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Summary Time heterogeneity, or the fact that subjects are measured at different times, 

occurs frequently in non-experimental situations. For time heterogeneous data having error 

components regression structure it is demonstrated that under customary normality 

assumptions there is no estimation method based on Maximum Likelihood, Least Squares, 

Within-subject or Between-subject comparisons that is generally superior when estimating 

the slope of the regression line. However, in some situations it is possible to give 

guidelines for the choice of an optimal procedure. These are expressed in terms of the 

variability of the times for the measurements and also of the inter-subject correlation. The 

results are demonstrated on data from a longitudinal medical study. 
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1. Introduction 

 

Consider a longitudinal study where T repeated measurements are made on each of n 

subjects. Let ijy be the i:th measurement on the j:th subject (i=1…T, j=1…n) and assume 

that the vector 1( ) 'j j Tjy y=y …  for each  j can be written 

 

j
j j j

j

a 
 = +    

 
y 1 X ub                                                     (1) 

 

Here, ( )1(1 1) '  ,  =j j jr jp=1 X x x x… … …  is a design matrix with vectors 

1( ) 'jr jr Tjrx x=x … , ja is an intercept, 1( ) 'j pb b=b …  is a vector of slopes and ju  is a 

vector of errors which is assumed to be normally distributed with mean 0 and dispersion 

matrix 2σ I . In longitudinal studies the elements of jX  are times or functions of times, but 

may also be covariates. A common situation is when measurements are obtained from 

untreated patients (baseline measurements), then a treatment is given to the patients and 

new measurements are obtained from the same patients. In this case one may set the times 

of the baseline measurements, say 1 1jx , equal to zero, and the times of the subsequent 

observations, say 1  for 2ijx i T= … , equal to the times that has elapsed since the baseline 

measurements were taken. A simple example of this situation is given in Section 5 of this 

paper. 

   Different assumptions about and j ja b in (1) give rise to various models. When 

 and j ja b are equal to  and α β , respectively, with probability one, then the classical 

Gauss-Markov model is obtained. A generalisation of the latter is obtained by allowing the 
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intercepts to vary between the subjects in a wider population. Such models have been 

called Error Components (EC) models (Swamy, 1971) or random intercept models (Diggle 

et. al., 1994). If the ja ’s are independent of the ju ’s and vary according to a normal 

distribution with mean α and variance 2
aσ , it follows that the unconditional distribution of 

jy  in (1) is normal with mean jα +1 X β  and dispersion matrix 2 2'aσ σ+11 I . A further 

generalisation is to allow also the slopes to vary, but such Random Coefficient models will 

not be considered here. 

     An example of an EC model with two variables being functions of the times of the 

measurements can be constructed from Wood’s function (Lennox et al. (1992)). Here the 

response at time t is ( ) exp( )Bf t A t Ct= ⋅ − , where A determines the level of the peak value 

(PV), while B and C are constants that determine the time to peak (TP). When the variation 

between the individual PV’s is large and the corresponding variation between the TP’s can 

be ignored, then the linearised responses should agree with the following special case of 

the EC model in (1), 1 1 2 2ij j ij ij ijy a x x uβ β= + + + , where ln( )j ja A= , 1 ,Cβ = −  2 Bβ = , 

1 2,  ln( )ij ij ij ijx t x t= = . 

     Optimal estimators of the parameters in EC and Random Coefficient models under 

normality assumptions are well known for the case when the design matrices jX  are the 

same for all subjects (Rao, 1965). This is the case when the design matrices consist of 

functions of the times of the measurements and all subjects are measured at the same times. 

Such data has been termed balanced by some (Ware, 1985), while others further require 

that time intervals between pairs of corresponding observations are the same, for the data 

to be called balanced (Forcina, 1992). In many non-experimental situations, the design 

matrices vary between the subjects. For instance, drugs are administrated to patients at a 

clinic and, for various practical reasons, the effects of the drug are judged after different 
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treatment times. In fact, the situation when the time elements of the design matrix are 

determined by current needs and resources, rather than by purely statistical considerations, 

seems to be frequent. Here such data will be termed time-heterogeneous, rather than 

“unbalanced” to avoid confusion. In the latter situation the estimation procedure is more 

cumbersome and often requires the use of iterative methods (Laird and Ware, 1982). By 

considering the case when all subjects are measured at T times, as in (1), the expressions 

for the estimators are simplified (cf. Section 2). 

     In this paper, some estimators of the slope parameter β  of the EC model are compared. 

