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Abstract 

Two small-sample tests for random coefficients in linear regression are derived from 

the Maximum Likelihood Ratio. The first test has previously been proposed for testing 

equality of fixed effects, but is here shown to be suitable also for random coefficients. 

The second test is based on the multiple coefficient of determination from regressing 

the observed subject means on the estimated slopes. The properties and relations of the 

tests are examined in detail, followed by a simulation study of the power functions. 

The two tests are found to complement each other depending on the study design: The 

first test is preferred for a large number of observations from a small number of 

subjects, and the second test is preferred for the opposite situation. Finally, the 

robustness of the tests to violations of the distributional assumptions is examined. 
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1. Introduction and assumptions 

Random coefficient regression (RCR) models (Rao [27], Swamy [34]) are 

generalisations of the classical Gauss-Markov model, where the parameters are 

allowed to be random quantities. A special case of the RCR models is the random 

intercept model (Diggle and Heagerty et al. [7]), also known as error components 

regression (ECR) model, where only the intercept parameter is random. Statistical 

inference based on RCR models is more demanding since more parameters are 

introduced in the variance-covariance matrix of the observations. In many cases it is of 

crucial importance to know whether the simpler ECR model is appropriate, e.g. if one 

wants to construct tolerance limits by utilising the longitudinal structure of the data 

(Jonsson [20]). 

 

In this paper tests for random coefficients in linear regression will be considered. 

Introducing random coefficient variation is to give the dependent variable a different 

variance at each cross-section. Models with this feature can therefore be transformed 

into a particular heteroscedastic formulation and tests for heteroscedasticity can hence 

be used to detect departure from the constant parameter assumption. For detailed 

reviews of various large-sample tests for heteroscedasticity, see Haggstrom [13], 

Greene [11], Kmenta [21], Baltagi [4] and Godfrey [9]. However, the aim of this paper 

will be to utilise knowledge about the model and distribution of the parameters for 

deriving more specific tests. Instead of using general tests for heteroscedasticity, which 

are tests for inhomogeneity of variances, we can now test whether the second-order 

moments of certain parameters are zero or not. Some differences between tests for 

random coefficients and tests for heteroscedasticity were discussed in Honda [17], 

where it e.g. was concluded that some proposed large-sample tests for random 

coefficients were more robust to non-normal disturbances than tests for 

heteroscedasticity. 

 

Two Maximum Likelihood (ML)-based small-sample tests for random coefficients will 

be derived and examined. The following linear RCR model will be considered as the 

alternative hypothesis in the sequel: 

1 :      ,  1 ,  1                               (1)ij j i j ijH Y A U i T j n′= + + = =x B … …  
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where ijY  is the measured response at ( ) ( ) ( )( )1 r p
i i i ix x x ′
=x … …  for the j:th subject. The 

model in (1) is composed of three random components which are, following Swamy 

[33], assumed to be random drawings from the normal distribution. The random 

intercept jA  and the random slopes ( ) ( ) ( )( )1 r p
j j j jB B B ′=B … …  reflect factors which are 

specific for the j:th subject, and ijU  is a residual. Let the expected value of the T-

dimensional normally distributed vector 1( )j j TjY Y ′=Y …  be ( ) ( )
1j T

E α
×

′′=Y X X β� �  

where ( )
( )

1
1

i T
T p× +

 ′=  
 

X 1 x x x� … …  and ( ) ( ) ( )( )1 r pβ β β ′=β … … . Further, under the 

assumption of independence between the ijU ´s and the jA ´s and jB ´s respectively, let 

the variances be ( ) 2+j UT T
V σ

×
′=Y X XΣX I� � �  where 

2
A AB

AB BB

σ ′ 
=  
  

Σ
Σ

Σ Σ
, 

( )1 pAB AB ABσ σ ′=Σ …  and 
1 1

2

2

p

p

B B B

BB

B

σ σ

σ

 
 

=  
 
  

Σ

…

% # . Note that the elements of Σ  are 

assumed to be equal among the subjects and constant over the study interval. Since X�  

is equal for all subjects we have a balanced design. 

 

A special case of the general model in (1) will be considered as the null hypothesis 

0 :      ,  1 ,  1 .                              (2)ij j i ijH Y A U i T j n′= + + = =x β … …  

 

This is an ECR model with a random intercept but fixed and equal slopes β . Under 

0H  the variance matrix is reduced to ( ) 2 2
j A UT T

V σ σ
×

′= +Y X 11 I� . 

