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Abstract

De spite t he high vo latilities rec or ded for electricity prices, th ere seem s t o b e little de-

mand for options on electricity. One reason for the disinterest in electricity options could

arise from uncertainty about how to price these options. This study uses recent econometric

advances to nonparametrically estimate correct prices for electricity options and compare

these to the Black-Scholes prices. The main finding is that although the nonparametric

estimates deviate significantly from the Black-Scholes prices, it would be difficult to find

an alternative parametric model that performs better. Thus, from a practical viewpoint,

the Black-Scholes prices appear to be the best available.
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1 Introduction

The erratic behaviour of electricity spot prices on deregulated power markets has caught

the attention of both researchers and market practitioners. During the last few years, financial

markets trading derivative products on electricity have also emerged. Given the extremely high

volatilities recorded for deregulated electricity prices (e.g. Johnson and Barz, 1999), one might

expect a high demand for financial products to hedge electricity contracts. However, while

the futures and forwards markets for electricity seem to perform reasonably well, at least on

some electricity exchanges, the markets for options have so far not worked very well. There are

hardly any electricity options actually traded despite the fact that they are readily available for

those who are interested. This may seem somewhat surprising since options are the hedging

instruments par excellence and deregulated electricity prices are among the most volatile prices

ever observed.1 Whether this failure of the options markets is due simply to a lack of interest

in options by electricity traders or because of a distrust in the options markets themselves is

hard to say. The distrust for the market could stem from the obvious liquidity problems of these

instruments or from a suspicion of mispricing. Since the financial markets related to electricity

do differ from traditional financial markets in certain important aspects, traders might be uneasy

about how to price electricity options and lead them not to trade in them.

The aim of this paper is to help remedy this part of the problem by providing an em-

pirical analysis on the pricing of electricity options. Since there are no reliable option prices

available, the most dependable way to analyze option pricing on electricity contracts is to esti-

mate models for the underlying assets and, from these, derive the corresponding option prices.

Given that many of the existing options on electricity contracts are, in fact, options on electricity

1For example, Johnson and Barz (1999) report annualized volatilities in the range from 120% to 2600% for
different electricity markets.

2



forwards rather than on the actual spot price, this involves modelling both electricity spot and

forward prices.2

Theoretical models of electricity spot prices have received some attention in the litera-

ture and various combinations of stochastic volatility and jump processes have been proposed

to model the highly volatile behaviour of electricity prices; e.g. Deng (1999), Johnson and Barz

(1999), and Kamat and Oren (2000). Baker et. al. (1998) and Duffie et. al. (1999) also look at

this modelling problem from the wider perspective of energy prices in general. Relatively little

attention, however, has been directed to empirically testing any stochastic models of electricity

prices. Knittel and Roberts (2001) try to identify the salient features of electricity spot prices

based on hourly data from the Californian electricity market. Their findings show that tradi-

tional linear models are not capable of replicating the paths of spot prices. In addition, including

jumps or a time-varying mean does not improve the forecast ability very much. Johnson and

Barz (1999) find that mean reverting models with jumps fit the data better than non-mean

reverting models, such as the geometric Brownian motion. There has been very little work done

with regards to empirical examination of electricity forward prices. Bessembinder and Lemmon

(2002) analyze forward prices in the context of an equilibrium pricing model and show that

electricity forward prices are typically not unbiased estimators of the future spot price, due

to the non-storability characteristic of electricity.3 However, no serious attempt at modelling

the dynamics of electricity forward prices has been done before. Given the findings of Knittel

and Roberts (2001) in particular, and the lack of prior evidence on the dynamics of electricity

forward prices, I will impose very few restrictions on the continuous-time models that I estimate

in this study and use a nonparametric estimation approach that is robust to nonlinear behavior

2For instance, all officially traded options on Nord Pool, the Nordic power exchange, are on forward contracts.
3There are, of course, some ways to store electricity over limited amounts of time, such as batteries and hydro

power dams.
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in the data.

The main purpose of this paper is therefore to estimate nonparametric continuous time

models for the spot price of electricity and various forward contract prices, using daily price data

from the Nordic electricity exchange, Nord Pool, and to use these models to price electricity

options. Since options are only traded on the forward contracts, and given the problems of

pricing options on electricity spot prices due to the non-storability of electricity, I will only

derive option prices on the forward contracts. The results from the models of the spot price are

still of interest per se, as a comparison to the results from the forward markets.

In order to keep the analysis as general and robust as possible, a fully nonparametric

estimation method is used.4 This method, which is due to Bandi and Phillips (2001a), enables

nonparametric estimation of both the drift and the diffusion component in a general diffusion

model and allows for nonstationarity of the data. The estimation method also allows for the

diffusion and drift components to be estimated independently of each other, treating the other

function as a nuisance parameter. This is useful in the option pricing context considered here,

since we are then often mainly interested in estimates of the volatility function. Furthermore,

for the spot price specifications, the possibility of jumps as well as a form of stochastic volatility,

where volatility is a function of temperature, is incorporated. The models thus estimated are

compared to estimates of traditional parametric models. Specifically, I consider the geomet-

ric Brownian motion and both arithmetic and geometric mean reverting diffusions, with the

allowance for jumps in the spot price case.

The original contributions of this study are thus to use nonparametric methods to es-

timate continuous time models of both spot and forward electricity prices, and to use the

estimated models to price options on electricity. The empirical results show that in the context

4The difficulty of correctly parameterizing a diffusion model is well illustrated in Aït-Sahalia (1996) where he
shows how many of the popular diffusion models for the spot interest rate process do not fit the data very well.
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of univariate diffusion models, the volatility functions for both spot and forward prices exhibit

nonlinear behaviours. The volatility functions for the different forward contracts behave in a

fairly monotone fashion and might possibly be approximated by linear functions. The esti-

mates of the volatility functions resulting from fitting either a geometric Brownian motion or

an Ornstein-Uhlenbeck process to the forward price data provide a reasonable approximation to

the nonparametric estimate.

The volatility function for the spot prices exhibits a non-monotonic behaviour, that

may or may not be well approximated by a constant volatility function. I also fit a bivariate

diffusion model of the spot prices and a measure of temperature in Nord Pool’s market region.

The results from this model show some nonlinearities in the diffusion function which could be

large enough to make the use of linear models doubtful. Further, a clear relationship between

temperature and the spot price is captured in the covariance function.

The option prices derived corroborate the results described above. The Black-Scholes

prices (which are based on the assumption that the underlying price follows a geometric Brow-

nian motion) are closer to the option prices based on the nonparametric estimates than the

option prices obtained from the estimated Ornstein-Uhlenbeck process. Although the results

are mixed, there is evidence that the Black-Scholes prices are significantly, in both a statistical

and economical sense, different from the option prices resulting from the nonparametric models.

Thus, there is some evidence that the Black-Scholes assumption of prices following a geometric

Brownian motion might not be adequate when pricing options on Nord Pool. However, given the

evidence from the nonparametric estimations, it would be difficult to conceive of a reasonable

parametric model that gives a better fit than the geometric Brownian motion. Therefore, from

a practical viewpoint, the Black-Scholes formula might still be the best available.

The rest of this paper is organized as follows. Section 2 presents models for electricity
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prices. Section 3 describes the econometric methods employed and section 4 gives the results

from the estimations. In section 5, I calculate option prices and section 6 concludes. The

appendices contain descriptions of the temperature data, bandwidth selection for the nonpara-

metric estimators, a small Monte Carlo study on the accuracy of the nonparametric estimators

employed in this paper, and a derivation of the option pricing formula for forward contracts.

2 Models for electricity prices

2.1 Univariate models

Since the main goal of this study is to price electricity options, it is natural to specify

the models for electricity prices as continuous time diffusion processes, in line with the general

literature on option pricing. The simplest specification fitting into this framework would be a

univariate diffusion process of electricity prices, with the possibility of jumps added to account

for the often occurring large movements in electricity spot prices. Thus our first model is:

dSt = µS(St)dt+ σS(St)dBt + dJt, (1)

where St is the spot price of electricity, Bt is a standard Brownian motion, and Jt is an inde-

pendent jump process. The jumps occur with intensity λS(St) and each jump is independently

normally distributed with mean zero and variance σ2y. The only restrictions imposed on the

functions µS(·) and σS (·), are that they are both time-homegenous functions and that equation

(1) satisfies the regularity conditions detailed in Bandi and Nguyen (2001). Stationarity is not

assumed; rather, the identifying assumption will instead be recurrence, a substantially weaker

requirement.
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The same model as in (1) will be used to model the forward prices of electricity, with

the modification that the jump process, Jt, is removed since there are no observable jumps in

the forward prices.5 The non-parametric model of forward prices that will be estimated is thus:

dFt = µF (Ft)dt+ σF (Ft)dBt, (2)

where Ft is the forward price at time t. The same restrictions as above apply to (2) as well.