These estimators are presented in Section 2. Although EC models have been used 

extensively, very few comparative studies of the merits of different estimators have been 

published. The variance components 2 2and aσ σ are often of less interest in themselves, but 

estimates of the latter are crucial for the estimation of β . It has been shown that more 

efficient estimators of the variance components need not result in more efficient estimators 

of β (Taylor, 1980). In a frequently cited simulation study, Maddala and Mount (1973) 

compared bias and mean squared error of 11 estimators of the single slope parameter 

β when α was set to zero. It was concluded that ‘there is nothing much to chose among 

these estimators’, a statement which will be strongly contradicted by the results in Section 

3 of this paper where some expressions for the asymptotic efficiencies of some estimators 

are derived. Section 4 deals with tests and confidence intervals for components of β . In 

Section 5 the results are applied to a longitudinal medical study, while Section 6 contains 

some concluding remarks. 
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2. Some β -estimators 

 

It will be convenient to introduce the following sample moments for i=1…T, j=1…n, and  

r,s= 1…p: Means, 

/ ,  / ,  / ,  /jr ijr r jr j ij j
i j i j

x x T x x n y y T y y n= = = =∑ ∑ ∑ ∑ . 

Sums of square (SS) within subjects, 

2( )( ),  ( )( ), ( )rs ijr jr ijs js ry ijr jr ij j yy ij j
i j i j i j

w x x x x w x x y y w y y= − − = − − = −∑∑ ∑∑ ∑∑ . 

SS between subjects, 

2( )( ),  ( )( ),  ( )rs jr r js s ry jr r j yy j
j j j

b T x x x x b T x x y y b T y y= − − = − − = −∑ ∑ ∑ . 

Here, the two types of SS summarize the total variation within and between subjects. 

Put 1( ) '  and j j jp j
j

x x= =∑x x x… . Then the SS’s above can be expressed as 

( ) ( )' ',  ( ' '),xx rs j j j j xx rs j j
j j j

w T b T n= = − = = −∑ ∑ ∑W X X x x B x x xx  and 

xx xx xx= +T W B , the total SS matrix. 

( ) ( )' ,  (  ),xy ry j j j j xy ry j j
j j j

w T y b T y n y= = − = = −∑ ∑ ∑w X y x b x x  and 

xy xy xy= +t w b . Also, put yy yy yyt w b= + . 

     By making an orthogonal transformation of jy , the normal density is decomposed into 

two independent parts, one containing within-subject observations and one containing 

between-subject observations. Put j j=z My , where (cf. Rao, 1973, p.197) 

 

1/ 1/T T 
=  
  

M
L
…
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is orthogonal, and since ' =M M I  it follows that  

 

1' 'T −= −L L I 11                    (2) 

 

The property in (2) will be used below without having to specify the form of the sub-

matrix L . 

It is easily verified that ( ' ') 'j j j
y T=z y L  is normally distributed with 

2 2
'( ' )

( )  and ( )j
j j a

j

TT
E V

α
σ σ

   +
= = +       

0β x
z z I0 0LX β

, 

so the density of jz is, apart from constants 

21 ( 1)
2 2 22 2

2 2 2

( ' ) ( ) '( )
( ) exp ( ) exp

2( ) 2

T
j j j j j j

a
a

T y
T

T
α

σ σ σ
σ σ σ

−
− − − − − −  + − ⋅ −   +    

β x Ly LX β Ly LX β
   

(3) 

 

In (3),  

' ' ' ' ' ' '( ) '( ) 2j j j j j j j j j j
j j

− − = − +∑ ∑Ly LX β Ly LX β y LLy y LLX β βX LLX β  = 

= ' '2yy xy xxw − +w β βW β , which follows by using (2). Notice that the last expression is 

obtained without having to specify the form of the sub-matrix L . 

     Estimators of β can be constructed by using either between-subject or within-subject 

information, or by combining the two approaches. Here, four β -estimators will be 

considered: (1) ˆ
Bβ based on between-subject information only, (2) ˆ

Wβ based on within-

subject information only, (3) ˆ
LSβ , the ordinary least squares estimator, and (4) ˆ

MLβ , the 
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Maximum Likelihood estimator. As will be seen, the latter two estimators make use of 

both between- and within-subject information. 

 

Between-subject approach  

Data now consists of n independent observations jT y , each having a density which is 

proportional to the first factor of (3). The minimum variance unbiased (MVU) estimators 

are easily seen to be 

 

1 1
2 2

1
1 1

1ˆ ˆˆ ' ''
, with ( )ˆ ˆ

B B xx xxB
a

xx xyB B
xx xx

y
nV T

α α
σ σ

− −

−
− −

      + −−     =   = +       −       

x B x x Bβ x
B bβ β B x B

             (4) 

 

The residual SS is 2ˆ ˆˆ( ' ) ( ' )B j B B j yy xy B
j

SSE T y bα= − − = −∑ β x b β , which is distributed as 

2 2 2( ) ( 1)aT n pσ σ χ+ ⋅ − − . Thus, 1 /( 1)B xxSSE n p−⋅ − −B is unbiased for ˆ( )BV β . 