 

There are a number of recent papers on tests for random coefficient covariance 

structures. For example, Anh and Chelliah [3] extended the analysis-of-covariance test 

by Swamy [33] to a more general test where the different subjects are allowed to have 

different covariance structures. Haggstrom [13] showed that the score test by Honda 

[17] is applicable also for non-linear regression and extended it for possible time 

effects. In Lundevaller and Laitila [22] another modification of Honda [17]-test was 
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proposed which is robust against heteroscedasticity. Further, in Fujikoshi and von 

Rosen [8] and Andrews [2] tests of the null hypothesis that some random coefficients 

have variance equal to zero were proposed. However, only the asymptotic null 

distributions of these tests are derived, and the properties for finite sample sizes are in 

general unknown. 

 

In the next section the Maximum Likelihood Ratio (MLR) is derived and two potential 

test statistics based on subparts of the MLR are considered. Two small-sample tests 

based on these test statistics are then proposed in Section 2. The properties of the tests 

are examined in general, and the power functions are thereafter studied in more detail 

for the simple case with one explanatory variable in Section 3. A concluding 

discussion is given in Section 4. Notations not explained in the text are defined in 

Appendix I, and some stated results are derived in Appendix II. 

 

 

2. The Maximum Likelihood Ratio and its subparts 

Under the given assumptions the Maximum Likelihood (ML) estimators from Rao [27] 

are minimum variance unbiased. These estimators will be used in the sequel, and 

further properties are given in Swamy [34] Chap. 1.2, 3.4 and 4.3. In general, the ML 

estimator of a population parameter ϕ  under 0H  and 1H  will be denoted as ˆ̂ϕ  and ϕ̂ , 

respectively, and the corresponding estimators for the j :th subject will be denoted by 

a subscripted j . 

 

Following Anderson [1] p. 291 the ML functions can be written as 

( )
0

2 2 22

1 exp
2ˆ ˆˆ ˆ2

H nnT

A U

nTL
π σ σ

 = − 
 ′ +11 I

 and 

( )
1

222

1 exp
2ˆ ˆ2

H nnT

U

nTL

π σ

 = − 
 ′ +XΣX I� �

, 

and from Swamy [34] p. 111 it follows that the MLR statistic 
0 1

/H HL L  can be written 

as 

( )
( ) ( )

122 1
2 2

22 2 2

ˆˆ ˆˆ ˆ
( ) ˆˆ ˆ ˆˆ ˆ ˆ 1

T
UU

Un
p

UA U U YY

MLR
S T n

σσ σ
σσ σ σ

−
−′ ′ ′⋅ ++  

= =   ′ + ⋅ − 

X X X X ΣXΣX I

11 I

� � � �� �
.                                  (3) 

 



 5

To base a test on the full MLR statistic in (3) is appealing since it contains a maximum 

of information, but there are three potential drawbacks with this approach. First, an 

important practical problem is that the exact distribution is hard to derive and critical 

values for tests have to be found by simulation. Second, as noted in Cox and Hinkley 

[6] p. 172 the strong optimum properties, e.g. the Neyman-Person lemma, associated 

with the Likelihood Ratio (LR) method for simple hypothesis are not carried over to 

composite hypothesis problems in general. This means that the test is not guaranteed to 

be uniformly most powerful. Third, from Figure 1 it can be seen that the test can be 

biased, i.e. the size of the test under 0H  is correct ( 0.05)α =  but the power under 1H  

can be less than the size. Hayakawa [16] and Harris and Peers [14] demonstrated that 

MLR tests are not unbiased in general against local alternatives, which is further 

discussed by Stuart and Ord et al. [32] p. 259. The criterion of unbiasedness for tests 

has such strong intuitive appeal that it is natural to restrict oneself to the class of 

unbiased tests. Altogether, the usefulness of the MLR test is limited in practise and it 

will only be used as a reference in the simulation studies in Section 3.2. 
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Po
w
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2 2/B Uσ σ
 

 

Figure 1. Bias of the MLR test with settings from the simulation study in Section 3.2. 

 

 

2.1 The 
1FT -test 

Test statistics can also be derived from subparts in (3). An obvious candidate is 
2 2ˆˆ ˆU Uσ σ  which expresses the ratio between residual sums of squares where the slopes 
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vary across subjects or not. This quotient can easily be shown to be directly 

proportional to the analysis-of-covariance test statistic 1F  proposed by Hsiao [18], cf. 