To compare the results obtained from the estimation of (1) and (2) the following para-

metric models are also considered, where Pt is either the spot or forward price:

dPt = µPtdt+ σPtdBt, (3)

dPt = κ (µ− logPt)Ptdt+ σPtdBt, (4)

dPt = κ (µ− logPt)Ptdt+ σPtdBt + zPtdqt, (5)

dPt = κ (µ− Pt) dt+ σdBt, (6)

dPt = κ (µ− Pt) dt+ σdBt + zdqt, (7)

5While we could allow for the possibility of jumps in the forward price specifications, there are several good
reasons not to. First, as mentioned in the text, there are no obvious jumps in the plotted forward prices. Second,
given that the forward contracts, in effect, specify an average price for electricity over a relatively long period,
three months and more, there is a natural smoothing of the forward prices relative to the spot prices. Thus,
while the spot price tend to react quickly, and often dramatically, to new information, similar changes in the
forward price should be very rare indeed. Last, as seen in Appendix C, jump-diffusions are much more difficult
to estimate than pure diffusions and the resulting estimates are typically less precise. Faced with no compelling
evidence of jumps, it seems better to choose a specification without jumps.
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Equation (3) is the familiar geometric Brownian motion, equation (4) is a geometric mean

reverting process, and equation (5) is a geometric mean reverting process with jumps. Equations

(6) and (7) are arithmetic mean reverting processes without and with jumps, respectively. Equa-

tion (6) is also popularly referred to as the Ornstein-Uhlenbeck process. Model (4) is equivalent

to using model (6) with the log-price. µ and σ are now constants and κ is the speed parameter

for the mean reversion; it must be larger than zero for the process to be stationary. qt is a jump

process with arrival intensity λ and z is a normal random variable with mean µz and variance σ
2
z.

These models will be referred to as the GBM, GMR, GMRJ, MR, and MRJ models, denoting

geometric Brownian motion, geometric mean reversion, geometric mean reversion with jumps,

mean reversion, and mean reversion with jumps, respectively.

2.2 A multivariate model for the spot prices

While (1) and (2) are very general in terms of univariate models, they might still be too

restrictive to give a good description of electricity prices. There are inarguably some predictable

components of electricity prices coming from sources other than past prices. Temperature, for

example, is one driving factor of electricity demand which is, to a certain extent, predictable.

It is important to remember, however, that all electricity markets differ from each other, and it

is hardly feasible to capture all of them with the same model. For example, some of the highest

demand for electricity in the Northern California market occurs during the warmest summer

months when air conditioning is most needed. This is in stark contrast to the Nordic electricity

market where electricity demand peaks during the coldest winter months when heating is most

needed. Both of these features, though, could be captured by the same model, only using

different parameters. Therefore, using a flexible approach like the nonparametric one relied

upon here, the greater problem in specifying models for electricity prices becomes that of which
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explanatory variables to include. However, due to the nature of the forward markets, only

shorter time series of the forward prices are available. Hence, it is not possible to include

the forward prices in multivariate models since multivariate nonparametric methods require

substantial amounts of data. This section therefore only deals with multivariate models for the

spot price.

As mentioned above, temperature is a likely candidate to include in any model for

electricity prices. Other components, proposed by Deng (2000), might be the prices of gen-

erating fuels, such as natural gas. In a region where hydro power is important, the level of

water in the hydro power stations’ reservoirs is most likely an important indicator for future

electricity prices. However, given the problems of presenting and interpreting results from non-

parametric regressions of three dimensions, or higher, it seems reasonable to limit ourselves to

two-dimensional models. Of the potential variables affecting the spot price mentioned above,

it seems that temperature would be the key one, at least with regards to short run dynamics

and the determination of the volatility function for the spot prices. The other variables are

probably more likely to affect the longer run dynamics and the drift of the spot price. Since

option pricing is the main motivation behind this study and the volatility function plays a more

vital part in option pricing than the drift, I use the temperature specification.6 We thus end up

with a bivariate diffusion model of electricity prices, St, and a measure of temperature Tt,

d

 St

Tt

 =

 µ1(St, Tt)

µ2(Tt)

dt+

 σ11(St, Tt) σ12(St,Tt)

0 σ22(St, Tt)

 dBt, (8)

where Bt is a two-dimensional standard Brownian motion and (8) satisfies the regularity

6Another issue that could be of interest in modelling electricity prices is that of major metereological events,
such as severe storms. Since these are partially forecastable they could be used to model the way prices react to
such expected shocks. However, those kind of weather events are, if not nonexistent, at least extremely rare in
the market region of Nord Pool and should be of no consequence to the modelling of electricty prices.
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conditions given in Bandi and Moloche (2001). As in the univariate case above, we do not

assume stationarity of the process, but only a form of recurrence.

A few observations on (8) are in order. First, the volatility of temperature is obviously

not dependent on the electricity price, as σ22 (·) would indicate. But since this restrictions is

not easy to implement in the econometric estimation of (8), I state the model in the form in

which it will be estimated. Second, the reason that there are no jumps included in this speci-

fication is purely a matter of econometric convenience, as the theory to include the possibility

of jumps in non-parametric estimation of multi-variate diffusion models is not yet developed.

Fortunately, the effect of the omission of jumps in the bivariate model might be less severe than

in the univariate case since the temperature process potentially has the ability to account for

large moves in the price process. That is, if extreme moves in prices are typically associated

with extreme moves in temperatures, then the need for a separate jump-process is reduced.

Furthermore, as the Monte Carlo study in Appendix C shows, jumps are difficult to identify

even in the univariate case and are probably more so in the multi-variate case. Thus, in an

empirical multi-variate specification, jumps may be of little use. Lastly, we can also interpret

(8) as a stochastic volatility extension of (1), where the volatility process is assumed to be a

function of the temperature process.

Given the nonparametric specifications of (1), (2) and (8), the main modelling assump-

tion, apart from which variables to include, is that the data follows a diffusion process. This,

of course, is in itself a strong assumption. The results of Knittel and Roberts (2001) hint at

the possibility that a more complicated structure might be needed, although their parametric

models are less flexible than the nonparametric models I present above. They also use hourly ob-

servations of the prices, further complicating the model selection issue due to intra-daily effects.

However, the general option pricing theory available today is based on prices following diffusion
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processes. It is important to derive option prices under these assumptions as a benchmark for

any future results that might be derived using different specifications.

3 Econometric methods

3.1 Nonparametric estimation of diffusions

In order to estimate equations (1), (2) and (8), I use a nonparametric estimation technique

for diffusions, originally developed in Bandi and Phillips (2001a) and further extended in Bandi

and Nguyen (2001) and Bandi and Moloche (2001) to cover jump-diffusions and multivariate

diffusions, respectively. What follows is a brief description of the estimators described in this

literature, omitting all of the technical conditions that are detailed in the original papers.

3.2 Estimation of a scalar jump-diffusion

We assume that we observe a jump-diffusion process Xt at times t = t1, t2, ..., tn in the

time interval [0, T ] and that the observations are at equally spaced intervals. Letting ∆n,T =

T/n, we then have n observations
©
X∆n,T ,X2∆n,T , ...,Xn∆n,T

ª
of the process Xt at times

{t1 = ∆n,T , t2 = 2∆n,T , ..., tn = n∆n,T }. The proposed estimator for the kth infinitesimal con-

ditional moment of the process Xt is:

M̂k(x) =
1

∆n,T

Pn−1
i=1 K

³
Xi∆n,T

−x
hn

´ £
X(i+1)∆n,T −Xi∆n,T

¤k
Pn

i=1K
³
Xi∆n,T

−x
hn

´ (9)

where k ≥ 1, hn is a bandwidth parameter, and K (·) is a kernel function.7

7The reason that we need to consider higer order moments in the jump-diffusion case follows from the fact
that jump-diffusions, unlike pure diffusions, are not completely characterized by their first two moments; Bandi
and Nguyen (2001).
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From the conditional moment estimators, we can easily retrieve the quantities we are

interested in, namely µ (·), σ (·), λ (·) and σ2y. Suppose the sizes of the jumps are given by the

random variable y d
= N

¡
0, σ2y

¢
. Then, following the procedure of Johannes (2000), we obtain

the following estimates of σ2y, λ(x), σ
2(x), and µ(x):

σ̂2y =
1

n

nX
i=1

M̂6(Xi∆n,T )

5M̂4(Xi∆n,T )
, (10)

λ̂(x) =
M̂4(x)

3σ̂4y
, (11)

σ̂2(x) = M̂2(x)− λ̂(x)σ̂2y, (12)

and

µ̂(x) = M̂1(x). (13)

The asymptotic properties of (9) are

p
hnL(x)(M̂

k(x)−Mk(x))
d→ N

µ
0,

µZ ∞
−∞
(K(s))2ds

¶
M2k(x)

¶
, (14)

as n→∞, T →∞, Tn → 0, and hn → 0 such that h5nL (x)
a.s.→ 0 ∀x.

L(x) is the chronological local time of the process at point x and is estimated by

L̂(x) =
∆n,T

hlocaln

nX
i=1

K

µ
Xi∆n,T − x

hlocaln

¶
, (15)

where hlocaln is a bandwidth parameter. For ease of notation, L (x) will be reffered to simply
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as local time.

