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Abstract 
 

Pharmaceuticals are frequently found in the aquatic environment. As they are most 
often highly biologically active, quite persistent and may accumulate in aquatic 
organisms, i.e. bioconcentrate, they may pose a risk to non-target organisms. 

Current knowledge on environmental fate and effects of pharmaceuticals are 
limited, and traditional risk assessment strategies are insufficient to capture all 
substances posing risks for wildlife. In this thesis we explored the potential of two 
additional approaches to assist in the identification of substances of environmental 
concern. The first involved read-across between therapeutic plasma concentrations in 
humans and measured plasma levels of pharmaceuticals in exposed fish, in order to 
predict the risks for pharmacological effects in the fish. The second involved microarray 
analyses of gene expression to confirm pharmacological interactions, find potential 
biomarkers and assess the mode of action of pharmaceuticals in exposed fish. 

We could show that waterborne diclofenac affects hepatic gene expression in 
exposed fish at water concentrations reported in treated effluents and surface waters. 
Pharmacological responses, resembling those found in mammals, were observed in fish 
at blood plasma concentrations similar to human therapeutic plasma levels, indicating a 
similar potency and mode of action in fish and humans. In contrast to some other 
reported results, the bioconcentration factor of diclofenac in fish was found to be stable 
across exposure concentrations. 

Exposure of fish to ketoprofen at concentrations about 100 times higher than those 
found in treated sewage effluents resulted in plasma concentrations below 1% of human 
therapeutic plasma levels, suggesting low risk for effects in fish. Accordingly, no effects 
on hepatic gene expression could be confirmed. However, exposure of fish to complex 
effluents indicates a higher bioconcentration potential of NSAIDs than does exposure to 
single substances. Thus, laboratory experiments may underestimate risks in the 
environment. 

Microarray analyses revealed several differentially expressed genes after exposure 
to conventionally treated effluents. These included estrogen-responsive genes and a 
biomarker for dioxin-like exposure. Further results included indications of general 
stress after exposure to all studied ozone treated effluents. Effluents treated with 
activated carbon resulted in the least responses in exposed fish. 

Exposure to the glucocorticoid beclomethasone-diproprionate affected plasma 
glucose levels and caused oxidative stress in fish.  Effects observed in fish resembled 
effects in humans, supporting read-across between species. Exposure to free 
beclomethasone did not result in any observed effects, most probably due to its inability 
to bioconcentrate. 

Taken together, both read-across and microarray analyses have proven useful in 
identifying pharmaceuticals of environmental concern.  
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Populärvetenskaplig sammanfattning 
 

Läkemedel är oumbärliga verktyg för att lindra, bota och förebygga sjukdomar. 
Dessvärre bryts många läkemedel inte ner helt i våra kroppar och aktiva substanser kan 
därmed transporteras vidare via reningsverk ut i våra vattendrag. Vi vet ännu ganska 
lite om vilka konsekvenserna av dessa utsläpp är, men det finns en uppenbar risk att 
flera läkemedel kan påverka djurlivet negativt, framför allt i vattenmiljön. 

Läkemedel är biologiskt aktiva kemikalier. Det vill säga de är designade eller utvalda 
för att specifikt kunna påverka utvalda processer i våra kroppar, genom att binda till 
måltavlor som t.ex. receptorer eller enzymer. Detta innebär emellertid att andra djur 
som har dessa måltavlor också kan påverkas, om de utsätts för tillräckligt höga 
koncentrationer. Ett exempel på ett läkemedel som har dokumenterade effekter i miljön 
är det syntetiska östrogenet i p-piller, som genom att binda till östrogenreceptorn i fisk 
påverkar deras fortplantning redan vid väldigt låga vattenkoncentrationer. Fisk som 
lever i vatten där läkemedel hamnar, andas detta vatten och har därmed en risk att ta 
upp betydande mängder läkemedel från vattnet, och fisken har samtidigt många 
måltavlor som läkemedel binder till. Därför har vi valt att studera just fisk. 

Även om vattenkoncentrationen av läkemedel oftast är väldigt låga, kan vissa 
läkemedel ändå utgöra ett problem då de ibland har förmågan att ansamlas i 
vattenlevande djur. Till exempel har ett syntetisk gulkroppshormon, som också används 
i p-piller, hittats i blodet hos fisk i koncentrationer 10 000 gånger högre än 
koncentration än de halter man finner i det vatten fiskarna simmat i.  

I den här avhandlingen ville vi öka kunskapen kring risker med läkemedel i miljön 
genom att utvärdera och använda metoder som kan komplettera den traditionella 
miljöriskbedömningen av läkemedel. Dels utnyttjar vi befintlig kunskap om läkemedels 
potens och effekter i människa, dels använder vi oss av en modern, storskalig 
molekylärbiologisk teknik. 

För att bedöma om ett läkemedel kan utgöra en risk har vi använt oss av så kallad 
read-across, eller extrapolering mellan arter (Studie I, II och IV). Detta innebär att vi 
jämför koncentrationen av ett visst läkemedel i blodet hos exponerad fisk med 
koncentrationer i blodet hos patienter som tar läkemedlet i fråga. Vi får på så sätt en 
uppfattning om den faktiska risken för att fisken ska påverkas (på något sätt) av 
läkemedlet som den exponeras för. Förutsatt är att den tidigare nämnda måltavlan för 
läkemedlet (t.ex. en receptor) även finns i fisken, men så är oftast fallet.  

Om halten av läkemedel i fiskens blod tyder på en hög risk för påverkan, är det dock 
inte säkert att effekterna kommer att vara detsamma som de vi ser hos människor. För 
att få reda på mer information om hur läkemedel påverkar fisken har vi studerat 
genuttrycksmönstret (Studie I, II och III). Aktiviteten eller uttrycket av gener i 
organismer förändras hela tiden, allt eftersom miljön runt omkring oss förändras, men 
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det är ändå möjligt att identifiera gener vars aktivitet förändrats på grund av t.ex. 
läkemedelspåverkan. För att studera genuttrycksmönstret har vi använt microarray-
teknik, med vilken man kan studera aktiviteten av tiotusentals olika gener samtidigt. 
Genom att studera så många gener samtidigt kan vi få en uppfattning om vilka biologiska 
processer eller system som påverkas av ett läkemedel och på så sätt få information om 
hur det verkar i fisken. Denna analys ger oss även möjlighet att identifiera 
genuttrycksförändringar som kan vara mer eller mindre specifika för exponering av en 
viss substans eller grupp av substanser, så kallade biomarkörer. Sådana markörer kan 
vara användbara för att spåra om en fisk ute i det fria har blivit exponerad för 
läkemedel. Dessutom kan vi med hjälp av microarray-analys få indikationer om vid 
vilken koncentration av läkemedlet som fisken påverkas. 

In den första artikeln studerade vi diklofenak, den aktiva substansen i t.ex. 
Voltaren®, som tillhör gruppen icke-steroida antiinflammatoriska läkemedel, eller 
NSAIDs. Med hjälp av microarray lyckades vi identifiera förändringar på genuttrycket 
vid vattenkoncentrationer av diklofenak liknande de som har hittats i miljön. Dessutom 
såg vi fler och större förändringar i genuttryck ju närmare blodkoncentrationerna i 
fisken kom de som hittas i blodet hos människor som äter diklofenak. Resultaten tydde 
också på att t.ex. inflammationsprocesser påverkades i fisken, processer som man vet 
sedan tidigare påverkas av diklofenak i människa. 

Eftersom diklofenak har pekats ut som ett läkemedel med potentiella risker för 
vattenmiljön var vi också intresserade av att studera risker med en annan NSAID, 
ketoprofen, som i vissa situationer kan utgöra ett alternativ till behandling med 
diklofenak, och kanske därför kunde vara säkrare ur miljösynpunkt. I denna andra 
studie fann vi att ketoprofen ansamlades i betydligt mindre utsträckning i fisken än 
diklofenak. Vid en vattenkoncentration 100 gånger högre än vad som hittats i miljön 
nådde koncentrationer av ketoprofen i fiskens blod bara en bråkdel av de halter man 
finner i blodet hos patienter som tar ketoprofen. Vi kunde heller inte påvisa några 
förändringar av genuttrycket i dessa fiskar. Detta experiment skulle kunna tolkas som 
att användning av ketoprofen inte medför någon betydande risk för effekter på fisk i 
våra vattendrag, i alla fall betydligt mindre risk än vad användning av diklofenak gör. 
Dock är bilden mer komplex när man väger in andra studier som tyder på att olika 
NSAIDs, särskilt ketoprofen, tenderar att ansamlas i högre utsträckning i fiskar som 
exponeras för renat avloppsvatten jämfört med fiskar som utsatts för ett enda läkemedel 
utspätt i rent vattnet. En möjlig förklaring kan ligga i att det i avloppsvatten finns andra 
ämnen som skulle kunna påverka upptag och/eller utsöndring av läkemedel. Detta 
innebär att resultat från laboratorieförsök, såsom vår studie och väldigt många andra 
studier, riskerar underskatta riskerna ute i miljön där många kemikalier samverkar. 

Eftersom dagens reningsverk inte är designade för att ta rena bort läkemedel och 
andra miljögifter från avloppsvattnet, har det kommit förslag på mer avancerade 
reningstekniker. I den tredje studien undersökte vi olika avancerade reningsteknikers 
förmåga att förbättra vattenkvaliteten genom att studera genuttrycksmönstret i fisk som 
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exponerats för olika avloppsvatten. I fisk som exponerats för konventionellt renat 
avloppsvatten fanns det tydliga tecken på, bland annat, en påverkan av östrogen. 
Samtliga avancerade tekniker tog bort denna påverkan. Tre avloppsvatten vi studerade 
omfattade rening med ozon. Fisk som exponerades för dessa vatten visade tecken på 
stress, men vi kan inte avgöra om det var en skadlig form av stress. Den teknik som 
resulterade i avloppsvatten med minst påverkan på fisk var rening med aktivt kol. 

I den fjärde studien studerade vi olika fysiologiska effekter hos fisk som exponerats 
för en glukokortikoid, beklometason. Det är ett läkemedel som används för att behandla 
astma. Fisken hade ökade blodsockerhalter, vilket även är en känd bieffekt hos patienter 
som behandlas med glukokortikoider. Dessutom visade fisken tydliga tecken på oxidativ 
stress, vilket kort innebär att reaktiva syreföreningar som organismen själv producerat 
riskerar skada celler och organ. 

Sammanfattningsvis fann vi stöd för att read-across mellan människa och fisk kan 
bidra till att identifiera läkemedel med förhöjd miljörisk. I samtliga studier där vi använt 
oss av microarray analys har vi fått ytterligare information om läkemedels potens i fisk 
och fått en bättre uppfattning om hur läkemedel påverkar fisk och/eller identifierat 
möjliga biomarkörer. Dock finns det fortfarande en hel del kunskap att hämta om 
läkemedels effekter på miljön. De angreppssätt som presenteras i denna avhandling kan 
bidra till att öka vår förståelse för hur läkemedel påverkar miljön och i slutändan 
förhoppningsvis leda till en mer hållbar läkemedelsanvändning. 
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When you have eliminated the impossible, 
whatever remains, however improbable, 
must be the truth.  

Sherlock Holmes 
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1. Introduction 

an has always sought to prolong life and to some extent we have 

succeeded. Less than a century ago, the average duration of life in the 

western world was just above 50 years. Nowadays it is around 80 and 

some live to be over a hundred years old. This increase is much due to 

pharmaceuticals and today it is hard to imagine life without being able to take a 

pill to cure a headache. Unfortunately, our use of pharmaceuticals has, at least in 

some cases, consequences that reach beyond the intended therapeutic effects on 

humans. Active pharmaceutical ingredients (APIs) can also become 

environmental pollutants.   

When a pharmaceutical is taken orally by a human, it is subjected to gastric acids 

and other processes threatening to modify or eliminate it, thus reducing its intended 

action.  Pharmaceuticals are therefore of necessity designed or selected to withstand 

such pressures. Resistance to rapid elimination in the human body may, however, also 

imply resistance against degradation in sewage treatment plants (STPs) and by natural 

abiotic and biotic processes in surface waters. As a consequence, many APIs are quite 

persistent and therefore remain available in the aquatic environment for a substantial 

time allowing them to travel far downstream from their discharge sites. Nevertheless, 

their presence and availability to organisms are alone not sufficient for posing a threat. 

There are several reasons why APIs may pose risks to the environment. In contrast to 

most other pollutants, e.g. metals and plastics, pharmaceuticals are designed or selected 

for their biological activity, i.e. they are intended to affect biological systems in humans, 

and these systems may very well be present in similar forms in aquatic organisms. To 

perform actions on their main target in an organism, for example a receptor, and 

affecting other systems as little as possible, pharmaceuticals are often very potent. This 

results in a lower risk for non-target-related side effects in humans, but a higher 

potential to affect organisms in the aquatic environment as very low concentrations of 

high-potency substances are likely required to have an impact [1]. Taking the potency 

and persistence into account, APIs can indeed constitute an environmental threat, if the 

substances are taken up by organisms.  

M 
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In order for a pharmaceutical, or any substance for that matter, to have the 

potential to be taken up from the surrounding water and accumulate in fish, or to 

bioconcentrate, it has to meet a number of criteria. Much like “Lipinski’s rule of five” [2], 

used to evaluate druglikeness for orally active drugs, a substance should not be too 

large, not charged and not too lipophilic in order to bioconcentrate into fish. However, it 

should not be too hydrophilic either, and there are other properties that can influence 

the bioconcentration potential as well. Many pharmaceutical fulfill these criteria and 

some APIs (synthetic steroids) have been found to bioconcentrate over 10,000-fold into 

fish blood plasma, i.e. 10,000 times higher concentration in the fish compared with the 

surrounding water [3, 4]. Consequently, possessing all these properties make 

pharmaceuticals a group of high concern regarding impact in the aquatic environment.  

In Sweden, the pharmaceutical industry and the Stockholm county council have 

developed a classification system for pharmaceuticals with regards to environmental 

hazard (biodegradation and bioaccumulation) and risk [5, 6]. Some county councils use 

this classification as one of several criteria when making their recommendations about 

pharmaceuticals. However, there is clearly some room for improvements in this system. 

This classification, as is the case with others, is generally based on standard tests and 

standard risk assessments, which are not always protective for the environment [7, 8] 

(see section 1.5).  

In contrast to many other pollutants, regulations and restrictions on 

pharmaceuticals are very difficult to impose since the human health always is, and, at 

least according to my personal view, should always be priority number one.  

Nevertheless, precautions should be taken. The questions are for what and how. This 

thesis aims to be a step towards better understanding of the risks that pharmaceuticals 

pose to the environment and consequently to answer those questions. 

 

1.1 Emission routes 

To date, more than 160 APIs have been identified in the aquatic environment and 

the list is growing steadily [1, 9-15]. The concentrations are generally low with a typical 

detection level of ng/L up to low µg/L in treated effluents. In diluted surface waters 

further downstream from STPs, where the interaction between drugs and organisms 



Introduction 

15 
 

would occur, the concentrations decrease and so does the number of detected APIs. 

However, most data is collected in Europe, North America and limited areas of Asia and 

little is known regarding concentrations and occurrence in other parts of the world [1, 9-

15].  

There are several sources of the APIs occurring in the aquatic environment, with 

STPs serving as hubs in most cases (Fig. 1) [16], where the main source is considered to 

be human usage. After administration, some pharmaceuticals are metabolized, while 

others remain intact before being excreted in urine or faeces. Topically administered 

substances are also washed off without any chance of being metabolized by our bodies. 

