
constitutes Model 3 in the introduction activity. 
 

         
 
   Model 2 

 
Model 3 
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In this extended geometrical model, the algebraic expression represents the multiplication of 
two binomials with the sides (factors) 1+x and 2+x . Then the whole area is the result of the 
multiplication of the two factors or sides. It can also be regarded as the sum of the small areas: 

231221)2)(1( 22 ++=⋅+⋅+⋅+=++ xxxxxxx . The content in Exercise 3 suggests the topic 
of Unit 4: multiplication of two binomials by using the distributive law. The same content 
here is presented in Unit 4 and the third embedded teaching trajectory is shaped. The part-
whole relationship continually remains in this exercise. 
 
Unit 5 
 
From Exercise 1 to 3, the developed (or varied) geometrical models are based on one 
rectangle. But the geometrical model in Exercise 4 is based on a square instead of a rectangle. 
The change of the models from a rectangle to a square causes a change of the algebra content 
from two different linear factors’ multiplication to two same linear factors’ multiplication that 
is from the distributive law to the square rule. As a result of the change of the model, the 
square rule is generated in Exercise 4.   
             
                       a                b 

             
 
Figure 18. A square consisting of two different small squares and two same rectangles 
constitutes Model 4 in the introduction activity. 
 
The square rule is generated through the two same sides represented by )( ba + multiplied 
with itself to generate the whole area of the square. The part-whole relationship continually 
remains in terms of area and sides. The whole area of the square is made up a two different 
sized squares and two equal sized small rectangles (see Figure 18). Multiplication of the two 
same sides can be seen as a multiplication of the two same factors: )( ba + and )( ba + which 
are the parts; the result of the multiplication is the value of the whole area as a whole. In such 
a way, the geometrical model in Exercise 4 illustrates the procedure of the square rule and 
makes the connection between geometrical representation and algebraic representation. The 
procedure is shown by adding all the small areas: a², ab, ab, b² into a big area (a + b)² in 
accordance with the part-whole relationship. However, this time the equation is ordered in the 
opposite way, with the whole on the left side and the parts on the right side: (a + b)² = a² + 2 
ab + b². This content in Exercise 4 is mapping the part of the content in Unit 5. Thus the 
fourth embedded teaching trajectory is shaped. 
 
Unit 8 
 
The geometrical Model 2 (Figure 16) in Exercise 2 and Model 4 (Figure 18) in Exercise 4 
later appear in Unit 8 when using completing the square method to solve general quadratic 
equations. These two models together with an added geometrical model (see Figure 19) are 
applied to illustrate the process of completing the square method, which is the content in  

bbbbbbbbbbbbbbb                           
 
 
Model 4 
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Unit 8. Again, the procedure of completing the bigger square is based on the part-whole 
relationship. Through removing the two equal rectangles as parts to the two sides of the first 
square, the second model is derived (in the middle in Figure 19). Then adding a small square 
in the right corner, the big square is completed which is Model 4. The sub-areas as the parts of 
the whole big square include the two different sized squares and two equal sized rectangles. 
The fifth embedded teaching trajectory is shaped by linking Model 2 and 4 in the introduction 
activity with Unit 8. 
 
Therefore this introduction activity has built up the essential algebra content presented in units 
1 to 5 and Unit 8. The four exercises and their geometrical models predict how algebra 
content in this textbook will be organized and therefore provide structures for the embedded 
teaching trajectories relating to the first five units and Unit 8. The content in Exercise 1 of the 
introduction activity connects to the topics in Unit 1 and 2 to start the first teaching trajectory 
with basic concepts of polynomials. The content in Exercise 2 reflects the content focus on 
the distributive law in Unit 3, which constitutes the second trajectory. The content in Exercise 
3 connects to the topic of multiplication of two binomials in Unit 4 and the third trajectory is 
displayed. Exercise 4 and the half of Unit 5 share the same content on the square rule, which 
describes the fourth trajectory. The combination of the geometrical Model 2 and 4 relates to 
the content of Unit 8: completing the square method. The fifth trajectory is explored. The four 
geometrical models in these four exercises of the introduction activity bridge between the 
introduction activity and the respective units, displaying a part-whole relationship. In such a 
way, five trajectories are built for the teaching of polynomials and polynomial computing 
rules as well as completing the square method. These five embedded teaching trajectories 
together build up an overall teaching trajectory for teaching quadratic equations since they 
have prepared the basic knowledge of solving quadratic equations with a general solving 
formula: the quadratic formula. The varied geometrical models in the four exercises generate 
three generalized algebraic representations:  

ababaa +=+ 2)( illustrated by Model 2 (Figure 16);  
bccbaacaba +++=++ )())(( 2 illustrated by Model 3 (Figure 17); 

222 2)( bababa ++=+ represented by Model 4 (Figure 18). 
These three generalized algebra representations and respective geometrical models represent 
the distributive law in Unit 3, multiplication of two binomials in Unit 4 and the square rule in 
Unit 5. 
 
Unit 6 
 
The part-whole relationship remains in these models in the respective units until the 
presentation of factorization in Unit 6. The part-whole relationship ends with factorization and 
as a consequence the geometrical models cease being used. Why does the part-whole 
relationship stop here? My interpretation is that the operational procedure of factorization is to 
use distributive law and square rules as well as the difference-of- two squares formula in 
reverse. This means that the algebraic expressions derived from Model 2, 3 and 4 can be 
factorized by the reversed operations:   

)(2 baaaba +=+ ;  
))(()(2 cababccbaa ++=+++ ; 

))((2 22 babababa ++=++ .  
In this case, the relationship is not from the parts to a whole logic but from the whole to parts. 
On the other hand, it does not mean that the geometrical models (Model 2, 3 and 4) are not 
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useful for illustrating factorization. On the contrary, these three models can still be used to 
illustrate the procedure of factorization in a similar way to the use of algebra tiles (Leong et 
al., 2010) shown in Figure 10 in Chapter 3.2. 
 