 

 

Within-subject approach 

Data consists of n independent observations jLy , each with a density which is proportional 

to the second factor of (3). In this case the MVU estimators are given by 

 

1 2 1ˆ ˆ with V( )W xx xy W xxσ− −= =β W w β W                                            (5) 

 

Another way to obtain ˆ
Wβ  in (5) is to first fit separate least squares planes to the data from 

each subject, giving the estimators ( ) ( ) 1 ( )ˆ j j j
W xx xy

−=β W w , and then to form the best linear 
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combination of the latter. The residual SS is ˆ'W yy xy WSSE w= −w β  which is distributed as 

2 2 ( ( 1) )n T pσ χ − − .  An unbiased estimator of ˆ( )WV β is 1 /( ( 1) )W xxSSE n T p−⋅ − −W . 

From the decomposition in (3) and from fundamental results in LS theory it follows that 

ˆ ˆ,  B Wβ β ,  and B WSSE SSE  are independent. 

 

 

OLS approach 

By fitting a least squares plane to the complete set of observations ( 1 ny y… ) one gets 

 

2 2 1 1
1

ˆ ˆ ' ˆ, with ( ) ( )ˆ
LS LS

LS a xx xx xx
xx xyLS

y
V T

α
σ σ − −

−

   −
  =   = + ⋅

     

β x
β T B T

T tβ
                          (6) 

 

 ˆ
LSβ  in (6) can also be expressed as a linear combination of between- and within-subject 

estimators, 1 ˆ ˆ( )xx xx B xx W
− +T B β W β . 

 

 

ML approach 

Solutions of the ML-equations in order to estimate β in the EC model seems first to have 

been discussed by Balestra and Nerlove (1966). By putting the derivatives of the log-

likelihood equal to zero and solving for the unknown parameters, it follows from simple 

but tedious arguments that the ML estimators can be obtained in the following way: Put 

2 ' 'yy xy xxSSB b= − +β b β B β and 2 ' 'yy xy xxSSW w= − +β w β W β . Then the estimators of 

1 pβ β… are obtained by solving the set of equations 
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1 1
( ) ( 1)( ) ,  1

p p

ry s rs ry s rs
s s

b b SSW T w w SSB r pβ β
= =

− = − − =∑ ∑ …                         (7) 

 

The rest of the parameters are then estimated from 

2ˆ ˆˆ ˆ' ,  / ( 1)ML ML MLy SSW n Tα σ= − = −β x and 2 ˆ ˆˆ ( ) / ( 1)a SSB SSE nT Tσ = − − , where 

ˆ ˆ and SSB SSE  are the expressions for  and SSB SSE  with ˆ
MLβ inserted for β . 

 

     When p=1, there is just one component to estimate, and (7) reduces to the cubic 

equation 

 

3 2 0P Q Rβ β β+ ⋅ + ⋅ + =                                                  (8) 

1 1 1 1

11 11 11 11 11 11

(2 1) ( 1) ( 1)where ,  2y y yy y y yyb w w b w bT T TP Q
T b T w Tw b w T b

   − + −
= − + = + +   

   
 and 

1 1

11 11 11 11

( 1) yy y y yyb w b wTR
T b w Tb w

 −
= − + 

 
. 

 

More generally, when n tends to infinity (T remains fixed) the ML estimator is 

asymptotically normally distributed with mean β and dispersion matrix (cf. Hsiao, 1986, p. 

40) 

 

1

2 2 2
xx xx

aTσ σ σ

−
 

+ + 

B W                                                       (9) 
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Here the dispersion matrix may be estimated by replacing the unknown variance 

components by the corresponding ML estimates. 

     Since the results above only hold asymptotically, a simulation study was performed 

when p=1 for various value of n, T, the inter-subject correlation 

 

2

' 2 2( , ) ,  for 'a
ij i j

a

Corr y y i iσρ
σ σ

= = ≠
+

,                                        (10) 

 

and also for various values of the ratio rK , defined below in (11), with r=1. In each 

simulation, data was generated according to the model in (1) by using normally distributed 

pseudo-random deviates, and a ML estimate was computed by solving (8). This procedure 

was repeated 105 times for each combination of n=(10,50,100), T=(2,10), ρ =(0.1, 0.5, 0.9) 

and 1K =(0.1, 0.5, 0.9). The means and variances of the ML estimates were then compared 

with the true value 0β =  and with the asymptotic variance in (9), respectively.  

   It was found that the bias when estimating β  with n=10 varied between -.0010 and 

0.0014. No further reduction in bias was obtained when n was increased to 50 and 100, and 

no relation could be seen between the bias and the values of n, T and 1K . The variance 

agreed well with the asymptotic expression in (9), but only for large values of n or ρ  and 

small values of 1K . In Table 1 in Section 3 the two variances ˆ ˆ( ( ) and ( ))ML MLV asVβ β  are 

compared when n=10. Here it is seen that the difference can be large. E.g. for 0.5,ρ =  

T=10 and 1 0.9K =  the asymptotic variance given by (9) was .275, compared to the actual 

value .338. With increasing n the latter was reduced to .286 (n=50) and .281 (n=100). 

