

Predictive Software Measures

Based on Formal Z Specifications

Master of Science Thesis in
Software Engineering and Management

Abdollah Tabareh

Supervisors:

Dr. Miroslaw Staron

Dr. Andreas Bollin

University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, September 2011

The Author grants to University of Gothenburg in Sweden and Alpen-Adria University of

Klagenfurt in Austria the non-exclusive right to publish the Work electronically and in a non-

commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does

not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author has

signed a copyright agreement with a third party regarding the Work, the Author warrants

hereby that he/she has obtained any necessary permission from this third party to let

University of Gothenburg Alpen-Adria University of Klagenfurt store the Work electronically

and make it accessible on the Internet.

Predictive Software Measures Based on Formal Z Specifications

Master of Science Thesis in Software Engineering and Management

© Abdollah Tabareh, September 2011.

Examiner: Associate Professor, Sven Arne Andreasson

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden September 2011

Table of Contents

Abstract ... 1

Acknowledgment .. 2

Chapter 1: Introduction ... 3
1.1 Context ... 3
1.2 Scope ... 4

1.3 Value .. 5
1.4 Method ... 5

Chapter 2: Measures in Z Specifications .. 7
2.1 Objectives .. 7
2.2 Method ... 7
2.3 Formal Specification Measures ... 7

Chapter 3: Predictive Models ... 13
3.1 Introduction ... 13
3.2 Cost Estimation Approaches ... 13
3.3 Estimation Models ... 14

3.3.1 Input Parameters ... 15

3.4 Summary .. 16

Chapter 4: The Experiment .. 17
4.1 Introduction ... 17
4.2 Methodology .. 17

4.2.1 Subjects .. 17
4.2.2 Variables ... 19
4.2.3 Hypotheses ... 20

4.3 Results ... 20
4.4 Discussion .. 21

4.5 Threats to Validity ... 28

Chapter 5: Conclusions .. 29
5.1 Introduction ... 29
5.2 Study on Z Metrics .. 29

5.3 Study on Code Metrics .. 29
5.4 The Experiment ... 29
5.5 Further Studies ... 30

Appendix A- List of Study Subjects .. 31

Appendix B- Measurement Results ... 35

Appendix C- Analysis Results .. 40

References .. 44

Page 1 of 46

Abstract

BACKGROUND: The success of software development projects depends highly on

meeting the assigned schedule and budget of the project which are often defined in

terms of a project plan. Estimation is the basis for planning; therefore, having a reliable

way of estimating effort needed to perform the tasks is a must for a reliable project plan.

Already in 1987, Samson, Nevill and Dugard, showed that there is a strong and

direct influence of formal specification metrics onto the effort needed for implementation.

Since then, there has been some progress in various aspects of formal specifications; the

introduction of specification slicing methods, slice-based specification metrics, and

methods for visualization of specifications has opened new ways for measuring properties

of specifications with more metrics. Nevertheless, there hasn’t been much progress in the

field of cost estimation using recent achievements of formal specifications.

METHODS: The main focus in this thesis work is to examine if there is a

correlation between formal Z specification measures and implementation related

measures. In concise, this work tries to explain the correlation between the measures in

specifications and the measures in code which can be used as input parameters in

currently existing software cost estimation models to estimate the total cost of software.

This is examined through an experiment which is conducted via measuring 28 subjects

using 11 metrics in specifications and 4 metrics in code.

CONCLUSION: The results of this thesis work show the size of code, which is the

main input parameter of outstanding software cost estimation models, is predictable from

formal Z specifications. There are proofs which show that 3 out of 4 investigated metrics

in code are in correlation with the metrics in formal Z specifications.

Page 2 of 46

Acknowledgment

First of all and foremost, I would like to thank my supervisor Dr. Andreas Bollin
in Alpen-Adria Universität of Klagenfurt. His vision on this topic and his helps and
guidance illuminated the way throughout performing this study. His concise
explanations and examples were unweaving in problems of this work. In addition to
technical assistance, his patience, sense of duty, and respectful manner impressed me.

I would like to thank Dr. Miroslaw Staron in Göteborgs Universitet. In spite of his
heavy management responsibilities, he responded me in a timely manner and his
precise reviews protected this work from many faults.

Lastly, I would like to thank my family, and my father in particular, whose
supports and love was the main motivation for me to stand all the demoralizing
problems during my master studies.

Abdollah Tabareh
Göteborgs Universitet
September 2011

Page 3 of 46

1. Chapter 1:

Introduction

1.1 Context

In consequence of the increase in complexity of software systems, producing

correct, reliable software has become a concern for software industry [1, p.56]. Software

quality becomes a paramount aspect when it comes to safety-critical systems where

human lives might be in danger. For example a defect in the navigation system of an

airplane full of passengers or in a control system of a nuclear powerhouse can lead to a

catastrophe. Despite of all concerns, we don’t see these catastrophes too frequently. The

fewer defects in these software systems are because of applying more precise methods

throughout the development life cycle of these safety-critical software systems

comparing to methods used for developing commercial software like iPhone applications.

Formal methods are rigorous techniques based on mathematical notation that can

be used to specify and verify software models [3, p.268]. Formal methods provide a

rigorous mathematical basis to software development [1, p.56]. By using formal

methods, software developers can systematically specify, develop, and verify a system

[2, p.34]. As formal methods in software development permit more precise specification

and earlier error detection [1, p.56], they are been being applied widely in development

of safety-critical software systems.

Bowen provides a conclusion of pros and cons of the formal methods [4, p.15]. It

states that despite benefits of formal methods, there had been claims about infeasibility

of application of these methods for problems in the scale of the real world problems.

Sensible proponents of these methods propose that a cost/benefit analysis should be

performed before applying these methods and they should be applied only in case of

providing apparent advantages in development costs. According to this opinion, using

formal methods in development of a simple management information system for a

business, as an example, is not worthwhile. Proponents of the formal methods claim that

despite the apparent complexity the formal methods add to the process, they indeed

reduce the overall cost of software development. Proponents justify it by mentioning the

huge cost saving in testing and maintenance, which contain the major software

development costs, in comparison with slight increase in cost of specification and design.

Formal specifications are a part of formal methods which use mathematical

notation to describe, in a precise way, the properties which a software system must

have, without unduly constraining the way in which these properties are achieved [5,

p.42]. Mathematical specifications have three virtues: being concise, precise, and

unambiguous. Practical experiences show that the mathematical specification of a system

is shorter than the English text version as mathematical expressions can convey

complexities of real world in short structures [5, p.42]. They are precise because they

use mathematical expressions which are precise and accurate. They are unambiguous as

mathematical expressions prevent different interpretations from the same expression.

The Z notation is one of the widely-used methods of documenting software

specifications in a formal way [21, chapter 11]. Figure 1-1 shows a sample Z schema. Z

is a state-based specification language. It considers a software system as an entity which

accepts inputs, then may change the internal state according to that and then may

provide outputs if required. This vision provides the benefit of isolation from details of

implementation like user interface details [5, p.42]. Therefore, one can combine Z

Page 4 of 46

specifications together with other forms of specifications documentation methods like

UML for one software system. In these combinations the Z-based part of specifications

can play the role of describing the core state management part of the system, or maybe

just the critical part whereas the other formats can describe requirements for other

aspects of the system like user interface.

Figure 1-1- A sample Z schema, the smallest units of Z notation. The variables used in this schema are

declared on the top of central dividing line and on the part below, the relationship between variables are given.

Because of the formality advantages, some tools are already developed which can

transform the formal specifications to code in languages like C++ or Java [6]. As state-

based specifications are precise and formal, they can be a good source for estimation of

the cost of the software in early development stages of software development process,

once the software specifications is in hand.

1.2 Scope

Already in 1987, Samson, Nevill and Dugard, showed that there is a strong and

direct influence of specification metrics onto metrics of the implementation [7]. By

counting the number of mathematic equations in specifications, the authors

demonstrated that an estimation of effort, needed for implementation, is possible. There

has been some progress in various aspects of formal specifications since then, however

there hasn’t been much progress in the field of cost estimation using recent

achievements of formal specifications.

The introduction of specification slicing methods [8] and slice-based specification

metrics has opened new windows for measuring properties of specifications with more

metrics. For example because of interdependencies between software requirement

sections, it had been difficult to measure the quality of specifications. However, by using

slicing methods in [9], the author demonstrates that slice-based coupling and cohesion

measures in formal Z specifications can reasonably be defined in the same way as in the

implemented code.

There are rarely empirically validated correlations between code and specification

metrics around. Moreover, for reasons of simplicity in calculation, mostly size-based
1

measures, like number of operations in modules, are used in previous experiments.

Therefore, it seems that an empirical study, which investigates relations between

measures in Z specification and the implementation measures, can fill up this gap.

The main focus in this thesis work is to examine if there is a correlation

between formal Z specification measures and implementation related measures.

To answer this question, a measurement experiment is conducted in which the

specification and code metrics are measured and the correlation between these measures

is investigated using statistical methods. For this purpose, two basic questions are

addressed first. The first question is “which measures are unique descriptors for

properties of formal Z specifications?” The second question is “which quality and

complexity measures, for code or specifications, are used in currently existing predictive

1
 Categories of formal specifications’ metrics will be discussed in Chapter 2

Page 5 of 46

models?” After addressing these questions, the empirical experiment is conducted to

examine if there is a correlation between formal Z specification measures and

implementation related measures. In concise, this thesis tries to explain the correlation

between the measures in specifications and the measures in code, those are input

parameters in currently existing estimation models.

1.3 Value

The success of any software development project depends highly on meeting the

assigned schedule and budget of the project which are often defined in terms of project

plan. Estimation is the basis for planning; planning doesn’t make sense without knowing

the amount of effort needed for a project. Therefore, having a reliable way of estimating

effort needed to perform the tasks is a must for a successful project management. The

outcome of this research will provide some help for a reliable estimation for a better plan

for at least a part of software projects, those are based on Z specifications.

Regardless of the project and the project management structure, investments are

the pushing force for every project because they help to provide the needed resources

for the projects. Investment decisions are highly influenced by the schedule and budget

of the project which itself is dependent on estimations. Therefore, the expectation of the

outcome of this research is to facilitate the decision making process for investment on a

part of software projects, those are based on Z specifications.

The Software Engineering Body of Knowledge is sectioned by Key Areas, each of

which comprised of sub-areas [10, chapter 1]. The Software Engineering Management

key area consists of six sub-areas where the second one, which is Software Project

Planning, contains the knowledge about cost estimation. Therefore, the current research

will contribute in the cost estimation part of SWEBOK.

1.4 Method

In order to address the main question of this thesis, a set of appropriate1 metrics

applicable on Z specifications are identified. This is achieved by a literature review on

existing metrics and the outcome forms the next chapter of the thesis, “Measures in Z

Specifications”. Then the appropriate code metrics, which work as input for currently

existing prediction models, are identified to be measured in the experiment. For this

purpose, the prediction models are investigated in a literature review. The result of this

study is presented in chapter 3, “Predictive Models.”

Then a collection of Z specifications and related implemented code is collected and

measured, using the set of provided metrics. Having specification and correspondent

implementation measurement values, and using statistical analysis methods, the

correlation of these sets of metrics are examined. The result of this section is presented

in chapter 4, “The Experiment.” The final part of the thesis concludes the results of

previous chapters. The following table summarizes the research steps and methods.

1
 The specification-related metrics should have special criteria, which will be defined in chapter 2, to be

employable in the experiment

Page 6 of 46

Step Objective(s) Method

#1
 Define “key” Z specification metrics.

 Collect a set of key metrics.
Literature Review

#2

 Identify the outstanding software cost

estimation models.

 Identifying the important code metrics for these

software cost estimation models.

Literature Review

#3

 Collect a set of specifications in Z and

corresponding codes.

 Collect the tools for measurement.

 Measure them with the collection of metrics.

 Examine the correlation between two sets of

metrics.

Experiment

#4  Conclude the important results.

Table 1-1- Planned steps for the research

One major foreseen risk in this research is shortage in specifications-code pairs.

Since many of the software systems based on Z specifications are for safety-critical

systems, it’s not easy to gain access to their code. As a starting point, parts of

specifications and their code from the Tokeneer ID Station1 software project are

available. In the analysis of this risk either of these two approaches are chosen;

presenting analysis with less validity or extend the schedule to enlarge the sample.

Another foreseen risk is lack of enough tools for the measurement of all the found

key metrics. In this case, measurements of just the metrics for which measurement tools

exist or extending the existing tools to cover all metrics are probable solutions. As a

starting point a tool which measures a number of specification metrics, namely the size-

based measures (CC – conceptual complexity), the structure-based measures (logical

complexity and def/use count), and the semantic-based measures (coupling, cohesion,

overlap), is available.

1
 http://www.adacore.com/home/products/sparkpro/tokeneer, last visited: January 2011

http://www.adacore.com/home/products/sparkpro/tokeneer

Page 7 of 46

2. Chapter 2:

Measures in Z Specifications

2.1 Objectives

The main objective of this section is to provide a collection of specification-related

measures which are applicable to Z specifications through reviewing literature of formal

specification metrics domain. At the first part of this chapter, the focus area on literature

review is specified, then the results of this study are presented, and then the analysis of

the resulting metrics is provided. The analysis is from aspect of applicability to the

experiment which is conducted later in this research.

2.2 Method

Throughout the literature review the main focus is on the measures which are

applicable to Z specifications. Metrics applicable to other formal specifications are

applicable to Z as it is a specific formal specification notation. Since this research is

aiming at using tools for measuring the metrics in Z specifications, and to keep the right

level of abstraction, the mathematical details of explored metrics are kept hidden.

A customized approach similar to the approach explained in [12] was used to

conduct the literature review. An empty queue was formed, at the first step, in order to

keep track of the list of papers to be read. Then it was populated by the initial set of

papers. Bollin’s articles ([9], [11]) were used as a starting point for the review and two

other papers ([5], [7]) for gaining domain knowledge.

While reading papers, new keywords and concepts related to domain were

discovered as well as the papers which seemed indispensable to read for this study.

These papers added to the end of the reading queue. The new keywords and concepts

are used for narrowing down the search in Google Scholar for related papers.

Introduction and conclusion of the selected papers were examined in order to make sure

that the paper is in the target domain. Moreover, forward/backward chaining method

based on references/citations of papers is used to find more papers [12].