Appendix IIA. Using the notations in Appendix I the statistic can be written as 

( ) ( )
1

1

ˆ ˆ ˆ ˆ ( 1)

/ ( 1)

n

j xx j
j

F

p n
T

SSE n T p
=

′− − −
=

− −

∑ β β S β β
. 

 

Under 0H , the distribution of 
1FT  is well-known to be ( 1), ( 1)p n n T pF − − − , which for 

completeness also is shown below, where 0H  is rejected for large values of 
1FT . To 

study the distribution of 
1FT  in general, notice that the numerator and denominator are 

independent under 0 1H H∪  (Rao [27]), and the denominator is distributed as 

2 2
( 1)/ ( 1)U n T pn T pσ χ − −− − ⋅ . The distribution of the numerator becomes clear if we make 

use of the decomposition 

( ) ( ) ( ) ( ) ( ) ( ) 1 2
1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
n n

j xx j xx xx
j j

D n D D
= =

′ ′ ′= − − = − − + − − = +∑ ∑β β S β β β β S β β β β S β β , 

and of the following necessary and sufficient condition for a quadratic form to have a 

chi-square distribution: Let z  have a multivariate normal distribution with mean vector 

0  and dispersion matrix Σ , then any quadratic form ′z Az  has a chi-square 

distribution with degrees of freedom df rank( )= A  if and only if =AΣA A  (Rao [28] 

Chap 3b.4). Further, under 0H  ( )ˆ
j −β β  and ( )ˆ −β β  are each normally distributed 

with mean vector 0  and dispersion matrices 2 1
U xxσ −⋅S  and 2 1/U xxnσ −⋅S , respectively. 

From the condition above it is now easily verified that 2/ UD σ  and 2
2 / UD σ  both have 

chi-square distributions with np  and p  degrees of freedom (df), respectively. From 

Cochran [5] it thus follows that 2
1 / UD σ  is chi-square distributed with df ( 1)p n= − . 

This gives the distribution of 
1FT  under 0H . 

 

Under 1H , ( )ˆ
j −β β  has the dispersion matrix 2 1

BB U xxσ −+ ⋅Σ S  and it is easily concluded 

from the condition stated above, that neither D  nor 2D  can have chi-square 

distributions in general. Thus for general p  the distribution of 
1FT  under 1H  is 

complicated. However, the expectation of the statistic can be studied as an indicator of 
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the behaviour of the power function. The expectation can be found by noticing that 

1 2( ) ( ) ( )E D E D E D= − = 2( 1) trace( )xx BB Un σ− ⋅ +S Σ I . From this we get 

( ) ( )1

1 1
2

( 1)1
( 1) 2

r s

p p

rs B B
r s

F
U

s
n T pE T

p n T p

σ

σ
= =

 
  − − = +

− − − 
 
 

∑∑
, where ( ) ( ) ( ) ( )

1
( )( )

T
r r s s

rs i i
i

s x x x x
=

= − −∑ . 

The above expectation will increase with T , through the increasing sums of squares 

rss , but will be slowly decreasing with n . 

 

2.2 The 2R
T -test 

Another interesting subpart of (3) is the determinant ( ) 12 ˆˆUσ
−

′ +X X Σ� �  which contains 

the informative variance-covariance estimator Σ̂ . Let 2
ˆ.j jY

R
β

 be the (sample) multiple 

coefficient of determination from the unconditional regression of the jY ’s on the ˆ
jβ ’s 

(cf. Appendix ID). From Appendix IIB, 2
ˆ.j jY

R
β

 can be seen to be a subpart of the latter 

determinant. Since 2
ˆ.j jY

R
β

 contains the dispersion matrix BBS  it retains the information 

about the dispersion pattern of the jβ ’s from Σ̂ . A well known test statistic based on 

2
ˆ.j jY

R
β

 is 

2

2
ˆ.

2
ˆ.

( 1)
1

j j

j j

Y

R
Y

R n pT
R p

− −
= ⋅

−
β

β

. 