Thus, while the bias of the ML estimator can be neglected with sample sizes as small as 

10, the asymptotic expression for the variance in (9) should be used with caution.   
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3. Efficiency of β -estimators 

 

When all jX ’s in (1) are equal, then xx =B 0 . In this case it is seen from the expressions 

for the dispersion matrices in (4)-(6) and (9) that the between-subject approach can not be 

used, while the three other approaches give identical β -estimators. 

     In the sequel it is assumed that the jX ’s vary between the subjects. The efficiency of 

the estimators considered in Section 2 will be shown to depend on the correlation in (10) 

and also on the ratio 

rr
r

rr rr

bK
b w

=
+

                                                       (11) 

 

This measure reflects the dispersion pattern of the r:th independent variable. If the latter is 

the time at which the measurement is made, then Kr=0 if all subjects are measured at the 

same times. Kr is large when the times do not overlap. Consider the following simple data 

sets S1 and S2, just for the purpose of illustration: 

 

S1: S2: 
i j 1ijx  i j 1ijx  
1 1 1 1 1 1 
2 1 3 2 1 2 
1 2 2 1 2 4 
2 2 4 2 2 5 
1 3 3 1 3 7 
2 3 5 2 3 8 

 

The variation between the x-values in set S1 is quite moderate, in contrast to the 

corresponding large variation in set S2. For the sets S1 and S2 one gets 1 0.40K =  and 

1 0.96K = , respectively. 
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     As will be shown below, the efficiencies of the β -estimators depend on Kr and ρ . In 

practice it may therefore be a good advice to compute Kr and to construct a confidence 

interval for ρ . The latter is easily obtained from the results in Section 2 by noticing that 

/B WSSE SSE  is proportional to the ratio of two independent chi square variables. The 95 

percent confidence interval for ρ  is thus given by 

( )
( )

.975 .025

.975 .025

( 1)
,  with 

( 1) ( 1) 1
B

W

n T p SSEQ F Q F Q
Q T F Q T F n p SSE

ρ
− − ⋅− −

< < =
+ − + − − − ⋅

               (12) 

 

and where Fα denotes the α -percentile of the ( )( 1) , 1F n T p n p− − − −  distribution. 

     When there are more than one independent variable in the model, the asymptotic 

efficiency of the β -estimators will also depend on the correlations between the x-variables. 

The expressions for the asymptotic efficiency will in the latter case be quite complicated. 

Due to these complications only the cases p =1 (Section 3.1) and p=2 (Section 3.2) are 

considered here. Finally, since the result in (9) only holds asymptotically, the relative 

efficiency in small samples is studied in a Monte Carlo study (Section 3.3). 

 

 

3.1 Asymptotic efficiency when p=1 

The single component of the β -vector is denoted β and for simplicity the index of Kr in 

(11) is dropped. From Section 2 the following expressions for the asymptotic efficiencies 

are obtained: 
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( ) 1ˆ 1 ( 1)( ) (1 )1ˆ (1 )( )
ML

B
B

TV Ke
KV

ρβ
ρβ

−
 + −−

= = + − 
 

                                         
ˆ( ) 1ˆ( )

ML
W B

W

Ve e
V
β
β

= = −                                                                 (13)   

( )

1
2 2ˆ( ) (1 )1ˆ (1 ) 1 ( 1)( )

ML
LS

LS

V T K Ke
TV

β ρ
ρ ρβ

−
 − = = + − + −  

 

 

These expressions are plotted in Figure 1 as functions of K for some values of T and ρ .  

INSERT FIGURE 1 ABOUT HERE 

In Figure 1 it is seen that the efficiency of ˆ
Bβ  decreases with increasing ρ , and to a less 

extent with increasing T. For ˆ
Wβ  one gets the reversed pattern. Notice that ˆ

Bβ  can be more 

efficient than ˆ
Wβ  when K is large and ρ  is small. This result is perhaps primarily of a 

theoretical interest. In Section 5 it will be demonstrated that inference based on ˆ
Bβ  can be 

very risky. The asymptotic efficiency of the OLS estimator has a minimum for K=1/2 and 

tends to zero as  or 1T ρ→∞ → . The efficiency of ˆ
LSβ is in fact smaller than that of ˆ

Wβ  

when { } 11 (1 )T Kρ −> + − , in which case nothing is gained by also taking between-subject 

information into consideration. However, the OLS estimator is always better than the 

between-estimator and it is easily shown that ˆ ˆ( ) ( )LS BV K Vβ β≤ ⋅ . 