2.3 Formal Specification Measures

As mentioned earlier, Z is a specific formal specification thus all metrics apply to

formal specifications, apply to Z as well. The term specification is used instead of formal

specification throughout this work for simplicity reasons. However wherever referred to

other forms of specification, like text or UML, it’s mentioned explicitly.

Bollin in [9] takes the approach of categorizing specifications’ metrics into two

main categories: complexity and quality metrics. Complexity is defined as “The degree

to which the structure, behavior, and application of an organization is difficult to

understand and validate due to its physical size, the intertwined relationships between its

components, and the significant number of interactions required by its collaborating

components to provide organizational capabilities” [3, p.109]. However, the complexity

in specifications is usually interpreted to and measured based on attributes which are

related to just the size of specifications. One reason is that measures to assess the other

attributes of specifications than size, or other qualities of so-called “Good Specifications”,

had not been defined. It was due to interdependency concepts which were either not at

Page 8 of 46

all or only implicitly available for software specifications [9, p.24]. Therefore, Bollin

separates complexity from other quality metrics for specifications [9, p.24]. However this

categorization seems to be not appropriate as the two categories have serious conceptual

overlap.

Specifications of the same size don’t have necessarily the same complexity. That’s

because the relationships between sub-components add more complexity. Therefore, the

total complexity is more than what results from just summing up the complexity of sub-

components [11, p.158]. Therefore, different sets of metrics to measure other aspects of

the complexity are needed. Bollin in [11, p.148] took another approach and categorized

the metrics into 3 categories: quantity/size-based, structure-based, and semantic-based.

Although the firstly mentioned approach seems to be refined version of the second one

by Bollin, the second approach is used throughout this work because of previously

mentioned reason.

Quantity/size-based metrics are related to physical size [11, p.148]. These

measures are easy to quantify, mostly easy to calculate, and there are lots of studies in

this field [11, p.156]. Lines of specification code, abbreviated to LOC, is a size-based

metric which is measured by counting the lines of specification text [11, p.156]. It’s a

popular metric because of ease of calculation. However, it’s not precise (i.e. value differs

if comments or empty lines are counted) [11, p.156]. Samson et al. [7] show that if LOC

is defined precisely, which can be done easier in formal specifications than other types, it

has a strong correlation with LOC in its implementation code.

A few other metrics, derived from LOC, count primes of a formal specification

instead of LOC which have clearer and more comparable semantic complexity [11, p158].

Primes are the smallest structural units of a formal specification. Vinter et al. in [14]

show the count of Z specification’s structural units correlates with specification’s

complexity. However, there is no quantitative assessment for that. The approach of

counting primes in a specification instead of LOC is called conceptual complexity and it

provides the ability of comparing and quantifying the complexity of specifications [11,

p.163]. Conceptual complexity is a measure for the difficulty of understanding of

code/specifications [16, p.73].

Nogueria et al. in [15] define two new metrics, Fine Granularity Complexity (FGC)

and Large Granularity Complexity (LGC). FGC is count of input and output data of specific

operation units, called operators. LGC is the summation of number of operators, total

number of input and output, and the number of data-types.

Samson et al. [7, p.245] define three metrics, namely number of equations per

operation (NEQOP), number of equations per module (NEQMOD), and number of

operations per module (NOPS). They also show, in a case study, that these metrics of

specifications have correlation with cyclomatic complexity of related implementation.

Cyclomatic complexity is a complexity measure for code, defined by McCabe [13], which

is a measure for a way of modularizing so the resulting modules are both testable and

maintainable. It seems important to save a lot of cost of development in testing and

maintenance of software.

Kokol et al. in [17] define a metric called α-metric for code and they extended it

to be applicable on formal specifications. Their case study shows that this metric has

different values for the same specifications written with different specifications’

languages [17]. There is not much discussion about it after the presentation of this
metric and therefore, α-metric didn’t find its place in software industry [11, p.158]. Table

2-1 summarizes the size-based metrics with their meaning.

Page 9 of 46

Metric Conveys

Specifications LOC
Size of specifications in terms of number of

text lines.

Conceptual

complexity (CC)

Size of specifications in terms of number of

primes. A measure for difficulty of

understanding of specifications.

Number of

operators/equations

Size of specification in terms of the number

of operators/equations in a

specification/module.

FGC
Complexity of each operator1 in the system

in terms of inputs and outputs.

LGC

Complexity of the whole system in terms of

number of operators, input/output data, and

types.

α-metric
Measures the information content

specifications.

Table 2-1- Size-based metrics for formal specifications

Structure-based complexity metrics have to do with logical and data structures

aspect of complexity like the flow of control, number of identifiers and their validity, and

the number of references [11, p.148]. Many of the metrics of this category were not

applicable until recently. That’s because control/data flow is not a dominant aspect of

specifications and also formal specifications mostly don’t have control structures.

Furthermore, it is difficult to generate a control/data flow presentation for specifications

[9, p.24]. However, Bollin provides methods for determining data/control dependencies

using a graphical representation of specifications called ASRN2 [11, chapters 4, 5]. An

ASRN maps a formal specification to a graph. This mapping allows us to use the vast

algorithms and concepts developed for graph theory for the software specifications.

As mentioned earlier, cyclomatic complexity is a semantic-based code-related

metric which is defined to measure computational complexity and can be used to

measure testability and maintainability of code [13, p.308]. Bollin has provided two

metrics by transforming the code-based cyclomatic complexity metric to specifications

domain [11, p.165]. Cyclomatic complexity for specifications is calculated by counting all

control dependencies in the ASRN of specifications. Extended cyclomatic complexity,

which is later renamed to Logical Complexity by Bollin, is in form of ordered tuple with

upper and lower bound values [11, p.166]. The upper bound is the cyclomatic complexity

for specifications and the lower bound is calculated by counting vertices with special

criteria in the ASRN [11, p.166].

Definition-Use (DU) is a code-based metric which is based on control-flow graph

of program [18]. Bollin has provided a transformation of DU for specification domain

called DU count [11, p.165]. DU count for specifications is equal to the total number of

data dependencies in the related ASRN [11, p.165].

1
 Unit of a specific operation

2
 Augmented specification relationship net

Page 10 of 46

Table 2-2 summarizes the structure-based metrics which were discussed in this

section.

Metric Conveys

Logical complexity Computational complexity of specifications

Definition Use (DU)
Count

Data flow dependencies of specifications

Table 2-2- Structure-based metrics for formal specifications

Semantic-based category measures are focused on semantic relationship between

sub-components of a component or system and are commonly defined to measure

coupling, which is a measure for strength of inter-component connections, and cohesion,

which is a measure for mutual affinity of sub-components of a component [11, p.148].

Carrington et al. define two metrics for specification modules, one for functional

cohesion and another for communicational coupling [19]. These metrics are calculated by

counting the state variables of code modules and those which are used commonly

between different code modules.

 Lakhotia provided a rule-based algorithm to measure cohesion in code by

examining the control and data flow of variables [20]. Bollin showed that this measure

can, though not fully, be transformed to the domain of specifications using ASRN [11,

p.162].

Coupling and coherence metrics are not easily transformable from code domain to

specification as these metrics are based on control/data dependencies which are tough to

define for specification domain [9, p.24]. However with the methods of specification

slicing1 [8], a few code-based metrics are transformed and applied on slices of

specifications, called slice-based metrics.

Bollin [9] provides a transformation for a set of slice-based code-related metrics

which measure coupling and cohesion of formal Z specifications using the specification

slices. Using these metrics, Bollin shows that we can calculate coupling, cohesion, and

overlap. Coupling is a measure for the strength of inter-component connections, and

cohesion is a measure for the mutual affinity of sub-components of a component [9].

Overlap expresses the number of primes which are common to all specification slices [9].

Table 2-3 contains a summary of the discussed semantic-based metrics together

with their meanings.

1
 For more explanation of static and dynamic slicing using famous Birthday Book sample in Z refer to [8]

Page 11 of 46

Metric Conveys

Functional Cohesion Functional cohesion1 of specifications

Communication
Coupling

Coupling of modules of specifications

Rule-based Algorithm Cohesion (all levels) of specifications

Slice-based Coupling
Strength of inter-slice connections in

specifications

Slice-based Cohesion Mutual affinity of slices of a specification

Slice-based Overlap
The number of primes which are common to

all specification slices

Table 2-3- Semantic-based metrics for formal specifications

Now that we have some information for a collection of metrics in hand, we can

provide a summary of metrics which are unique descriptors of Z specifications.

Among size-based metrics we identified Specification LOC, Conceptual Complexity,
Number of Operators (NEQOP, NEQMOD, NOPS), FGC/LGC, and α-metric. Though

Specification LOC is popular because of simplicity of calculation as mentioned before, it

can stand for different definitions unless it is defined precisely. α-metric also results in

different values while measuring different specifications with different languages written

for the same functionality. Therefore, it can not be a good candidate for specification-

based estimations. The conceptual complexity is easy to calculate and provides ability to

compare since it is based on concrete formal specifications’ units.

For the structure-based metrics category we identified Cyclomatic Complexity,

which will be referred to as Logical Complexity hereafter, and Definition-use count

metric. Both these metrics are calculable and precise as they have mathematical-related

definitions and based on ASRN which itself is based on the graph theory.

For semantic-based metrics we identified functional cohesion, communicational

coupling, rule-based approach, and slice based coupling, cohesion, and overlap. As

mentioned, the rule-based approach for code is not thoroughly transformed for

specifications and it can not be used as a reliable metric for specifications. No specific

drawback is found for the rest of metrics in semantic-based category. Table 2-4

summarizes the metrics explored in this study.

1
 All parts which contribute to a single and specific function [11, p.154]

Page 12 of 46

Cat. Metric Comments

S
iz

e
-B

a
s
e
d

Specifications LOC
Not precise but measurement tools are

available.

Conceptual

complexity (CC)

No drawback found and measurement tools

are available.

Number of

operators/equations

No drawbacks found but no measurement

tools available

FGC/LGC
No drawbacks found but no measurement

tools available

α-metric Different values for different languages

S
tr

u
c
tu

re

-B
a
s
e
d

Logical complexity
No drawback found and measurement tools

are available.

Definition Use (DU)
Count

No drawback found and measurement tools

are available.

S
e
m

a
n
ti
c
-B

a
s
e
d
 Functional cohesion

No drawbacks found but no measurement

tools available

Communicational

coupling

No drawbacks found but no measurement

tools available

Rule-based approach Not thoroughly defined for specifications

Slice-based coupling,
cohesion, and overlap

No drawback found and measurement tools

are available.

Table 2-4- Summary of metrics for Z specifications

Some of the metrics, like Lines of Code, have different interpretations and

measurement methods. Therefore, such metrics should be defined precisely together

with the measurement method in case of using in an experiment. For this reason, the

precise definition and measurement method for the metrics used in experiment is

provided in chapter 4 which explains the experiment details.

Page 13 of 46

3. Chapter 3:

Predictive Models

3.1 Introduction

The main objective of this chapter is to present the result of investigation in the

salient software cost estimation models which currently exist and are already validated in

practice. The investigation performed with the focus on the main advantages and

drawbacks of these models and their connection points to this thesis in terms of code or

specification metrics. Therefore, the goal of this short study is to find at least one reliable

cost estimation model for which a code or specifications metric is an important input.

Defined by Wikipedia1, “Cost estimation models are mathematical algorithms or

parametric equations used to estimate the costs of a product or project.” Software cost

estimation techniques are used for a number of purposes including budgeting, trade-off

and risk analysis, project planning and control, and software improvement investment

analysis [22, p.177]. As “effort” and “cost” are in a direct relation in software projects,

cost estimation and effort estimation terms are sometimes used in each other’s place.

This short review has been performed in order to find the models which suit the

purposes of this thesis. These models should be reliable; means that they should have

been empirically validated. They should also have inputs from code or specification

metrics so that a relation can be made to the output of the later experiment of this

thesis.

To reach to the outstanding papers in this topic for the review, a systematic

method is applied. At first, Google Scholar is used for the search using the following

logical combination of keywords:

“Software” AND “estimation” AND (“cost” OR “effort”)

Then the abstract, introduction, and conclusion of the resulting papers were

examined to assure that they’re relevant to the purposes of the study. Number of

citations, publish date, and references of papers are also examined in order to prioritize

them. The two next sections will provide the results of reviewing the selected set of

papers on software cost estimation models.

3.2 Cost Estimation Approaches

A classification for estimation models seems necessary in order to present the

results of the review in an organized way. One of the major differences between

estimation models is based on using Source Line of Code (SLOC) as the primary input for

the model [22, p.417]. This approach provides a simple categorization of the models;

those models which use SLOC as an input and those which do not. The models which

don’t use specification or code metrics are not in the focus of this review as they can not

be integrated into this thesis to form a total cost estimation model.

Boehm provides six approaches of estimation techniques, namely model-based or

parametric, expertise-based, learning-oriented, dynamics-based, regression-based, and

Composite [22, p.178].

1
 Last visited: February 2011

Page 14 of 46

Another estimation approach categorization is provided by Jørgensen et al. in

which they have identified 13 estimation approaches [28, p.42]. However, they have

used a simple top level categorization, with 3 categories, implicitly throughout the text:

expert estimation, formal estimation, and combination-based estimation [28, p.39].

Since the expert- and combination-based estimation techniques can not be related to this

thesis’ results, they won’t be in focus.

3.3 Estimation Models

SLIM1 is a software life-cycle model which used a Rayleigh manpower distribution

model for estimating the needed effort for a software project [24]. A Raylegh curve is the

graphical presentation for a mathematical equation which shows the relation between

delivery time and needed effort for a software project. SLIM is a parametric model and

can be calibrated using finished projects data or by answering a set of questions in case

of lack of previous data [22, p.179].

According to SLIM’s cost estimation formula, a project cost can be reduced to

50% by simply increasing its schedule by 19% [25, p.10] which seems far from the real

world software projects data. This issue made a validity weakness for this model.

Nevertheless, SLIM has a good performance when it is compared to a few other

outstanding estimation methods [23, p.428]. SLIM is a proprietary model and therefore,

it has a limitation for using this method for cost estimations.

Doty is another parametric cost estimation model which considers a number of

characteristics of software projects as factors in its cost estimation formula [25, p.12].