Consequently, a mixture of various pharmaceuticals and their metabolites enter into 

municipal STPs. Depending on the properties of these compounds, many are not 

completely removed during the sewage treatment. Unused or expired drugs which are 

inappropriately disposed of may also end up in the STPs, although they should be 

returned to pharmacies and incinerated. In Sweden, which has one of the world’s most 

implemented return programs for unused medicines, this is considered a very small 

route of entrance into the aquatic environment, although in other countries and regions 

it may be more important [17]. Emission from the STPs can occur either via effluents or 

via sludge. 

Although human usage of pharmaceuticals, with excreted residues accumulating at 

STPs, is considered the main route of emission, pharmaceutical manufacturing has 

recently arisen as a source of very high local emissions. Legislation on releases of APIs 

are generally insufficient or absent [18] and the relatively few studies on effluents and 

waters connected to pharmaceutical production reveal alarming results. In China, the 

concentration of steroidal estrogens in the effluents from an STP receiving waste water 

from a local contraceptives manufacturer were considerably higher than normally found 

in treated municipal effluents [9]. In India, the effluent from a treatment plant receiving 

process water from about 90 manufacturers contains extraordinary high levels of 

various APIs [12]. For example, the broad-spectrum antibiotic ciprofloxacin was found 

at concentrations up to 31 mg/L. This would correspond to 44 kg in one day, i.e. five 

times the entire consumed amount in Sweden every day. An example of an API with a 

human target is the antihistamine cetirizine, which was found at concentrations up to 

10,000 times higher than is normally found in STP effluents. For 31% out of all  
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Figure 1. Pathways of 
pharmaceuticals; from 
production to the 
aquatic environment. 
Inspired by Monteiro 
et al. [16] 
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pharmaceutical products approved for the Swedish market and containing any of nine 

preselected substances, the API originated from manufacturers that frequently send 

process water to this particular Indian STP [19]. The consequences of antibiotic 

production release have also been observed in China where high levels of antibiotic 

resistance were found in bacteria strains isolated from wastewater and rivers 

downstream from penicillin and oxytetracycline manufacturers [13, 20]. Major releases 

of APIs are also documented from Western countries [21]. For example, Phillips et al. 

[22] found up to mg/L concentrations of certain pharmaceuticals in the effluents from 

two STPs in New York, USA, in comparison with 24 other STPs across the United States 

(including a third in New York). These two STPs received substantial flows from 

pharmaceutical formulation facilities, which was not the case for the other investigated 

STPs. An important question is how wide-spread large emissions from manufacturing 

sites actually are and what their impact is on the environment. However, emissions from 

production in particular are not further evaluated in this thesis. 

 

1.2 Sewage treatment plants 

Today’s modern STPs were initially built without regards to API removal. The 

treatment technology is primarily designed to remove potential pathogens, to remove 

organic substances that may cause oxygen depletion and to reduce nutrients 

(phosphorus and nitrogen) that may cause over-fertilization, rather than to 

remove/degrade pharmaceuticals. Thus, the fate of pharmaceuticals in a conventional 

plant is to a large extent determined by the physical, chemical and biological properties 

of the substance itself and consequently the removal rate for many APIs is poor. There 

are three properties that determine the fate of substances in an STP system: 

• Volatility 

• Ability to adhere to particles  

• Persistence, ability to withstand degradation 

Very few pharmaceuticals are volatile and evaporation is therefore insignificant. Some 

adhere strongly to the sludge and end up in the sludge handling part of the plant. 

However, most pharmaceuticals are water soluble and will pass through the plants 
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intact, unless they are degraded. This incomplete removal of APIs has led to suggestions 

on addition of more advanced treatment steps to conventional plants. Treatment with 

activated carbon and ozonation are two advanced technologies proven to be particularly 

promising. Both have the potential to reduce the concentrations of a broad spectrum of 

APIs with varying properties [23-26]. Other oxidation methods, mainly based on ultra 

violet (UV) radiation, have also been considered [23, 27-30]. Still, the method best suited 

for removal of one API can differ completely from the most suitable method to remove 

another. In fact, for some pharmaceuticals the concentration can actually be higher in 

the effluent than in the influent as certain treatment steps may lead to re-generation of 

parent compounds from excreted metabolites, for example cleavage of glucuronide 

conjugates by biological treatment [31, 32]. 

Although chemical analyses of STP effluents have shown a general improvement in 

terms of substance removal, there are other aspects to consider in toxicity evaluations of 

effluents. Technologies based on oxidative/reductive reactions or photolytic 

transformation (e.g. ozonation and UV radiation) can lead to generation of 

transformation products that, in turn, may affect exposed organisms by unknown modes 

of action. Furthermore, effluent contains complex mixtures of chemicals and several 

substances, not only pharmaceuticals, exert their effects on organisms via similar modes 

of action which might lead to additive effects, whereas some substances may enhance 

the effects of others, i.e. synergy. Therefore, biological testing is also needed, as it 

provides information not possible to obtain by chemical screening alone. There are 

several examples where biological testing has demonstrated both increased and reduced 

toxicity after advanced treatments: reduced immune responses in rainbow trout after 

peracetic acid, UV or ozone treatment [33]; reduced induction of estrogenic biomarkers 

in rainbow trout after ozonation and membrane bioreactor treatment [34]; reduced 

induction of vitellogenin and immune gene expression in goldfish after treatment with 

membrane ultrafiltration followed by activated carbon filtration [24]; increased general 

toxicity in rainbow trout yolk sac larvae after ozonation [35]; reduced toxicity in 

crustaceans, bacteria and micro algae exposed to effluents treated at lower doses of 

ozone, but increasing toxicity with increasing ozone concentration [36-39, Hörsing et al., 

manuscript]. Nevertheless, far from all techniques have been evaluated with biological 

testing and studies on the mode of action of differently treated effluents in fish are 
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scarce. In paper III we therefore performed global hepatic gene expression analyses in 

fish exposed to different effluents treated with various techniques.  

 

1.3 Effects in the environment 

Very few APIs have been causally linked to adverse effects in wild organisms. The 

two best examples of clear links between exposure and effects are the feminization of 

male fish caused by exposure to estrogens, including the synthetic estrogen 17-α-

ethinylestradiol (EE2) used in many contraceptive pills, and the dramatic decline of 

vulture species on the Indian subcontinent caused by exposure to the non-steroidal anti-

inflammatory drug (NSAID) diclofenac.  

In the early 1990s, roach (Rutilus rutilus) with intersex characters, i.e. both male 

and female gonadal features in the same animal, were observed close to municipal STPs 

in England, and caged fish downstream from the STPs showed strong indications of 

exposure to estrogenic compounds [40]. Sewage effluents contain several endocrine 

disruptors that could theoretically be the cause: natural hormones like estrone (E1), 17-

β-estradiol (E2) and estriol (E3), synthetic hormones like EE2 and industrial phenols like 

nonylphenol and bisphenol A. The use of nonylphenol is currently banned in Europe and 

detected concentrations are thus lower now than those measure in the past [41, 42]. 

However, several studies have together provided convincing evidence for causality 

between exposure to steroidal estrogens, especially EE2, and harm to the reproduction 

systems in fish [4, 43-48]. These findings were the starting signal for intensified concern 

of pharmaceutical impact on the environment. 

The case of diclofenac-poisoning of vultures describes an illustrative example of 

how pharmaceuticals can spread through the food chain. In Hinduism, cows are sacred 

and can therefore not be killed. Hence, on the Indian subcontinent they are often worked 

until the end of their lives and to reduce suffering they are often given diclofenac (or 

other NSAIDs). When they have passed away, their carcasses are disposed of naturally. 

In other words wildlife, including scavenging birds, is allowed to consume them. 

Unfortunately, vultures of the genus Gyps, are not able to cope with the residues of 

diclofenac remaining in the carcasses. Consequently, there has been an extensive decline 
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of >95% in vulture populations in India, Pakistan and Nepal, starting in the 1990s [49, 

50]. Three Gyps species were even on the brink of extinction. The dead vultures showed 

signs of renal failure and visceral gout, which are known side effects of over-dosage of 

diclofenac in humans and other mammals. Accordingly, there is strong evidence, 

including epidemiological and experimental evidence, that diclofenac residues from 

dead cattle were in fact the reason for this vast vulture population decline, and in 2006, 

diclofenac was consequently banned for veterinary use in India, Pakistan and Nepal [49-

53]. However, the recommended alternative, meloxicam, is expensive and so diclofenac 

is often used anyway, as are other NSAIDs like ketoprofen. Unfortunately, recent studies 

have shown, through experimental testing, that ketoprofen affects Gyps vultures in a 

similar manner as diclofenac and it has been suggested that ketoprofen may have 

contributed to the widespread vulture death despite previous indications that it was 

safe [51, 54]. 

Both EE2 and diclofenac are examples of drugs primarily designed to interact with 

human drug targets, though pharmaceuticals like parasiticides and antibiotics, which 

target parasites and bacteria, have also been shown to affect organisms in the 

environment. According to field studies, the broad spectrum antiparasitic medicine 

ivermectin, used for veterinary purposes, affects non-target dung-feeding flies and 

beetles [55] and is also highly toxic to the crustacean Daphnia magna [56]. The 

previously mentioned releases of antibiotics in India and China have further raised 

concerns on the incidence of antibiotic resistance [12, 13, 20, 57]. Although antibiotics 

have the potential to affect the community structure and function of microbes such as 

fungi, microalgae and bacteria, the possible effects on antibiotic resistance raise 

particular concern because of the obvious risks for human health and the potentially 

global consequences [1]. However, this thesis focuses specifically on pharmaceuticals 

with human drug targets; hence antibiotics, parasiticides, antifungals etc. will not be 

further discussed. 

 

1.4 Potential threats from pharmaceuticals in the environment 

 The substances mentioned in section 1.3 are pharmaceuticals for which there are 

relatively ample data linking to effects in the environment in one way or another. 
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Nevertheless, there are many pharmaceuticals that pose a potential threat and several 

studies have aimed to increase the knowledge of the impact on organisms by various 

methods. One class of pharmaceuticals that has received increased awareness and 

concern is progestins, i.e. synthetic forms of the female sex hormone progesterone, used 

in various hormonal contraceptives. They have not been reported in STP effluents very 

often, quite possibly because few have looked for their presence. Levonorgestrel, one of 

the most common progestins, used in for example emergency pills and regular 

contraceptive pills, has been found at approximately 1 ng/L or slightly higher on 

occasion [3, 58]. Concentrations of up to approximately 10 ng/L of levonorgestrel have 

been reported in surface and ground waters [59, 60]. However, the blood plasma 

concentration of levonorgestrel in fish exposed to sewage effluents can be considerably 

higher. Due to a considerable bioconcentration potential, concentrations up to 12 ng/ml 

levonorgestrel have been found, that is to say a higher plasma concentration has been 

measured in the exposed fish than in women taking oral contraceptives [3]. Thus, risks 

for effects on exposed fish are obvious (see section 1.6). Accordingly, Zeilinger et al. [61] 

showed that levonorgestrel concentrations of ≥0.8 ng/L inhibit reproduction in exposed 

fish and that higher concentrations result in masculinization of females. The effect on 

inhibited reproduction is in line with its intended effect on women, including feedback 

on the hypothalamic pituitary axis. The latter is also not surprising given that most 

progestin also bind to androgen receptors, although with lower affinity than to the 

progesterone receptor. If the findings by Fick et al. [3], Zeilinger et al. [61] and Vuillet et 

al. [59, 60] are representative for different species, waters and exposure situations, it is 

almost surprising that there are fish in certain French waters! In amphibians, 

levonorgestrel has been shown to impair several steps of the reproductive and 

developmental processes, including oocyte maturation, fertility and metamorphosis [62-

64]. 

 Among the most frequently detected APIs in both STP effluents and surface 

waters are the selective serotonin reuptake inhibitors (SSRIs). These antidepressants, 

including fluoxetine (Prozac), are generally found at low ng/L levels and on rare 

occasions up to µg/L levels [65-69]. The bioconcentration potential is not as high as for 

levonorgestrel, though fluoxetine has been found in wild fish tissue [65, 70]. Reported 

effects of SSRI exposure in fish include behavioral changes (aggression, appetite etc.) 

and reproductive alterations, though not at environmentally relevant concentrations in 
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most cases [66, 71]. One of the most prescribed classes of pharmaceuticals is the β-

blockers. Consequently they too are frequently found in STP effluents and surface 

waters, generally at ng/L concentrations but occasionally up to the µg/L range [32, 72-

75], though most studies show effects in fish exposed to β-blockers at relatively high 

concentrations (mg/L) [76]. 

In paper I and II, two NSAIDs are studied and in paper IV a glucocorticoid, and so a 

more thorough introduction to these two classes of pharmaceuticals follows. 

 

1.4.1 Non-steroidal anti-inflammatory drugs 

Non-steroidal anti-inflammatory drugs, or NSAIDs, can be found in the medicine 

chest of most homes in the Western world. Brand names such as Ipren, Alvedon, Treo 

and Voltaren are known to most Swedish consumers, and in other parts of the world 

Advil, Tylenol and Aspirin are just as well known. Even their active substances: 

ibuprofen, paracetamol, acetylsalicylic acid and diclofenac are recognized by the 

common man. These drugs have analgesic, antipyretic and at higher doses also anti-

inflammatory effects and many of them are available over-the-counter. In paper I and II 

the two NSAIDs diclofenac and ketoprofen are studied and these two will therefore be in 

focus here, although other NSAIDs will be briefly introduced as well.  

The use of NSAIDs is wide and includes short-term treatment of a variety of light to 

intermediate pain conditions from ordinary headache to pain reduction associated with 

operations. However, although they all work via the same mode of action in general, 

there are level differences in their action. Ibuprofen and paracetamol are often used 

during common cold and relatively lighter pain conditions, e.g. migraine, due to their 

analgesic and antipyretic effects, whereas diclofenac and ketoprofen are often the 

preferred alternative in association with injuries, operations and therapy for rheumatic 

diseases, because of the stronger anti-inflammatory and analgesic effects. 

The mechanism of action of NSAIDs is not entirely known, yet the primary target is 

the inhibition of the cyclooxygenase enzymes Cox1 and Cox2 (also known as 

prostaglandin G/H synthase, or PTGS, 1 and 2) [77-79]. However, additional modes of 

action of individual drugs are suggested continuously [80]. The Cox enzymes convert 



Introduction 

23 
 

arachidonic acid to prostaglandin H2, the precursor of the eicosanoid subclass 

prostanoids including prostaglandins, prostacyclins and thromboxanes. There is a great 

diversity of receptors, spread out through the human body, which means that 

prostanoids can have a wide variety of effects on several different physiological systems, 

including hyperalgesia, broncho-dilation and constriction, vasodilation and thrombosis. 

In humans, several different side effects have been observed. Those occurring most 

commonly are gastrointestinal bleeding, renal and cardiovascular problems and, when 

administered topically, skin irritations [8]. It has been suggested that side effects caused 

by NSAIDs originate in the inhibition of Cox1, while the anti-inflammatory actions are a 

result of Cox2 inhibition [81]. Traditional NSAIDs affect Cox1 and Cox2 with relative 

equipotency, though the Cox2 selective coxibs, e.g. rofecoxib (Vioxx), were developed 

and made available on the market in 1999 [82]. Although both Cox1 and Cox2 exert the 

same converting action, there are differences. Cox1 is responsible for the baseline levels 

of prostaglandins, whereas Cox2 produces prostaglandins through stimulation by e.g. 

proinflammatory cytokines [79, 83, 84]. In theory, selectivity for Cox2 would allow 

coxibs to reduce inflammation and hyperalgesia while minimizing adverse side effects. 