 

 

3.2 Asymptotic efficiency when p=2 

Now there are two components 1β  and 2β  of the β -vector. Consider first the loss of 

variance when estimating 1β  by including two independent variables 1 2 and x x  in the 
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model instead of only 1x . Let 1 1
ˆ ˆ( 1) and ( 2)V p V pβ β= =  be the variances of the 1β -

estimator when one and two variables are used in the model, respectively, and introduce 

the notations 

 

12 12

11 22 11 22

,  W B
w br r

w w b b
= =                                                  (14) 

 

Then the ratio 1 1
ˆ ˆ( 1) / ( 2)V p V pβ β= =  is 21 Br−  when using a between-subject approach, 

21 Wr−  when using a within-subject approach and  

 

( )
( )( )

2

1 2 1 2

1 2

(1 ) 1 ( 1) (1 )(1 )
1

1 (1 ) 1 (1 )
B Wr K K T r K K

T K T K

ρ ρ

ρ ρ ρ ρ

 − + + − − − −
− + − − + −

 

 

using the ML approach. The last expression tends to 21 Wr−  when 1 2 and K K  tend to zero 

and to 21 Br−  when 1 2 and K K  tend to one. 

   An estimator of 1β  that is obtained by ignoring 2x  will in general be biased. Consider 

e.g. the between-subject estimator 1( ) 1 11
ˆ /B yb bβ = . This has the expectation 

 

1 1
11 1 1 1 1 2 2 11 1 11 2 12 1 2 12 11( )( ) ( 0 ) ( / )j

j

b T x x x x b b b b bα β β α β β β β− −⋅ − + + = ⋅ ⋅ + + = +∑  

 

In a similar way it is easily shown that the corresponding within-subject estimator 

1( )
ˆ

Wβ = 1 11/yw w  has the expectation 1 2 12 11( / )w wβ β+ . To study whether the smaller 

variance when using only 1x compensates for the loss of bias, consider the MSE-ratio 
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( )
( )

( ) ( )( )
( )

2

1 11

1 1

ˆ ˆˆ 1 11
ˆ ˆ2 2

V p bias pMSE p

MSE p V p

β ββ

β β

= + ==
=

= =
 

 

For 1( )
ˆ

Bβ  this ratio can be written 2 2 2 2 2
22 2(1 )[1 /( )]B B ar r b Tβ σ σ− + ⋅ + , and it is easily seen 

that the MSE-ratio is always smaller than 1, provided that 2 2 2
2 22( ) /aT bβ σ σ< + . Notice 

that the latter is the same as requiring that 2
2β  is smaller that the variance of the 2β -

estimator that only uses the second independent variable 2x . The same result holds for 

1( )
ˆ

Wβ  by replacing 2
Br  by 2

Wr , 22b  by 22w  and 2 2
aTσ σ+  by 2σ . 

     The expressions for the asymptotic efficiency when p=2 are quite complicated, but they 

can be simplified by using the results in Section 3.1. Let (1) (2)and e e denote the asymptotic 

efficiency of an estimator of 1 2 and β β , respectively, which is obtained by using a single 

independent variable in the model. The latter are given in (13). Then the following 

expressions are obtained for the asymptotic efficiency of the 1β -estimator with two 

independent variables: 

 

(1) 2
1,

(1) (2) (1) (2)
1,

ˆ( ) (1 )
ˆ( ) 1

ML B B
B

B B B B W W W

V e re
V r e e r e e

β

β
−

= =
 − +
 

 

                                         
(1) 2

(1) 2

(1 )
(1 )

W W
W B

B B

e re e
e r

−
= ⋅

−
                                                                   (15) 

 

It is not possible to express the asymptotic efficiency of the OLS estimator in this neat 

way. In (15) one may notice that (1) (1)
W Be e>  does not guarantee that W Be e> .  
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     If the linearised version of Wood’s function given in the introduction, with 

1 2 and ln( )ij ij ij ijx t x t= = , are used for the data sets S1 and S2 presented in the beginning of 

this section, then 0.9524 and 0.9921W Br r= = for S1 while 0.9140 and 0.9765W Br r= =  for 

S2. In these cases /W Be e  will be roughly 6-7 times larger than (1) (1)/W Be e . 

 

 

3.3 Efficiency in small samples 

Table 1 shows the actual variances of the four estimators when n=10 together with the 

asymptotic variance of the ML estimator given in (9). Here one may notice that the 

estimation equation (8) 

TABLE 1 INSERTED ABOUT HERE 

sometimes failed to produce ML estimates and that the failure rate was very low when 

T=10 and ρ =0.9. An interesting pattern is that the variance of the OLS estimator is 

constantly smaller than that of the ML estimator when ρ  is small. In the latter case the 

actual variance of the ML estimator can be considerably larger than the variance given by 

the asymptotic expression in (9). The precision of the within-subject and ML estimators are 

improved as ρ  increases and K decreases. As a curious fact one may notice that even the 

between-subject estimator can have smaller variance than the ML estimator in small 

samples. 

