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ABSTRACT 

 
In this thesis the symmetry of two interaction types involving electropositive halogens have been studied in solution; 

the NX+N halogen bond (X = Br or I), and the CX+C interaction of previously characterised, cyclic, 1,2-bridged 

halonium ions (X = Cl or Br), respectively. The three NX+N model structures included are bispyridine, 1,2-

bis(pyridine-2-ylethynyl)benzene and 1,2-bis((4-methylpyridin-2-yl)ethynyl)benzene halonium triflate complexes. 

Model structures representing the CX+C interaction are the dimethylethylene- and ethylenehalonium ions.   

 

All structures included in this thesis are comprised of symmetrically arranged atoms, but have the possibility to exist 

as either a static, symmetric structure, or as two asymmetric, fast equilibrating tautomers. For a symmetric structure, 

the positive halogen is positioned with equal distances to the electron donor nitrogens/carbons. In asymmetric 

structures, the halogen is always closer to one of the nitrogens/carbons, and is consistently jumping between the two 

nitrogens/carbons. In this investigation the NMR spectroscopic method Isotopic Perturbation of Equilibrium (IPE) 

has been applied for distinguishing a single symmetric structure from rapidly, interconverting tautomers. The 

technique measures 13C NMR isotope shifts, nobs, resulting from unsymmetrical introduction of deuterium isotopes 

in the molecule for which the symmetry is in doubt. Based on the magnitudes, signs, and temperature-dependency of 

nobs obtained from 13C NMR spectra of a mixture of non-labelled and deuterium labelled molecules, the symmetry 

of the molecule being considered can be determined.  

The IPE NMR experiments revealed that all bis(pyridine)based halonium complexes were best represented as static, 

symmetric structures in dichloromethane. The symmetric NX+N arrangement was also shown to be independent of 

environmental factors, such as increased solvent polarity and tight binding of the counter ion. Thus, these 

observations indicated that the formation of a symmetric NX+N halogen bond is energetically favourable. The 15N 

and 13C chemical shifts of the pyridine rings revealed significantly stronger NX+N interaction for the iodonium 

complexes than for the corresponding bromonium complexes, suggesting a covalent character of the NI+N 

interaction and an ionic character of the NBr+N interaction. Strongest interaction was observed for the bispyridine 

halonium complexes, in which the NN distances are freely adjustable to provide the most favourable interaction. 

Ionisation of 2,3-dihalobutane or 1,2-dihaloethane precursors in SbF5-SO2 at -80 C were attempted for generation of 

the desired ethylenehalonium ions. Both bromonium ions were characterised as asymmetric, equilibrating structures; 

the dimethylethylenebromonium ions from their nobs values, and the ethylenebromonium ion from the dynamic 

behaviour, typical for asymmetric structures in a slow equilibrium, of the signals shown in its 1H and 13C NMR 

spectra. The 1H NMR spectral pattern of the ethylenechloronium ion was also consistent with asymmetric structures 

in a slow equilibrium. The symmetry of the dimethylethylenechloronium ions could not be determined, as they, if 

formed at all, immediately rearranged. SO2 was revealed to be sufficiently nucleophilic to add to the cations formed. 

Hence, the source of the asymmetry observed is ascribed the labile addition of SO2 to either cyclic halonium ions or 

open -halocarbenium ions.  

__________________________________________________________________________________________ 

Keywords: bis(pyridine)-based halonium complexes, ethylenehalonium ions, structure symmetry, isotopic 

perturbation of equilibrium, solution NMR spectroscopy, isotope effects, NX+N halogen bond, CX+C 

interaction 
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1 GENERAL INTRODUCTION 

 
Among the over 4,000 halogenated compounds isolated from natural sources, such as marine 

organisms, bacteria, and terrestrial plants, there are many that show biological activities, 

including anticancer and antibacterial properties.
1-3

 Approximately one medicinal drug out of 

three in therapeutic use today is a halogen-containing compound.
4
 Furthermore, over 50% of the 

molecules selected for high throughput screening are halogenated.
5
 This implies that halogens 

comprise important properties useful for the mechanisms of action of drug molecules, and that, in 

addition, they play key roles in molecular recognition events crucial for certain disease outcomes. 

In Figure 1 some examples of halogenated pharmaceutical drugs, both synthetic and natural 

compounds, are shown.
1, 6

 The halogens in these molecules are considered to, via secondary 

interactions with certain biomolecules within our bodies, be involved in the regulation of specific 

biological activities.
4, 6

 
 

 

Figure 1. Some examples of synthetic and natural halogenated drug molecules. 
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The beneficial effects of halogen substitution on the structure-activity relationship of a drug 

molecule and its interactions with specific target protein or enzyme may be caused by an 

increased lipophilicity which favours the passage of the drug through biomembranes, the 

inductive, electron attracting effect of the electronegative halogen, or by the advantageous 

anisotropic characteristics of the halogens.
4
 The polarisability of the halogens allows them to, 

depending on their electrostatic potentials, be involved in both hydrogen bonding and halogen 

bonding interactions.
6-8

 In the former interaction, the halogen represents a donor of electron 

density, whereas in the latter it represents an acceptor of electron density. A better understanding 

and knowledge of how halogenated molecules interact in biological systems would provide 

valuable tools for development of new drugs in the future.
9
 

 

Due to the fact that most biological processes, as well as chemical reactions, take place in 

solution environment, it is preferable to gain knowledge of halogen interactions from 

experimental studies in the solution phase. In this thesis, two different categories of halogen 

interactions in solution are explored; the NX
+
N interaction (X = Br or I) of [NXN]

+ 

halonium complexes and the CX
+
C interaction (X = Br or Cl) of three-membered ring 

ethylenehalonium ions, respectively (Figure 2). Common to both interaction types is the presence 

of an electropositive halogen. The [NXN]
+ 

halonium complexes are sources of electrophilic 

halogens and represent reactive halogenating agents,
10-13

 whereas the cyclic halonium ions are 

mainly described as active intermediates in organic reaction formed upon electrophilic halogen 

addition to olefins.
14-17

 
 

 

The focus of the studies described in this thesis has been to determine the symmetries in solution 

of the two interaction types, the NX
+
N interaction and CX

+
C interaction, respectively, 

distinguishing between a symmetric binding with the halogen centred and an asymmetric binding 

with the halogen being closer to one of the nitrogens or carbons (Figure 2). The NX
+
N 

interaction may be related to NHN or OHO hydrogen bonds.
18

 As symmetric hydrogen 

bonds, comprised of a centred hydrogen and two equal bond NH or OH lengths, are considered 

to be very strong,
19

 and provide extra stabilisation in enzyme catalysis reactions,
20-24

 symmetric 

NX
+
N bonds are also expected to be strongly stabilised. The same is expected for the 

corresponding CX
+
C interaction; the symmetric ion with the halogen covalently centred in 

between the two carbons are expected to be more stable than an asymmetric ion with two unequal 

C-X bond lengths.  
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Figure 2. Symmetric and asymmetric binding interactions; (a) in [NXN]+ halonium complexes (X 

= Br or I) and (b) in three-membered ring halonium ions (X = Cl or Br). 
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2 ELECTROPOSITIVE HALOGENS 

 

The four elements fluorine (F), chlorine (Cl), bromine (Br) and iodine (I) are referred to as 

halogens, and represent a series of non-metal elements from Group 17 of the periodic table 

(Figure 3). Due to their electron configuration with seven electrons in the outermost shell, the 

halogens are electronegative and highly reactive elements, with fluorine being the most 

electronegative and most reactive of them all.  

 

Figure 3. The periodic table of elements, with the halogens of Group 17 being high-lighted in their common colour 

codes; yellow for fluorine, pale-green for chlorine, red-brown for bromine, and violet for iodine.  

 

The general trends when going downwards within the group in the periodic table are decreasing 

electronegativity and reactivity, and increasing melting and boiling point as well as increasing 

polarisability with increasing atom number. Because of their polarisable nature, the halogens can 

also be anisotropic, thus being capable of separating or accumulating both positive and negative 

charges in two distinct regions of the atom surface. The polarisation of the halogens is dependent 

on the atom size; the larger the atom, the larger the surface area to disperse electrons over, and 

the better charge separation ability. Thus, the large iodine atom is very polarisable, whereas the 

polarisability of the much smaller fluorine is very poor, almost non-existing.
25

 An increased 
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polarisability is also associated with stronger intermolecular attractive forces, which is the reason 

for that molecular, diatomic halogens represent all three states of matter at room temperature; the 

smallest F2 and Cl2 molecules being gases, the larger Br2 a liquid, and the largest I2 a solid. 

 

Although halogens are anisotropic and can act both as electron donors and acceptors, their 

properties have so far mostly been investigated in interactions and reactions in which they act as 

electronegative atoms, and anions. However, this thesis work focuses on interactions where the 

halogens are electropositive. This chapter describes halogens that carries either a full or a partial 

positive charge. 

 

2.1 HALONIUM IONS 

A halonium ion is a cation comprised of a halogen atom (X; where X = F, Cl, Br or I) that is 

bound to two organic residues, commonly two carbon atoms. The halogen carries the positive 

charge, and possesses an octet of electrons but bears a formal charge of +1. The halonium ions 

formed from F, Cl, Br and I are called fluoronium (F
+
), chloronium (Cl

+
), bromonium (Br

+
), and 

iodonium (I
+
), respectively. There are two main classes of halonium ions relating to their 

molecular structures: (1) open-chain halonium ions and (2) cyclic halonium ions. Diarylhalonium 

(ArX
+
Ar), alkylarylhalonium (RX

+
Ar), and dialkylhalonium (RX

+
R) ions belong to the 

first class of open-chain or acyclic structures.
 
In Figure 4, some general examples of halonium 

ions from the second class with cyclic structures are depicted. In this class, aromatic heterocyclic 

and bicyclic halonium ions are included.  

 

Figure 4. Cyclic halonium ions; three-membered ring ethylenehalonium, five-membered ring 

tetramethylenehalonium, six-membered ring pentamethylenehalonium, and heteroaromatic 

halophenium ions. 

 

Due to their positive charge, halonium ions are highly reactive, electrophilic species, which react 

readily with nucleophiles. In organic reactions in solution, they are often formed as short-lived, 

high-energy intermediates along the reaction pathways. Reaction mechanisms involving three-

membered-ring, also referred to as 1,2-bridged, halonium ions have been extensively studied.
14, 17, 

26-30
 In perhaps all introductory organic chemistry textbooks of today, the three-membered-ring 
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bromonium ion is described as the sole intermediate responsible for the anti-stereospecificity 

observed for the addition of molecular bromine to alkenes.
31-33

 Halonium ions are also important 

intermediates in electrophilic halocyclisation reactions; i.e., reactions that include both an 

electrophilic halogen addition to a carbon-carbon double bond and cyclisation by subsequent 

addition of an intramolecular nucleophile (e.g., alcohol, carboxylic acid, amine, amide, and 

carbon nucleophile) to the halonium ion formed. Very recently, a review that highlights such 

halonium-induced cyclisation reactions, describing the latest developments in the field and the 

various electrophilic halogen sources available for halonium ion formation was published.
34

 

Some halonium ions are stable, and exist as solid, crystalline salts.
35-36

 Being sources of 

electrophilic halogen, such solid halonium ions are of great importance as preparative reagents in 

organic synthesis.
35

  

 

In 1975, Olah summarised the properties, syntheses and chemistry of all classes of halonium ions 

discovered so far in the book “Halonium Ions”.
37

 Nearly a decade later, Koser published a 

detailed review on the same theme.
38

  

 

2.1.1 Brief Historical Aspects of Halonium Ions 

In 1894, the very first example of a halonium ion, a stable open-chain diaryliodonium (ArI
+
Ar) 

ion, was reported by Hartmann and Meyer.
39

 They described phenyl(p-iodophenyl)iodonium 

bisulphate (2) as the product generated from the autocondensation reaction of iodosylbenzene (1), 

a hypervalent organoiodine(III) species, in the presence of sulphuric acid (Scheme 1).  

 

Scheme 1. Formation of the first described diaryliodonium salt 2 via autocondensation of iodosylbenzene (1).39
 

 

Over the years, the interest for the synthesis of various stable diaryliodonium ions, with a variety 

of substituent patterns in the aromatic rings, has increased tremendously.
40-41

 The diaryliodonium 

salts are mainly of use as preparative reagents in organic synthesis. Recently, a review was 

published, giving an update of the developed syntheses of diaryliodonium salts, and their 

important applications as synthetic reagents in e.g., α-arylations of carbonyl compounds, 

arylation of heteroatom nucleophiles, and metal-catalyzed cross-coupling reactions.
35

 Due to their 

biological activities
40, 42

 and photochemical properties,
43-46

 diaryliodonium ions have also proved 

to be useful as antimicrobial agents and as cationic photoinitiators in polymerization reactions.  
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The corresponding diarylchloronium (ArCl
+
Ar), and diarylbromonium (ArBr

+
Ar), salts are 

uncommon.
38

 These ions are considerably less stable than the diaryliodonium ion, and thus their 

applications as synthetic reagents are limited. The first syntheses of acyclic diarylchloronium and 

diarylbromonium salts from thermal decomposition of phenyldiazonium salts in halobenzene 

were reported in the 1950s by Nesmeyanov and co-workers.
47

 

 

In 1937, Roberts and Kimball were the first to propose the today widely accepted organic 

reaction mechanism for electrophilic halogen addition to olefins, in which cyclic 

ethylenehalonium ions are the key intermediates.
48

 They suggested that either carbenium ion 

stabilised by bridging by its neighbouring -bromine atom or cyclic, three-membered-ring 

ethylenebromonium ion intermediates were accounted for the observed trans stereoselectivity in 

molecular bromine addition to ethylene (Figure 5). They based their argument on the fact that the 

initial intermediate in the bromination could not have an open-chain structure, since rapid rotation 

around the CC single bond would result in a product mixture of equal amounts of both cis and 

trans isomers.  

 

Figure 5. Intermediate structures in Br2 addition to alkenes proposed by Roberts and Kimball;48
 (a) 

carbenium ion stabilised by partial bridging by the neighbouring -bromine; (b) three-membered ring 

bromonium ion. 

 

Olah and Bollinger reported in 1967 the first preparation and direct spectroscopic observation by 

1
H NMR spectroscopy of cyclic tetramethylethylenehalonium ions 4. The ions were generated 

from the corresponding 2,3-dihalides 3, under stable ion conditions in SbF5-SO2 solution at -60 

C (Scheme 2).
49

 Their observation gave evidence for the cyclic halonium ion structure, thus 

providing the breakthrough for the generation and characterisation of a wide variety of three-

membered-ring ethylenehalonium ions, where X = Cl, Br, or I, under similar experimental 

conditions.  



8 

 

 

Scheme 2. Formation of three-membered-ring tetramethylethylenehalonium ions 4a-c.49 

 

Shortly thereafter, Olah and Peterson showed that five-membered-ring tetramethylenehalonium 

ions (6) (Cl
+
, Br

+
, and I

+
 ions) also could be prepared and observed by 

1
H NMR spectroscopy by 

using similar stable ion conditions (Scheme 3).
50

 Peterson and co-workers later described the 

preparation and spectroscopic observation of several tetramethylenehalonium ions and, in 

addition, of six-membered-ring pentamethylenehalonium ions (Br
+
 and I

+
 ions) in stable ion 

conditions.
51

 

 

Scheme 3. Formation of five-membered-ring tetramethylenehalonium ions 6a-c.50 

 

Olah and DeMember reported the first preparation and direct observation of open-chain 

dialkylhalonium (RX
+
R) ions in 1969.

52
 The ions were generated by treatment of excess 

haloalkane with antimony pentafluoride or with methyl hexafluoroantimonate in liquid SO2 

solution at low temperature; the former synthesis being limited to the generation of symmetric 

dialkylhalonium ions (Scheme 4).
52-53

 

 

Scheme 4. Formation of dialkylhalonium ions; (a) symmetric halonium ions with identical R-groups; 

(b) methylalkylhalonium ions.52 

 



9 

 

The very first successful isolation of dimethylhalonium fluoroantimonate salts 7 as fluffy white 

crystals, stable at room temperature only under dry conditions, was reported in 1970.
54

 These 

halonium salts were prepared by treatment of a slight excess of the corresponding halomethane 

with methyl hexafluoroantimonate in liquid SO2 at -40 C (Scheme 5).
54-55

 In addition to the 

dimethylhalonium fluoroantimonate salts, successful isolation of tetramethyleneiodonium and 

pentamethyleneiodonium fluoroantimonates has been reported.
51, 56

  

 

 

Scheme 5. Formation of solid dimethylhalonium salts.54 

 

The preparation and direct observation of open-chain alkylarylhalonium (RX
+
Ar) ions by 

NMR spectroscopy was first reported by Olah and Melby in 1972.
57

 A variety of 

alkylarylhalonium ions (9) were generated by reacting aryl bromides or iodides (8) with methyl 

or ethyl fluoroantimonate in SO2 at low temperature (Scheme 6).  

 

 

Scheme 6. Formation of alkylarylhalonium ions.57 

 

In general, all alkylhalonium ions prepared under stable ion conditions at low temperatures are 

highly electrophilic and very potent alkylating agents for nucleophiles, even the very weak 

ones.
55, 58

 In addition, these classes of ions are usually stable at low temperatures only, typically 

at -60 C or below. At higher temperatures, secondary reactions are common. Dialkylhalonium 

ions can be used to alkylate aromatic hydrocarbons in a Friedel-Craft fashion under stable ion 

conditions.
55

 They also act as cationic polymerisation initiators when alkylating alkenes.
55
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The first stable salts of three-membered-ring halonium ions were reported in 1969 and 1970 by 

Strating, Wieringa, and Wynberg.
59-60

 By reacting Br2 or Cl2 with the sterically hindered olefin 

adamantylideneadamantane (Ad=Ad), yellow and white solids were isolated, which they 

described as the bromonium and chloronium adamantylideneadamantane tribromide (Br3
-
,10a) 

and trichloride (Cl3
-
, 10b) salts, respectively. This was, however, not fully confirmed until 1994 

when Brown and co-workers succeeded in characterising the corresponding bromonium and 

iodonium triflate salts (10c,d) by X-ray crystallography (Figure 6).
36

 Later, Kochi and co-workers 

published the X-ray structure of the corresponding chloronium hexachloroantimonate salt 10e 

(Figure 6).
61

 

 

 

Figure 6. Crystalline halonium ions of adamantylideneadamantane.36, 59-61  

 

2.2 HALOGEN BONDING 

Halogen bonding, commonly referred to as X-bonding, is a general term describing short-range, 

noncovalent molecular interactions between electropositive halogens and neutral or anionic 

electron donating species with, for instance, N, O, S or P functionalities and π electrons 

representing the electron donors. Halogen bonds (X-bonds) are analogous to the classical 

hydrogen bonds (H-bonds), as both involve donor-acceptor interaction between a Lewis 

acid/Lewis base pair. In an X-bond, a polarised, electropositive halogen replaces the hydrogen of 

an equivalent H-bond as the Lewis acid in the Lewis acid/Lewis base pair. 

 

Since its discovery, the halogen bond interaction has been characterised by many ways, e.g., 

electron donation-acceptance charge-transfer interaction,
62-63

 dipolar dispersion interaction,
64

 and 

electrostatic interaction via a positive σ-hole.
65

 During the last two decades, the need to gain an 

understanding about what the interaction type that describes a halogen bond best is has grown. In 

January 2010, an IUPAC project entitled “Categorizing Halogen bonding and Other Noncovalent 

Interactions Involving Halogen Atoms” was initiated, the objective being to give a modern 
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definition of halogen bonding, and to include the definition in the IUPAC Gold Book.
66

 This 

project is about to come to an end within a short time. 

 

Intense research has resulted in applications of halogen bonding in a variety of research fields,
67

 

e.g., crystal engineering,
68-77

 supramolecular chemistry,
78-80

 polymer sciences,
81-82

 liquid 

crystals,
83-87

 conductive materials,
88-90

 and medicinal chemistry.
6-9, 91

 Hitherto, halogen bonds 

have been investigated mostly in the solid and gaseous
92-93

 phases, or with computational 

methods.
64-65, 94-96

 Lately, the halogen bond interactions have also been recognised in biological 

macromolecules, such as DNA.
97-100

 Only a handful of studies of halogen bonds have, so far, 

been carried out in the solution phase.
63, 101-111

 Recent investigations have indicated that NMR 

spectroscopy is applicable for the detection of halogen bonds in solution.
63, 102-103, 105-106, 108-111  

  

2.2.1 Halogen Bonding – A Historic Perspective 

Already in 1863, Guthrie observed the ability of I2 to form bonding adducts with ammonia.
112

 

Upon addition of molecular I2 to a saturated solution of ammonium nitrate a solid compound was 

formed, which rapidly decomposed into ammonia and I2 when exposed to air. From his 

observation, Guthrie concluded that the compound formed was NH3I2. This was the first 

evidence reported that halogen atoms are able to form binding interactions with electron donating 

species. In the very beginning of the 20
th

 century, Lachman observed that solutions of free I2 have 

different colours depending on the nature of the solvent; brown solutions for electron donating 

solvents (e.g., alcohols, ethers, ketones, carboxylic acids, nitriles, and nitrogen bases), and violet 

for non-basic, less polar solvents (e.g., hydrocarbons, chloro- and bromohydrocarbons, and 

carbon disulfide).
113

 The brown colour was interpreted as the formation of “molecule-solvent+I2” 

complexes. The complexation ability of I2 with electron donating solvents was further studied; 

spectrophotometric studies showed evident dissimilarities in absorption between brown and violet 

solutions, and different reactivities were observed, the brown solutions with complexed I2 being 

more reactive than violet solutions with free I2.
114

 Later, it was also observed that the position of 

absorption bands in the visible region for I2 in different solvents moved gradually from violet to 

brown coloured solutions.
115

 A large shift in absorption frequency maximum indicated a strong 

complexation, whereas a smaller shift indicated the formation of a weaker I2-solvent complex. 

For the red-violet coloured I2-benzene solution this absorption shift was only small, yet apparent, 

indicating a small degree of complexation. In 1949, the 1:1 complexation of I2 with aromatic π 

electron donating compounds was further revealed by Benesi and Hildebrand, who concluded 
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from evident UV-Vis spectra changes (shifted absorption band in the visible region and intense 

new band in the ultraviolet region) and colour changes, that I2 forms complexes spontaneously 

with aromatic hydrocarbons in non-polar solvents (CCl4 and n-heptane).
116

 They suggested the 

1:1 complexation was similar to an acid-base interaction. Keefer and Andrews showed from 

similar UV-Vis studies that Br2, Cl2 and ICl also are prone to form complexes with aromatic 

electron donors.
117-118

  

 

The above mentioned spectrophotometric observations together strongly contributed to 

Mulliken’s detailed theory of charge-transfer complexes, which describes the intermolecular 

interaction between electron donors and acceptors, the electrons of the donor (Lewis base; neutral 

π and n bases, and ionic base, e.g., unsaturated or aromatic hydrocarbons, NR3, OR2, X
-
, CN

-
, and 

OH
-
) being partially transferred to the acceptor (Lewis acid; X2, hydrogen halide).

119-121
 The 

charge-transfer complexes were classified as being either outer or inner complexes; in the outer, 

associative complexes the intermolecular interaction between the electron donor and acceptor 

was weak and had very little charge transfer, whereas in the inner, dissociative complexes the 

interaction was strong with an extensive degree of charge transfer, giving the complexes ionic 

character.
121

 

 

Under the same period Mulliken postulated his theory, in the 1950’s, Hassel and co-workers 

performed X-ray crystallographic studies of Br2 complexes with 1,4-dioxane (Figure 7).
122

 Their 

obtained structure revealed a linear arrangement of the O–Br and Br–Br bonds, and close contacts 

between the oxygen atoms of dioxane and bromine atoms. The O-Br distance (2.71 Å) in the 

crystal was significantly shorter than the sum of the van der Waals radii of oxygen and bromine 

(3.35 Å),
123

 but longer than the sum of their covalent radii (1.9 Å),
124 

thus indicating a strong 

secondary interaction in an electron donor-acceptor complex with the oxygen donating its 

electron lone pair to the bromine acceptor atom. Hassel and co-workers continued their 

crystallographic studies with additional halogen and electron-donating species.
125-126

  

 

 

Figure 7. Chains in the 1:1 adduct of 1,4-dioxane and bromine, the oxygen donating its lone pair to the 

bromine acceptor atom. Hassel’s first X-ray crystallographic evidence of a halogen bond.122 
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In 1969, Hassel was awarded the Nobel Prize in Chemistry for his outstanding discovery that 

halogens can act as electrophilic, electron acceptors, and self-assemble into highly, directionally 

organised crystalline charge-transfer complexes in presence of electron donors.
62, 127

 An early 

review about electron donor-acceptor complexes involving halogens as acceptors was provided 

by Bent in 1968.
128

 However, there were some disagreement regarding the actual charge transfer 

in these complexes, but the general consensus was that the complexes involved weak electrostatic 

interactions, including both dispersion and dipole forces.
129

 The use of the term “halogen bond” 

was not implemented until 1978 by Dumas and co-workers, who investigated complexes of SiCl4 

or SiBr4 with several electron donating organic solvents.
130

 Since then, Dumas’s term has largely 

replaced the earlier charge-transfer definition.  

