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Diagonalizable algebras and the length of proofs

Gunnar Adamsson

Abstract. We rederive a theorem of Shavrukov [17] on the diagonaliz-
able algebras of PA and ZF using an approach that differs ever-so slightly
from the original. This gives a somewhat stronger result (which was im-
plicit in the original proof) that we, coupled with a more careful analysis
of the Parikh speed-up phenomenon, put to use by giving examples of how
different choices of provability predicates for a given theory T can lead to
non-isomorphic algebras. We also show that, by a minor tweak, the in-
jectivity assumption can be dropped and the result extended to arbitrary
epimorphisms.

A diagonalizable algebra (A,✷) is a boolean algebra A equipped with an addi-
tional unary operator ✷ subject to the following conditions:

✷⊤ = ⊤

✷(A→ B) ≤ ✷A→ ✷B

✷A ≤ ✷✷A

✷(✷A→ A) = ✷A

‘A→ B’ abbreviates, as usual, ‘Ac ∪B’
A particularly prominent class of examples (actually the raison d’être of the

whole theory of diagonalizable algebras) consists of the diagonalizable Linden-
baum algebras : Given an axiomatized theory T , containing (or interpreting) a
large enough fragment of arithmetic to comfortably reason about its own syntax,
we obtain a diagonalizable algebra DT by letting the operator PrT act on the
ordinary (i.e. boolean) Lindenbaum algebra of T ; PrT being a suitable formal-
ization of the notion ‘. . . is theorem of T ’ (the existence of such formalization(s)1

is guaranteed by T being able to reason about its syntax).
The diagonalizable nature of DT is clear: Reading ✷ as PrT, the first three

conditions on ✷ are simply the Bernays-Löb derivability conditions (and we
assume the formalization PrT to be natural enough to satisfy them), whereas
the last one comes out as the formalized version of Löb’s theorem.

The equational class of diagonalizable algebras (as defined above) was in-
troduced by Magari [11] as an abstract algebraic setting for investigating the
self-referential phenomenon discovered by Gödel. This study revolves around the
equational theories of diagonalizable algebras and is more conveniently placed
in a slightly different setting: that of provability logic. The modal logic GL
(for Gödel and Löb) is the propositional modal logic with the following axioms

I wish to thank Volodya Shavrukov and my supervisor Fredrik Engström for proof-reading,
criticism and a large number of suggestions that have much helped to improve this paper.

1Of course, neither the theorems of T , nor any particular axiomatization of them, deter-
mines PrT. In this respect our notation DT is potentially ambiguous, by corollary 21 below
it is (not just potentially but) actually so.
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(the second one, as well as its algebraic counterpart above, turns out to be
redundant):

✷(A→ B) → (✷A→ ✷B)

✷A→ ✷✷A

✷(✷A→ A) → ✷A

The similarity to the conditions defining a diagonalizable algebra is readily
apparent. In fact, let x0, x1, . . . be the variables of the theory of diagonalizable
algebras and p0, p1, . . . be propositional letters, let f : N → N be an arbitrary
injective function and define a translation t by induction:

xti = pf(i),

(A ∪B)t = At ∨Bt,

(Ac)t = ¬At,

(✷A)t = ✷At.

The axioms defining a diagonalizable algebra are then seen to differ only in
inessential respects from the axioms ofGL, hence an identity P (x0, . . . , xn) = ⊤
holds in every diagonalizable algebra iff P t(p0, . . . , pn) is a theorem of GL.
Finding the logical notation more manageable, we will usually prefer it to the
algebraic one; consequently we write ‘⊢ ✷(✷A→ A) → ✷A’ instead of ‘✷(✷A→
A) → ✷A = ⊤’ and similarly. We hope that the occasional mixture of notations
will not confuse the reader.

The equational theories2 of individual DT’s were completely classified in the
wake of the fundamental work of Solovay [15]: for Σ1-sound T the DT’s all enjoy
the same equational theory, moreover: DT is functionally free in the class of
diagonalizable algebras in the sense that any identity true in DT holds true in
every diagonalizable algebra. Hence we obtain a simple and decidable axiom-
atization of the identities of DT; they coincide (modulo the translation above)
with the theorems of the modal logic GL. For Σ1-ill theories the identities are
obtained by adding ✷n⊥ = ⊤, where n is the least number for which T ⊢ ✷n⊥
(this n is known as the credibility extent of T, if no such n exists T is said to be
of infinite credibility extent). Hence, the equational theories of all theories of in-
finite credibility extent are, by the preceding, seen to be the same (namely GL).
Following along these lines we can obtain one further piece of information: the
sentence ‘∀x (✷x = ⊤ → x = ⊤)’ holds in DT iff T is Σ1-sound; so DS 6∼= DT for
a Σ1-sound S and Σ1-ill T (even though T may be of infinite credibility extent
and, hence, share its equational theory with S).

Also, the proper (purely boolean) Lindenbaum algebras of arithmetical the-
ories have long been known to be isomorphic: They are atomless (by Rosser’s
theorem) and countable (trivial); by a theorem of Tarski they are all isomorphic
(to the free boolean algebra on ℵ0 generators).

By a theorem of Shavrukov [16, Proposition 11.9] DS is embeddable into DT

for any Σ1-sound S and T , from the discussion above one might be tempted to
suppose that this result could be strengthened to show that, for any Σ1-sound
theories S and T , DS and DT are isomorphic, i.e. that there would essentially
be only one Σ1-sound DT.