However, the results have not been as expected. In spite of the Cox2 selectivity, several 

side effects including renal failure and cardiovascular effects could still be observed. 

Many of these side effects are probably due to an increased synthesis of thromboxanes. 

Consequently most coxibs have been withdrawn from the market, including the 

infamous Vioxx (rofecoxib). Non-selective NSAIDs usually tend to preferentially affect 

one of Cox1 and Cox2 slightly more than the other, rather than acting equally. Diclofenac 

binds preferentially to Cox2 and ketoprofen to Cox1 (Fig. 2) [85]. This may explain some 

differences in characteristics and effects between different “non-selective” NSAIDs. 

Non-steroidal anti-inflammatory drugs come in several formulations. Pills and 

tablets taken orally have been the general form of administration, though injections and 

suppositories are also widely used [8]. In the past decade, the use of topically 

administered gels has increased more and more [86]. As mentioned in section 1.1, one 

important point of origin for drug emission into the environment is the human body and 

this is mainly through excretion. When discussing NSAIDs, one must take gels into 

account since topical administration results in residues that are washed off straight 

down the drain. When administered orally, the major part of the drugs are excreted as 
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metabolites, e.g. glucuronides [8], but the washed-off gel residues contain the parent  

compound. Furthermore, as this formulation requires an additional barrier to be 

crossed, i.e. the skin, before reaching its target within the body, the total amount of 

substance used in a single treatment may be higher than when it is taken as a pill.  

Notably, gels are not taken into account in calculations of defined daily dose (DDD) and 

sales per active substance [86]. 

Perhaps the most drastic effects caused by pharmaceuticals in the environment 

(thus far) are the previously mentioned reports on Gyps vultures on the Indian 

subcontinent [49, 50]. The initial reports were on how some vulture species that had fed 

on diclofenac-treated livestock developed renal failure. This subsequently led to visceral 

gout and death, to such a degree that some species were pushed to the edge of 

extinction. Consequently, in 2006 the use of diclofenac for veterinary purposes was 

banned in India, Nepal and Pakistan [52]. However, after a few years it turned out that 

another NSAID, ketoprofen, may have contributed to this dramatic decline in vulture 

populations, although the evidence and environmental causality are not as conclusive as 

for diclofenac [51, 54]. Ketoprofen-related mortality has in addition been reported in 

Figure 2. Graphical overview of the Cox-selectivity of different NSAIDs [85]. 



Introduction 

25 
 

male eider ducks given the drug intentionally [87]. The symptoms were identical to 

those found in the Gyps vultures exposed to diclofenac, i.e. renal failure and visceral 

gout. 

For diclofenac and ketoprofen, the removal rate in STPs varies in most cases from 

low to moderate (5-70%) [31, 88-90], though occasionally higher removal rates are 

found for ketoprofen [31]. Consequently, they are found in STP effluents very frequently. 

Detected concentrations obviously vary as well, though measured levels are often 

approximately 1 µg/L or just below for both compounds [3, 31, 88-91]. In some contrast, 

the removal efficiency for ibuprofen is very high (>90%-100%) [26, 31, 32, 88]. 

Nevertheless, ibuprofen have also be found at approximately 1 µg/L [88], though the 

influent concentrations are generally much higher than for diclofenac and ketoprofen 

[26, 88] due to considerably higher usage. In surface waters the concentrations are 

lower, though both ketoprofen and diclofenac can still be found at concentrations of up 

to 100 ng/L and occasionally higher [32, 88, 92]. 

Both cyclooxygenase enzymes (Cox1 and 2) have been characterized in a number 

of teleosts [66] and effects on several endpoints have been documented following 

experimental exposure to NSAIDs. Cytological and histological studies in fish exposed to 

diclofenac have reported effects including glycogen depletion of hepatocytes in the liver, 

hyaline droplet degeneration in the kidney and pillar cell necrosis in the gills [93-96]. 

Some effects were observed at water concentrations as low as to 1 µg/L. Nevertheless, 

the mode of action of diclofenac in fish is unknown and gene expression data subsequent 

to exposure is lacking. We therefore performed global hepatic gene expression analysis 

in rainbow trout exposed to diclofenac to increase the knowledge of the actions of 

diclofenac in fish (Paper I). We also performed bioconcentration analyses, as there have 

been some uncertainties about the bioconcentration potential of diclofenac [3, 91, 94]. 

Based on documented effects on birds, and reported sublethal effects in fish in 

laboratory exposures at around 1 µg/L, diclofenac was, in 2012, included in the 

substance priority list within the EU Water Framework Directive (together with EE2 and 

E2) [97]. This means that EU Member States will have to ensure that set limit values, 

Environmental Quality Standards (EQS), are met by 2021. The EQS for diclofenac in 

inland surface waters is set to 0.1 µg/L. Importantly, measures to reach the EQS should 

not jeopardize human health by inferring with the possibilities to prescribe diclofenac or 
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restrict its availability for non-prescription use. Improved removal during sewage 

treatment is hence a reasonable mitigation alternative, though most likely very 

expensive. Another option is substitution of API in clinical situations where there are 

alternative substances with a similar mode of action and potency as diclofenac, but with 

less potential of posing a risk in the environment. Ibuprofen was under consideration for 

inclusion in the priority list, but was excluded at the end of the process. De Lange et al. 

[98] reported effects on the activity of the crustacean Gammarus pulex at a very low 

exposure concentration (10 ng/L). However, the reliability of the study by De Lange et 

al. is questionable due to the lack of a dose-response relationship (no effects at higher 

concentrations of ibuprofen), reproducibility and understanding of the mechanism 

behind the effects [99]. Effects on fish include an increasing change in reproductive 

patterns of Japanese medaka (Oryzias latipes) with increasing exposure concentration of 

ibuprofen, though only significantly at a water concentration of 100 µg/L [100]; reduced 

concentrations of prostaglandin E2 in gills upon exposure to ibuprofen at 50 and 100 

µg/L [101]; disturbance in the osmoregulatory, metabolic and cortisol responses in 

rainbow trout at the relatively high concentration of 1 mg/L ibuprofen or salicylate 

[102]. Studies on the effects of ketoprofen exposure in fish are however very scarce. 

Thus, in paper II we aimed to analyze the bioconcentration potential and 

pharmacological responses of ketoprofen, in a manner similar to that used to address 

effects of diclofenac in paper I, to assess whether ketoprofen could pose as a better 

alternative with regards to effects on fish. 

 

1.4.2 Glucocorticosteroids 

The potential of several steroids to have an impact on aquatic organisms has 

already been demonstrated (see section 1.3 and opening paragraph in section 1.4). 

However, most focus has been on sex steroids, e.g. synthetic hormones used in 

contraceptive pills, and effects directly connected to reproductive processes. In paper IV, 

we aimed to evaluate another group of steroids, glucocorticosteroids, or glucocorticoids 

in short. They are widely used in treatment of a large variety of human diseases as they 

are important for many systems in vertebrate physiology, though their role in the 

immune response has proven most useful.  Medical indications caused by an overactive 
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immune system, such as allergies, asthma and autoimmune diseases, are among the 

main treatment areas.  

 Glucocorticoids act by binding to the ubiquitous glucocorticoid receptor, which in 

turn initiates gene transcription via glucocorticoid response elements [103]. One of the 

resulting gene transcriptions is the induction of genes involved in gluconeogenesis 

[104], from which the name glucocorticoids derive. Their anti-inflammatory effects are 

mediated by inhibition of the transcription factors, e.g. activating protein-1 and nuclear 

factor κB, which leads to a decreased expression of genes involved in inflammatory 

responses [105]. Due to their anti-asthmatic properties, glucocorticoids are often 

administered via inhalers for delivery to lung tissue where they have local effects. They 

are mainly excreted via faeces as metabolites [8]. However, like NSAIDs, several 

substances are also administered topically, thus they may also enter the sewage systems 

as parent compounds. There are also some concerns regarding inappropriate disposal of 

inhaler devices, which, at least in some regions, may also add to the amount of 

unmetabolized compound reaching the environment. Accordingly several different 

glucocorticoids, natural and synthetic, have been measured in sewage effluents and 

surface waters at low ng/L concentrations [106, 107] and in addition, they have the 

potential to bioconcentrate [108]. 

 In rainbow trout, two glucocorticoid receptors have been identified (GR1 and 

GR2) [109]. Since conserved drug targets strongly increase the probability for 

pharmacological interactions to occur at low doses of APIs such as those found in the 

aquatic environment [110], conditions are favorable for physiological effects as a 

consequence of glucocorticoid exposure in the field. The internal corticoid system of 

teleost fish differs, however, from mammals in that fish lack mineralcorticoids, thus the 

principle glucocorticoid cortisol fills both mineral- and glucocorticoid functions [111]. 

Aside from their important roles in metabolism and immune function, glucocorticoids 

are also involved in osmoregulation, which is of additional importance in anadromous 

species like rainbow trout as they migrate between fresh and salt water, i.e. 

smoltification [112]. Furthermore, they are important in the larval metamorphosis in 

fish [112] and a known side effect in humans is the growth inhibition and pubertal delay 

[8, 113]. Taking all these aspects into account suggests multiple types of ecotoxicological 

effects by glucocorticoids in the aquatic environment. Accordingly, reported effects of 
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exposure to the synthetic glucocorticoid dexamethasone include changes in 

reproduction, growth, and development, though at relatively high doses (500 µg/L) 

[114-116]. 

 In paper IV we aimed to investigate the potential of the synthetic glucocorticoid 

beclomethasone and its prodrug beclomethasone-diproprionate (BDP) to affect fish. As 

BDP is mainly used in treatment of asthmatic disorders it is primarily administered as 

an inhalant, although it is also available in gel-form [8]. Soon after administration, BDP is 

metabolized to beclomethasone-17-monoproprionate (BMP), beclomethasone-21-

monoproprionate (inactive) and free beclomethasone in humans via esterases present 

in numerous tissues of the body [117]. Beclomethasone-17-monoproprionate is 

considered the active metabolite with an affinity of approximately 18 times higher than 

that of free beclomethasone in humans [118]. A dose of 0.8 mg/day of the prodrug BDP 

yields an HTPC of 0.33 ng/ml BMP [113, 119]. However, although beclomethasone and 

BDP are considered to be inactive metabolites compared with BMP, their binding 

affinities are similar to that of dexamethasone. In fish, this affinity relationship has been 

reported to be similar to that in humans [108]. 

Although administered for local effects, dose-related systemic effects have been 

established in humans upon BDP inhalation, including growth rate reduction, adrenal 

suppression and adverse effects on skin, bone and eyes [8, 113]. Published data on 

effects of beclomethasone on fish are few, though recently Kugathas et al. [108] 

demonstrated effects of waterborne BDP, at nominal concentrations of 1 µg/L, on 

plasma glucose levels and white blood cell counts in fish. Although neither effluents nor 

surface waters concentrations of any of the beclomethasone formulations are known at 

present, it can be assumed that most of the consumed prodrug BDP has been 

metabolized into the less lipophilic forms BMP, beclomethasone and additional 

metabolites before reaching the environment. Unused doses and residues from topical 

administration may however enter the environment in prodrug form either via sewage 

or landfills [120]. In paper IV we have therefore investigated the potential of both the 

prodrug BDP and its metabolite free beclomethasone to bioconcentrate and affect 

physiological parameters in exposed fish. 
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1.5 Traditional risk assessment 

  In 2006 the European Medicines Agency (EMA) established guidelines (OECD; 

http://www.oecd.org) for risk assessments of pharmaceuticals, which are required for 

the approval of a new product [7]. These are in principal based on the ratio between a 

predicted exposure concentration (PEC) and a predicted no-effect concentration (PNEC). 

The PEC for an API is calculated using information on predicted usage and assuming a 

reasonable worst case scenarios regarding emission, i.e. no metabolism takes place, 

everything that is consumed is diluted in 200 liters of water (estimated usage per capita 

and day), that no API is removed during the sewage treatment process and that the final 

effluent is diluted 1/10 in the receiving aquatic environment. The PEC calculation does 

not, however, take into account the fact that some streams may be effluent dominated 

and that consumption could be higher in certain regions compared to others. Thus the 

PEC value may in some cases underestimate the worst-case scenario. The PNEC is based 

on the lowest available experimental no observed effect concentration (NOEC) which is 

obtained through a set of recommended standard toxicity tests (http://www.oecd.org) 

[7]: growth inhibition test on algae (OECD 201), reproduction test on Daphnia (OECD 

211) and early-life stage test on fish (OECD 210). However, the effects of APIs in the 

environment are not standard and cannot always be evaluated by classical toxicity 

parameters, e.g. survival (LC50) and hatching success. For example, chronic exposure to 

SSRIs may theoretically lead to decreased fish populations, but through effects on the 

behavior (e.g. less aggressiveness leading to less mating or feeding, or increased risk for 

predation) rather than direct lethality. As a matter of fact, there is an ongoing discussion 

on which effects are relevant to include in formal risk assessments and which will 

ultimately protect populations in the field. Reproduction tests have high relevance for 

the protection of populations. However, reproduction data from, for example, Daphnia 

may not be protective for other species, as the number and similarity of conserved 

human drug targets in crustaceans is much lower than in for example fish [110]. 

Accordingly, the standard tests on Daphnia did not capture the high risk of EE2 since one 

of the drug targets lacking in this species is the estrogen receptor. The NOEC of EE2 from 

the standard early-life stage test in fish was certainly lower, though non-standard tests 

have showed induced intersex in fish at concentrations of EE2 an additionally hundred 

times lower [121, 122]. Nevertheless, the standard tests in EU are still better than those 
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implemented in the USA where no tests on fish are mandatory and the environmental 

risk assessment may be based on acute responses (lethality) alone [123].  

Regardless of the outcome of the environmental risk assessment for human drugs 

by EMA and FDA, the aim is not to affect whether a product is approved for usage in 

humans. Additionally, in EU risk assessment requirements apply to new drugs; no risk 

assessment is required for products approved before 2006. As mentioned in the opening 

paragraph, these standard tests form the foundation on which recommendations and 

information for physicians in Sweden are based, i.e. the product-based classification 

coordinated by the Swedish Pharmaceutical Industry Association (LIF) at 

http://www.fass.se and the API-based classification by the Stockholm county council at 

http://www.janusinfo.se. However, these are voluntary systems for classification and 

are not tied up by EMA legislations [5, 6, 8]. Thus, a few modifications are implied, 

including use of actual sales figures (if available) for the total volume of the API in PEC 

calculations and excretion form and biodegradability are considered. Additionally, this is 

applied on all products on the Swedish market, not only new substances.  

 Nevertheless, in order to be able to conduct an environmentally fair risk 

assessment of both new APIs and products already out on the market, more tests and, 

above all, tests aiming to study the proper endpoints are needed. In this thesis, examples 

of other strategies to identify potential risks are presented and applied. 

 

1.6 Combining bioconcentration and read-across 

 The concentrations of APIs found in surface waters are generally low and several 

magnitudes below the human therapeutic plasma concentrations (HTPC; also referred to 

as Cmax), i.e. the concentrations found in the blood plasma of human patients being 

treated with the drug. Considering these parameters alone, the probability for a 

pharmacological interaction leading to adverse effects to occur in the environment is 

relatively small.  However, a direct extrapolation from water concentration to the levels 

of APIs encountered by the drug targets in a water-living organism is neither fair nor 

correct. In fact, the concentration of an API in, for example fish blood plasma, may very 

well be extensively higher than in the surrounding water, due to bioconcentration. 
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1.6.1 Bioconcentration – accumulation of waterborne substances in organisms 

 Simply put, bioconcentration is a process whereby a waterborne substance is 

taken up by an aquatic organism to the extent that the concentration in the organism has 

stabilized (steady state) at a higher level than that of the surrounding water. The rate at 

which a substance is able to bioconcentrate into a specific tissue (e.g. blood plasma) is 

often presented as a bioconcentration factor (BCF), i.e. the ratio between water 

concentration and the tissue. For example, a BCF of 50 into fish blood plasma means that 

the concentration of the substance in the plasma is 50 times higher than the surrounding 

water.  