 

In the next two decades, computational quantum mechanical and database studies of 

organohalogens and dihalogens with oxygen and nitrogen electron donors indicated that the 

major attraction forces of the halogen bond interaction is due to the electrostatic interaction 

between the polarisable halogen and the electron donor.
131-132

 Especially, advances in 

understanding the interaction nature of halogens were made through the analysis of a large 

number of crystal structures involving halogens with short intermolecular distances, less than the 

sum of the van der Waals radii of the atoms involved, available from the Cambridge Structural 

Database.
132

 It was interpreted that short intermolecular distances provided proof of a strong 

interaction between the atoms involved. For halogens covalently bound to carbons, an obvious 

trend was found. Close contacts with electron donors, such as nitrogens and oxygens, were highly 

directional with angles of 160-180 with the CX bond, whereas with electrophiles, such as 

metal cations, the angles were much smaller, between 90 and 120 (Figure 8). The studies 

revealed that the high directionality of the halogen bond is the result of an anisotropic distribution 

of electron density around the halogen nucleus.
131-132

 Along the covalent C-X bond, the outermost 

portion, the “head”, of the halogen interacts favourably with the negative electrostatic potential of 

the electron donor. Notable was also that amongst the different halogens, the tendency to form 

short halogen bond interactions is in the order I > Br > Cl >> F, which parallels the order of the 

polarisabilities of the atoms. The highly directional interactions observed were later confirmed by 

computational calculations by Politzer and co-workers.
65, 96

 The linearity of the halogen-electron 

donor interaction was explained to originate from the existence of a positive –hole, representing 

the tip of the halogen along the C-X bond. The –hole is described in more detail in Section 

2.2.3. 
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Figure 8. Directional interaction tendencies of a covalent C-X bond; (a) interaction angles with 

electrophilic species, (b) interaction angles with nucleophilic species.96, 131-132
 

 

Ever since the very beginning of the 21
th

 century, the term halogen bonding has been used to 

describe any noncovalent interaction that involves electropositive halogens as acceptors of 

electron density.
92, 133

  

 

2.2.2 General Definition of Halogen Bonding 

Metrangolo and Resnati and co-workers introduced the general scheme YXD, illustrated in 

Figure 9, for defining a halogen bond (X-bond).
18

 In this scheme, X represents the halogen 

(Lewis acid) that is covalently bound to Y and interacts non-covalently with D, the electron donor 

(Lewis base). The halogen X is most likely polarisable I, Br or Cl atoms, and only rarely an F 

atom. Y can be any atom (e.g., C, N or halogen), and D can be any electron donor of either 

neutral or anionic character. The attractive nature of the X-bond makes the XD distances 

shorter than the sum of the van der Waals radii of the participating atoms. The stronger the X-

bond is, the shorter the XD distance is. The YX distances are usually slightly elongated, and 

the YXD angle is close to 180 meaning the three atoms involved in the X-bond are organised 

in a linear fashion. The electropositive halogen (X) is sometimes referred to as an X-bond donor, 

whereas the electron donor (D) is called an X-bond acceptor. This nomenclature is opposite to the 

conventional classification of an electron donor-acceptor interaction.  
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Figure 9. General scheme describing the noncovalent halogen bond interaction, the halogen X 

representing an electrophilic Lewis acid and the electron donor D a nucleophilic Lewis base.18  

 

2.2.3 The σ-Hole 

The “σ-hole” interaction as the description of halogen bonding was first introduced by Clark et 

al..
65

 Computational calculations of electrostatic potentials of CF3X organohalogens, with X = F, 

Cl, Br and I, showed that there is a positive electrostatic potential on the outermost portion of the 

halogen’s surface, centered along the C-X axis and surrounded by negative electrostatic potential 

(Figure 10). This centered electropositive tip of the halogen is called the σ-hole. In Figure 10, a 

positive electrostatic potential is illustrated in red, and a negative in blue. The positive σ-hole can 

favourably interact non-covalently, with electronegative sites, such as the electron lone pairs of 

Lewis bases and π electrons of aromatic or other unsaturated system, in a linear (or close to 

linear) direction. Electronegative potentials (blue) are found along the lateral sides of the halogen, 

indicating that the interaction with electrophiles is preferred in a perpendicular direction against 

the C-X axis. The size of the positive σ-hole, i.e., the extent of the electron density depletion, 

depends on the polarisability and electronegativity of the halogen. Consequently, the more 

polarisable (I > Br > Cl >> F) and the less electronegative (I < Br < Cl < F) the halogen is, the 

stronger is the halogen bond. In Figure 10 is also illustrated that, in this particular case, the highly 

electronegative fluorine does not form a positive σ-hole, and that the less electronegative chlorine 

forms a very small σ-hole. 
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Figure 10. Calculated electrostatic potentials for CF3X organohalogens. The electropositive -hole 

(red) centred on the tip along the C-X bond. The size of the -hole is largest for the most polarisable 

halogens (I > Br > Cl >> F). Here no -hole is generated for F. Along the lateral sides of the C-X bond, 

the electrostatic potential is negative (blue).65 The picture is reproduced with permission from the 

publisher (ref. 65).  

 

For a general RX molecule, where R represents any group covalently attached to the halogen, 

the size of the σ-hole can be tuned.
96, 134

 By increasing the electron-withdrawing power of the R-

group, the magnitude of the positive electrostatic potential of the tip of the halogen also increases. 

In general, chlorine is rarely involved in halogen bonding unless the R-group is sufficiently 

electron-withdrawing. It has been argued that fluorine is unable to form halogen bonds due to its 

high electronegativity and low polarisability. Recent reports, however, give evidence that, when 

covalently linked with a particularly electron-withdrawing R-group, fluorine can be involved in 

halogen bonding.
25, 135-136

  

 

An explanation of the origin of the positive electrostatic potential representing the σ-hole on an 

orbital level has been given by Murray, Politzer and co-workers.
96, 137

 The valence shell of a 

halogen atom contains seven electrons, and in its spherical ground state the halogen has an 

electropositive potential in all directions, i.e., the charge of the positive nucleus dominates over 

the dispersed negative electrons. Each of the three valence p orbitals contains, on average, 5/3 

electrons. When the halogen forms a covalent bond, for instance along its z-axis, it gets a valence 

state with the electronic configuration s
2
px

2
py

2
pz

1
. In the z directions, along the RX axis, the 

electrostatic potential remains positive in all radial directions due to the half-filled pz orbital. 

However, along the x and y directions, the electrostatic potentials are negative on the halogen 

surface, due to the two doubly-occupied px and py orbitals. The unpaired electron of the pz orbital 

is the one participating in the RX covalent bond. The bond formation results in a charge 

redistribution, and a depletion of electron density in the outer lobe of the pz orbital. If this 

electron depletion is sufficient, a positive σ-hole is generated (Figure 11). 

 

This picture is protected by copyright, and is controlled by Springer Science and 

Business Media. 
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Figure 11. Distribution of five electrons over the three valence p orbitals of the halogen, px, py and pz. 

The C-X bond is formed along the z-axis. The electrostatic potential is positive along the z- axis due 

to the unpaired electron in the pz orbital. Along the x- and y-axes the electrostatic potentials are 

negative as both the px and py orbitals have paired electrons.96, 137  

 

2.2.4 Halogen Bonding versus Hydrogen Bonding 

The terms halogen bonding, halogen donor and acceptor arose to emphasise the similarities 

between halogen bonding and hydrogen bonding, which are since long time recognised.
5, 18, 62, 92, 

130
 Both halogen and hydrogen bonds are short-range, electrostatically-driven, noncovalent 

interactions between a covalently bound, electropositive halogen or hydrogen (Lewis acid) and an 

electron donor (Lewis base). The Lewis acid represents the X-bond or H-bond donor, and the 

Lewis base the X-bond or H-bond acceptor. Both halogen and hydrogen bonding are highly 

directional interactions. Their directions, however, differ slightly; halogen bonds are nearly linear 

with the RXD angle close to 180, whereas the hydrogen bonds are more likely to be non-

linear, sometimes the R’HD angles are considerably less than 180.
137

 Here R represents any 

atom covalently bound to X, R’ any atom (e.g., O, N, S) covalently bound to H, and D the 

electron donor. Moreover, halogen and hydrogen bonds are usually of comparable strengths, 

normally in the range 5-30 kJ/mol.
18 

However, the strength of halogen and hydrogen bonds can 

sometimes be much stronger, in extreme cases up to 180 kJ/mol (180 kJ/mol in I
-
II and 160 

kJ/mol in F
-
HF).

18-19, 138-139
 Due to the similarities in bond strength, halogen bonding often 

competes and interferes with hydrogen bonding. Competition between halogen and hydrogen 

bonds has been extensively studied by computational calculations,
140-142

 and experimentally in the 

gaseous phase
92

 and in supramolecular crystals.
133, 143-145

 Recently, competitive studies have also 

been explored in biomolecular recognition processes,
99, 146

 and in molecular conformational 

studies in solution.
147

 Competition between halogen and hydrogen bonding in solution was first 
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studied by Di Paolo and Sandorfy, and was suggested to play a role in the mechanism of action of 

volatile anaesthetics.
148

 The cooperation between halogen and hydrogen bonding interactions in 

molecular recognition studies of urea-based anion receptors in solution has been investigated by 

Tayler and co-workers.
102

 

 

As halogens also are of electronegative nature, they can themselves act as H-bond acceptors 

(Lewis bases), donating their electrons to the electropositive hydrogen of the H-bond donor. As 

described in Section 2.2.3 above, negative electrostatic potentials, originating from the electrons 

of the non-bonding orbitals, are found on the lateral sides of the halogen. The positive H-bond 

donor, therefore, interacts with the halogen in a nearly perpendicular direction to the RX axis, 

with typical RXH angles of 90-120. For halogens participating as electron donors in 

hydrogen bonding, the strength of the interaction increases with the electronegativity of the 

halogen (F > Cl > Br > I).  

 

2.3 [NXN]
+
 HALONIUM COMPLEXES 

Positive halogen(I) cations, X
+
, are not sufficiently stable to exist in the condensed phase. 

However, they can be stabilised by complexation with a coordinating base, commonly an 

aromatic nitrogen-containing heterocycle. In the 1930’s, Carlsohn made extensive studies of such 

stabilised iodine(I) salts, in which pyridine or its analogues were used as coordinating ligands.
149

 

He was first to suggest the existence of the Py2I
+
 cation, where iodine(I) is coordinated to two 

pyridines. From the early 1950s, the preparations of a wide range of iodine(I) and bromine(I) 

salts with pyridine, picoline or quinoline as the mono- or dicoordinating base (Figure 12), and 

with a variety of counter ions (e.g., benzoates, NO3
-
, ClO4

-
, and SbF6

-
) were described in the 

literature.
150-153

 In general, the preparation of these salts involved the reaction of the 

corresponding silver(I) salt with I2 or Br2 in a dry, mildly polar solvent (e.g., chloroform, 

dichloromethane), in the presence of the coordinating base. Common was also to start from the 

silver(I) salts already complexed with the coordinating base.
153

 During the reaction, solid silver 

halide was precipitated, and usually separated by filtration. The halogen(I) salt was often 

crystallised by addition of a non-polar solvent (e.g., diethyl ether, petroleum ether, and hexane). 

Anhydrous reaction conditions were very important as the halogen(I) salts were found to be water 

sensitive, and were generally hydrolysed rapidly on exposure to light and moist air.
153
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Figure 12. Examples of coordinating nitrogen bases in [NXN]+halonium complexes. 

 

In 1961, Hassel and Hope provided the first structural evidence for the existence of the Py2I
+
 

cation. From X-ray studies of the crystals formed between pyridine and I2, it was concluded that 

the crystals were comprised of the Py2I
+
 cation with I3

-
 as counter ion.

154
 It was also revealed that 

the two pyridine rings of Py2I
+
 were nearly coplanar, and that the linear NIN arrangement was 

centrosymmetric, with equal NI distances (2.16 Å). Vibrational spectroscopic studies (IR and 

Raman) of pyridine or picoline dicoordinated iodine(I) and bromine(I) salts with a variety of  

counterions (e.g., ClO4
-
 PF6

-
, BF4

-
, NO3

-
), both in crystal and in solution, also supported the 

linearity of the NXN bond, and the coplanar arrangement of the coordinating bases.
155-157

 

Moreover, based on the vibrational shift frequencies it was suggested that the NXN interaction 

of dicoordinated halogen(I) cations involved a large degree of charge transfer.
157

 Charge 

distribution studies of Py2I
+ 

and Py2Br
+
 salts with 

14
N NQR have been reported.

158-159
 The 

characteristics of Py2I
+ 

and Py2Br
+
 complexes and some of their analogues have also been 

investigated in solution by UV spectroscopy,
160

 vibrational spectroscopy (IR and Raman),
157, 161-

163
 and 

1
H and 

13
C NMR spectroscopy.

164-165
 

 

The crystal structures of several dicoordinated halogen(I) salts have been determined. Some of 

these [NXN]
+ 

halonium complexes whose crystal structure has been solved are depicted in 

Figure 13.
166-171

 Bis(quinuclidine)bromonium tetrafluoroborate is the only known bromine(I) 

complex that is coordinated between two aliphatic amines.
170

 All NXN bonds are in linear, or 

close to linear, arrangement, and the NX distances are generally longer than the sum of the 

covalent radii of the participating atoms (NI 2.1 Å; NBr 1.9 Å),
124

 but shorter than the sum 

of their van der Waals radii (NI 3.53 Å; NBr 3.40 Å).
123 

Interestingly, among the complexes 

shown in Figure 13, in the iodine(I) complexes the NIN bond is centrosymmetric with equal 

NI distances,
167-169

 whereas in the bromine(I) complexes the NBrN bond is unsymmetrical 

with one NBr distance being slightly longer than the other one.
166, 170-171
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Figure 13. [NXN]+ halonium complexes with known crystal structures.166-171  

 

The electronic structure of the NXN bond of the cations has long been discussed, and various 

suggestions have been made. In Figure 14, five alternatives (a-e) of the NXN bonding are 

illustrated.
170

  

 

Figure 14. Five possible electronic structures of the NXN bond (a-e).
170

  

 

In alternative a, the central X
+
 ion is electrostatically coordinated by the nitrogen lone pairs. 

Alternative b represents a hypervalent, three-centre-four-electron covalent bond with an 

expanded octet of 10 electrons surrounding the X atom, each nitrogen contributing with one 

single electron each to the X atom.
172

 Alternative c and d both represent unsymmetrical NXN 

bonds, where the X atom has a filled octet of electrons and is covalently bound to one of the 

nitrogens, and electrostatically coordinated to the lone pair of the other nitrogen. In alternative e, 

the position of the positive charge is not determined, i.e., the positive charge may be spread 

anywhere within the three centre NXN bond. If e is symmetric with equal NX distances, the 

interaction type might be considered as being comprised of two equal NX halogen bonds. 

Similarly, the unsymmetrical alternatives, c and d, might also be considered to involve one 

classic covalent NX bond, and one classic NX halogen bond. The NXN interactions have 

often been related to the similar bonding seen in the trihalide ions.
166, 170

 In addition, their 
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similarity with hydrogen bonds, where a central hydrogen is shared between two nitrogen donors, 

has also been noticed.
173

  

 

So far only [NXN]
+
 cations comprised of bromine(I) and iodine(I) are known. However, 

calculations by Sabin suggests that Py2F
+
 and Py2Cl

+
 cations might be stable enough to exist, and 

that, if they do, they are expected to have linear NXN bonds.
173

 In Figure 15, a suggested 

molecular orbital model describing the favoured orbital overlap for the three-centre-four electron 

NXN bond of the Py2X
+ 

cation is illustrated. The filled non-bonding orbital of the nitrogens 

overlap with one empty p orbital (pz in Figure 15) of Br
+
 or I

+
.
166

 For the NIN interaction, extra 

stabilisation may result from an efficient orbital overlap of a d orbital of I
+
 and the nitrogen p-

orbitals, which are involved in the aromatic system of the complexing pyridines.
163, 166

 

 

Figure 15. Molecular orbital model of the NXN interaction for the Py2X
+ cation. 

 

Some of the [NXN]
+
 halonium complexes are used as synthetic reagents, acting as sources of 

electrophilic halogens. Of these complexes, the most commonly used electrophilic halogenation 

agent is bis(pyridine)iodonium tetrafluoroborate, IPy2BF4 (Figure 13), also referred to as 

Barluenga’s reagent.
174

 This is a very stable, mild, and powerful reagent with applications in a 

wide range of synthetic transformations involving I
+
 transfer, such as iodination of unsaturated 

compounds (alkenes, alkynes and aromatics),
10, 175-176

 halocyclisation reactions, oxidation of 

alcohols,
177

 and glycosylation reactions.
178-179

 Bis(sym-collidine)iodonium (IDCP) and 

bromonium perchlorates ((coll)2BrClO4) (Figure 13),
180-181

 and, in particular, the corresponding 

hexafluorophosphates ((coll)2IPF6 and (coll)2BrPF6), are also often used as electrophilic 

halogenation agents, mainly in halocyclisation reactions.
12-13, 182-185

 Other examples are 

halodecarboxylation,
186

 halodephosphorylation,
187

 and oxidation reactions.
188
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3 SYMMETRIC AND ASYMMETRIC STRUCTURES 

 

For any molecular structure, i.e., neutral molecule, ion, or complex, that is comprised of 

symmetrically arranged atoms, but has the possibility to exist as either a static, single symmetric 

structure, or as two equal, interconverting tautomers, there is one fundamental question to 

answer: is the structure being considered symmetric or asymmetric? Asymmetric in this case 

means that the atoms of the molecular structure in question are arranged unsymmetrically, and 

should not be confused with the term asymmetric used to describe chiral molecular structures. 

Some examples of such structures that could either be represented as single symmetric or 

asymmetric structures with two interconverting tautomers are depicted in Figure 16; hydrogen 

phthalate (11), N,N’-diphenyl-6-aminofulvene-2-aldimine (12), tetramethylethylenebromonium 

ion (4b), triiodide anion (13), and bis(pyridine)bromonium perchlorate (14). The first two 

examples, 11 and 12, both represent structures with hydrogen bonding involved, the hydrogens 

being coordinated between two identical oxygen or nitrogen electron donors. In the symmetric 

structures (11-sym and 12-sym), the hydrogen involved in the hydrogen bond is centrally located 

with equal distance to each O or N electron donor. However, in the asymmetric structures (11-

asym and 12-asym), the hydrogen is always closer to one of the electron donors. Halonium ions 

are typically described as cyclic, three-membered ring structures. The third example illustrates 

that the symmetric 1,2-bridged bromonium ion 4b-sym might also be represented as an 

asymmetric structure (4b-asym) comprised of two equilibrating -bromocarbenium ions. The 

linear triiodide anion is an additional example of a structure that could be symmetric with the 

middle iodine centred (13-sym) or asymmetric with two unequal II distances (13-asym). The last 

example represents a [NBrN]
+
 halonium complex, which might have the halogen either 

centrosymmetrically arranged (14-sym) or closer to one of the nitrogens (14-asym). In solution, 

the two tautomers of the asymmetric structures (Figure 16b) are continuously interconverting in 

an equilibrium process. On the other hand, for asymmetric structures in crystals the 

unsymmetrical arrangement of the interacting atoms is more fixed, and one of the possible 

tautomeric forms may be dominating.  
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Figure 16. (a) Static, symmetric and (b) asymmetric structures of molecules and ions with 

symmetrically arranged atoms. Asymmetric structures in solution exist as two equilibrating 

tautomers. 

 

3.1 SYMMETRIES IN SOLUTION 

A method of classifying symmetric and asymmetric molecular structures in solution is based on 

the shape of the electrostatic energy potential well of the structure in question.
19

 Asymmetric 

systems with two equilibrating tautomers follow a double-well energy potential, with the two 

equivalent energy minima separated by a high or low energy barrier. Considering a hypothetic 

asymmetric NXN bond of a [NXN]
+ 

halonium complex (Chapter 2, Section 2.3), one factor 

determining the height of the energy barrier is the distance between the identical nitrogen electron 

donors. Thus, if the NN distance is large, the double-well has a high energy barrier, and if the 

nitrogens are close the energy barrier is low. The closer the nitrogens are to each other, the 
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stronger the bonding interaction between. When the nitrogens get close enough, the two energy 

minima merge into a single one, and the NXN bond gets symmetric, with the halogen in the 

middle. As a consequence, symmetric molecular structures have single-well energy potentials. In 

Figure 17, the three types of energy potential wells are pictured. For the illustration the 

asymmetric and symmetric NXN bonds are selected. To distinguish between the different 

types of energy potential wells of a certain molecular structure is not always easy. Particularly 

difficult is to differentiate between the double minima separated by a low energy barrier and a 

single minimum. However, usually, it is easy to distinguish an asymmetric high-barrier double 

well (Figure 17a) from the two other possible energy potential wells (Figure 17b, c), as the two 

equilibrating tautomers will give separate signals in an NMR spectrum. 

 

 

Figure 17. Electrostatic energy potential wells for an asymmetric (a, b) or symmetric (c) [NXN]+ 

halonium complex; (a) double-well with high energy barrier, (b) double-well with low energy barrier, 

and (c) single well.  

 

Equivalent tautomers, following a double-well energy potential, that are in a slow equilibrium on 

the NMR time-scale, give rise to two sets of sharp NMR signals, one for each tautomer.
189

 If the 

equilibrium rate constant K increases, the two sets of signals come closer together. For an even 

faster equilibrium, the signals get broadened, and eventually overlap and coalesce. Finally, if the 

rate increases further, only one set of sharp averaged signals can be observed for both tautomers. 

As a result, both single symmetric structures and asymmetric structures with fast equilibrating 

tautomers give rise to one set of NMR signals, even at low temperatures. Figure 18 illustrates the 

13
C NMR signals of one particular carbon pair for a symmetric structure and for the 

corresponding asymmetric structures with either slowly or rapidly equilibrating tautomers.  
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Figure 18. 
13C NMR signals for a matching carbon pair of (a) asymmetric structures with tautomers 

in slow equilibrium, and (b) symmetric or asymmetric structures with tautomers in fast equilibrium.  

 

A method used to distinguish symmetric structures from asymmetric ones with rapidly 

interconverting tautomers in solution is Isotopic Perturbation of Equilibrium (IPE) NMR.
190-192

 

This method has been applied successfully to symmetry evaluations of e.g., structures containing 

OHO and NHN hydrogen bonds,
193-197 

carbocations,
198-202

 halonium ions
203-204

 and metal 

chelate complexes.
205

 So far, only asymmetric hydrogen bonds have been revealed by IPE 

NMR.
193

 Symmetric structures have been reported for the some carbocations
198, 206

 and metal 

chelate complexes.
205

 Hitherto, IPE NMR has never been used to evaluate the symmetry of 

[NXN]
+ 

halonium complexes. The methodology is described in detail in Chapter 5.  

 

3.2 SYMMETRIES IN CRYSTALS 

The symmetries found in crystals seem to depend to a large extent on the molecular packing 

forces and on the counter ions, if present. Both symmetric and asymmetric structures of I3
-
 ions 

have been observed in solids.
128, 154, 207-209

 However, the corresponding Br3
-
 ions are often found 

to be asymmetric.
207

 X-ray studies of [NXN]
+ 

halonium complexes generally provide 

symmetric structures for the iodonium complexes,
167-169

 whereas the bromonium complexes often 

show unsymmetrically arranged NBrN bonds.
166, 170-171

 IR spectroscopic studies of the Py2Br
+
 

cation with various counter ions indicated an asymmetric structure of the cation complexed with 

the counter ion ClO4
- 
or Br3

-
, but a symmetric structure in complex with PF6

-
 as counter ion.

159
 

This illustrates the influence of the counter ion on the symmetry properties in crystals. Several 

examples of crystalline, symmetric structures involving hydrogen bonds are reported.
210-212 
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4 OBJECTIVES OF THIS THESIS 

 

The overall goal of this thesis work has been to determine the symmetries of two different types 

of symmetrically substituted halonium complexes in solution, i.e., investigate whether their 

molecular structure is symmetric or asymmetric. Both complex types are related to electrophilic 

halogenations; either as reagents or intermediates. A static, symmetric structure follows a single-

well energy potential, whereas an asymmetric structure is comprised of two tautomers in rapid 

equilibrium, thus following a double-well energy potential. Symmetric structures are assumed to 

involve stronger interactions than the corresponding asymmetric structures.
19

 The aims of each 

halonium complex type are described in the two sections below.  

 

4.1 BIS(PYRIDINE)-BASED [NXN]
+
 HALONIUM TRIFLATE COMPLEXES 

This part of the thesis focuses on the symmetry evaluation of the [N–X–N]
+
 halogen bond of 

three types of bis(pyridine)-based halonium triflate complexes. The three complexes studied are 

depicted in Figure 19; bis(pyridine)halonium triflate 16a,b, 1,2-bis(pyridine-2-

ylethynyl)benzenehalonium triflate 17a,b, and 1,2-bis((4-methylpyridine-2-yl)ethynyl)benzene-

halonium triflate 18a,b, respectively. Only the static, symmetric structures are showed. 

 

Figure 19. Static, symmetric bis(pyridine)-based [NXN]+ halonium triflate complexes. 

 

The specific aims of this study were the following:  

1. Synthesis of the bromonium and iodonium triflate complexes 16a,b-18a,b, and their 

corresponding mono-deuterated analogues 16a,b-d-18a,b-d (Figure 19). 

2. Evaluation of the symmetries of all [N–X–N]
+
 complexes (16a,b-18a,b) in solution by 

analysing mixtures of non-deuterated and mono-deuterated complexes for each complex 
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type, using the specific NMR spectroscopic method Isotopic Perturbation of Equilibrium 

(IPE).  

3. Evaluation of the structural influence on the symmetries by comparing the three different 

[N–X–N]
+
 complex types with each other, comparing the bromonium and iodonium 

complexes separately. The major structural difference between 16 and 17 is the distance 

between the two pyridine rings; in 16 the distance can be adjusted, but in 17 it is 

restricted. The structural difference between 17 and 18 is the presence of the electron 

donating 4-methyl substituents in the pyridine rings of 18. 

4. Investigation of the influence of solvents of different polarities on the symmetries of the 

[N–X–N]
+
 complexes by means of IPE NMR spectroscopy. 

5. Determination of how strongly the negatively charged triflate (CF3SO3
-
) counter ion 

coordinates to the [N–X–N]
+
 complexes.  

6. Evaluation and comparison of the experimentally determined symmetries with 

computational DFT calculations. 

 

4.2 ETHYLENEHALONIUM IONS 

This particular study addresses the symmetry of two classes of ethylenehalonium ions; 

ethylenehalonium ions 19a,b, and dimethylethylenehalonium ion 20a,b, respectively. Previously, 

it has been shown that both 19a,b and 20a,b are symmetric in solution under stable ion 

conditions. However, the technique previously used is not sensitive enough to differentiate 

between a static, symmetric and an asymmetric structure, originating from a rapid exchange of 

unsymmetrical tautomers faster than the NMR time-scale. The single symmetric structures of 

19a,b and 20a,b, respectively, are shown in Figure 20.  

 

 

Figure 20. Symmetric ethylenehalonium ions 

 

The specific aims of this investigation were the following:  

1. Synthesis of mono-deuterated precursors of the bromonium ions (19a-d and 20a-d) and 

the chloronium ions (19b-d and 20b-d) of both ethylenehalonium classes (Figure 20).  
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2. Preparation of mixtures of non-deuterated (19a,b and 20a,b) and mono-deuterated (19a,b-

d and 20a,b-d) halonium ions, each class separately, from their precursors under stable 

ion conditions at low temperature. 

3. Evaluation of the halonium ion symmetries by IPE NMR spectroscopy. 
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5 EQUILIBRIUM ISOTOPE EFFECTS 

 

Equilibrium isotope effects are observable when the equilibrium constant, K, of a reaction is 

different for compounds that differ in isotope composition. When the bond to an isotopic atom is 

broken or formed during the reaction course, the isotope effect is referred as primary. The isotope 

effect is termed secondary when the isotopic bond is neither broken nor formed. In this thesis, all 

isotope effects are secondary ones. 