0H  is then rejected for large values of 2R
T , where 2R

T  under 0H  has the , 1p n pF − −  

distribution which is independent of T , cf. Stuart and Ord et al. [32] p. 528. The 

distribution of 2R
T  under 1H  is more complicated, but it can be shown that 2R

T  then 

has the same distribution as (cf. Johnson and Kotz et al. [19] p. 618): 

( )( )21/ 22 1/ 2 2
1

2

( 1) ( 1) .
( 1)

np U n p
n p p

χ θ χ

χ

−− + + − −
⋅

− −
                                   (4) 

 

Here 2 2/(1 )θ ρ ρ= − , where ( ) ( ) 12 ˆ1 j j jV Y V Yρ
−

= − ⋅β  is the population multiple 

coefficient of determination, and the three chi-square variables and the standard normal 
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variable U  are all independent. By noticing that a non-central t-variable with f df and 

non-centrality parameter δ  can be represented ( ) 2( ) / /f ft U fδ δ χ= +  (cf. Johnson 

and Kotz et al. [19] p. 514), it follows from (4) that 2R
T  is distributed as 

( )2 1/ 2 2
1, 1 1 1

( 1) 1
p n p n p n

p F t
p p

θ χ− − − − − −
−

+ , 

where the first term vanishes for p=1. By utilising that ( )2 2( ) (1 ) /( 2)fE t f fδ δ= + ⋅ −  

for each fixed δ , one obtains the expected value 

( )2

( 1) ( 1)1
( 3)R

n n pE T
p n p

θ
 − − −

= +  − − 
. 

In contrast to the expectation of 
1FT , the expectation of 2R

T  increases with n but is 

quite unaffected by T which appears in the constant θ  (cf. Eq. (5) for the 1p =  case). 

 

 

3. The simple case with one explanatory variable 

The tests based on the 
1FT  and 2R

T  statistics utilise information from the data to 

different extent. To emphasis on inferential issues and to limit the number of 

parameters the simple case where 1p =  will be studied in this section: 

0

1

:      

:      
ij j i ij

ij j j i ij

H Y A x U

H Y A B x U

β= + +

= + +
 

 

The properties of the 
1FT  and 2R

T  tests will be examined in detail, followed by a 

simulation study of the powers. Finally the robustness to non-normality is studied. 

 

3.1 Some properties of the tests 

For 1p =  the statistic proposed by Hsiao reduces to 

1

/( 1)
/( ( 2))

BB
F xx

S nT S
SSE n T

−
= ⋅

−
, 

where SSE  is the total residual sum of squares over all subjects, cf. Appendix IC. 

Since BBS  is distributed as 2 2 2
1( / )B U xx nSσ σ χ −+ ⋅  (cf. Appendix IB), and BBS  and SSE  

are independent it follows that ( )1

2 2
1, ( 2)1 ( / )F xx B U n n TT S Fσ σ − −+ ⋅∼  under 0 1H H∪ . 
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Notice that the power of the test is an increasing function of the dispersion factor xxS  

and the quotient 2 2
B Uσ σ , and does not depend on 2

Aσ  and ABσ . 

 

Regarding the 2R
T  statistic, the 2

1pχ − -variable in (4) vanishes for 1p =  and the 

coefficient of determination simplifies to 
2

2
ˆ.j j

YB
Y

BBYY

S
R

S Sβ
=  where YBS  and BBS  now are 

scalars. It follows that the test statistic can be written 

 

2

2

2 ( 2)YB
R

BBYY YB

S
T n

S S S
= ⋅ −

−
, 

 

which under 0H  has the 1, 2nF − -distribution. Unlike the test based on 
1FT  the 2R

T  test 

has a complicated distribution under 1H  also for 1p =  and the power cannot be 

expressed as a known function. However, a maximal power of the 2R
T  test, i.e. a 

maximum of (4), is obtained for a maximum of  

( )

2

2

2 1 1 1 2 1 1 1 1/ 2 21 ( ) ( ) ( ) 2 ( ) 1

B
AB

A

xx A B B A A xx A B AB AB

Qx
Q

S TQ Q Q x Q TQ xS Q Q

ρ
ρθ
ρ ρ ρ− − − − − − −

 
+  

 = =
− + + + + + −

 

                     (5) 

 

where 2 2/A A UQ σ σ= , 2 2/B B UQ σ σ= , 2/AB AB UQ σ σ=  and ABρ  is the correlation between 

jA  and jB . The dependencies in (5) are complicated, but since 
1FT  does not depend on 