Estimation formula in Doty has a discontinuity when code size, as input parameter, is

equal to 10K delivered source instructions. As another weakness, the estimated cost

increases by 92% by simply answering “yes” to one of characteristic factors [25, p.12].

COCOMO II is an updated version of the COnstructive COst MOdel, the popular

cost estimation model of the 1980s [22, p.189]. COCOMO II covers the weaknesses of

the old version in confronting the new software development processes and capabilities

[22, p.189]. The initial version of the model consists of three sub-models each of which

has their own application area; the application composition model for the software

projects which uses ICASE2 tools for rapid application development; the early design

model is aimed at early cost estimation in projects and accepts source lines of code

(SLOC) or function points3 as the main input together with 5 scale factors and 7 effort

multipliers; the post-architecture model is applicable when the top level design is

complete and it accepts source lines of code or function points as the main input together

with 17 effort multipliers and 5 scale factors [22, p.190]. No specific drawbacks are

found for COCOMO II in the reviewed papers.

Mulisek et al. in [26] have provided an analysis on sensitivity of COCOMO II

model. Their research reveals that the COCOMO II model is sensitive firstly to size input

parameter and then to effort multipliers. Therefore, the experiment of this thesis which is

aimed at providing a precise estimation for the size of code, as input parameter of the

model, can help to provide more precision for COCOMO II model. The internal equations

and parameter values are also fully available for this model. Therefore, this model seems

to be good candidate to be related to the results of the experiment in this thesis in order

to form a total cost estimation model.

PRICE-S is a parametric and proprietary estimation model which has been used in

several U.S. DoD, NASA, and other government software projects [22, p.182]. Since the

model equations are not published, it can not be used for this research purposes.

1
 Software Lifecycle Management

2
 Integrated Computer Aided Software Engineering

3
 “A function point is a unit of measurement to express the amount of business functionality an information

system provides to a user.”, Wikipedia, last visited: February 2011

Page 15 of 46

There are a few other estimation techniques, like Checkpoint, ESTIMACS, SEER-

SEM, and SELECT, which are based on functionality-based size measures or other OO-

related metrics [22]. OO-related measures are not in hand at least until the early design

stage since they are dependent on the architectural and design decisions. Since

functionality-based size metrics, like function points, are not the dominant aspect of

formal specifications, this thesis results are not beneficial for them. Therefore, these

models are not reviewed in this study.

Table 3-1 summarizes the advantages and drawbacks of the candidate models for

a total cost estimation model based on the later experiment in this thesis.

Model Advantage(s) Drawback(s)

SLIM -Good precision -Proprietary model

Doty -Easy to calibrate
-Discontinuity on DSI=10K

-Lack of sufficient precision

COCOMO II
-Applicable in different stages of SW
life-cycle
-Easy to calibrate

No drawback found in reviewed
papers

PRICE-S -Used in government projects -Proprietary

Table 3-1- Advantages/drawbacks summary of reviewed cost estimation models

Briand et al. in [27] provided an analysis on accuracy of software cost estimation

models. The results of their research show that the estimation models which are based

on analogy are less accurate than the rest. With this exception all other cost estimation

models have more or less the same accuracy. Another research reveals that the

algorithmic estimation techniques should be calibrated in target organizations to work

well [23, p.427]. Moreover, it should be mentioned that there’s no single cost estimation

model which can suit for all situations [22, p.177].

3.3.1 Input Parameters

SLIM uses Delivered Source Instruction (DSI) as the main input prameter which is

a metric for describing the size of code. Boehm defines DSI as program instructions

created by project personnel that are part of the final product [23, p.418]. DSI can be

assumed as a more precise definition for source lines of code which doesn’t include

comments, empty lines, and etc. There are a few tools
1
 which can calculate DSI in a

variety of programming languages. Other input parameters in basic model of SLIM

consist of development time and a technology constant which can be calibrated based on

past projects [25, p.10].

Similar to SLIM, Doty also uses DSI as one of its input parameters. The other

input parameters include the factors for characteristics of software projects. These

factors accept the value of Zero or One according to the description of factor and

therefore, they are not to be estimated.

As mentioned before, different sub-models of COCOMO II use a variety of input

parameters from which the number of source lines of code (SLOC) is estimable. The rest

of input factors are either determined parameters, like function points, or parameters

related to the characteristics of the project which are not to be estimated.

Three different code size metrics, namely Count Line Code, Lines Executable,

Lines Declarative, are considered for the experiment of this thesis. Using these three

1
 http://www.locmetrics.com/alternatives.html, last visited: February 2011

http://www.locmetrics.com/alternatives.html

Page 16 of 46

metrics, one can calculate the value for various definitions of SLOC and DSI. Table 3-2

summarizes these metrics with their definitions.

Metric Definition

Count Line Code Is equal to Lines Executable + Lines Declarative

Lines Executable total lines that have executable code on them

Lines Declarative total lines that have declarative code on them

Table 3-2- Code metrics to be considered in the experiment

3.4 Summary

According to the results of this study, SLOC and DSI are the most commonly used

metrics in code which are used as input for estimation models. SLOC and DSI are

quantifiable and objective, though difficult to estimate at the beginning of a software

project [22, p.417].

Estimation of size of the software, in terms of source lines of code, seems to be

the common problem for models which have such an input. Therefore, regardless of the

discussed cost/effort estimation models, the results of the experiment in this thesis can

be used in every model which uses SLOC or DSI as an input for the size of the software.

The next chapter provides details of an experiment which is conducted in order to

investigate the correlation between measures in Z specifications and measures in

implemented code of a software system.

Page 17 of 46

4. Chapter 4:

The Experiment

4.1 Introduction

The study conducted in chapter two revealed that specifications in Z can be

measured with different types of metrics. The results of literature review, in the previous

chapter, also show that there are reliable software cost estimation models which need

the SLOC or DSI as input parameter. Therefore, a study which investigates the

correlation between metrics of Z specifications and metrics of code can provide a means

to estimate total software cost once the specifications are in hand.

The next section sets the design of the study. The later sections state the results

and make a discussion over those results. This chapter will end with an analysis of the

threats to the validity of this study.

4.2 Methodology

4.2.1 Subjects

Subjects for this study are a set of pairs of code modules together with their

related specifications in Z. In order to collect the sample, by searching on web and

sending emails to a few major researchers in Z formal specifications field, it revealed that

there is just one software system in industrial scale whose both the code and Z

specifications are publicly available and it is called Tokeneer ID Station1, implemented via

ADA programming language. However, there are many subjects of Z specifications with

code for the learning purposes which could not be used since this experiment is focused

on industrial-scale real world problems.

A software module can be considered as a set of instructions which accepts

inputs, performs the computations, and probably changes the state and/or generates

outputs. With this definition, one software system can be broken up into several software

modules, each of which can be considered as a subject for the study. However, the main

issue here is to find the modules in a proper level of granularity.

A code module should fit in a part of specifications to be the good representative

of the specifications. It means that the module should implement exactly that part of

specification, neither more nor less. Figures 4-1 and 4-2 depict a particular example of

this situation. In this example a utility module which is providing different services for

several modules cannot be a part of one of the subjects (figure 4-1). That’s because it is

providing some other features for other modules which are not in a particular subject.

However, if a related specification slice exists for the utility module, it can be a subject

itself (figure 4-2).

Because of the mentioned issues in providing subjects, the code and

documentations of the Tokeneer are investigated precisely and in different abstraction

1
 www.adacore.com/tokeneer , Last visited: March 2011

http://www.adacore.com/tokeneer

Page 18 of 46

levels of code, and subjects are identified one by one. Therefore, all the subjects for this

study are formed via a step-wise procedure which is explained here in this section.

According to code documentations of Tokeneer, most of the procedures are

mapped to one or a few formal design traceability units. A formal design traceability unit

is a package of formal design schemata in Z. However, they are not specification

schemata, to be measured, and they just provide a means to trace to the formal

specifications traceability units. Formal specifications traceability units are packages

containing the specification schemata in Z which are to be measured. INFORMED Design1

document of the Tokeneer project is used to trace the procedures in code which lack the

traceability documentations.

Regarding the situation for extracting subjects, each final subject consists of a

cluster of procedures in code together with a cluster of related Z schemata. Therefore

each subject contains a set of Z schemata and the set of code procedures which

implement those schemata. To keep the traceability, a table is formed with four

columns: Procedures, Formal Design (FD) Traceability Units, Formal Specifications (FS)

Traceability Units, and Z schemata.

Figure 4-1- A non-mappable situation which results in no sample

Figure 4-2- A mappable situation which results in 3 samples

1
 http://www.adacore.com/wp-content/files/auto_update/sparkdocs-docs/Informed.htm, Last visited:

September 2011

http://www.adacore.com/wp-content/files/auto_update/sparkdocs-docs/Informed.htm

Page 19 of 46

The sample extraction procedure starts with choosing one procedure of code and

listing it under the column for procedures in a clean table for a new sample. FD units for

the chosen procedure are listed under the FD column. Under the FS column, the FS units

related to the FD units are listed in the same manner. To this point of process the list

contains just the FS units related to the primarily chosen procedure. However, there may

be still some procedures which participate in implementing the listed FS units. Therefore,

another scan in reverse way is performed.

In this way, the list of FD units is enriched by finding all FD units related to the list

of FS units. Then again the code is inspected for other procedures which relate to the

listed FD units. This forward/backward procedure is performed until no more entry can be

found and added to the lists.

At this point one subject is formed containing the list of procedures and the list of

Z schemata related to the FS units. It’s good to mention that the subjects with loosed

traceability are eliminated since their code and specification clusters are not representing

each other properly. A total of 28 subjects are formed via this procedure and they are

listed in Appendix A.

4.2.2 Variables

The independent variables in this study are the metrics in specifications and

dependent variables are the code metrics. These specification and code metrics are

chosen through procedures described in the previous chapters and they are defined

precisely here in this section. Study subjects are measured with these metrics and form

the variable values. Table 4-1 shows the metrics with which the Z specifications are

measured. An exact and clear definition is also provided to remove the ambiguity so that

the experiment becomes repeatable. For the calculation of Z specification measures, an

Eclipse plug-in from the ViZ project is used [29].

Cat. Metric Definition

S
iz

e
-

B
a
s
e
d
 Specifications LOC Number of text lines in the specifications.

Conceptual

complexity (CC)
Number of primes in the specifications.

S
tr

u
c
tu

re

-B
a
s
e
d

Logical complexity
In the ASRN of the specification:

Edges - Nodes + Connected Components

Definition Use (DU)
Count

Number of data dependencies in the ASRN of the

specifications.

S
e
m

a
n
ti
c
-

B
a
s
e
d

Slice-based Coupling
According to Bollin’s paper [9, p.26], it is calculated as the

amount of information flow between schemas.

Slice-based Cohesion
According to Bollin’s paper [9, p.26], it’s calculated via

Tightness and Coverage metrics

Slice-based Overlap
The number of primes which are common to all

specification slices

Table 4-1- Specification metrics and measurement methods

Table 4-2 lists the code metrics to be measured in the experiment together with

the clear definition of them. The metrics are chosen according to the results of the study

in chapter three. The cyclomatic complexity metric is added to this list in order to

investigate the correlation between the metrics in specifications with the complexity of

Page 20 of 46

code. If this correlation is found, it helps to pre-locate the parts of the system with high

complexity in order to take special considerations in implementation. The metrics in code

are calculated using a tool called SciTools Understand
1
 for which a temporary license is

acquired from its producer company.

Metric Definition

Count Line Code

The number of lines that contain source code. Note that a line can

contain source and a comment and thus count towards multiple

metrics. For Classes this is the sum of the Count Line Code for the

member functions of the class.

Lines Executable total lines that have executable Ada code on them

Lines Declarative total lines that have declarative Ada code on them

Cyclomatic

Complexity

Cyclomatic complexity [13] In the control flow graph of the code:

Edges - Nodes + Connected Components.

This metric is applicable just in procedure level

Table 4-2- Code metrics and measurement methods

4.2.3 Hypotheses

There are two hypotheses in this study; there is no correlation between selected

metrics in Z specifications and metrics in code of software systems or there is a

correlation between them. Therefore it’s assumed that the metrics in Z specifications

have absolutely no effect on the metrics in code unless a reason is found to reject this

hypothesis. The hypotheses are formulated as follows:

 Null hypothesis (H0): Selected metrics in Z specifications do not correlate

with metrics in code for a software system.

 Alternative hypothesis (H1): Selected metrics in Z specifications correlate

with metrics in code for a software system.

4.3 Results

As mentioned before, each subject of this study contains a set of procedures

together with a set of Z schemata. Therefore, the main aim is to calculate the mentioned

metrics for each subject, not for each procedure and schemata in the subjects. Hence,

these metrics should be summarized for each subject.

According to the concepts of size and complexity, the size and complexity of a

group of procedures is equal to summation of size and complexity of each procedure in

the group. Therefore, it’s enough to calculate the summation of the count line code, lines

executable, lines declarative, and cyclomatic complexity of all procedures in a particular

subject to achieve the values of these metrics for that subject.

The size and complexity metrics of Z schemata are calculated for each subject in

the same manner. However, the calculation is not simple for the sematic-based measures

in Z unlike the other measures. One simplistic way of calculating semantic-based

measures for a group of schemata is to calculate the average of the values of metrics.

The results of the measurement of metrics for every sample together with a summary

table for all the samples are provided in Appendix B.

1
 http://www.scitools.com/index.php, Last visited: March 2011

http://www.scitools.com/index.php

Page 21 of 46

4.4 Discussion

The main aim in this correlational study is to search for a reason to reject the null

hypothesis of the study. Therefore, a statistical reason should convince that there is a

correlation between one or more independent variables and the dependent variables. For

this purpose, regression test is applied to the measurement data. The analysis results are

discussed here in this section.

According to the regression analysis concepts, if the P-value for an independent

variable is less than 0.05, it means that there is less than 5% chance of the dependent

variable values would have come up in a random distribution [30]. In other words, there

is a probability of 0.95 that the independent variable affects the dependent variable and

hence, the null hypothesis is rejected. Therefore, each and every metric in code, or the

same dependent variable, is investigated to find such a correlation.