The analyses show that these four geometrical models (1-4) have not only been applied to 
illustrate the abstract algebra expressions as tools to compute the area of rectangles of 
different kinds but also to represent and clarify the essential algebraic content – the 
distributive law, multiplication of two binomials, the square rule, completing the square 
method – in this book. In such a way, these geometrical models build up to a process for an 
overall hypothetical teaching trajectory containing five trajectories aiming at teaching the 
four approaches of solving quadratic equations: solving simple quadratic equations by square 
root method, null-factor law (simple factorization) method; solving general quadratic 
equations in types of )0,0(,02 ≠≠=++ qpqpxx and )0,0,0(,02 ≠≠≠=++ cbacbxax by 
completing the square method and quadratic formula (the pq-formula).  In the geometrical 
models (Model 1, 2, 3 and 4), it is possible to see how the parts (sides and small sub-areas of a 
rectangle or a square) and the whole (the entire area of a rectangle or a square) are connected. 
The embedded PCK is to concretise the related algebraic operational laws and make rich 
connections among them, showing also the part-whole relationship of factors and product in 
algebraic expressions. 
 
Although unit 6 of factorization is not sequenced by the part-whole relationship, factorization 
is based on the first five units and contains the reversed procedure. The content of 
factorization can be regarded as an extension of the first five units. Therefore, it is indirectly 
connected to the introduction activity which seems to be a preview for these five units and the 
factorization. The first six units in the textbook have built up a basic ground in a progression 
in which teaching solving quadratic equations (including unit 7, 8 and 9) is the final goal. In 
this progression, the five embedded teaching trajectories are involved. The algebra content 
illustrated by the four varied geometrical models expands from the basic algebra laws or rules 
to an algebraic context: solving quadratic equations.   
 
Unit 7, 8 and 9 
 
Solving quadratic equations is a central topic in Unit 7, 8 and 9. These three units are 
sequenced from solving simple quadratic equations to solving general quadratic equations of 
the types 02 =++ qpxx  or 02 =++ cbxax . Presentations of the four methods for solving 
quadratic equations in these three units depend heavily on the basic procedural knowledge of 
computing polynomials in the first six units. Among these four methods, the square root 
method and the method of completing the square are based on the use of square rules while 
the method of null-factor law is based on the use of factorization. The fourth method of using 
quadratic formula or the pq-formula is derived from the method of completing the square. If 
the first six units would not have been presented or taught, it will be impossible to present or 
teach these four solving methods directly. Therefore, the first six units can be seen as the 
basic teaching trajectories that set a ground for these three units in the whole teaching 
trajectory for solving quadratic equations. Thus, the content knowledge (CK) of solving 
quadratic equations consists of the first six units as a base and the later three units as a central 
topic. The aspect of PCK here is the organization of these units in a cumulative order to form 
a progressive sequence that can be regarded as a hypothetical overall teaching trajectory.  
  
The movement from polynomials to quadratic equations could raise questions such as: what is 
the difference between a second degree polynomial and a quadratic equation? Where does the 
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equal sign and zero come from? There is no answer explicitly given in the textbook. The 
transition from second degree polynomials to quadratic equations is not explicitly presented 
in the textbook except when an example of growing bacteria expressed by a quadratic function 
in the beginning of Unit 7 is used. The example is described below: 
 

The number of bacteria y in a bacteria culture can be calculated with a second degree 
polynomial in x minutes after the experiment starts: 250035025 2 ++= xxy . How long 
does it take for the number of bacteria to increase to 10000? We get the answer from 
the quadratic equation: 1000250035025 2 =++ xx  that is 0750035025 2 =−+ xx . In 
general, a quadratic equation can be written as 02 =++ cbxax where a, b, and c are 
constants and 0≠a (Alfredsson et al., 2007, p. 24). 

 
The last sentence in this quoted paragraph mentions the form of general quadratic equations 
but does not tell the difference between a second degree polynomial and a quadratic equation.   
However, this transition could be illustrated with the help of the geometrical models (Model 2 
and 4) used in Unit 8 when the method of completing the square was presented. The 
completing the square method in Unit 8 is illustrated geometrically through an example of 
solving a quadratic equation 01662 =−+ xx . Before completing the square, the equation 
needs to rewrite into 1662 =+ xx , which means that the whole area of the rectangle has the 
value of 16. The three geometrical models represent three steps of completing the square 
(Figure 19). Step one: a rectangle model (Model 2) represented by xx 62 + consists of a square 

2x  and a rectangle x6  with one side as 6; Step two: the same rectangle xx 62 +  becomes the 
square 2x  with two equally divided rectangles and one of the divided rectangle x3  is moved 
to another side of the square. This model represents an algebra expression xx 322 ⋅+ ; Step 
three: a new square (the bigger one) is completed (Model 4) through adding a small square 3² 
in the right corner of the middle model. The completed new square is obtained: x² + 6x + 3² = 
(x + 3)². The little shaded square represents the constant term of (6/2)² or 3². After completing 
the square, the equation can be written as: 16336 222 +=++ xx  and the value of the bigger 
area is 25. The roots of the equation are 2 and -8. This method is called completing the square.  
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                                                                        x                3                                x+3 
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Figure 19. The three geometrical models used to illustrate procedures of completing the 
square method in Matematik 4000 B (Alfredsson et al., 2007, p. 26). 
 
Among these three models, the first two are mathematically equivalent since they both 
represent the same area namely 16 in this example. The last model of a completed square 
changes the area by adding a small square in the right corner of the middle model. The 
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essential concept here is that the equation 1662 =+ xx  is constructed when the area of the 
rectangle xx 62 +  (a polynomial) is given to be 16. The transition between a second degree 
polynomial and a quadratic equation could be explained here. But this explanation is absent 
from the textbook. These three geometrical models are used to illustrate the process of 
completing a square from a rectangle. The models used in the introduction activity have laid a 
foundation for teaching the procedure of completing the square but these three models do not 
give an explicit explanation as to what the value of 16 refers to.  
 