 Factors influencing uptake and bioconcentration potential are similar to the 

previously mentioned criteria used to evaluate druglikeness for orally active drugs, i.e. 

“Lipinski’s rule of five” [2]. Although there has been some controversy regarding the 

applicability of the rule to the aquatic environment, it is at least a start. The substance 

should neither be too large nor charged to bioconcentrate. On the other hand, Lipinski 

further states that the substance should not be too lipophilic, though according to our 

model the BCF increases with an increasing lipophilicity (see below). However, the 

availability would most likely decrease, since very lipophilic substances tend to adhere 

to particles and are removed in STPs. Nevertheless, although the availability increases 

with increasing hydrophilicity, the bioconcentration potential decrease since very 

hydrophilic chemicals are not partitioned in the lipids and lipid membranes of 

organisms, in contrast to lipophilic chemicals.  

 Empirical data on the BCF of aquatic organisms is lacking for the overwhelming 

majority of pharmaceuticals, thus theoretical values obtained by predictive models are 

often used instead. In the model proposed by Fitzsimmons et al. [124], the only 

predictors used are the lipophilicity of the molecule, i.e. the octanol-water coefficient 

(log KOW), and the water concentration. For moderately lipophilic, nonpolar 

contaminants, this provides a rather good estimate of BCF and there are studies showing 

that log KOW is in fact a decent predictor of the BCF for many pharmaceuticals [3, 91]. 

Naturally, there are exceptions as other elements may influence the uptake of 

substances as well, e.g. pH and endogenous carriers. 
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 To date there are very few studies reporting concentrations of pharmaceuticals 

in fish exposed to effluents and surface waters. Nevertheless, over twenty APIs have 

been found in various tissues of fish. These APIs include pharmaceuticals from several 

classes, including steroids, NSAIDs and SSRIs [3, 4, 65, 69, 91]. The bioconcentration 

potential for different pharmaceuticals can differ extensively. Some APIs have a BCF 

over 10,000, e.g. the progestin levonorgestrel to blood plasma [3] and EE2 to bile [4], 

whereas some do not bioconcentrate at all.  

 

1.6.2 Read-across using the fish plasma model 

In combination with knowledge of the water concentration of a certain API, 

information on the BCF to blood plasma, estimated or experimentally obtained, provides 

a more relevant measure of the actual exposure, i.e. the internal dose to which the 

organism is exposed. Since we already have substantial knowledge of the potency of 

pharmaceuticals in humans, including HTPC, this could further be used to assess the 

likelihood for a pharmacological interaction or effect to occur in exposed aquatic 

organisms, i.e. read-across. In 2003, Hugget et al. [125] presented a simplistic model on 

how to apply this strategy: “the fish plasma model”. It is based on the ratio 

(concentration ratio; CR [3]) between measured HTPC and measured or predicted fish 

steady state plasma concentration (FSSPC; Equation 1) and the lower the CR, the greater 

the potential for a pharmacological response in fish. However, this risk identification 

strategy may only be performed if the drug target of the API is conserved in the 

investigated species (see section 1.8). 

CR=
       HTPC      
       FSSPC      

 

Equation 1. The formula used in “the fish plasma model”. CR = concentration ratio, HTPC = human 
therapeutic plasma concentration, FSSPC = fish steady state plasma concentration. 

 The “fish plasma model” approach can be very powerful and provides the 

possibility to screen a large set of pharmaceuticals relatively quickly. If there are no 

measured values of FSSPC, BCF to blood plasma or concentrations in the aquatic 

environment available, one may use predictions obtained by methods mentioned above. 
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However, the time saved by using predictions may result in loss of power as predictions 

incorporate an additional source of error. In paper I, II and IV we have used an approach 

based on “the fish plasma model” with measured plasma concentrations in exposed fish 

and calculated BCFs to blood plasma for the two NSAIDs diclofenac and ketoprofen, as 

well as two forms of the glucocorticoid beclomethasone, its pro-drug form and a 

metabolite. The results were used in a comparison with HTPC for the respective drug in 

relation to observed effects or responses. 

 

1.7 Biomarkers 

 Simply put, a biomarker is an indicator for a certain biological state. Within 

ecotoxicology, biomarkers may be divided into three classes: biomarkers of 

susceptibility, exposure and effect [126]. Susceptibility biomarkers could be, for 

example, genetic differences that can explain or predict individual or species variability 

in the response to a given toxicant. An exposure biomarker is mainly used to determine 

whether an organism has been exposed to a given chemical or group of chemicals but 

offers limited possibilities to assess the risks for adverse effects. Biomarkers of effects, 

on the other hand, are different types of documented effects linked to more or less 

specific toxicants, e.g. feminization of male fish upon estrogenic exposure. However, the 

distinctions between the types of biomarkers are not always strict. 

 For example, one of the most commonly used biomarkers of exposure in 

ecotoxicology is the induction of vitellogenin (vtg) in male and juvenile fish as a result of 

exposure to estrogenic compounds. The gene(s) for vitellogenin encodes for a precursor 

to egg yolk proteins and is produced in the liver of sexually maturing females, hence the 

gene is normally not expressed (or expressed at very low levels) in males or juvenile 

fish. Vitellogenin as a biomarker was a major factor in the discovery of EE2 as a main 

contributor to the feminization of fish downstream STPs [4, 40, 43, 44, 47, 48]. 

The optimal biomarker is sensitive enough to be detected at a desired threshold 

and correlates well with the magnitude of the exposure. It should also be specific for 

certain individual or group of substances/effects and sufficiently robust for usage in 

different exposure scenarios and by different measuring techniques. Unfortunately, one 
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biomarker rarely fulfills all these criteria, though several biomarkers and different types 

of biomarkers can be used in combination, particularly on a molecular level, to become 

more informative.  

Molecular responses in an organism are often fast and short exposure times may 

be sufficient to trigger a detectable response. Thus, exploratory molecular analyses may 

serve both to increase our understanding of the mode of action (including toxicity) of 

pharmaceuticals in aquatic organisms and to provide biomarkers, following proper 

evaluation. One of the aims in paper I and II was to use an exploratory technique, i.e. 

microarray, to discover new potential biomarkers. In paper III we have used the same 

technique in search of already established biomarkers to gain information on the 

exposure and possible ensuing effects. 

 

1.8 Genomics 

 There is no universally accepted definition of genomics, though in this thesis the 

term applies to studies of the genome or gene-products on a large scale. The whole 

concept of genomics is based on the central dogma of molecular biology: DNA can be 

copied to DNA (DNA replication), DNA information can be copied into mRNA 

(transcription) and mRNA can then serve as a template for the synthesis of amino acids 

that are assembled into proteins (translation; Fig. 3). Most things that occur in an 

organism are related to an effect of a protein and therefore to the previous steps: DNA 

transcription to mRNA and mRNA translation to proteins. Thus, the study of mRNA, or 

transcriptomics, can reveal possible effects at the protein level and thus physiological 

processes. 

 

1.8.1 DNA - genomic information to predict susceptibility 

 “As a general rule, extrapolations across species require knowledge of species-

specific physiology” [99]. This could in short be interpreted within the framework of this 

thesis as follows: pharmaceutical effects in humans can only be extrapolated to other 

organisms if the species in question possess the specific drug target. Pharmaceuticals 

are designed to exert their intended clinical effects through relatively specific, high-
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affinity interactions with target proteins, e.g. receptors, while affecting other systems as 

little as possible. Since APIs are generally present at very low concentrations in aquatic 

environments, such high-affinity interactions with proteins are likely the most relevant 

in wildlife. Many human proteins are conserved in wild organisms, thus a 

pharmaceutical may interact with a similar protein in exposed wildlife species [110]. 

Although pharmacological interactions are possible if the drug target protein is not 

present, there is an increased risk for effects at the low concentrations of 

pharmaceutical residues found in the environment if the target is conserved. 

Gunnarsson et al. [110] showed that fish and frogs have a corresponding target protein 

for >80% of 1,318 investigated human drug targets, whereas the water flea Daphnia 

pulex only shared 61% and green algae 35%. For example, the presence of estrogen 

receptors in fish indicates their susceptibility to estrogen exposure, whereas a lack of 

the receptors, as in algae and water fleas (Daphnia), indicates a relative insensitivity. 

Accordingly, there are documented strong effects of EE2 and other estrogens at low 

concentrations in fish but not in water fleas or algae. Furthermore, this highlights the 

flaws in traditional standard tests for assessing effects of pharmaceuticals (see section 

1.5).  

 

 
Figure 3. The central dogma of molecular biology. 
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1.8.2 mRNA – applying microarrays to ecotoxicology 

 As previously stated, several drug targets are well conserved in fish and by using 

information on the well-known modes of action in mammalians one has the possibility 

to create hypotheses of potential molecular responses in fish, i.e. which gene-products to 

study. Nevertheless, even if a drug target is evolutionarily well conserved, the 

stimulation of the target might lead to different physiological events in different 

organisms. Thus, studying a broader set of responses in the tested species rather than 

one or a few responses hypothesized from known responses in humans would provide 

additional and valuable information. Microarrays (Fig. 4) provide an efficient tool for 

studying thousands of potential gene responses simultaneously by analyses of the 

abundance of thousands of expressed, specific mRNA sequences (transcripts).  

 

 

 

Figure 4. A microarray chip from paper I, showing the gene expression in the liver from eight 
individual rainbow trout. The light intensity of each spot reflects the expression of one specific mRNA 
transcript. 
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Microarray technology has in the past decade been successfully applied to several 

different areas within biology, ranging from cancer diagnostics and cell-signaling in 

yeast to ecotoxicological research. Several different types of microarrays exist, though 

they are all based on the basic principle of measuring mRNA abundance corresponding 

to individual genes. There are also several commercial microarray platforms available 

with probes selected to cover genes of general interest or sometimes the entire 

transcriptome, i.e. the set of all RNA molecules, of a species. The benefits from using 

these commercial arrays include their readymade protocols and support as well as their 

generally high quality. However, although market availability continues to increase, 

there are few commercial arrays designed for environmentally relevant species. For use 

in ecotoxicological research, non-commercial microarrays have been developed mainly 

by academia, such as those for water flea (Daphnia magna) [127], rainbow trout 

(Oncorhynchus mykiss) [128, 129] and eelpout (Zoarces viviparous) [130]. In paper I, II 

and III, updated versions of the array initially developed by Gunnarsson et al. [129] are 

used.  

The main purposes of a microarray analysis within ecotoxicology are fourfold:  

• Providing information on the mode of action of a substance  

• Assisting in the discovery of new potential biomarkers 

• Revealing information about the potency of a substance 

• Aiding in the identification of substances within a mixture 

In this thesis, all these purposes have been applied. In paper I and II, the aims 

were connected to the first three purposes, i.e. mode of action information, biomarker 

discovery and potency information. In paper III, the fourth purpose, identification in a 

mixture, was applied by comparing the genes differentially expressed following 

exposure to STP effluents with differentially expressed genes known to respond to 

exposure to individual drugs (e.g. from paper I and II). Furthermore, the mode of action 

and the potency of differently treated effluents were studied and effects on already 

established biomarkers (e.g. vtg) were assessed. Accordingly, microarrays provide a 

powerful and multifaceted tool within ecotoxicology. 
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2. Aims of thesis 

here are several ways to address the growing concern of environmental 

effects of pharmaceuticals. In this thesis we have explored the use of 

bioconcentration and transcriptomics as complements to traditional risk 

assessment strategies, with a potential to provide additional possibilities to 

identify pharmaceuticals of environmental concern. 

 The major aims of this thesis were: 

• To investigate if read-across between therapeutic plasma concentrations in 

humans and measured plasma levels of pharmaceuticals in exposed fish can be 

used to predict the likelihood for pharmacological effects in the fish 

 

• To assess the suitability of microarray analyses to confirm pharmacological 

interactions in fish exposed to pharmaceuticals  

 

• To better understand the mode of action of pharmaceuticals in fish and find 

potential biomarkers through transcriptome analyses 

 

• To evaluate the ability of differently treated sewage effluents to affect fish, 

through analyses of global hepatic gene expression 

T 
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3. Methodological considerations 

he workflow in the papers in this thesis generally started with the 

exposure of  fish to a single pharmaceutical substance dissolved in water,  

or exposure to complex effluents. This has been followed by gene 

expression analyses in paper I, II and III, whereas bioconcentration studies and 

accompanying chemical analyses were performed in paper I, II and IV. In paper IV 

analyses of effects on the physiology of the fish were performed. In this chapter 

the different types of experiments and analyses will be presented. 

3.1. Fish exposures 

 In this thesis, all exposure experiments were performed using the salmonid 

rainbow trout (Oncorhynchus mykiss) obtained from local fish farms. The rainbow trout 

is highly suitable for the combination of different analyses performed here. Its 

physiology is relatively well-known compared with most other fish species.  Although its 

genome is not yet fully described, as for e.g. zebrafish (Danio rerio), information on gene 

sequences are sufficient for performing microarray studies. The Institute for Genomic 

Research Rainbow Trout Gene Index (RTGI) database 

(http://compbio.dfci.harvard.edu/tgi/) has an extensive library of expressed sequence 

tags (EST) available for this species [131] and in contrast to zebrafish, rainbow trout are 

sufficiently large for collecting the amount of blood plasma required for subsequent 

chemical analyses. Rainbow trout thrive well in laboratory conditions and have a high 

tolerance to stressors occurring in different exposure situations. Although not a native 

species of the Swedish coastal or freshwater nature, they tolerate conditions found in 

Swedish waters, thus there is the possibility of performing field studies (e.g. caged 

downstream STPs). In order to be able to evaluate if effluents caused estrogenic effects 

in fish, juvenile trout were used in the studies in this thesis, since maturing female fish 

naturally express vtg and other biomarkers for estrogenic exposure.  

Microarray experiments are relatively costly and there is consequently often a 

limitation on the number of biological replicates applied in such studies. Therefore, it is 

of great importance to reduce the biological (and technical) variation. Due to this, all 

exposure experiments in this thesis were performed under controlled laboratory 

T 
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conditions. Furthermore, to reduce variation between individuals, the fish were not fed 

during the experiments, as dominant fish in the aquaria often feed considerably more 

than subordinate fish. Rainbow trout cope well without food for two weeks, which is the 

applied exposure length in all studies here, and lipid content differs very little from fed 

fish [132]. Applying an exposure length of two weeks is a compromise as there are 

advantages as well as disadvantages with any exposure length selected. Firstly, a 

relatively long exposure allows chemicals to bioconcentrate, though we cannot be 

entirely sure whether they have reached FSSPC with the experimental setup used in this 

thesis. Responses are expected to be more stable after a longer period, whereas acute 

responses are often more variable. On the other hand, initial effects may be stronger and 

not observed after a longer exposure due to compensation. Other advantages with a two 

week exposure compared with longer exposure periods are: the possibility to let the fish 

starve while still avoiding strong effects of food deprivation; the time period is short 

enough to avoid unexpected incidents (e.g. water pump failure), as failure tend to 

increase with experimental time length; longer exposures require more of the substance 

to be studied; possibility to perform online effluent exposures which can be used for 

comparisons to field exposures. Within the field of ecotoxicology the exposure length of 

two weeks is at least considered semi-chronic, if not chronic. 