Table 4-3 has a summary of regression analysis results. According to this table

and for Count Line Code as the dependent variable, the P-values for a few of independent

variables, or the same specification metrics, are less than 0.05. These metrics are

namely Specification Line of Code, Conceptual Complexity, Definition-Use, Minimum

Coverage, and Coupling. Therefore the null hypothesis is rejected for these specification

metrics and they are in correlation with Count Line Code. Regression test results for Lines

Executable as dependent variable indicate that Specification Line of Code, Conceptual

Complexity, Definition-Use, Minimum Coverage, and Coupling metrics in specifications

have correlation with Lines Executable in code. Comparing to Count Line Code and Lines

Executable, there are fewer specification metrics, namely Definition-Use, Minimum

Coverage, and Coupling in correlation with Lines Declarative. Unlike the other code

metrics, Cyclomatic Complexity in code doesn’t show any correlation with metrics in

specifications, even Cyclomatic Complexity of specifications.

The R-Square value for the regressions shows the percentage of variation of code

metrics which is explained by metrics in specifications. In other words, the value of R-

Square indicates whether a regression equation is useful to predict the value of a specific

metric in code from metrics in Z specifications [31, p.240]. Therefore, 85% of variation

of Count Line Code is explained by the metrics in specifications. This amount grows to

88% for Lines Executable but it is weaker for Lines Declarative which is 73%. For

Cyclomatic Complexity in code, just 44% of variation of the metric is explained by

specification metrics.

The value of Significance F indicates the amount of reliability of regression results.

If Significance F for a regression analysis is less than 0.05, it proves that regression

analysis results are reliable. Therefore, results of regression analysis are highly reliable

for Count Line Code and Lines Executable, and reliable for Lines Declarative. However,

the results are not reliable for Cyclomatic Complexity in code.The detailed results of

regression analysis for metrics in code are provided in Appendix C.

Page 22 of 46

Regression Parameter
Count Line
Code

Lines
Executable

Lines
Declarative

Cyclomatic
Complexity

R-Square 0.85 0.88 0.73 0.44

Significance F 0.00009 0.00002 0.007 0.38

P
-V

a
le

LOC in specifications 0.03 0.01 0.19 0.52

Conceptual Complexity 0.02 0.01 0.11 0.21

Cyclomatic Complexity Low 0.26 0.24 0.14 0.21

Cyclomatic Complexity High 0.23 0.18 0.15 0.18

Definition-Use Count 0.04 0.02 0.05 0.06

Tightness 0.37 0.34 0.39 0.68

Min Coverage 0.05 0.05 0.04 0.28

Coverage 0.20 0.20 0.11 0.26

Max Coverage 0.60 0.63 0.35 0.41

Overlap 0.35 0.44 0.30 0.83

Coupling 0.02 0.02 0.03 0.53

Table 4-3- Summary of regression analysis results

Figures 4-3 to 4-6 are Scatter plots that show the deviation of regression values

from real values. X dimension for all the points in these figures is the regression values.

However, Y dimension for points are in two types. For the points with + shaped markers,

Y is regression values and for the points with diamond-shaped markers, Y is real values

for the metric in code. Therefore, the regression values form the line Y=X and the real

values have some deviation from regression values in Y dimension.

Figures 4-3 implies that except a few outliers, the rest of points have acceptable

deviation from regression values for Count Line Code. For Lines Executable, the points

are more integrated in figure 4-4. However, figure 4-5 shows a more intense scatter for

Lines Declarative and this is even more intense for Cyclomatic Complexity of code in

figure 4-6.

Figures 4-7 to 4-10 project the deviation of regression values from real values for

each sample. The X-axes are the sample numbers. These figures confirm the regression

results which show there can be a reliable estimation for Code Line Code, Lines

Executable, and Lines Declarative based on metrics in specifications. However, the

deviation of estimated values and real values for Cyclomatic Complexity of code is rather

intense.

Page 23 of 46

Figure 4-3- Scatter plot based on regression analysis results for Count Line Code

Figure 4-4- Scatter plot based on regression analysis results for Lines Executable

Page 24 of 46

Figure 4-5- Scatter plot based on regression analysis results for Lines Declarative

Figure 4-6- Scatter plot based on regression analysis results for Cyclomatic Complexity

Page 25 of 46

Figure 4-7- Real values vs. regression values for each sample for Count Line Code

Figure 4-8- Real values vs. regression values for each sample for Lines Executable

Page 26 of 46

Figure 4-9- Real values vs. regression values for each sample for Lines Declarative

Figure 4-10- Real values vs. regression values for each sample for Cyclomatic Complexity

Page 27 of 46

Regression analysis results together with the graphs confirm that three out of four

chosen metrics in code are predictable from metrics in Z specifications. Table 4-6

presents the coefficients for these metrics in regression results.

Component
Count Line
Code

Lines
Executable

Lines
Declarative

Cyclomatic
Complexity

Intercept 120.21 60.74 56.01 5.78

LOC in specifications (LOCS) -1.79 -1.35 -0.44 -0.12

Conceptual Complexity (CC) 3.26 2.48 0.97 0.40

Cyclomatic Complexity Low (CCL) 4.89 3.14 2.81 1.27

Cyclomatic Complexity High (CCH) -0.03 -0.02 -0.02 -0.01

Definition-Use Count (DU) -0.18 -0.13 -0.07 -0.04

Tightness (TI) 566.57 377.12 231.53 60.40

Min Coverage (NCOV) -1473.22 -910.95 -673.96 -180.65

Coverage (COV) 1076.74 669.17 579.60 218.94

Max Coverage (XCOV) -261.73 -152.67 -205.97 -98.11

Overlap (OLAP) 194.55 99.66 94.01 10.30

Coupling (COUP) -1004.59 -605.06 -389.66 -58.85

Table 4-6- Coefficients for the components of regression analysis

According to the presented discussions, the formula for predicting chosen metrics

in code is presented here.

As a conclusion from the results presented in this chapter, it can be said that

apart from Cyclomatic Complexity of code, there are signs for the rest of code metrics,

namely Lines of Code, Lines Executable, and Lines Declarative, which show there are

correlations between selected metrics in specifications and those code metrics.

Nevertheless, there are some validity threats to the results which prevent this study to

make any claim about the precise quality of this correlation. Therefore, a few other

statistical tests, which could be applied in order to identify the precise quality of this

Page 28 of 46

correlation, are ignored in this thesis work. These validity threats are discussed in the

next section.

4.5 Threats to Validity

Two applied simplifications during this research might make threats to validity of

the results. These simplifications have been applied during extraction of the 28 samples

and also, during measurement of metrics for each sample.

The first simplification has been applied in order to form subjects of the study

where the parts of code should represent the implementation of the parts of

specifications. In the process of extracting samples, which is explained before, an

approximation technique is applied. The quality and reasons for applying this technique is

explained here.

Procedure call-backs in code are usual in almost all programming languages and

styles, including the code which is investigated in this study. Though the sub-procedures

of a cluster of procedures in a particular sample participate in implementation of the

cluster of specifications of that sample, they are not taken into account in this study.

That is because considering one further level of procedure call-backs will lead to cluster

interlacement until whole the code becomes just one huge sample. This interlacement

happens because of some procedures which are called by two or more procedures from

different code clusters. Therefore the code parts approximately, and not precisely,

represent the implementation of the specifications and this is a threat to validity of

results of this study.

The other threat to validity of results is in the way of calculating metrics for

samples which is explained in section 4-3. As each sample of this study consists of a

cluster of specifications and a cluster of procedures in code, the metrics should be

calculated for whole the cluster rather than one particular procedure or Z schemata.

There are problems with calculating the metrics since the metrics are defined for a single

procedure or Z schemata. In order to get around this problem it is needed to extend the

definition of those metrics for clusters.

According to definition of size and complexity metrics, The value of a size or

complexity metric for a cluster of items, either procedures in code or schemata of Z

specifications, is equal to summation of the values of that metric for each of items in that

cluster. For example the value of Count Line Code for a cluster of procedures is equal to

summation of values of Count Line Code for each of procedures in that cluster.

For semantic-based metrics in Z specification the average of measurement values

for each schema in the cluster is calculated. This is the simplified way of calculating these

metrics, though compatible with the definition of the metrics. The more precise way of

calculating semantic-based metrics for clusters is more complex and in that way, the

weight of each schema in the cluster should be taken into account. To find the weight of

each schema, the structure of schemata should be inspected and be compared with the

other schemata in the cluster. Then a percentage of weight should be considered for each

schema in a way that the summation of the percentages for schemata in the cluster

becomes 100. This way of calculating metrics is costlier in terms of time and expertise

needed to judge the complexity of each schema.

All subjects of this experiment are extracted from one system which is

implemented by one specific development team and one programming language. This

issue should also be considered as a thread to validity of this study.

Page 29 of 46

5. Chapter 5:

Conclusions

5.1 Introduction

The goal of this chapter is to conclude the results of the master thesis which is

aimed at examining if Z-based specification measures can be used for predicting

properties of related code implementations.

For this reason three different studies are performed; a literature review in order

to collect an appropriate set of metrics in Z specifications, another literature review in

order to identify the code metrics which play a major role as input for outstanding

software cost estimation models, and an experiment aimed at examining the correlation

between collected specifications and code metrics. The next section will provide a

summary for the results of each conducted study in this master thesis.

5.2 Study on Z Metrics

The literature review on the specification metrics is performed with focus on

applicability on Z-specifications and availability of tools for measurement. This review

resulted in three categories of metrics including total of eleven metrics, namely line of

code in specifications, conceptual complexity, two metrics for logical (cyclomatic)

complexity, definition use count, coupling, four metrics for cohesion, and overlap.

5.3 Study on Code Metrics

A literature review is performed in order to find the code metrics which can be

used as input for outstanding software cost estimation models. Therefore, software cost

estimation models are reviewed to find the outstanding ones and the useful code metrics

as inputs parameters for them.

According to results of this study, COCOMO II is the most widely used among

non-proprietary cost estimation models. The cost estimation model called Doty is also

used despite of lack of enough precision. The code metric called Source Line of Code, or

a more precise definition of that called Delivered Source Instructions, are used in both of

these models, and a few other reviewed models, as input parameter for estimating the

cost of software.

Being able to estimate complexity of code will also help to identify the risky parts

of the implementation to apply special management and/or software development

techniques as complexity is important in reducing the cost of software maintenance.

5.4 The Experiment

Because of lack of enough experimental subjects, an industrial project is broke

down to smaller samples with a step-wise method which is explained in section 4-2-1 of

chapter 4. Then, the measurement is performed on 28 extracted subjects each of which

containing a set of Z schemata and a set of procedures/functions in code. List of study

Page 30 of 46

subjects is provided in Appendix A and the result of measurements in Appendix B. Full

results of this study are available on internet1.

Via a few statistical tests on measurement data, it revealed that metrics in Z-

specifications are in correlation with size-based metrics in code. Nevertheless, because of

validity threats which are explained in chapter 4, this master thesis is unable to make

any claim about exact quality of correlation between Z metrics and code metrics.

However, this study could not find any prove for correlation of specification metrics and

the only studied metric for complexity of code, Cyclomatic Complexity.

5.5 Further Studies

Despite of proof for existence of correlation between specification and code

metrics, no total cost estimation model is proposed in this thesis work. However, if the

mentioned validity threats are removed or alleviated, then the last part of this study can

be repeated, with more statistical tests, in order to investigate the exact quality of

correlation between measures in specifications and measures in implementation.

According to results of the literature review study for cost estimation models, a good

estimation for size of code can lead to total software cost estimation model which is a

mixing with existing cost estimation models like COCOMO II.

The further studies can be conducted once the software industry start to use Z

specifications more widely and reveal the code of the software. It is a good situation to

raise the need of an official repository of formal specifications and related codes to

facilitate later studies on formal specifications. Moreover, in case of availability of more

measurement tools for Z-specifications, the correlation of more metrics can be examined.

1
 http://goo.gl/yGnC7

https://docs.google.com/spreadsheet/ccc?key=0AvuP_wv3juEydFZ5Vy1JTHU2QlNzUkNMcEF4R2hHLWc&hl=en_US
http://goo.gl/yGnC7

Page 31 of 46

Appendix A- List of Study Subjects

Procedures Z Schemas

1 Admin.FinishOp AdminFinishOp

2 Admin.Logon AdminLogon

3 Admin.Logout AdminLogout

4 Admin.StartOp AdminStartOp

5

AdminToken.IsPresent
Clock.TheCurrentTime
Door.TheCurrentDoor
Door.TheDoorAlarm
Floppy.IsPresent
Floppy.CurrentFloppy
Latch.IsLocked
Screen.SetMessage
UserToken.IsPresent

DoorLatchAlarm
UserToken
AdminToken
Finger
Floppy
Keyboard

6

Alarm.UpdateDevice
Screen.UpdateScreen
Updates.Activity
Updates.EarlyActivity
Latch.UpdateDevice
Display.UpdateDevice
Admin.SecurityOfficerIsPresent

TISEarlyUpdate
TISUpdate

7
AuditLog.AddElementToLog
AuditLog.TruncateLog

AddElementsToLog

8 AuditLog.ArchiveLog ArchiveLog

9 AuditLog.ClearLogEntries ClearLog

10

AuditLog.Init
AdminToken.Init
CertificateStore.Init
ConfigData.Init
Configuration.Init
Display.Init
Door.Init
Enclave.Init
Floppy.Init
Keyboard.Init
KeyStore.Init
TISMain.Init
UserToken.Init
Latch.Init
Admin.Init
Stats.Init
Screen.Init

StartContext
StartNonEnrolledStation
StartEnrolledStation
TISStartup
InitDoorLatchAlarm
InitKeyStore
InitConfig
InitAdmin
InitStats
InitAuditLog
InitIDStation

Page 32 of 46

11

Cert.Attr.Auth.Construct
Cert.Attr.Auth.TheRole
Cert.Attr.Auth.TheClearance
Cert.Attr.Auth.Extract
Cert.Attr.IandA.TheTemplate
IandACert.Extract
PrivCert.TheRole
PrivCert.TheClearance
PrivCert.Extract
AttrCert.TheBaseCert
IDCert.TheSubject
IDCert.ThePublicKey
IDCert.Extract
Cert.TheIssuer
Cert.TheID
Cert.TheMechanism
Cert.GetData
Cert.GetSignature
CertProcessing.ExtractIDCertData
CertProcessing.ExtractPrivCertData
CertProcessing.ExtractIACertData
CertProcessing.ExtractAuthCertData
CertProcessing.ObtainRawData
CertProcessing.ObtainSignatureData
CertProcessing.ConstructAuthCert
Cert.Attr.Auth.SetContents
CertProcessing.AddAuthSignature
UserToken.GetClass