Similarly, the three geometrical models in Unit 8 have another version in algebra history 
through putting the first geometrical model (Model 2) and last one (Model 4) together into 
one model according to the ancient Greek mathematician Euclid’s geometrical solving 
method referred to in a proposition in his work Data (Katz & Barton, 2007). Euclid’s 
geometrical figure showed both the equivalent relationship of a quadratic equation and the 
solving method referring to the quadratic formula. The following figure is the combination of 
Model 2 and 4 in the Euclid’s geometrical proposition. The details can be found in the 
previous Chapter 3.1 on algebra history. 

 
 A                         E    S                  B 
     

         x 
 
 
 
 

      y 
 
                y                      
 
F 

  
       C                      G                              D 
                
Figure 20. Euclid’s geometrical figure was used for solving quadratic equations (Katz & 
Barton, 2007, p. 189). 
 
In Euclid’s model, rectangle ACFS is the same as Model 2 or similar to the first model in Unit 
8 and the square EGDB is the same as Model 4 representing the completed square in Unit 8. 
The little square in grey colour is like the added square 23  in Unit 8 (Figure 19). It is possible 
that Euclid’s geometrical figure or model could be used in Unit 8 and even Unit 9 to show 
how the quadratic formula is generated. But Unit 9 in this textbook is totally based on 
completing the square method illustrated in Unit 8 and presents pure algebraic procedures 
without any assistance of geometrical models as follows: 
  
An example of a quadratic equation The generalized quadratic equation 

0652 =++ xx    02 =++ qpxx   
652 −=+ xx    qpxx −=+2  
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(Alfredsson et al., 2007, p. 28) 
 
Through comparing with an example, the quadratic formula is deduced. This final goal in the 
whole progression is reached without the connection with geometrical models, although it 
could have been done by making use of Euclid’s geometrical explanations. No part-whole 
relationship is made explicit in this second last phase of the teaching trajectory.  
 
Unit 10 
 
According to the analysis, the last unit (Unit 10) is about algebraic applications of Pythagoras 
theorem and quadratic equations in solving geometrical exercises and mathematical problems 
related to real world situations. The real world problems in this unit are more advanced than 
the exercises offered in the previous units. The whole teaching trajectory regarding quadratic 
equations ends with Unit 10 and reveals an intended pedagogical idea of applying 
mathematics to solve real world problems which mirrors the same idea mediated by the 
picture of an architecture building in the very beginning of the textbook before the 
introduction activity. The picture is marked with a short comment “Using algebra as a 
language, we can describe geometrical forms” (Alfredsson et al., 2007, p. 6).  
 
Conclusion 
 
To sum up the results derived from the fourth round of analyses concerning embedded 
trajectories, it has been found that the mathematical content presented in the ten units are 
constructed and organized in an overall teaching trajectory including five embedded teaching 
trajectories linked to the four geometrical models from the introduction activity in the 
beginning of the algebra chapter in the textbook. The application of the geometrical models 
makes algebra content comprehensible and bridges the geometrical images to algebra 
representations. At the same time, they also help to structure the overall teaching trajectory 
aimed at solving quadratic equations by the quadratic formula (the pq-formula). The five 
embedded teaching trajectories play an important role in developing the mathematical content 
in the textbook in an overall teaching trajectory from a basic level (referring to the basic 
algebra operational rules and first three solving methods) to an abstract level (referring to the 
quadratic formula and algebra applications). These geometrical models have their roots in 
algebra history (Euclid’s geometry method for solving quadratic equations in relation to the 
quadratic formula) and they represent knowledge of algebra regarding solutions of quadratic 
equations. In this sense, they are used as artefacts by the textbook. They also have potential to 
illustrate the abstract content of factorization and the quadratic formula. The multi-functions of 
the geometrical models imply how useful and powerful they can be if they are used in 
teaching quadratic expressions and equations as an alternative approach. Such embedded PCK 
is discovered from the analysis of this textbook.  
 
The analysis has also revealed an essential pedagogical idea of applying mathematical rules 
and expressions as tools to solve real life situation problems or pure mathematics problems 
such as numerical computation and geometry. This pedagogical idea is exposed in the picture 
of an architecture building in the beginning of the book and in some real world problems of 
the last unit (Unit 10) on algebraic applications. In such a way, the PCK aspect of applying 
mathematics to contextualised problems from the real world or from the area of mathematics, 
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opens and closes the whole progression with another embedded overall teaching trajectory as 
a circle (see Figure 21).  
 
 
   
 

 
Figure 21. Another embedded teaching trajectory relates to the application of mathematics as 
tools for solving problems about real world situations and about pure mathematics. 
 
This pedagogical idea of applying mathematics to real life situations has pervaded in a few 
examples and exercises in this textbook (Units 1, 2, 7 and 10), but most of the units are still 
dominated by presenting mathematics procedural knowledge isolated from real world 
contexts. It can be deduced by this analysis that the mathematics presented in this textbook 
reflects a mixed version of formal mathematics such as algebra manipulations and rules 
(Jakobsson-Åhl, 2006) and modern version of mathematics applications and modeling (De 
Lange, 1996; Freudenthal, 1991) as well as algebra reasoning and generalization (Kieran, 
2007). 
 

6.3 Summary of the findings 
 
The content analysis in this study has been carried out in four rounds of analyses. The first 
and third rounds of analyses are quantitative analyses while the second and fourth are 
qualitative ones. The fourth round of analysis is a deep analysis based on the results derived 
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from the previous rounds. Without the quantitative analyses, it would not have been possible 
to make a decision for the last round of analysis to focus on one textbook. 
 