2Using the translations t above, the equational theory of DT is seen to coincide with the
set {P t : ∀t (T ⊢ P t)}, known as the provability logic of T .
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This conjecture is refuted by another theorem of Shavrukov, showing that
DPA and DZF are not isomorphic. One object of this paper is to prove this
theorem, in doing so we will follow the original proof in [17] closely, departing
slightly in certain places to obtain a strengthened result that is used in the proof
of corollary 21. The main line of the proof of theorem 17, however, is just as in
[17] and the proof runs almost identical to Shavrukov’s in many places. Most
of the lemmas and auxiliary results, except the ones dealing with the functions
RT,PT and DT, are taken over from [17].

Before launching into the details of the proof some words about the as-
sumptions made on the theories to which our proof applies: in all what follows
Σ1-ill theories are entirely discarded and all theories are assumed Σ1-sound,
furthermore all theories are supposed to be consistent, axiomatized extensions
of I∆0+exp, always equipped with a fixed elementary proof predicate.

We introduce the following notation:

Definition 1. Given two explicit Σ1-formulae σ = ∃x(δ(x)) and ς = ∃x(δ′(x))
the witness comparison formulae are defined by:

σ ✂ ς = ∃x(δ(x) ∧ ∀y < x(¬δ′(y)))

σ ✁ ς = ∃x(δ(x) ∧ ∀y ≤ x(¬δ′(y)))

Furtermore, exponents are used to denote iteration (✷1 = ✷ and ✷n+1 =
✷✷n), both of various operators like ✷ but also of functional composition
(fn+1 = f ◦ fn), T ⊢ ϕ indicates that there is a proof of ϕ from T and T ⊢n ϕ
that there is such a proof containing at most n symbols. The arithmetical sen-
tence expressing that T ⊢ ϕ is denoted by ✷Tϕ (or, when confusion is not likely,
just ✷ϕ) and the one expressing that T ⊢n ϕ by ✷T,n ϕ. Let δ(x) be as above,
we then write more generally ✷T,δ ϕ to indicate that for some m, T ⊢m ϕ and
∀y < m(¬δ(y)). Finally, ϕ(n) ↓ means that the function ϕ is defined for the
argument n.

Since we will be concerned with the length of proofs we need to ensure
that our coding of syntax is reasonably effective, this means that the standard
(ineffective) coding of numerals as ‘1+ 1+ · · ·+1’ (or something similar) is not
usable. Instead we use a dyadic coding as follows (cf. [9, p. 318]):

0̄ = 0̄

1̄ = S(0̄)

2n = (1̄ + 1̄) ∗ (n̄)

2n+ 1 = (1̄ + 1̄) ∗ (n̄) + 1̄

This has the important consequence (not true for the ineffective coding of nu-
merals above) that if T ⊢ ∀x (ϕ(x)), then T ⊢n ϕ(n̄) holds for all large enough
n. This is because the length of the numeral n̄ is logarithmic in n and n− log(n)
goes to ∞ with n.

1. The length of proofs

The incompleteness phenomenae discovered by Gödel have further consequences
than just the existence of undecidable sentences, by taking also the length of
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(the shortest) proofs into account we arrive at a finer classification than the
traditional decidable/undecidable dichotomy; for example, a sentence of man-
ageable length might be provable, but only with proofs of astronomical length
or certain sentences might have short proofs in some (naturally occurring) the-
ories but only unmanageably long ones in others; such phenomenae carry the
technical name speed-up.

The first general speed-up result was given by Gödel himself shortly after
the publication of his incompleteness theorem:

Theorem 1 (Gödel [7]). For any total recursive function f and any theory T ,
there is a sentence ϕ such that T ⊢ ϕ, but T 6⊢f(ϕ̄) ϕ

Proof. Take ϕ such that T ⊢ ϕ↔ ¬✷T,f(ϕ̄)ϕ.
First assume T 6⊢ ϕ, but then we have T ⊢ ¬PrfT(n̄, ϕ̄) for any n, so a fortiori
T ⊢ ¬✷T,f(ϕ̄)ϕ and hence T ⊢ ϕ.
Now assume T ⊢f(ϕ̄)ϕ, then T ⊢ ✷T,f(ϕ̄)ϕ, hence T ⊢ ¬ϕ; so T is inconsistent,
contrary to assumption. ⊣

In his proof of the theorem mentioned above, Shavrukov used a similar result
of Parikh, essentially this result is the observation that in the proof of theorem
1 just given, we proved that T ⊢ ϕ in just two lines and that this simple proof
can be formalized in T . The result is a short T -proof of ✷Tϕ. Now, a Σ1-sound
T proves ✷Tϕ iff it proves ϕ, so a proof of ✷Tϕ could be considered just as good
as a proof of ϕ itself. Formally this is represented by adding an additional rule
to T , the Parikh rule: ✷Tϕ/ϕ. This rule adds no new theorems to T , but by
Parikh’s result it drastically shortens (certain) proofs. For more on the Parikh
rule (and other related rules) cf. [8].

First we should note that our sketch in the paragraph above is not completely
correct: If T ⊢ ✷Tϕ, a proof of ϕ could be found by simply searching through
all proofs in T ; it follows that the length of the proof of ϕ is bounded by a
recursive function of the length of the proof of ✷Tϕ, so Parikh’s result cannot
be valid for all recursive functions. The reason is easily seen: theorem 1 assumes
the function f to be total, to formalize the proof in T we need to prove this as
well in T , so f must be provably recursive in T . We can now state the proper
version of Parikh’s theorem:

Theorem 2 (Parikh [14]). Let g be provably recursive in T , there are k and ϕ
such that T ⊢k ✷Tϕ, but T 6⊢g(k)ϕ.

Parikh actually proved more than this, and much more could be proved by
his methods (cf. [4, 5]). Since we will require some of this additional information
later on, we postpone a detailed proof of Parikh’s theorem until section 3.