2
Aσ  and ABσ  it is interesting to examine the behaviour of θ  regarding these two 

parameters. First, let 0x = . Considered as a function of ABρ , θ  has one local 

minimum for 0ABρ =  and maximum for 1ABρ = ± . Further, θ  is an increasing 

function of 2
Aσ  if 1ABρ = ±  but constant if 0ABρ = . Second, let 0x > . Then θ  has 

two local minima for (1) /AB B Ax Q Qρ = −  and for ( )(2) 1 (1)1 ( ) /AB A ABTQρ ρ−= + , but it is 

easily seen that only one of these can be larger than –1. Further, for 0ABρ =  it can be 

seen that θ  now is a decreasing function of 2
Aσ . 
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3.2 An illustrative example of the power 

The powers of various test statistics may be compared by computing the asymptotic 

relative efficiency (ARE), cf. Stuart and Ord et al. [32] p. 266. Such a measure, which 

compares the slopes of the powers at the parameter value specified by 0H , is hard to 

use in the present situation. One reason for this is that it is difficult to find the 

distribution function of the 2R
T  statistic, even in the simple case when 1p = . Another 

reason is that different parameters are involved in the distribution of the statistics. E.g. 

when 1p = , the distribution of 
1FT  depends only on the variance ratio BQ , while the 

distribution of 2R
T  depends on AQ , BQ  and ABQ . Due to the complications involved, 

the comparisons between the powers will be based on simulations. 

 

The 
1FT  statistic was originally proposed by Hsiao for testing the heterogeneity of a 

fixed number of subject-specific slope parameters. Since the test only makes use of the 

observed ˆ
jβ ´s one can suspect that this test will have a relatively larger power when it 

is possible to estimate the slopes with high precision, i.e. when the number of 

observations ( )T  per subject is large. The tests based on the MLR and 2R
T  statistics 

utilise more information about the stochastic distribution of all the parameters, and it 

can thus be suspected that the power of the two latter tests would gain relatively more 

from a large number of subjects ( )n . 

 

How the power functions depend on n  and T  was examined in a simulation study for 

two combinations of n  and T , and a nominal test size of 5%. In this section, for 

simplicity, the ix ´s were chosen as equally spaced on the interval [ ]5,5−  yielding 

0x =  and a maximal power of 2R
T  for 1ABρ = . From Figure 2a it first seems that the 

1FT  test has the largest power for 5n =  and 20T =  throughout the study interval as 

expected, and from Figure 2b it seems that the opposite is true when 20n =  and 5T = . 

However, from Figure 2c we can see that the power of the 2R
T  is the largest relatively 

near 0H  using the parameter settings from Figure 2a, and from Figure 2d we can see 

that the power of 
1FT  becomes the larger than 2R

T  for relatively large values of 2 2/B Uσ σ  
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using the parameter settings from Figure 2b. This study thus indicates that the power of 

the 2R
T  test is larger than the power of the 

1FT  test for small deviations from 0H  but 

that this relation will be the opposite for large deviations. The shift where the power of 

the 
1FT  becomes larger will appear closer to 0H  if T  is relatively large compared to 

n . 

 

It is notable from Figure 2 that the power of the MLR test is dominated in both 

situations for small deviations from 0H  by the tests based on subparts of the MLR 

statistic. The problem that the optimum properties of the LR method for simple 

hypothesis are not carried over to the composite case in general was treated in Section 

2, which the results here exemplify. From Figure 2 it is obvious that the different 

subparts of the MLR statistic sometimes may work in different directions yielding a 

smaller power for the MLR test than for some of the subpart tests. 

 

Even if there are differences among the three tests, generally the power was found to 

be relatively large in the studied situations. Also for a very small quotient 2 2/B Uσ σ  the 

power is about 80-90%. 
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Figure 2. The power of the MLR, 
1FT and 2R

T  tests for a.) 5n = , 20T =  and b.) 20n = , 5T =  where 

2 2/ 1/1A Uσ σ =  and 0.05α = . In c.) and d.) it can be seen that 2R
T  has a larger power than 

1FT  for small deviations 

from 0H  for the settings in a.) and b.), respectively. 