NewAuthCert
CertificateId
Certificate
IDCert
CAIdCert
AttCertificate
PrivCert
AuthCert
IandACert

12

Cert.Attr.Auth.IsOK
KeyStore.PrivateKeyPresent
KeyStore.IssuerIsThisTIS
Cert.IssuerKnown
Cert.IsOK
KeyStore.KeyMatchingIssuerPresent
KeyStore.ThisTIS

CertIssuerKnown
CertOK
CertIssuerIsThisTIS
AuthCertOK
KeyStore

13

ConfigData.ValidateFile
ConfigData.AuthPeriodIsEmpty
ConfigData.GetAuthPeriod
ConfigData.IsInEntryPeriod
ConfigData.TheLatchUnlockDuration
ConfigData.TheAlarmSilentDuration
ConfigData.TheFingerWaitDuration
ConfigData.TheTokenRemovalDuration
ConfigData.TheEnclaveClearance
ConfigData.TheSystemMaxFar
ConfigData.TheAlarmThresholdEntries

Config

14 Display.SetValue

AuditDoor
AuditLatch
AuditAlarm
AuditLogAlarm
AuditDisplay
AuditScreen
NoChange
LogChange

15 Enclave.CompleteFailedAdminLogon FailedAdminTokenRemoved

16 Enclave.ResetScreenMessage
ResetScreenMessage
UserEntryContext

17 UserToken.UpdateAuthCert UpdateUserToken

18 Floppy.Write UpdateFloppy

19
KeyStore.IsVerifiedBy
KeyStore.Sign

KEYPART

Page 33 of 46

20

Stats.AddFailedBio
Stats.AddSuccessfulEntry
Stats.AddFailedEntry
Stats.AddSuccessfulBio

AddSuccessfulEntryToStats
AddFailedEntryToStats
AddSuccessfulBioCheckToStats
AddFailedBioCheckToStats

21
ConfigData.TheDisplayFields
Stats.DisplayStats

IDStation

22
TISMain.Processing
TISMain.MainLoopBody

TISIdle
TISAdminOp
TISProcessing

23 UserEntry.FailedAccessTokenRemoved
FailedAccessTokenRemoved
TISCompleteFailedAccess

24 UserEntry.Progress TISUserEntryOp

25

UserEntry.ReadFinger
UserEntry.UserTokenTorn
UserEntry.ValidateUserToken
UserEntry.ValidateFinger
UserEntry.UpdateToken
UserEntry.ValidateEntry
UserEntry.StartEntry
UserToken.GetIandATemplate
UserToken.ReadAndCheck

ReadFingerOK
NoFinger
FingerTimeout
TISReadFinger
EntryOK
WriteUserTokenFail
WriteUserToken
TISWriteUserToken
WriteUserTokenOK
ValidateFingerFail
TISValidateFinger
FingerOK
ValidateFingerOK
BioCheckRequired
ValidateUserTokenOK
BioCheckNotRequired
ReadUserToken
TISReadUserToken

26 UserEntry.UnlockDoor

UnlockDoorOK
WaitingTokenRemoval
TokenRemovalTimeout
TISUnlockDoor

27 UserToken.AddAuthCert AddAuthCertToUserToken

Page 34 of 46

28

AdminToken.GetRole
AdminToken.Interface.Poll
AdminToken.Poll
AdminToken.ReadAndCheck
Bio.Poll
Clock.Poll
ConfigData.UpdateData
ConfigData.WriteFile
Configuration.UpdateData
Display.ChangeDoorUnlockedMsg
Door.LockDoor
Door.Poll
Door.UnlockDoor
Door.UpdateDoorAlarm
Enclave.AdminLogout
Enclave.AdminOp
Enclave.ArchiveLogOp
Enclave.BadAdminTokenTear
Enclave.CompleteFailedEnrolment
Enclave.EnrolOp
Enclave.OverrideDoorLockOp
Enclave.ProgressAdminActivity
Enclave.ReadEnrolmentData
Enclave.ShutdownOp
Enclave.StartAdminActivity
Enclave.UpdateConfigDataOp
Enclave.ValidateAdminToken
Enclave.ValidateEnrolmentData
Enrolment.Validate
Floppy.CheckWrite
Floppy.Read
Keyboard.Interface.Poll
Keyboard.Poll
Keyboard.Read
Latch.SetTimeout
Latch.UpdateInternalLatch
UserEntry.DisplayPollUpdate
UserToken.Interface.Poll
UserToken.Poll
KeyStore.AddKey
Poll.Activity

AdminTokenOK
AdminTokenTimeout
ClearLogThenAddElements
CompleteFailedEnrolment
EnrolContext
FailedEnrolFloppyRemoved
FinishArchiveLog
FinishArchiveLogBadMatch
FinishArchiveLogFail
FinishArchiveLogNoFloppy
FinishArchiveLogOK
FinishUpdateConfigData
FinishUpdateConfigDataFail
FinishUpdateConfigDataOK
LockDoor
LoginAborted
NoOpRequest
OverrideDoorLockOK
PollAdminToken
PollDoor
PollFinger
PollFloppy
PollKeyboard
PollTime
PollUserToken
ReadAdminToken
ReadEnrolmentData
ReadEnrolmentFloppy
RequestEnrolment
ShutdownOK
ShutdownWaitingDoor
StartArchiveLog
StartArchiveLogOK
StartArchiveLogWaitingFloppy
StartUpdateConfigData
StartUpdateConfigOK
StartUpdateConfigWaitingFloppy
TISAdminLogon
TISAdminLogout
TISArchiveLogOp
TISCompleteFailedAdminLogon
TISCompleteTimeoutAdminLogout
TISOverrideDoorLockOp
TISPoll
TISReadAdminToken
TISShutdownOp
TISStartAdminOp
TISUpdateConfigDataOp
TISValidateAdminToken
TokenRemovedAdminLogout
UnlockDoor
ValidateAdminTokenFail
ValidateAdminTokenOK
ValidateEnrolmentData
ValidateEnrolmentDataFail
ValidateEnrolmentDataOK
ValidateOpRequest
ValidateOpRequestOK
WaitingAdminTokenRemoval
WaitingFloppyRemoval
UpdateKeyStore

Page 35 of 46

Appendix B- Measurement Results

Full results of this study are available on internet1

1
 http://goo.gl/yGnC7

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

Admin.FinishOp 5 1 4 1 AdminFinishOp 24.00 33.00 17.00 3457.00 114.00 0.67 0.67 0.67 0.67 1.00 0.24

Sample 01

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

Admin.Logon 7 2 5 1 AdminLogon 31.00 36.00 16.00 3248.00 108.00 0.65 0.65 0.65 0.65 1.00 0.23

Sample 02

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

Admin.Logout 5 1 4 1 AdminLogout 23 32 16 3248 111 0.65 0.65 0.65 0.65 1.00 0.24

Sample 03

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

Admin.StartOp 6 1 5 1 AdminStartOp 31 39 19 3875 115 0.69 0.69 0.69 0.69 1.00 0.23

Sample 04

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

AdminToken.IsPresent 5 1 4 1 AdminToken 4 2 1 1 0 0 0 0 0 0 0

Clock.TheCurrentTime 5 1 4 1 DoorLatchAlarm 15 16 1 1303 29 0.00 0.11 0.48 0.67 0.66 0.12

Door.TheCurrentDoor 5 1 4 1 Finger 4 2 1 1 0 0.00 0.00 0.00 0.00 0.00 0.00

Door.TheDoorAlarm 5 1 4 1 Floppy 5 3 1 1 0 0.00 0.00 0.00 0.00 0.00 0.00

Floppy.IsPresent 21 11 10 1 Keyboard 4 2 1 1 0 0.00 0.00 0.00 0.00 0.00 0.00

Floppy.CurrentFloppy 5 1 4 1 UserToken 4 2 1 1 0 0.00 0.00 0.00 0.00 0.00 0.00

Latch.IsLocked 5 1 4 1 Summation 36 27 6 1308 29 0.00 0.11 0.48 0.67 0.66 0.12

Screen.SetMessage 13 9 4 2 Average 6 4.5 1 218 4.83 0.00 0.02 0.08 0.11 0.11 0.02

UserToken.IsPresent 5 1 4 1

Summation 69 27 42 10

Average 7.67 3.00 4.67 1.11

Sample 05

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

Alarm.UpdateDevice 9 6 3 2 TISEarlyUpdate 98 78 11 2173 52 0.36 0.36 0.57 0.64 0.27 0.19

Screen.UpdateScreen 59 49 10 8 TISUpdate 208 180 43 9121 498 0.08 0.11 0.56 0.68 0.13 0.49

Updates.Activity 11 5 6 1 Summation 306 258 54 11294 550 0.44 0.47 1.13 1.32 0.39 0.68

Updates.EarlyActivity 6 2 4 1 Average 153 129 27 5647 275 0.22 0.24 0.57 0.66 0.20 0.34

Latch.UpdateDevice 17 13 4 3

Display.UpdateDevice 32 25 7 4

Admin.SecurityOfficerIsPresent 5 1 4 1

Summation 139 101 38 20

Average 19.86 14.43 5.43 2.86

Sample 06

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

AuditLog.AddElementToLog 23 14 9 2 AddElementsToLog 36 17 3 437 11 1 1 1 1 1 0.13

AuditLog.TruncateLog 17 11 6 1

Summation 40 25 15 3

Average 20 12.5 7.5 1.5

Sample 07

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

AuditLog.ArchiveLog 68 56 12 8 ArchiveLog 28 18 3 437 0 1 1 1 1 1 0.04

Sample 08

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

AuditLog.ClearLogEntries 29 24 5 4 ClearLog 32 25 3 437 10 0.4 0.5 0.58 0.7 0.41 0.04

Sample 09

https://docs.google.com/spreadsheet/ccc?key=0AvuP_wv3juEydFZ5Vy1JTHU2QlNzUkNMcEF4R2hHLWc&hl=en_US
http://goo.gl/yGnC7

Page 36 of 46

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

AuditLog.Init 118 93 25 9 StartContext 187 173 51 8907 311 0.10 0.10 0.10 0.10 1.00 0.28

AdminToken.Init 5 2 3 1 StartNonEnrolledStation 202 181 53 8951 316 0.08 0.09 0.60 0.73 0.16 0.46

CertificateStore.Init 22 18 4 3 StartEnrolledStation 202 181 53 8951 316 0.08 0.09 0.60 0.73 0.16 0.46

ConfigData.Init 77 56 21 3 TISStartup 221 193 55 8995 321 0.07 0.08 0.63 0.72 0.11 0.44

Configuration.Init 4 1 3 1 InitDoorLatchAlarm 23 22 1 1391 29 0.77 0.77 0.77 0.77 1.00 0.09

Display.Init 13 9 4 2 InitKeyStore 12 10 1 439 3 0.80 0.80 0.80 0.80 1.00 0.04

Door.Init 6 3 3 1 InitConfig 23 18 1 437 0 0.00 0.13 0.17 0.25 0.00 0.02

Enclave.Init 8 5 3 2 InitAdmin 21 31 1 3083 56 0.64 0.64 0.64 0.64 0.99 0.23

Floppy.Init 47 34 13 3 InitStats 14 11 1 89 0 0.00 0.25 0.25 0.25 0.96 0.00

Keyboard.Init 4 1 3 1 InitAuditLog 10 7 1 1 0 0.00 0.50 0.50 0.50 0.00 0.00

KeyStore.Init 35 23 12 4 InitIDStation 187 170 1 8907 310 0.00 0.01 0.18 0.54 0.00 0.35

TISMain.Init 33 30 3 2 Summation 1102 997 219 50151 1662 2.53 3.46 5.24 6.03 5.38 2.36

UserToken.Init 5 2 3 1 Average 100.18 90.64 19.91 4559.18 151.09 0.23 0.31 0.48 0.55 0.49 0.21

Latch.Init 5 2 3 1

Admin.Init 6 2 4 1

Stats.Init 8 4 4 1

Screen.Init 35 28 7 3

Summation 431 313 118 39

Average 25.35 18.41 6.94 2.29

Sample 10

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

Cert.Attr.Auth.Construct 42 26 16 1 NewAuthCert 54 42 1 875 3 0 0.12 0.76 0.94 0.72 0.07

Cert.Attr.Auth.TheRole 5 1 4 1 CertificateId 3 1 1 1 0 0 0 0 0 0 0

Cert.Attr.Auth.TheClearance 5 1 4 1 Certificate 5 3 1 1 0 0 0 0 0 0 0

Cert.Attr.Auth.Extract 37 27 10 1 IDCert 5 3 1 1 0 0 0 0 0 0 0

Cert.Attr.IandA.TheTemplate 5 1 4 1 CAIdCert 15 11 1 1 0 1 1 1 1 1 0

Cert.Attr.IandA.Extract 36 26 10 1 AttCertificate 5 3 1 1 0 0 0 0 0 0 0

UserToken.GetClass 5 1 4 1 PrivCert 5 3 1 1 0 0 0 0 0 0 0

Cert.Attr.Priv.TheRole 5 1 4 1 AuthCert 5 3 1 1 0 0 0 0 0 0 0

Cert.Attr.Priv.TheClearance 5 1 4 1 IandACert 4 2 1 1 0 0 0 0 0 0 0

Cert.Attr.Priv.Extract 37 27 10 1 Summation 101 71 9 883 3 1.00 1.12 1.76 1.94 1.72 0.07

CertProcessing.AddAuthSignature 10 3 7 1 Average 11.22 7.89 1.00 98.11 0.33 0.11 0.12 0.20 0.22 0.19 0.01