The first round of analyses obtains a general finding on what algebra content related to 
quadratic equations that is presented in all the eight textbooks. The general finding is that all 
the algebra content from these textbooks is very similar and the four solving methods with the 
focuses on completing the square method and the quadratic formula are presented in every 
textbook. The factorization method is presented but not for solving the general quadratic 
equations as presented in Chapter 3.2.2b). The finding indicates that the mathematics 
textbooks follow the Swedish mathematics syllabus. 
 
The second round of analyses finds that the related algebra content regarding quadratic 
equations is presented in a cumulative order so that every topic builds on the previous topic. 
The absence of the factorization method for the general quadratic equations is furthermore 
proved in the second round of the analyses. It is also found that the absent factorization 
method is often more effective in solving quadratic equations than the quadratic formula since 
it requires fewer operational steps than the quadratic formula method does. In order to find 
multiple ways of presenting quadratic equations, four more textbooks are added to the eight 
ones in the third round of analyses. 
 
The third round of analyses finds that the graphical approach to presenting quadratic 
equations is not so common, but applying algebraic approach for quadratic functions is 
common. Quadratic equations and functions are treated in separate chapters and lack detailed 
definitions even though it would be worth comparing them in order to avoid conceptual 
confusion. Presentation of quadratic equations often comes, in order, before quadratic 
functions. This implies that it is necessary to put emphasis on analyzing the presentation of 
quadratic equations only since representation of quadratic function does not have much 
influence on quadratic equations in most of the textbooks. 
 
The results derived from the previous analyses have focused on looking for the content 
knowledge (CK) related to the subject of quadratic equations. The findings make the fourth 
round of analyses–on one textbook–aim at finding the embedded pedagogical content 
knowledge (PCK). The fourth round of analyses finds that the presentation of quadratic 
equations is constructed by an embedded overall teaching trajectory consisting of five 
trajectories based on the four algebraic historically related geometrical models. This indicates 
that it is important to prepare the students with basic algebra knowledge before they meet the 
four approaches of solving quadratic equations, in particular the abstract quadratic formula. 
The embedded PCK is revealed by the findings of the teaching trajectories and the powerful 
function of geometrical models as well as algebra application related to real world problems. 
With the help of the CK-PCK analytical tools, mathematical activities provided by the 
textbook reveal the pedagogical idea of “learning by doing” in mathematics, even if it is in the 
abstract algebra context. The provided mathematics exercises facilitate opportunities for the 
students to practice the newly learned algebra knowledge at different levels. The exercises 
cover different cognitive areas: basic algebraic procedural and conceptual training; reversed 
operation procedures; algebra structure sense; mathematical proofs; application of algebra; 
relational understanding of variables and parameters of quadratic equations as well as 
algebraic operational rules. 
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7. Discussion and Conclusion 
 
The aims of this study are to investigate the algebra content related to quadratic equations and 
to find the embedded teaching trajectories related to quadratic equations. This study starts 
with my wondering why factorization is not the focus on teaching how to solve quadratic 
equations in Swedish upper secondary school as compared to my Chinese educational 
background. Seeking the answer to this question involves two areas: mathematics content of 
algebra and teaching algebra. The decision to analyze Swedish mathematics textbooks at 
upper secondary level was made because of their essential role in mathematics teaching (e.g. 
Johansson, 2006) and that they not only contain algebra content as the subject matter 
knowledge or CK (Mishra & Koehler, 2006) but also the intended pedagogical content 
knowledge (Shulman, 1986b) including different ways of representing and formulating 
algebra content to make it comprehensible to others. The plural aspects of this study make it 
necessary to perform extensive literature studies in the areas of pedagogical content 
knowledge from a teaching perspective, artifacts theory (Wartofsky, 1979), mathematics 
applications perspective (De Lange, 1996; Goldin, 2008; Vergnaud, 1987), mathematics 
textbook analytical framework (Brändström, 2005; Pepin et al., 2001; Schmidt et al., 1997; 
Van Dormolen, 1986), the history of algebra (Derbyshire, 2006; Kvasz, 2006), and 
factorization in algebra from mathematics as a discipline perspective (Durbin, 1992; Vretblad, 
2000). The literature studies within the different areas have paved the way for a background 
for the content analytical criteria in this study and for finding content links with algebra 
history through looking at the historical background of algebra development. The literature 
review work on previous research also takes the plural aspects of this study into account, thus 
it includes a review of previous studies on textbook analyses including mathematics textbooks 
and a review of teaching and learning algebra related to different approaches for solving 
quadratic equations. 
 
The results of the literature reviews show that content analysis is dominant in the field of 
textbook research (Johnsen, 1993). Studies related to PCK theoretical perspectives have 
mostly been carried out through classroom observations and interviewing teachers. Little 
research has been carried out on relating CK-PCK aspects to the content analysis (Johansson, 
2006; Pepin et al., 2001). In the field of teaching and learning school algebra, few studies 
have been related to quadratic equations (Kieran, 2007). These findings from the literature 
studies and research reviews have been helpful when designing this study on mathematics 
textbook analyses, making this study focus on content analysis aiming at exploring the 
embedded pedagogical content knowledge through examining algebra content related 
quadratic equations and factorization in the mathematics textbooks. 
 
In this chapter, the results will be discussed in relation to the two research questions asked in 
the beginning of the thesis. Practical implications will be put forward and the limitation of the 
study will be pointed out. In the end, I will give suggestions for future studies.  
  

7.1 Discussion of the results 
 
Two research questions have been asked in this study: 
 
1. What mathematics do Swedish upper secondary mathematics textbooks reflect in their 

presentations of quadratic equations? 
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2. What aspects of pedagogical content knowledge can be traced in the way a Swedish upper 
secondary school textbook presents the algebra content of quadratic equations? 

 
Considering these two research questions, the discussion of the results focuses on the 
following aspects: algebra content knowledge; factorization and quadratic formula; the PCK 
aspects containing historically related geometrical models; provided exercises; embedded 
trajectories; and CK-PCK framework. 
 