 

 

3.3 Robustness to non-normality 

The two proposed tests are to a different extent based on model assumptions. Here, the 

effect of deviations from the assumption of normal distributed jB ´s and ijU ´s will be 

examined regarding the nominal test size and power. Two distributional combinations, 

either only the jB ´s or both the jB ´s and the ijU ´s have the exponential distribution, 

will be treated. Here, since a correlation between the normally distributed jA ´s and the 

exponentially distributed jB ´s is complicated to construct, the ix ´s were chosen as 

equally spaced on the interval [ ]1,10  facilitating the use of 0ABρ = . 
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Starting with the case when both parameters have the exponential distribution we find 

that the tests do not hold the nominal test size under 0H , cf. Table 1. Since 2 0Bσ =  

under 0H  this is solely due to the non-normal distribution of the ijU ´s. As can be seen, 

the 
1FT  test is affected more than the 2R

T  test in the studied situations. The nominal test 

size is exceeded by both tests (with up to 60%), and results from a further examination 

under 1H  will thus be hard to interpret. 

 

 1FT  2R
T  

20,  5n T= = 0.053 0.050 

5,  20n T= = 0.080 0.065 

Table 1. The observed test size under 0H  for the nominal test size 0.05α = . 

 

However, when only the jB ´s have the exponential distribution the properties of the 

tests can be studied under 0 1H H∪ . In Figure 3a and 3b the quotients 

1 1 1
( ) ( | ) / ( )F F j FR T Power T B Exp Power T= ∼  and the corresponding 2( )

R
R T  are given. 

A quotient equal to unity means that the power is not affected at all, which e.g. is true 

under 0H . For small values of 2 2/ 0B Uσ σ >  we can see that the power of the tests in the 

exponential case exceed the powers in the normal case. We also have that 

2
1

( ) ( )F R
R T R T<  for small 2 2/ 0B Uσ σ > , but this relation shifts to the opposite for larger 

departures from 0H . The shift appears earlier for 20, 5n T= =  than for 5, 20n T= =  

and the quotients also approach unity earlier in the previous case. However, the main 

conclusion is that the powers are not heavily affected by the exponential distribution 

which can be regarded as an extreme deviation from the symmetric normal 

distribution. In an applied situation less extreme distributions as lognormal and beta 

may be at hand, which are likely to affect the power even less. 
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Figure 3. The R-quotients for a.) 5, 20n T= =  and b.) 20, 5n T= = . 

 

 

4. Discussion 

Two small-sample tests for random coefficients based on subparts of the MLR statistic 

were proposed. One of the tests was equal to the 
1FT  test proposed by Hsiao [18] for 

testing the heterogeneity of fixed effects. The explicit connection to the MLR statistic 

found in this paper was not noticed by Hsiao who writes (p. 149): “we can test for 

random variation indirectly” by using the 
1FT  test. However, the new result warrants 

the use of 
1FT  for testing random coefficients. 

 

To distinguish between the hypothesis where the slopes are assumed to be fixed and 

different, and the hypothesis where they are assumed to be random variables with a 

probability distribution, is important. In the former case the inference is conditional on 

the slopes in the sample while the specific assumptions regarding the distribution of 

the slopes in the latter case allow an unconditional inference. Because the conditional 

inference does not make any specific assumptions about the distribution of the slopes, 

it can be used for a wider range of problems. However, if the restrictive distributional 

assumption in the unconditional case is correct, this additional information may lead to 

a more powerful test. The question whether the slopes should be considered as fixed 

and different or random and different are beyond the scope of this paper but have been 

discussed by e.g. Mundlak [24] who argues that individual effects should always be 

treated as random, and by Hausman [15] who proposed a model specification test. 
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The other proposed test, 2R
T , is based on a multiple coefficient of determination 

derived from the MLR statistic. This test utilises more information about the 

distribution of the parameters. It was found that the 2R
T  test can be preferable when the 

number of subjects (n) is relatively large but the number of observations per subject (T) 

is small. This is a common situation in e.g. routine clinical studies where a large 

number of patients are measured a few times. Figure 2 indicates that the 2R
T  test has a 

larger power for small deviations from 0H  for both combinations of n  and T . This is 

an important property since the power of the tests generally is small near 0H  and all 

additional contributions to the power are valuable. For larger deviations from 0H  the 

power of the 
1FT  then becomes larger, and the shift appears closer to 0H  when T  is 

large. 

 

The tests were for simplicity compared for 1p =  in Section 3. Letting 1p >  would add 

relatively more information to the Tr2 test since it also utilise ( )rAB
σ , which may 

increase the power. 