Cert.Attr.TheBaseCert 5 1 4 1

Cert.Attr.Auth.SetContents 18 7 11 1

Cert.ID.TheSubject 5 1 4 1

Cert.ID.ThePublicKey 5 1 4 1

Cert.ID.Extract 53 42 11 2

CertProcessing.ConstructAuthCert 31 2 29 1

Cert.TheIssuer 5 1 4 1

Cert.TheID 5 1 4 1

Cert.TheMechanism 6 1 5 1

Cert.GetData 11 4 7 1

Cert.GetSignature 11 4 7 1

CertProcessing.ExtractIDCertData 33 24 9 1

CertProcessing.ExtractPrivCertData 32 23 9 1

CertProcessing.ExtractIACertData 30 21 9 1

CertProcessing.ExtractAuthCertData 32 23 9 1

CertProcessing.ObtainRawData 13 5 8 1

CertProcessing.ObtainSignatureData 13 5 8 1

Summation 500 281 219 29

Average 17.86 40.14 31.29 4.14

Sample 11

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

Cert.Attr.Auth.IsOK 11 5 6 1 CertIssuerKnown 17 14 1 439 3 0.75 0.75 0.75 0.75 0.98 0.04

KeyStore.PrivateKeyPresent 5 1 4 1 CertOK 22 17 1 439 3 0.80 0.80 0.80 0.80 0.98 0.04

KeyStore.IssuerIsThisTIS 12 6 6 2 CertIssuerIsThisTIS 18 15 1 439 3 0.80 0.80 0.80 0.80 0.76 0.04

Cert.IssuerKnown 8 3 5 1 AuthCertOK 32 25 1 439 3 0.86 0.86 0.86 0.86 0.69 0.04

Cert.IsOK 19 12 7 2 KeyStore 6 6 1 439 3 0.67 0.67 0.67 0.67 1.00 0.04

KeyStore.KeyMatchingIssuerPresent 9 3 6 1 Summation 95 77 5 2195 15 3.87 3.87 3.87 3.87 4.41 0.21

KeyStore.ThisTIS 5 1 4 1 Average 19.00 15.40 1.00 439.00 3.00 0.77 0.77 0.77 0.77 0.88 0.04

Summation 69 31 38 9

Average 9.86 4.43 5.43 1.29

Sample 12

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

ConfigData.ValidateFile 402 273 129 15 Config 12 10 1 437 0 1 1 1 1 1 0.04

ConfigData.AuthPeriodIsEmpty 19 14 5 4

ConfigData.GetAuthPeriod 19 12 7 3

ConfigData.IsInEntryPeriod 5 1 4 1

ConfigData.TheLatchUnlockDuration 5 1 4 1

ConfigData.TheAlarmSilentDuration 5 1 4 1

ConfigData.TheFingerWaitDuration 5 1 4 1

ConfigData.TheTokenRemovalDuration 5 1 4 1

ConfigData.TheEnclaveClearance 5 1 4 1

ConfigData.TheSystemMaxFar 5 1 4 1

ConfigData.TheAlarmThresholdEntries 15 10 5 2

Summation 490 316 174 31

Average 44.55 28.73 15.82 2.82

Sample 13

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

Display.SetValue 13 9 4 2 AuditDoor 57 37 9 1739 49 0.77 0.77 0.77 0.77 1.00 0.17

AuditLatch 57 37 9 1739 46 0.77 0.77 0.77 0.77 1.00 0.17

AuditAlarm 58 37 9 1739 43 0.77 0.77 0.77 0.77 1.00 0.17

AuditLogAlarm 41 20 3 437 14 1.00 1.00 1.00 1.00 0.97 0.12

AuditDisplay 152 134 41 8687 377 0.62 0.62 0.64 0.67 0.54 0.49

AuditScreen 152 134 41 8687 330 0.62 0.62 0.64 0.67 0.52 0.49

NoChange 138 135 42 8896 398 0.65 0.66 0.68 0.69 0.47 0.47

LogChange 199 171 42 8896 481 0.43 0.57 0.64 0.71 0.29 0.46

Summation 854 705 196 40820 1738 5.63 5.77 5.91 6.04 5.79 2.55

Average 106.75 88.13 24.50 5102.50 217.25 0.70 0.72 0.74 0.76 0.72 0.32

Sample 14

Page 37 of 46

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

Enclave.CompleteFailedAdminLogon 12 9 3 1 FailedAdminTokenRemoved 209 175 43 9105 557 0.08 0.10 0.59 0.70 0.13 0.49

Sample 15

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

Enclave.ResetScreenMessage 13 9 4 4 ResetScreenMessage 39 56 15 3039 370 0.48 0.48 0.60 0.61 0.13 0.28

UserEntryContext 186 185 42 8896 677 0.00 0.08 0.57 0.66 0.00 0.50

Summation 225 241 57 11935 1047 0.48 0.56 1.17 1.27 0.13 0.78

Average 112.50 120.50 28.50 5967.50 523.50 0.24 0.28 0.59 0.63 0.06 0.39

Sample 16

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

UserToken.UpdateAuthCert 23 15 8 2 UpdateUserToken 156 149 41 8687 312 0.11 0.11 0.39 0.67 0.51 0.50

Sample 17

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

Floppy.Write 46 37 9 4 UpdateFloppy 173 164 41 8687 394 0.09 0.10 0.53 0.61 0.21 0.48

Sample 18

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

KeyStore.IsVerifiedBy 36 24 12 3 KEYPART 3 1 1 1 0 0 0 0 0 0 0

KeyStore.Sign 37 26 11 3

Summation 73 50 23 6

Average 36.5 25 11.5 3

Sample 19

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

Stats.AddFailedBio 7 3 4 2 AddSuccessfulEntryToStats 14 11 1 1 24 0 0.25 0.25 0.25 0 0.00

Stats.AddSuccessfulEntry 7 3 4 2 AddFailedEntryToStats 14 11 1 1 24 0 0.25 0.25 0.25 0 0.01

Stats.AddFailedEntry 7 3 4 2 AddSuccessfulBioCheckToStats 14 11 1 1 24 0 0.25 0.25 0.25 0 0.00

Stats.AddSuccessfulBio 7 3 4 2 AddFailedBioCheckToStats 14 11 1 1 24 0 0.25 0.25 0.25 0 0.00

Summation 28 12 16 8 Summation 56 44 4 4 96 0 1 1 1 0 0.02

Average 7 3 4 2 Average 14 11 1 1 24 0 0.25 0.25 0.25 0 0.00

Sample 20

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

ConfigData.TheDisplayFields 30 13 17 1 IDStation 126 126 1 8687 310 0 0.02 0.55 0.66 0.54 0.49

Stats.DisplayStats 12 4 8 1

Summation 42 17 25 2

Average 21 8.5 12.5 1

Sample 21

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

TISMain.Processing 28 21 7 6 TISIdle 142 139 1 9732 371 0 0.02 0.59 0.68 0.53 0.48

TISMain.MainLoopBody 13 10 3 3 TISAdminOp 540 445 80 16838 1771 0 0.04 0.65 0.76 0.00 0.36

Summation 41 31 10 9 TISProcessing 1369 1049 184 38574 3300 0 0.01 0.55 0.81 0.00 0.23

Average 20.5 15.5 5 4.5 Summation 2051 1633 265 65144 5442 0 0.06 1.79 2.25 0.53 1.07

Average 683.67 544.33 88.33 21714.67 1814.00 0.00 0.02 0.60 0.75 0.18 0.36

Sample 22

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

UserEntry.FailedAccessTokenRemoved 14 10 4 1 FailedAccessTokenRemoved 229 205 44 9314 791 0 0.01 0.50 0.69 0.00 0.49

TISCompleteFailedAccess 244 221 48 10150 847 0 0.01 0.49 0.68 0.00 0.47

Summation 473 426 92 19464 1638 0 0.02 0.99 1.37 0.00 0.96

Average 236.50 213.00 46.00 9732.00 819.00 0 0.01 0.49 0.68 0.00 0.48

Sample 23

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

UserEntry.Progress 24 17 7 7 TISUserEntryOp 615 497 92 19346 1862 0 0.02 0.45 0.76 0.00 0.33

Sample 24

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

UserEntry.ReadFinger 33 28 5 4 ReadFingerOK 222 200 45 9523 768 0.00 0.08 0.60 0.68 0.00 0.49

UserEntry.UserTokenTorn 14 10 4 1 NoFinger 158 151 44 9314 341 0.11 0.11 0.11 0.11 1.00 0.29

UserEntry.ValidateUserToken 67 60 7 4 FingerTimeout 221 199 44 9314 767 0.00 0.08 0.59 0.67 0.00 0.50

UserEntry.ValidateFinger 62 43 19 4 TISReadFinger 276 242 52 10986 969 0.00 0.01 0.52 0.71 0.00 0.46

UserEntry.UpdateToken 32 27 5 4 EntryOK 224 200 44 9314 774 0.00 0.08 0.60 0.68 0.00 0.49

UserEntry.ValidateEntry 32 28 4 3 WriteUserTokenFail 241 208 46 9732 789 0.00 0.07 0.58 0.69 0.00 0.49

UserEntry.StartEntry 5 2 3 1 WriteUserToken 259 222 48 10150 865 0.00 0.07 0.59 0.69 0.00 0.48

UserToken.GetIandATemplate 5 1 4 1 TISWriteUserToken 288 246 50 10568 963 0.00 0.01 0.51 0.70 0.00 0.46

UserToken.ReadAndCheck 161 119 42 2 WriteUserTokenOK 241 208 46 9732 789 0.00 0.07 0.58 0.69 0.00 0.49

Summation 411 318 93 24 ValidateFingerFail 229 205 44 9314 791 0.00 0.01 0.50 0.69 0.00 0.49

Average 45.67 35.33 10.33 2.67 TISValidateFinger 282 245 48 10150 967 0.00 0.03 0.42 0.72 0.00 0.45

FingerOK 14 10 1 1 0 1.00 1.00 1.00 1.00 1.00 0.00

ValidateFingerOK 231 205 44 9314 791 0.00 0.01 0.50 0.69 0.00 0.49

BioCheckRequired 240 207 47 9941 772 0.00 0.08 0.59 0.68 0.00 0.49

ValidateUserTokenOK 260 221 49 10359 849 0.00 0.08 0.60 0.69 0.00 0.48

BioCheckNotRequired 223 199 44 9314 767 0.00 0.08 0.59 0.67 0.00 0.50

ReadUserToken 224 200 45 9523 787 0.00 0.08 0.60 0.68 0.00 0.49

TISReadUserToken 227 202 45 9523 787 0.00 0.08 0.60 0.68 0.00 0.49

Summation 4060 3570 786 166072 13536 1.11 2.01 10.07 12.11 2.00 8.02

Average 225.56 198.33 43.67 9226.22 752.00 0.06 0.11 0.56 0.67 0.11 0.45

Sample 25

Page 38 of 46

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

UserEntry.UnlockDoor 24 20 4 3 UnlockDoorOK 238 212 44 9314 815 0.00 0.01 0.53 0.70 0.00 0.48

WaitingTokenRemoval 159 153 45 9523 374 0.10 0.10 0.10 0.10 1.00 0.28

TokenRemovalTimeout 222 200 45 9523 773 0.00 0.08 0.60 0.68 0.00 0.49

TISUnlockDoor 271 240 51 10777 950 0.00 0.01 0.54 0.71 0.00 0.45

Summation 890 805 185 39137 2912 0.10 0.20 1.77 2.19 1.00 1.71

Average 222.50 201.25 46.25 9784.25 728.00 0.03 0.05 0.44 0.55 0.25 0.43

Sample 26

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

UserToken.AddAuthCert 51 41 10 4 AddAuthCertToUserToken 42 28 7 1293 26 0.89 0.89 0.89 0.89 0.51 0.08

Sample 27

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

AdminToken.GetRole 5 1 4 1 AdminTokenOK 25 15 1 439 3 0.00 0.40 0.40 0.40 0.00 0.04

AdminToken.Interface.Poll 4 1 3 1 AdminTokenTimeout 235 206 46 9732 826 0.00 0.07 0.59 0.69 0.00 0.49

AdminToken.Poll 5 2 3 1 ClearLogThenAddElements 35 28 3 437 10 0.36 0.45 0.53 0.64 0.41 0.04

AdminToken.ReadAndCheck 136 103 33 4 CompleteFailedEnrolment 196 178 45 9523 487 0.08 0.10 0.56 0.69 0.16 0.48

Bio.Poll 5 1 4 1 EnrolContext 170 160 41 8687 318 0.10 0.11 0.38 0.65 0.40 0.50

Clock.Poll 4 1 3 1 FailedEnrolFloppyRemoved 184 169 43 9105 460 0.09 0.10 0.57 0.70 0.16 0.49

ConfigData.UpdateData 30 13 17 1 FinishArchiveLog 207 181 49 10359 561 0.08 0.09 0.60 0.73 0.12 0.48

ConfigData.WriteFile 150 123 27 3 FinishArchiveLogBadMatch 225 185 48 10150 570 0.08 0.09 0.61 0.73 0.11 0.48

Configuration.UpdateData 112 74 38 3 FinishArchiveLogFail 241 198 50 10568 579 0.07 0.09 0.62 0.73 0.10 0.47

Display.ChangeDoorUnlockedMsg 7 3 4 2 FinishArchiveLogNoFloppy 223 184 47 9941 565 0.08 0.09 0.61 0.72 0.11 0.49

Door.LockDoor 7 4 3 1 FinishArchiveLogOK 207 181 49 10359 561 0.08 0.09 0.60 0.73 0.12 0.48

Door.Poll 34 28 6 4 FinishUpdateConfigData 225 184 48 10150 565 0.08 0.09 0.61 0.73 0.11 0.48

Door.UnlockDoor 15 11 4 1 FinishUpdateConfigDataFail 224 184 47 9941 565 0.08 0.09 0.61 0.72 0.11 0.49

Door.UpdateDoorAlarm 27 21 6 3 FinishUpdateConfigDataOK 225 184 48 10150 565 0.08 0.09 0.61 0.73 0.11 0.48

Enclave.AdminLogout 27 23 4 4 LockDoor 24 23 7 1303 56 0.79 0.79 0.79 0.79 1.00 0.12

Enclave.AdminOp 14 10 4 4 LoginAborted 230 202 44 9314 799 0.00 0.08 0.59 0.68 0.00 0.50

Enclave.ArchiveLogOp 56 42 14 2 NoOpRequest 185 170 46 9732 492 0.09 0.10 0.51 0.70 0.23 0.49

Enclave.BadAdminTokenTear 11 8 3 1 OverrideDoorLockOK 230 190 46 9732 549 0.08 0.09 0.65 0.73 0.08 0.48

Enclave.CompleteFailedEnrolment 8 5 3 2 PollAdminToken 29 25 2 210 13 0.75 0.75 0.75 0.75 0.55 0.01