 

 5.1 DEUTERIUM ISOTOPE EFFECTS ON 
13

C NMR SPECTRA 

Isotopic substitution of a protium (
1
H) with a deuterium (

2
H) in a certain molecule gives rise to 

significant changes of its NMR spectra.
191, 213-215

 Due to different Larmor frequencies of 

deuterium and proton (
2
H 61.4 MHz, 

1
H 400 MHz for a 400 MHz spectrometer),

216
 the signals of 

the replaced proton by deuterium are removed from the 
1
H NMR spectrum of the molecule. The 

magnetic properties of deuterium also affect the 
13

C NMR spectra to a large extent. The signal-to-

noise ratio is reduced due to several factors, e.g., 
13

C signal broadening resulting from the 

deuterium quadrupole moment, signal splittings from 
13

C-
2
H couplings, and reduced nuclear 

Overhauser enhancement as the result of proton removal. The most significant effects of 

deuterium substitution on the 
13

C NMR spectra are caused by the nucleus mass difference 

between the two hydrogen isotopes, 
1
H and 

2
H. The different masses results in changes of the 

vibrational and rotational frequencies within the molecule, which in turn changes the average 
13

C 

nuclear shieldings. The resulting chemical shift alterations caused by the nuclear motion changes 

are called isotope shifts.  

 

The Born-Oppenheimer approximation provides a theoretical description of isotopic substitution 

on molecular properties, and the origination of isotope shifts.
217 

According to this approximation, 

the electronic and nuclear motion of a molecule can be separated. The electronic energy depends 

on the nuclear charges, the nuclei location of the constituent atoms of the molecule, and on the 

number of the electrons present, but is independent of the masses of the nuclei. A function of the 

fixed position of the nuclei determines the electronic energy, and the resulting electronic energy 

surface is the same as the potential energy surface for the motion of the nuclei. Thus, the changes 

in nuclear average shielding and resulting isotope shifts are nuclear mass effects resulting from 

motion of nuclei of different masses (e.g., 
1
H and 

2
H isotopes) on the same potential energy 

surface. Different nuclear masses have different zero-point vibrational levels in a potential energy 
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diagram; the heavier nucleus having the lowest zero-point energy. In Figure 21, the potential 

energy well showing the zero-point energy levels for CH and CD stretching vibrations is 

illustrated. Due to the anharmonicity of the vibrations, the average CD bond is 0.003-0.005 Å 

shorter than the corresponding CH bond.
218

 This bond shortening is the main reason for the 

increased nuclear shielding effect observed upon deuterium substitution.  

 

 

Figure 21. Potential energy well showing zero-point energy levels for CH and CD 

vibrations. The anharmonic nature of the vibrations makes the CD bond shorter than the 

CH bond (rC-D < rC-H). 

 

5.1.1 Isotope Effects on NMR Chemical Shifts for Static Molecules 

The observed isotope shifts, referred to as 
n
obs, in a 

13
C NMR spectrum is the difference between 

chemical shifts of molecules with and without deuterium, in accordance with Equation 1, where n 

is the number of bonds between the reporter carbon and the deuterium. For static molecules the 

observed isotope shifts are called intrinsic isotope shifts, 
n
0. 

 

n
obs = C(D) - C(H)  (Equation 1) 

 

Notable from observations of isotope shifts are some general trends concerning the magnitudes 

and sign of the intrinsic isotope shift.
213-214

 Upon substitution with a heavier deuterium isotope 

the 
13

C NMR signal of the nearby carbon, one or two bonds away from the deuterium, changes 

shifts towards lower frequencies, and becomes more shielded. This results in negative 
1
obs and 

2
obs isotope shifts. The magnitude of the isotope shift is dependent on how distant the deuterium 
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is from the reporter 
13

C carbon. Hence, the one-bond isotope shifts are larger, in absolute values, 

than the two-bond or three-bond isotope shifts (
1
obs > 

2
obs). The magnitude of the isotope shift 

is also more or less proportional to the number of equivalent atoms that have been substituted by 

isotopes, i.e., the isotope shifts are additive (
1
obs for CD3  3 x 

1
obs for CD).

219
 The one-bond 

isotope shifts are approximately in the range of 0.3 ppm per deuterium, and the two-bond isotope 

shifts are roughly 0.1 ppm per deuterium, typically one-third to one-quarter of the one-bond 

shifts.
213

 Long-range isotope shifts, for carbons more than two bonds away from the deuterium 

are, if at all observable, generally very small but can be both positive and negative. However, 

they are also sensitive to secondary electronic factors related to the electronic transmission 

pathways within the molecule, such as π–delocalisation in aromatics or in highly conjugated 

systems.
220-221

 These electronic factors are responsible for the signs of the long-range isotope 

shifts. Also noteworthy to mention are some general characteristics of the one-bond isotope 

shifts.
214

 In general, the one-bond isotope shifts increase with increasing bond order and 

decreasing bond length between the reporter 
13

C carbon and the deuterium. In addition, the 

magnitudes of the one-bond isotope shifts often correlate with the chemical shift of the reporter 

13
C carbon; less shielded carbons normally have larger isotope shifts. Interactions between the 

CD bond and the lone pairs of O, S or N atoms have also shown to influence the magnitude and 

sign of the isotope shifts.
221-223

 Normally, the intrinsic isotope shifts are independent of 

temperature. However, changes in temperature might effect the nuclear geometry populations and 

average bond lengths by solution density and polarity changes.
224-227

 Thus, a small temperature-

dependence may be observable for intrinsic isotope effects.  

 

5.1.2 Isotope Effects on NMR Chemical Shifts for Equilibrating Molecules 

Equilibrium isotope effects are readily observed when isotopic substitution perturbs a degenerate 

equilibrium, inducing splitting of 
13

C NMR signals of formerly chemically equivalent nuclei. 

Commonly studied equilibrium processes for which the degeneracy is broken upon deuterium 

substitution are carbocation rearrangement, and tautomerisation reactions. When isotopic 

substitution disturbs equilibria processes that are not degenerate, the resulting equilibrium isotope 

are more difficult to distinguish from the intrinsic isotope shifts. However, as equilibrium isotope 

effects are highly temperature dependent, they are, thus, possible to detect by observing isotope 

shift changes upon temperature changes. The equilibrium isotope shift, 
n
eq, is generated from the 

difference between the observed isotope shift,
 n
obs, and the intrinsic isotope shift 

n
0, for the 

reporter carbon in question via Equation 2. 
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n
eq = 

n
obs - 

n
0      (Equation 2) 

  

In addition, the equilibrium isotope shift can be obtained from Equation 3, which requires 

estimates of the equilibrium constant, K, and the chemical shift difference, , between the 

individual tautomeric forms in a “frozen-out” dynamic process. The magnitude and sign of 

equilibrium isotope shifts varies. In principle, the larger constants and chemical shift differences, 

the larger equilibrium isotope shifts are provided. The temperature dependence of 
n
eq relates to 

the temperature dependence of equilibrium rate constant, K, in accordance with the 

thermodynamic Equation 4, where G is Gibbs energy in J/mol, R is the gas constant (8.314 

J/mol·K), and T is the temperature in Kelvin.  

 

         
     

      
                                                  

 

lnK  
    

RT
                                              Equation 4  

 

For a rapid equilibrium process between equal tautomers of cations (where K = 1), isotopic 

substitution changes the value of the equilibrium rate constant and makes one of the directions of 

the equilibrium become preferential over the other (K > 1 for the favoured direction). The 

favoured direction is determined by the shape of the potential energy curves and the zero-point 

energy differences of the possible CH and CD vibrational levels of the two tautomers or 

cationic species of the equilibrium. As a rule of thumb, the heavier isotope prefers to make the 

stiffer bonds, preferring to accumulate in the potential energy minimum with the larger stretching 

and bending force constant, and the higher zero-point energy.
228-229

 In general, deuterium prefers 

sp
3
-hybridised centres to sp

2
-centres, mainly because of the difference in the frequency of the 

out-of-plane bending vibrations.
191

 On the same grounds, if there is a choice, deuteromethyl 

groups tend to be remote from the positively charged centre in carbocations.
191, 228

 The reason for 

the one direction of the equilibrium being favoured over the other is illustrated in Figure 22.
191

 

The zero-point energy difference for the rearranging cation pair is lowest when the C-D carbon is 

sp
3
-hybridised, and the C-H carbon sp

2
-hybridised. 
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Figure 22. In the equilibrium a  b, H and D have two different bonding situations (sp3 and sp2). D 

accumulates in the position where the force constant, vibrational energy, and zero point energy are 

larger, providing the smallest difference in zero point energy (ZPE) between CH and CD. The 

equilibrium is driven to the right, where the hybridisations are sp3 for CD and sp2 for CH.191  

 

It has been shown that deuterium introduction in amines increases their basicity.
193, 230 

Thus, for 

the proton-transfer equilibrium between the pyridinium-d5 cation and pyridine depicted in 

Scheme 7, the reaction is driven to the left.
231

 

 

Scheme 7. Proton transfer between pyridinium-d5 cation and pyridine. The reaction is driven to the 

left as pyridine-d5 is more basic than non-deuterated pyridine.231
  

 

5.2 ISOTOPIC PERTURBATION OF EQUILIBRIUM NMR SPECTROSCOPY 

The NMR spectroscopic method Isotopic Perturbation of Equilibrium (IPE) is useful for the 

distinguishment between a single symmetric structure following a single-well energy potential, 

and equal, asymmetric structures in a rapid degenerate equilibrium following a double-well 

energy potential (Figure 17, Chapter 3, Section 3.1). As the name implies, the method is based on 

isotopic substitution, and the generation of equilibrium isotope effects to disturb a possible 

degenerate equilibrium process, and alter dynamically equivalent NMR chemical shifts. Saunders 
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and Kates developed IPE NMR to determine the presence of rapid equilibria in carbocations for 

which the symmetry was in doubt.
192, 206, 232

 From the observed isotope shifts, 
n
obs, in the 

13
C 

NMR spectra of deuterated cyclohexyl and cyclopentyl cations it was concluded that both ions 

were best represented as single symmetric, delocalised ions, showing intrinsic isotope shifts only, 

and no obvious temperature dependence as observed for analogous, fast equilibrating cations.
192, 

232
 Ever since the first IPE NMR symmetry investigations, the method has been applied to a wide 

range of other chemical systems for which the symmetry has been in doubt.
191

 Examples of 

molecular systems whose symmetry has been evaluated by IPE NMR include carbocations,
198, 201-

202, 206, 232-233 
conformational equilibria,

234-235 
OHO and NHN hydrogen bonds in proton 

tautomeric systems,
193-197, 236-238

 chelating symmetry of transition-metal complexes,
205, 239 

symmetry of trithiapentalenes and analogous systems,
240

 and 1,2-bridged halonium ions.
203 

 

The general requirements of IPE NMR are the analysis of mixtures of non-deuterated and 

deuterated molecules by 
13

C NMR spectroscopy, and the measurements of isotope shifts, 
n
obs, 

for the reporter carbons (Equation 1). An asymmetric introduction of deuterium isotopes is 

necessary for observation of equilibrium isotope effects. Commonly, the isotope shifts are 

measured over a broad temperature range to determine whether there is any temperature 

dependent equilibrium process taking place. The observation of large isotope shifts, often positive 

but not always, that are highly temperature dependent, is an indication of an asymmetric system, 

in rapid equilibrium; the isotope shifts observed are resulting from both intrinsic and equilibrium 

isotope effects (
n
obs = 

n
0 + 

n
eq). In general, for symmetric structures the isotope shifts are 

small, negative, and attenuate as the number of intervening bonds to the deuterium increase; only 

intrinsic isotope shifts are observed (
n
obs = 

n
0). Noteworthy to mention is that if the chemical 

shifts difference (, Equation 3) between the reporter carbons of the two tautomeric forms in a 

“frozen out” equilibrium is small, the equilibrium isotope shifts will also be small. Consequently, 

the observed isotope shifts obtained from an asymmetric, equilibrating system might be very 

similar in both magnitude and sign to the isotope shifts expected for a corresponding single 

symmetric system.  

 

The IPE NMR method has been chosen for evaluation of the symmetry of [N–X–N]
+
 halogen 

bonds of bis(pyridine)-based halonium complexes, and of 1,2-bridged ethtylenehalonium ions 

described in this thesis (Chapter 6 and 7). 
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6 BIS(PYRIDINE)-BASED HALONIUM COMPLEXES 

(PAPER I & II) 

 

6.1 BISPYRIDINE HALONIUM COMPLEXES - INTRODUCTION  

The existence of solid salts of the bis(pyridine)iodine(I), Py2I
+
, and bis(pyridine)bromine(I), 

Py2Br
+
, cations has been known for a considerable time.

149-150, 152-153
 In the 1950’s, UV-Vis 

spectroscopical studies of iodine or iodinehalides showed significant spectral changes upon their 

addition to pyridine, which were interpreted as the formation of charge-transfer complexes.
241-242 

In addition, conductivity studies indicated formation of ions.
243

 In 1957, Popov and Plaum were 

the first to suggest that Py2I
+ 

was possibly a cationic species in solution.
244

 Since then, the 

identity of Py2I
+ 

has been confirmed by vibrational spectroscopy (IR and Raman) in a variety of 

solvents.
155-157, 162

 It is now widely accepted that the ionisation of pyridine-halogen complexes in 

solution occurs via the equilibrium 2(Py + IX)  2Py*IX  Py2I
+ 

+ IX2
- 
(X = I, Br or Cl).

161 

Polar solvents and/or a decrease in temperature, due to increased dipolar ordering upon cooling, 

have shown to favour the ionisation.
161-162

 Haque and Wood investigated Py2I
+
 and Py2Br

+
 

cations with various negatively charged counter ions (BF4
-
, PF6

-
, and ClO4

-
) in solution by IR and 

Raman spectroscopy.
157

 From the vibrational spectra it was concluded that the NX interactions 

of the cations were strong, and that the NIN and NBrN interactions were linear, and had a 

centrosymmetric arrangement. It was also proposed that the coplanar arrangement of the pyridine 

rings found in the crystal for Py2I
+ 

cation remains in solution.
157

 Contemporary computational 

calculations implied that, the halogen atom oscillates between the two nitrogens following a flat, 

single-well energy potential.
245

 Despite the preliminary indications summarised above, the 

symmetry of the NXN interaction of Py2X
+ 

cations
 
in solution has still not yet been studied in 

detail. Computational prediction proposes symmetric structures; however, no clear experimental 

evidence has yet been given. 

 

There are a few reported applications of the solid [NXN]
+ 

complexes 16a and 16b reported. 

The [NBrN]
+
 complex 16a has previously been used as an electrophilic bromine source in 

mechanistic studies of Br
+
 transfer to olefinic acceptors for halocyclisation reactions, and alkene 

bromination (Figure 23).
171

 Very few examples of the use of the [NIN]
+
 complex 16b as a 

synthetic reagent and a source of electrophilic iodine are available. One such example is 

illustrated in Figure 24 below.
246

 However, the tetrafluoroborate analogue (IPy2BF4) of 16b, often 
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referred to as Barluenga’s reagent, is a common electrophilic reagent, used in a wide range of 

organic synthesis applications involving I
+
 transfers (Chapter 2, Section 2.3).

10, 174-175, 177
 
 

 

 

Figure 23. Halocyclisation of 4-penten-1-ol with [NBrN]+ complex 16a as reagent.171 

 

 

Figure 24. Azido-iodination reaction of an alkene with [NIN]+ complex 16b and TMSN3 as reagents.246 

 

An X-ray crystal structure of the [NBrN]
+
 complex 16a reveals a close to linear (178.4) but 

asymmetric NBrN arrangement, the two N-Br distances being slightly unequal (2.075 and 

2.107 Å), and the two pyridine rings slightly nonplanar.
171

 No crystal structure of the 

corresponding [NIN]
+
 complex 16b has so far been reported. However, X-ray studies of 

crystalline Py2I
+ 

I3
-
 and Barluenga’s reagent Py2I

+ 
BF4

-
 have been solved.

154, 247
 Both [NIN]

+
 

complexes were found to be nearly planar and symmetric, with linear NIN arrangement, and 

equal N-I distances (2.164 Å for Py2I
+ 

I3
-
 and 2.259 Å for Py2I

+ 
BF4

-
 ). 

 

6.2 1,2-BIS(PYRIDIN-2-YLETHYNYL)BENZENE-HALONIUM COMPLEXES  

         - INTRODUCTION 

The ability of 1,2-bis(pyridinyl-2-ethynyl)benzene 21 to act as a coordinating ligand of metals is 

widely recognised, and several complexes have been characterised by X-ray crystallography. 

Examples of silver(I) (23),
248

 palladium(II) (24 and 25),
248-250

 Cu(I) (26)
251

 and Cu(II) (27)
252

 

complexes with one or two molecules of the coordinating dipyridyl ligand 21 are depicted in 

Figure 25. In all complexes shown, the metal is centrally located between the two pyridine 

nitrogens with a close to linear NMN angle (M = metal). Introduction of electron donating 

methyl groups in the para-positions of ligand 21 proved to have a stabilising effect on 

palladium(II) chloride complexes in terms of reactivity. Complex 24b with the para-dimethylated 

22 as ligand was therefore considered to be more stable than 24a.
249
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Figure 25. Metal complexes with 1,2- bis(pyridinyl-2-ethynyl)benzenes (21 and 22) as chelating ligands.248-252 

 

Based on the chelating properties of ligand 21, and on the N-Br distances reported for related 

[NBrN]
+ 

bromonium
 
complexes,

166, 170
 Brown and co-workers assumed that an electropositive 

bromine(I) would coordinate perfectly between the pyridines of 21. Their assumption proved to 

be right, and they successfully prepared the bromonium triflate complex 17a, which was utilized 

in mechanistic studies of Br
+
 transfer to a variety of olefinic acceptors (e.g., 4-pentenoic acid, 

cyclohexene, and Ad=Ad) by UV or NMR spectroscopy (Figure 26).
171

 Attempts to obtain the 

crystal structure of 17a however failed.
171
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Figure 26. Halolactonisation of 4-pentenoic acid with [NBrN]+ complex 17a as reagent.171 

 

6.3 SYMMETRY INVESTIGATION –DESCRIPTION  

The main goal of this particular study was to determine the symmetry of the [NIN]
+
 and 

[NBrN]
+
 bonding interactions in the triflate complexes 16a,b, 17a,b and 18a,b in solution. In a 

symmetric arrangement, the halogen is centrally located with equal distances to both nitrogens 

(Figure 27a), whereas in an asymmetric arrangement the halogen is jumping between the 

nitrogens in a fast equilibrium, always being closer to one of the two nitrogens (Figure 27b). A 

single symmetric structure is represented by a single-well energy potential, whereas asymmetric, 

rapidly equilibrating structures are represented by a double-well energy potential (Chapter 3, 

Section 3.1). If the equilibrium is degenerate, single symmetric structures and fast interconverting 

tautomers are indistinguishable on the NMR time-scale as both give one single set of signals in 

their corresponding NMR spectra. All [NXN]
+
 complexes included in this thesis were 

observed to be single symmetric or rapidly equilibrating asymmetric structures in a degenerate 

equilibrium as indicated by single set of signals in their NMR spectra. 

 

 

Figure 27. (a) Symmetric and (b) asymmetric [NXN]+ bonding interaction illustrated for 

[NXN]+ halonium triflate complexes 16a,b. 

 

The symmetry of the [NXN]
+ 

complexes is, most likely, to be influenced by the chemical 

environment surrounding them. Polar solvents might benefit the asymmetric N
+
X

.....
N 

arrangement, which is more polar due to the concentration of positive charge on one of the 

nitrogens than the corresponding symmetric N
....

X
+....

N arrangement having the positive charge 
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more delocalised. For the same reason, symmetric N
....

X
+....

N geometry might be preferred in non-

polar solvents. The counter ion might also influence the symmetry of the [NXN]
+ 

complexes. 

Depending on its coordination and ion pairing ability, the counter ion might induce either 

symmetric or asymmetric arrangement of the NXN bonding interaction. In addition, the 

distance between the two electron donating pyridine nitrogens might be crucial for the symmetry 

of the [NXN]
+ 

complexes. In the bispyridine complexes 16a,b the NN distance can be varied, 

and adjusted to the most favourable interaction. On the other hand, for the [NXN]
+ 

complexes 

of the 1,2-bis(pyridinyl-2-ethynyl)benzene ligands, 17a,b and 18a,b, respectively, the NN 

distance is restrained. Reasonable to assume, the formation of symmetric NXN bonding 

interaction would, therefore, be somewhat more difficult for the two latter complexes 17a,b and 

18a,b with their NN distances being restricted. Symmetric hydrogen bonds are suggested to be 

more stable and stronger than their asymmetric analogues.
19, 253

 Originating from their proposed 

similarity,
254

 symmetric NXN bonds may be stronger than the corresponding asymmetric 

bonds too. The strength of the NXN interaction is assumed to be related to the electron density 

on the nitrogens. Therefore, comparison of the nitrogen electron densities between the different 

[NXN]
+ 

complexes might provide insights in the required characteristics of a molecular 

structure to give a strong NXN bonding interaction.  

 

The fact that the halogen of the [NXN]
+ 

cations is located between two identical electron 

donors, and with the pyridine rings being coordinated in a linear fashion, suggests that the 

[NXN]
+
 interaction may involve halogen bonding, consisting of either two identical NX 

halogen bonds, or one classic covalent NX bond, and one classic NX halogen bond. The 

former category of halogen bonding represents a symmetric interaction and the latter an 

asymmetric interaction. The symmetry of hydrogen bonds for similar molecular systems 

comprised of identical electron donors has been extensively studied in solution with IPE NMR 

spectroscopy.
193 

Consequently, as halogen bonds are analogous to hydrogen bonds,
5, 18

 the IPE 

NMR spectroscopic method, was chosen for the symmetry evaluation of the [NBrN]
+ 

complexes 16a-18a and the [NIN]
+ 

complexes 16b-18b, respectively. Since the IPE NMR 

technique relies on the observation of isotope shifts, deuterated and non-deuterated isotopologues 

of all [NXN]
+
 halonium complexes (16a,b-18a,b) were required. To observe a large isotope 

effect, it is preferable to introduce a deuterium substituent close to the site of the interaction. 

Deuteration increases the electron density as the shorter CD bond has shown to be more electron 



40 

 

donating than a CH bond.
230, 255

 In aliphatic amines, Perrin and co-workers have observed that 

deuteration synperiplanar to the electron lone pair of the nitrogen increases its basicity.
230, 255

 
 
The 

basicity of the aromatic nitrogen of pyridine is, also, expected to be increased upon such 

deuteration. Hence, by introducing a deuterium on the carbon closest to the nitrogen of one of the 

pyridine rings, the basicity of this nitrogen is expected to increase.
230, 256

 This will perturb any 

equilibrium processes the nitrogens may be involved in. The non-deuterated and mono-deuterated 

[NXN]
+
 complex isotopologue pair (16a,b-18a,b) included in the IPE NMR symmetry studies 

are depicted in Figure 28.  

 

Figure 28. Non-deuterated [NXN]+ complexes (16a,b-18a,b), and mono-deuterated [NXN]+ 

complexes (16a,b-d-18a,b-d), 

 

The corresponding non-deuterated and mono-deuterated [NHN]
+ 

complexes (27a,b-30a,b) 

were included as references of asymmetric rapid equilibrating systems (Figure 29a). Included 

were also non-deuterated and mono-deuterated free pyridine (31), and the free chelating ligands 

21 and 22, respectively, as references for static symmetric structures (Figure 29b). The references 

were included to make the symmetry evaluations more reliable as isotope effects in themselves 

may be difficult to interpret just from the magnitude or temperature dependence, especially, if the 

13
C chemical shift difference (, Equation 3) between the two tautomeric forms (NX

+ 
and free 

N:) is small. 
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Figure 29. (a) Non-deuterated and mono-deuterated asymmetric reference [NHN]+ complexes 27a,b-

d-30a,b-d), and (b) symmetric, references (31, 21, 22 and 31-d, 21-d, 22-d). 

 

To investigate the effect of environment polarity, the symmetries for complexes 16a,b-18a,b and 

their references were explored in two aprotic solvents; CD2Cl2 (dichloromethane  = 8.9)
257 

and 

CD3CN (acetonitrile  = 37.5),
257

 respectively. As the counter ion was shown to influence the 

symmetry of [NXN]
+
 complexes in crystals, it might also be of importance for the symmetry 

of [NXN]
+
 complexes in solution.

159
 Therefore, included in this study were also the 

investigations of the ion pairing ability of the anionic triflate (CF3SO3
-
) counter ion by 

1
H and 

19
F 

diffusion NMR spectroscopy for the [NXN]
+
 complexes 16a,b and 17a,b, and their 

asymmetric references [NHN]
+
 complexes 27 and 29.

 

 

As mentioned above, the electron density around the nitrogens of the [NXN]
+
 bonding 

interaction might affect the interaction strength. To evaluate the influence of the differences in 

electron density distribution of the pyridine rings on the symmetry of [NXN]
+
 complexes, 

15
N 

NMR chemical shifts were determined by 
1
H-

15
N-HMBC experiments. For the same reason, the 
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13
C NMR chemical shifts for the pyridine carbons of the [NXN]

+
 complexes and their 

references were also compared.  

 

6.4 SYNTHESIS OF [NXN]
+
 COMPLEXES AND THEIR REFERENCES 

6.4.1 [NXN]
+
 Complexes and Symmetric References 

The syntheses of non-deuterated and mono-deuterated [NXN]
+ 

complexes, 16a,b and 16a,b-d, 

are depicted in Scheme 8. Deuterium was introduced at the C2-position of one of the pyridine 

rings. As the IPE NMR method is based upon the analysis of mixtures of non-deuterated and 

deuterated molecules, it was advantageous to prepare the [NXN]
+
 complex 16a,b as 

isotopologue mixtures. A synthetic protocol described by Brown and co-workers for the synthesis 

of 16a was followed for the halogenations reactions.
171

 Approximately equal amounts of pyridine 

(31) and 2-deuteropyridine (31-d) were mixed together with silver triflate, to first generate the 

corresponding silver(I) complexes. Subsequent addition of Br2 or I2 resulted in precipitation of 

silver halide (AgBr or AgI), and formation of the isotopologue mixture of 16a, 16a-d, and 16a-d2, 

or 16b, 16b-d, and 16b-d2 in high yields. 2-Deuteropyridine (31-d) was either bought from a 

commercial supplier, or synthesised from 2-bromopyridine (32) using two portions of excess Zn 

dust in D2SO4/D2O at 90 °C.
258

 

 

Scheme 8. Synthesis of isotopologue mixtures of [NXN]+ complexes 16a and 16b. 