The exposures to single substances in paper I, II and IV, were performed at 

several water concentrations to investigate the dose-response relationship. In paper I 

and II the lowest concentrations of pharmaceutical used corresponded to levels 

measured in effluents. The higher concentrations were used to guide the identification 

of gene responses in the lower concentrations, as genes with small changes in regulation 

may be difficult to identify when thousands of genes are analyzed in parallel. However, 

this strategy, previously applied by Gunnarsson et al. [128] to identify gene responses at 

low exposure concentrations to estrogen, makes the assumption that genes that are 

differentially expressed at a low exposure are also differentially expressed at a higher 

exposure.  Additionally, if a response is observed after exposure at several 

concentrations of a substance, the probability of the response being false-positive 

decreases, especially if there is a dose-response pattern [99]. The chosen organ for the 

gene expression analyses was the liver as it is the major detoxification organ and is 

affected by many pharmaceuticals. All fish experiments were approved by the local 

animal committee in Gothenburg (permission no. 36-2007 and 216-2010). 



Methodological considerations 

41 
 

3.2 Bioconcentration 

3.2.1 Customized bioconcentration studies versus OECD 305 

 In all the exposure experiments in this thesis, a continuous flow-through setup 

was used. This is more preferable than a semi-static setup for several reasons: it allows a 

higher load density of fish and a continuous flow of the substance; it results in a higher 

water quality and a closer resemblance to the environment; it subjects the fish to less 

handling stress as the water is not changed manually. According to the OECD 305 

guidelines – “Bioconcentration: Flow-through fish test” (http://www.oecd.org) [133], 

there are a number of criteria that should be fulfilled in a bioconcentration study. 

However, because the studies in this thesis also included other analyses (e.g. gene 

expression), a number of these criteria were not met. Firstly, no depuration period was 

included in any of the bioconcentration studies, because although a continuous flow-

through setup was used, there were still loading density limitations (approximately 

n=10 depending on fish size) and thus all fish were subjected to the subsequent 

analyses. However, the guidelines do state that a depuration period is always necessary, 

unless the uptake of the substance is low, e.g. a BCF less than 10. As previously 

mentioned the fish were not fed to reduce variation in the subsequent analyses. Thus, 

the exposure time was shortened to 14 days instead of the requested 28 days for 

reasons stated in the previous section (3.1). The purpose of having a 28-day exposure is 

primarily to ensure that steady state has been reached, which is most likely acquired for 

at least diclofenac and ketoprofen within only a few days [91]. 

The guidelines further state that the concentration of the substance should be 

sufficiently low to be dissolved in water and the use of solvents is not recommended, 

though acceptable if necessary. In paper IV, we aimed to reach fish plasma 

concentrations of the substance corresponding to HTPC and/or set the highest water 

concentrations to levels previously shown to have effects on exposed fish. However, for 

this to be met, exposure concentrations needed to be at such high levels that a solvent 

was required. In addition, although not among the recommended in the guidelines, 

dimethyl sulfoxide (DMSO) was the solvent of choice for a number of reasons. For 

example, the substances could be dissolved using DMSO at concentrations where no 

effects of fish have been documented [134, 135]. Control fish were exposed to DMSO at 
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the highest concentration used to dissolve the substances. The concentrations of the 

substances should also be below the chronic effect levels. This could not be met since a 

major aim of the studies was to assess possible effects and relate them to the plasma 

concentration. 

Measurements of biological responses and internal exposures on individuals 

rather than on pooled samples are usually preferred as this increases the possibility to 

establish cause and effect. However, in paper I, plasma samples were pooled in pairs, 

due to the small amount of blood that could be extracted from each fish (average fish 

weight of approximately 40 g). The method for the chemical measurements of diclofenac 

was not yet sufficiently refined for detection at such low concentrations in such small 

plasma volumes. 

In all bioconcentration studies in this thesis, aquaria duplicates were used for 

each concentration. Each aquarium contained at least eight fish which gives n1+n2≥16. 

However, in bioconcentration studies, individual fish are sometimes argued to be 

pseudo replicate and that the number of true replicates is the number of aquaria of each 

exposure concentration, i.e. n=2 here. The practice used in this thesis is, however, very 

common. This may possibly be due to the major infrastructural challenges required to 

apply comprehensive replications in each experiment with, for example eight aquaria 

per group times four treatments, i.e. 32 aquaria, each supplied with individual flow-

through and dosing systems. In fact, in many well-cited fish studies performed by other 

labs on pharmaceuticals and fish, only one aquarium [94, 136-140], or sometimes two 

replicate aquaria [141, 142], have been used per concentration.  

 

3.2.2 Chemical analyses 

 In this thesis, chemical analyses were performed on liver (Paper I), blood plasma 

and water (Paper I, II and IV) to assess the actual, or internal, exposure. In this section, 

the workflow is briefly presented [143, 144]. In all three studies, surrogate standards 

were used and added to all samples (labeled naproxen (methyl-13C; methyl-D3) in paper 

I and II and D6-amitryptiline in paper IV). All water samples were filtered through a 

membrane filter before extraction, hence no particles were included in the water 

samples. Plasma samples were diluted with aqueous formic acid before filtration. The 
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next step was the extraction of the substance, which was performed by first applying the 

samples to solid-phase extraction columns and then eluting the compound of interest 

with methanol. Solid-phase extraction was not performed on the liver samples and they 

were measured differently. They were only homogenized, extracted with acetonitrile 

and then filtered using a membrane filter. 

 In paper I, gas chromatography (GC) was used as separation method for the 

plasma and water samples, whereas liquid chromatography (LC) was used for the liver 

samples as they required additional selectivity. In paper II and IV, the same LC system 

was used for all samples. Both chromatography systems are based on transportation of 

the samples in a mobile phase which is then forced through a solid phase. Due to the 

differences in distribution of the analytes between the two phases, they will be 

separated from each other via travel speed through the solid phase.  

In GC the sample is vaporized and swept by a stream of carrier gas (the mobile 

phase) through a heated column containing an involatile liquid, i.e. the solid phase. The 

limitation of GC is the requirement of the substances to be easily vaporized and 

thermally stable. However, the advantage using GC is that the outcome is both 

qualitative (identification of individual components) and quantitative (concentrations of 

individual compounds). 

Although GC has been used extensively, the technique has been overtaken by LC, 

which is the most widely used analytical separation method nowadays. As the name 

suggests, the mobile phase is liquid and the technique does not require volatile or 

thermally stable compounds. Another major benefit to using LC is the possibility to 

analyze water soluble substances. However, although the sensitivity of an LC is high, it 

does not reach the sensitivity level of a GC. 

There are several different types of detectors for both techniques. However, mass 

spectrometry (MS) is ideal as it provides both quantitative and qualitative information. 

It consists of three major parts: the ion source, the mass analyzer and the detector. Since 

the mass spectrometer uses electric and magnetic fields to move and manipulate the 

analytes, it is a requirement that the analytes are ionized. In addition, it requires that the 

ions are in gas phase. Different ion sources are used in GC and LC but both generate ions 

in gas phase. In the analysis using GC, the principle behind the ion source is that the 
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sample is bombarded with high energy electrons which removes an electron from the 

analyte molecule on impact. In the analysis using LC, electrospray ionization is used 

which is based on a nebulizer which atomizes the mobile phase to a vapor. At the tip of 

the nebulizer is a high voltage, which produces charged droplets. Evaporation of the 

droplets will make the charge density on the surface too large and the droplets explode. 

When the droplets eventually become small enough, they transfer the charges on the 

surface to the organic molecules.  The ions are transported from the ion source into the 

vacuum of the mass analyzer where they are separated according to their mass to 

charge ratio (m/z). There are several types of mass analyzers as well, though here 

quadrupoles were used. In a quadrupole, a range of m/z ratio can be applied and 

consequently only compounds of interest reach the detector where the ions are 

transformed into a usable signal. To increase the selectivity and sensitivity, mass 

analyzers can be used in series (tandem MS), for example the triple-stage quadrupoles 

coupled with the LC used in this thesis, i.e. LC-MS/MS. The result from the GC/LC-MS 

analysis is an output showing peaks of different heights, which indicate the 

concentration, separated by molecular weight (Fig. 5). 

 To ensure high quality results from the analyses, several precautions have been 

taken. Standards and blanks were run at several time-points and recoveries of solid-

phase extractions were measured (spiking of non-exposed samples).  

 

 

Figure 5. A chromatogram showing 
the results from the LC-MS/MS 
analysis of diclofenac in paper I. 
The upper peak represents the 
quantification ion (294 → 250) and 
the lower peak represents the 
quality ion (296 → 252). 
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3.3 Microarray 

3.3.1 From design to raw data 

 There are several different types of microarray platforms. In this thesis, we have 

used the Geniom/RT-analyzer platform, which is an oligonucleotide array provided by 

febit (Heidelberg, Germany). Due to the limited availability of commercial array designs 

for environmentally relevant species, a custom design was required. At the time, few 

companies besides febit offered this possibility. Unfortunately, the initial probe design 

strategy and hybridization and washing protocols suggested by febit resulted in low 

correlation between array and qPCR data. Hence, we evaluated our own probe design 

and modification to the experimental process. The result was an array:qPCR correlation 

matching the quality of the best commercial arrays [145].  

 OligoArray 2.1 was used to design 50-mer probes [130, 146] using transcripts 

from the RTGI database, which contained roughly 80,000 transcripts [131]. As the 

Geniom platform allows 15,000 probes, not all putative rainbow trout genes could be 

included, thus well-annotated genes were primarily selected. These genes included 

homologs to drug targets predicted by Gunnarsson et al. [110], genes associated with 

pharmacological processes described in the Pharmacogenetics and Pharmacogenomics 

Knowledge database (PharmGKB; http://www.pharmgkb.org/index.jsp), genes 

described in Comparative Toxicogenomics Database [147], homologs to all cytochrome 

P450 genes annotated in zebrafish etc. To predict the rainbow trout homologs, the 

Washington University Basic Local Alignment Search Tool 2.2.6 (BLAST; 

http://blast.wustl.edu) [148] was used in tblastx mode. The remaining space on the 

array was assigned to randomly selected rainbow trout ESTs. To annotate the 

microarray, the transcripts associated with the probes were compared with 

UniProtKB/Swiss-Prot [149] and Ensembl [150]. 

Although all array platforms are based on the same general principles, there are a 

few differences between them. In this thesis, we have used an oligonucleotide array and 

following is a simplified description of the experimental progress. The tissue of choice is 

homogenized and total RNA is extracted. The mRNA is subsequently converted into 

biotinylated (fluorescence-labeled) amplified RNA (or antisense RNA; aRNA) and 

hybridized to the chip. When a specific transcript binds to its matching probe on the 
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chip, a fluorescent signal can be induced and visualized by a camera (Fig. 4). The signal 

increases depending on the amount of binding, i.e. a measurement of the mRNA 

abundance, and the intensity is extracted using image analysis softwares, which in our 

case was the Geniom Wizard (no longer available due to reconstructions of febit). 

 

3.3.2 Data analysis 

The output data from a microarray analysis must be further processed prior to 

statistical analysis and biological interpretations, i.e. background correction and 

normalization. To remove artifacts originated from the synthesis/hybridization process 

and noise, background correction is performed, usually through subtraction of the 

background from the intensity in the probe spots [130]. Subsequently, the array is 

normalized to compensate for overall signal differences due to unequal concentrations 

of the added aRNA, variations in hybridization efficiency etc., to enable comparisons 

between different samples/arrays. There are several methods for normalization. The 

one used here was the quantile-quantile algorithm [151], which is a method used to 

make the distribution of probe intensities similar for every sample.  

Standard statistical methods, such as t-tests, are usually not sufficient for 

analyzing microarray data. Since such a high number of genes is present on an array, 

treating each gene independently disregards information as many properties may be 

shared among genes, e.g. their within-group variability. Therefore, implementing 

additional criteria is crucial. Here, moderated/Bayesian t-test was used which, rather 

than repeatedly estimates the within-group variability for each gene, pools the 

information from many similar genes. This type of test additionally includes a fold-

change criterion [152]. However, the result may still include false-positives, because of 

the high number of genes analyzed. Thus an adjusted p-value should be provided. In 

paper I, II and III, the p-value was adjusted by calculation of the Benjamini–Hochbergs 

false discovery rate (FDR) [153], though referred to as adjusted p-value in paper II and 

III. By setting a threshold at an FDR of, for example, 0.3, the list of potentially 

differentially expressed genes is estimated to contain 30% false-positives. 
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3.3.3 Gene ontology analysis 

 In order to identify the type of biological response or the mode of action after an 

exposure, several strategies can be applied. One might simply study the genes connected 

to the known drug target in humans, though a large amount of information may be lost 

and the purpose of using a microarray with thousands of genes is somehow lost. 

Fortunately, there are tools to assist in the analysis process. In paper I and III, analyses 

of enriched gene ontology (GO) terms were performed. The GO project is a major 

collaborative initiative which aims to systemically assign genes and gene products 

descriptions within three different ontologies: biological process, molecular function 

and cellular component (http://www.geneontology.org) [154]. For example, the 

differentially expressed gene in paper I, complement component C7, is assigned to 

biological processes connected to the innate immune response, e.g. complement 

activation – alternative pathway (GO:0006957). By studying a set of plausibly 

differentially expressed genes on an array, e.g. FDR<0.2, one may identify several genes 

belonging to the same processes. One way to achieve this is by using GOrilla (http://cbl-

gorilla.cs.technion.ac.il/) [155], which was done in paper I and III, where enriched 

processes within a data set are searched for, i.e. processes that include several genes in 

the selected data set. Although a threshold of FDR<0.2 would include false-positives, this 

type of analysis allows more false-positives as these are less likely to have the same 

annotation as the truly differentially expressed genes [145]. 

 Nevertheless, it should be noted that this type of analysis is just a tool to generate 

biological hypotheses and to aid in the identification of differentially expressed genes of 

interest. In other words, just because the process for dibenzo-p-dioxin metabolism is 

enriched does not necessary mean that the fish have been exposed to polychlorinated 

dibenzo-p-dioxins (PCDDs). In addition, few rainbow trout proteins have been assigned 

to GO terms and thus GO analyses must be performed on orthologous proteins in other 

species. The analyses performed in GOrilla depend highly on the choice of reference 

species as the GO term assignments are directly linked to available studies in the 

literature. For example, in the human database the GO term process complement 

activation (GO:0006956) has 192 products, whereas the same process in the zebrafish 

database only has 5 products. Furthermore, one of the major problems with GO term 

analysis using reference species is that the genes are assigned to GO terms according to 
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their function etc. in the selected reference species. Whether or not the gene has the 

same function in rainbow trout remains uncertain in many cases. Taking all these 

aspects together, GO term analysis may indeed be a powerful tool, though it highlights 

the issue that conclusions concerning affected physiological processes are highly 

influenced by the available knowledge of protein functionality in the species. 