Enclave.EnrolOp 13 9 4 3 PollDoor 40 37 7 1303 35 0.75 0.75 0.75 0.75 1.00 0.12

Enclave.OverrideDoorLockOp 15 11 4 1 PollFinger 28 25 2 210 2 0.75 0.75 0.75 0.75 0.55 0.01

Enclave.ProgressAdminActivity 16 11 5 4 PollFloppy 30 27 2 210 23 0.40 0.60 0.67 0.80 0.11 0.01

Enclave.ReadEnrolmentData 12 9 3 2 PollKeyboard 29 25 3 419 3 0.75 0.75 0.75 0.75 1.00 0.01

Enclave.ShutdownOp 21 17 4 2 PollTime 39 35 7 1303 39 0.70 0.70 0.70 0.70 1.00 0.12

Enclave.StartAdminActivity 56 37 19 3 PollUserToken 28 25 2 210 27 0.75 0.75 0.75 0.75 0.55 0.01

Enclave.UpdateConfigDataOp 27 21 6 4 ReadAdminToken 209 176 45 9523 543 0.08 0.10 0.57 0.71 0.15 0.49

Enclave.ValidateAdminToken 39 33 6 3 ReadEnrolmentData 201 182 45 9523 506 0.08 0.09 0.59 0.70 0.13 0.47

Enclave.ValidateEnrolmentData 31 25 6 2 ReadEnrolmentFloppy 184 169 43 9105 460 0.09 0.10 0.57 0.70 0.16 0.49

Enrolment.Validate 119 85 34 7 RequestEnrolment 184 169 43 9105 365 0.09 0.10 0.51 0.69 0.23 0.49

Floppy.CheckWrite 22 17 5 3 ShutdownOK 223 186 45 9523 489 0.08 0.09 0.64 0.73 0.08 0.48

Floppy.Read 32 23 9 3 ShutdownWaitingDoor 184 169 44 9314 463 0.09 0.10 0.55 0.70 0.19 0.49

Keyboard.Interface.Poll 4 1 3 1 StartArchiveLog 297 251 51 10777 1139 0.00 0.06 0.61 0.72 0.00 0.46

Keyboard.Poll 4 1 3 1 StartArchiveLogOK 195 175 45 9523 526 0.08 0.09 0.61 0.72 0.13 0.48

Keyboard.Read 12 5 7 1 StartArchiveLogWaitingFloppy 191 173 45 9523 525 0.08 0.10 0.58 0.70 0.16 0.49

KeyStore.AddKey 31 22 9 3 StartUpdateConfigData 292 248 51 10777 1116 0.00 0.06 0.62 0.72 0.00 0.47

Latch.SetTimeout 5 1 4 1 StartUpdateConfigOK 191 173 45 9523 502 0.08 0.10 0.58 0.70 0.16 0.49

Latch.UpdateInternalLatch 22 17 5 3 StartUpdateConfigWaitingFloppy 191 173 45 9523 525 0.08 0.10 0.58 0.70 0.16 0.49

Poll.Activity 10 6 4 1 TISAdminLogon 343 274 58 12240 1250 0.00 0.06 0.63 0.74 0.00 0.44

UserEntry.DisplayPollUpdate 12 8 4 3 TISAdminLogout 295 249 53 11195 1111 0.00 0.06 0.61 0.72 0.00 0.46

UserToken.Interface.Poll 4 1 3 1 TISArchiveLogOp 376 312 64 13494 1353 0.00 0.05 0.63 0.74 0.00 0.43

UserToken.Poll 5 2 3 1 TISCompleteFailedAdminLogon 221 184 45 9523 582 0.08 0.09 0.58 0.70 0.13 0.48

Summation 1169 836 333 93 TISCompleteTimeoutAdminLogout 224 186 45 9523 582 0.08 0.09 0.58 0.70 0.13 0.48

Average 28.51 20.39 8.12 2.27 TISOverrideDoorLockOp 294 249 50 10568 1036 0.00 0.06 0.64 0.72 0.00 0.47

TISPoll 301 266 52 10986 615 0.67 0.68 0.70 0.71 0.27 0.36

TISReadAdminToken 213 178 45 9523 543 0.08 0.10 0.57 0.71 0.15 0.49

TISShutdownOp 243 202 48 10150 628 0.07 0.08 0.65 0.74 0.07 0.46

TISStartAdminOp 252 206 54 11404 650 0.07 0.08 0.63 0.74 0.09 0.45

TISUpdateConfigDataOp 355 294 60 12658 1319 0.00 0.05 0.64 0.73 0.00 0.44

TISValidateAdminToken 292 239 50 10568 1056 0.00 0.07 0.62 0.72 0.00 0.47

TokenRemovedAdminLogout 234 205 45 9523 826 0.00 0.07 0.60 0.69 0.00 0.50

UnlockDoor 36 33 9 1739 53 0.80 0.80 0.80 0.80 1.00 0.15

UpdateKeyStore 33 19 6 445 4 0.88 0.88 0.88 0.88 0.77 0.04

ValidateAdminTokenFail 209 175 44 9314 506 0.08 0.10 0.57 0.70 0.14 0.49

ValidateAdminTokenOK 221 180 44 9314 553 0.08 0.10 0.60 0.71 0.11 0.49

ValidateEnrolmentData 237 192 46 9732 582 0.08 0.09 0.62 0.72 0.10 0.47

ValidateEnrolmentDataFail 207 174 43 9105 468 0.09 0.10 0.59 0.70 0.13 0.49

ValidateEnrolmentDataOK 216 178 44 9314 446 0.08 0.10 0.59 0.70 0.14 0.49

ValidateOpRequest 249 204 54 11404 650 0.07 0.08 0.63 0.74 0.09 0.45

ValidateOpRequestOK 224 187 51 10777 592 0.08 0.09 0.61 0.74 0.11 0.47

WaitingAdminTokenRemoval 169 158 43 9105 344 0.09 0.11 0.37 0.63 0.40 0.50

WaitingFloppyRemoval 169 158 43 9105 346 0.09 0.11 0.37 0.63 0.40 0.50

Summation 11669 9967 2376 499935 31927 11.36 13.27 37.29 43.53 13.83 23.99

Average 191.30 163.39 38.95 8195.66 523.39 0.19 0.22 0.61 0.71 0.23 0.39

Sample 28

Page 39 of 46

Sample# CLC LE LD CC LOC CC CyclL CyclU DU Tightness MinCov Cov MaxCov Overlap Coupling

Sample01 5 1 4 1 24 33 17 3457 114 0.67 0.67 0.67 0.67 1.00 0.24

Sample02 7 2 5 1 31 36 16 3248 108 0.65 0.65 0.65 0.65 1.00 0.23

Sample03 5 1 4 1 23 32 16 3248 111 0.65 0.65 0.65 0.65 1.00 0.24

Sample04 6 1 5 1 31 39 19 3875 115 0.69 0.69 0.69 0.69 1.00 0.23

Sample05 69 27 42 10 36 27 6 1308 29 0.00 0.02 0.08 0.11 0.11 0.02

Sample06 139 101 38 20 306 258 54 11294 550 0.22 0.24 0.57 0.66 0.20 0.34

Sample07 40 25 15 3 36 17 3 437 11 1.00 1.00 1.00 1.00 1.00 0.13

Sample08 68 56 12 8 28 18 3 437 0 1.00 1.00 1.00 1.00 1.00 0.04

Sample09 29 24 5 4 32 25 3 437 10 0.40 0.50 0.58 0.70 0.41 0.04

Sample10 431 313 118 39 1102 997 219 50151 1662 0.23 0.31 0.48 0.55 0.49 0.21

Sample11 500 281 219 29 101 71 9 883 3 0.11 0.12 0.20 0.22 0.19 0.01

Sample12 69 31 38 9 95 77 5 2195 15 0.77 0.77 0.77 0.77 0.88 0.04

Sample13 490 316 174 31 12 10 1 437 0 1.00 1.00 1.00 1.00 1.00 0.04

Sample14 13 9 4 2 854 705 196 40820 1738 0.70 0.72 0.74 0.76 0.72 0.32

Sample15 12 9 3 1 209 175 43 9105 557 0.08 0.10 0.59 0.70 0.13 0.49

Sample16 13 9 4 4 225 241 57 11935 1047 0.24 0.28 0.59 0.63 0.06 0.39

Sample17 23 15 8 2 156 149 41 8687 312 0.11 0.11 0.39 0.67 0.51 0.50

Sample18 46 37 9 4 173 164 41 8687 394 0.09 0.10 0.53 0.61 0.21 0.48

Sample19 73 50 23 6 3 1 1 1 0 0.00 0.00 0.00 0.00 0.00 0.00

Sample20 28 12 16 8 56 44 4 4 96 0.00 0.25 0.25 0.25 0.00 0.00

Sample21 42 17 25 2 126 126 1 8687 310 0.00 0.02 0.55 0.66 0.54 0.49

Sample22 41 31 10 9 2051 1633 265 65144 5442 0.00 0.02 0.60 0.75 0.18 0.36

Sample23 14 10 4 1 473 426 92 19464 1638 0.00 0.01 0.49 0.68 0.00 0.48

Sample24 24 17 7 7 615 497 92 19346 1862 0.00 0.02 0.45 0.76 0.00 0.33

Sample25 411 318 93 24 4060 3570 786 166072 13536 0.06 0.11 0.56 0.67 0.11 0.45

Sample26 24 20 4 3 890 805 185 39137 2912 0.03 0.05 0.44 0.55 0.25 0.43

Sample27 51 41 10 4 42 28 7 1293 26 0.89 0.89 0.89 0.89 0.51 0.08

Sample28 1169 836 333 93 11669 9967 2376 499935 31927 0.19 0.22 0.61 0.71 0.23 0.39

Summary of measurement for all samples

Page 40 of 46

Appendix C- Analysis Results

Ta
b

le
 C

-1
-

R
e

gr
e

ss
io

n
 a

n
al

ys
is

 o
f

C
o

u
n

t
Li

n
e

 C
o

d
e

R
eg

re
ss

io
n

 S
ta

ti
st

ic
s

M
u

lt
ip

le
 R

0.
92

R
 S

q
u

ar
e

0.
85

A
d

ju
st

e
d

 R
 S

q
u

ar
e

0.
75

St
an

d
ar

d
 E

rr
o

r
12

6.
11

O
b

se
rv

at
io

n
s

28

A
N

O
V

A

d
f

SS
M

S
F

Si
g

n
if

ic
a

n
ce

 F

R
e

gr
e

ss
io

n
11

14
82

39
6.

14
5

13
47

63
.2

85
9

8.
47

41
27

1
9.

19
94

2E
-0

5

R
e

si
d

u
al

16
25

44
46

.5
68

9
15

90
2.

91
05

6

To
ta

l
27

17
36

84
2.

71
4

C
o

ef
fi

ci
en

ts
St

a
n

d
a

rd
 E

rr
o

r
t

St
a

t
P

-v
a

lu
e

Lo
w

er
 9

5%
U

p
p

er
 9

5%
Lo

w
er

 9
5.

0%
U

p
p

er
 9

5.
0%

In
te

rc
e

p
t

12
0.

21
91

.6
1

1.
31

0.
21

-7
4.

00
31

4.
42

-7
4.

00
31

4.
42

LO
C

-1
.7

9
0.

75
-2

.3
9

0.
03

-3
.3

7
-0

.2
0

-3
.3

7
-0

.2
0

C
C

3.
26

1.
31

2.
48

0.
02

0.
48

6.
05

0.
48

6.
05

C
yc

lL
4.

89
4.

16
1.

17
0.

26
-3

.9
4

13
.7

1
-3

.9
4

13
.7

1

C
yc

lU
-0

.0
3

0.
03

-1
.2

4
0.

23
-0

.0
9

0.
02

-0
.0

9
0.

02

D
U

-0
.1

8
0.

08
-2

.2
8

0.
04

-0
.3

4
-0

.0
1

-0
.3

4
-0

.0
1

 T
ig

h
tn

e
ss

56
6.

57
60

9.
47

0.
93

0.
37

-7
25

.4
6

18
58

.5
9

-7
25

.4
6

18
58

.5
9

 M
in

C
o

v
-1

47
3.

22
68

6.
11

-2
.1

5
0.

05
-2

92
7.

72
-1

8.
72

-2
92

7.
72

-1
8.

72

 C
o

v
10

76
.7

4
80

2.
23

1.
34

0.
20

-6
23

.9
1

27
77

.3
9

-6
23

.9
1

27
77

.3
9

 M
ax

C
o

v
-2

61
.7

3
49

4.
51

-0
.5

3
0.

60
-1

31
0.

03
78

6.
58

-1
31

0.
03

78
6.

58

 O
ve

rl
ap

19
4.

55
20

3.
04

0.
96

0.
35

-2
35

.8
7

62
4.

97
-2

35
.8

7
62

4.
97

 C
o

u
p

li
n

g
-1

00
4.

59
39

1.
26

-2
.5

7
0.

02
-1

83
4.

02
-1

75
.1

7
-1

83
4.

02
-1

75
.1

7

Page 41 of 46

Ta
b

le
 C

-2
-

R
e

gr
e

ss
io

n
 a

n
al

ys
is

 o
f

Li
n

e
s

Ex
e

cu
ta

b
le

R
eg

re
ss

io
n

 S
ta

ti
st

ic
s

M
u

lt
ip

le
 R

0.
94

R
 S

q
u

ar
e

0.
88

A
d

ju
st

e
d

 R
 S

q
u

ar
e

0.
81

St
an

d
ar

d
 E

rr
o

r
78

.8
0

O
b

se
rv

at
io

n
s

28

A
N

O
V

A

d
f

SS
M

S
F

Si
g

n
if

ic
a

n
ce

 F

R
e

gr
e

ss
io

n
11

76
05

76
.8

99
7

69
14

3.
35

45
1

11
.1

34
2

0.
00

00
2

R
e

si
d

u
al

16
99

35
9.

95
74

8
62

09
.9

97
34

3

To
ta

l
27

85
99

36
.8

57
1

C
o

ef
fi

ci
en

ts
St

a
n

d
a

rd
 E

rr
o

r
t

St
a

t
P

-v
a

lu
e

Lo
w

er
 9

5%
U

p
p

er
 9

5%
Lo

w
er

 9
5.