2. Shavrukov’s theorem

The main theorem of this paper makes heavy use of the finer details of Parikh
speed-up, hence we begin by introducing some terminology:

Definition 2. Let 2x0 = x and 2xn+1 = 22
x
n . Call a function f multi-exponentially

bounded if there is a k such that for all x, f(x) < 2xk.
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Remark. It is argued in [9, III.3.13] that natural transformations involving syn-
tax are multi-exponentially bounded, hence if ϕ̄ is the gödelnumber of some
sentence ϕ and a reasonably short proof (compared to ϕ̄) of ϕ is given, the size
of the gödelnumber of this proof is multi-exponentially bounded in ϕ̄.

Definition 3. For a fixed set V ⊆ ω and functions f and g, we write f �V g

if there is a function h of negligibly small growth s.t. f(n) ≤ h ◦ g(n) for any
n ∈ V . If also g �V f we write f ≈V g, otherwise f ≺V g. When V = ω we
drop the subscripts and write f � g, f ≈ g etc.

Remark. The ‘negligibly small’ in the definition needs an explanation; we will
deal with theories T and certain functions g exceeding any T -provably recursive
function f on some infinite set V , in this situation we want to say that g grows
much faster than f on V (f ≺V g). With this in mind we take the (Kalmár)
elementary functions as our class of functions of negligibly small growth; these
functions are provably recursive in I∆0+exp and hence in all theories under
consideration. By another theorem of Parikh [9, V.1.4] any such function is
multi-exponentially bounded, so by the remark above syntactical transforma-
tions are bounded by elementary functions. This is implicit in many of the
arguments below.

Definition 4. If g(n) ≤ f(n) holds for only finitely many n, we say that g
dominates f and write f ≪ g.

Remark. Observe that f ≪ g implies f � g since only a finite number of n
can satisfy g(n) ≤ f(n) and any function that reduces to the identity function
except for a finite number of exceptions is elementary.

Definition 5. Given n, there is an m s.t. T ⊢m ψ whenever T ⊢n ✷Tψ (for any
ψ); let PT be the (obviously recursive) function that takes n to the smallest
such m and call it the Parikh speed-up over T . Theorem 2 implies that, for any
T -provably recursive function f , PT must exceed f for infinitely many values.
Further define two related functions as follows:

RT(n) = µx[∀ δ ∈ ∆0(T ⊢n ∃x δ(x) ⇒ ∃y ≤ x(δ(y)))],

DT(n) = µx[T ⊢n ✷Tϕ ∨ ✷Tψ ⇒ T ⊢x ϕ or T ⊢x ψ].

Lemma 3.

(a) ∀x (PT(x) ≤ RT(x)).

(b) there is a constant c such that ∀x (DT(x) ≤ RT(cx)).

Proof. (a) is immediate since ✷Tψ ∈ Σ1 and the condition for a jump of PT is
a special case of that for RT.

(b) is almost as easy, we just have to pass from ∃x Prf(x, ϕ) ∨ ∃y Prf(y, ψ)
to ∃x (Prf(x, ϕ)∨Prf(x, ψ); clearly this involves at most a linear increase in the
number of symbols. ⊣

The function RT grows very fast, in fact:

Lemma 4. RT dominates every T -provably recursive function f .
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Proof. By assumption T ⊢k ∀x (f(x)↓) for some k, so for n comfortably larger
than k we will then T ⊢n f(n̄) ↓ and by the definition of RT it follows that
f(n) ≤ RT(n). ⊣

The essential step in the proof of Parikh’s theorem is:

Proposition 5. There is a constant d such that ∀x (RT(x) ≤ PT(dx)).

The proof is given in section 3.

Corollary 6. f ≪ PT.

Proof. Let n = dm + r be an arbitrary sufficiently large number and apply
lemma 4 to the function f(dx + r), giving f(dx + r) ≤ RT(x) ≤ PT(dx + r)
by the proposition and the monotonicity of PT. Putting x = m gives that
f(n) ≤ PT(n). ⊣

Corollary 7. For some constant e there holds ∀x (DT(x) ≤ PT(ex)).

Proof. DT(x) ≤ RT(cx) ≤ PT(dcx) by lemma 3 and 5. ⊣

Remark. It is clear that PT (so consequently by the above, RT and DT as well)
depends strongly on the theory T : for example PZF must grow much faster
than PPA. This is because ZF proves uniform Σ1-reflection for PA (i.e. ZF ⊢
∀σ ∈ Σ1 (✷PAσ → σ)), and so in particular it proves ∀ϕ (✷PA✷PAϕ → ✷PAϕ)
and one sees that PPA is ZF -provably recursive. It is this difference in growth
that lies at the heart of Shavrukov’s proof of his theorem.

By the remark just given and corollary 6 we have:

Corollary 8. PPA ≪ PZF.

RT is not provably recursive in T but is, in a sense, rather close to being so.
Specifically we have the following result:

Proposition 9. For all k, I∆0+exp ⊢ ∀x✷kT(R
k
T(x)↓).

Proof. First assume k = 1 and set

ϕ(x) = ∃p < 2xj [PrfT(p, p∃z ∀y ≤ x (PrfT(y, p∃v δ(v)q) → ∃w ≤ z δ(w))q)],

the constant j is to be chosen large enough to make ϕ true. It will be sufficient
to prove ∀xϕ(x), this we do by induction (since the provability predicate PrfT is
assumed elementary this induction can be performed inside I∆0+exp). Reason
in T :

Assume ∀y < x (ϕ(y)), we can further assume

PrfT(x, p∃t (δ(t))q),

for some δ ∈ ∆0 (otherwise ϕ(x) follows trivially) and that δ is
chosen maximal so that RT(x)↓ ✂ δ. By the induction assumption

there is p′ < 2
(x−1)
j such that:

PrfT(p
′, ∃z′ ∀y < x (PrfT(y, p∃v δ(v)q) → ∃w ≤ z′ δ(w))).