3.3 Estimation of a scalar diffusion

In order to estimate a scalar diffusion without jumps, as in equation (2), we can use the

same estimator for the infinitesimal conditional moments that is described in (9). Only now,

µ̂(x) = M̂1(x) and σ̂2(x) = M̂2(x). The asymptotic properties for these estimators are:

p
hnL(x)(µ̂(x)− µ(x))

d→ N

µ
0,

µZ ∞
−∞
(K(s))2ds

¶
σ2(x)

¶
(16)

as n→∞, T →∞, Tn → 0, and hn → 0 such that h5nL (x)
a.s.→ 0 ∀x and

s
hnL(x)

∆n,T
(σ̂2(x)− σ2(x))

d→ N

µ
0, 4

µZ ∞
−∞
(K(s))2ds

¶
σ4(x)

¶
(17)

as n→∞, T →∞, Tn → 0, and h5nL(x)
∆n,T

a.s.→ 0 ∀x.

3.4 Estimation of a multivariate diffusion

In estimating a multivariate diffusion without jumps, we assume the same setup as in the

scalar case, only now Xt is assumed to be a d-dimensional diffusion process:

dXt = µ(Xt)dt+ σ (Xt) dBt, (18)

where Bt is a d-dimensional standard Brownian motion, µ (·) is a d × 1 vector and σ (·) =

{σij (·)}1≤i,j≤d is a d × d matrix. Equation (8) is then a special case of (18) with d = 2, and

µ (·) and σ (·) written out explicitly. Further, let a(x) = σ (x)σ (x)
0. The estimators of µ(x)
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and a (x) are:

µ̂(x) =
1

∆n,T

Pn−1
i=1 K

³
Xi∆n,T

−x
hn

´ ¡
X(i+1)∆n,T −Xi∆n,T

¢
Pn

i=1K
³
Xi∆n,T

−x
hn

´ (19)

and

â(x) =
1

∆n,T

Pn−1
i=1 K

³
Xi∆n,T

−x
hn

´ ¡
X(i+1)∆n,T −Xi∆n,T

¢ ¡
X(i+1)∆n,T −Xi∆n,T

¢0
Pn

i=1K
³
Xi∆n,T

−x
hn

´ , (20)

where hn is a bandwidth parameter and K (·) is a kernel function.

In general, the notion of local time is not defined for multivariate diffusions. However,

the multivariate extension of the estimator in equation (15) will still have well defined asymptotic

properties and can be interpreted as an estimate of the time spent by the process in the vicinity

of the spatial point x. The selection of the bandwidth hn, relies on this multivariate version of

(15):

L̂(x) =
∆n,T

hlocaln

nX
i=1

K

µ
Xi∆n,T − x

hlocaln

¶
. (21)

Since confidence intervals for the multivariate estimates are difficult to display graphically,

the asymptotic properties of (19) and (20) are omitted.

3.5 Estimation of the parametric models

The models in (3)-(7) are estimated by means of conditional maximum likelihood. The

closed form maximum likelihood estimators for the parameters of a geometric Brownian motion

and an Ornstein-Uhlenbeck process, obtained through ‘exact’ discretization, can be found in,

for example, Gourieroux and Jasiak (2001), and will not be detailed here. To estimate equation

(7), I use the discrete time approximation method suggested by Ball and Tourus (1983). They

assume that, in each time interval, there either occurs one jump or no jump. A jump occurs
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with approximate probability λ and the resulting likelihood function is thus:

L =
nY
t=1

λ exp

Ã
− (Pt+1 − Pt − κ (θ − Pt)− µz)

2

2 (σ2 + σ2z)

!
1p

2π (σ2 + σ2z)

+ (1− λ) exp

Ã
− (Pt+1 − Pt − κ (θ − Pt))

2

2σ2

!
1√
2πσ2

. (22)

Das (1998) provides a more thorough exposition of this estimation procedure. Finally, the

geometric mean reversion models with and without jumps, are simply estimated by replacing

the actual price with the log-price in the corresponding arithmetic mean reversion estimators.

4 Empirical results

4.1 A brief description of Nord Pool

The data that is used come from Nord Pool, the Scandinavian electricity exchange. Nord

Pool is an international optional power exchange, where buyers and sellers from Denmark,

Finland, Norway and Sweden trade. These four countries make up Nord Pool’s market area.8

The spot market for electricity at Nord Pool is a one-hour, one-day-ahead double-auction market.

The resulting equilibrium-, or market-price is the so called system price, which is the market

price for electricity in the whole region if there are no transmission constraints. In case of

transmission constraints, the market area is divided into several price areas, with higher prices

in the deficit areas and lower prices in the surplus areas. The prices I consider are daily system

prices, which are calculated as the unweighted average hourly system price. The supply side of

the market is characterized by a majority of the produced electricity coming from hydro power

stations. Other sources of generation include nuclear plants, thermal (cogeneration) plants, and

8Nord Pool began operating on May 4, 1992, with Norway as the only member. Sweden later joined on
January 1, 1996, Finland joined on March 1, 1999, and finally Denmark became a full member on July 1, 1999.
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coal plants. Very little electricity is produced using oil.9

4.2 Estimation of univariate models for the spot price

To estimate equation (1), and the GBM, GMR, GMRJ, MR, and MRJ models for the spot

price, I use a time-series of the daily system price at Nord Pool, spanning from May 4, 1992,

to November 30, 2001. This yields a total of 3498 observations. Prices are given in Norwegian

kronor (NOK) per MWh, where one U.S. dollar is approximately equal to 10 NOK, and are

shown in figure 1. The plot reveals the typical characteristics of electricity prices, a strong

seasonal component and frequent spikes in the price. The starting date for the time-series is the

same as the day that Nord Pool started operating. The series thus includes every trading day

at Nord Pool, up until recently. While hourly data are available, these would bring the added

complication of intra-daily effects, which for electricity prices can be quite severe. Summary

statistics of the data are given in table 1.

All estimates presented are on an annual basis, using 365-day years, since the spot

market is open every day of the year. In the nonparametric estimation, this is achieved by

setting T = #observations/365 while in the parametric procedures, the estimates and standard

errors are simply multiplied by 365. A Gaussian kernel is used and bandwidth selection is

discussed in Appendix B.

The estimates of µS (·), σS (·), and λS (·) from equation (1), using the system price,

are shown in figure 2. Starting with the drift function, µS (·), there is evidence of nonlinear

behavior. The estimated drift is also everywhere positive, which is somewhat peculiar and goes

against the standard assumption of mean reversion of electricity prices. As the Monte Carlo

study in Appendix C shows, however, the drift in a jump-diffusion is difficult to estimate for

9For a survey of the Nordic electricity market, see Hjalmarsson (2001).
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data stretching only a relatively short time span. There are also two economic explanations for

this drift upward in the spot price. First, since the start of Nord Pool in 1992, there has been a

gradual increase in market concentration on the supply side, enabling prices to deviate further

from those in a perfectly competitive market.10 Second, it is plausible to assume, and generally

believed among practitioners, that the supply side participants have improved their skills over

time to achieve higher prices.

The diffusion, or volatility function of the system price, σS (·), shows how volatility is a

function of the price level; there is high volatility for low and high prices and low volatility for

prices closer to the mean. This result is contrary to the volatility functions specified in most

parametric models, which typically assume that volatility is a monotonic function of the price

level. However, the magnitude of the change in volatility as a function of the system price is

relatively small and it would seem that volatility might therefore be approximated by a constant.

The estimate of the jump intensity, λS (·), shows a pattern similar to the diffusion

function. The estimated function indicates a jump frequency of about two jumps per year —

an estimate that does not seem too far off when looking at figure 1. The estimate of σy is

equal to 172.8. This implies that under the normality assumption imposed on the jumps here,

approximately 95% of the jumps would be of a size less than 350 NOK/MWh.

Figure 3 shows confidence intervals for the estimates of the infinitesimal first and second

moments. The confidence intervals are shown only for prices between 50 and 300 since the

confidence bands spread out vastly close to 1 and 400, which are the bounds of the domain of

the estimated functions in figure 2. Thus, most information in the graph would be lost if the

confidence intervals were plotted over this domain.

None of the parametric models in equations (3)-(7) produce estimates that are close

10For example, Sweden, who joined in 1996, has a very concentrated power industry which would have con-
tributed to an increased concentration on Nord Pool.
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to the nonparametric ones just described. These estimates are shown in table 2. It is evident

that any specification not including jumps gives estimates that are extremely different from the

corresponding specification with jumps, and also very far from the nonparametric estimates.