 

The [NXN]
+
 complexes 17a,b and 18a,b and their mono-deuterated analogues 17a,b-d and 

18a,b-d were synthesised in accordance with the routes depicted in Scheme 9 and Scheme 10, 

respectively. Deuterium was introduced selectively at the C6’-position, next to the nitrogen 
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interaction site, to cause as large isotope effect as possible. For the syntheses of [NXN]
+
 

complexes 17a,b and 18a,b a modified version of the protocol previously reported by the group 

of Brown was followed.
171

 With this new procedure (Scheme 9), the Sonogashira coupling 

reaction
259-260

 of 1,2-diiodobenzene (33) with ethynylpyridine (34) or 2-ethynyl-4-methylpyridine 

(35) was carried out under microwave-assisted conditions,
261

 which shortened the reaction time 

for the generation of di-coupled 21 and 22 considerably. Under microwave heating at 120 C, 9-

10 minutes only were sufficient for the reactions to go to completion, i.e., much shorter time than 

the 8 hours’ reaction time reported by Brown and co-workers.
171

 Both di-coupled 21 and 22 were 

isolated in high yields. 2-Ethynyl-4-methylpyridine (35) was synthesised in two steps from 2-

chloro-4-methylpyridine (36) via microwave-assisted Sonogashira coupling with TMS-acetylene, 

followed by TMS-deprotection with potassium fluoride.
262

 Treatment of 21 or 22 with silver 

triflate, furnished their corresponding silver(I) complexes, which directly upon formation were 

reacted with either Br2 or I2 to generate the [NXN]
+
 complexes 17a,b or 18a,b in moderate 

yields. 

 

 

Scheme 9. Reagents and conditions: (i) TMS-acetylene, Pd(PPh3)2Cl2, CuI, PPh3, Et2NH, DMF, MW, 

120 C, 27 min;(ii) KF, MeOH, rt, 16 h; (iii) 2,3 equiv. 34 or 35, Pd(PPh3)2Cl2, CuI, Et2NH, DMF, 

MW, 120 C, 9-10 min;(iv) Br2 or I2, AgOTf, dry CH2Cl2, rt, N2, 15 min. 

 

The synthetic protocol for the generation of the mono-deuterated [N-X-N]
+
 analogues 17a,b-d 

and 18a,b-d is shown in Scheme 10. The synthesis was initiated by a microwave-assisted 

Sonogashira coupling reaction with 1,2-diiodobenzene (33) and ethynylpyridine (34) or 2-

ethynyl-4-methylpyridine (35). To produce the mono-coupled products (37 or 38) in adequate 

yields, 33 was added in excess and microwave irradiation was allowed to proceed for 4 minutes 
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only. Despite the short reaction time, in addition to the mono-coupled products (37 or 38), the 

corresponding di-coupled products 21 and 22 were isolated in 44 % and 27% yield, respectively. 

 

 

Scheme 10. Reagents and conditions: (i) 1. n-BuLi-LiDMAE, dry n-hexane, -78 C, N2; 2. MeOD,     

-78 C – 0 C, 30 min; (ii) TMS-acetylene, Pd(PPh3)2Cl2, CuI, PPh3, Et2NH, DMF, MW, 120 C, 27 

min; (iii) KF, MeOH, rt, 16 h; (iv) 0.7 equiv. 34 or 35, Pd(PPh3)2Cl2, CuI, Et2NH, DMF, MW, 120 C, 

4 min; (v) 1.5 equiv. 34-d or 35-d, Pd(PPh3)2Cl2, CuI, PPh3, Et2NH, DMF, MW, 120 C, 13 min; (vi) 

Br2 or I2, AgOTf, dry CH2Cl2, rt, N2, 15 min. 

 

For regioselective introduction of deuterium, n-BuLi-LiDMAE mediated lithiation at the C6 

position of 2-chloropyridine (39) was chosen.
263-264

 Gros and co-workers explained the selectivity 

of the deuteration by formation of aggregates (40) between n-BuLi-LiDMAE and 39 as illustrated 

in Scheme 11. Chelation of two lithiums by the pyridine nitrogen, the chlorine at the C2 position, 

and the oxygen and nitrogen of DMAE promotes selective H6 proton abstraction by n-BuLi and 

generation of the stabilized intermediate 41. Subsequent introduction of an electrophilic species, 

MeOD in this case, directs the electrophilic addition towards the C6 carbon. In absence of 

DMAE, the ortho-directing chlorine would direct the lithiation towards the C3 position, thus 

making the electrophilic addition to the C3 carbon to be the most favoured. This would result in a 

deuterium three bonds away from the nitrogen instead of two bonds away at C6, which is 

presumably more beneficial for the planned IPE NMR studies as the largest isotope effects are 

expected close to the main interaction site.  
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Scheme 11. BuLi-LiDMAE-mediated regioselective deuteration of 2-chloropyridine.263-264  

 

Using the procedure for the deuteration described above, 2-chloro-6-deuteropyridine (39-d) and 

its 4-methyl analogue 36-d were both afforded with high regioselectivity; > 95% deuterium 

substitution in accordance with 
1
H NMR spectra of the crude products. To prevent deuterium 

substitution at the 4-methyl group of 36, addition of MeOD at low temperature (-78 C) was 

necessary. Due to higher volatility, 39-d was isolated in much lower yield than 36-d (35% versus 

75%). Mono-deuterated 34-d and 35-d were afforded from a two-step reaction sequence, starting 

with a microwave-assisted Sonogashira coupling reaction between 39-d or 36-d and TMS-

acetylene, followed by TMS-deprotection with potassium fluoride. Originating from the volatility 

of the products careful isolation was necessary. A second Sonogashira coupling reaction using 

microwave heating of 34-d or 35-d and mono-coupled 37 or 38, furnished the desired mono-

deuterated 21-d and 22-d in moderate yields, 68% and 59%, respectively. The [NXN]
+
 

complexes 17a,b-d and 18a,b-d were prepared in moderate to high yields, as described above, 

from their corresponding silver(I) triflate complexes, which were reacted with either Br2 or I2.  

 

6.4.2 Asymmetric [NHN]
+
 Complex References 

The preparation of isotopologue mixtures of the asymmetric reference [NHN]
+
 complexes 

27/27-d and 28/28-d (Figure 29a) was accomplished by mixing pyridine (31) and 2-

deuteropyridine (31-d) in CD2Cl2 in the NMR tube, then adding TfOH or TFA portionwise, and 

adjusting the 
13

C chemical shifts until the mixture contained pyridines/acid in a 2:1 ratio. The 
13

C 

chemical shifts of the 2:1 complexes were determined by titrations of pyridine (31) with TfOH or 

TFA to the end point, i.e., the point where 31 was fully protonated, and the 
13

C chemical shifts 

did not change any further.
256

 Care was needed to be taken when preparing the samples of 

[NHN]
+
 complexes, especially for the triflate complex mixture 27/27-d. Both 27 and 28 have 

limited solubility in CD2Cl2, 27 being even less soluble than 28. If too concentrated samples are 

prepared, there is an apparent risk for precipitation to occur. 
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The corresponding reference samples of the [NHN]
+
 complexes 29/29-d or 30/30-d (Figure 

29a) were prepared in a similar way, by careful portionwise addition of TfOH to an NMR tube 

with a mixture of 21/21-d or 32/32-d in CD2Cl2, and by adjusting the 
13

C chemical shifts until the 

mixture contained a 1:1 ratio of the corresponding 1,2-bis(pyridinyl-2-ethynyl)benzenes/acid. 

The 
13

C NMR chemical shifts of the 1:1 complexes were determined from previous titrations of 

21 or 32 with TfOH to the end point as described previously. Due to the low solubility of the 

[NHN]
+
 complexes in CD2Cl2, the methylated complexes 32/32-d in particular being poorly 

soluble, diluted samples were studied to avoid precipitation. 

 

6.5 NMR EXPERIMENTS 

6.5.1 IPE NMR Experiments for Symmetry Evaluation 

For determination of the isotope effects caused by unsymmetrical deuterium substitution by IPE 

NMR, all 
13

C NMR spectra were acquired at 126 MHz with broadband 
1
H and inverse-gated 

2
H 

decoupling. Without simultaneous 
2
H decoupling, the CD 

13
C NMR signals are split into triplets 

and/or are broadened due to JCD couplings, which makes the isotope shifts difficult to measure. 

The lack of the nuclear Overhauser enhancement also decrease the sensitivity of the CD signals 

if not 
2
H-decoupled. The advantage with using 

2
H decoupling is illustrated in Figure 30, showing 

overlapped 
13

C{
1
H} and 

13
C{

1
H,

2
H} NMR spectra of a mixture of pyridine (31) and 2-

deuteropyridine (31-d), with expansions around the C2, C6 (Figure 30a) and C5, C3 carbon 

(Figure 30b) signals. Without 
2
H decoupling, the CD signals are split into triplets (red 

spectrum), whereas with simultaneous 
2
H decoupling the signals are sharper and appear as 

singlets (blue spectrum), which, in turn, makes the isotope effects (
n
obs) measurable with a 

higher accuracy. 
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Figure 30. 
13C NMR spectra of a mixture of 31 and 31-d in CD2Cl2 at 126 MHz; {1H} spectrum in red 

and {1H,2H} spectrum in blue. (a) Expansion around the C2 and C6 signals; (b) expansion around the 

C3 and C5 signals.  

 

6.5.1.1 Bispyridine [NXN]
+
 Halonium Complexes  

The acquired isotope effects (
n
obs) for isotopologue mixtures of [NXN]

+
 complexes 16a/16a-

d/16a-d2 and 16b/16b-d/16b-d2, and mixtures of the references, asymmetric [NHN]
+
 

complexes 27/27-d and 28/28-d, and symmetric 31/31-d, respectively, in CD2Cl2 and CD3CN 

solutions at 25 C are summarised in Table 1. The isotope effects acquired for the symmetric 

reference mixture 31/31-d provide estimates for the intrinsic isotope shifts (
n
0). Noteworthy to 

mention is that in the di-deuterated [NXN]
+
 complexes, 16a-d2 and 16b-d2, the both pyridine 

rings are identical, and thus a rapid equilibrium, if present, will not be disturbed by the symmetric 

presence of deuterium isotopes. For that reason, only intrinsic isotope shifts (
n
0) can be observed 

for the di-deuterated isotopologues with IPE NMR spectroscopy. Furthermore, the calculated 
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isotope effects for all [NXN]
+
 complexes and their references for CD2Cl2 solutions have been 

added to Table 1. For the [NXN]
+
 and [NHN]

+
 complexes, the structures used in the 

calculations were geometry optimised models of hypothetical, symmetric and asymmetric 

structures. 

 

Table 1. Measured 13C NMR isotope shifts, nobs, in ppb at 126 MHz for CD2Cl2 and CD3CN solutions at 25 C. 

Included are also the calculated† isotope shifts (in italics) for symmetric and asymmetric structures for CD2Cl2 

solutions. 

 

Structure [NXN]
+
 

X 

Solvent 1obs 

δ C2’-C2) 

2obs 

δ C3’-C3) 

3obs 

δ C4’-C4) 

4obs 

δ C5’-C5) 

3obs 

δ C6’-C6) 

31 - CD2Cl2 

Calculated 

CD3CN 

-341 

-358 

-333 

-140 

-154 

-141 

0 

+2 

0 

+14 

+1 

+14 

-15 

-21 

-17 

16a Br CD2Cl2 

Symmetric 

Asymmetric 

CD3CN 

-307 

-301 

-304 

-309 

-139 

-141 

-144 

-141 

+17 

-6 

+41 

+18 

0 

-2 

-5 

0 

-29 

-19 

-23 

-31 

16b I CD2Cl2 

Symmetric 

Asymmetric 

CD3CN 

-336 

-310 

-307 

-345 

-145 

-146 

-151 

-148 

+20 

-8 

+8 

+21 

0 

-3 

-10 

0 

-30 

-17 

-18 

-30 

27 H CD2Cl2 

Symmetric 

Asymmetric 

-333 

-270 

-308 

-126 

-145 

-120 

+45 

-33 

+63 

+20 

-2 

+23 

-52 

-13 

-43 

28 H CD2Cl2 -325 -130 +34 +13 -47 

†The calculations were carried out by Assoc. Prof. Jürgen Gräfenstein 

 

Notable from Table 1 is that the 
1
obs and 

2
obs values, for the carbons one and two bonds away 

from the deuterium, are negative and of comparable magnitudes for the symmetric and 

asymmetric reference (31 and 27), the values for the asymmetric [NHN]
+
 complex 27 being 

only slightly less negative than the intrinsic values estimated from single symmetric 31. This 
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confirms the expectations that the equilibrium isotope shifts,
 
eq, are small for this type of 

complexes, resulting from a very small difference of the nitrogen basicities and, hence, small 

equilibrium rate constant (K  1.01) of the tautomerisation ([N
+
H

...
N] [N

...
HN

+
] for the 

asymmetric references), and from small 
13

C NMR chemical shift differences (, Equation 3, 

Chapter 5, Section 5.1.2) between the two tautomeric states (  8 ppm for the protonated (N
+
-H) 

and non-protonated (N:) states at C2).
256 

This makes the differentiation between single symmetric 

structures or asymmetric, fast equilibrating structures for the [NXN]
+
 complexes 16a,b not 

straightforward. Due to their larger magnitude, the 
1
obs and 

2
obs values suffer least from 

measurements errors, and, therefore, give the most accurate information. However, the magnitude 

and sign of the smaller isotope effects, 3-4 bonds away from the deuterium, might also be 

informative. In this case, both [NXN]
+ 

complexes 16a,b show more similarities with the 

symmetric reference 31 than with the rapid equilibrating reference 27, based on both the larger 

isotope effects (
1
obs and 

2
obs) together with the smaller isotope effects (

3
obs and 

4
obs). For this 

reason, the [NXN]
+
 complexes 16a,b may possibly be considered as single symmetric 

structures. The smaller value of the one-bond isotope shift (
1
obs) for the bromine complex 16a 

than for the corresponding iodine complex 16b and pyridine 31, might be an effect of the 

different shieldings of their C2 carbons caused by different, intrinsic chemical characteristics of 

bromine and iodine, as the 
1
obs values have shown to relate to the chemical shift of the reporter 

13
C carbon with the less shielded carbons having the larger isotope shifts.

214
 The C2 chemical 

shifts are 150.5 ppm for 31, 150.0 ppm for [NIN]
+
 complex 16b, and 147.0 ppm for 

[NBrN]
+
 complex 16a. The high similarities of the measured isotope effects for the two 

solvents of different polarity, CD2Cl2 and CD3CN, respectively, suggests that the changes in 

polarity does not effect the symmetry of the [NXN]
+
 complex 16a,b. They are likely to be 

symmetric structures even in polar acetonitrile. The asymmetric reference [NHN]
+
 complex 

28, with trifluoroacetate (CF3CO2
-
) as counter ion shows comparable isotope shifts in both 

magnitude and sign to the corresponding triflate (CF3SO3
-
) complex 27. From the calculated 

isotope shifts included in Table 1, it is impossible to draw any conclusions whether the 

[NXN]
+
 complexes 16a,b are symmetric or asymmetric, fast equilibrating structures. Only the 

asymmetry of the [NXN]
+
 complex 27 could be confirmed by the calculations. However, 

noteworthy is the proximity of the theoretical calculated isotope shifts to the measured 

experimental isotope shifts in both magnitude and sign. In Figure 31, expansions of the resulting 

13
C NMR spectra, acquired in CD2Cl2 at 25 C, around the C2/C2’/C6/C6’ and C3/C3’/C5/C5’ 
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regions for both [NXN]
+
 complexes 16a,b are depicted, showing the observed isotope effect 

for each carbon pair. Notable in Figure 31 are the broadened peaks in the 
13

C NMR spectra (a) of 

the bromonium complex 16a in comparison with the spectra (b) of the iodonium complex 16b.  

 

(a)  

    

(b) 

     

Figure 31. Expansions of 13C {1H,2H} NMR spectra of (a) [NBrN]+ complex 16a, and (b) 

[NIN]+ complex 16b in CD2Cl2 at 25 C. To the left: C6/C6’ and C2/C2’ carbon signals with 3obs 

and 1obs isotope shifts. To the right: C5/C5’ and C2/C2’ carbon signals with 2obs isotope shifts.  

 

For a reliable distinguishment between single symmetric and asymmetric, fast equilibrating 

structures, the temperature dependence of the isotope effects was studied for CD2Cl2 solutions. 

For asymmetric structures, significant effects on the isotope shifts were expected, as 
n
eq is highly 

temperature dependent. On the contrary, for symmetric structures, and for pyridine, no effects 

were expected. In Table 2, the acquired temperature coefficients of the isotope effects, i.e., the 

slopes of 
n
obs versus reciprocal temperature plots for each carbon pair, are depicted. In Figure 

32, the matching charts for each carbon pair are displayed. The [NXN]
+
 complexes 16a,b and 

pyridine (31) were studied in the temperature interval 25 C to -80 C, whereas the asymmetric 
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[NHN]
+
 complexes in the intervals 25 C to -40 C for 28, and 25 C to 0 C for 27 depending 

on the limitations in their solubility. Included in Table 2 are also the temperature coefficients of 

the bromonium complex 16a in CD3CN. 

 

Table 2. Temperature coefficients in ppm × K of the 13C NMR isotope shifts for CD2Cl2 solutions. The R2 value 

from each plot is shown in parenthesis (in italics). 

 

Structure [NXN]
+
 

X 

Solvent 1obs 

δ C2’-C2) 

2obs 

δ C3’-C3) 

3obs 

δ C4’-C4) 

4obs 

δ C5’-C5) 

3obs 

δ C6’-C6) 

31 - CD2Cl2 -4.8 

(0.945) 

-4.8 

(0.941) 

0 

 

+1.9 

(0.970) 

-2.1 

(0.940) 

16a Br CD2Cl2 

 

CD3CN 

-3.1 

(0.936) 

-4.7 

(0.949) 

-6.4 

(0.942) 

-12.1 

(0.983) 

+0.5 

(0.980) 

+8.1 

(0.989) 

0 

 

0 

-2.5 

(0.943) 

-5.1 

(0.848) 

16b I CD2Cl2 -4.5 

(0.957) 

-6.4 

(0.944) 

+0.6 

(0.940) 

0 -2.6 

(0.968) 

27 H CD2Cl2 -6.1 

(0.967) 

-9.8 

(1.000) 

-4.5 

(0.992) 

-5.8 

(0.976) 

-6.5 

(0.992) 

28 H CD2Cl2 -5.6 

(0.991) 

-6.2 

(0.972) 

+8.3 

(0.952) 

+4.0 

(0.919) 

-6.8 

(0.949) 
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Figure 32. Isotope shifts (nobs) versus reciprocal temperature plots for each carbon pair for the 

symmetric reference 31(violet), [NBrN]+ complex 16a (red), [NIN]+ complex 16b (green), and 

asymmetric [NHN]+ complexes 27 (orange) and 28 (blue). 

 

The isotope effects of pyridine (31), the reference for the intrinsic isotope effects (
n
0) was 

observed to be temperature dependent. This might be explained by the temperature-dependence 

of solvent polarity; the dielectric constants () are known to increase with decreasing 

temperature.
161, 265-266

 Hence, altered polarity of the solvent could effect the electron density of 
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the nitrogen lone pair via changes in dipolar interactions, which, in turn, could influence the 

magnitude of the isotope shifts.
214, 224

 Table 3 shows that the temperature coefficients for the 

[NXN]
+
 complexes 16a,b are very similar to the temperature coefficients for pyridine (31), 

both in magnitude and in sign. The magnitude of the alteration of 
n
obs with temperature seems to 

depend on the number of intervening bonds to the deuterium isotope, the temperature coefficients 

being largest for 
1
obs and 

2
obs, respectively. For the asymmetric systems, [NHN]

+
 complexes 

27 and 28, on the other hand, the temperature coefficients are significantly larger for most isotope 

shifts, which is also to be expected for fast equilibrating tautomers. Noteworthy is that the degree 

of 
n
obs change with temperature for the asymmetric references 27 and 28 varies, and the 

temperature coefficients differ in sign for both 
3
obs and 

4
obs of the C4/C4’ and C5/C5’ carbons, 

respectively. This variation might be an effect of different coordination of the triflate (CF3SO3
-
) 

and trifluoroacetate (CF3CO2
-
) counter ions. Importantly, the alteration of 

n
obs with temperature 

for 27 and 28 show an additional dependence on the distance of the reporter carbons to the 

nitrogen. In fact, in absolute values the temperature coefficients are largely symmetric around the 

N-C4 axis, which is indicative of the involvement of the nitrogen in an equilibrium process. In 

contrast, for pyridine (31) and the [NXN]
+
 complexes 16a,b, the magnitude of the temperature 

coefficient for each 
n
obs is independent on the distance of the reporter carbons to the nitrogens. 

This is an indication that the nitrogens of 31 and [NXN]
+
 complexes 16a,b, respectively, do 

not take part in any equilibrium whatsoever. Hence, the conclusion can be drawn that both the 

[NXN]
+
 complexes 16a,b are best represented as single, symmetric structures.  

 

The temperature coefficients for the [NBrN]
+
 complex 16a for CD3CN solution are all of the 

same sign, but their magnitudes are significantly larger than the temperature coefficients obtained 

for the less polar CD2Cl2 solution (Table 2). The difference in temperature dependency might 

either be an effect of the polarity differences, or an indication of symmetry differences between 

the two solvents, i.e., the structure of 16a being single symmetric in dichloromethane but 

asymmetric in acetonitrile. To determine whether the larger magnitudes of the temperature 

coefficients for CD3CN solutions are caused by a change in solvent polarity or alternation of 

symmetry, IPE and VT NMR studies must, of course, also be conducted for CD3CN solutions of 

the single symmetric and asymmetric references. It has previously been proposed that the Pyr2Br
+ 

ClO4
-
 complex reacts with the solvent molecules themselves in acetonitrile solutions, forming 

pyridinium ions and free pyridine.
160

 Thus, the high temperature coefficients for CD3CN solution 

might also be the consequence of 16a reacting with the solvent.  
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Noteworthy to comment is that the isotope effects (
2
obs  of the C3/C3’ carbons, are overall most 

effected by temperature changes. Recently, Perrin and co-workers observed that the C3/C5 

carbons of pyridine are influenced most by deuterium substitution; the isotope effect per 

deuterium was largest for pyridine-3,5-d2 than for pyridine-2,6-d2 despite the deuterium 

substitution being closest to the nitrogen in the latter isotopologue.
256

 However, this observation 

could not be explained by the available theories.  

 

The 
13

C NMR spectra of [NBrN]
+
 complex 16a for CD2Cl2 solution showed significant peak 

broadening at the higher temperatures (10 C to 25 C), whereas at lower temperatures the peaks 

turned sharper. In Figure 33 the 
13

C {
1
H,

2
H} NMR spectra of the C6/C6’ and C2/C2’ carbon 

signals at -40 C and 25 C are shown. The observed temperature dependence of the peak 

broadening is explainable by the quadrupolar relaxation caused by of bromine.
267

 At reduced 

temperatures the relaxation rates increase, which make the quadrupolar couplings to collapse, 

and, thus, the peaks get sharper at lower temperatures.
268

 No peak broadening was observed for 

the corresponding [NIN]
+
 complex 16b.  

 

Figure 33. Observed line-brodening for the C6/C6’ and C2/C2’ carbon signals in 13C {1H,2H} NMR 

spectra of [NBrN]+ complex 16a at 25 C for CD2Cl2 solution. At -40 C the 3obs and 1obs isotope 

shifts are perfectly resolved. 

 

6.5.1.2 1,2-Bis(pyridine-2-ylethynyl)benzene [NXN]
+
 Halonium Complexes  

The 1,2-bis(pyridine-2-ylethynyl)benzene-based [NXN]
+
 complexes 17a,b and 18a,b proved 

to be somewhat less stable in CD2Cl2 and CD3CN solutions than the corresponding bispyridine 

[NXN]
+
 complexes 16a,b. The [NIN]

+
 complex 17b was stable in solution for days, 

-40 C 

25 C 
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whereas the [NBrN]
+
 complex 17a turned out to be significantly less stable. It was revealed 

that 17a was decomposing into its corresponding protonated complex in contact with moisture. 

This was confirmed by addition of H2O or TfOH, which both made the 
1
H NMR signals of the 

bromonium complex 17a decrease, whereas the signals of the protonated complex increased and 

got slightly shifted, verifying their pH dependence. Despite careful preparation of the [NBrN]
+
 

complex 17a, with anhydrous condition and inert atmosphere, the protonated complex was 

always present upon isolation. Thus, the synthesis described by Neverov et al. could not be 

reproduced.
171

 It should be noted that the reported 
13

C NMR assignment of [NBrN]
+
 complex 

17a is deficient in the quaternary carbon peaks.
171

  

  

The para-dimethylated [NXN]
+
 complexes 18a,b were also sensitive to moisture, as indicated 

by the presence of their protonated complexes in their NMR spectra. The bromonium complex 

18a was significantly less stable than the corresponding iodonium complex 18b. However, in 

comparison with the analogous complex 17a, the bromonium complex 18a proved to be much 

more stable in solution, most likely due to the stabilising effect of its electron donating para-

methyl groups. The dimethylated [NXN]
+
 complexes 18a,b was considerably less soluble than 

the analogous complexes 17a,b. Consequently, longer experimental times were needed for 

observation of the 
13

C isotope shifts generated from the 18a/18a-d and 18b/18b-d mixtures.  

 

In Table 3, the measured isotope effects (
n
obs) acquired for the mixtures of non-deuterated and 

mono-deuterated [NBrN]
+
 complexes 17a/17a-d and 18a/18a-d, the [NIN]

+
 complexes and 

17b/17b-d and 18b/18b-d, their asymmetric [NHN]
+
 references 29/29-d and 30/30-d, and their 

symmetric references 21/21-d and 32/32-d at 25 C for CD2Cl2 solutions are summarised. 