 

The level of the test size has not been discussed in this paper, but it is important to 

remember that the choice of test size should be guided by the research aim. As 

discussed by Nelder [26] the tests discussed here can be seen as tests of significant 

sameness rather than differences. Such tests are relevant in a modeling situation when 

we are to simplify a complex model by showing that a set of slopes can be replaced by 

a common slope. We then would like to find a non-significant value of the test statistic 

for meaningless differences, and hence a small test size is appropriate. This is also the 

situation when the aim is to predict future observations with small variability where the 

simpler model under 0H  may be preferable. But if the aim is to describe the data, the 

more complex model under 1H  may be preferable also for small deviations from 0H . 

A large test size then helps to ensure that the power of the test is large. The latter is 

also preferred when testing for poolability of data from different batches of a drug in a 

drug stability study over time. As discussed in Murphy and Hofer [25] and Ruberg and 

Stegeman [29] the Type II error is now considered the more serious error. An incorrect 

pooling of the data may result in unjustifiably long shelf-life, possibly providing the 

consumer with a drug of reduced potency.  
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A remark on the use of the tests as pretests followed by a main test has to be done. As 

noted by Greenland [12], when discussing reanalysis of epidemiologic databases using 

pretesting in Michalek and Mihalko et al. [23], one has to construct confidence 

intervals and interpret tests results obtained from a likelihood function chosen by 

preliminary testing carefully. E.g. it was shown in Sen [30] that pretest estimators 

potentially have asymptotic non-normality, and in Grambsch and Obrien [10] that the 

size of the main test can be influenced by the pretest. 

 

The 
1FT  and 2R

T  tests were found to complement each other for different situations, 

and a combined test is thus appealing. Since 
1FT  and 2R

T  are subparts of the MLR 

statistic, it can be viewed as the natural combination of the two tests. However, the 

MLR test was examined and some important drawbacks were found. An important 

extension of this paper would thus be to construct another combined test of the 

dependent 
1FT  and 2R

T  statistics, or some other subparts. 
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Appendix I - Definitions of some notations 

 

A. Miscellaneous notations 

1

1 T

j ij
i

Y Y
T =

= ∑ , 
1

1 n

j
j

Y Y
n =

= ∑ , ( )2

1

n

jYY
j

S Y Y
=

= −∑ , ( )2

1 1

n T

YY ij j
j i

S Y Y
= =

= −∑∑ , ( ) ( )

1

1 T
r r

i
i

x x
T =

= ∑ , 

( ) ( ) ( )( )1 r px x x ′=x … … , ( )( )
1 1 1

j

n T n

xY i ij j xY
j i j

Y Y
= = =

= − − =∑∑ ∑s x x s , 

( )( )
1

T

xx
i=

′= − −∑ i iS x x x x , ( ) ( ) ( )( )1ˆ ˆ ˆ ˆr p
j j j jβ β β ′=β … … , 

( )1 (1) ( ) ( )

1

ˆ ˆ ˆ ˆ ˆ
n

r p
j

j
n β β β−

=

′= =∑β β … … .  

It can be noted that 1ˆ
jj xx xY

−=β S s  has a p-dimensional normal distribution 

2 1( , )p BB U xxN σ −+β Σ S . 

 

B. The dispersion matrix of the regression coefficients 

AA AB

AB BB

S ′ 
=  
  

s
S s S  where ( )2

1

ˆ ˆ
n

AA j
j

S α α
=

= −∑ , ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1

ˆ ˆ ˆ ˆ ˆ ˆ,
n

r s r r s s
j j

j
s β β β β β β

=

= − −∑ , 

( ) ( )( )( )ˆ ˆ,r s
BB

p p
s β β

×
=S , ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1

1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
n n

p p
AB j j j j

j j

α α β β α α β β
= =

′ 
= − − − − 
 
∑ ∑s …  

and ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1

1 1

ˆ ˆ ˆ ˆ
n n

p p
j j j jYB

j j
Y Y Y Yβ β β β

= =

′ 
= − − − − 
 
∑ ∑s … . 

From the results in Appendix IA it follows that ( )2 1, 1BB p BB U xx nσ −+ −S W Σ S∼ , i.e. a 

Wishart distribution with dispersion matrix 2 1
BB U xxσ −+Σ S  and ( 1)n −  df, cf. Srivastava 

and Khatri [31] p. 78. 