The results from the two parametric jump models, GMRJ and MRJ, are plotted in figure 4,

together with the nonparametric estimates. Clearly neither of these are good approximations to

the nonparametric estimates. The plot also highlights that volatility is better approximated by

a constant function than a volatility function proportional to the price. This supports Johnson

and Barz (1999) who also find some evidence of constant volatility of spot prices, using Nord

Pool data. Interestingly, they find that the spot prices from the other electricity exchanges

that they examine better fit geometric mean reverting models with volatility proportional to

the price level.11

4.3 Estimation of univariate models for forward prices

Equation (2) and the GBM, GMR, and MR models are estimated using forward prices

from Nord Pool. There are two kinds of forward contracts at Nord Pool, on which options are

traded. First, there are the seasonal contracts, denoted FWV1, FWSO, and FWV2. FWV1

specifies delivery of electricity from January 1 through April 30, for a total of 2879 hours.

FWSO specifies delivery of electricity from May 1 through September 30, for a total of 3672

hours. FWV2 specifies delivery of electricity from October 1 through December 31, for a total of

2209 hours. Second, there are the yearly contracts, FWYR, that specify delivery from January

1 through December 31, for a total of 8760 hours. These contracts, although stated in terms

of electricity delivery, are purely financial, and are settled financially, not physically by actual

electricity delivery. The contract volumes are in MW, and prices of the contracts are given in

11They examine data from Nord Pool, the UK, California, and Victoria, Australia.
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NOK/MWh. Specific contracts are labeled with the year in which delivery takes place after the

symbol. That is, a forward contract for, say, delivery in January through April 2001 is labeled

FWV1-01.

The problem with forward prices is that they do not provide a long continuous time

series. As figures 5-8 clearly show, there are several forward contracts traded on any given day.

But since trade in the contracts stops just before the first day of delivery, there are no long time

series available.12 However, the longer of these series still contains around 600 observations,

and using a single one of these series should still give reasonably accurate estimates when

estimating equation (2). The parametric models are, of course, less dependent on a great

number of observations. Therefore, I use the longest series available for each type of forward

contract to estimate equation (2) and the GBM, GMR, and MR models. These are the series

for FWV1-01, FWSO-01, FWV1-01, and FWYR-02.13 All observations are daily closing prices.

Summary statistics for these are given in table 1. The bandwidth selection for the nonparametric

estimation is described in Appendix B. All estimates are presented as annual values, using a 250

day year, based on the number of actual trading days per year in the financial market.

Given the short time span of the available observations and that the main interest lies in

option pricing, I only estimate the diffusion function for the four forward contracts, and not the

drift function. The results from the estimation of equation (2) for FWV1-01, FWSO-01, FWV1-

01, and FWYR-02, with 95% confidence intervals, are shown in figure 9. The nonparametrically

estimated diffusion functions, σF (·), together with the estimates from the GBM and MR models

are shown in figure 10; the GMR model produced nearly identical results to the GBM model

and is not displayed graphically. It is not obvious from figure 10 whether the GBM model

12Not all forward contracts of the types described here are plotted in figures 5-8.
13FWV1-01 is traded between September 7, 1998, and December 29, 2000, for a total of 580 trading days.

FWSO-01 is traded between September 7, 1998, and April 30, 2001, for a total of 662 trading days. FWV2-01 is
traded between September 7, 1998, and September 28, 2001, for a total of 766 trading days. FWYR-02 is traded
between March 1, 1999, and December 21, 2001, for a total of 706 trading days.
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or the MR model provides the better approximation of the nonparametric volatility function,

although the GBM model seems a little closer to the nonparametric estimates. Comparison

of option prices from these models shows, however, that the GBM model typically is closer to

the nonparametric estimates. The parametric estimates on the forward prices provide strikingly

better approximations to the nonparametric ones, as compared to the models fitted to the system

price. This could be due to the drift being better behaved for the forward prices than for the

system prices, causing the maximum likelihood estimates of the volatility to be more accurate,

or due to the greater difficulty of estimating diffusions with jumps in them. The local time

estimates for the four forward contracts are shown in figure 11.

Finally, I perform a check for the representativeness of the forward contracts under

consideration. The nonparametric estimates, together with the estimates from the GBM and

MR models, of the volatility functions for the other forward contracts plotted in figures 5-8

are shown in figure 12. The graph shows that while there is no clear pattern for each forward

contract’s volatility function, the considered contracts at least do not seem to be outliers in

any sense. The estimates are performed over the same range of prices as for the corresponding

contract type considered above.

4.4 Estimating the bivariate diffusion

For the estimation of equation (8), I require, in addition to the system price, a measure

of temperature for Nord Pool’s market area. Since this is a fairly large geographical region,

comprised of Denmark, Finland, Norway and Sweden, observations from multiple places are

needed. Because these countries joined Nord Pool at different times, only the relevant member

countries are considered at any given date. In order to arrive upon a representative measure of

aggregate temperature, I used daily data from several observation points in each country. Within
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each country, the observations from each location were weighted by the size of the population

living nearby and a country average was derived. The aggregate temperature measure used in my

analysis is then simply the mean of the individual country averages. The aggregate temperature

measure thus derived is shown in figure 13. A detailed description of the temperature data is

found in Appendix A and summary statistics are shown in table 1.

Using the system price and the aggregate temperature, I estimate equation (8) using a

product of univariate Gaussian kernels. Bandwidth selection is described in Appendix B. The

functions are estimated over a somewhat smaller range of system prices, 50 to 300, compared to

the univariate case since the data points are very scarce for values outside this range of prices

in the two-dimensional space created by the system price and the aggregate temperature. The

drift of the temperature is estimated separately using the estimator for the drift in a univariate

diffusion model, since it does not depend on the spot price.

The estimates of µ1 (·, ·) and µ2 (·) are given in figure 14. The drift function for the

system price, µ1 (·, ·), has a shape quite different from the univariate estimate and the typical

mean reversion pattern is more apparent here. There is also some variation when considering

the system price drift in the temperature dimension. The drift function for the aggregate

temperature, µ2 (·), although independent of the system price, is plotted in the same three-

dimensional manner as the the drift of the system price, for ease of comparison. The temperature

drift shows a clear mean reversion pattern.

The estimate of σ11 (·, ·), shown in figure 15 seems to indicate that price volatility tends

to be higher for higher prices and lower temperatures. The variation in price volatility, as a

function of price and temperature, is much greater here than the corresponding variation in the

univariate estimate. The estimate of σ22 (·, ·), also in figure 15, shows an increase in temperature

volatility for lower temperatures, and little dependence on the system price.
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The estimate of the covariance function, σ12 (·, ·), shown in figure 16, is almost always

negative. This seems reasonable, since higher prices are likely to be associated with lower

temperatures and vice versa. Furthermore, the covariance is greatest, in absolute numbers, for

very low temperatures, which also makes sense, since the temperature is likely to have a greater

impact on price volatility during the cold winter months when demand for heating electricity

fluctuates with temperature than in the warmer summer months. The temperature does seem

to play an important part in the evolution of electricity prices as shown by the estimate of the

covariance function in figure 16.

5 Option pricing

5.1 Option pricing using the empirical models

In this section, I will use my estimates of equation (2) and the estimates of the GBM

and MR model, fitted to the forward contracts, to derive prices of European call options. The

GMR model will not be used here since it produced results very similar to that of the GBM

model. Only options on the forward contracts are priced since these are the only types of options

officially traded on Nord Pool. Considering options on financial forward contracts of electricity,

rather than physical spot contracts, also circumvents the problem that the non-storability of

electricity causes for the pricing of options on electricity spot market contracts. It is well known

that this particular characteristic of electricity causes the normal arbitrage pricing arguments

for option pricing to break down (e.g. Eydeland and Geman, 1999).

Note that while electricity spot prices exhibit strong seasonality the forward prices do

not, the reason being that the forward prices specify the average price of electricity for a fixed

period in time. That is, the forward price for the FWV1-01 contract is the average price for
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delivery of electricity during the first three months of the year. Thus, when pricing options on

these forward contracts, the usual complication of seasonal patterns encountered for commodities

does not occur and we can proceed as if the underlying contract was a forward contract on a

normal financial asset.

I derive option prices through the risk-neutral valuation approach. This method relies

on the fact that the price of a European call option with strike price X and exercise date T on

an asset with price St that pays no dividends, is as follows:

c = e−
R T
0
rtdtE∗ [max (ST −X, 0)] , (23)

where rt is the instantaneous discount rate and E∗ is the expectation taken under the

risk-neutral measure. The risk-neutral measure is the probability measure generated by the

risk-neutral dynamics of St. As Black (1976) implicitly shows, the risk-neutral drift for futures

and forwards under a nonstochastic interest rate is equal to zero. For completeness, this result

is reproduced in Appendix D.

The Girsanov theorem (e.g. Steele, 2001) further tells us that the diffusion function will

remain the same under the risk-neutral measure as under the objective probability measure.

The corresponding risk-neutral dynamics of equations (2), (3), and (6) for the forward prices

are thus:

dF ∗t = σ (F ∗t ) dB
∗
t , (24)

dF ∗t = σF ∗t dB
∗
t , (25)

dF ∗t = σdB∗t , (26)
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where B∗t is a Brownian motion under the risk-neutral measure. We are thus able to identify

the risk-neutral dynamics, equations (24)-(26), although we only observe the price-process under

the objective, or data-generating, dynamics.