 

3.4 Quantitative PCR 

 Microarrays do provide an extensive amount of information. However, other 

methods are generally needed to quantify the actual differences in mRNA abundance of 

genes that are identified as differentially expressed by microarrays. Due to artifacts (e.g. 

cross hybridization) and the relatively small dynamic range, which is an issue if exact 

quantification of mRNA is important, the microarray data and hypotheses need 

validation. Quantitative real-time polymerase chain reaction (qPCR) suites this purpose 

as it is one of the most sensitive tools for measuring mRNA abundance. Nevertheless, it 

does require optimization. Design of specific primers is crucial though may be a 

challenge for rainbow trout, partly due to the uncertainties in nucleotide sequences 

available (only EST library). There are other issues that may influence the outcome data 

as well, e.g. primer-dimers and contamination by genomic DNA. In this thesis, a 

dissociation stage was added at the end of the amplification cycles to evaluate the 

specificity of the amplification. Additionally, for every sample conducted in the qPCR 

analyses, no reverse transcriptase (NoRT) samples were run to ensure that no genomic 

DNA was present at levels that could interfere.  

To adjust for differences between samples not caused by the exposure, for example 

dilution and pipetting errors, the qPCR data need to be normalized, just like the 

microarray. Therefore, the usage of good reference (housekeeping) genes is also crucial 

when conducting a qPCR analysis. Optimally a reference gene should be expressed at 

levels similar to the genes of interest, should vary little between individuals and should 

not be affected by the treatment. There are a number of genes that are very commonly 

used as reference genes, including β-actin (actb) and ubiquitin (ubq). It is desirable to 

use two or even more reference genes and use the average expression for normalization, 

though one gene is often considered sufficient. In paper II, both actb and ubq were used, 
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whereas only ubq was used in paper III due to material limitations. In paper I, however, 

both actb and ubq tended to be affected by the exposure and thus two other genes, 

calnexin and thiopurine S-methyltransferase, were used and both proved to be suitable 

[156]. The normalization was subsequently performed by subtracting the relative 

threshold cycle (Ct) values of the reference gene (or average if two were used) for each 

sample from the Ct values for each gene and sample. The resulting value, ΔCt, was then 

used in the subsequent statistical analyses. 
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4. Results and Discussion 

any pharmaceuticals are found in the aquatic environment and effects 

on wildlife species are a growing concern. In 1998, Beland wrote: 

“Searching for definite proofs in a traditional sense is illusory and 

should not bog us down into inaction when the survival of an important element 

of our environment is at stake” [157]. It may be a bit harsh to relate this citation to 

the traditional risk assessment of pharmaceuticals in the environment, though 

today’s traditional test strategies are from many perspectives insufficient to 

capture the potential risks of some substances (see section 1.5). Therefore, there 

is an increasing interest in other complementary methods that may take the 

understanding of the impact of pharmaceuticals in aquatic organisms to the next 

level.  

4.1. Bioconcentration 

 If an API is to have an effect on an aquatic organism, it has to be taken up and the 

more that is taken up, the greater is the likelihood for a pharmacological interaction to 

result in a meaningful effect. This is, in its simplest meaning, the background for 

studying bioconcentration potential in order to identify pharmaceuticals that may be of 

concern in the aquatic environment. In paper I, II and IV we have exposed fish to single 

substances and measured their plasma concentrations to calculate BCFs and to read-

across from HTPC and thereby estimate the probability for a pharmacological interaction 

to occur. 

 

4.1.1. Bioconcentration of NSAIDs (Paper I and II) 

 Non-steroidal anti-inflammatory drugs are a group of pharmaceuticals of high 

concern when it comes to environmental impact, much due to their very frequent 

occurrence in STP effluents and surface waters at relatively high concentrations (up to 

µg/L). Diclofenac has particularly been highlighted and is one of the most well studied 

drugs regarding potentiality to affect aquatic organisms. In paper I, the BCF of diclofenac 

to blood plasma was found to be approximately 4, which is rather similar to most 

M 
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previously reported BCFs to blood plasma ranging from 2.5 to 29 with a median of 5 

(Fig. 6a) [3, 91, 138]. The determined BCF to liver was in the same range as the BCF to 

plasma, at approximately 2.5. Importantly, both BCFs were stable throughout the 

exposure concentrations, which is a prerequisite for applying the predictive 

bioconcentration models proposed by Fitzsimmons et al. [124] and Hugget et al. [125]. 

In contrast to our findings, Schwaiger et al. [94] reported that the BCF of diclofenac from 

spiked aquaria water to rainbow trout liver varied from 2,732 at a water concentration 

of 1 µg/L, to only 12 for a water concentration of 500 µg/L, i.e. roughly a 200-fold drop. 

This pattern was also observed for ketoprofen, though to a lesser extent, in paper II 

where the BCF to blood plasma dropped 6-fold over a 100-fold water concentration 

increase, from 0.042 to 0.007 (Fig. 6b). Decreasing BCFs with increasing water 

concentrations are not commonly reported, though they have been observed for other 

chemicals in other species (Oryzias latipes, Perna viridis and Dreissena polymorpha) 

[158-160]. Such trends could be explained by for example a saturation of binding sites 

for the bioconcentrating chemical in the organism or by insufficient energy required to 

bind the chemical at higher concentrations [160]. However, none of these explanations 

seem adequate for the observations in the study by Schwaiger et al. [94] since the 

highest reported BCF of >2000 is several magnitudes higher than in paper I. Differences 

in BCF magnitudes could possibly be explained due to feeding differences. In the paper I, 

the fish were not fed, in contrast to the study by Schwaiger et al. However, after a 28-d 

starvation period, the lipid content in the liver of juvenile rainbow trout differs very 

little from that of fed fish, although there is a twofold decrease in muscle lipids that 

could possibly favor a shift of lipophilic contaminants from the muscle to the liver [132]. 

Nevertheless, it seems highly unlikely that this could be a major part of the explanation 

behind the approximately 1,000-fold differences in liver BCF between the studies. It 

should also be mentioned that in contrast to the other studies on diclofenac, including 

paper I and II, DMSO (0.12‰) was used as solvent by Schwaiger et al. [94], though the 

impact of DMSO (or other solvents for that matter) on BCF remains. To sum up, we 

cannot explain why the results of Schwaiger et al. differ from those in paper I. However, 

given the quality assurance of the analytical method in paper I, as well as the consistency 

over a series of water concentrations and the coherence between the liver BCF and the 

plasma BCFs in the same study and other studies [3, 91, 138], it appears more 

reasonable that the results in paper I reflect the actual bioconcentrating behavior of 



Results and Discussion 

52 
 

diclofenac. In addition, although the predicted BCF of diclofenac (93) [3] is higher 

compared with the BCFs in paper I, it is much closer to the BCFs of diclofenac in paper I 

than the highest reported BCF by Schwaiger et al [94].  

 

Figure 6. A comparison of 
bioconcentration factors of four 
NSAIDs to blood plasma and 
liver* in fish exposed to single 
substances or a mixture of a few 
substances in pure water under 
controlled lab conditions (closed 
symbols) versus fish exposed to 
undiluted sewage effluents 
(open symbols). Data was 
collected from the paper I and II 
as well as from previously 
published studies Fick et al. [3], 
Brown et al. [91], Schwaiger et 
al. [94], Lahti et al. [138] and 
Nallani et al. [164]. In the study 
by Brown et al. [91] only nominal 
concentrations were used for the 
lab exposure. 



Results and Discussion 

53 
 

In the fish exposed to the lowest concentration of diclofenac in paper I, the 

plasma concentrations were approximately 6 ng/ml, which corresponds to less than 

1.5% of the diclofenac HTPC of ≥420 ng/ml [8, 161, 162]. If the read-across strategy is 

applied to these results, diclofenac would have moderate, if any, effects on fish at 

concentrations found in effluents. Accordingly, few effects were seen on the global 

hepatic gene expression at the lowest exposure concentration, though increasingly 

distinguishable when plasma levels in the fish approached HTPC (FSSPC of approximately 

88% of HTPC at the highest exposure concentration; see section 4.2.1).  

To address whether ketoprofen, a drug with similar mode of action and clinical 

applications, would be a better alternative to diclofenac with regards to effects in fish, 

the same strategies and experimental setup as for diclofenac in paper I was applied in 

paper II. Similarly to diclofenac, reported BCFs of ketoprofen to fish blood plasma varies 

as well, from 0.1 to 48 [3, 91]. The results from the ketoprofen study in paper II showed 

that waterborne ketoprofen bioconcentrates considerably less than does diclofenac 

under controlled laboratory conditions. In fact, ketoprofen did not bioconcentrate at all, 

since measured plasma concentrations were lower than the surrounding waters. At the 

highest exposure concentration of ketoprofen, i.e. roughly 100 times higher than levels 

found in undiluted sewage effluents, the plasma levels reached less than 1% of HTPC 

(>1000ng/ml) [163]. Thus, the probability of pharmacological interactions rendering 

physiological effects is very small according to “the fish plasma model” [125]. 

Accordingly, no effects on the global hepatic gene expression could be confirmed (see 

section 4.2.1), which is in contrast to diclofenac at corresponding water concentrations. 

These results support our hypothesis that the use of ketoprofen rather than diclofenac 

may pose lower risks for exposed fish.  

However, the BCF for ketoprofen to blood plasma of <0.05 found in paper II 

differs considerably from studies where rainbow trout were exposed to undiluted 

sewage effluents (BCF=3.5-48) [3, 91], but is more similar to the BCF of 0.1 previously 

reported for rainbow trout exposed to nominal concentrations of ketoprofen together 

with four other pharmaceuticals in pure water under controlled lab conditions [91]. In 

fact, higher BCFs in fish exposed to undiluted effluents compared to single substances in 

pure water is a collective trend for several NSAIDs as revealed by a meta-analysis on 

naproxen and ibuprofen (Fig. 6) [3, 91, 138, 164]. Even diclofenac shows a similar 
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tendency, though not as clearly [3, 91, 138] (Paper I). This suggests that other 

constituents of treated sewage effluents may influence the uptake, distribution, 

metabolism or excretion of NSAIDs and perhaps other pharmaceuticals to an extensive 

degree. If true, the concentration of other substances is just as, or even more, important 

than the studied substance and it furthermore raises the question on how relevant the  

BCFs for some APIs generated under controlled lab conditions with single substances in 

pure water are for reflecting risks in the field environment. In traditional risk 

assessment, this type of substance behavior is not taken into account, thus substances 

considered environmentally safe and non-bioconcentrating may in fact pose serious 

threats [7, 123]. Nevertheless, neither undiluted effluents, nor exposure to a single drug 

in pure water reflect the exposure situation for wild fish and it remains to be seen which 

scenario provides the best approximation.  

If the highest reported BCF of ketoprofen to blood plasma of 48 [3] is applied in a 

scenario where fish are exposed to sewage waste water in an effluent-dominated stream 

with a surface water concentration of 1 µg/L ketoprofen, this would give a predicted 

plasma concentration of only 5% of HTPC in the exposed fish [163]. Thus, the probability 

for pharmacological interactions to lead to (adverse) effects is still quite small [125]. 

However, because diclofenac has been reported to cause effects on gene expression at 

plasma concentrations that are considerably lower than the corresponding HTPC [141] 

(Paper I), we cannot yet reject the possibility of effects in fish exposed to ketoprofen at 

concentrations found in the aquatic environment. 

 

4.1.2. Uptake of the glucocorticoid beclomethasone-diproprionate and its metabolite 

beclomethasone (Paper IV) 

 Beclomethasone is administered as a prodrug, beclomethasone-diproprionate 

(BDP), which is metabolized into its more active forms beclomethasone-17-

monoproprionate (BMP) and free beclomethasone as well as other inactive forms and 

conjugates. When investigating the bioconcentration potential of this drug and applying 

read-across, it is therefore not as straightforward as it is for e.g. diclofenac and 

ketoprofen.  
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 Exposure to BPD resulted in all three active forms of the drug in the blood 

plasma, though not at quantifiable levels for free beclomethasone, whereas no uptake 

could be confirmed upon exposure to free beclomethasone. Furthermore, both BMP and 

beclomethasone were found in the water where fish were exposed to BDP, indicating 

metabolism and excretion by the fish. Free beclomethasone was detected at much lower 

levels than BMP, suggesting that the primary excretion product from fish may be BMP 

and not free beclomethasone. While it cannot be excluded that BDP may transforms to 

BMP and free beclomethasone in the aquarium water, BDP has previously been reported 

to be relatively stable in aqueous culture medium at 37°C [165]. Based on the 

concentrations of all three forms of beclomethasone measured in the water and in the 

plasma of the fish, the calculated BCFs were 3.34 (low dose) and 0.75 (high dose).  

 In humans, BDP plasma levels are reduced by >99% 30 minutes after a single 

intravenous dose and consequently, BMP levels rapidly reach more than ten times the 

concurrent BDP concentration [117]. This indicates a very rapid metabolism of BDP and 

if applicable in fish as well, the uptake in the fish is most likely very rapid too, since we 

find a high BDP:BMP ratio in the blood plasma of the fish exposed to high dose BDP. In 

the fish plasma, each metabolite is at equilibrium with the surrounding water, in 

contrast to humans (Fig. 7). This means that a high metabolic conversion of BDP to BMP 

may not be reflected in a very high concentration of plasma BMP since BMP (and free 

beclomethasone) is expected to be lost not only through further metabolism as in 

humans, but also to the surrounding water through the gills. However, a high BDP:BMP 

ratio in the fish plasma may also be the result of a slow metabolism of BDP. Nonetheless, 

because both BMP and free beclomethasone were found in both the blood plasma and in 

the water, metabolism of BDP is evident. The plasma concentration of BMP was quite 

similar over the two exposure concentrations of BDP even though the plasma 

concentration of BDP increased. This may be explained by a limited metabolic capacity 

or differential distribution between organs within the fish. 

 In addition to its intended local effects, BMP can have adverse systemic side 

effects at HTPC (0.33 ng/ml) via hypothalamic-pituitary-adrenal suppression [113, 119, 

166]. Therefore the HTPC values are relevant for read-across in paper IV, at least from 

this perspective. The concentrations of BMP measured in the current study are close to 

the HTPC and effects on the transcriptional activity on the glucocorticoid receptor 2 in 
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fish have previously been reported near these concentrations in vitro, though not in vivo 

[108]. However, since BDP, BMP and free beclomethasone all bind the receptor,  

though with different affinities [118, 165], it is somewhat difficult to apply read-across 

from plasma concentrations in humans to predict potential effects in model organisms.  

Although BMP was found at rather similar plasma concentrations in both groups of BDP 

exposure, the physiological effects studied here were only significant at the highest 

exposure concentration of BDP. Thus, we cannot exclude a contribution from other 

active forms of beclomethasone than BMP. In fact, the relative transcriptional activities 

of BDP, BMP and free beclomethasone in fish are not known. 

 

4.1.3. The applicability of bioconcentration studies and the read-across strategy 

The results from paper I on diclofenac support the assumptions made by Hugget 

et al. [125] in “the fish plasma model” and this study is, to the best of my knowledge, the 

first where the relation between blood plasma levels of fish exposed to a pharmaceutical 

in the water, and responses in the fish, are specifically addressed and documented. At a 

Figure 7. Equilibrium of beclomethasone-diproprionate (BDP), beclomethasone-17-monoproprionate 
(BMP) and less lipohilic metabolites in fish. 
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plasma concentration well below the HTPC in exposed fish, observed responses were 

moderate, but became more distinct closer to the HTPC. Interestingly, the observed 

responses showed apparent similarities with effects observed in humans (see section 

4.2.1). In paper II, plasma concentrations of ketoprofen in the exposed fish were orders 

of magnitudes below the HTPC, and accordingly no effects could be detected. 

Unfortunately, none of the exposure concentrations led to sufficiently high plasma 

concentrations of ketoprofen for us to be able to confirm a pharmacological interaction. 