Algebra content knowledge 
 
The results derived from the quantitative analyses of twelve mathematics textbooks show that 
mathematics content related to quadratic equations in the textbooks is similar in all books. 
This reflects the algebra content goals for the B course in the Swedish mathematics syllabus 
(Skolverket, 2000). This result is the same as the one derived from previous studies that 
mathematics textbooks cover the same topics as in the curriculum (Johansson, 2006; Venezky, 
1992; Pepin et al., 2001). In all of the investigated textbooks, algebra content related to 
quadratic equations is presented like algebra knowledge package (Ma, 1999). In this 
knowledge package, pre-knowledge consists of: polynomial simplification, distributive laws, 
the difference-of-two squares law, square rules and factoring quadratic expressions to serve 
as a base for the presentations of the four solving methods the square root method, the 
factorization method, completing the square method, and the quadratic formula. In order to 
approach the presentation of the four solving methods, the pre-knowledge is needed. All the 
algebra content elements in this knowledge package regarded as subject matter content 
knowledge (CK) have built up an embedded overall teaching trajectory in accumulative 
relationship to reach a final goal of solving quadratic equations by the quadratic formula. 
Among these algebra content elements, the last two solving methods are emphasized. The 
factorization method is included but only applied for solving simple quadratic equations. 
Solving the general quadratic equations by the factorization method is absent from all the 
textbooks. 
 
This knowledge package characterizes algebra manipulation. Thus, the algebra content related 
to quadratic equations in the investigated textbooks reflects rule-bound and convention-bound 
mathematics (Pepin et al., 2001) with a goal for encouraging procedural knowledge (Hiebert 
& Lefevre, 1986).  
  
Factorization and quadratic formula 
 
Among the four solving methods presented in the textbooks, the factorization method for 
solving general quadratic equations of the kind 02 =++ cbxax , is absent. For example, 

0)2)(12(0252 2 =−−⇔=+− xxxx . The findings from previous studies (Bossé & 
Nandakumar, 2005; Hoffman, 1976; Leong et al., 2010; Kemp, 2010; Kennedy & et al., 1991; 
Nataraj & Thomas, 2006; Zhu & Simon, 1987) indicate that this kind of factorization is a 
common topic in elementary algebra teaching in some other cultures. The absence of this kind 
of factorization from Swedish mathematics textbooks implies an answer to my wondering 
why factorization was not in the focus of teaching quadratic equations in a Swedish school. 
Mathematics textbooks influence mathematics teaching. Textbooks often define teaching aims 
and what teachers present mostly comes from textbooks (Englund, 1999). On the other hand, 
the result from a previous study shows that mathematics textbooks are designed and 
constructed differently depending on different pedagogical culture (Pepin et al., 2001). What 
is not presented in textbooks is probably not presented by teachers. The absence of this kind 
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of factorization implies that Swedish upper secondary students may not get the chance to 
learn this kind of factorization since it is not presented in mathematics textbooks. 
    
One of the essential approaches for solving quadratic equations according to my study is to 
use the quadratic formula 2,1x = (-p/2) ± √[(p/2) − q²]. The result shows that this the  
pq-formula is the intended final goal in the overall teaching trajectory. This result can 
probably explain a phenomenon in a previous study (Olteanu, 2007). The phenomenon of that 
study (Olteanu, 2007) shows that students have developed a stronger relationship to the the 
pq-formula and an equation but a weaker relationship between a function and an equation. 
The students have difficulties in seeing the equivalence between two different kinds of 
quadratic equations: ax² + bx + c = 0 (a ≠ 0) and 02 =++ qpxx . This may be because the 
mathematics textbooks only focus on using the pq-formula to solve quadratic equations of the 
type 02 =++ qpxx . The possible consequence is that teachers and students would regard it 
as the important algebra content. The teachers’ presentations of mathematical content are 
often portrayed in the textbook (Johansson, 2006). This means that the absence of the general 
quadratic equation 02 =++ cbxax in the textbook may make the teaching of algebra less 
focus on this kind of quadratic equation. 
 
Another version of the pq-formula is 2,1x = [-b ± √(b² − 4ac)]/(2a) then ( )0≠a . This version is 
mentioned in an exercise in this textbook but left without any emphasis. Olteanu (2007) asks 
why the teaching of solving quadratic equations does not apply the abc-formula directly since 
the abc-formula can be used directly to solve a quadratic equation without changing all the 
general quadratic equations into the type of 02 =++ qpxx equations. Furthermore, the  
abc-formula can facilitate the identification of the extreme point of a quadratic function. Since 
the textbooks do not emphasize this abc-formula, it is possible that teachers will not teach the 
abc-formula, or not put focus on it. What is taught in mathematics classrooms is influenced by 
what teaching material is used (Johansson, 2006). 
 
Olteanu (2007) has found that students have difficulties in telling the difference between 
quadratic functions and quadratic equations. In response to her finding, my study has implied 
that a lack of formal detailed definitions for quadratic equations and functions may result in 
difficulties for the students in understanding the difference between a quadratic function and a 
quadratic equation. 
 
The PCK aspects containing historically related geometrical models 
 
The results derived from one textbook analysis show that the mathematics in that textbook has 
a mixed version of algebra history and mathematics application and manipulation. The idea 
related to algebra history in the textbook has influenced the presentation and organization of 
the algebra content concerning quadratic equations. In the textbook, the application of the four 
geometrical models related to algebra history has led to the five embedded teaching sub-
trajectories in relation to the distributive law, the square rule, and completing the square 
method in a particular order with a part-whole relationship. The multi-functions of the 
geometrical models make them artifacts (Wartofsky, 1979) that are important algebraic 
representations related to historical roots at the same time as they embrace pedagogical 
content knowledge of transferring the knowledge of the algebraic rules, as shown in the 
analysis. In other algebra teaching culture, these geometrical models named as algebra tiles 
(Leong et al., 2010) are applied for illustrating factorization of quadratic expressions. The 
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application of the historically related geometrical models or algebra historically related 
approach is an important aspect of pedagogical content knowledge (PCK) built in this 
textbook. 
 