It is then clear that we can take the desired z = max(t, z′) and
obtain a proof of this fact with a multi-exponential bound as stated.
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The general case follows easily from the first, we reason in T :

By the above we have

(1) ∀x (✷TRT(x)↓)

and

(2) ∀x (RT(x)↓→ ✷T(RT(RT(x))↓))

so, from (1) and (2)

(3) ∀x (✷T✷TRT(RT(x)↓))

iterating these steps we prove ∀x (✷kTRk
T(x)↓) for all k. ⊣

We have already remarked that a jump of PT entails a jump of RT as well,
so we have:

Corollary 10. For all k, I∆0+exp ⊢ ∀x✷kT(P
k
T(x)↓).

We now come to our main theorem which, assuming the existence of an
isomorphism from DT to DS, gives a bound on PT in terms of PS. The
following diagram might prove useful for the reader to keep in mind during the
course of the proof:

∆T
A ∆T

B

∆S
α ∆S

β

PT

PS

e e−1

PT is calculated via a detour (possible because e : DT → DS is an isomor-
phism) through the theory S, the main difficulty of the proof lies in choosing
the sentences α and B so that no dramatic increases in proof lengths can occur
while moving vertically in the diagram.

We assume that a standard gödelnumbering of Turing machines is given
and write ϕk for the function computed by the kth Turing machine (k will be
referred to as a ϕ-index for ϕk). ϕk(n) will carry the double meaning of, on the
one hand the value of ϕk on n, and on the other the computation executed by
ϕk on n.

We will employ a notion of the length of computations that differs somewhat
from the usual ones:

Φk(n) = k + n+ the number of steps in the computation of φk(n).

In the proof we will make use of another, non-standard representation of
0-1-valued recursive functions, that we now set up. First define the sequence of
sentences {+×nT}n∈ω (we set ✸ = ¬✷¬):

+×nT = ✷
n+1⊥ ∧✸

n⊤
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and associate to every sentence λ the (recursive) function δTλ :

δTλ (n) =











0 if T ⊢ +×nT → λ,

1 if T ⊢ +×nT → ¬λ,

undefined if T ++×nT does not decide λ.

We will need a notion of length of computations for this representation as well,
we define:

∆T
λ (n) = µx(T ⊢x +×nT → λ or T ⊢x +×nT → ¬λ).

The two different notions of length will be connected by lemma 14 below.

Definition 6. A recursive function f is called cumulative if there is a ϕ-index
f̄ for f s.t. Φf̄ � f .

Cumulativity is inteded to ensure that the growth rate of f is faithfully
mirrored by the time needed to compute it. Note that, for trivial reasons, we
always have f � Φf̄ for any index f̄ (in the computation of ϕf̄ (n) it takes f(n)
steps just to write the output to the tape).

We will need a couple of easy lemmas on cumulative functions:

Lemma 11. The functions ∆T
λ and PT are cumulative.

Proof. This is straightforward: ∆T
λ (n) is computed by a Turing machine that

searches through all T -proofs in order, looking for a (dis)proof of λ from +×nT.
Let d ϕ-index such a machine, since the number of proofs of gödelnumber ≤ n

is bounded by an elementary function in n it is then clear that Φd � ∆T
λ . PT

is cumulative for the same reasons. ⊣

Lemma 12. Every elementary function is dominated by a monotone elementary
cumulative function.

Proof. It has already been pointed out that every elementary function is multi-
exponentially bounded and hence dominated by one of the functions {λx.2xn}.
These functions are clearly monotone and easily seen to be cumulative. ⊣

Lemma 13. Let f and g be cumulative, then the composition f ◦g is cumulative
as well.

Proof (not really). This is hardly surprising but tedious; by the cumulativity of
f and g there are ϕ-indices k and i for computing them s.t. Φk � f and Φi � g,
f ◦g is then computed by the Turing machine that results from simply stringing
ϕk and ϕi together. Let j ϕ-index the resulting machine, to show cumulativity
one has but to verify that there is an elementary bound on Φj in terms of f ◦ g;
this is the tedious part that we omit. (Details can be found in [17].) ⊣

Lemma 14. To every ϕ-index k for a 0-1-valued (partial) recursive function
there corresponds a sentence λ with the properties

ϕk ≡ δTλ and ∆T
λ � Φk.

Conversely, to every λ there corresponds a ϕ-index k with the properties

δTλ ≡ ϕk and Φk � ∆T
λ .
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A λ corresponding to ϕk as in the lemma will be called a δT-index for ϕk.
The proof is given in section 3.

Lemma 15. If f is a cumulative function and dom f = V there is a recursive
0-1-valued function g with dom g = V and an index ḡ for g such that whenever
ϕi ≡V ∩domϕi

g, there holds:

Φḡ ≈V f �V ∩domϕi
Φi.

Proof (sketch). The following fact about the complexity measure Φ will be of
crucial importance in the proof: there can be only a finite number of pairs (k,m)
for which there is a chance of Φk(m) = n. Also, since f is cumulative there is
an index f̄ for f such that f ≈ Φf̄ holds and we can forget about f itself and
work with Φf̄ .

Remembering this, one sees that the required function g can be obtained as
follows: g successively computes the values Φf̄ (n), looking for an index j such
that Φj(n) ≤ Φf̄ (n) and

∀x ((Φj(x) ≤ Φf̄ (x) < Φf̄ (n)) → ϕj(x) = g(x)).