Thus the possibilities for applying read-across according to “the fish plasma model” 

could only be tested with regards to the fact that effects were absent when the plasma 

concentration of the drug was low, but not in the sense that effects were seen at or close 

to the HTPC. In paper IV applicability of read-across according to “the fish plasma model” 

was not as clear-cut, possibly due to the complicated nature of pharmaceuticals with 

multiple active forms binding with different affinity (see section 4.1.2) [108, 118].  

Although the read-across concept is a powerful strategy from many perspectives, 

particularly in identifying pharmaceuticals posing environmental risks, one should be 

careful and not draw the conclusion that plasma levels far below the HTPC will not result 

in any effects. On a further note, as the studied organ in paper I and II is the liver, 

extrapolating from responses in human liver to fish by using the read-across strategy 

may not be entirely correct. At similar plasma concentrations in fish and human, e.g. at 

HTPC, the human liver would often be subjected to higher concentrations than the fish 

liver if the drug is administered orally. This is because in humans, the exposure would 

occur through the intestine which carries high concentrations via the portal vein directly 

to the liver and then out in the bloodstream, while fish take up the drug straight into the 

bloodstream via the gills. As the liver is the main location of metabolism for many drugs, 

the concentration of the substance is often much lower when the blood leaves the liver 

and enters into the circulatory system, where HTPC is measured. In this event, a 

modification of “the fish plasma model” is therefore desirable, as a higher concentration 

is needed in the fish plasma in comparison with humans in order to have the same 

exposure in the liver. However, if forms of administration where the substance does not 

undergo metabolism in the liver before reaching the bloodstream are used (e.g. 

intravenous or topical with a systemic target), “the fish plasma model” is applicable as 

the concentration reaching the liver would be similar for fish and humans at similar 

plasma concentrations. It may also be used without modification if the studied organ is 
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not the liver, as the concentration present in the plasma is also the concentration to 

which the studied organ is exposed. On the other hand, if the pharmaceutical is locally 

administered, as beclomethasone-diproprionate, or BDP, in paper IV, a straightforward 

use of “the fish plasma model” is also questionable as the concentration in the target 

organ would most likely be higher than in the plasma. Though for BDP, systemic effects 

have been reported at HTPC in humans [104], thus read-across is still applicable. 

Bioconcentration studies can be used for other applications as well, in addition to 

the read-across combination. For example, when conducting a screening of 

concentrations of substances in the aquatic environment, measurements in biota (e.g. in 

fish) may at times be a better strategy than measurements in water. To put this in 

context, the discussion here is exemplified by the EU Water Framework directives [97], 

where concentration limit values, or Environmental Quality Standards (EQS; see section 

1.4.1), for some chemicals are set for biota as well as for water. For very hydrophobic 

substances the biota EQS should primarily be applied as these substances accumulate in 

biota and are hardly detectable in water even when using the most advanced analytical 

techniques. Unfortunately, this does not apply to all chemicals, since EQS have only been 

set for surface waters for the recently included APIs, EE2, E2 and diclofenac. There is, 

however, a number of advantages with measuring these compounds, and other 

chemicals, in biota, e.g. fish. Firstly, as previously described, concentrations of 

substances in the surrounding waters are not the only factors of importance when 

predicting risks to organisms, as the rate of uptake and bioconcentration etc. must be 

taken into account as well.  Although it is possible to extrapolate BCFs from other 

studies and apply them to measured water concentrations, it is, according to the meta-

analysis in paper II, not that simple since BCFs may vary between different exposure 

conditions. However, uncertainties associated with extrapolations are avoidable by 

instead measuring substances in organisms exposed to the water of interest, thereby 

providing information on the actual (internal) exposure. Secondly, water concentrations 

may vary considerably over time in the field. A water sample collected at one time-point 

may differ completely from that of another time-point, especially in effluent-dominated 

streams, and it may be a matter of only a few hours, e.g. morning and evening [167]. The 

concentration in a fish, on the other hand, is not likely to be reflective of short term 

variations and, for substances not likely to reach equilibrium very quickly, biota samples 

will provide a better cumulative view of the general situation. There are exceptions, 
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however, where FSSPC is reached in a very short time, which most likely is the case for 

BDP as observed in paper IV. Thirdly, considering the relatively low EQS for EE2 (0.035 

ng/L) and the fact that steroids and other APIs are commonly present at very low 

concentrations associated with risks, the limitations in today’s analytical techniques 

may in many cases lead to no detection in surface waters. However, due to the high 

bioconcentration potential of many steroids (and some other APIs), such high sensitivity 

in analytical techniques is often not expected to be required to detect the substance in 

biota. Fourthly, measuring APIs in biota also provides the possibility of read-across as 

much is known regarding effects versus internal exposure concentrations (dose) in 

humans, though the previously mentioned advantages apply for any chemical. 

Measuring in biota does nevertheless have downsides as well, including analytical 

challenges regarding both sensitivity and selectivity due to higher noise in biota 

samples. Collecting biota samples is also highly time-consuming and requires the use 

and sampling of animals. Predicting internal exposure from measured water 

concentrations by applying theoretical models for bioconcentration is more in 

agreement with the three Rs of experimental animal work; refine, reduce and replace. 

However, as shown in this thesis, there are still major knowledge gaps regarding which 

factors are important for bioconcentration of pharmaceuticals. Therefore, more 

empirical data, involving animal studies, are required in order to develop and validate 

bioconcentration models that can be accurately applied in the field for such a diverse 

group of chemicals as pharmaceuticals.   

 

4.2. Gene expression 

 In order to evaluate the potential risk of APIs in the aquatic environment, it is an 

advantage to have information about the expected mode of action in exposed species, as 

this may provide insights as to possible adverse outcomes. Although the human drug 

targets are well conserved for the investigated drugs and the group of species studied in 

this thesis [110], pharmacological interactions may not lead to gene-response cascades 

identical to those observed in humans. The broad analytical approach provided by 

microarray analyses is therefore well suited for the purpose of identifying modes of 

action in fish exposed to various APIs. Furthermore, microarrays provide a possibility to 
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search for several biomarker responses in organisms exposed to a mixture; they provide 

the possibility to identify new potential biomarkers in organisms exposed to individual 

drugs or type of drugs, and they can provide an indication of the potency of a given 

drug/exposure. The technique was successfully used in paper I, II and III from all three 

different perspectives. 

 

4.2.1. Gene expression of the NSAIDs diclofenac and ketoprofen (Paper I and II) 

 In paper I and II we used microarrays and qPCR to study the hepatic gene 

expression in fish exposed to the two NSAIDs diclofenac and ketoprofen. For diclofenac 

in paper I, all exposure concentrations led to differentially expressed genes. At the 

lowest exposure concentration of 1 µg/L, which corresponds to concentrations 

frequently detected in effluents [3, 31, 88-91] and occasionally in surface waters [32], 

the response was relatively moderate. Although 11 transcripts had a p-value <0.001, the 

FDR was above 0.78 indicating a high rate of false-positives [153]. Nevertheless, one of 

these 11 transcripts was differentially expressed in the higher doses as well. This 

consistency between responses at different doses increases the likelihood for being a 

true-positive [99]. In general, both the p-values and the corresponding FDRs decreased 

with an increasing exposure concentration and at the highest concentration, 70 

transcripts had a p-value <0.001 (FDR>0.005) indicating an increasing response in a 

dose-response manner. As the likelihood for a response to be true increases additionally 

if it follows a dose-response trend [99], we performed a robust linear regression 

analysis as well. This resulted in 623 transcripts with an FDR below 0.3 and these were 

subsequently used for the GO-term enrichment analysis using GOrilla [155]. Although 

allowing a 30% chance of a transcript being a false-positive may seem quite high, GO-

term enrichment analysis can accommodate a larger number of false-positives since 

falsely differentially expressed genes are less prone to be involved in the enriched 

pathways [145]. According to the GOrilla analyses against the human database, most 

enriched GO-term processes were connected to immune response and inflammation 

(Table 1), e.g. complement activation (GO:0006956). Hence, there is a strong indication 

of a similar mode of action of diclofenac in rainbow trout and humans as diclofenac and 

other NSAIDs exert their anti-inflammatory and analgesic effects mainly through 

inhibition of Cox, which takes part in several biological processes, including the 
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inflammatory response. Several of the genes included in these areas were complement 

components (e.g. c7 and c6), which are part of the innate immune response, more 

specifically the complement activation (GO:0006956). Accordingly, complement 

components were induced in diclofenac treated mouse liver as well as other genes 

connected to the above mentioned processes [168].  

Notably, when analyzing the same dataset, but against the zebrafish database 

using zebrafish gene annotations, the outcome differed completely. Most GO-term 

processes connected to metabolism rather than immune response and inflammation. 

This highlights the issue on choosing the correct reference species, as described in 

section 3.3.3. All processes, including immune response and inflammation, are well 

described and studied in humans, thus there are more genes assigned to GO-terms in 

these areas in comparison with zebrafish where the actual functions of different fish 

proteins have been investigated considerably less.  

To confirm the results from the microarray analyses, qPCR was performed on a 

set of genes selected from different aspects, e.g. included among the top regulated 

transcripts or enriched GO-term processes. Although the Geniom platform had been 

used before and shown good correlation with the qPCR analyses in the hands of our 

group [129, 130], probes, annotations etc. differed from the design in paper I. Therefore, 

the qPCR was performed on the same individuals present on the microarray, i.e. a 

technical validation, and according to these results, the performance of the microarray 

was highly satisfactory. There was a high correlation between the microarray and qPCR 

data, indicating high quality of the microarray, i.e. low cross-hybridization etc.  

In addition to providing information on the mode of action of diclofenac in fish, 

the gene expression results in paper I furthermore support read-across according to 

“the fish plasma model” [125] with clearer responses closer to HTPC. In paper II, where 

fish were exposed to ketoprofen in an experimental set-up similar to that in paper I, the 

plasma concentration only reached a few parts per thousands of the HTPC at the highest 

exposure concentration (100 µg/L). Therefore, the expected response would be low 

[125] and microarray analyses were thus only conducted on the fish exposed to the 

highest concentration of ketoprofen. Accordingly, the microarray analyses revealed very 

limited responses, if any, compared with the non-exposed fish: only 58 transcripts had a 

p-value <0.05 and the FDR was >0.99 for all (no transcripts had p<0.001, for comparison 
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with paper I). Although the microarray design had been further developed with new 

probes in comparison with paper I, we felt confident about the quality and performance 

due to the results from the previous studies using Geniom/RT analyzer (Paper I) [129, 

130, 169]. Thus, the validation using qPCR could be performed on other individuals than 

the ones included in the microarray analyses, i.e. a biological validation. The genes 

selected for the qPCR analysis included transcripts with a relatively low p-value on the 

microarray. However, because the FDR was >0.99, most differentially expressed genes 

were most likely false-negatives. Accordingly, none of the genes were significantly 

differentially expressed when measured by the qPCR. As both plasma concentrations 

and gene expression were measured on an individual level, in contrast to paper I where 

two plasma samples were pooled to generate replicates, the results from the qPCR could 

be directly related to individual plasma concentrations. Nevertheless, controlling for 

individual differences in internal exposure did not reveal any significant effects. 

Consequently, we could not confirm any response in the fish exposed to ketoprofen at a 

concentration of 100 µg/L, and could therefore not assess the mode of action and 

compare it with diclofenac. 

 

4.2.2. Evaluation of sewage treatment technologies using microarrays (Paper III) 

 To identify effects caused by substances frequently encountered in STP effluents, 

several research groups have used microarrays on individual drugs, metals etc. [127, 

129, 170-172], including the studies in paper I and II. Using this approach, modes of 

action and biomarkers of exposure for these individual substances, or groups acting via 

the same targets (e.g. NSAIDs), have been identified or suggested. A combination of 

microarray studies on fish exposed both to single substances as well as to complex 

effluents, provides a possibility to identify which specific groups of compounds in the 

effluent indeed affect exposed organisms [173, 174]. This subsequent analysis strategy 

was applied in paper III. By using known biomarkers of exposure and mode of actions of 

different substances in fish, the effects of differently treated effluents on fish were 

studied, and consequently different treatment techniques could be evaluated with 

regards to these endpoints. The exposure was performed at Henriksdal STP, Stockholm, 

Sweden, using a large-scale pilot plant with parallel treatment lines. The different 

sewage treatment techniques included in this study were: conventional treatment with 
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activated sludge and sand filter alone or in combination with granular activated carbon, 

ozone 5 mg/L, ozone 15 mg/L, ozone 5 mg/L + a moving bed biofilm reactor or 

irradiation by UV radiation + hydrogen peroxide. A control group representing “clean” 

water was also included; this consisted of fish exposed to tap water treated by activated 

carbon and mixed with an addition of 2% conventionally treated effluent (without the 

added effluent the water is too clean for the fish). The fish exposed to any of the 

generated effluents were compared to the control group in order to assess which 

effluent had the least effect in fish. 

 The microarray analyses revealed differentially expressed transcripts, with a 

significance level at FDR<0.2 (referred to as “adjusted p-value” in the manuscript) [153], 

in the groups of fish exposed to conventionally treated effluents as well as the groups 

with the additional advanced treatment steps ozone 15 mg/L, ozone 5 mg/L + a moving 

bed biofilm reactor and irradiation by UV radiation + hydrogen peroxide. With a less 

stringent cut off (p<0.01 without multiple adjustment), all treatment groups had 

significantly regulated genes. This cut off (p<0.01) was subsequently used for the GO-

term enrichment analysis. Overall, the fish exposed to conventionally treated effluents 

as well as the groups with the additional advanced treatment steps ozone 5 mg/L + a 

moving bed biofilm reactor and irradiation by UV radiation + hydrogen peroxide had far 

more putatively differentially expressed transcripts compared to the other groups. 

To evaluate the modes of action affected in the exposed fish, GO-term enrichment 

analysis was performed using GOrilla (see section 3.3.3) [155]. In the fish exposed to the 

conventionally treated effluents, most enriched GO-term processes were connected to 

metabolism, including the most enriched GO-term process: xenobiotic metabolic process 

(GO:0006805). The most recurrent group of genes was the cytochrome P450s, or Cyps. 

The detoxification enzyme Cyp1a was represented in most of the enriched GO-term 

processes and the transcript was induced in several of the treatment groups (Fig. 8a). 

The induction of the Cyp1a gene (cyp1a) is often mediated by xenobiotics binding to the 

cytosolic aryl hydrocarbon receptor, though other induction mechanisms are possible. 

Examples of groups of chemicals that induce cyp1a via the aryl hydrocarbon receptor 

are polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins 

(PCDDs) and polychlorinated biphenyls (PCBs) [175], though we cannot say which 

chemical(s) induced the cyp1a expression in this particular study.  
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As described in section 1.3, STP effluents are major point sources for release of 

estrogenic substances and exposures to effluents from different STPs have been 

associated with reproductive effects in fish [4, 43-47]. In paper III, the microarray  

 analyses revealed the induction of two estrogen-responsive genes, zona pellucida 1 and 

2 (zp1 and zp2), in the fish exposed to the conventionally treated effluents. Additionally, 

there was an induction of two other estrogen-responsive genes, zp3 and vtg, as 

measured by the qPCR (Fig. 8b). Alongside of paper III, chemical analyses of APIs were 

performed on the different effluents [26], though EE2 could not be detected (detection 

limit was 0.1 ng/L). Nevertheless, APIs with a high BCF and potency, such as synthetic 

steroid hormones, can potentially affect organisms even at exposure concentrations 

below the detection limits. The induction of the estrogen-responsive genes was not 

present in any of the other exposure groups, with the exception of the group of fish 

Figure 8. Hepatic gene expression changes on selected genes, measured by qPCR, in rainbow trout 
exposed to differently treated effluents for two weeks. Values on the y axis are fold change (log2) 
compared to control fish (exposed to granular activated carbon-treated tap water with an addition 
of 2% conventionally treated effluent). Statistical analysis was performed using one-way ANOVA and 
Dunnett’s test of multiple comparisons. Levels of significance were *0.01<p<0.05; **0.001<p<0.01; 
***p<0.001. 