The result implies that the embedded teaching sub-trajectories with the geometrical models 
can, as alternative teaching instructions, contribute to classroom teaching related to quadratic 
equations. The embedded overall teaching trajectory can provide the whole progression of 
teaching how to solve quadratic equations with the quadratic formula as the final goal. The 
study suggests that the application of the geometrical models in relation to Euclid’s 
geometrical method (Kvasz, 2006) for solving quadratic equations could be used to illustrate 
the quadratic formula in order to provide concrete visual explanations. On the other hand, the 
other algebra representations, like a graphical approach related to quadratic functions, is 
another alternative to solving quadratic equations, but more than half of the investigated 
textbooks have not made use of this approach. 
 
Another aspect of the embedded PCK is about mathematics application in the provided 
mathematics exercises and activities in the textbook. Mathematics application (Freudenthal, 
1991; Van Den Heuvel-Panhuizen, 2003) is reflected within two contexts: real world context 
and pure mathematics context. The real world context involves word problems in the 
exercises. They are often difficult since they are somewhat infrequent and have not been 
presented in the previous examples. The solving procedure of such problems includes first 
interpreting word problems into mathematical expressions and then finding solving methods. 
The PCK of using the real world problems intends to bring reality into the mathematics 
classroom and create opportunities for getting practical contact with the real world situation 
(Chapman, 2006). It makes students learn mathematics through doing mathematics, 
something which reflects the idea of mathematization (De Lange, 1996). This is the case of 
two activities of which one is about finding rules for numerical computations and the other is 
about finding the relationship between roots and coefficients of a quadratic equation. In these 
two activities, students are encouraged to work together and generalize the algebra rules and 
expressions through working with the exercises. The mathematical content is not of the kind 
real world problems but instead related to pure mathematics context. The activity process has 
the character of mathematization. However, algebra application in real world problems is not 
new but appeared in Swedish mathematics textbooks in the late 1970s (Jakobsson-Åhl, 2006). 
 
Provided exercises 
 
The algebra content textual presentations in the textbook take up little space compared to the 
provided exercises and activities. More than half of the mathematics exercises are routine 
tasks according to my findings. The other half are exercises aiming at practicing the structure 
of quadratic equations, reversed operation procedures, conceptual understanding of newly 
learned algebra rules and concepts. Exercises related to the application of algebra imply the 
usefulness of algebra in our daily life and the subject of mathematics. Extra exercises such as 
discussion activities, a homework exercise part, two mathematics tests equivalent to the 
national tests and Problems for everybody are provided at the end on the chapter of algebra. 
The level of difficulty increases in these extra exercises. These extra mathematical activities, 
homework, tests and problems at the end of the chapter are like a “smorgasbord” providing a 
large amount of various exercises for students to practice the algebra content presented in this 
chapter. 
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A large amount of exercises imply two pedagogical goals: acquisition of knowledge with 
activities and acquisition of process skills with content knowledge growth (Van Dormolen, 
1986). This can also imply that teachers may use this textbook in terms of rich exercises in 
school and for homework to facilitate students’ learning at different levels (Pepin et al., 2001). 
At the same time, students use the textbook to assist with self study. The result related to the 
large amount of mathematics exercises and the group activities in this textbook has supported 
an opinion that the function of textbook is not just for mediating the facts of subject matter 
knowledge but encouraging active learning through reconstructing the knowledge with a 
pedagogical idea of utilizing the subject matter knowledge as a process rather than amount of 
facts (Selander, 2003). At this point, the pedagogy of “learner-centered design (LCD)” 
(Selander, 2003, p. 217) is built into the design of the exercises and activities of this textbook. 
The shortcoming is the uncertainty of students choosing proper exercises by themselves and if 
they have enough time to do them. Teacher’s guidance is needed. 
 
The algebra content and the provided exercises in this book cover and reflect the goals 
expressed in the Swedish mathematics syllabus for course B: “Pupils should be able to 
interpret, simplify and reformulate expressions of the second degree, as well as solve 
quadratic equations and apply this knowledge in solving problems” (Skolverket, 2000). 
Mathematics at this level is about algebra generality, manipulations, structure and application 
with focus on algebraic operational rules and solving methods which belong to procedural 
knowledge (Hiebert & Carpenter, 2007; Hiebert & Lefevre, 1986). 
 
The embedded teaching trajectories  
 
The textbook reflects a relation between elementary algebra and geometry which in nature 
relates to mathematical history. The algebra history related to the PCK makes use of the 
geometrical models which originated from algebra history to present and organize algebra 
content according to a certain order. In such a way, the textbook provides the algebra content 
knowledge of quadratic equations by an embedded overall teaching trajectory consisting of 
five hypothetical teaching sub-trajectories related to quadratic equations. The relationship 
between the overall trajectory and five sub-trajectories is that these five sub-trajectories 
together build up a progression developed from presenting the basic algebra knowledge to the 
more complicated and abstract algebra knowledge with a final goal. The overall teaching 
trajectory covers all the sub-trajectories and ends with the final goal. 
 