In order to price options on assets following the risk-neutral dynamics in equations (24)-

(26), I simulate sample paths of these processes and calculate the options payoff for each of these

sample paths and then take the mean over all the sample paths. The option prices thus obtained

provide a numerical approximation to the true option prices given by the pricing formula, (23).

I perform the simulations using Euler’s scheme (e.g. Kloeden and Platen, 1992) with 10,000

repetitions and using a time interval of a half hour between each simulated observation. That

is, for each day I simulate 48 observations, and thus for an option with maturity in, say, 91 days,

the sample paths consist of 91 ∗ 48 = 4368 observations. I further use the antithetic variation

reduction approach (e.g. Campbell et. al., 1997), which gives an effective number of repetitions

of 20,000. The interest rate, r, is taken to be constant and equal to 5% on an annual basis. To

account for outliers, I use a constant extrapolation outside the interval that the nonparametric

estimates are evaluated. I use a constant extrapolation rather than a linear one since it is

difficult to judge which way the estimated functions are going.

5.2 Option pricing results

The options traded on Nord Pool are of the European kind and they are traded on the

four forward contracts examined above, the FWV1, FWSO, FWV2, and FWYR. I use the

estimates from the nonparametric model, equation (2), and the GBM and MR models, fitted

to the forward prices, to price European call options on the underlying forward contracts. In

addition to the simulation methods described above, I also price options using the analytical
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Black-Scholes formula, adapted to forward contracts as described in Appendix D.14 This enables

a check of the accuracy of the simulated prices, since the simulated GBM prices should be equal

to the Black-Scholes prices. The volatility parameter used in the Black-Scholes formula is the

historical estimate obtained from the GBM model. The strike prices for the FWV1, FWV2, and

FWYR contracts are set to 140, 145, 150, 155, 160, and 115, 120, 125, 130, 135 for the FWSO

contract.15 The initial forward prices at time zero are set to 150 and 125 respectively.

The option prices for the four forward contracts are shown in tables 3-6. For each

contract, four option prices are calculated: the analytical Black-Scholes price (BS), the simulated

prices from the GBM and MR models, and the prices using the nonparametric estimates (NP).

The BS and GBM prices should be the same, except for errors resulting from the simulation

procedures. Judging from the results, the simulation errors are small and typically no more

than a few hundreths of a Norwegian crown (NOK). It is also evident that the option prices

obtained from the MR model are typically further away from the option prices obtained from

the nonparametric model than those resulting from the GBM model. Given this, I will focus on

comparing the option prices from the nonparametric model and the GBM model.

It would thus be desirable to test whether the option prices obtained from the nonpara-

metric model are statistically significant from option prices obtained in the same nonparametric

way under the condition that the underlying model is a geometric Brownian motion. In order

to do so, I calculate confidence intervals for the nonparametric option prices, under the assump-

tion that the underlying model is a geometric Brownian motion. Since it would be extremely

difficult to actually derive analytical confidence intervals for the nonparametric option prices a

Monte Carlo approach is used. The method can be summarized in six steps. (1) Calculate the

14This formula is often referred to as an option pricing formula for futures, but under nonstochastic interest
rates, forward and future prices must be the same (e.g. Merton, 1990). As shown in Appendix D, this also leads
to identical option prices on forwards and futures.
15The strike prices for the FWSO contract are set to these lower values since the FWSO forward prices are

typically considerably lower than those of the other forward contracts.
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maximum likelihood estimates for the parameters of a geometric Brownian motion fitted to the

relevant price process, e.g. the FWSO-01 prices. (2) Simulate a geometric Brownian motion,

using these maximum likelihood estimates as parameters. (3) Using the nonparametric estima-

tor for diffusions (without jumps) described in Section 3.3, obtain the functional estimate of the

diffusion function for the simulated geometric Brownian motion. The estimates are obtained

over the same range of prices as in the actual estimation. (4) Calculate the option prices for

relevant strike prices and expiration dates, using the estimated diffusion function and the option

pricing methods described in Section 5.1. (5) Store the set of option prices thus obtained and

repeat steps (2)-(5) a ‘sufficient’ number of times. (6) Find the upper and lower 2.5% quantile

of the simulated option prices. These give the upper and lower bounds of the approximate

95% confidence interval for the nonparametric option prices under the assumption that the true

underlying model is a geometric Brownian motion. The number of repetitions used is 250, and

the option prices for each repetition is calculated using 1,000 simulated sample paths.16

A test of whether the NP option prices, as presented in tables 3-6, are statistically

different from option prices derived under the assumption of an underlying geometric Brownian

motion is to see whether the NP prices lie within the 95% confidence intervals obtained according

to the procedure above. The confidence intervals are reported next to the NP estimates in tables

3-6. Of course, given the multiple testing involved here, 25 tests for each forward contract, the

actual significance level of an overall test is much less than 95%, but the results should still be

indicative.

The results presented in tables 3-6 show that the outcomes of the above test vary

considerably from contract to contract. The FWV2-01 and FWSO-01 contracts reject the GBM

model almost totally whereas the evidence from the FWV1-01 contract clearly are in favour of

16The small number of repetitions is due to the long computer time needed for these simulations. This will be
remedied in the future.
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the GBM model. The results from the FWYR-02 contract are more mixed. It is also reassuring

that all the BS and GBM option prices are well within the 95% confidence interval.

It is clear that, for some contracts, there are statistically significant deviations from

the BS option prices. Given the magnitude of the differences, these deviations should also be

economically significant. Blind trust in the Black-Scholes formula, therefore, does not seem like

a good approach when pricing options on Nord Pool. Hence, more accurate parameterizations

than the geometric Brownian motion, for the diffusion processes driving the forward prices at

Nord Pool might be needed. However, considering the shape of the nonparametric estimates of

the volatility functions for the forward contracts presented in figure 10, it is difficult to think of a

reasonable parameterization that would give a better fit than the linear one given by the GBM

model. Thus, although the Black-Scholes formula does not produce entirely accurate option

prices for the forward contracts considered here, it seems difficult to find a better alternative

that would be of practical use.

6 Conclusion

In this paper, I have conducted a nonparametric analysis of electricity prices. I have fitted

both a nonparametric jump-diffusion model of the system price at Nord Pool (the relevant

spot market price for electricity in Denmark, Finland, Norway, and Sweden) and nonparametric

diffusion models for some of the forward price processes. Furthermore, using the nonparametric

estimates for the forward contracts, option prices for the forward contracts have been calculated.

The nonparametric estimates of the jump-diffusion process fitted to the system price

exhibit some nonlinear behaviour, and parametric estimates from mean reverting processes with

jumps provide poor approximations to the nonparametric estimates. Likewise, the functional

estimates from scalar diffusions fitted to various forward prices show signs of nonlinearity, but the
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estimates from both the geometric Brownian motion and the mean reverting Ornstein-Uhlenbeck

process provide decent approximations to the nonparametric estimates.

For some forward contracts the option prices based on the nonparametric estimates de-

viate rather substantially from the Black-Scholes option prices and are found to be statistically

different from those obtained under the assumption of a geometric Brownian motion, i.e. the

Black-Scholes assumption. The differences between the option prices derived from the nonpara-

metric estimates and the Black-Scholes prices are also, in many cases, large enough to be of

economic significance. These results thus indicate that more accurate option prices can be ob-

tained than the Black-Scholes’ ones. However, given the shape of the nonparametric estimates,

it is difficult to think of any parametric model that would give a better approximation than the

linear geometric Brownian motion, upon which the Black-Scholes formula is based. Therefore,

from a practical viewpoint, the Black-Scholes option prices might be the best achievable.

A possible extension to the analysis performed in this paper would be to incorporate

stochastic volatility. The estimation of a stochastic volatility model might be performed by

using daily range data, as suggested by Gallant et. al. (1999). However, the inclusion of

stochastic volatility would create a two-dimensional model, which typically requires more data

to be accurately estimated. Thus, a more efficient usage of the available forward data would

have to be conceived. Finally, there is the issue of how to price volatility, which might be difficult

to solve without reliable option prices.

A Constructing the aggregate temperature measure

The aggregate temperature measure was created as a weighted average of several tem-

perature observations from Denmark, Finland, Norway, and Sweden. Temperature data was

collected from the following places and assigned the following weights based on population: Aal-
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borg, Copenhagen, and Odense in Denmark with weights 12, 110, and 14 respectively; Helsinki,

Turku, Tampere, and Vaasa in Finland with weights 56, 17, 20, and 6 respectively; Bergen,

Kristiansand, Oslo, Stavanger, and Trondheim in Norway with weights 23, 7, 51, 11, and 15

respectively; Gothenburg, Malmö, and Stockholm in Sweden with weights 2, 1, and 6 respec-

tively. A weighted country mean was then calculated for each individual country using the

above weights. Finally, the aggregate temperature measure was calculated as an unweighted

mean of the weighted individual country averages. However, Norway was the only participant

at Nord Pool between May 4, 1992 and December 31, 1995, then Sweden joined on January

1 1996, Finland on March 1, 1999 and Denmark on July 1, 1999. Thus between May 4, 1992

and December 31, 1995 only the Norwegian country mean is used, between January 1, 1996 and

February 28, 1999 the mean of Norway and Sweden is used, between March 1 1999 and June 30,

1999 the mean of Finland, Norway, and Sweden is used and, after that, the mean of Finland,

Norway, Sweden, and Denmark is used.