CAS = Conventional treatment 

GAC = Granular activated carbon 

OZ5 = Ozone 5 mg/L 

OZ15 = Ozone 15 mg/L 

MBBR = Ozone 5 mg/L + a moving bed biofilm reactor 

UH = Irradiation by UV radiation + H2O2 
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exposed to the effluents treated with ozone 5 mg/L + a moving bed biofilm reactor. In 

this group, zp3 was significantly induced, whereas zp1 and zp2 showed tendencies to be 

induced, though not significantly (Fig. 8b). 

According to the chemical analyses, the addition of ozone treatment improved 

the effluent quality to a higher extent with regards to reduced API-concentrations, as 

only 5-15% of the total API concentration remained compared with the conventionally 

treated effluents [26]. The number of differentially expressed genes was also 

substantially lower according to the microarray analyses. However, the fish exposed to 

any of the ozone-treated effluents (including ozone 5 mg/L + a moving bed biofilm 

reactor) showed an induction of one of the most common biomarkers for stress in 

general, heat shock protein 70 kDa (hsp70; Fig. 8c) [176]. Ozone-produced oxidants have 

previously been reported to induce the expression of hsp70 in gills and liver of exposed 

fish [177], though in the same study additional biomarkers, indicating oxidative stress, 

were induced. This was not the case in paper III, thus suggesting that rather than 

oxidative stress caused by ozone produced oxidants (e.g. free radicals) as in the study by 

Reiser et al. [177], hsp70 was induced due to other stressors e.g. metabolites of 

chemicals in the effluent formed during the ozone treatment process. As stated in 

section 1.2, oxidative/reductive technologies, such as ozone treatment, can create 

harmful degradation products. Ozone-treated effluents in particular have accordingly 

been shown to have unwanted effects in previous studies, including changes in the 

metabolome in exposed rainbow trout [178] and an increased general toxicity in 

rainbow trout yolk sac larvae [35]. In exposed crustaceans, bacteria and micro algae, the 

outcome of ozone-treatment seems to be dose-dependent, since low doses of ozone are 

associated with a reduced toxicity and high doses with an increased toxicity [36-39, 

Hörsing et al. manuscript]. Recently, Bundschuh et al. [179] performed a meta-analysis 

where they found that biological tests often leads to an identification of increased 

toxicity by ozonation, although the isolated use of more narrow endpoints (e.g. specific 

biomarkers) often indicate a decreased toxicity. 

To remove the new products formed by oxidative/reductive technologies, several 

different additional methods have been suggested, e.g. sandfilter [35]. In paper III, the 

addition of a moving bed biofilm reactor post ozone 5 mg/L treatment was for this 

purpose, i.e. an attempt to remove possible transformation products. However, the 
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outcome of this additional treatment was poor based on the microarray analyses, which 

revealed a relatively high number of differentially expressed transcripts, including the 

previously mentioned induction of the estrogen-responsive gene zp3. Interestingly, the 

effluents treated with ozone alone did not cause this high number of significantly 

affected genes in the exposed fish, thus subsequently suggesting that a moving bed 

biofilm reactor creates new compounds and/or renders conjugated compounds 

bioavailable. 

The addition of irradiation by UV radiation + hydrogen peroxide treatment was 

not effective in improving effluent quality, as assessed by both the gene expression 

analyses and API concentrations [26]. In addition to the relatively modest reduction of 

60% of the total API concentration, compared with the conventionally treated effluents, 

this treatment technology is, like ozonation, also based on oxidative/reductive reactions 

and thus the problem with harmful transformation products regards to these effluents 

as well. Accordingly, the microarray analyses revealed a high number of differentially 

expressed genes in the exposed fish. This, in combination with several of the enriched 

GO-term processes that were connected to apoptosis and cell death, suggests that the 

fish exposed to the effluents treated with irradiation by UV radiation + hydrogen 

peroxide suffered from more stress than the fish exposed to most of the other effluents. 

In addition, several of the enriched GO-term processes were connected to metabolism 

and were similar to several of those enriched in most of the other groups, although the 

genes contributing to the enrichment differed substantially compared with the other 

groups, suggesting different modes of action. However, the most significantly 

differentially expressed transcript in the fish exposed to the effluents treated with 

irradiation by UV radiation + hydrogen peroxide, was carbonyl reductase (cbr) which 

can, like several Cyps, be induced by polycyclic aromatic hydrocarbons, such as β-

naphthoflavone, via the aryl hydrocarbon receptor [180]. Because cbr was induced in 

the fish exposed to the conventionally treated effluents as well, it is possible that the 

removal of e.g. polycyclic aromatic hydrocarbons by irradiation by UV radiation + 

hydrogen peroxide is incomplete. This is additionally supported by the highly significant 

induction of cyp1a. 

The advanced technology that generated the effluents causing the least response 

in fish was granular activated carbon treatment. None of the genes analyzed by qPCR 
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were significantly differentially expressed in this group (Fig. 8) and the chemical 

analyses revealed >95% removal of the total API concentration compared with the 

conventionally treated effluents. Furthermore, all transcripts on the array had an 

FDR>0.79, indicating a high level of false-positives. 

 

4.2.3. The applicability of microarray analyses 

Although a gene is differentially expressed, it does not necessarily mean that 

there will be physiological or adverse effects. Therein lies the main criticism on the use 

of microarrays in ecotoxicology [181]. However, obtaining hard evidence on 

physiological effects is not the purpose of studying gene expression as it rather 

represents the earliest response. In ecotoxicology, there are at least three main uses of 

microarrays: information on the mode of action, potency indications and finally 

searching for new biomarkers or studying already established biomarkers. In this thesis, 

all three uses have been applied. 

In paper I, the results from the GO-term enrichment analysis indicated a similar 

mode of action of diclofenac in fish as in humans. Furthermore, responses in gene 

expression were identified at concentrations of diclofenac found in effluents and on 

occasions in surface waters [3, 31, 32, 88-91], and although the FDR was high, the top 

ranked genes are potential biomarkers of diclofenac exposure. However, more studies 

are needed to evaluate whether they fulfill the biomarker criteria (see section 1.7).  

In paper II, a notion on the potency of ketoprofen was provided for exposed fish, 

under the given conditions. The microarray analyses revealed a very limited response in 

the gene expression and given the large number of endpoints studied in a microarray 

experiment, some genes may be falsely identified as differentially expressed. Indeed, our 

estimates show a very high FDR for all transcripts, thus suggesting that those plausibly 

differentially expressed may certainly, to a large extent, be false positives. Accordingly, 

neither of the genes analyzed by qPCR was differentially expressed. This highlights the 

importance of confirming microarray results by qPCR due to the high risk of assigning 

false-positives, i.e. type I errors, in studies where many endpoints are studied in parallel. 

Still, we cannot exclude that the expression of a few isolated genes is indeed slightly 

affected by the treatment.   
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In paper III, microarray analyses were successfully used to search for previously 

established biomarkers in complex mixtures, i.e. effluents, which provided an indication 

of the potential of additional treatments to remove certain substances. For example, 

several estrogen-responsive genes were induced by conventionally treated effluents, 

though not induced in fish exposed to most of the additionally treated effluents. 

Furthermore, GO-term enrichment analysis revealed several GO-term processes that 

provided additional information on the nature of the differently treated effluents. On a 

further notice, because the threshold set for the transcripts included in the GOrilla 

analysis in paper I (FDR<0.3) would not include transcripts from all groups in paper III, 

a less strict threshold (p<0.01) was set instead. This threshold would indeed include a 

larger number of false-positives, yet as stated in sections 3.3.3 and 4.2.1, GO-term 

enrichment analysis can accommodate a larger number of false-positives since falsely 

differentially expressed genes are less prone to be involved in the enriched processes 

[145]. On the other hand, due to the outcome of the GOrilla analyses in paper III, this 

statement may be questioned as there were several enriched GO-term processes in the 

groups where the effluents had been additionally treated with granular activated carbon 

or ozone 5 mg/L, suggesting very limited improvements compared with conventional 

treatment. However, although the same p-value cut off for transcript selection was used 

for all groups, the FDR was much higher in both these additionally treated groups in 

comparison to the fish exposed to the conventionally treated effluents. Therefore, it is 

likely that several of the transcripts included in the putatively enriched GO-term 

processes are not differentially expressed, i.e. false-positives, which was confirmed for 

some genes by the qPCR analysis. Nevertheless, what supports the possibility that some 

of the enriched GO-term processes in the fish exposed to activated carbon or ozone 5 

mg/L treated effluents are in fact enriched as a consequence of the exposure, is the fact 

that they, in contrast to e.g. the fish exposed to ozone 15 mg/L treated effluents, are 

similar to those enriched in the conventionally treated group, where the FDRs are much 

lower. Regardless, GO-term enrichment analysis should be used merely for formation of 

biological hypotheses and not as evidence of certain exposures or effects. 
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4.3. Physiological effects 

Microarrays may indeed be powerful from many perspectives, yet they only 

provide a partial view of the effects and not evidence as to whether an exposure would 

lead to adverse effects [181]. Studies on physiological changes, on the other hand, are 

closer on that matter. In all of the studies in this thesis, the liver somatic index was 

calculated and compared between the different exposures within each study. In paper 

III, the heart somatic index was also studied. In neither paper I, II or paper IV, were there 

any differences between the control fish and the exposed fish. In paper III, however, 

there was an increase in both liver and heart size in the fish exposed to the 

conventionally treated effluents compared to the control group. These increases could 

not be seen in any of the other groups, though this increase in liver size was only 

significantly prevented by granular activated carbon, ozone 5 mg/L and ozone 15 mg/L 

treatment. As mentioned in section 4.2.2, there was an increased expression of vtg, and 

induction of hepatic vitellogenin synthesis can lead to an increased liver size. 

Nevertheless, liver enlargements may be a consequence of exposure to a large variety of 

xenobiotics and it is therefore difficult to point out which chemical(s) caused the 

observed liver size increase in the fish exposed to the conventionally treated effluents. 

In a previous study at the same STP, the liver size was also increased in fish exposed to 

conventionally treated effluents, containing estrogens [34]. The increase in heart size is, 

however, not likely caused by estrogens. It has been suggested that exposure to the β-

adrenoreceptor antagonist, or β-blocker, propranolol may increase heart size in fish [76, 

Gunnarsson et al., unpublished], though it is unclear whether β-blockers were the cause 

in this case. 

 

4.3.1. Effects upon glucocorticoid exposure 

 In paper IV, the exposure response was assessed through studies on physiological 

effects, though we plan to perform microarray analyses here as well. No effects were 

observed upon the exposures to free beclomethasone or low dose BDP and the 

discussion hereinafter will therefore be related merely to the high BDP exposure (648 

ng/L in aquarium water). 
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 Several of the studied physiological endpoints in paper IV were significantly 

affected in the fish exposed to high dose BDP. Plasma glucose levels increased in 

rainbow trout, as has been seen in humans [104]. BDP binds to and activates the 

glucocorticoid-receptor which in turn may bind to the glucocorticoid response element 

resulting in transcription of genes involved in gluconeogenesis [104]. In rainbow trout 

and in fathead minnow, increase in plasma glucose levels have previously been reported 

upon exposure to cortisol (intraperitoneal implants) [182] and waterborne BDP [108], 

respectively. However, plasma glucose levels have been used as indicators of general 

environmental stress in fish and are thus not specific for glucocorticoid exposure [183]. 

Exposure to high concentrations of BDP also resulted in changes in glutathione levels 

and an increased catalase activity. These changes indicate oxidative stress, which can 

result in damage to cellular molecules and eventually, cell death. Glutathione is an 

important molecular antioxidant that functions as a reducing agent in antioxidant 

enzyme reactions, as a scavenger of reactive oxygen species and as a conjugation 

molecule important in excretion of xenobiotics. Catalase can protect against oxidative 

damage resulting from hydrogen peroxide, which is produced during normal cellular 

metabolism or as a result of chemical actions of xenobiotics, by catalyzing its 

decomposition to water and oxygen [184]. Interestingly, similar effects have also been 

shown in humans where levels of glutathione decreased while catalase activity 

increased in erythrocytes upon BDP treatment [185]. 
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5. Conclusions 

n this thesis, transcriptomics and bioconcentration studies have been used to 

identify pharmaceuticals of environmental concern. Transcriptomics have 

also been used to evaluate responses in fish exposed to differently treated 

sewage effluents. Below are the main conclusions drawn from each paper 

followed by considerations on the main aims of this thesis. 

Paper I - Diclofenac 

• Diclofenac affected hepatic gene expression in exposed fish at water 

concentrations reported in treated effluents and surface waters.  

• Pharmacological responses were observed in fish at blood plasma concentrations 

similar to human therapeutic plasma levels, indicating a similar potency in fish 

and humans, thus supporting read-across between species. 

• Responses identified in fish resembled those found in mammals, further 

supporting read-across. 

• Potential biomarkers for diclofenac or NSAID exposure were identified.  

• A stable bioconcentration factor for diclofenac across exposure concentrations 

was demonstrated.  

Paper II – Ketoprofen 

• Exposure of fish to ketoprofen at concentrations about 100 times higher than 

those found in treated sewage effluents resulted in plasma concentrations below 

1% of human therapeutic plasma levels, suggesting low risk for effects in fish.  

• At these exposure concentrations, no effects on gene transcription were found, in 

agreement with the proposed read-across strategy. 

• Exposure of fish to effluents indicates a higher bioconcentration potential than 

exposure to single NSAIDs, thus laboratory experiments may underestimate risks 

in the environment. 

 

 

I 
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Paper III – Sewage treatment technologies 

• Microarray analyses revealed several differentially expressed genes after 

exposure to conventionally treated effluents, including estrogen-responsive 

genes and a biomarker for dioxin-like exposure (cyp1a). 

• Most advanced treatments resulted in effluents with no or minor estrogenic 

responses in exposed fish. 

• Treatment with activated carbon or a high dose of ozone resulted in effluents 

where no dioxin-like response was observed in exposed fish. 

• Activated carbon treatment generated the effluent that lead to the least 

responses on exposed fish. 

• Exposure to all ozone-treated effluents caused induction of hsp70, a biomarker 

indicating a general stress response in fish. 

Paper IV – Beclomethasone 

• Exposure to the glucocorticoid beclomethasone-diproprionate affected plasma 

glucose levels and caused oxidative stress in fish.  

• Effects observed in fish resembled effects in human, supporting read-across 

between species. 

• No effects were observed in fish exposed to free beclomethasone, most likely 

because it did not bioconcentrate. 

Thesis conclusions 

The combination of bioconcentration studies and read-across between species 

proved to be a strategy with high potential for identifying pharmaceuticals of 

environmental concern. Microarrays and gene expression were successfully used to 

provide 1) potential biomarkers for diclofenac/NSAID exposure, 2) information on the 

mode of action of diclofenac in fish, 3) an assessment of the potency of NSAIDs in fish 

and 4) identification of sewage treatment techniques resulting in less risk for effluent-

exposed fish. Studies on gene expression and modes of action in non-target organism 

have thus proven useful to complement traditional environmental risk assessment 

strategies for pharmaceuticals. 
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