When encountering such a j, g immediately decides that

g(n) =

{

0 if ϕj(n) > 0,

1 if ϕj(n) = 0.

ensuring that g 6= ϕj . In this way g cannot equal any ϕk with the property that
Φk(n) < Φf̄ (n) holds for infinitely many n. This settles one part of the lemma,
since if ϕi ≡V ∩domϕi

g, then Φi(n) < Φf̄ (n) can hold for only finitely many n
and trivially f �V ∩domϕi

Φi (since Φf̄ ≈V f).
Finally, let ḡ be the ϕ-index of the Turing machine that computes g by the

method just outlined; it does so by first computing Φf̄ and then carrying out
some simple bookkeeping, thus one sees that Φḡ �V f as claimed. ⊣

Lemma 15 is a special case of Blum’s compression theorem (cf. [3] for the
full story), a complete proof of our case is in [17].

Lemma 16. There is a partial recursive 0-1-valued function h with dom h = V

and an index h̄ for h s.t. Φh̄ �V Φk, whenever ϕk ≡V h.

Proof. By lemma 15 it is enough to show that there is a cumulative function
with domain V , by lemma 11 and 14 there is. ⊣

We are now ready to begin the proof of our main theorem. To this end, fix
a pair of theories S and T and assume that e : DT → DS is an isomorphism
between their diagonalizable algebras. Next, fix a nonrecursive r.e. set X (this
set will remain fixed throughout the whole proof). Now pick a function h with
dom h = X and a ϕ-index h̄ as in lemma 16 and a δS-index α corresponding to
h̄ by lemma 14. Then let A = e−1(α). Since e is an isomorphism it must send
+×nT to +×nS and we have

δSα ≡X δTA ≡X h

9



so, by lemma 14 and 16 and some ϕ-index k for h

∆S
α �X Φh̄ �X Φk �X ∆T

A

consequently

∆S
α ≤X p ◦∆T

A,

for some elementary function p which we, by lemma 12, can assume cumulative.
Since p was chosen cumulative, the function PT ◦ p ◦ ∆T

A is, by lemma 13,
cumulative as well. Hence lemma 15 provides a ϕ-index f̄ for a partial recursive
0-1-valued function f such that

Φf̄ ≈X PT ◦ p ◦∆T
A �X Φi,

whenever ϕi is an extension of f .
We now need a δT -index for an extension of f , to ensure that the formaliza-

tion below goes through we do not, however, use lemma 14 but rather a specially
crafted sentence B.3

Let s be another elementary function such that Φf̄ ≤X s ◦ PT ◦ p ◦∆T
A, let

B(x) be the formula

Φf̄ (x)↓ ✂s ◦ PT ◦ p ◦∆T
A(x)↓→ f(x) = 0

and finally let B be

∀x (+×xT → B(x)).

We now show that B gives the desired δT -index:

δTB ≈X f.

To see this, assume n ∈ X , then T ⊢ +×nT → A or T ⊢ +×nT → ¬A and, by the
choice of f , Φf̄ (n) ≤ s ◦ PT ◦ p ◦∆T

A(n) as well. Since these simple facts are
also provable in T , B(n) reduces to

f(n) = 0.

From this one derives

T ⊢ +×nT → ∀x (+×x
T ↔ x = n)

→ ∀x (+×x
T → B(x)) ↔ (+×nT → B(n))

→ B ↔ B(n)

→ B ↔ f(n) = 0

and so, δTB ≈X f . Moreover, a slightly weakened form of this argument can be
formalized in T to give

T ⊢ ∀x (δTA(x)↓ → ✷T(+×
x
T → A) ∨✷T(+×

x
T → ¬A)

→ ✷T(s ◦ PT ◦ p ◦∆T
A(x)↓)), by corollary 10

→ ✷T(✷TB(x) ∨ ✷T¬B(x)))

→ ✷T(✷T(+×
x
T → B) ∨ ✷T(+×

x
T → ¬B)))

3A note of caution for readers of [17]: the sentence B was there defined in terms of PS

rather than PT. This discrepancy is behind the occurance of the extra box in our formulas
below (as well as the need for a result like corollary 10).
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in particular, for each n

T ⊢ ✷T(+×
n
T → A)∨✷T(+×

n
T → ¬A) → ✷T(✷T(+×

n
T → B)∨✷T(+×

n
T → ¬B)).

Now set β = e(B), like before e preserves the relevant structure and we have

δSβ ≈ δTB ≈X f

and so, by lemma 14 and the choice of f

Φf̄ �X ∆S
β .

By the same isomorphism we must also have

S ⊢ ✷S(+×
n
S → α) ∨ ✷S(+×

n
S → ¬α) → ✷S(✷S(+×

n
S → β) ∨✷S(+×

n
S → ¬β)),

hence, since S is assumed axiomatizable, there is a recursive total function j

such that

S ⊢j(n) ✷S(+×
n
S → α)∨✷S(+×

n
S → ¬α) → ✷S(✷S(+×

n
S → β)∨✷S(+×

n
S → ¬β)).

Since j is total, the set

Y = {n ∈ X : j(n) ≤ ∆S
α(n)}

is infinite, for otherwise the domain of ∆S
α, that is X , would be recursive. We

now focus our attention on Y . Clearly there is a function l �X ∆S
α such that

S ⊢l(n) ✷S(+×
n
S → α) ∨ ✷S(+×

n
S → ¬α),

since constructing a proof of ✷ϕ from that of ϕ is quite an easy task. It follows
that for all n ∈ X and some partial recursive C such that

C �X max(j, l) �Y ∆S
α

there holds

S ⊢C (n) ✷S(✷S(+×
n
S → β) ∨ ✷S(+×

n
S → ¬β)),

and so

S ⊢PS◦C (n) ✷S(+×
n
S → β) ∨ ✷S(+×

n
S → ¬β).