B Bandwidth Selection

The choice of bandwidth is always a difficult question in nonparametric inference. This is

particularly true for continuous time models where firm rules for bandwidth selection are still

nonexistent. There are, however, guidelines that describe up to a constant of proportionality

what bandwidths to use for the continuous time estimators employed in this paper.

In the univariate case, Bandi and Phillips (2001a) give the rule that the bandwidth for

the local time estimator hltime
n should be set equal to

hltime
n = cltime 1

log (n)
n−

1
2 (27)
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where cltime is a constant of proportionality. Furthermore, Bandi and Nguyen (2001) state

that the bandwidth sequence for the p−th infinitesimal moment of a jump-diffusion process can

be set to

hpn (x) = υp log

Ã
1

L̂ (x)

!
L̂ (x)−

1
5 (28)

where υp is a moment specific constant of proportionality.

For the multivariate case, Bandi and Moloche (2001) recommend that the bandwidth

sequence for the drift estimator be set equal to

hdriftn (x) = cdrift

Ã
1

log L̂ (x)

!
L̂ (x)

− 1
d+4 (29)

and that the bandwidth sequence for the diffusion estimator be set equal to

hdiffn (x) = cdiff

 1

log
³
L̂ (x) /∆n,T

´
³L̂ (x) /∆n,T

´− 1
d+4

(30)

where cdrift and cdiff are constants of proportionality and d is the dimension of the diffusion

system. The sequences in (29) and (30) also work for the scalar diffusion case (without jumps),

by setting d = 1.

Equations (28)-(30) show that the optimal choice of bandwidth for the corresponding

estimators are of a local nature. A greater bandwidth is used in regions where the observations

are less frequent, i.e. where the local time is relatively small. Thus, the estimate of the local

time plays a vital role in the determination of the bandwidth sequences for the other estimators.

Further discussion on bandwidth selection in continuous time can also be found in Bandi and

Phillips (2001b).

Starting with the estimation of local time in the univariate case, the constant cltime
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needs to be determined. Common to many rules of optimal bandwidth selection for discrete

time estimators is that they scale the bandwidth with the standard deviation of the relevant

data (e.g. Pagan and Ullah, 1999). I will follow the same rule when determining bandwidths

for the estimators in this paper. Furthermore, in order to simplify the selection of bandwidths,

I choose to set υp, cdrift, and cdiff in the scalar case equal to the standard deviation of the

data. In the multivariate case, both cdrift and cdiff are set equal to diag
¡
S1/2

¢
where S is the

sample covariance matrix, in accordance with the procedure for general nonparametric estima-

tors outlined in Härdle and Linton (1994). Since there exist no stringent rules for bandwidth

selection, the final choice of bandwidth must be somewhat subjective and the procedure of fixing

υp, cdrift, and cdiff in accordance with the above rules thus essentially reduces the number of

parameters to be chosen to one, namely cltime.

As a starting point, it seems natural to just set cltime equal to the standard deviation

of the system price. The resulting estimates of the local time of the system price, and of the

drift, diffusion and jump functions, using this bandwidth choice, is shown in figure 17. It is well

known that the local time of a diffusion process need not be a smooth, well behaved function,

and these estimates could therefore possibly be close to optimal. However, one of the main

purposes of this paper is to illustrate what the characteristics of the drift, diffusion, and jump

functions for a general jump-diffusion process for electricity prices are; it might be desirable to

also get some more smooth estimates where the salient features of the estimated functions are

more prominent. The estimates in figure 2 are obtained by setting cltime equal to 20 times the

standard deviation of the system price. The scale and general shape of the estimated functions

remain the same but it is easier to discern the salient features. The models concerning the

forward prices also use cltime equal to 20 and the bandwidth sequence described in (30), subject

to the conventions described above.
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Of course, setting a constant of proportionality equal to 20, or 100 as is done below,

might seem a bit of a stretch. This is probably true in this case as well, and the estimates of the

local time arrived upon in this way are most likely not optimal. However, by over smoothing

the estimates of the local time, which is not of any direct interest, I am able to get more easily

interpreted estimates of the functions of interest. The need for over smoothing the local time

estimates to get smooth estimates of the drift, diffusion, and jump functions stems from the

dependence of the smoothing sequences in (28)-(30) on the local time estimate. If the local time

estimate is very jagged, then the bandwidths for the other estimators will vary a lot from one

point to another and most likely also the functional estimates at these points, thus creating non

smooth estimates. It is important to note that although the estimates of the relevant functions

become more smooth as the bandwidth for the local time estimator increases, they still retain

their general shape. That is, the functional estimates are smoothed locally by increasing the

bandwidth for the local time estimator, but not much globally. Thus, increasing the bandwidth

drastically for the local time estimator has less of a distortive effect than similar increases in

more traditional bandwidth selection would have.

Similarly, in the bivariate case, I set cltime equal to diag
¡
S1/2

¢
times a constant, where

S is the sample covariance matrix of the system price and the temperature measure. How-

ever, setting cltime equal to diag
¡
S1/2

¢
produces very irregular estimates as seen in figure 18.

Multiplying diag
¡
S1/2

¢
by 20 gives somewhat more regular estimates, shown in figure 19, but

raising the multiplication factor to 100 gives a more clear outline of the prominent features of

the objects of interest, as seen in figures 14-16.
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C A Monte Carlo Study

To evaluate the effects of the different bandwidth choices outlined above and the accuracy

of the diffusion estimators in general, I perform a small Monte Carlo experiment. The following

models are considered:

dPt = κ (µ1 − Pt) dt+ σ1dBt + dJt (31)

and

dPt = κ (µ2 − logPt)Ptdt+ σ2PtdBt, (32)

where J is a jump process with constant jump intensity λ and jump size y ∼ N
¡
0, σ2y

¢
. The

parameters are set to the following annual values:

κ = 3.65, (33)

µ1 = 150, (34)

µ2 = 5

σ1 = 200, (35)

σ2 = 0.2, (36)

λ = 3, (37)

and

σy = 175. (38)
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The parameters in equations (31) and (32) are chosen so that the simulated processes exhibit

similar volatility, jump intensity, and jump size as the system price and the forward prices,

respectively.

Sample paths of 3500 daily observations are simulated for equation (31), and 600 daily

observations for equation (32), which is approximately equal to the number of observations used

in the empirical study in this paper. The simulation is done using the Euler scheme and the

jumps are simulated using the ’coin-tossing’ approach proposed by Ball and Tourus (1983). That

is, for any given date there is a λ/365 probability of a jump occurring. 500 sample paths were

generated and the means of the estimates for the drift, diffusion, jump intensity, and local time

functions, and of σy, were calculated. The estimates are obtained for two different bandwidths

for equation (31): cltime equal to the standard deviation of the simulated path and cltime equal

to 20 times the standard deviation. Equation (32) is simulated using cltime equal to 20 times

the standard deviation. The results from equation (31) are shown in figures 20 and 21 and those

from equation (32) are shown in figure 22.

Concerning the issue of bandwidths, it is clear from figures 20 and 21 that the difference

between the mean estimates of the drift, diffusion and jump intensity functions for the two

bandwidths are small. The only noticeable difference is for the estimates of the local time,

which is decidedly more jagged in figure 20 than in figure 21. Thus it seems fairly safe to over

smooth the local time estimate somewhat to achieve smooth estimates of the other functions.

The estimates of σy are equal to 158.95 and 158.99, corresponding to the estimates in figures 20

and 21, respectively. Thus, the estimates of σy are very close for the two different bandwidths,

and also fairly close to the true value, 175.

The functional estimates suffer from two shortcomings. First, the drift is very poorly

estimated. Given that the mean estimate of the drift function presented in figure 22, for the non-

34



jump case, is fairly accurate, this problem seems to arise from the presence of the jumps. Second,

the jump intensity is severely over estimated, which in turn causes an under estimation of the

diffusion function (as can be seen from equation (12)). This second problem is a manifestation

of the ever present problem when estimating jump diffusions: how to discern between the actual

jumps in the process and the jumps caused by the discrete sampling of the process.

Figure 22 shows the estimation results from the 500 simulations of (32). It is evident

that the estimation problem is much easier in the case without jumps. Even for such a small

sample size the estimates are fairly accurate. The estimate of the drift function is now also

much closer to the true value.