 

 
4. Tests for β  

 

The four estimators in the preceding sections can be used for constructing tests, as well as 

confidence intervals, for β . Here the performance of the test statistics 
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,  ,   and B W LS MLT T T T  for testing 0 0:H β β=  will be compared, where each statistic has the 

form 0
ˆ ˆ( ) / ( )T SEβ β β= −  and where ˆ( )SE β  denotes the square root of the estimated 

variance of β̂ . 

     From Section 2 one easily finds that 

 

[ ] [ ]
0 0

1/ 2 1/ 2
11 11

ˆ ˆ( ) ( ) and 
/ ( 2) / ( ( 1) 1)

B W
B W

B W

T T
SSE b n SSE w n T

β β β β− −
= =

− − −
               (16) 

 

have Student’s T distributions with 2 and ( 1) 1n n T− − − degrees of freedom, respectively. 

The non-centrality parameters needed for power calculations are both of the form 

0
ˆ( ) / ( )Vβ β β− . The distribution of LST  is more complicated since ˆ( )LSSE β  in the 

numerator is a linear combination of chi square variables (c.f. Ch.18.8 in Johnson et al., 

1994). From Section 2,  

2 11 11

11 11

ˆ( ( ))
( 2) ( ( 1) 1)

WB
LS

SSEb SSE wSE
t n t n T

β = +
− − −

 

Following Welch (1947) one may try to approximate the distribution of LST  by the 

Student’s T distribution with degrees of freedom equal to 

 

12 2 2

11 11 11 11

11 11 11 11

1 1 2
2 ( 1) 1 2 ( 1) 1 ( ( 1) 1)

W WB BSSE SSEb SSE w b SSE w
t n t n T t n n t n T n T

−
      
 + + −    − − − − − − − +       

 

The distribution of MLT , where the ML estimator is the solution of (8), is far more 

complicated. However, the ML estimator has an asymptotic normal distribution as n →∞ , 

while the distribution of the OLS estimator is exactly normal. It therefore follows that both 

MLT  and LST  has standard normal distributions in large samples, since the SE’s of both 
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estimators are consistent. It is also to be expected that the rate of convergence is faster for 

the OLS estimator. 

   To study the distributions of and LS MLT T  a Monte Carlo study was performed. The 

approach to normality was found to be unaffected by the magnitude of 11b  and 11w , but 

especially for the OLS estimator the approach to normality was found to be heavily 

dependent on 1K  in (11). As expected, the slowest rate of convergence to normality for the 

OLS estimator was obtained for 1 1/ 2K =  (cf. Figure 1), and for this value some 

percentiles of the distribution of and LS MLT T  are presented in Table 2, together with the 

corresponding percentiles obtained from the distribution of Welch T. As can be seen from 

the table, the statistic MLT  converges slower to  

 

TABLE 2 INSERTED ABOUT HERE 

 

normality than LST  when T (the number of times the measurements are made) is small. But, 

MLT  converges faster to normality when T and ρ  is large. A further conclusion is that there 

seems to be little to gain by using Welch’s adjusted degrees of freedom, unless n is at least 

100. 

     Under quite general conditions there is a close connection between the efficiency of 

estimators and the efficiency of the corresponding test statistics (Stuart and Ord, Ch. 25, 

1991). From Figure 2, where some power curves are compared, it is evident that similar 

conclusions can be drawn here. In large samples the power of the ML statistic always 

dominates the power of the other statistics. However, the statistic based on within-subject 

information may be a good alternative when ρ is large. 
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FIGURE 2 INSERTED ABOUT HERE 

 
 
 
5. Application to a longitudinal study 

 

A screening program for diabetic patients has been running since 1982 at Sahlgren’s 

hospital in Gothenburg (Kalm, 1993). To study whether an attempt to decrease the patients 

level of HbA1c (glycosulated haemoglobin) had been successful, a sample of n=461 

patients with exactly T=2 visits at the hospital was selected. The measurements at the first 

and second visits were obtained from patients before and after, respectively, they had 

participated in a training program aiming to improve the metabolic control. The training 

program started immediately after the measurements at the first visit. Due to the large 

intra-subject variability of the measurements, a mean of 6 HbA1c-values was calculated for 

each patient at each visit. In terms of the notations in Section 1 ijy represents the mean 

HbA1c-level of patient j obtained at the times 1 0jx = (first visit) and 2 jx =Time after first 

visit (in years). 

     Since the data consists of means it may be reasonable to assume normality for the 

observations. The next step is to check whether an EC model is appropriate, or if a 

Random Coefficient model, where also the slopes vary randomly, is more adequate. This 

may be done formally by performing formal tests (cf. Hsiao, 1986, Ch. 6.2.2.d; Petzold and 

Jonsson, 2003). Since the latter require that 3T ≥ , a less formal approach is used here. 