From a theoretical perspective, this study is an attempt to combine the CK concept (Mishra & 
Koehler, 2008) and the PCK concept (Shulman, 1986b) with text analysis criteria for 
analyzing the mathematics textbook. The CK-PCK framework functions as an overall 
analytical tool whose parts can not be separated from each other (Ferrini-Mundy et al., 2003). 
The subject matter content knowledge and pedagogical content knowledge reflected from the 
textbook have to be studied together in order to explore the embedded PCK in the textbook. 
The findings of this study are the results from all the four rounds of analyses. The first three 
rounds of analyses, in particular the first and third quantitative analyses, play an important 
role for the fourth round of in-depth content analysis. These four rounds of analyses have 
together shaped the whole study. 
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7.2 Practical implications 
 
This study is about algebra content analyses within the area of quadratic equations presented 
in the mathematics textbooks used for mathematics course B at Swedish upper secondary 
school. As a teaching and learning resource, textbooks are used by both students and teachers. 
The results derived from this study have exposed the embedded teaching ideas and 
mathematical connections. For teachers, the historically related pedagogy reflected in this 
textbook may guide them in putting teaching emphasis on illustrating algebra rules by 
geometrical representations. The geometrical models in the textbook serve as artifacts and can 
become very useful and powerful in classroom teaching if teachers realize their functions and 
get familiar with the history of algebra. The five embedded teaching sub-trajectories and an 
overall trajectory can assist teachers in organizing the teaching of quadratic equations. The 
embedded trajectories may possibly be developed into a geometrically and historically related 
algebra teaching model in practice. The textbook has also provided the basic knowledge of 
solving quadratic equations. Therefore it gives both teachers and students an implication of 
what one needs to know before learning to solve quadratic equations. 
 
The finding of the absence of factorization for general quadratic expressions may bring 
teachers’ attention to develop alternative approaches to solving quadratic equations further. 
Thereby students could get more opportunities to develop their algebra competence for 
structure and number sense. In that case, teaching different solving methods is not the only 
goal, but it helps students get a deep insight into algebra structure at the same time as 
fostering their algebra thinking should be concerned for their future study of abstract algebra 
at an advanced level. On the other hand, “algebra is a large content area, too large to fit 
entirely within any one school curriculum, and so choices must be made” (Kendal & Stacey, 
2004, p. 345). 
 
The result of the analyses of various exercises in forms of different activities, problems, and 
tests may guide teachers when choosing proper activities and exercises according to the 
students’ needs and the level they are on. The mathematics application pedagogy in 
mathematical context and activities as well as real world problems may inspire teaching 
algebra depending on what kind of mathematics that is emphasized in the classroom. The 
pedagogical content knowledge of offering different kinds of exercises and activities revealed 
by the analyses may be useful for teachers in order to organize and help students in their own 
learning. 
 
For students, the textbook can be used as a guide book for their self study since there are 
plenty of various mathematics exercises at different levels. Students can choose the ones 
appropriate for themselves, if they know their own level. 
 
For textbook writing, the study implies a need for formal algebra definitions of some algebra 
concepts and for more verbal explanations of contextual connections. It is also necessary to 
give clearer instructions of different kinds of exercises so that users know how to use them.   
 
The framework used in the analyses may contribute to studying teachers’ content knowledge 
of teaching algebra in the classroom. 
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7.3 Critical reflection on this study 
 
The analyzing process in this study has included four rounds of analyses, which I performed 
until I found the embedded trajectories from one analyzed textbook. The study field was 
narrowed down from the twelve textbooks to one textbook. The first three rounds of analyses 
aimed at finding algebra content related to quadratic equations in general and looking for their 
presentation orders as well as different approaches to solve quadratic equations. In such a way, 
the first three rounds of analyses set up a base for the last analysis aiming at seeking the PCK 
aspects and how the embedded trajectories are presented. The results concerning teaching 
trajectories were derived from the final analysis and can not be used for generalizing all the 
investigated textbooks since this is a qualitative study. These embedded teaching trajectories 
are hypothesized (Cobb, 2001). The finding is a suggestion only for how teaching algebra 
related quadratic equations could be done. 
 
All the analysis data for this content analysis is described according to my own interpretation 
based on my experiences and knowledge of algebra and teaching. The analyses might 
possibly be influenced by my own background, in particular my Chinese educational 
experience in mathematics learning. The factorization method is an example of it. I regard it 
as an effective method to solve quadratic equations, but this might not necessarily be the case 
for other mathematics teachers. The embedded pedagogical content knowledge is uncovered 
according to my own teaching and learning experience. Take exercise 1228 (Alfredsson et al., 
2007, p. 30) as an example: 

 
Louis and Nille want to solve the equation 022 =−+ xx  with the quadratic formula. 
Louis: “One of the coefficients of x is missing, p is 0.” 
Nille: “We have one x, p is 1.” 
Who is right? Solve the equation. 

 
The embedded PCK is the knowledge of knowing students’ misconception of xx 0=  which 
often is the case. Therefore, this task has as a purpose to check students’ concept of the 
coefficient when the value is one which never is written before an unknown or a variable. The 
PCK in this task is interpreted according to my understanding. 
 
What I have examined in this study is the content provided in the mathematics textbook. 
When Shulman (1986b) declared the PCK concept, he meant teachers’ pedagogical content 
knowledge which is constructed by relating to the teacher (Emanuelsson, 2001). The PCK 
related research has very different focuses such as teaching, teachers’ knowledge, content 
understood by teachers, content understood by students, content provided in teaching 
materials and so on (Ball et al., 2008; Emanuelsson, 2001; Ferrini-Mundy et al., 2003). How 
the analysis of the empirical material in such research is done depends on the researchers’ 
interpretation of the PCK aspects. The core term in my study is content which consists of 
algebra as disciplinary content and pedagogical content knowledge of teaching algebra. 
Although this study does not involve classroom teaching content, it directly relates to the 
content provided in the mathematics textbook. Agreeing with Emanuelsson (2001), I regard it 
as meaningful to view all content as having pedagogical dimensions as long as they are used 
for educational purposes though the content is from the textbook, not from the classroom 
teaching.  



109 
 

7.4 Suggestions for future studies 
 
This study is directed at upper secondary algebra teaching in the special area of quadratic 
equations. The theoretical framework in this study is CK-PCK (Mishra & Koehler, 2008; 
Shulman, 1986b). This study attempts to find algebra content knowledge related to quadratic 
equations as a subject and explore the pedagogical content knowledge of teaching how to 
solve quadratic equations. The result of the embedded teaching trajectories and the overall 
trajectory is tentative since it is derived from the analysis of the textbook. 
 