By the definition of the function DS we have:

S ⊢DS◦PS◦C (n) +×
n
S → β or S ⊢DS◦PS◦C (n) +×

n
S → ¬β.

Now fix an elementary function q

C ≤Y q ◦∆S
α,

by corollary 7, DT � P2
S (PS will certainly dominate the linear function x 7→

ex), so there there holds:

∆S
β �Y P

2
S ◦ PS ◦ C �Y P

3
S ◦ q ◦∆S

α �Y P
4
S ◦∆S

α,

11



by the fact that PS is monotone and PS ≻ a for any elementary a. But also

PT ◦∆S
α �X PT ◦ p ◦∆T

A �X Φf̄ �X ∆S
β ,

by lemma 14 and the choice of f̄ . Putting everything together we get

PT ◦∆S
α �Y P

4
S ◦∆S

α.

Now look at the set Z = {∆S
α(y) : y ∈ Y }. Z must be infinite as well (by obvious

properties of ∆S
α). So finally

PT �Z P
4
S .

We sum up our results in the following

Theorem 17. Assume that DT is isomorphic toDS, there is then an elementary
function t such that PT(n) ≤ t ◦ P4

S(n) for infinitely many n.

It has already been pointed out that PPA ≪ PZF because PPA is ZF-
provably recursive, but ZF must then prove P5

PA total as well and consequently
P5

PA ≪ PZF. The following is then an immediate corollary to the theorem:

Corollary 18 (Shavrukov [17]). DPA is not isomorphic to DZF.

Proof. An isomorphism would, by the theorem, imply that there is an elemen-
tary function b such that b ◦P4

PA exceeds PZF for infinitely many values. This
contradicts P5

PA ≪ PZF. ⊣

Further results will follow once we have conducted a more careful analysis
of the dependence of PT on T which we begin now.

3. Parikh speed-up

First of all we should fill the gap in our proof of Parikh’s theorem:

Proof (of proposition 5). Fix x and pick δ so that

(4) T ⊢x ∃z (δ(z))

and RT(x)↓ ✂ δ. Now find θ such that T ⊢ θ ↔ ¬✷T,δ θ. Clearly, T ⊢RT(x) θ

implies T ⊢ ¬θ, hence

(5) T 6⊢RT(x) θ.

On the other hand: T ⊢ ¬✷Tθ → ✷Tθ by (4) and so T ⊢ ✷Tθ. A moment’s
thought shows that the length of the proof of ✷Tθ is linear in x, say T ⊢dx ✷Tθ,
hence T ⊢PT(dx) θ and RT(x) < PT(dx) follows by (5). ⊣

Proof (of lemma 14). The existence of the required ϕ-index corresponding to λ
is nothing but a restatement of the fact that ∆T

λ is cumulative. Turning to the
converse construction we choose λ(n) provably equivalent to

[

✷T(+×
n
T → ¬λ(n)) ∨ φk(n) = 0

]

✁
[

✷T(+×
n
T → λ(n)) ∨ φk(n) = 1

]

.

12



First observe that T could not possibly refute +×nT, indeed

T ⊢ ¬+×nT ↔ (✸n⊤ → ✸
n+1⊤)

and a proof of ¬+×nT would contradict the second incompleteness theorem. Now
assume

(6) T ⊢ +×nT → λ(n) or T ⊢ +×nT → ¬λ(n)

say the first case holds and ✷T(+×
n
T → λ(n)) ✂ φk(n) = 0, it is easy to see that

T then ends up refuting +×nT. The other case similarly leads to the conclusion
that φk(n) = 1 must hold, hence (6) implies:

φk(n) = 0 resp. φk(n) = 1.

Conversely, if φk(n) = 0, then ✷T(+×
n
T → ¬λ(n)) must be false and, conse-

quently, λ(n) be true. Similarly, φk(n) = 1 implies ¬λ(n) and the following
holds:

T ⊢ +×nT → λ(n) ⇐⇒ φk(n) = 0

T ⊢ +×nT → ¬λ(n) ⇐⇒ φk(n) = 1

Now put λ = ∀x (+×xT → λ(x)), just as in the earlier construction of the sentence
B we have that +×xT ∧+×yT → x = y implies +×xT → λ↔ λ(x) and thus

T ⊢ +×nT → λ ⇐⇒ φk(n) = 0

T ⊢ +×nT → ¬λ ⇐⇒ φk(n) = 1

This settles everything claimed in the lemma except for the assertion that λ is
decided with a proof whose length is elementary in Φk(n), but this is easily seen
from a simple analysis of the proof outlined. ⊣

The precise growth of PT depends, however, not only on T but on the
particular arithmetization of the provability predicate of T used in its definition.
Specifically, ✷nT is a standard proof predicate of T (in the sense of satisfying the
Bernays-Löb conditions) as long as ✷T is one (by straightforward induction on
n). Write P✷

n
T
for the (ambiguously denoted) PT based on ✷nT and we have:

Proposition 19. Pn
✷

T
≪ P

✷
n+1

T

.

Proof. Find a sentence ξ(m̄) such that

T ⊢ ξ(m̄) ↔ ¬✷T,Pn
✷
T
(m̄) ξ(m̄)

Reason in T :

Corollary 10 gives

(7) ✷
n
P

n
✷

T
(m̄)↓

Now observe that Pn
✷

T
(m̄) ↓→ ✷ξ(m̄), applying necessiation and

distribution n times gives:

✷
n(Pn

✷
T
(m̄)↓) → ✷

n+1ξ(m̄)

Hence, by (7)

✷
n+1ξ(m̄).