When the slopes bj in (1) has a normal distribution with 2( )  and ( , )j b j j abV b Cov a bσ σ= = it 

follows that 
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2 2 2
1 2 2 2 2

2 1 22 2 2 2 2
2 2 2 2

and ( ) 2 ( )
2 ( )

j a a ab j
j j b j

j a ab j a ab j b j

y x
V V y y x

y x x x
σ σ σ σ

σ σ
σ σ σ σ σ σ
 + + 

= − = +   + + + +    
.  

(17) 

 

  If (17) is compared with the corresponding quantities that have been estimated from data 

in Table 3, it is evident that the EC model, in which 2 0b abσ σ= = , suffices. Especially the 

lack 

 

TABLE 3 INSERTED ABOUT HERE 

 

of a monotonous quadratic increase in 2 1( )j jV y y−  argues against using the more general 

RC model. 

     From the data the following summary statistics were calculated: 

11 1

11 1

8.29
0.1596,  0.0486,  1.9482

0.8988,  0.1007,  0.4314
y yy

y yy

y
b b b

w w w

=
= = =

= = − =

 

The ratio 1K  in (11) is 0.15, so the degree of time heterogeneity is quite small. The 95 

percent confidence interval for ρ  given in (12) is 0.59 0.69ρ< < . According to the 

results in Section 3.1 it is to be expected that in this situation the ML and the within-

subject estimators should perform well and that the OLS estimator is less good. The 

between-subject estimator should be poor. The estimates of β  are, with SE in parentheses: 

ˆ
MLβ = -.097 (.031), ˆ

Wβ = -.112 (.032), ˆ
LSβ = -.049 (.037) and ˆ

Bβ = +.304 (.162) The 

estimated variance components are 2 2ˆ ˆ1.55 and 0.84aσ σ= = , using the ML approach. 
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     The hypothesis 0β =  is strongly rejected by two-sided tests using  and ML WT T , whereas 

the statistics  and LS BT T  fail to detect significant departures from the hypothesis at the 5 % 

level. The conclusion is that the training program has resulted in a weak, but statistically 

significant decrease of the HbA1c-level. It is worth remarking that the test based on BT  is 

not far from suggesting a significant increase of the HbA1c-level. 

 

 

6. Discussion and conclusions 

 

In non-experimental situations time heterogeneity occurs frequently. This heterogeneity, as 

measured by rK  in (11), can vary between 0 and 1. Values of rK  being as large as 0.90 

have been experienced by the author for data consisting of times between examinations of 

patients with osseointegrated oral implants. The choice of β -estimators will be important 

in such cases, although this seems to have been overlooked since the simulation study by 

Maddala and Mount (1973). It should be noted that the conclusions about the small 

differences in efficiency between various estimation methods that were made in the latter 

study were based on only 100 simulations. By repeating these simulation experiments with 

the same parameter settings ( rK =0.76, T=20, n=25 and ρ =0.002, 0.11, 0.50) it is obvious 

that at least 104-105 simulations would have been needed to draw any definite conclusions. 

     The present paper has shown that there can be large differences in efficiency between 

various β -estimators. In samples with large n, inference based on the ML approach is 

optimal. The estimation equations may exceptionally fail to produce ML estimates due to 

boundary solutions, but this is perhaps of less practical importance, since in large samples 

the probability of getting boundary solutions will be very small (Maddala, 1971).  
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     In smaller samples the problem arises whether the sample is large enough for 

asymptotic results to hold. Although the OLS estimator may be more efficient than the 

other estimators considered in this paper, the OLS approach is less suitable due to 

distributional problems if tests and confidence statements are required. In this case the 

within-subject or sometimes even the between-subject approach may be a good alternative. 

A guidance for choosing a proper estimator is then to calculate rK  and to construct a 

confidence interval for correlation coefficient ρ  by means of (12). 
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Legends to figures 

 

Figure 1. Asymptotic relative efficiencies of some β -estimators plotted versus 

11 11 11/( )K b b w= +  for two values of T and 2 2 2/( )a aρ σ σ σ= + . B: Between-group 

estimator, W: Within-group estimator, LS: Ordinary Least Squares estimator.  

 

Figure 2. Positive parts of simulated power curves for two-sided tests of 0β =  at the 5% 

significance level when 0.1ρ = and 0.9. In both cases K=1/2, T=2 and n=100. For ρ =0.1 

the power of the ML statistic (ML) is only slightly greater than that of the Least Squares 

statistic (LS) and therefore the latter is not shown. Also the power of the within-subject 

statistic (W) is slightly greater than that of the between-subject statistic, which is not 

shown. When 0.9ρ =  the power of the between-subject statistic has been omitted because 

it is very low and of less interest. All results are based on the outcomes in 105 simulations. 
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Figure 1 
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Figure 2. 
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Table 1. Small sample variances (n=10) of the estimators ˆ ˆ ˆ ˆ,  ,   and B W LS MLβ β β β , and the 
asymptotic variance of the ML estimator given in (9). The last column shows the 
percentage of the cases in which the estimation equation (8) failed to produce real-valued 
solutions. The small sample variances being obtained from 105 simulations. 
 