Included in Table 3 are also the obtained isotope shifts for CD3CN solutions of the isotopologue 

mixtures of the [NIN]
+
 complex 17b/17b-d and the corresponding symmetric reference 21/21-

d. 
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Table 3. Measured 13C NMR isotope shifts, nobs, in ppb at 126 MHz for CD2Cl2 and CD3CN solutions at 

25 C.  

 

Structure X, R Solvent 1obs 

δ C6’-C6) 

2obs 

δ C5’-C5) 

3obs 

δ C4’-C4) 

4obs 

δ C3’-C3) 

3obs 

δ C2’-C2) 

21 -, H CD2Cl2 

CD3CN 

-333 

-326 

-135 

-138 

+15 

+10 

+13 

+11 

-17 

-17 

17a Br, H CD2Cl2 -315 -138 +23 0 -24 

17b I, H CD2Cl2 

CD3CN 

-334 

-328 

-145 

-145 

+24 

+20 

0 

0 

-28 

-29 

29 H, H CD2Cl2 -299 -133 +21 0 -31 

32 -, Me CD2Cl2 -331 -132 +12 +13 -14 

18a Br, Me CD2Cl2 -310 -135 +21 0 -24 

18b I, Me CD2Cl2 -328 -140 +24 0 -21 

30 H, Me CD2Cl2 -300 -132 +15 0 -11 

 

For the 1,2-bis(pyridine-2-ylethynyl)benzene-based [NXN]
+
 complexes 17a,b and 18a,b and 

their symmetric (21 and 32) and asymmetric (29 and 30) references, the one-bond and two-bond 

isotope shifts (
1
obs and 

2
obs) are negative and of similar magnitudes. In addition, the small 

three-bond and four-bond isotope shifts (
3
obs and 

4
obs) are also of similar magnitudes and signs 

for all compounds. The fact that the 
1
obs and 

2
obs isotope shifts for the asymmetric [NHN]

+
 

complexes 29 and 30 are only slightly less negative than the intrinsic values estimated from the 

1
obs and

 2
obs isotope shifts of the corresponding symmetric references 21 and 32 (the same 

2
obs 

values for 30 and 32), indicates that the equilibrium isotope effects are very small for the 1,2-

bis(pyridine-2-ylethynyl)benzene systems. As for the bispyridine [NXN]
+
 complexes 16a,b, 

the 
1
obs isotope shifts for the iodonium complexes, 17b and 18b, are close to the estimated 

intrinsic values (from 21 and 32), and of larger magnitudes than for the corresponding 

bromonium complexes, 17a and 18a. The similarity of the isotope effects observed for the 

[NIN]
+
 complex 17b for CD2Cl2 and CD3CN solutions, may be indicative for its remaining 

symmetry even in a solvent having higher polarity.  
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To determine the symmetries of the [NXN]
+
 complexes 17a,b and 18a,b, the temperature 

dependence of the isotope effects was studied by IPE NMR in combination with VT NMR at low 

temperatures for CD2Cl2 solutions. In Table 4, the resulting temperature coefficients of the 

isotope effects, obtained from the slopes of 
n
obs versus reciprocal temperature plots for each 

carbon pair, are shown. In Figure 34, the matching charts for each carbon pair of the 1,2-

bis(pyridine-2-ylethynyl)benzene [NXN]
+
 complexes 17a,b and their references 29 and 21 are 

depicted. The matching charts for the para-dimethylated analogues are shown in Figure 35. The 

[NIN]
+
 complex 17b and 1,2-bis(pyridine-2-ylethynyl)benzene (21) were studied in the 

temperature interval 25 C to -60 C, whereas the [NBrN]
+
 complex 17a and the asymmetric 

reference [NHN]
+
 complex 29 were studied in the interval 25 C to -40 C, depending on the 

limitations in solubility. Because of the even lower solubilities of the para-dimethylated 

analogues, their temperature dependence was studied in the temperature intervals 25 C to -60 C 

for symmetric reference 32, 25 C to -40 C for [NIN]
+
 complex 18b and asymmetric 

reference [NHN]
+
 complex 30, and 25 C to -25 C for [NBrN]

+
 complex 18a.  

 

For the 1,2-bis(pyridine-2-ylethynyl)benzene structures, Table 4 shows comparable temperature 

coefficients, related to the deuterium distance, both for the single symmetric, static reference 21 

and the corresponding [NXN]
+
 complexes 17a,b, which implies that the structure of both the 

bromonium and iodonium complexes is symmetric in dichloromethane. The asymmetric 

reference, [NHN]
+
 complex 29, shows, as expected for equilibrating tautomers, significantly 

larger temperature coefficients for all observable isotope shifts. Notable is also the large 

temperature coefficients with opposite sign for the C2’/C2 carbon pair of [NHN]
+
 complex 29, 

which further supports the asymmetry of the complex. The isotope effects of an equilibrating 

system both depend on the distance of the reporter carbon from the deuterium isotope and from 

the nitrogens, which have most involvement in the equilibrium process.  
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Table 4. Temperature coefficients in ppm × K of the 13C NMR isotope shifts for CD2Cl2 solutions. The R2 value 

from each plot is shown in parenthesis (in italics). 

 

Structure X, R Solvent 1obs 

δ C6’-C6) 

2obs 

δ C5’-C5) 

3obs 

δ C4’-C4) 

4obs 

δ C3’-C3) 

3obs 

δ C2’-C2) 

21 -, H CD2Cl2 -5.1 

(0.934) 

-6.7 

(0.930) 

-2.8 

(0.982) 

+1.8 

(0.989) 

-2.1 

(0.912) 

17a Br, H CD2Cl2 -6.7 

(0.972) 

-9.2 

(0.990) 

-2.7 

(0.952) 

0 -a 

 

17b I, H CD2Cl2 -7.4 

(0.944) 

-6.5 

(0.974) 

-2.4 

(0.968) 

0 -2.7 

(0.958) 

29 H, H CD2Cl2 -10.0 

(0.987) 

-10.8 

(0.994) 

-3.5 

(0.906) 

0 

 

+15.0 

(0.902) 

22 -, Me CD2Cl2 -6.8 

(0.975) 

-6.9 

(0.994) 

-a 

 

+2.8 

(0.966) 

-a 

 

18a Br, Me CD2Cl2 -12.0 

(0.905) 

-9.7 

(0.947) 

-a 

 

0 -a 

 

18b I, Me CD2Cl2 -10.9 

(0.982) 

-10.4 

(0.984) 

-a 

 

0 

 

-a 

 

30 H, Me CD2Cl2 +7.2 

(0.987) 

-8.5 

(0.939) 

-a 

 

0 

 

-12.1 

(0.994) 

a The temperature coefficients could not be accurately determined. 
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Figure 34. Isotope shifts (nobs) versus reciprocal temperature plots for the C6’/C6, C5’/C5, C4’/C4 

and C2’/C2 carbon pairs for the symmetric reference 21 (violet), [NBrN]+ complex 17a (red), 

[NIN]+ complex 17b (green), and asymmetric [NHN]+ complex 29 (blue) 

 

 

Figure 35. Isotope shifts (nobs) versus reciprocal temperature plots for the C6’/C6 and C5’/C5 carbon 

pairs for the symmetric reference 22 (violet), [NBrN]+ complex 18a (red), [NIN]+ complex 18b 

(green), and asymmetric [NHN]+ complex 30 (blue). 
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As for pyridine (31), a significant temperature dependency of the isotope shifts is noted for both 

the single symmetric, static references of the conformationally restrained analogues; 1,2-

bis(pyridine-2-ylethynyl)benzene (21) and its para-dimethylated analogue 22, respectively. An 

explanation for this observation, as suggested previously, might be the changes of solvent 

polarity with temperature.
265-266 

 

The temperature coefficients obtained for the [NXN]
+
 complexes 18a,b are very similar, which 

indicates that the symmetry of both complexes is similar. As the temperature coefficients of the 

static, symmetric para-dimethylated reference 22 are larger in magnitude as compared to its non-

methylated analogue 21, it is not surprising that the temperature coefficients of the [NXN]
+
 

complexes 18a,b also are larger in magnitude as compared to their analogues complexes 17a,b. 

Table 4 also shows that temperature coefficients for the 
1
obs and 

2
obs isotope shifts, in general, 

are somewhat larger for the [NXN]
+
 complexes than for their corresponding static, symmetric 

references. Unexpectedly, the temperature coefficients for the 
1
obs and 

2
obs isotope shifts of the 

equilibrating, asymmetric [NHN]
+
 complex 30 are lower in magnitude as compared to the 

corresponding [NXN]
+
 complexes 18a,b. However, the opposite sign of the one-bond isotope 

shift of [NHN]
+
 complex 30 may imply that its symmetry differs from the symmetry of the 

[NXN]
+
 complexes 18a,b. Thus, the different direction of the slopes of the 

1
obs isotope shifts, 

shown in Figure 35, suggests that the [NXN]
+
 complexes 18a,b may be better described as 

single symmetric structures. The large temperature coefficient obtained for the 
3
obs isotope shifts 

of the C2’/C2 carbon pair, close to the nitrogens, may also support that the [NHN]
+
 complex 

30 is comprised of asymmetric tautomers in rapid equilibrium.  

 

Noteworthy to mention is that, as observed for the bispyridine analogues 16a,b, the 
13

C NMR 

signals of the [NBrN]
+
 complexes 17a and 18a for CD2Cl2 solutions were significantly broader 

for the higher temperatures studied than for the lower temperatures. This broadening effect was 

not observed for the corresponding [NIN]
+
 complexes 17b and 18b. 

 

6.5.2 Diffusion NMR Experiments for Evaluation of Counter Ion Interaction 

Diffusion NMR spectroscopy is applicable for estimating the degree of ion pairing of salts in 

solution.
269-270

 The diffusion coefficient, D, is an estimate of relative molecular volumes. As the 
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molecules become larger, their radii increases, and they generally move slower in solution. This 

results in smaller D values. The D value is given from the Stokes-Einstein relation (Equation 5):  

 

   
  

     
                                                         

 

where k is the Boltzmann constant, T is the absolute temperature,   the viscosity and rH the 

hydrodynamic radius. A significant simplification with Equation 5 is that it assumes a spherical 

shape for the molecules in question. In reality, few molecules are shaped as perfect spheres. 

 

For cations and anions of different size, observation of similar D values indicates a high degree of 

ion pairing. Advantageous is if the diffusion characteristics of the cation and anion of a salt can 

be measured separately. As the triflate anions (CF3SO3
-
) of the [NXN]

+
 complexes 16a,b and 

17a,b contain fluorines, it was possible to determine the D values of both the [NXN]
+
 cations 

and their triflate anions separately, with 
1
H and 

19
F diffusion NMR experiments, respectively. 

The results obtained from 
1
H and 

19
F NMR spectroscopic diffusion studies for CD2Cl2 solutions 

of [NXN]
+
 complexes 16a,b and 17a,b, and their references, asymmetric [NHN]

+
 

complexes 27 and 29 and symmetric molecules 31 and 21, respectively, are shown in Table 5. 

 

Table 5. 
1H and 19F NMR translational diffusion coefficients (D)† for CD2Cl2 solutions at 25 C. 

Structure 
[NXN]

+ 

X 

D (
1
H) 

( 10-10 m2/s) 

D (
19

F) 

( 10-10 m2/s) 

31 - 30.6 - 

16a Br 13.9 8.8 

16b I 14.0 15.0 

27 H 20.3 14.4 

21 - 14.5 - 

17a Br 10.7 10.4 

17b I 10.7 11.7 

29 H 11.7 10.7 

      
†
The diffusion NMR experiments were performed by Dr Ulrika Brath 

 

The comparable diffusion coefficients (D), resulting from the 
1
H and 

19
F Diffusion NMR 

experiments, of the corresponding [NIN]
+ 

cation and triflate anion of the [NIN]
+ 

complexes 

16b and 17b, respectively, reveals a tight ion pairing within the complexes (Table 5). Despite the 
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close coordination of the triflate anion to the [NIN]
+ 

cation, the symmetric arrangement of the 

N
...
I

+...
N bond is not disturbed. Thus, the triflate might either be symmetrically coordinated with 

equal distances to the two nitrogens of the pyridine rings, or unsymmetrically coordinated and 

still not able to break the strongly stabilised symmetric N
...
I

+...
N

 
bonding interaction. The higher D 

values of the bispyridine [NXN]
+ 

complexes 16b, as compared to the 1,2-bis(pyridine-2-

ylethynyl)benzene [NXN]
+ 

complexes 17b, originate from their smaller size, and thus, smaller 

available surface for the solvent to interact with. The smaller size and absence of counter ion 

make the symmetric references 31 and 21 to diffuse faster than their corresponding [NXN]
+ 

complexes as expected. For the asymmetric [NHN]
+ 

complex 29, the similar D values for the 

cation and the anion indicate a tight ion pairing in CD2Cl2. The fact that the asymmetric 

[NHN]
+ 

complex 27 can either behave as a 2:1 complex of pyridine/TfOH (27) or as a 1:1 

complex (43) with exchange to free pyridine (31), as illustrated in Figure 36, might explain the 

higher D value for the cation than for the anion. The D value for the cation represents an average 

value of the rapidly exchanging free and complexed pyridine, diffusing with different rates.  

 

Figure 36. Asymmetric bispyridine [NHN]+ triflate complex as a (a) 2:1 complex 27 or (b) as a 1:1 

complex 43 in exchange with free 31. 

 

6.5.3 
15

N and 
13

C NMR Chemical Shifts as Electron Density Indicators 

The 
15

N NMR chemical shift is a sensitive indicator of the electron density of a nitrogen.
271

 

Therefore, the 
15

N NMR chemical shifts were determined for the [NXN]
+ 

complexes 16a,b and 

17a,b and their corresponding symmetric references 31 and 21, and asymmetric references, the 

[NHN]
+ 

complexes 27 and 29 by 
1
H-

15
N HMBC experiments for CD2Cl2 solutions at 25 C. 

For each structure a single nitrogen signal was detected, supporting the proposal of single 

symmetric or fast equilibrating asymmetric structures. As observed also from the 
13

C NMR 

experiments at 25 C, the signals were significantly broader for the [NBrN]
+ 

complexes 16a 

and 17a than for the other compounds, explainable by the quadrupolar characteristics of 
79

Br and 
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81
Br.

267 
The 

15
N NMR chemical shifts obtained are shown in Table 6. Included in the same table 

are the 
13

C NMR chemical shifts of the pyridine ring carbons (α, , and ) of all [NXN]
+ 

complexes and their symmetric and asymmetric references.  

 

Table 6. 
15N NMR chemical shifts† and 13C NMR chemical shifts (ppm) of the pyridine ring carbons 

for CD2Cl2 solutions at 25 C. 

Structure 
[NXN]

+ 

X 
δ 

15
N  

C-α1 

δ 
13

C  

C2a or C6b
 

C-1 

δ 
13

C  

C3a or C5b 

C- 

δ 
13

C  

C4 

C-2 

δ 
13

C  

C5a or C3b 

C-α2 

δ 
13

C  

C6a or C2b 

31 - -67.0 150.5 124.2 136.3 124.2 150.5 

16a Br -142.9 147.0 128.3 142.7 128.3 147.0 

16b I -175.1 150.0 128.5 142.7 128.5 150.0 

27 H -134.1 146.3 126.2 141.9 126.2 146.3 

21 - -64.5 150.6 123.6 136.7 128.3 143.7 

17a Br -141.2 148.5 126.9 142.5 131.3 140.5 

17b I -165.0 151.3 127.0 142.7 130.9 143.1 

29 H -137.9 147.0 126.0 142.9 130.0 142.9 

22 - - 150.4 124.7 148.0 129.3 143.6 

18a Br - 147.5 127.7 155.6 131.4 139.9 

18b I - 150.4 127.9 155.9 131.4 142.6 

30 H - 147.2 126.8 155.1 130.2 138.8 

a Structures 31, 16a,b and 27 (see numbering in Table 1 and 2, Section 6.5.1). 

b Structures 21, 17a,b, 29, 22, 18a,b and 30 (see numbering in Table 3 and 4, Section 6.5.1). 

† The 1H-15N HMBC NMR experiments were performed by Dr Ulrika Brath 

 

In comparison with free pyridine (31), the 
15

N NMR chemical shifts became more shielded upon 

complexation with either a positive halogen (16a,b) or a proton (27), indicating increased 

electron densities on the nitrogen. A possible explanation is that the aromatic electrons are 

pushed towards the nitrogens due to the positive charge nearby. Table 6 shows that the change in 

shift increased in the order H < Br < I. A larger chemical shift change might be interpreted as a 

stronger interaction. Thus, the significantly larger chemical shift change for the [NIN]
+ 

complex 16b suggests that the NI
+
N binding interaction is strong, and may have a covalent 

character. The fact, that the 
15

N shift of 16b is comparable with the 
15

N shift of N-

methylpyridinium iodide (
15

N δ = -180.5 ppm) further supports a covalent character of the 

NI
+
N bond. The same trend is observed for the 1,2-bis(pyridine-2-ylethynyl)benzene 

complexes, [NXN]
+ 

complex 17a,b and [NHN]
+ 

complex 29 in comparison with the free 
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ligand 21. However, the 10 ppm higher 
15

N chemical shift of [NIN]
+ 

complex 17b as compared 

to 16b implies a weaker NI
+
N binding interaction for 17b. This might be the consequence of 

the restricted flexibility of the 1,2-bis(pyridine-2-ylethynyl)benzene ligand, providing a non-

optimal NN distance for formation of a stronger NI
+
N interaction. For the [NIN]

+ 
complex 

16b, on the other hand, the NN distance of the two coordinating pyridines can be adjusted to 

furnish the most favourable NI
+
N interaction.  

 

There are some general trends observed for the changes in 
13

C NMR shifts on complexation 

(Table 6). In comparison with the free nitrogen bases (31, 21 and 22), the 
13

C shifts of the CH α-

carbons are decreased upon bromonium and proton complexation (16a-18a, 27, 29 and 30). The 

shifts of the  and  pyridine carbons get less shielded, revealing a decrease in electron density. In 

fact, the 
13

C NMR shifts of the [NBrN]
+ 

and [NHN]
+ 

complexes for each of the three 

bispyridine-based structures are very similar. For the iodonium complexes (16b-18b), on the 

other hand, the 
13

C NMR signals of CH α-carbons remain or move to higher shifts upon 

complexation. The electron densities of the - and -carbons also get reduced on iodonium 

complexation; their 
13

C NMR shifts get less shielded with magnitudes comparable with the 

corresponding shifts of the [NBrN]
+ 

and [NHN]
+ 

complexes. The shifts of the CC α-

carbons, close to the triple bonds, of the two [NIN]
+ 

complexes 17b and 18b
 
, only become 

slightly more shielded as compared with the free nitrogen bases, significantly less shielded than 

the CC α-carbons of the corresponding [NBrN]
+ 

and [NHN]
+ 

complexes (17a, 18a, 29 and 

30).  

 

The evident 
15

N shift and α-carbon 
13

C shift differences between the [NIN]
+ 

complexes and 

their corresponding [NBrN]
+ 

and [NHN]
+ 

complexes, imply that the interactions within the 

complexes may be of different types. The interaction type of the bromonium complexes might be 

similar to the interaction type of the proton complexes, i.e., with the positive bromine only 

loosely coordinated between the nitrogens in the NBr
+
N bond. Previously, it has been reported 

that more shielded shifts of the α-carbons in comparison to free pyridine on protonation or 

formation of 1:1 pyridine/halogen complexes are caused by changes in bond order and/or higher 

excitation energies.
164, 272-273  
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6.6 COMPUTATIONAL GEOMETRY OPTIMISATION
†
 

To confirm the experimentally determined symmetries, the geometry of the [NXN]
+ 

cations of 

16a,b and 17a,b and the [NHN]
+ 

cations of the corresponding asymmetric references 27 and 

29 were evaluated by theoretical computational methods. Geometry optimisations were 

performed on the DFT level applying a dichloromethane solvent model (B3LYP level, LACVP* 

basis set).
 
The calculations predicted single symmetric geometries for all [NXN]

+ 
complexes 

included (16a,b and 17a,b). As expected, they also confirmed the asymmetric geometries of the 

[NHN]
+ 

complexes 27 and 29. No consideration was taken to the triflate counter ion in the 

calculations. The theoretically derived optimal distances of the structures included in the 

theoretical study are shown in Figure 37 and 38. For the [NXN]
+ 

complexes 16a,b, the optimal 

NX distances are slightly longer when the halogen is coordinated between two pyridines than 

when bound to one pyridine only, the NI distances being longer than the NBr distances as 

expected as iodine is much bigger than bromine (Figure 37). Both the NBr and the NI 

distances in the [NXN]
+ 

complexes are shorter than the sum of the van der Waals radii (NBr 

3.40 Å; NI 3.53 Å)
123

 but close to the distances of common NX covalent bonds (NBr 1.9 Å; 

NI 2.1 Å).
124 

 

Figure 37. Optimised geometries and NX, NH, and NN distances for [NXN]+ complexes 16a,b 

and [NHN]+ complex 27. 

 

For the 1,2-bis(pyridine-2-ylethynyl)benzene complexes, [NXN]
+ 

complexes 17a,b, depicted 

in Figure 38, the NX distances are also shorter than the sum of the van der Waals radii of the 

________________________________ 

†
 The calculations were performed by Assoc. Prof. Máté Erdélyi 
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corresponding atoms, but only slightly longer than the typical distances of corresponding 

covalent bonds. The NBr distances of 17a are somewhat longer in comparison with the 

distances of 16a. However, the NI distances of the [NIN]
+ 

complexes 17b and 16b are almost 

identical, which implies that the NI
+
N interaction of 17b is optimal. The 0.06 Å longer N-Br 

bond lengths of [NBrN]
+ 

complex 17a as compared to 16a may explain its experimentally 

observed, lower stability. In comparison with the free ligand 21, the NN distances of both 

[NXN]
+ 

complexes 17a,b are shorter, the pyridine rings being more squeezed together when 

coordinating the smaller bromine than the iodine. This suggests that the symmetric NX
+
N 

interaction results in an energy gain sufficiently strong to compensate for the distortion of 

favoured geometry of the free ligand 21, with the NN distance being longer.  

 

 

Figure 38. Optimised geometries and NX, NH, and NN distances for [NXN]+ complexes 17a,b 

and [NHN]+ complex 29 and free ligand 21. The DFT calculations were performed at the 

B3LYP/LACVP* level for dichloromethane solution.  

 

The symmetric geometries of the [NXN]
+ 

complexes 17a,b were further confirmed by relaxed 

potential energy surface (PES) calculations, scanned for geometry with varying NX distances on 

0.05 Å steps at the B3LYP/LACVP* level. The calculations resulted in single-well energy 

potential curves for both complexes, with the NBr distances 2.19 Å (NN 4.38 Å) for 

[NBrN]
+ 

complex 17a, and the NI distances 2.32 Å (NN 4.64 Å) for [NIN]
+ 

complex 

17b. The PES scan of the [NHN]
+ 

complex 29 resulted in a double-well potential curve. The 
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resulting potential energy curves from the PES scans of [NBrN]
+ 

complex 17a and [NHN]
+ 

complex 29 are depicted in Figure 39.  

 

                                 (a)                                                                            (b) 

 

Figure 39. The relaxed potential energy surface scans of (a) [NBrN]+ complex 17a, resulting in a 

single-well potential curve, and (b) [NHN]+ complex 29, resulting in a double-well potential. The 

DFT calculations were performed with variation of NI and NH distances in 0.05 Å steps at the 

B3LYP/LACVP* level.  

 

6.7 CONCLUSIONS AND OUTLOOK 

The IPE NMR studies provide a strong indication that the [NXN]
+ 

complexes 16a,b-18a,b 

evaluated are best represented as single symmetric structures in dichloromethane. Furthermore, 

the isotope shifts obtained for the [NXN]
+ 

complexes 16a,b and 17b for CD3CN solutions at 

25 C suggest that their symmetric NX
+
N interactions are retained in the more polar solvent 

acetonitrile. For confirmation that so is the case, the temperature dependency of the isotope shifts 

needs to be investigated by IPE NMR in combination with VT NMR for CD3CN solutions. 

 

NHN hydrogen bonds are asymmetric in solution,
193

 but have been reported to be symmetric in 

crystals.
274-276

 For the [NXN]
+ 

halonium complexes the results from the IPE NMR experiments 

presented above imply that the analogous NX
+
N halogen bonds prefer a symmetric 

arrangement in solution. Interestingly, in crystals, unsymmetrical NBrN arrangement were 

often observed.
170-171

 In contrast, related [NIN]
+ 

iodonium
 
complexes are commonly found to 

be symmetric in the solid state with equal NI distances.
167-169

 The fact that the preferred 

symmetries of NHN hydrogen bonds and NX
+
N halogen bonds seem to differ in solution 
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implies that there are distinct differences between the two types of interactions. The higher 

stability of the symmetric NX
+
N halogen bond as compared to the corresponding symmetric 

NHN hydrogen bond in solution might originate from a more advantageous orbital overlap 

between the nitrogen lone pairs and one of the p orbitals of I
+
 or Br

+
 in the 3-centre-4-electron 

NXN bond
166

 as compared to the overlap of the nitrogen lone pairs with the smaller s orbital of 

H
+
. 

 

In accordance with the NMR studies, the iodonium complexes seem to be more stable than the 

corresponding bromonium complexes. For the two 1,2-bis(pyridine-2-ylethynyl)benzene systems, 

this is revealed by the faster decomposition of the [NBrN]
+ 

complexes (17a and 18a) as 

compared to the [NIN]
+ 

complexes (17b and 18b). The 
15

N NMR shifts also imply that the 

NXN interactions are strongest in the [NIN]
+ 

complexes, indicated by their significantly 

larger changes in magnitude on iodonium complexation than on bromonium complexation. The 

stronger interaction of the iodonium complexes might be explainable by the larger size and higher 

polarisability of iodine as compared to bromine. It might also be a consequence of extra 

advantageous orbital overlaps; efficient -overlap of an empty iodine p orbital and the filled non-

bonding orbital of the nitrogens, and, additionally, an efficient orbital overlap of a filled d orbital 

of I(I) and the nitrogen p-orbitals involved in the aromatic system of the pyridine rings.
163, 166

 

Furthermore, the NXN bonds appears to be strongest for the bispyridine complexes (16a,b), 

where the NN distances can be adjusted to provide the most favourable interaction. 

 

From the 
1
H and 

19
F diffusion NMR measurements it was concluded that the negatively charged 

triflate (CF3SO3
-
) counter ions are tightly coordinated to the positively charged [NXN]

+ 

halonium cations. In crystals, close interaction of the counter ion often results in an 

unsymmetrical arrangement of the NXN bonding interaction, with the two NX distances 

being unequal. However, it appears that despite the tendency of the triflate counter ions to be 

tightly bound in the [NXN]
+ 

complexes (16a,b and 17a,b) in dichloromethane solutions, they 

are not capable of destabilising the strong, centrosymmetric arrangement of the NXN bonds.  

 

For completion of the symmetry investigation of the bis(pyridine)based [N–X–N]
+
 halonium 

complexes in dichloromethane and acetonitrile solutions, some further experiments are required. 

For dichloromethane solutions, the degree of ion pairing of the triflate and the cation of the para-

dimethylated 1,2-bis(pyridine-2-ylethynyl)benzene [N–X–N]
+
 complexes 18a,b, and their 

15
N 
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chemical shifts for evaluation of the N–X
+
–N interaction strength needs to be included. To 

confirm that the symmetries are the same in both dichloromethane and the more polar acetonitrile 

solvents, IPE NMR measurements of all [N–X–N]
+
 complexes at a broader temperature interval 

are necessary also for acetonitrile solutions. These experiments will be completed in a near 

future. Furthermore, desirable is to obtain the crystal structures for all [N–X–N]
+
 halonium 

complexes included in this investigation, for comparison of their symmetry in solution and in 

crystals. 