D Option pricing for forward contracts

Suppose that the forward prices, Ft, satisfies

dFt = µFtdt+ σFtdBt. (39)

Denote the option price formula c (F,X, t, T, r) and use Itô’s lemma:

dc =

µ
∂c

∂F
µF +

∂c

∂t
+
1

2

∂2c

∂F 2
σ2F 2

¶
dt+

∂c

∂F
σFdB. (40)

Create a portfolio that is short one option and long ∂c/ ∂F forward contracts and denote

the value of this portfolio V . Since positions in forward contracts cost nothing, it follows that

at any time, Vt = −ct. The change in value of this portfolio is

dV = −dc+ ∂c

∂F
dF = −

µ
∂c

∂t
+
1

2

∂2c

∂F 2
σ2F 2

¶
dt, (41)
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which is nonstochastic. Thus, to rule out arbitrage,

dV = −
µ
∂c

∂t
+
1

2

∂2c

∂F 2
σ2F 2

¶
dt = rV dt = −rcdt. (42)

That is, the option price c must satisfy

∂c

∂t
+
1

2

∂2c

∂F 2
σ2F 2 = rc, (43)

with boundary condition c = max (0, F −X) . The solution is given by

c = e−r(T−t) [FΦ (d1)−XΦ (d2)] , (44)

where

d1 =
log (F/X) +

¡
σ2/2

¢
(T − t)

σ
√
T − t

(45)

and

d2 = d1 − σ
√
T − t. (46)

This is the same formula as derived by Black (1976) for options on futures contracts.17 The

derivation also shows that we can treat option pricing on forwards as equivalent to option pricing

on an asset paying a dividend of r, which also means that when phrasing the option pricing

problem in terms of a risk-neutral measure, the drift in forward prices under this measure must

be zero.

17As pointed out by Duffie (1989) there is a distinction between pure and conventional futures options. The
pure futures options requires daily settlements just like a futures contract, whereas the conventional futures
option works like a normal option contract with a premium paid for the option at the time of purchase and at
the time of exercise pays the buyer any excess of the underlying asset price over the strike price. All futures
options referred to in this paper is of the conventional kind.
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Table 1: Summary statistics.
System price
(NOK/MWh)

Aggregate
temperature(Co)

FWV1-01
(NOK/MWh)

FWSO-01
(NOK/MWh)

FWV2
(NOK/M

Mean 136.79 7.38 152.50 126.82
Std. Dev 66.53 7.14 14.53 18.78
Min 1.48 -14.20 135.35 103.00
Max 633.36 23.63 188.00 197.00
No. of observations 3498 3498 580 662
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Table 2: Estimates for the parametric specifications in equations (3)-(7). The numbers in
parentheses are the standard errors of the estimates.
Parameter µ σ2 κ λ µz σ2z

Panel A. System price

GBM
3.8882
(0.89211)

7.5491
(0.18051)

GMR
4.7680
(0.01047)

7.6526
(0.18549)

9.9700
(1.4624)

GMRJ
3.6558
(0.8756)

0.9929
(0.0511)

1.4378
(0.9256)

61.0718
(4.129)

0.0280
(0.0143)

0.10629
(0.0083)

MR
136.79
(1.1206)

104938
(2550.4)

11.944
(1.6050)

MRJ
93.598
(10.269)

20156
(739.67)

5.3348
(0.8119)

28.441
(2.4242)

8.5194
(3.3274)

2813.5
(18.926)

Panel B. FWV1-01

GBM
-0.12297
(0.07453)

0.01289
(0.00076)

GMR
5.0229
(0.00230)

0.01299
(0.00077)

2.1133
(1.3555)

MR
152.50
(0.34992)

294.30
(17.354)

2.0720
(1.3421)

Panel C. FWSO-01

GBM
0.11716
(0.11310)

0.03387
(0.00076)

GMR
4.8333
(0.00301)

0.03516
(0.00194)

2.9292
(1.4962)

MR
126.82
(0.40643)

693.14
(38.340)

3.1688
(1.5569)

Panel D. FWV2-01

GBM
0.02002
(0.08779)

0.02361
(0.00121)

GMR
5.0928
(0.00366)

0.02371
(0.00121)

1.1550
(0.87029)

MR
164.24
(0.65117)

745.86
(38.199)

1.1482
(0.86771)

Panel E. FWYR-02

GBM
0.05574
(0.086367)

0.02106
(0.00112)

GMR
5.0198
(0.00349)

0.02116
(0.00113)

1.2288
(0.93517)

MR
152.21
(0.56402)

560.86
(29.926)

1.2486
(0.94273)
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Table 3: Option prices for the FWV1-01 contract. The BS, GBM, and MR models denote the
same models as in the main text. NP denotes the nonparametric model, equation (2). The last
two columns contain the lower and upper 95 percent confidence intervals for the nonparametric
option prices under the assumption that the true underlying model is a geometric Brownian
motion. Entries with a * next to them indicates an option price outside these 95 percent
confidence intervals.

Strike
price

BS GBM MR NP
95%-confidence

intervals for NP under
the GBM assumption

Panel A. Time-to-maturity: 7 Days
140
145
150
155
160

9.990
5.008
0.940
0.016
0.000

9.990
5.007
0.944
0.015
0.000

10.022
5.044
0.962
0.014
0.000

10.005
5.054
1.159∗

0.027
0.000

9.855
4.871
0.786
0.002
0.000

10.120
5.139
1.078
0.030
0.000

Panel B. Time-to-maturity: 91 Days
140
145
150
155
160

10.315
6.335
3.350
1.491
0.551

10.315
6.325
3.342
1.481
0.551

10.300
6.316
3.296
1.395
0.462

10.392
6.694
3.759∗

1.638
0.560

9.802
5.835
2.793
1.026
0.265

10.740
6.755
3.717
1.750
0.670

Panel C.Time-to-maturity: 182Days
140
145
150
155
160

10.976
7.443
4.678
2.709
1.442

10.963
7.429
4.659
2.697
1.431

11.168
7.593
4.759
2.721
1.392

11.088
7.822
5.102
2.937
1.511

10.246
6.784
3.960
2.028
0.895

11.577
7.954
5.126
3.085
1.630

Panel D. Time-to-maturity: 273 Days
140
145
150
155
160

11.581
8.299
5.657
3.661
2.247

11.596
8.317
5.671
3.679
2.261

12.014
8.641
5.870
3.753
2.240

11.714
8.655
6.047
3.852
2.300

10.673
7.424
4.801
2.803
1.514

12.363
9.039
6.268
4.074
2.570

Panel E. Time-to-maturity: 364 Days
140
145
150
155
160

12.111
9.003
6.451
4.452
2.959

12.177
9.073
6.519
4.522
3.024

12.547
9.343
6.653
4.514
2.902

12.218
9.282
6.742
4.582
2.956

11.044
7.933
5.435
3.428
2.047

12.889
9.747
7.140
5.037
3.364
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Table 4: Option prices for the FWV2-01 contract. The BS, GBM, and MR models denote the
same models as in the main text. NP denotes the nonparametric model, equation (2). The last
two columns contain the lower and upper 95 percent confidence intervals for the nonparametric
option prices under the assumption that the true underlying model is a geometric Brownian
motion. Entries with a * next to them indicates an option price outside these 95 percent
confidence intervals.

Strike
price

BS GBM MR NP
95%-confidence

intervals for NP under
the GBM assumption

Panel A. Time-to-maturity: 7 Days
140
145
150
155
160

9.991
5.069
1.272
0.087
0.001

9.990
5.068
1.264
0.085
0.001

10.083
5.239
1.536
0.162
0.006

10.005
5.021
1.075∗

0.040∗

0.000

9.744
4.870
1.117
0.043
0.000

10.220
5.365
1.707
0.249
0.016

Panel B. Time-to-maturity: 91 Days
140
145
150
155
160

10.980
7.355
4.543
2.554
1.311

10.981
7.379
4.573
2.574
1.309

11.968
8.419
5.525
3.351
1.850

10.374∗

6.446∗

3.727∗

1.971∗

0.956

10.446
6.857
4.044
2.110
0.938

12.499
8.922
5.998
3.855
2.270

Panel C.Time-to-maturity: 182Days
140
145
150
155
160

12.191
8.964
6.330
4.289
2.787

12.175
8.950
6.320
4.273
2.770

13.668
10.435
7.691
5.447
3.688

11.178∗

7.661∗

5.142∗

3.332∗

2.083∗

11.444
8.237
5.582
3.636
2.218

14.571
11.300
8.683
6.213
4.385

Panel D. Time-to-maturity: 273 Days
140
145
150
155
160

13.190
10.179
7.655
5.610
4.007

13.260
10.245
7.717
5.678
4.074

14.931
11.875
9.214
6.971
5.120

11.919∗

8.646∗

6.217∗

4.375∗

3.024∗

12.262
9.260
6.783
4.726
3.249

16.185
13.144
10.409
7.958
6.086

Panel E. Time-to-maturity: 364 Days
140
145
150
155
160

14.030
11.169
8.728
6.696
5.046

14.068
11.213
8.773
6.736
5.077

15.929
13.014
10.433
8.203
6.322

12.453∗

9.360∗

7.025∗

5.222∗

3.832∗

13.106
10.186
7.726
5.748
4.144

17.531
14.531
11.971
9.538
7.636
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Table 5: Option prices for the FWYR-02 contract. The BS, GBM, and MR models denote the
same models as in the main text. NP denotes the nonparametric model, equation (2). The last
two columns contain the lower and upper 95 percent confidence intervals for the nonparametric
option prices under the assumption that the true underlying model is a geometric Brownian
motion. Entries with a * next to them indicates an option price outside these 95 percent
confidence intervals.