13



So T ⊢ ✷n+1ξ(m̄) and ξ(m̄) is true. For a contradiction assume that, for
infinitely many m, P

✷
n+1

T
(m) ≤ Pn

✷
T
(m). Since the length of the proof of

✷n+1ξ(m̄) just given depends only on the length of m̄, T ⊢m ✷n+1ξ(m̄) will
hold once m is large enough, according to the definition of P

✷
n+1

T
we then have

T ⊢P
✷
n+1
T

(m) ξ(m̄), by assumption this implies

T ⊢Pn
✷
T
(m) ξ(m̄),

but this contradicts the truth of ξ(m̄). ⊣

Corollary 20. Pn
✷

T
� P

✷
n+1

T
.

This kind of situation (viz. the dependence of a metamathematical result
on a particular (class of) arithmetical predicate(s) used for the representation
of the concepts involved) was first analyzed in detail by Feferman in [6]. Re-
sults displaying this sort of dependence Feferman called intensional (Gödel’s
second incompleteness theorem being the main example) and those free of such
dependencies (requiring only numerical correctness of the representations used)
extensional (Gödel’s first incompleteness theorem being the main example).
The question of intensionality for diagonalizable Lindenbaum algebras (i.e. of
the dependence of (the isomorphism type of) DT on the particular proof predi-
cate PrT used in its definition) has been raised here and there in the literature
(a recent warning was given in [20, p. 78]) but has, to the author’s knowledge,
never been answered. We offer the following result, establishing the intensional
nature of the construction:

Corollary 21. Let LT be the ordinary, boolean, Lindenbaum algebra of T , we
can then construct two diagonalizable algebras (LT,✷T) and (LT,✷

6
T). These

two algebras are not isomorphic.

Proof. Assume otherwise, by theorem 17

P✷
6
T
�Z P

4
✷

T
,

but by corollary 20

P
5
✷

T
� P✷

6
T
,

implying

P
5
✷

T
�Z P

4
✷

T
.

But there would then be an elementary function exceeding P✷
T
for infinitely

many values, contradicting theorem 6. ⊣

Obviously, the same reasoning can be extended to give an infinite number
of pairwise non-isomorphic DT’s for any theory T and, somewhat less trivially,
the sequence of proof predicates {✷nT}n∈ω can, following Marongiu [12], be ex-
tended into the transfinite, associating with each recursive ordinal α a standard
proof predicate ✷αT. The result is a sequence {✷αT}0<α<ωCK

1
with the following

properties:

(i) ✷
1
T = ✷T

(ii) ✷
α+1
T = ✷T✷

α
T.

14



The proof of proposition 19 extends to this sequence and hence P✷
α
T
≺ P

✷
α+1

T

.

Since the sequence runs through all the recursive ordinals we can in fact find,
given an arbitrary total recursive function f , an ordinal (notation for) γ such
that f � P✷

γ

T
(proof of this is deferred). Applying this to the function P7

T we
see that the following holds (all theories are still assumed Σ1-sound):

Theorem 22. For any theory T , any fixed provability predicate PrT of T and
any theory S, there is a standard provability predicate Pr′S for S such that DT 6∼=
D′

S.

4. The case of epimorphisms

We would like to extend theorem 17 to the less restrictive case where the ho-
momorphism e : DT → DS is only assumed to be surjective (that is: an epimor-
phism). Our strategy is to simply carry the proof given over to the new setting,
so we begin by finding the sentence α corresponding to the function h as before,
since e is onto we have some A such that e(A) = α, at this point however a
problem emerges: since e is no longer assumed injective we cannot be sure that
δTA ≡X δSα as before, only that δTA ⊆ δSα.

This necessiates a slightly more elaborate construction of the sentence B
than before. Set dom δTA = X ′, by lemma 12 and 16 we can find a monotone
elementary function p such that ∆S

α ≤X′ p ◦∆T
A. Define a new function by:

q(n) = µx(S ⊢x +×nS → α ∨ S ⊢x +×nS → ¬α

∨ ∃y (x = p(y) ∧ T ⊢y +×nT → A ∨ T ⊢y +×nT → ¬A))

By construction ∆S
α ≤X q and dom q = X .

Now apply lemma 15 to the function PT ◦ q, as before fix a particular
elementary function s such that Φf̄ ≤X s ◦ PT ◦ q, then define

B(x) = Φf̄ (x) ✂ s ◦ PT ◦ q(x) → f(x) = 0

and

B = ∀x (+×x
T → B(x)).

We can now proceed as before and show δTB ≡X f (since if x ∈ X we have,
provably in T , that Φf̄ (x) ≤ s ◦ PT ◦ q(x) and B(x) reduces to f(x) = 0). By

the construction of q we have T ⊢ ∀x (δTA(x)↓→ q(x)↓) and the formalization as
well can be carried through:

T ⊢ ✷T(+×
n
T → A)∨✷T(+×

n
T → ¬A) → ✷T(✷T(+×

n
T → B)∨✷T(+×

n
T → ¬B)).

By going through the exact same steps as in the original proof we then arrive
at:

∆S
β �Y P

6
S ◦∆S

α.

Since ∆S
α ≤X q it follows (by the monotonicity of PT) that PT◦∆

S
α �X PT◦q,

but also PT ◦ q �X ∆S
β , by the construction of B. Hence

PT ◦∆S
α �X ∆S

β ,
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and we get the desired

PT ◦∆S
α �Y P

6
S ◦∆S

α.

This accomplishes the extension and we can replace the assumed isomor-
phism e : DT → DS in corollary 18 and theorem 22 by an epimorphism.

5. Related results and open problems

Beklemishev [2, §2, Lemma 7.b] established the intensional nature of diagonaliz-
able algebras of Σ1-ill theories, in fact, not even the equational theory is stable
under change of provability predicate for such a theory. Specifically he showed
how to construct a proof predicate of any desired (finite or infinite) credibility
extent.