 

C. The total residual sum of squares 

1

1 1

ˆ ˆ( ( ) ) ( ( ) )
j j

n n

j j j j YY xY xx xY
j j

SSE Sα α −

= =

′ ′ ′ ′= − − = −∑ ∑Y X β Y X β s S s� � . 

It follows from fundamental results in least square theory that SSE  is independent of 

BBS  and that 2 2
( 1)U n T pSSE σ χ − −⋅∼ . 
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D. The sample multiple coefficient of determination 

From the unconditional regression of the jY ’s on the ˆ
jβ ’s the sample multiple 

coefficient of determination is defined as 
1

2
ˆ.j j

BBYB YB
Y

YY

R
S

−′
=

β

s S s
 (cf. Johnson and Kotz et 

al. [19] p. 617). 

 

 

Appendix II – proof of some results 

 

A. Extracting the 
1FT  test statistic from the MLR 

The test statistic proposed by Hsiao [18] p. 18 can be expressed as 

( ) ( )
( )1

ˆ 1

1
YY xY

F

S SSE p n
T

SSE n T p

′− − −
=

− −

S β
. In Proposition 1 below this statistics is extracted 

from a subpart of the MLR in (3). 

 

Proposition 1: 
1

1
2

1 2 2

ˆ
1ˆ̂

U
F

U

c T c σ
σ

−
 

= −  
 

, where 1c  and 2c  are constants. 

 

Proof: Using the estimators in Section 2 we can write the quotient as 

( ) ( )
1

1
2

11 1 *
2 22

ˆ ˆ ˆ ˆ
ˆ
ˆ̂

n

j xx j
jU

F
U

SSE
c c T

SSE
σ
σ

−

=− −

′+ − − 
= ⋅ = ⋅  

 

∑ β β S β β
. Considering that 

( ) ( ) ( )1 1 1

1 1

ˆ ˆ ˆ ˆ
j j

n n

j xx j xY xx xY xY xx xY
j j

n− − −

= =

′ ′ ′− − = − ⋅∑ ∑β β S β β s S s s S s , 1 1ˆ
xx xYn− −=β S s  and 

( )1

1
j j

n

YY xY xx xY
j

SSE S −

=

′= −∑ s S s , it directly follows that ( )1 1

1 *
1 1F Fc T T− − = .                    ,  
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B. Extracting the multiple coefficient of determination from the MLR 

Since ( ) 11n −−S  is an unbiased estimator of ( )( )12
Uσ

−
′ +X X Σ� �  (cf. Rao [27]) we have 

the equality ( ) ( )
1 ( 1)2 ˆˆ 1 p

U nσ
− − +′ + = −X X Σ S� � . It then follows directly from Proposition 

2 below that the multiple coefficient of determination 2
ˆ.j jY

R
β

 can be derived from 

( ) 12 ˆˆUσ
−

′ +X X Σ� �  in (3). 

 

 

Proposition 2: ( )2
ˆ.

1
j j

BBYY Y
S R= − ⋅

β
S S  

 

Proof: From Anderson [1] p.40 we have that 

( ) ( )2
ˆ ˆˆ ˆ. .

ˆ1
j j j j

AA BB AA AB BBS R S
α α

′= − ⋅ = − ⋅
β β

S S β s S  where 2
ˆˆ .j j

R
α β

 and 1
ˆˆ .

ˆ
j j

BB ABα
−′ = ⋅ββ S s  

are the coefficient of determination and the vector of regression coefficients, 
respectively, from the regression of the ˆ jα ´s on the ˆ

jβ ´s. From regression theory 

2AA BBYY YBS S ′ ′= − +x s x S x , AB BBYB= −s s S x  and ( )1
ˆ ˆˆ . .

ˆ ˆ
j j j j

BB BBYB Yx
α

− ′= − = −
β β

β S s S β x  

where 1
ˆ.

ˆ
j j

BB YBY
−′ = ⋅

β
β S s . We may now write 

ˆ ˆ ˆˆ . . .
ˆ ˆ ˆ2

j j j j j j
AB BB BBYBY Yα

′ ′ ′ ′⋅ = ⋅ − ⋅ ⋅ +
β β β

β s β s β S x x S x , which finally gives 

( ) ( ) ( )2
ˆ ˆ ˆˆ . . .

ˆ ˆ 1
j j j j j j

AA AB BB BB BBYY YB YYY Y
S S S R

α
′ ′− = − ⋅ = −

β β β
β s S β s S S .                            ,
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