 

To gain a broader understanding of the influence of environment factors on the symmetry of 

bis(pyridine)based [N–X–N]
+
 halonium complexes, it is desirable to extend the investigation, and 

include other solvents and counter ions. In addition, interesting would be to, if possible, study the 

symmetry of the analogous bis(pyridine)based [N–Cl–N]
+
 chloronium complexes. Most likely, 

the [N–Cl–N]
+
 complexes are much less stable as compared to the iodonium and bromonium 

complexes, and they are probably best represented as asymmetric, structures in fast equilibrium. 

It would also be interesting to elucidate the influence of different electronic effects on the [N–X–

N]
+
 halonium complex symmetry, by introducing functional groups in the pyridine rings with 

either electron donating of electron withdrawing properties. A long-term goal may be to assess 

[N–X–N]
+
 halonium complexes with different structural features and different electronic 

properties as electrophilic halogenations agents in halocyclisation or other alkene halogenations 

reactions.  
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7 ETHYLENE HALONIUM IONS 

(PAPER III) 

7.1 BACKGROUND  

The breakthrough for determining the today widely accepted structure of halonium ions was Olah 

and Bollinger’s direct characterisation by 
1
H and 

13
C NMR spectroscopy of cyclic, symmetric 

1,2-bridged tetramethylethylenehalonium ions under superacidic conditions.
49

 Subsequently, 

Olah and co-workers also characterised a series of methyl-substituted ethylenehalonium ions, as 

well as the non-substituted parent ethylenehalonium ions, under the same conditions.
277-280

 In 

accordance with the NMR spectroscopic analyses, of both chemical shifts and JCH coupling 

constants, the symmetrically substituted (tetramethyl and 1,2-dimethyl) and non-substituted 

ethylenechloronium, bromonium, and iodonium ions were all consistent with symmetric 

structures. However, no evidence was provided for the existence of cyclic fluoronium ions; 

instead the NMR spectral data of the tetramethylated ion were consistent with an equilibrium of 

rapidly, via successive 1,2-methyl shifts, interconverting -fluorocarbenium ions.
281

 Due to the 

temperature-dependency of the 
13

C NMR shifts of the unsymmetrically substituted 

ethylenebromonium ions (2-methyl and 2,2-dimethyl), Olah et al. suggested equilibrium mixtures 

of both unsymmetrically bridged ions, i.e., with unequal CBr bond lengths, and open-chain -

bromocarbenium ions with the positive charge located at the tertiary carbon.
279

 It was also 

suggested that the tetramethylethylenehalonium ions also might involve mixtures of bridged and 

open-chain ions; with the carbenium ion character being larger in the bromonium and chloronium 

ions than in the iodonium ion as iodine can accommodate positive charge better than chlorine and 

bromine.
279, 282

 However, scalar couplings and chemical shifts, that are both time averaged 

phenomena, do not allow reliable differentiation between a static structure and a rapid 

equilibrating mixture. Hence, the suggestion of Olah is somewhat hypothetic as his data does not 

provide basis for the conclusions he made. In fact, the symmetrically substituted 

ethylenehalonium ions might better be described as equivalent, asymmetric -halocarbenium ions 

in rapid degenerate equilibrium on the NMR time-scale. If that would be true, their time-averaged 

NMR signals would be indistinguishable from a symmetric halonium ion (Figure 40).  
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Figure 40. (a) Symmetric 1,2-bridged halonium ion (4); and (b) asymmetric -halocarbenium ions 

(4’) in fast equilibrium. 

 

The X-ray crystal structures of the stable 1,2-bridged, symmetrically substituted 

adamantylideneadamantanebromonium and -iodonium ions (Figure 6, Chapter 2) reveals that the 

CX bond distances are slightly unequal and that the extent of asymmetry is dependent on the 

counter anion (e.g. NBr = 2.116 and 2.194 Å for 10a; NBr = 2.118 and 2.136 Å for 10c).
36, 283

 
 

This indicates that the halonium ion is sensitive to its environment, and that formation of ion-pair 

in solution may influence its symmetry. Most computationally calculated data for the halonium 

ion structure imply that symmetrically alkylsubstituted ethylenechloronium and –bromonium ions 

are best represented as cyclic, symmetric ions, and that the corresponding unsymmetrically 

substituted ions also are closed structures but with their CX bond distances being unequal.
284-288

 

Generally, the -halocarbenium ions have not been studied in detail, as they have been regarded 

as transitory structures only. The -bromocarbenium ion has been estimated to be approximately 

15 kcal/mol higher in energy than the corresponding symmetric bromonium ion (Figure 40).
284

 

By calculating the positive charge distribution within the ethylenebrominium ion when 

interacting with its counter anion, Cossi and co-workers have showed that the positive charge 

redistributes based on the placement of the counter ion.
289

 Hence, their results provide theoretical 

evidence that supports the suggestion that the chemical environment may influence the symmetry 

of halonium ions.  

 

The probability that symmetrically substituted halonium ions may involve fast interconverting -

halocarbenium ions in a degenerate equilibrium instead of cyclic halonium ions, encouraged Ohta 

and co-workers to investigate the symmetry of tetramethylethylenebromonium and chloronium 

ions, 4a and 4b, respectively, by IPE NMR spectroscopy.
203

 From the two- and three-bond 
13

C 

NMR isotope shifts (
2
obs and 

3
obs), observed for the 

13
C NMR spectra of mixtures of non-

deuterated and unsymmetrically deuterated ions generated under stable ion conditions (SbF5/SO2 

at -60 C),
49

 the conclusion was drawn that both halonium ions are best represented by equilibria 

of -halocarbenium ions (Scheme 12). The observation of large deshielded (+1.50 ppm for 4a’-d6 
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and +1.42 ppm for 4b’-d3) and shielded (-2.11 ppm for 4a’-d6 and -1.90 ppm for 4b’-d3) isotope 

shifts for the quaternary carbons indicated the presence of equilibrium isotope shifts (eq). The 

upfield, shielded shifts were obtained from two-bond intrinsic and equilibrium isotope shifts 

6(
2
0 - eq) for 4a’-d6 and 3(

2
0 - eq) for 4b’-d3). The higher shifts resulted from three-bond 

intrinsic and equilibrium isotope shifts (6(
3
0 + eq) for 4a’-d6 and 3(

3
0 + eq) for 4b’-d3). 

 

 

Scheme 12.  The cyclic tetramethylethylenebromonium and –chloronium ions, 4a-d6 and 4b-d3, 

respectively, represented as asymmetric (a) -bromocarbenium ions, 4a’-d6, and (b) -chloro-

carbenium ions, 4b’-d3, in rapid equilibria.49
 

 

Moreover, from the observation of dynamic changes of the 
13

C signals and isotope effects in the 

temperature interval of -60 C to -80 C, evidence of 1,2-methyl shifts in the -halocarbenium 

ions was provided (Scheme 13).
203

 

 

Scheme 13. Successive 1,2-methyl shifts in -halocarbenium ions, via α-halocarbenium ions; (a) -

bromocarbenium ions (4a’-d6), and (b) -chlorocarbenium ions (4b’-d3).  

 

Theoretical investigations of the symmetrically alkylsubstituted ethylenehalonium ions in 

presence of SO2, used as solvent used in the IPE NMR studies, revealed that SO2 can act as a 

nucleophile and, via syn-addition, produce covalently bound ion-SO2 complexes that are 



73 

 

comparable in energy with the cyclic halonium ions, but more stable than the corresponding -

halocarbenium ions (Scheme 14).
290

 On the basis of the theoretical evidence of solvent 

binding,
290

 in combination with the results of the IPE NMR studies,
203

 Ohta and co-workers 

suggested that the previously reported characterisation of cyclic halonium ions in SO2 needs to be 

reinterpreted. Instead, it was proposed that the cyclic halonium ions should be characterised as 

rapidly equilibrating ion-SO2 complexes, with the positive charge located on sulphur (Scheme 

14)  

 

Scheme 14. Formation of equilibrating ion-SO2 complexes by nucleophilic SO2 addition.290
  

 

7.1.1 Effects of Alkyl Substitution on Halonium Ion Symmetry 

As alkyl substitution at a carbenium ion centre stabilises the positive charge via 

hyperconjugation,
291

 it is reasonable that tertiary -halocarbenium ions, as the ones described in 

Scheme 12, are more stabilised by alkyl substituents than the corresponding symmetric halonium 

ions. Therefore, halonium ions based on 2-butene, the 1,2-dimethylethylenehalonium ions (19, 

Figure 20, Chapter 4), are viable candidates for symmetric 1,2-bridged halonium ions. If 

formation of -halocarbenium ions occurs, they should be less stabilised as they are cations of 

secondary nature. The non-substituted ethylenehalonium ions (20, Figure 20, Chapter 4) should 

exhibit even stronger tendency to form a symmetric, cyclic halonium ion, as primary -

halocarbenium ions are unlikely to be stable.  

 

The main goal of this particular study was to investigate the influence of alkyl substituents on the 

symmetry of halonium ions. For this purpose the IPE NMR method was chosen for evaluation of 

the symmetries of the 1,2-dimethylethylenebromonium and chloronium ions (19a,b), and the 

ethylenbromonium and chloronium ions (20a,b), respectively.  

 

7.2 DIMETHYLETHYLENE BROMONIUM AND CHLORONIUM IONS 

7.2.1 Introduction and Aims 

Olah and co-workers generated the 1,2-dimethylethylenebromonium ions from either meso- and 

dl-dibromobutanes (44), or erythro- and threo-dl-1-bromo-2-fluorobutanes (45) under stable ion 
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conditions, in accordance with Scheme 15.
278, 292

 A mixture of the cis and trans bromonium ions 

(19a) in a 3:7 ratio was formed, independent of which diastereomer of the starting material was 

used. Upon warming the diastereomeric bromonium ion mixture to -40 C for 5 min, 

isomerisation, via proposed 1,2-hydride and 1,2-methyl shifts in open carbenium ion 

intermediates, to the 1,1-dimethylethylenebromonium ion (46) was observed.
292

 

 

Scheme 15. Preparation of cis- and trans-1,2-dimethylethylenebromonium ions 19a under stable ion 

conditions.278, 292 

 

In similar attempts to prepare the corresponding chloronium ions from meso- and dl-

dichlorobutanes (47), or erythro- and threo-dl-1-fluoro-2-chlorobutanes (48) under similar 

ionisation conditions, Olah and co-workers observed immediate rearrangement to 

chlorocarbenium ions, interpreted as a 2:3 mixture of dimethylchloromethyl- and 

methylethylchlorocarbenium ions (49 and 50) (Scheme 16).
292

 

 

Scheme 16. Formation of dimethylchloromethyl- and methylethylchlorocarbenium ions (49 and 50).292 

 

The main goal of this study was to evaluate the symmetries of the 1,2-

dimethylethylenebromonium (19a) and -chloronium ions (19b) by IPE NMR spectroscopy. 

Based on Olah’s reported preparation methods shown in Scheme 15 and 16, it was decided to 

attempt to generate the bromonium ions 19a and chloronium ions 19b from diastereomeric 
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mixtures of meso- and dl-dibromobutanes (44) and dichlorobutanes (47), respectively, using 

similar SbF5-SO2 conditions, but keeping the temperature lower, at -80 C, to prevent 

rearrangements to occur. In order to evaluate the symmetries of the ions with IPE NMR 

spectroscopy (Figure 41), syntheses of both non-deuterated (44 and 47) and, asymmetrically 

deuterium substituted meso- and dl-2,3-dihalobutane precursors (44-d and 47-d) were required.  

 

 

Figure 41. (a) Symmetric 1,2-dimethylethylenehalonium ions 19/19-d and (b) their corresponding 

fast equilibrating, asymmetric -halocarbenium ions 19’/19’-d.  

 

7.2.2 Synthesis 

For the synthesis of non-deuterated (44) and mono-deuterated meso- and dl-2,3-dibromobutanes 

(44-d) a protocol for regioselective transformation of an α-chloro ketone into alkenes and mono-

deuterated alkene developed by Barluenga and co-workers was followed (Scheme 17).
293

 By 

using either LiAlH4 or LiAlD4 as reducing agent, both 2,3-dibromobutanes 44 and their mono-

deuterated analogues 44-d could be prepared. The LiAlH4/AlCl3 combination has proved to be 

appropriate for selective reduction of the carbonyl group in α-chloro carbonyl compounds.
294

 

Following carbonyl reduction of α-chloro ketone 51, subsequent addition of lithium powder 

provides intermediate 52 via a Li-Cl exchange, which is, upon hydrolysis, followed by -

elimination to furnish a 1:1 diastereomeric mixture of cis- and trans-2-butenes (53). By trapping 

the low-boiling alkenes in a solution of Br2 in excess, dibromination occurs. When following the 

synthetic route depicted in Scheme 17, the 2,3-dibromobutanes 44 could be isolated in 57% yield 

as a 1:1 diastereomeric mixture after purification by vacuum distillation. The corresponding 

mono-deuterated analogues 44-d were isolated as a mixture of stereoisomers in 30% yield.  



76 

 

 

Scheme 17. Synthesis of non-deuterated and mono-deuterated 2,3-dibromobutanes 44 and 44-d, 

respectively, from α-chloro ketone 51.293 

 

Non-deuterated and mono-deuterated meso- and dl-2,3-dichlorobutanes (47 and 47-d) were 

synthesised in accordance with a similar protocol, starting with the preparation of cis- and trans-

2-butenes following Barluenga’s procedure.
293

 In this case, the volatile alkenes (53 or 53-d) were 

trapped in a solution of ICl in excess. Two consecutive additions of chlorine to the 2-butenes by 

ICl furnished the desired 2,3-dichlorobutanes (47 or 47-d).
295

 In Scheme 18, the synthetic route is 

shown. The second chlorine addition with ICl as reagent proved to be very slow. Thus, a large 

excess of ICl (3-4 equivalents) and heating at 50 C for 24 h was necessary to drive the reaction 

to completion. Due to the difficulties in finding optimal reaction conditions, and the difficulties to 

get rid of the remaining ICl, I2 and/or I3
-
 formed during the chlorination step by work-up with 

aqueous Na2S2O3 solution, the 1:1 diastereomeric mixture of 2,3-dichlorobutanes 47 was isolated 

in 8% yield following purification by vacuum distillation. The corresponding mono-deuterated 

2,3-dichlorobutanes 47-d were isolated as a mixture of stereoisomers in 42% yield, following the 

route in Scheme 18. 

 

Scheme 18. Synthesis of non-deuterated and mono-deuterated 2,3-dichlorobutanes 47 and 47-d, 

respectively, from α-chloro ketone 51.293, 295 
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The first addition of ICl to the cis- and trans-alkenes (53) to form the corresponding erythro- and 

threo-2-chloro-3-iodobutane diastereomers (54) occurs fast. The second reaction with ICl is, 

however, much slower. The stereospecific transformation for this second chlorination step by ICl 

suggested by Schmid and Gordon is depicted in Scheme 19.
295

 The sequence starts with a 

complexation of ICl and 2-chloro-3-iodobutane (54). Upon this activation, the neighboring 

chlorine can participate in the reaction by forming a chloronium ion (55). An anti-attack of the 

chloronium ion by Cl
-
 results in stereoselective formation of the 2,3-dichlorobutane; the erythro-

2-chloro-3-iodobutane 54 forms only the meso-2,3-dichlorobutane 47, wheras threo-54 forms dl-

47. Thus, replacement of iodine by chlorine occurs with retention of configuration. 

 

Scheme 19. Stereoselective chlorination of 2-chloro-3-iodobutane 54 by ICl via a chloronium cation intermediate 55. 

Starting from the erythro-diastereomer of 54 provides the meso-diastereomer of 2,3-dichlorobutane 47.295  

 

7.2.3 NMR Experiments 

Sample concentrations of non-deuterated and mono-deuterated 2,3-dihalobutane precursors 

(44/44-d and 47/47-d) used in the NMR experiments were in general 50 mg/mL. When preparing 

the ionised mixtures directly in the NMR tubes, the samples were kept at approximately -80 C 

(dry-ice/ethanol bath) under a stream of argon. Careful preparation is important as the samples 

readily take in moisture from the atmosphere, and as the ions generated rapidly rearrange or 

decompose upon heating. For the symmetry evaluation of the 1,2-dimethylethylenebromonium 

ion 19a a 1:1 mixture of diastereomeric 2,3-dibromobutanes 44 and 44-d was ionised using 

superacidic SbF5-SO2 conditions. For the corresponding IPE NMR studies of the 1,2-

dimethylethylenechloronium ion 19b a 1:3 mixture of diastereomeric 47 and 47-d was used. The 

symmetries were evaluated in the temperature range -80 C to -40 C for bromonium ion 19a and 

at -80 C for chloronium ion 19b. 

 

7.2.3.1 Symmetry of the 2,3-Dimethylethylenebromonium Ion 

Similar to Olah’s observations, when treating a 1:1 mixture of meso- and dl-2,3-dibromobutanes 

44 with antimony pentafluoride in liquid SO2 at -80 C ionisation to the trans- and cis-2,3-
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dimethylethylenebromonium ions trans-19a and cis-19a in a 3:1 ratio occurred, in accordance 

with 
1
H and 

13
C NMR spectra. Upon warming to -40 C, rearrangement to the corresponding 1,1-

dimethylethylenebromonium ion 46 was also observed (Scheme 20). The 
1
H and 

13
C NMR 

spectra of ionisation products of non-deuterated 44 at -80 C and -40 C, respectively, are shown 

in Figure 42.  

 

 

Scheme 20. Ionisation of 2,3-dibromobutanes 44 under stable ion conditions. 

 

The assignment of the 
1
H and 

13
C signals of trans-19a, cis-19a and rearranged 46 is shown in 

Table 7 and 8. Included in the tables are Olah’s assignments for comparison.
277-279, 296

 

 

Table 7. 
1H NMR assignments of ionisation products from 2,3-dibromobutanes 44. Olah’s assignments are 

shown in italics.277-278 

 

Structure R1 R2 R3 R4  R1 

(ppm) 

 R2 

(ppm) 

 R3 

(ppm) 

 R4 

(ppm) 

trans-19a  CH3 H H CH3 2.57 (m)a 

2.61 (m)c 

6.69 (m)a 

6.72 (m)c 

6.69 (m)a 

6.72 (m)c 

2.57 (m)a 

2.61 (m)c 

cis-19a CH3 H CH3 H 2.59(m)a 

2.61 (m)c 

6.88 (m)a 

6.92 (m)c 

2.59 (m)a 

2.61 (m)c 

6.88 (m)a 

6.92 (m)c 

46  CH3 CH3 H H 3.34 (s)b 

3.32 (s)d 

3.34 (s)b 

3.32 (s)d 

5.46 (s)b 

5.55 (s)d 

5.46 (s)b 

5.55 (s)d 

a 1H NMR spectrum at 300 MHz at -80 C with external acetone-d6 as reference. 
b 1H NMR spectrum at 300 MHz at -40 C external acetone-d6 as reference. 
c 1H NMR spectrum at 60 MHz at -60 C with external TMS as reference.278 
d 1H NMR spectrum at 60 MHz at -70 C with internal TMS as reference.277 
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(a)  
1
H NMR spectra at 300 MHz 

 

(b) 13
C NMR spectra at 75 MHz 

 

Figure 42. (a) 
1H NMR spectra and (b) 13C NMR spectra of the ionisation products of meso- and dl-44 

(1:1) at -80C and -40C, respectively. 
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Table 8. 
13C NMR assignments of ionisation products from 2,3-dibromobutanes 44. Olah’s assignments are 

shown in italics.279, 296 

 

Structure R1 R2 R3 R4  C-2 

(ppm) 

 C-3 

(ppm) 

 CH3 (C-2) 

(ppm) 

 CH3 (C-3) 

(ppm) 

trans-19a CH3 H H CH3 109.9a 

110.9c 

109.9a 

110.9c 

20.8a 

22.4c 

20.8a 

22.4c 

cis-19a CH3 H CH3 H 108.2a 

108.8c 

108.2a 

108.8c 

15.8a 

17.4c 

15.8a 

17.4c 

46 CH3 CH3 H H 204.4b 

211.4d 

59.2b 

50.5d 

34.4b 

35.4d 

- 

- 

a 13C NMR spectrum at 75 MHz at -80 C with external acetone-d6 as reference. 
b 13C NMR spectrum at 75 MHz at -40 C with external acetone-d6 as reference. 
c 13C NMR spectrum at 15 MHz at -60 C with internal TMS as reference.279, 296  
d 13C NMR spectrum at 15 MHz at -40 C with internal TMS as reference.296  

 

Notable in the NMR spectra depicted in Figure 42 is the presence of additional peaks not reported 

by Olah and co-workers. The 
1
H-

1
H coupling pattern of these peaks are comparable with those 

observed for the open chlorocarbenium ions 49 and 50 shown in Scheme 16: septet and triplet for 

49 (J = 5 Hz), and singlet, quartet and triplet for 50 (J = 6 Hz). An expansion of the 
1
H NMR 

spectrum at -80 C (taken after the sample had been warmed to -40 C) is depicted in Figure 43. 

As indicated by preliminary 
1
H-

1
H COSY, 

13
C-

1
H HETCOR and DEPT experiments, the 

multiplet at 4.31-4.52 ppm is suggested to contain four overlapped protons; two diastereotopic 

CH-protons (double septet) that are coupled to two diastereotopic CH3-groups at 3.82 ppm and 

3.74 ppm (double triplet, J = 5.0 Hz), and two CH2-protons that are coupled to one CH3-group at 

1.56 ppm (triplet, J = 5.7 Hz). This indication of diastereotopic CH and CH3 protons, and the 

similarity with the 
1
H-

1
H coupling pattern of chlorocarbenium ions 49 and 50, led to the two 

structure proposals 56 and 57 illustrated in Figure 44. A suggestion for the mechanism of 

formation of 56 is through nucleophilic addition of SO2 to the open, tertiary -bromocarbenium 

ion, followed by cyclisation to a five-membered ring via bromine electron lone pair interacting 

with the resulting positively charged sulfur. The chiral nature of the sulfinyl group of the 

resulting sulfoxide, as illustrated in Figure 45, results in the diastereotopic character of the CH2-

protons and the CH3-groups. To confirm the structures, more thorough NMR analyses are 

required. 
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Figure 43. Expansion of the 1H NMR spectrum obtained at 300 MHz at -80C showing the peaks of 

the suggested rearranged ions 56 and 57 generated from meso- and dl-44 (1:1) under SbF5-SO2 

condition, after previous warming to -40C. 

 

 

Figure 44. Suggested structures of the rearranged cations 56 and 57 formed upon treatment of the ionised 

mixture of meso- and dl-44 (1:1) under SbF5-SO2 condition at -40 C; 56 being formed by nucleophilic 

addition of SO2 to the rearranged 1,1-dimethylethylenebromonium ion 46 or its corresponding open -

bromocarbenium ion. 

 

 

Figure 45. Resonance in the sulfinyl group. When R and R’ represents two different organic groups, the 

sulfinyl group becomes chiral due to the lone pair of electrons that resides on the sulfur atom. As for sp3 

carbons, the molecular geometry of the chiral sulfinyl group is tetrahedral. 

 

The observed isotope shifts, 
2
obs and 

3
obs, obtained from the IPE NMR experiments of the 

ionised 1:1 mixture of the diastereomeric bromonium ions 19a and 19a-d for the temperatures -80 

C to -40 C are shown in Figure 46 and summarised in Table 9.  

 

http://en.wikipedia.org/wiki/Lone_pair


82 

 

(a) 13C{1H} NMR spectra at 75 MHz; expansion 108.0 to 110.2 ppm 

 
 

(b) 13C {1H} NMR spectra at 75 MHz; expansion 15.4. to 20.8 ppm 

 

 

Figure 46. Expansions of 13C {1H} NMR spectrum of cis- and trans-19a/19a-d bromonium ions; left 

13C signals of trans-19a/19a-d, right 13C signals of cis-19a/19a-d. (a) CH/CD carbons with positive 

isotope shifts; (b) CH3 carbons with negative isotope shifts.  

 

In Figure 46, the major signal pairs (left) come from the trans isomer of 19a, whereas the minor 

ones (right) come from cis-19a; (a) CH and CD carbons, and (b) CH3 carbons. Unfortunately, the 

one-bond isotope shifts could not be observed, probably due to a strong 
1
JCD coupling and the 

absence of nuclear Overhauser enhancement upon broadband 
1
H decoupling. 
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 Table 9. Measured 13C NMR isotope shifts, 2obs and 
3obs, of bromonium ion isomers trans-19a/19a-d 

and cis-19a/19a-d, in ppb at 75 MHz at -80 C to -60 C.a  

 trans-19a cis-19a 

Temp. 

(C) 

CH 

2obs (ppb) 

CH3 

2obs (ppb) 

CH3 

3obs (ppb) 

CH 

2obs (ppb) 

CH3 

2obs (ppb) 

CH3 

3obs (ppb) 

-80 +117 -189 - +99 -177 - 

-70 +115 -190 -32 +90 -177 -32 

-60 +114 -189 -31 +87 -176 -31 

a 13C{1H}NMR spectra with external acetone-d6 as reference.                                                                                                                                                                                                                                                                

 

In accordance with Table 9, all two-bond isotope effects, 
2
obs, obtained from the IPE NMR 

experiment are consistent with a combination of intrinsic and equilibrium isotope shifts (
2
o + 

eq). Previously reported two-bond intrinsic shifts, 
2
o, are approximately -0.1 ppm.

213  
The 

n
obs 

values indicate that there might be a small temperature dependence of the isotope shifts, which 

support the presence of fast equilibrating tautomers. However, the temperature range studied is 

too narrow to reliably determine whether the isotope effects are temperature dependent or not. 

Nevertheless, in this case, the values of the isotope shifts alone indicate that both the trans- and 

cis-1,2-dimethylethylenebromonium ions 19a are better represented as asymmetric, rapidly 

equilibrating -bromocarbenium ions (19a’) in superacidic SO2 solutions (Figure 41). An 

alternative interpretation is a fast equilibrium of interconverting ion-SO2 complexes as illustrated 

in Scheme 14.
290

 

 

7.2.3.2 Symmetry of the 2,3-Dimethylethylenechloronium Ion 

In an attempt to ionise the diastereomeric 2,3-dichlorobutane mixture comprised of non-

deuterated 47 and mono-deuterated 47-d in a 1:3 ratio in SbF5-SO2 at -80 C, the resulting 
1
H 

NMR spectrum verified the generation of a complex mixture of ionic compounds. The peaks in 

the corresponding 
1
H and 

13
C NMR spectra at -80 C, indicate the presence of the rearranged ions 

49/49-d and 50/50-d, characterised by Olah and co-workers,
277-278

 and/or the suggested cyclic 58 

with added SO2, as the dominating products (Scheme 21). No trace of the desired 1,2-

dimethylchloronium ions 19b was seen. For further confirmation of the structures of these ions 

additional NMR studies, preferably on ions generated from non-deuterated 47 only to simplify 

the interpretations of the NMR spectra, are needed. 
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Scheme 21. Ionisation of diastereomeric 2,3-dichlorobutanes 47/47-d, and the possible cationic 

products formed. 