Strike
price

BS GBM MR NP
95%-confidence

intervals for NP under
the GBM assumption

Panel A. Time-to-maturity: 7 Days
140
145
150
155
160

9.991
5.051
1.202
0.066
0.001

9.990
5.050
1.185
0.065
0.001

9.938
5.037
1.277
0.083
0.000

9.991
5.012
0.996∗

0.043
0.000

9.812
4.903
1.053
0.032
0.000

10.180
5.292
1.584
0.183
0.007

Panel B. Time-to-maturity: 91 Days
140
145
150
155
160

10.822
7.132
4.282
2.322
1.132

10.733
7.015
4.155
2.208
1.047

11.200
7.563
4.679
2.620
1.307

10.134∗

6.338∗

3.572∗

1.925
1.064

10.292
6.616
3.760
1.873
0.778

11.961
8.326
5.480
3.351
1.855

Panel C.Time-to-maturity: 182Days
140
145
150
155
160

11.917
8.636
5.979
3.949
2.486

11.840
8.548
5.884
3.865
2.410

12.618
9.324
6.607
4.460
2.838

10.778∗

7.537∗

5.092∗

3.464
2.400

11.199
7.893
5.269
3.239
1.798

13.721
10.458
7.629
5.433
3.658

Panel D. Time-to-maturity: 273 Days
140
145
150
155
160

12.834
9.776
7.231
5.192
3.620

12.784
9.709
7.161
5.133
3.576

13.636
10.532
7.888
5.711
3.982

11.470∗

8.526∗

6.276
4.677
3.552

11.936
8.854
6.259
4.237
2.666

14.936
11.763
9.075
6.854
5.115

Panel E. Time-to-maturity: 364 Days
140
145
150
155
160

13.610
10.705
8.244
6.216
4.591

13.628
10.724
8.263
6.233
4.610

14.678
11.674
9.073
6.874
5.078

12.091∗

9.396∗

7.280
5.723
4.554

12.504
9.584
7.072
5.102
3.466

15.856
12.896
10.344
8.041
6.251

44



Table 6: Option prices for the FWSO-01 contract. The BS, GBM, and MR models denote the
same models as in the main text. NP denotes the nonparametric model, equation (2). The last
two columns contain the lower and upper 95 percent confidence intervals for the nonparametric
option prices under the assumption that the true underlying model is a geometric Brownian
motion. Entries with a * next to them indicates an option price outside these 95 percent
confidence intervals.

Strike
price

BS GBM MR NP
95%-confidence

intervals for NP under
the GBM assumption

Panel A. Time-to-maturity: 7 Days
115
120
125
130
135

9.991
5.067
1.270
0.087
0.001

9.990
5.061
1.250
0.080
0.001

9.962
5.110
1.446
0.139
0.003

9.992
5.011
0.983∗

0.032∗

0.000

9.816
4.917
1.115
0.047
0.000

10.212
5.406
1.867
0.298
0.017

Panel B. Time-to-maturity: 91 Days
115
120
125
130
135

10.954
7.333
4.524
2.559
1.325

10.940
7.314
4.505
2.541
1.312

11.603
8.097
5.241
3.141
1.727

10.422∗

6.477∗

3.573∗

1.821∗

0.865∗

10.518
6.876
4.016
2.119
0.948

12.370
9.031
6.254
4.008
2.395

Panel C.Time-to-maturity: 182Days
115
120
125
130
135

12.145
8.931
6.317
4.295
2.810

12.110
8.877
6.258
4.249
2.782

13.219
10.012
7.308
5.139
3.450

11.330∗

7.807∗

5.121∗

3.293∗

2.066∗

11.434
8.190
5.609
3.595
2.158

14.530
11.335
8.595
6.383
4.593

Panel D. Time-to-maturity: 273 Days
115
120
125
130
135

13.130
10.138
7.638
5.617
4.035

13.052
10.053
7.550
5.538
3.963

14.423
11.376
8.754
6.549
4.749

12.132∗

8.857∗

6.266∗

4.395∗

3.055∗

12.235
9.240
6.758
4.750
3.197

16.164
13.121
10.473
8.232
6.294

Panel E. Time-to-maturity: 364 Days
115
120
125
130
135

13.958
11.120
8.707
6.704
5.079

13.820
10.970
8.556
6.562
4.954

15.383
12.470
9.893
7.680
5.818

12.849∗

9.733∗

7.252∗

5.395∗

3.993∗

13.003
10.048
7.616
5.628
4.037

16.939
14.177
11.699
9.474
7.476
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Figure 1: The system price at Nord Pool, in Norwegian kronor (NOK) per MWh, from May 4
1992 to November 30 2001.
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Figure 2: Estimates of the drift, diffusion, and jump intensity functions and the local time for
the system price in the univariate jump diffusion model.
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Figure 3: Confidence interval for the first moment and second moment of the system price in
the univariate jump diffusion model. The first moment is also equal to the drift function.
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Figure 4: Comparison of the nonparametric estimates of equation (1) and the estimates of the
GMRJ and MRJ models, for the system price. The solid lines are the nonparametric estiamtes,
the dashed lines the GMRJ estimates, and the dotted lines the MRJ estimates.
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Figure 5: Price series for the FWV1-00, FWV1-01, and FWV1-02 forward contracts.
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Figure 6: Price series for the FWSO-00, FWSO-01, and FWSO-02 forward contracts.
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Figure 7: Price series for the FWV2-00, FWV2-01, and FWV2-02 forward contracts.
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Figure 8: Price series for the FWYR-00, FWYR-01, and FWYR-02 forward contracts.
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Figure 9: Estimates of the squared diffusion function, σ2F (·), for the four different forward
contracts. The dotted and dashed lines are the upper and lower 95% confidence intervals,
respectively.
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Figure 10: The solid lines are the nonparametric estimates of the diffusion function, σF (·), for
the respective forward contracts, that is, the square root of the estimates shown in figure 9. The
dashed lines are the estimated diffusion functions from the MR model and the dotted lines are
the estimated diffusion functions from the GBM model.
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Figure 11: Estimates of the local time for the four forward contracts.
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Figure 12: Estimates of the volatility functions for the other forward contracts. The solid lines
are the nonparametric estimates of the diffusion function, σF (·), for the respective forward
contracts. The dashed lines are the estimated diffusion functions from the MR model and the
dotted lines are the estimated diffusion fucntions from the GBM model.
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Figure 13: Aggregate temperature, May 4 1992 to November 30 2001.
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Figure 14: Estimates of the drift functions for the system price and the aggregate temperature
in the bivariate diffusion model.
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Figure 15: Estimates of the diffusion functions for the system price and the aggregate temper-
ature in the bivariate diffusion model (σ11 and σ22 respectively).
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Figure 16: Estimate of the covariance function (σ12) in the bivariate diffusion model.
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Figure 17: Estimates of the drift, diffusion, and jump intensity functions and the local time for
the system price in the univariate jump diffusion model. The bandwidth parameter cltime is set
equal to the standard deviation of the system price.
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Figure 18: Estimate of the diffusion function for the system price in the bivariate diffusion model.
The bandwidth parameter cltime is set equal to diag

¡
S1/2

¢
, where S is the sample covariance

matrix of the system price and the aggregate temperature.
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Figure 19: Estimate of the diffusion function for the system price in the bivariate diffusion
model. The bandwidth parameter cltime is set equal to 20 ∗ diag ¡S1/2¢, where S is the sample
covariance matrix of the system price and the aggregate temperature.
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Figure 20: Results from the Monte Carlo study using equation (31). The bandwidth parameter
cltime is set equal to the standard deviation of the generated data. The solid lines are the
mean estimates of the respective functions and the dotted lines are the true functions. The
mean estimates are obtained from 500 repetitions of sample paths, consisting of 3500 daily
observations.
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Figure 21: Results from the Monte Carlo study using equation (31). The bandwidth parameter
cltime is set equal to 20 times the standard deviation of the generated data. The solid lines
are the mean estimates of the respective functions and the dotted lines are the true functions.
The mean estimates are obtained from 500 repetitions of sample paths, consisting of 3500 daily
observations.
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Figure 22: Results from the Monte Carlo study using equation (32). The bandwidth parameter
cltime is set equal to 20 times the standard deviation of the generated data. The solid lines
are the mean estimates of the respective functions and the dotted lines are the true functions.
The mean estimates are obtained from 500 repetitions of sample paths, consisting of 600 daily
observations.
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