It would be interesting to see the result of this study in practically use. How are these 
trajectories and the overall trajectory used in classroom teaching when the same textbook is 
used? The next step in a future study would be to find out how these teaching trajectories and 
the overall trajectory are manifested in the teaching of quadratic equations in algebra 
classrooms. This is a natural step in continuing this actual study. A continued study would 
focus on the application of these trajectories for teaching. The aim would be to find the 
effectiveness of these geometrically and historically related teaching trajectories. How do 
these trajectories influence both teaching and learning related to a special subject on solving 
quadratic equations? The research method would involve classroom observations, 
interviewing teachers and students and probably tests. In such a way, the pedagogical content 
knowledge of teaching quadratic equations would be deepened in a continuing study. 
 
Another suggestion for a continuing study is to widely analyze the algebra content related to 
quadratic equations, and even quadratic functions, with a CK-PCK framework in more 
mathematics textbooks from both Sweden and other countries. In this case, a comparative 
study would be meaningful. The aim would be to reveal embedded pedagogical content 
knowledge from other cultures and enrich Swedish mathematics textbook writing and algebra 
teaching. At the same time, the CK-PCK framework and the analytical criteria derived from 
this study will be developed by a future study. 
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Appendix 1: The twelve mathematics textbooks used for the third round of 
analyses 
 
1. Matematik 4000 B (the Blue book) (Alfredsson et al., 2007) 
2. Matematik 4000 B (the Red book) (Alfredsson, Erixon, & Heikne, 2008b) 
3. Matematik 3000 B (the Green book) (Björk et al., 2000) 
4. Matematik 3000 B (the Red book) (Brolin & Heikne, 2003) 
5. Exponent B (red) (Gennow et al., 2005b) 
6. Exponent B (yellow) (Gennow, Gustafsson, & Silborn, 2005a) 
7. Matematik från A till E–gymnasiets matematik kurs B (Holmström, 2001) 
8. Räkna med Vux–kurs B (Danielsson, Gabrielsson, & Löfstrand, 2002) 
9. Nya delta–matematik kurs A och B (Björup, Körner, Oscarsson, & Sandhall, 2000) 
10. Δ NT/a+b–Liber Pyramid. Gymnasiematematik för NV och TP, kurs A och B (Wallin, 

Lithner, Wiklund, & Jacobsson, 2000). 
11. Origo: matematik kurs B för samhällsvetenskapliga och estetiska program (Szabo et al., 

2008) 
12. Matematik B (Norberg, Viklund, & Burström, 2002) 
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Appendix 2: An example of one of the twelve tables containing coded content 
elements from every investigated textbook 
 
Table 1 
 
Coded content elements in Textbook One 
  
Chapter 1.  
Algebra and 
geometry 

• Picture and introduction activity 
• Polynomial conception, coefficient, degrees of polynomials 
• Polynomial form p (x) and its value 
• Commutative property, associative property, distributive property, 

parenthesis rules 
• Rules for multiplication of two binomials and signs 
• Difference of squares rule (konjugatregeln) and perfect square 

rules or squaring binomials (kvadreringsreglerna) 
• Factoring polynomials with two methods a) greatest common 

divisor (no mentioning of the GCD term) b) using difference of 
square and perfect square rules 

• Investigating activity-finding models for computing big numbers 
in squares 

• Simple quadratic equations and the two solving methods 
• The method of completing a square 
• Quadratic formula 
• Discovering activity-finding relations between roots and 

coefficients 
• History 
• Algebra and application of algebra in real world problems 
• Geometry sections with Pythagoras’ theorem 
• Discussion activity (right or wrong?) 
• Homework  
• Summary of the chapter 
• Mixed exercises (two) 
• Problems for everybody 
  

  
 

Chapter 2. 
Functions 

• Picture and activity 
• Definition of function (in forms of value table, graphs or words),  
• Linear functions with slope formula 
• Parallel and right angle lines as well as its formula 
• How to set up a linear equation by a given slope value or values of 

coordinates 
• Lab activity 
• Linear equation of common forms 
• Linear models expressed by linear functions used for finding the 

changing factors’ influences in the real world problems 
• Regression-the best linear model 
• Linear equation system and the three solving methods as well as 
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some special linear equation systems 
• Investigating activity 
• Application of linear equation system in real world problem 
• Inequalities and the solving inequalities 
• Investigating activity for quadratic equations 
• Non-linear functions and the characteristics of a quadratic 

equation: maximum and minimum coordinates, symmetry line, 
vertex, x-intercepts; finding x-intercepts with algebraic method 
through solving quadratic equations 

• Quadratic models-problems in quadratic models solved 
algebraically and graphically 

• Non-linear models: a quadratic model and an exponential model 
• Application of functions in statistics: linear, quadratic, and 

exponential models 
• Discussion activities 
• History 
• Problems for everybody 
• Discussion activities (true or false?) 
• Homework 
• Summary 
• Mixed exercises (two) 
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Appendix 3: The introduction activity on page 7 in the textbook of Matematik 
4000 B (the Blue book) 
 
Rectangle and algebra: 
1. The area of rectangle A can be described with an expression )1(3 −x . 
a) Give an expression for the area of rectangle B. 
 

 
                    1−x                                               x  
 
b) Compute areas when x has different value.  
c) Have you found any value which gives the rectangles the same area?  
 
2. In the following figure, we get two identical rectangles. Write the equality 21 AAA +=  

with an algebraic expression which corresponds with the respective areas. 
 

 
             2+a                                             a                 2 
 
3. Write equivalent relationship showing that the area of the whole rectangle is equal to the 

sum of the four areas for the small rectangles. 
 

 
             x                    2   
4. See the following figure. ?)( 2 =+ ba  
              a                 b 
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