In our proof of theorem 17 sharper bounds were routinely sacrificed for sim-
plification of derivations and the inequality stated is by no means optimal.Hence,
sharper bounds are certainly possible and by persuing this line one might hope
to replace the rather arbitrary ✷6 of corollary 21 with the more natural ✷✷.

The generalization of our results to epimorphisms prompts the question
whether positive examples of epimorphisms between diagonalizable algebras can
be found. Sadly, we have not made much progress on this question. Apart from
the isomorphisms constructed in [18] we are only aware of one example:

Definition 7. A sentence ϕ is called a self-prover (with respect to T ) if T ⊢
ϕ→ ✷Tϕ.

Remark. Any Σ1-sentence is a self-prover (over any theory T ) by virtue of
provable Σ1-completeness. Furthermore, it is easy to see that ψ∧✷Tψ is a self-
prover over T for any ψ and that any self-prover is (equivalent to one) of this
form. It can be shown that the self-provers are by no means exhausted by the
Σ1-sentences, in fact Kent has shown that there are self-provers of arbitrarily
high complexity ([10], cf. also [9, III.4.68]).

The following observation is mentioned in [1, p. 571]:

Theorem 23. Let T be arbitrary and ψ a self-prover over T , there is then a
canonical epimorphism p : DT → DT+ψ.

Proof. p is simply the projection that maps (the equivalence class of) a sentence
ϕ to its equivalance class over T +ψ. This map is trivially seen to be a boolean
homomorphism for any sentence ψ, to show that it is a diagonalizable homomor-
phism thus amounts to check that it also commutes with boxes. This reduces to
checking that T ⊢ ψ → (✷Tϕ↔ ✷T(ψ → ϕ)), left-to-right of the equivalance is
a trivial matter, the converse follows from ✷Tψ → (✷T(ψ → ϕ) → ✷Tϕ), since
ψ is a self-prover. p is obviously surjective. ⊣

Unfortunately, theorem 23 comes far from providing an interesting converse
to our result; T + ψ is never Σ1-sound unless ψ is provable and we cannot use
Theorem 17 to conclude that no epimorphism exists in the other direction (in
fact, we do not know if this is true).4

4Shavrukov points out to me that a recursive homomorphism (like the ones constructed in
[16, 18, 21]) from the algebra of a Σ1-ill theory T to that of a Σ1-sound would furnish a recur-
sive separation of the sets of provable, respectively refutable, ∆1-sentences in T , contradicting
[20, Lemma 3.4(a)].
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Let RFNΣ1
denote the sentence ‘∀σ ∈ Σ1(✷Tσ → TrueΣ1

(σ))’, then (the
strengthened) Theorem 17 can be applied like in Corollary 18 (provided T is
strong enough, say containing IΣ1) to show that DT cannot be a homomorphic
image of DT+RFNΣ1

. It seems to be of some interest to know whether there is
a projection in the opposite direction:

Question. Is DT+RFNΣ1
a homomorphic image of DT?

Unfortunately, we are not able to answer this question (nor offer a plausible
conjecture). Constructing epimorphisms between algebras of Σ1-sound theories
seems very difficult, perhaps even as difficult as constructing isomorphisms.

The strengthening of Shavrukov’s theorem at least has the following conse-
quence: the collection of epimorphic images of a diagonalizable algebra DT is
not independent of T as was seen to be the case for the collection of subalgebras
in the works of Shavrukov [16] and Zambella [21]; DPA is trivially an epimorphic
image of itself, but not of DZF. This suggests the following

Problem. Give a characterization of the images of a diagonalizable Lindenbaum
algebra under homomorphisms, similar to the Shavrukov-Zambella result on
subalgebras.

There is a connection between this problem and more algebraic matters,
Montagna has shown the following (essentially an algebraic version of the (uni-
form) Solovay completeness theorem):

Proposition 24 (Montagna [13]). Fω, the free diagonalizable algebra on ℵ0

generators, is a subalgebra of DT.

Any homomorphic image of DT is obviously countably generated and so
has, for general algebraic reasons, a representation as a projection of Fω. Fix an
embedding i : Fω → DT and a projection p : Fω → D onto some diagonalizable
algebra D.

Problem. When can p be lifted to a homomorphism of DT? i.e. when is there a
homomorphism ψ making the following diagram commute?

DT

Fω D

ψ
i

p

Such a lifting would be a sufficient criterion for D being a homomorphic image
of DT, is it also a necessary one?

In [19] Shavrukov showed how to construct an interpretation of arithmetic
into DT and used this fact to strengthen corollary 18 to:

Theorem 25 ([19, Theorem 2.11]). DPA and DZF are not elementarily equiv-
alent.

It is immediate that this strengthening applies to our corollary 21 as well.
(Of course, corollary 18 holds for many other pairs of theories besides PA and
ZF, we have avoided going into the technical details of the exact scope of the
result; this is discussed more fully in [17].)
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The methods employed in this paper deal with the rate of growth of provably
recursive functions or, which amounts to essentially the same, the (un)provability
of Π2-sentences. (It is easily seen that corollary 18 holds, for strong enough the-
ories, as soon as T proves the Π2-sentence ‘∀ϕ✷S✷Sϕ→ ✷Sϕ’.)

It is natural to ask about the effect on DT of instead adding unprovable
Π1-sentences to T ; almost nothing seems to be known about this problem, but
one naturally wonders about the following

Question. Are the diagonalizable algebras of T and T + ConT isomorphic? Is
DT a homomorphic image of DT+ConT

? Or vice versa?

Note that, in light of corollary 21, it cannot be ruled out that the answers
depend (not only on T but) on the particular choice of the sentence ConT.
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