ρ  T K ˆ( )BV β
 

ˆ( )WV β
 

ˆ( )LSV β
 

ˆ( )MLV β
 

ˆ( )MLasV β
 

% 
missing

0.1 2 0.9   .122 .900 .108 .131 .108 2.0 
“ “ 0.5   .220 .180 .100 .154 .099 1.0 
“ “ 0.1 1.100 .100 .092 .110 .092 2.8 
“ 10 0.9   .211 .900 .180 .196 .171 0.0 
“ “ 0.5   .380 .180 .140 .177 .122 0.5 
“ “ 0.1 1.900 .100 .100 .101 .095 2.3 
0.5 2 0.9   .167 .500 .140 .178 .125 1.3 
“ “ 0.5   .300 .100 .100 .113 .075 1.7 
“ “ 0.1 1.500 .056 .060 .057 .054 3.2 
“ 10 0.9   .611 .500 .500 .388 .275 0.2 
“ “ 0.5 1.100 .100 .300 .104 .092 2.0 
“ “ 0.1 5.500 .056 .100 .055 .055 2.7 
0.9 2 0.9   .211 .100 .172 .105 .068 1.9 
“ “ 0.5   .380 .020 .100 .021 .019 3.1 
“ “ 0.1 1.900 .011 .028 .011 .011 3.7 
“ 10 0.9 1.011 .100 .820 .105 .091 1.3 
“ “ 0.5 1.820 .020 .460 .020 .020 2.8 
“ “ 0.1 9.100 .011 .100 .011 .011 2.9 

 
 

Table 2. Percentiles of the distributions of the statistics and ML LST T  together with the 
corresponding percentiles for Student’s T statistic where the degrees of freedom has been 
adjusted in a way suggested by Welch. The figures in each raw are based on 105 
simulations. 
 

TML TLS Welch T 
ρ  n T .01 .05 .95 .99 .01 .05 .95 .99 .01 .05 .95 .99 

0.1   10   2 –3.25 –2.09 2.10 3.25 –2.79 –1.81 1.82 2.80 –2.60 –1.74 1.74 2.61 
“ “ 10 –3.15 –2.04 2.02 3.14 –2.80 –1.80 1.82 2.80 –2.51 –1.71 1.72 2.51 
“ 100   2 –2.38 –1.68 1.68 2.37 –2.36 –1.66 1.66 2.35 –2.35 –1.65 1.65 2.35 
“ “ 10 –2.40 –1.68 1.68 2.40 –2.37 –1.66 1.65 2.38 –2.35 –1.66 1.65 2.33 
“ 200   2 –2.36 –1.66 1.66 2.36 –2.35 –1.66 1.65 2.35 –2.34 –1.65 1.66 2.35 
“ “ 10 –2.37 –1.66 1.65 2.35 –2.34 –1.65 1.65 2.33 –2.35 –1.66 1.64 2.33 

0.9   10   2 –3.18 –2.07 2.06 3.17 –2.88 –1.84 1.86 2.90 –2.61 –1.76 1.75 2.60 
“ “ 10 –2.46 –1.73 1.73 2.49 –2.91 –1.85 1.87 2.92 –2.52 –1.72 1.72 2.51 
“ 100   2 –2.37 –1.67 1.68 2.40 –2.35 –1.65 1.66 2.39 –2.30 –1.64 1.64 2.35 
“ “ 10 –2.34 –1.66 1.65 2.34 –2.37 –1.66 1.66 2.37 –2.36 –1.65 1.66 2.36 
“ 200   2 –2.36 –1.66 1.65 2.34 –2.36 –1.65 1.65 2.34 –2.34 –1.64 1.65 2.34 
“ “ 10 –2.34 –1.65 1.64 2.33 –2.33 –1.65 1.65 2.34 –2.33 –1.65 1.64 2.30 
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Table 3. Estimated dispersion matrices of the observational vector in (17) and of the 
variance of the difference between the observations computed at various times after first 
visit, 2 jx . Estimates at times large than 3 were not computed due to small sample sizes. 
 
 

2 jx  Sample size Estimated dispersion matrix 
2 1

ˆ( )j jV y y−

1 216 2.6 1.6
1.6 2.5
 
 
 

 
1.9 

2 172 2.5 1.5
1.5 2.1
 
 
 

 
1.2 

3 58 2.1 1.6
1.6 3.4
 
 
 

 
2.1 

4- 15 - - 
 
 
 
 