 

For generation of the desired 1,2-dimethylethylenchloronium ions 19b, the less nucleophilic 

solvent SO2ClF instead of SO2 is expected to be advantageous and will be attempted.
297

 

 

7.3 ETHYLENE BROMONIUM AND CHLORONIUM IONS 

7.3.1 Introduction and Aims 

The preparation of the parent ethylenbromonium ion 20a was reported by Olah and co-

workers.
278, 298

 1-Bromo-2-fluoroethane (59) was ionised in SbF5-SO2 at -60 C as shown in 

Scheme 22. In the resulting 
1
H NMR spectrum at 60 MHz of the bromonium ion, a broadened 

singlet was observed, further broadened upon cooling to -80 C. By raising the temperature to -30 

C, a sharpening of the singlet was observed. Olah et al. explained the line shape changes of the 

singlet signal upon temperature alteration as a result of the quadrupolar character of bromine.
278

 

However, this alteration of the signal line shape with temperature might perhaps be better 

compatible with a dynamic process. 

 

Scheme 22. Preparation of ethylenebromonium ion 20a under stable ion conditions.278 

 

When 1,2-dichloroethane 60 or 1-chloro-2-fluoroethane 61 were treated under the same reaction 

conditions, Olah and co-workers did not find evidence for ethylenechloronium ion (20b) 

formation. Instead, generation of donor-acceptor complex of the dihalide precursor 60 or 61 and 
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antimony pentafluoride (62 and 63) was suggested based on the observed two triplets in the 
1
H 

NMR spectra of the mixture (Scheme 23).
278

  

 

Scheme 23. Suggested formation of donor-acceptor dihalide-SbF5 complexes, 62 and 63, respectively.278 

 

Later, however, the formation of the ethylenehloronium ion 20b was reported.
298,299

 Treating 1-

chloro-2-fluoroethane 61 under superacid condition with the solvent SO2ClF, even less 

nucleophilic than SO2, at -80 C resulted in an ion mixture, interpreted to comprise of the desired 

cyclic chloronium ion 20b and the methylchlorocarbenium ion 64, based on the observed singlet 

for 20b and a doublet and quartet for 64. The latter was suggested to be formed via 1,2-hydride 

shift from ring-opened 20b (Scheme 24). The ratio of the ions 20b and 64 showed to be 

dependent on the condition used, with the chloronium ion 20b dominating under careful 

conditions with the temperature kept at -80 C.  

 

Scheme 24. Preparation of ethylenebromonium ion 20b and α-chlorocarbenium ion 64 in SbF5-SO2ClF.299 

  

Upon raising the temperature to -50 C, the signals of 64 disappeared, and new, more shielded 

signals, a doublet and a quartet, appeared in the 
1
H NMR spectrum. These were proposed to 

correspond to the methylfluorocarbenium ion 66, formed from 65 and in equilibrium with 1,1-

difluoroethane (67) as shown in Scheme 25.
299-300
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Scheme 25. Proposed equilibria, driven to the right at -50 C, between methylfluorocarbenium ion 66 

and 1,1-difluoroethane 67.299-300 

 

The goal of this part of the investigation was to elucidate the symmetry of the 

ethylenebromonium and -chloronium ions 20a and 20b, respectively, by IPE NMR spectroscopy. 

1,2-dibromo- and 1,2-dichloroethane (68 and 69) were selected as ethylenehalonium ion 

precursors. For the ionisation it was decided to try similar SbF5-SO2 conditions as used by Olah 

and co-workers (Scheme 22 and 23), but at lower temperature, -80 C instead of -60 C.
278

 For 

the symmetry evaluation of the ions with IPE NMR spectroscopy (Figure 47), synthesis of mono-

deuterated 1,2-dihaloethane precursors (68-d and 69-d) was necessary. 

 

Figure 47. (a) Symmetric ethylenehalonium ions 20/20-d and (b) their corresponding fast 

equilibrating, asymmetric -halocarbenium ions 20’/20’-d.  

 

7.3.2 Synthesis 

The syntheses of mono-deuterated 1,2-dibromoethane 68-d, and the analogous 1,2-dichloroethane 

69-d are shown in Scheme 26. Mono-deuterated ethane (71-d) was generated by careful 

quenching of vinylmagnesium bromide (70) with deuterium oxide. Subsequent trapping of 

gaseous 71-d in a solution containing either Br2 or ICl resulted in formation of the desired 

dihaloethane, 68-d and 69-d, respectively. The 1,2-dibromoethane 68-d was furnished in 19% 

after purification by vacuum distillation. For formation of the 1,2-dichloroethane 69-d, a large 

excess of ICl was used, and heating was required for 24 h to force the slow, second chlorine 

addition step forward.
295

 After work-up with aqueous Na2S2O3 solution, to remove any remaining 
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ICl, I2 and/or I3
-
, and subsequent purification by distillation at atmospheric pressure, 69-d was 

afforded in 36% yield. 

 

Scheme 26. Synthesis of mono-deuterated 1,2-dibromoethane 68-d and 1,2-dichloroethane 69-d.  

 

7.3.3 NMR Experiments 

7.3.3.1 Symmetry of the Ethylenebromonium Ion 

The sample concentration of the 1:1 mixture of mono-deuterated and non-deuterated 1,2-

dibromoethane 68 and 68-d precursors used in the IPE NMR experiments was approximately 30 

mg/mL. Non-deuterated 1,2-dibromoethane 68 was obtained from Aldrich. The ionisation was 

carried out under superacidic SbF5-SO2 conditions at -80 C as described previously in Section 

7.2.3. The NMR experiments for the symmetry determination were carried out in the temperature 

range -90 C to -40 C.  

 

Olah and co-workers observed a line-broadening of the singlet at 5.53 ppm in the 
1
H NMR 

spectra of the ethylenebromonium ion 20a at -80 C using a 60 MHz spectrometer, which they 

explained as a quadrupolar effect of bromine.
278

 This line-broadening may, however, be better 

explained by another phenomenon. Ionisation of mono-deuterated and non-deuterated 1,2-

dibromoethanes, 68 and 68-d, resultuted in a 
1
H NMR spectrum containing two very broad 

signals, at 5.46 and 4.36 ppm, respectively, at the same temperature using a 300 MHz 

spectrometer. Upon warming to -60 C, the two broad signals merged and became one broad 

signal (5.15 ppm), which sharpened when the temperature was raised further to -40 C (5.30 

ppm). In addition, when cooling the NMR sample to -90 C, the two broad signals separated 

wider apart; 5.50 and 4.30 ppm, respectively. This behaviour is indicative of a dynamic process, 

i.e., an equilibrium slow enough to be observable on the NMR time-scale. Similar behaviour is 

noted in the resulting 
13

C NMR spectra in the temperature interval -80 C to -40 C. At -80 C 
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two broad signals are observed at 65.9 and 27.4 ppm, respectively. These two signals get closer 

(66.4 and 28.6 ppm) and even broader at -60 C, and upon increasing the temperature to -40 C, 

coalescence is reached. The dynamic behaviour observed in the 
1
H and 

13
C NMR spectra are 

illustrated in Figure 46. 

 

(a)
 1H NMR spectra at 300 MHz at -90 C to -40 C; expansion 3.0 to 7.2 ppm 

 

(b)
 13C NMR spectra at 75 MHz at -80 C to -40 C; expansion 0 to 110 ppm 

 
Figure 46. Dynamic NMR spectra of ions generated from 68/68-d under SbF5-SO2 conditions; (a) 1H 

NMR spectra, (b) 13C NMR spectra. 

 

Due to the line-broadening, isotope effects are impossible to detect with the required accuracy. 

From the 
1
H and 

13
C NMR spectra shown in Figure 46, it is, however, obvious that the line-

broadening noted by Olah et al. should be reinterpreted, at least to a significant extent, as a 

dynamic effect resulting from a rapid equilibrium of asymmetric ions. Based on the observations, 

theoretical
290

 and experimental,
278, 297

 that SO2 can add to the positive halocarbenium ions, it is 
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suggested that the asymmetric ions are better described as interconverting cations (72) with SO2 

covalently attached,
290

 rather than primary -bromocarbenium ions (Scheme 27). 

 

 

Scheme 27. Formation of fast equilibrating -bromocarbenium ions (20a’) or ion-SO2 complexes (72) 

upon ionisation of 1,2-dibromoethane (68).  

 

7.3.3.2 Symmetry of the Ethylenechloronium Ion 

In an attempt to generate the ethylenechloronium ion 20b from non-deuterated 1,2-dichloroethane 

(69) in SbF5/SO2 at -80 C, the same 
1
H NMR spectral pattern as reported by Olah and co-

workers was observed;
278

 two triplets at 4.36 ppm and 6.26 ppm, respectively (Figure 47). Olah et 

al. suggested the donor-acceptor dihalide-SbF5 complex 62 (Scheme 23) as the ionisation 

product. However, the two signals of the 
1
H NMR spectrum are also consistent with either a static 

ion-SO2 complex or rapid interconverting ion-SO2 complexes (73), as illustrated in Scheme 28.  

 

 

Figure 47. Expanded 
1H NMR spectrum (300 MHz) showing the two triplets of the ionisation 

product(s) from 1,2-dichloroethane (69) in SbF5/SO2 at -80 C. 

 

   

Scheme 28. Proposed formation of fast equilibrating ion-SO2 complexes (73) upon ionisation of 1,2-

dichloroethane (69) in SbF5/SO2 at -80 C. 
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The symmetry evaluation of the ionisation products generated from a mixture of non-deuterated 

and mono-deuterated 1,2-dichloroethanes (69 and 69-d) by IPE NMR spectroscopy is planned to 

be carried out in the near future.  

 

7.4 CONCLUSIONS AND OUTLOOK 

The NMR investigations provide experimental evidence that both the symmetrically substituted 

1,2-dimethylethylene- and the parent ethylenebromonium ions, 19a and 20a, generated under 

superacidic conditions, are best represented as a rapid equilibrium of asymmetric cations. For the 

1,2-dimethylethylenebromonium ion 19a, the confirmation of asymmetry is obtained from IPE 

NMR investigations showing equilibrium isotope shifts. For the ethylenebromonium ion 20a, the 

proof of equilibrating ions is given from the dynamic, temperature dependent behaviour of its 
1
H 

and 
13

C NMR signals.  

 

Computational predictions indicate that molecular SO2 can act as a nucleophile and add to 

symmetric bromonium ions, producing an asymmetric ion-solvent complex of equal stability as 

the symmetric ion.
290

 The experimental results obtained for the 1,2-dimethylethylene- and 

ethylenebromonium ions (19a and 20a) also suggest that SO2 might react with the ions generated. 

Thus, SO2 is not an inert solvent, but is nucleophilic and may be involved in rapid exchange 

processes of cations. If this is true, all ions generated under superacidic conditions with SO2 as 

solvent and previously characterised as bromonium ions should neither be described as 

symmetric bromonium ions nor asymmetric -bromocarbenium ions. Rather, they should be 

described as rapidly equilibrating sulfenium ions with the positive charge located on the sulfur 

atom. As, in principle, all previous characterisations of bromonium ions under superacidic 

conditions used SO2 as the solvent, these new results imply that symmetric bromonium ions 

cannot exist under such conditions. Therefore, the ions generated under SbF5-SO2 conditions 

need to be reinvestigated. Ionisation under superacidic condition with a less nucleophilic solvent, 

such as SO2ClF, might facilitate the formation of symmetric bromonium ions. To investigate 

whether symmetric bromonium ions can exist in solution or not, symmetry evaluation 

experiments should be performed with SO2ClF as the solvent instead. Moreover, as SO2ClF 

freezes at lower temperature than SO2, a larger temperature interval is tolerated, which favours 

the detection of equilibrium isotope effects with IPE NMR spectroscopy.  
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Based on the attempt to generate the symmetric 1,2-dimethylethylenchloronium ion 19b, and also 

on previous attempts of generating the ethylenechloronium ion 20b,
278

 it is evident that the 

precursors of the chloronium ions react more aggressively under superacidic conditions with SO2 

as solvent than the precursors of the bromonium ions. The 
1
H NMR spectral pattern of the 

ionisation product(s) formed in the attempted preparation of the ethylenechloronium ion (20b) 

described in Section 7.3.3 supports the proposed addition of SO2. Hence, by using a less 

nucleophilic solvent than SO2, there might be a better chance of generating symmetric 

chloronium ions, or symmetrically substituted, rapidly interconverting -chlorocarbenium ions 

with superacid SbF5. As Olah and co-workers have reported successful generation of the 

ethylenechloronium ion 20b when using SO2ClF as solvent,
301

 SO2ClF would be the solvent of 

choice in future symmetry investigations of symmetric chloronium ions. 

 

Furthermore, interesting would be to reinvestigate the characterisation of the corresponding 

symmetric 1,2-dimethylethylene- and ethyleneiodonium ions. As iodine is more polarisable and 

better at accommodating a positive charge than bromine and chlorine, it is more likely that 

symmetric iodonium ions are sufficiently stable and really do exist under superacidic conditions 

with SO2 as the solvent. 
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8 SUMMARY AND CONCLUDINDG REMARKS 

 

Within the scientific community, there has always been, and will most likely continue to be, a 

tremendous interest in gaining an improved understanding in molecular interactions. For 

medicinal chemists it is especially important to comprehend what interactions are significant to 

make a potential drug molecule bind to its specific enzyme or receptor protein with high 

selectivity and affinity. For organic chemists, however, the knowledge of molecular interactions 

is of great importance for understanding reaction mechanisms, and what interactions are 

beneficial for synthetic reagents in terms of reactivity and/or stability. As all drugs act in a 

solution environment within our bodies, and most organic reactions occur in solutions, it is 

especially advantageous to get a better understanding of molecular interactions in the solution 

phase.  

 

In this thesis, two specific interaction types have been investigated in solution, the three-centre-

four-electron NX
+
N halogen bond, and the CX

+
C interaction of a 1,2-bridged halonium ion, 

respectively. Common to both these interactions, is that, in solution, the positive halogen can be 

either centrosymmetrically arranged, with equal distances to both nitrogens/carbons, or 

asymmetrically arranged, always positioned closer to one of the nitrogens/carbons. The major 

goals of this study was to determine the solution symmetries of NBr
+
N and NI

+
N halogen 

bonds of bis(pyridine)-based [NXN]
+
 halonium model structures, and of CBr

+
C and 

CCl
+
C interactions of ethylenehalonium ions. For static, single symmetric structures, the 

positive halogen is centrally located, whereas for asymmetric structures it is constantly jumping 

between the two nitrogens/carbons in a fast equilibrium process. The symmetries of the two 

interaction types were evaluated with the NMR spectroscopic method IPE, which is based on 

measurements of isotope shifts observed for mixtures of non-deuterated and deuterated molecules 

with unsymmetrical deuterium substitution. The results obtained are summarised in the next two 

sections.  

 

8.1 BIS(PYRIDINE)-BASED [NXN]
+
 HALONIUM TRIFLATE COMPLEXES 

 Non-deuterated and mono-deuterated bis(pyridine)-based [NXN]
+
 halonium triflate 

complexes 16a,b-18a,b and 16a,b-d-18a,b-d were successfully synthesised in moderate 

to high yields. Successful synthetic protocols for the preparation of non-deuterated and 
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mono-deuterated 1,2-bis(pyridine-2-ylethynyl)benzene [NXN]
+
 halonium triflate 

complexes 17a,b-18a,b and 17a,b-d-18a,b-d were developed. The protocol for the mono-

deuterated complexes 17a,b-d and 18a,b-d allowed introduction of the deuterium isotope 

with high regioselectivity at the α-carbon, closest to the nitrogen in one of the pyridine 

rings. 

 The IPE NMR studies combined with VT NMR revealed that all [N–X–N]
+
 halonium 

complexes (16a,b-18a,b) are static, single symmetric structures in dichloromethane 

solutions. 

 The IPE NMR studies of the [N–Br–N]
+
 complex 16a and the [N–IN]

+
 complexes 16b 

and 17b for acetonitrile solutions at 25 C implied that the symmetric N–X
+
–N 

arrangement remain despite increased polarity, which suggests that the symmetry of the 

halonium complexes is independent from solvent polarity. However, for confirmation of 

the symmetries in the more polar acetonitrile, VT NMR studies of all [N–XN]
+
 

complexes and their corresponding static, symmetric, and equilibrating, asymmetric 

references are required. 

 1
H and 

19
F NMR diffusion experiments of the [N–X–N]

+
 halonium complexes 16a,b and 

17a,b revealed tight binding of the triflate counter ion. Despite the close interaction of the 

counter ion, the structures are symmetric. This provides evidence of a high energetic gain 

upon formation of a symmetric three-centre-four-electron N–X
+
–N halogen bond. 

 The 
15

N chemical shifts, acquired from 
1
H-

15
N HMBC experiments of 16a,b and 17a,b, 

show a significantly stronger N–X
+
–N interaction of the [N–I–N]

+
 complexes 16b and 

17b than of the corresponding [N–Br–N]
+
 complexes 16b and 17b, suggesting the 

interaction of the iodonium complexes is of covalent character, whereas the interaction of 

the bromonium complexes is of ionic character. The strongest N–X
+
–N interaction 

interactions were found for the bis(pyridine)halonium complexes 16a,b, for which the 

NN distance is adjustable to provide the most favourable interaction. 

 From the 
13

C chemical shifts of the pyridine rings it was evident that the shifts of the [N–

Br–N]
+
 halonium complexes 16a-18a were comparable with the shifts of their asymmetric 

[N–H–N]
+
 complex analogues 27, 29 and 30. This further supports that Br

+
 is more 

loosely coordinated between the two nitrogens as compared to I
+
; the N–Br

+
–N 

interaction being of ionic and the N–I
+
–N interaction of covalent character. 

 The dichloromethane solution experiments showed that the 1,2-bis(pyridine-2-

ylethynyl)benzene [N–Br–N]
+
 complexes 17a and 18a are less stable as compared to their 
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corresponding [N–I–N]
+
 complexes 17b and 18b, based on their faster decomposition. 

The presence of the electron donating para-methyl substituents in the pyridine rings 

proved to have a stabilising effect, as the decomposition of [N–Br–N]
+
 complex 18a were 

somewhat slower than the decomposition of analogous 17a. 

 Computational DFT geometry optimisations for dichloromethane solutions confirmed the 

static, symmetric structure of the [N–X–N]
+
 halonium complexes 16a,b and 17a,b, 

respectively.  

 

Overall, this investigation shows that both the experimental and theoretical methods used are well 

applicable for the symmetry evaluation of the bispyridine-based [NXN]
+
 halonium model 

systems described. It further provides an insight in the understanding of the 3-centre-4-electron 

NX
+
N halogen bonds. Most likely, the same methods can be applied also for the symmetry 

investigations of related structures. 

 

8.2 ETHYLENEHALONIUM IONS 

 Non-deuterated and mono-deuterated diastereomeric mixtures of 2,3-dibromobutanes 

44a/44a-d and 2,3-dichlorobutanes 44b/44b-d, the precursors of the 1,2-

dimethylethylenehalonium ions 19a,b, were successfully synthesised in low to moderate 

yields. The mono-deuterated precursors of the parent ethylenehalonium ions 20a,b, 1,2-

dibromoethane (47a-d) and 1,2-dichloroethane (47b-d), respectively, were also prepared 

successfully and isolated in moderate yields.  

 The 2,3-dimethylethylenebromonium ions 19a were generated as a 3:1 diastereomeric 

mixture from its precursors 44a in SbF5-SO2 at -80 C. 
1
H and 

13
C NMR spectra revealed 

the presence of the 1,1-dimethylenebromonium ion 46, formed via successive 1,2-methyl 

shifts, and two unknown ions. The proposed structures of these two ions were the ion-SO2 

complex 56, formed via nucleophilic SO2 addition to 46, and the rearranged α-

bromocarbenium ion 57. The presence of the rearranged cations increased significantly 

when raising the temperature to -40 C. 

 The IPE NMR studies of the 2,3-dimethylethylenebromonium ions 19a/19a-d showed that 

the ions are best represented as asymmetric, rapidly equilibrating structures.  

 Treating the 2,3-dimethylethylenechloronium ion precursors 44b/44b-d with SbF5 in 

liquid SO2 at -80 C resulted in complex mixture of rearranged ions. No trace of the 
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desired chloronium ions 19b/19b-d was observed, and, hence, their symmetries could not 

be determined.  

 Ionisation of 1,2-dibromoethane 47a/47a-d in SbF5-SO2 at -80 C resulted in two broad 

peaks in the 
1
H and 

13
C NMR spectra. The peaks showed a typical dynamic behaviour 

upon raising or lowering the temperature. A suggested interpretation is the formation of 

equilibrating, asymmetric ion-SO2 complexes (72), formed upon addition of nucleophilic 

SO2 to either the cyclic ethylenebromonium ion 20a or its open -bromocarbenium ion 

analogue (20a’).  

 The 1,2-dichloroethane 47b did not provide the desired cyclic ethylenechloronium ion 

47b upon ionisation in SbF5-SO2 at -80 C. Two triplets were observed in the 
1
H NMR 

spectrum, indicating the presence of either a static ion or asymmetric, fast equilibrating 

ion-SO2 complexes (73), generated via nucleophilic addition of SO2 to the cyclic 

chloronium ion 20b or its -chlorocarbenium ion analogue (20b’).  

 Due to the nucleophilic nature of SO2, the 2,3-dimethylethylene- and ethylenehalonium 

ions 19a,b and 20a,b need to be generated in a less nucleophilic solvent, such as SO2ClF, 

to allow proper evaluation of their symmetry, i.e., static, symmetric 1,2-bridged halonium 

ions or asymmetric, -halocarbenium ions in fast equilibrium.  

 

The main conclusion obtained from this study is that SO2 is not an inert solvent. Hence, 

suggesting that all previous characterisations of bromonium ions generated under SbF5-SO2 

conditions need to be reinvestigated. Furthermore, this investigation supports the previously 

reported observations that cyclic chloronium ions are not generated under superacidic conditions 

using SO2 as solvent. 
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APPENDIX 

 

Synthesis of [NXN]
+
 Halonium Complexes (18a, 18b, 18a-d and 18b-d) 

 

General Experimental 

 

Unless otherwise stated, all reagents and solvents were obtained from commercial suppliers and 

used without further purification. CH2Cl2 was freshly distilled from CaH2, and n-hexane was 

distilled from sodium metal/benzophenone ketyl prior to use. Anhydrous Et2NH and dry DMF 

were provided from Sigma-Aldrich. Microwave-assisted reactions were carried out with fixed 

hold-time in capped vials using a Biotage Initiator instrument. Analytical thin layer 

chromatography (TLC) was performed on aluminum sheets coated with Merck silica gel, grade 

F254. Spots were visualized by UV (254 nm) or by treatment with a dip solution of aqueous 

KMnO4 (1.0 g KMnO4, 6.7 g K2CO3, and 1.7 mL 5 % aqueous NaOH in 100 mL H2O) followed 

by heating. Flash chromatography was performed on Merck Silica gel 60 (0.040-0.063 mm). All 

glassware used in the syntheses of [NXN]
+
 complexes 18a,b was dried in an oven at 150 C 

for several hours prior to use. The halogenations reactions were all performed under dry 

conditions in dry solvents, and in a nitrogen atmosphere. Centrifugations were carried out with a 

Heraeus Christ Labofuge A centrifuge. Melting points were recorded on a Büchi B-545 apparatus 

and are uncorrected. 
1
H NMR and 

13
C NMR spectra were recorded on a Varian VNMR-S 500 

spectrometer or on a JEOL Eclipse 400-spectrometer at 25 C in CDCl3 or CD2Cl2, at 500 or 400 

MHz and 126 or 100 MHz, respectively. 
19

F NMR (376 MHz) spectra were recorded on a Varian 

400-MR spectrometer in CD2Cl2 at 25 C. Chemical shifts are reported on the  scale in ppm 

using residual solvent signal as internal standard; CDCl3 (H 7.26, C
 
77.00), CD2Cl2 (H 5.32, C

 

54.00). For the 
19

F NMR spectra, a sealed capillary filled with hexafluorobenzene (F -164.4) was 

used as an internal standard. 
1
H-

1
H COSY, 

1
H-

13
C HMQC, and 

1
H-

13
C HMBC NMR 

spectroscopy were used for assignment of 
1
H and 

13
C signals. For 

1
H-NMR, each resonance was 

assigned according to the following conventions: chemical shift () measured in ppm, observed 

multiplicity, number of hydrogens, observed coupling constant (J Hz), and assignment. 

Multiplicities are denoted as: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sex 

(sextet), sep (septet), m (multiplet) and br (broad). The numbering of the structures refers to those 

used for NMR assignment. GC-MS analyses were performed on a Varian 3400 GC/Varian Saturn 

2000 MS, with a DB-5 equivalent capillary column (length 30 m, i.d. 25 m) using helium as 

carrier gas (injector temperature 300 C; temperature program 40 – 300 C, 12 C/min and 4 min 

hold-time). The MS detector consisted of an ion trap with70 eV ionization. High resolution mass 

spectroscopy (HRMS) data were obtained on an Agilent LC/MSD TOF instrument (Uppsala 

University, Department of Physical and Analytical Chemistry) or on a Q-TOF-MS at Stenhagen 

Analyslab AB, Gothenburg, Sweden, with detection in the positive ion mode. Agilent TOF 

software and Agilent QS software were used to record and analyze mass spectra, respectively. 