0%
U

p
p

er
 9

5.
0%

In
te

rc
e

p
t

60
.7

4
57

.2
5

1.
06

0.
30

-6
0.

62
18

2.
10

-6
0.

62
18

2.
10

LO
C

-1
.3

5
0.

47
-2

.8
9

0.
01

-2
.3

4
-0

.3
6

-2
.3

4
-0

.3
6

C
C

2.
48

0.
82

3.
02

0.
01

0.
74

4.
22

0.
74

4.
22

C
yc

lL
3.

14
2.

60
1.

21
0.

24
-2

.3
7

8.
66

-2
.3

7
8.

66

C
yc

lU
-0

.0
2

0.
02

-1
.3

9
0.

18
-0

.0
6

0.
01

-0
.0

6
0.

01

D
U

-0
.1

3
0.

05
-2

.6
5

0.
02

-0
.2

3
-0

.0
3

-0
.2

3
-0

.0
3

 T
ig

h
tn

e
ss

37
7.

12
38

0.
86

0.
99

0.
34

-4
30

.2
7

11
84

.5
0

-4
30

.2
7

11
84

.5
0

 M
in

C
o

v
-9

10
.9

5
42

8.
75

-2
.1

2
0.

05
-1

81
9.

86
-2

.0
4

-1
81

9.
86

-2
.0

4

 C
o

v
66

9.
17

50
1.

31
1.

33
0.

20
-3

93
.5

6
17

31
.9

1
-3

93
.5

6
17

31
.9

1

 M
ax

C
o

v
-1

52
.6

7
30

9.
02

-0
.4

9
0.

63
-8

07
.7

5
50

2.
42

-8
07

.7
5

50
2.

42

 O
ve

rl
ap

99
.6

6
12

6.
88

0.
79

0.
44

-1
69

.3
1

36
8.

62
-1

69
.3

1
36

8.
62

 C
o

u
p

li
n

g
-6

05
.0

6
24

4.
49

-2
.4

7
0.

02
-1

12
3.

36
-8

6.
76

-1
12

3.
36

-8
6.

76

Page 42 of 46

Ta

b
le

 C
-3

-
R

e
gr

e
ss

io
n

 a
n

al
ys

is
 o

f
Li

n
e

s
D

e
cl

ar
at

iv
e

R
eg

re
ss

io
n

 S
ta

ti
st

ic
s

M
u

lt
ip

le
 R

0.
85

R
 S

q
u

ar
e

0.
73

A
d

ju
st

e
d

 R
 S

q
u

ar
e

0.
54

St
an

d
ar

d
 E

rr
o

r
54

.4
3

O
b

se
rv

at
io

n
s

28

A
N

O
V

A

d
f

SS
M

S
F

Si
g

n
if

ic
a

n
ce

 F

R
e

gr
e

ss
io

n
11

12
57

16
.8

28
11

42
8.

80
25

5
3.

85
75

10
3

0.
00

73
78

74
6

R
e

si
d

u
al

16
47

40
3.

85
05

5
29

62
.7

40
66

To
ta

l
27

17
31

20
.6

78
6

C
o

ef
fi

ci
en

ts
St

a
n

d
a

rd
 E

rr
o

r
t

St
a

t
P

-v
a

lu
e

Lo
w

er
 9

5%
U

p
p

er
 9

5%
Lo

w
er

 9
5.

0%
U

p
p

er
 9

5.
0%

In
te

rc
e

p
t

56
.0

1
39

.5
4

1.
42

0.
18

-2
7.

82
13

9.
83

-2
7.

82
13

9.
83

LO
C

-0
.4

4
0.

32
-1

.3
6

0.
19

-1
.1

2
0.

25
-1

.1
2

0.
25

C
C

0.
97

0.
57

1.
71

0.
11

-0
.2

3
2.

17
-0

.2
3

2.
17

C
yc

lL
2.

81
1.

80
1.

57
0.

14
-0

.9
9

6.
62

-0
.9

9
6.

62

C
yc

lU
-0

.0
2

0.
01

-1
.5

1
0.

15
-0

.0
4

0.
01

-0
.0

4
0.

01

D
U

-0
.0

7
0.

03
-2

.1
5

0.
05

-0
.1

4
0.

00
-0

.1
4

0.
00

 T
ig

h
tn

e
ss

23
1.

53
26

3.
07

0.
88

0.
39

-3
26

.1
5

78
9.

20
-3

26
.1

5
78

9.
20

 M
in

C
o

v
-6

73
.9

6
29

6.
15

-2
.2

8
0.

04
-1

30
1.

76
-4

6.
16

-1
30

1.
76

-4
6.

16

 C
o

v
57

9.
60

34
6.

26
1.

67
0.

11
-1

54
.4

5
13

13
.6

4
-1

54
.4

5
13

13
.6

4

 M
ax

C
o

v
-2

05
.9

7
21

3.
44

-0
.9

6
0.

35
-6

58
.4

5
24

6.
51

-6
58

.4
5

24
6.

51

 O
ve

rl
ap

94
.0

1
87

.6
4

1.
07

0.
30

-9
1.

77
27

9.
79

-9
1.

77
27

9.
79

 C
o

u
p

li
n

g
-3

89
.6

6
16

8.
88

-2
.3

1
0.

03
-7

47
.6

6
-3

1.
66

-7
47

.6
6

-3
1.

66

Page 43 of 46

Ta

b
le

 C
-4

-
R

e
gr

e
ss

io
n

 a
n

al
ys

is
 o

f
C

yc
lo

m
at

ic
 C

o
m

p
le

xi
ty

R
eg

re
ss

io
n

 S
ta

ti
st

ic
s

M
u

lt
ip

le
 R

0.
67

R
 S

q
u

ar
e

0.
44

A
d

ju
st

e
d

 R
 S

q
u

ar
e

0.
06

St
an

d
ar

d
 E

rr
o

r
29

.6
5

O
b

se
rv

at
io

n
s

28

A
N

O
V

A

d
f

SS
M

S
F

Si
g

n
if

ic
a

n
ce

 F

R
e

gr
e

ss
io

n
11

11
27

4.
47

5
10

24
.9

52
1.

16
6

0.
37

9

R
e

si
d

u
al

16
14

06
5.

38
2

87
9.

08
6

To
ta

l
27

25
33

9.
85

7

C
o

ef
fi

ci
en

ts
St

a
n

d
a

rd
 E

rr
o

r
t

St
a

t
P

-v
a

lu
e

Lo
w

er
 9

5%
U

p
p

er
 9

5%
Lo

w
er

 9
5.

0%
U

p
p

er
 9

5.
0%

In
te

rc
e

p
t

5.
78

21
.5

4
0.

27
0.

79
-3

9.
88

51
.4

4
-3

9.
88

51
.4

4

LO
C

-0
.1

2
0.

18
-0

.6
5

0.
52

-0
.4

9
0.

26
-0

.4
9

0.
26

C
C

0.
40

0.
31

1.
30

0.
21

-0
.2

5
1.

06
-0

.2
5

1.
06

C
yc

lL
1.

27
0.

98
1.

30
0.

21
-0

.8
0

3.
35

-0
.8

0
3.

35

C
yc

lU
-0

.0
1

0.
01

-1
.4

2
0.

18
-0

.0
2

0.
00

-0
.0

2
0.

00

D
U

-0
.0

4
0.

02
-2

.0
4

0.
06

-0
.0

8
0.

00
-0

.0
8

0.
00

 T
ig

h
tn

e
ss

60
.4

0
14

3.
30

0.
42

0.
68

-2
43

.3
7

36
4.

18
-2

43
.3

7
36

4.
18

 M
in

C
o

v
-1

80
.6

5
16

1.
31

-1
.1

2
0.

28
-5

22
.6

2
16

1.
33

-5
22

.6
2

16
1.

33

 C
o

v
21

8.
94

18
8.

62
1.

16
0.

26
-1

80
.9

1
61

8.
78

-1
80

.9
1

61
8.

78

 M
ax

C
o

v
-9

8.
11

11
6.

27
-0

.8
4

0.
41

-3
44

.5
8

14
8.

37
-3

44
.5

8
14

8.
37

 O
ve

rl
ap

10
.3

0
47

.7
4

0.
22

0.
83

-9
0.

90
11

1.
50

-9
0.

90
11

1.
50

 C
o

u
p

li
n

g
-5

8.
85

91
.9

9
-0

.6
4

0.
53

-2
53

.8
5

13
6.

16
-2

53
.8

5
13

6.
16

Page 44 of 46

 References

[1] Bowen, J.P.; Hinchey, M.G., "Ten commandments of formal methods," Computer ,

vol.28, no.4, pp.56-63, Apr 1995.

[2] Jonathan P. Bowen, Michael G. Hinchey, "Seven More Myths of Formal Methods,"

IEEE Software, vol. 12, no. 4, pp. 34-41, July 1995.

[3] Khosrow-Pour M., Dictionary of information science and technology, IDEA GROUP

REFERENCE, 2007.

[4] Bowen, J.P.: Formal Specification and Documentation Using Z: A Case Study

Approach. Int. Thomson Computer Press, 1996.

[5] Spivey, J.M., “An introduction to Z and formal specifications”, Software engineering

journal, 1989.

[6] Perfect Developer: A tool for Object-Oriented Formal Specification and Refinement,

http://www.eschertech.com/products/, last visited: February 2011.

[7] Samson W. B., Nevill, Dugard, Predictive software metrics based on a formal

specification. In: Information and Software Technology. Volume 29, Issue 5, June 1987,

pp. 242 – 248.

[8] Juei Chang and Debra J. Richardson. Static and Dynamic Specification Slicing.

Technical report, Department of Information and Computer Science, University of

California, 1994.

[9] Bollin Andreas, “Slice-based Formal Specification Measures - Mapping Coupling and

Cohesion Measures to Formal Z.” In: C. Munoz (Editor): Proceedings of the Second NASA

Formal Methods Symposium. Hanover (MD): NASA Center for Aerospace Information

(CASI), April 2010, pp. 24-33.

[10] Guide to the Software Engineering Body of Knowledge, IEEE, 2004

[11] Bollin Andreas, Specification Comprehension – Reducing the Complexity of

Specifications. PhD thesis, Universität Klagenfurt, April 2004.

[12] Webster and Watson, 2002 J. Webster and R.T. Watson, Analyzing the past to

prepare for the future: Writing a literature review, MIS Quarterly 26 (2002) (2), pp. 13–

23.

[13] McCabe T.J., "A Complexity Measure," IEEE Transactions on Software Engineering,

vol. 2, no. 4, pp. 308-320, July 1976.

[14] Rick Vinter, Martin Loomes, and Diana Kornbrot. Applying software metrics to formal

specifications: A cognitive approach. In 5th International Symposium on Software

Metrics, pages 216–223, Bethesda, Maryland, 1998. IEEE Computer Society.

[15] Juan C. Nogueira, Luqi, Valdis Berzins, and Nader Nada. A formal risk assessment

model for software evolution. In Proceedings of the 2nd International Workshop on

Economics-Driven Software Engineering Research (EDSER-2), 2000.

[16] Linda M. Laird & M. Carol Brennan. Software measurement and estimation, Wiley-

interscience and IEEE computer society publishing, 2006.

[17] Peter Kokol, Vili Podgorelec, Henri Habrias, and Nassim Hadj Rabia. The complexity

of formal specifications - assessments by alpha - metric. ACM SIGPLAN Notices, 6:84–88,

1999.

[18] Kuo-Chung Tai. A program complexity metric based on data flow information in

control graphs. Proceedings of the 7th International Conference on Software Engineering,

pages 239–248, 1984.

http://www.eschertech.com/products/

Page 45 of 46

[19] David Carrington, David Duke, Ian Hayes, and Jim Welsh. Deriving modular designs

from formal specifications. In ACM SIGSOFT Software Engineering Notes, volume 18,

pages 89–98. ACM, December 1993.

[20] Arun Lakhotia. Rule-based approach to computing module cohesion. In Proceedings

of the 15th International Conference on Software Engineering, pages 35–44. IEEE

Computer Society Press, 1997.

[21] I. Sommerville, Software Engineering, 5th Edition, Addison Wesley, 1996.

[22] B. Boehm, C. Abts, and S. Chulani, “Software Development Cost Estimation

Approaches—A Survey,” Annals of Software Eng., vol. 10, pp. 177-205, 2000.

[23] Kemerer, C.F. An empirical validation of software cost estimation models. CACM, 30,

5 (May 1987), 416- 429.

[24] Putnam, L. and W. Myers, Measures for Excellence, Yourdon Press Computing

Series, 1992.

[25] Boehm, Barry W., "Software Engineering Economics," Software Engineering, IEEE

Transactions on , vol.SE-10, no.1, pp.4-21, Jan. 1984

[26] Musilek, P.; Pedrycz, W.; Nan Sun; Succi, G., "On the sensitivity of COCOMO II

software cost estimation model," Software Metrics, 2002. Proceedings. Eighth IEEE

Symposium on , vol., no., pp. 13- 20, 2002

[27] Lionel C. Briand, Khaled El Emam, Dagmar Surmann, Isabella Wieczorek, Katrina D.

Maxwell, "An assessment and comparison of common software cost estimation modeling

techniques," Software Engineering, International Conference on, p. 313, 21st

International Conference on Software Engineering (ICSE'99), 1999

[28] Jorgensen, M.; Shepperd, M., "A Systematic Review of Software Development Cost

Estimation Studies," Software Engineering, IEEE Transactions on Software Engineering,

vol.33, no.1, pp.33-53, Jan. 2007

[29] Bollin Andreas: Concept location in formal specifications. In: Journal of Software

Maintenance and Evolution - Research and Practice, Hoboken (NJ): John Wiley & Sons

Inc (2008), pp. 77-105

[30] Interpreting Regression Output, Princeton University website,

http://dss.princeton.edu/online_help/analysis/interpreting_regression.htm, Last visited:

June 2011

[31] S. Dowdy et al, Statistics for research, 3rd Edition, Wiley, 2004

http://dss.princeton.edu/online_help/analysis/interpreting_regression.htm

Page 46 of 46

The endless cycle of idea and action,

Endless invention, endless experiment,

Brings knowledge of motion, but not of stillness;

Knowledge of speech, but not of silence;

Knowledge of words, and ignorance of the Word.

Where is the Life we have lost in living?

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

T.S. Eliot