Standard autotune of masses was performed in the TOF-MS instruments before the experimental 

runs, and typical mass errors of 1-3 ppm were achieved in the calibration. 
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4-Methyl-2-((trimethylsilyl)ethynyl)pyridine (74) 

 
2-Chloro-4-methylpyridine (1.76 mL, 15.76 mmol), ethynyltrimethylsilane (2.6 mL, 18.76 

mmol), Pd(PPh3)2Cl2 (0.880 g, 1.26 mmol), CuI (0.380 g, 2.00 mmol), triphenylphosphine (0.848 

g, 3.22 mmol), Et2NH (24.0 mL, 232 mmol), and DMF (8.0 mL) were added equally to two 20-

mL microwave vials, which were then sealed with septa. Nitrogen was bubbled through both 

yellow reaction mixtures for 30 s before they were stirred at 120 C for 27 min each under 

microwave irradiation. The resulting black mixtures were combined, and filtered through a plug 

of celite, which was subsequently washed with CH2Cl2 (300 mL). To the filtrate H2O (150 mL) 

was added, and the two phases were separated. The aqueous phase was extracted with CH2Cl2 (3 

x 50 mL). The combined organic phases were washed with brine (150 mL), dried with anhydrous 

MgSO4, filtered, and concentrated in vacuo. The crude black residue was purified by column 

chromatography eluting with Et2O/hexanes (3:7) to furnish 74 (2.32 g, 78%) as dark brown, low 

melting, crystalline solid (solidifies upon storage in the freezer). TLC (Et2O/hexanes; 1:1) Rf  = 

0.39; 
1
H NMR (400 MHz, CDCl3)  8.35 (dd, 1H, J = 5.1 and 0.7 Hz, H6), 7.23 (app. sep, 1H, J 

= 0.7 Hz, H3), 6.97 (app. dsex, 1H, J = 5.1, 0.7 Hz , H5), 2.25 (app. t, 3H, J = 0.7 Hz, CH3), 0.21 

(s, 9H, Si(CH3)3); 
13

C NMR (126 MHz, CDCl3)  149.66 (C6), 147.23 (C4), 142.82 (C2), 128.10 

(C3), 124.05 (C5), 103.85 (C8), 94.18 (C9), 20.75 (CH3), -0.28 (Si(CH3)3); GC-MS m/z (relative 

intensity): 189 (M
+
, 40), 175 (19), 174 (100), 146 (15); HRMS calcd for (C11H16NSi)

+
 m/z 

190.1047, found 190.0983. 

 

2-Ethynyl-4-methylpyridine (35) 

 
A mixture of TMS-protected 74 (2.22 g, 11.74 mmol) and KF (2.08 g, 35.80 mmol) in MeOH (60 

mL) was stirred for 18 h at room temperature. After evaporation of the solvent under reduced 

pressure, the dark brown residue was partitioned between CH2Cl2 (150 mL) and H2O (150 mL). 

The aqueous phase was extracted with CH2Cl2 (3 x 50 mL). The combined organic extracts were 

washed with brine (100 mL), dried with anhydrous MgSO4, filtered, and concentrated in vacuo to 

afford 35 (1.36 g, 99%) as a dark brown thin oil, which turned into a crystalline solid when kept 

in the freezer. TLC (Et2O/hexanes; 1:1) Rf  = 0.22; 
1
H NMR (400 MHz, CDCl3)  8.39 (dd, 1H, J 

= 5.1, 0.7 Hz, H6), 7.27 (app. sep 1H, J = 0.7 Hz, H3), 7.04 (app. dsex, 1H, J = 5.1 and 0.7 Hz, 

H5), 3.08 (s, 1H, CCH), 2.30 (app. t, J = 0.7 Hz, CH3); 
13

C NMR (126 MHz, CDCl3)  149.68 

(C6), 147.34 (C4), 142.03 (C2), 128.22 (C3), 124.38 (C5), 82.82 (CCH). 76.56 (CCH), 20.70 

(CH3); GC-MS m/z (relative intensity): 118 (10), 117 (M
+
, 100), 116 (18), 90 (18), 89 (32), 63 

(11), 50 (14); HRMS calcd for (C8H8N)
+
 m/z 118.0651, found 118.0595. 
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1,2-Bis((4-methylpyridine-2-yl)ethynyl)benzene (22) 

 
1,2-Diiodobenzene (250 μL, 1.91 mmol), 2-ethynyl-4-methylpyridine (35)(0.588 g, 5.02 mmol), 

Pd(PPh3)2Cl2 (0.139 g, 0.20 mmol), CuI (0.047 g, 0.25 mmol), Et2NH (3.0 mL, 28.9 mmol), and 

DMF (0.5 mL) were added to a 5-mL microwave vial, which was then sealed with a septum. 

Nitrogen was bubbled through the dark brown reaction mixture for 30 s before it was stirred at 

120 C for 10 min under microwave irradiation. Thereafter, the resulting brown/black mixture 

was filtered through a plug of celite, which was subsequently washed with CH2Cl2 (150 mL). To 

the filtrate H2O (100 mL) was added, and the two phases were separated. The aqueous phase was 

extracted with CH2Cl2 (3 x 30 mL). The combined organic phases were dried with anhydrous 

MgSO4, filtered and concentrated in vacuo. Purification of the brown/black residue by column 

chromatography two consecutive times using CH2Cl2/EtOAc/Et3N (90:10:0.5) followed by 

CH2Cl2/EtOAc/Et3N (90:10:0.5  80:20:0.5) as eluents furnished 22 (0.489 g, 83%) as a yellow, 

crystalline solid. TLC (EtOAc/CH2Cl2; 1:4) Rf  = 0.28; 
1
H NMR (500 MHz, CD2Cl2)  8.48 (d, 

2H, J   4.7 Hz, H6 and H6’ , 7.63-7.67 (m, 2H, AA’ part of AA’BB’, H11 and H11’ , 7.60-7.62 

 br m, 2H, H3 and H3’ , 7.38-7.43 (m, 2H, BB’ part of AA’BB’, H12 and H12’ , 7.11  d, 2H, J = 

4.7 Hz, H5 and H5’ , 2.35  s, 6H, 2 x CH3);  
13

C NMR (126 MHz, CD2Cl2)  (150.36 (C6 and 

C6’ , 148.03  C4 and C4’ , 143.58  C2 and C2’ , 132.62  C11 and C11’ , 129.35  C12 and C12’ , 

129.28  C3 and C3’ , 126.07  C10 and C10’ , 124.70  C5 and C5’ , 93.20  C8 and C8’ , 87.43 

 C9 and C9’ , 21.14  2 x CH3); HRMS calcd for (C22H17N2)
+
 m/z 309.1386, found 309.1280; mp 

143.6-147.7 C.  

 

1,2-Bis((4-methylpyridine-2-yl)ethynyl)benzenebromonium triflate (18a) 

 
A mixture of 22 (49 mg, 0.16 mmol) and AgOTf (47 mg, 0.18 mmol) was dissolved in CH2Cl2 

(11.0 mL) under stirring at room temperature in nitrogen atmosphere. To the clear, light yellow 

solution was added a solution of Br2 (0.58 M, 330 μL, 0.19 mmol) in CH2Cl2 dropwise by 

syringe. Immediately upon the addition, a light yellow precipitate (AgBr) was formed. The 
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reaction mixture was stirred vigorously for 30 min. Thereafter, the mixture was centrifuged at 

2000 rpm for 10 min. The clear, orange supernatant was carefully removed and transferred by 

syringe to a 50-mL pear-shaped flask sealed with a rubber septum. After concentration of the 

supernatant by keeping it under a stream of nitrogen for 1 h, precipitation was carried out by 

addition of n-hexane (20 mL). The formation of the light yellow/beige precipitate was continued 

at 0 C in an ice-bath for 45 min. The clear, light yellow solution was removed carefully by 

syringe, and the remaining solid was washed twice with dry n-hexane (2 x 10 mL). After solvent 

removal by syringe, and drying under vacuum, the bromonium complex 18a was furnished as a 

yellow solid (42 mg, 49%). 
1
H NMR (500 MHz, CD2Cl2)  8.66 (d, 2H, J   5.9 Hz, H6 and H6’ , 

7.74-7.79 (m, 2H, AA’ part of AA’BB’, H11 and H11’ , 7.70-7.73  br s/m, 2H, H3 and H3’ , 

7.56-7.61 (m, 2H, BB’ part of AA’BB’, H12 and H12’ , 7.42  d, 2H, J   5.9 Hz, H5 and H5’ , 

2.54 (s, 6H, 2 x CH3); 
13

C NMR (126 MHz, CD2Cl2)  155.62  C4 and C4’ , 147.48  C6 and 

C6’ , 139.87  C2 and C2’ , 134.13  C11 and C11’ , 131.74  C12 and C12’ , 131.41  C3 and C3’ , 

127.64  C5 and C5’ , 125.01  C10 and C10’ , 121.32 (q, J = 321.0 Hz, CF3 , 97.55  C9 and C9’ , 

88.97  C8 and C8’ , 21.90  2 x CH3); 
19

F NMR (376 MHz, CD2Cl2)  -76.91 (s, CF3); HRMS 

calcd for (C23H17BrF3N2O3S)
+
m/z 537.0090, found 536.9939; mp 130.3 – 143.2 C 

(decomposition), 114.5 C (discoloured). 

 

1,2-Bis((4-methylpyridine-2-yl)ethynyl)benzeneoiodonium triflate (18b) 

 
A mixture of 22 (92 mg, 0.30 mmol) and AgOTf (79 mg, 0.31 mmol) was dissolved in CH2Cl2 

(25.0 mL) under stirring at room temperature in nitrogen atmosphere. To the clear, light yellow 

solution was added I2 (90 mg, 0.35 mmol), and immediately upon the addition a yellow 

precipitate (AgI) was formed. The reaction mixture was stirred vigorously for 30 min. Thereafter, 

the mixture was centrifuged at 2000 rpm for 10 min. The clear, dark red supernatant was 

carefully removed and transferred by syringe to a 50-mL pear-shaped flask sealed with a rubber 

septum. After concentration of the supernatant by keeping it under a stream of nitrogen for 1.5 h, 

precipitation was carried out by addition of n-hexane (25 mL). The formation of the light 

yellow/beige precipitate was continued at 0 C in an ice-bath for 30 min. The clear, dark red 

solution was removed carefully by syringe, and the remaining solid was washed twice with dry n-

hexane (2 x 20 mL). After solvent removal by syringe, and drying under vacuum, the iodonium 

complex 18b was furnished as a beige/yellow solid (0.119 g, 68%). 
1
H NMR (500 MHz, CD2Cl2) 

 8.67 (dd, 2H, J = 5.9 and 0.5 Hz, H6 and H6’ , 7.76-7.80 (m, 2H, AA’ part of AA’BB’, H11 

and H11’ , 7.71 (app. dt, 2H, J = 1.9 and 0.7 Hz, H3 and H3’ , 7.57-7.61 (m, 2H, BB’ part of 

AA’BB’, H12 and H12’ , 7.29 (ddd, 2H, J = 5.9, 1.9 and 0.7 Hz, H5 and H5’ , 2.53 (app. t, 6H, J 
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= 0.7 Hz, 2 x CH3); 
13

C NMR (126 MHz, CD2Cl2)  155.86  C4 and C4’ , 150.38  C6 and C6’ , 

142.60  C2 and C2’ , 134.79  C11 and C11’ , 131.41  C12 and C12’ , 131.38  C3 and C3’ , 

127.90  C5 and C5’ , 124.75  C10 and C10’ , 98.28  C9 and C9’ , 91.00  C8 and C8’ , 21.94  2 x 

CH3); 
19

F NMR (376 MHz, CD2Cl2)  -76.77 (s, CF3); HRMS calcd for (C22H16IN2)
+ 

m/z 

435.0358, found 435.0413. 

 

2-((2-Iodophenyl)ethynyl)-4-methylpyridine (38) 

 
1,2-Diiodobenzene (900 μL, 6.69 mmol), 2-ethynyl-4-methylpyridine (35) (0.53 g, 4.52 mmol), 

Pd(PPh3)2Cl2 (0.254 g, 0.36 mmol), CuI (0.106 g, 0.56 mmol), Et2NH (12.0 mL, 115.5 mmol), 

and DMF (4.0 mL) were added to a 20-mL microwave vial, which was then sealed with a septum. 

Nitrogen was bubbled through the dark brown reaction mixture for 30 s before it was stirred at 

120 C for 4 min under microwave irradiation. Thereafter, the resulting brown/black mixture was 

filtered through a plug of celite, which was subsequently washed with CH2Cl2 (150 mL). To the 

filtrate H2O (100 mL) was added, and the two phases were separated. The aqueous phase was 

extracted with CH2Cl2 (3 x 30 mL). The combined organic phases were dried with anhydrous 

MgSO4, filtered and concentrated in vacuo. Purification of the brown/black residue by column 

chromatography two consecutive times using EtOAc/hexanes (2:3  3:2) and CH2Cl2/MeOH 

(100:0  98:2) as eluting agents furnished 38 as a light yellow solid (0.671 g, 46%). The 

corresponding di-coupled compound 22 was isolated as a yellowish solid (0.190 g, 27%). TLC 

(EtOAc/hexanes; 1:1) Rf  = 0.43; 
1
H NMR (500 MHz, CD2Cl2)  8.46 (d, 1H, J = 5.1 Hz, H6), 

7.91 (ddd, 1H, J = 8.0, 1,2, 0.4 Hz, H14), 7.61 (ddd, 1H, J = 7.7, 1.7, 0.4 Hz, H11), 7.46 (app. 

sep, 1H, J = 0.7 Hz, H3), 7.38 (app. td, 1H, J = 7.6, 1.2 Hz, H12), 7.11 (app. dsex,1H, J = 5.1 and 

0.7 Hz, H5), 7.09 (ddd, 1H, J = 8.0, 7.5, 1.7 Hz, H13), 2.37 (app. t, 3H, J = 0.7 Hz, CH3); 
13

C 

NMR (126 MHz, CD2Cl2)  150.48 (C6), 148.12 (C4), 143.32 (C2), 139.43 (C14), 133.62 (C11), 

130.66 (C13), 129.51 (C10), 128.85 (C3), 128.58 (C12), 124.82 (C5), 101.40 (C15), 92.80 (C8), 

90.66 (C9), 21.14 (CH3); GC-MS m/z (relative intensity): 320 (18), 319 (M
+
, 100), 192 (22); 

HRMS calcd for (C14H11IN)
+
 m/z 319.9931, found 319.9923; mp 98.4 -100.5 C. 

 

2-Chloro-6-deutero-4-methylpyridine (36-d) 

 

A solution of DMAE (4.5 mL, 44.8 mmol) in dry n-hexane (25 mL) was cooled to -78 C under 

stirring in a nitrogen atmosphere. n-BuLi (2.5 M in hexanes, 36 mL, 90.0 mmol) was added 

dropwise by syringe over 30 min. The resulting colourless solution was stirred at -78 C for 1 h. 

Then, a solution of 2-chloro-4-methylpyridine (1.5 mL, 13.4 mmol) in dry n-hexane (25 mL) was 
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added over 40 min by syringe. Upon the addition, the mixture turned light yellow. After stirring 

at -78 C for 35 min, a large excess of CH3OD (10.0 mL, 246 mmol) was added to the light 

orange mixture by syringe over 10 min. The resulting brown mixture was stirred for additional 15 

min at -78 C, then at 15 min at room temperature. Subsequently, H2O (140 mL) was added, and 

the two phases were separated. The aqueous phase was extracted with Et2O (3 x 50 mL). The 

combined organic phases were washed with brine (150 mL), dried with anhydrous MgSO4, 

filtered, and concentrated under reduced pressure to furnish a clear, orange oil. Purification by 

column chromatography using Et2O/hexanes (2:3) as eluent yielded 36-d (1.28 g, 75%, > 95% D) 

as a clear, light yellow oil, which turned crystalline in the freezer. TLC (Et2O/hexanes; 2:3) Rf  = 

0.34; 
1
H NMR (500 MHz, CDCl3)  7.14 (app. sex, J = 0.7 Hz, 1H, H3), 7.02 (br s, 1H, H5), 2.34 

(app. t, 3H, J = 0.7 Hz, CH3); 
13

C NMR (126 MHz, CDCl3)  151.49 (t, J = 1.8 Hz, C2), 150.38 

(t, J = 0.9 Hz, C4), 148.92 (t, J = 27.7 Hz, C6), 124.82 (C3), 123.25 (t, J = 1.1 Hz, C5), 20.73 

(CH3); GC-MS m/z (relative intensity): 130 (36), 129 (45), 128 (M
+,

 100), 127 (22), 94 (28), 93 

(79), 66 (56), 65 (25); HRMS calcd for (C6H6DClN)
+
 m/z 129.0324, found 129.0307. 

 

6-Deutero-4-methyl-2-((trimethylsilyl)ethynyl)pyridine (74-d) 

 
2-Chloro-6-deutero-4-methylpyridine (1.008 g, 7.84 mmol), ethynyltrimethylsilane(1.4 mL, 

10.01 mmol), Pd(PPh3)2Cl2 (0.483g, 0.69 mmol), CuI (0.205 g, 1.08 mmol), triphenylphosphine 

(0.427 g,1 .63 mmol), Et2NH (12.0 mL, 116 mmol), and DMF (4.0 mL) were added to a 20-mL 

microwave vial, which was then sealed with a septum. Nitrogen was bubbled through the yellow 

reaction mixture for 30 s before it was stirred at 120 C under microwave irradiation for 27 min. 

The resulting brown/black mixture was filtered through a plug of celite, which was subsequently 

washed with CH2Cl2 (250 mL). The black solution was washed with H2O (150 mL), and the 

aqueous phase was extracted with CH2Cl2 (3 x 40 mL). The combined organic phases were 

washed with brine (150 mL), dried with anhydrous MgSO4, filtered, and concentrated in vacuo. 

Purification of the crude black residue two consecutive times by column chromatography first 

eluting with CH2Cl2, and then with Et2O/hexanes (3:7) furnished 74-d (1.112 g, 75%) as a clear, 

yellow oil. TLC (CH2Cl2) Rf  = 0.19; (Et2O/hexanes; 1:1) Rf = 0.34; 
1
H NMR (400 MHz, CDCl3) 

 7.30 (app. sex, 1H, J = 0.7 Hz, H3), 7.02-7.04 (br. m, 1H, H5), 2.32 (app. t, 3H, J = 0.7 Hz, 

CH3), 0.25 (s, 9H, Si(CH3)3); 
13

C NMR (126 MHz, CDCl3)  149.31 (t, J = 27.1 Hz, C6), 147.25 

(t, J = 0.7 Hz, C4), 142.80 (t, J = 1.5 Hz, C2), 128.12 (C3), 123.93 (C5), 103.86 (C8), 94.18 (C9), 

20.76 (CH3), -0.28, (Si(CH3)3); GC-MS m/z (relative intensity): 191 (12), 190 (M
+
, 42), 176 (32), 

175 (100), 147 (19), 121 (14); HRMS calcd for (C11H15DNSi)
+
 m/z 191.1109, found 191.1104 
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6-Deutero-2-ethynyl-4-methylpyridine (35-d) 

 
A mixture of TMS-protected 74-d (1.102 g, 5.79 mmol) and KF (1.011 g, 17.40 mmol) in MeOH 

(30 mL) was stirred at room temperature for 16 h. The solvent was removed by concentration 

under reduced pressure, and the brownish residue was partitioned between CH2Cl2 (100 mL) and 

H20 (100 mL). The aqueous phase was extracted with CH2Cl2 (3 x 30 mL). The combined 

organic phases were washed with brine (100 mL), dried with anhydrous MgSO4; filtered, and 

concentrated in vacuo to afford 35-d (0.641 g, 94%) as a brown, thin oil. TLC (EtOAc/hexanes; 

2:3) Rf  = 0.31; 
1
H NMR (500 MHz, CDCl3)  7.31 (app. sex, J = 0.7 Hz, C3), 7.07-7.09 (br. m., 

1H, Hz, C5), 3.10 (s, 1H, CCH), 2.34 (app. t, 3H, J = 0.7 Hz, CH3); 
13

C NMR (100 MHz, 

CDCl3)  149.42 (t, J = 27.2 Hz, C6), 147.40 (t, J = 1.0 Hz, C4), 142.09 (t, J = 1.5 Hz, C2), 

128.29 (C3), 124.30 (t, J = 1.1 Hz, C5), 82.88 (CCH), 76.58 (CCH), 20.77 (CH3); GC-MS m/z 

(relative intensity): 118 (M
+
, 100), 117 (19), 90 (33), 63 (12), 51 (10); HRMS calcd for 

(C8H7DN)
+
 m/z 119.0714, found 119.0788. 

 

1,2-Bis((4-methylpyridine-2-yl)ethynyl)benzene-d (22-d) 

 
2-((2-Iodophenyl)ethynyl)-4-methylpyridine (38)(0.589 g, 1.85 mmol), 35-d (0.267 g, 2.26 

mmol), Pd(PPh3)2Cl2 (0.141 g, 0.20 mmol), CuI (0.048 g, 0.25 mmol), Et2NH (3.5 mL, 33.7 

mmol), and DMF (0.5 mL) were added to a 5-mL microwave vial, which was then sealed with a 

septum. Nitrogen was bubbled through the mixture for 30 s before it was stirred at 120 C for 13 

min under microwave irradiation. Thereafter, the resulting brown/black mixture was filtered 

through a plug of celite, which was subsequently washed with CH2Cl2 (150 mL). To the filtrate 

H2O (100 mL) was added, and the two phases were separated. The aqueous phase was extracted 

with CH2Cl2 (3 x 30 mL). The combined organic phases were dried with anhydrous MgSO4, 

filtered and concentrated in vacuo. Purification of the brown/black residue by column 

chromatography two consecutive times using EtOAc/hexanes (1:1) followed by CH2Cl2/MeOH 

(99:1) as eluting agents furnished 22-d as a yellow solid (0.338 g, 59%). TLC (EtOAc/hexanes; 

1:1) Rf  = 0.20; 
1
H NMR (500 MHz, CD2Cl2)  8.48 (d, 1H, J = 5.1 Hz, H6), 7.63-7.67 (m, 2H, 

AA’ of AA’BB’, H11 and H11’ , 7.61-7.62  br m, 2H, H3 and H3’ , 7.38-7.42 (m, 2H, BB’ of 

AA’BB’, H12 and H12’ , 7.09-7.12 (br m, 2H, H5 and H5’ , 2.35  br s, 6H, 2 x CH3); 
13

C NMR 

(126 MHz, CD2Cl2)  150.35 (C6), 150.02 (t, J   27.1 Hz, C6’ , 148.02  C4’ , 148.01  C4 , 
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143.58 (C2), 143.56  C2’ , 132.60,  C11 and C11’ , 129.34  C12 and C12’ , 129.27  C3’ , 

129.26  C3 , 126.07  C10 and C10’ , 124.67  C5 , 124.54  C5’ , 93.93  C9 and C9’ , 87.41  C8 

and C8’ , 21.13  2 x CH3); HRMS calcd for (C22H16DN2)
+
 m/z 310.1443 found 310.1412; mp 

141.2 – 144.9 

C. 

 

1,2-Bis((4-methylpyridine-2-yl)ethynyl)benzenebromonium triflate-d (18a-d) 

 
A mixture of mono-deuterated 22-d (47 mg, 0.15 mmol) and AgOTf (39 mg, 0.15 mmol) was 

dissolved in CH2Cl2 (15.0 mL) under stirring at room temperature in nitrogen atmosphere. To the 

clear, light yellow solution was added a solution of Br2 (0.58 M, 270 μL, 0.16 mmol) in CH2Cl2 

dropwise by syringe. Immediately, a light yellow precipitate (AgBr) was formed. The reaction 

mixture was stirred vigorously for 30 min. Thereafter, the mixture was centrifuged at 2000 rpm 

for 10 min. The clear, light orange supernatant was carefully removed and transferred by syringe 

to a 50-mL pear-shaped flask sealed with a rubber septum. Precipitation was carried out by 

addition of n-hexane (20 mL). The formation of the light yellow/beige precipitate was continued 

at 0 C in an ice-bath for 30 min. The clear, light yellow solution was removed carefully by 

syringe, and the remaining solid was washed twice with dry n-hexane (2 x 10 mL). After solvent 

removal by syringe, and drying under vacuum, the bromonium complex 18a-d was furnished as a 

light yellow solid (61 mg, 76%). 
1
H NMR (500 MHz, CD2Cl2)  8.65 (d, 1H, J = 5.9 Hz, H6), 

7.74-7.79 (m, 2H, AA’ of AA’BB’, H11 and H11’ , 7.70-7.72  br m, 2H, H3 and H3’ , 7.56-7.61 

(m, 2H, BB’ of AA’BB’, H12 and H12’ , 7.40-7.43  m, 2H, H5 and H5’ , 2.54  s, 6H, 2 x CH3);
 

13
C NMR (126 MHz, CD2Cl2)  155.65  C4’  155.62  C4 , 147.52  C6 , 147.21 (t, J = 27 Hz, 

C6’ , 139.89  C2 , 139.86  C2’ , 134.14  C11 and C11’ , 131.74  C12 and C12’ , 131.41  C3 and 

C3’ , 127.65  C5 , 127.52  C5’ , 125.02  C10 and C10’ , 97.55  C9 and C9’ , 88.99  C8 and 

C8’ , 21.90  2 x CH3); 
19

F NMR (376 MHz, CD2Cl2)  -76.82 (s, CF3); HRMS calcd for 

(C22H15DBrN2)
+
 m/z 388.0560, found 388.0619; mp 129.0 - 137.3 C (decomposition), 

discoloured 115.5 C.  
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1,2-Bis((4-methylpyridine-2-yl)ethynyl)benzeneiodonium triflate-d (18b-d) 

 
A mixture of mono-deuterated 22-d (42 mg, 0.14 mmol) and AgOTf (36 mg, 0.14 mmol) was 

dissolved in CH2Cl2 (15.0 mL) under stirring at room temperature in nitrogen atmosphere. To the 

clear, light yellow solution was added I2 (40 mg, 0.16 mmol), and immediately upon the addition 

a yellow precipitate (AgI) was formed. The reaction mixture was stirred vigorously for 30 min. 

Thereafter, the mixture was centrifuged at 2000 rpm for 10 min. The clear, light orange 

supernatant was carefully removed and transferred by syringe to a 50-mL pear-shaped flask 

sealed with a rubber septum. Precipitation was carried out by addition of n-hexane (20 mL). The 

formation of the light yellow/beige precipitate was continued at 0 C in an ice-bath for 30 min. 

The clear, dark red solution was removed carefully by syringe, and the remaining solid was 

washed twice with dry n-hexane (2 x 10 mL). After solvent removal by syringe, and drying under 

vacuum, the iodonium complex 18b-d was furnished as a light yellow solid (48 mg, 59 %). 
1
H 

NMR (500 MHz, CD2Cl2)  8.67 (d, 2H, J   5.9 Hz, H6 and H6’ , 7.75-7.80 (m, 2H, AA’ of 

AA’BB’, H11 and H11’ , 7.70-7.72  m, 2H, H3 and H3’ , 7.57-7.62 (m, 2H, BB’ of AA’BB’, 

H12 and H12’ , 7.28-7.30  m, 2H, H5 and H5’ , 2.53  app. t, 6H, J = 0.7 Hz, 2 x CH3); 
13

C NMR 

(126 MHz, CD2Cl2)  155.87  C4’ , 155.85 (C4) 150.39 (C6), 150.06 (t, J = 27.6 Hz, C6’ , 

142.59 (C2), 142.46 (C2’ , 134.79  C11 and C11’ , 131.41  C12 and C12’ , 131.37  C3 and C3’ , 

127.91 (C5), 127.77 (C5’ , 124.75  C10 and C10’ , 98.27  C9 and C9’ , 121.61 (q, J = 321.7 Hz, 

CF3), 91.00  C8 and C8’ , 21.94  2 x CH3); 
19

F NMR (376 MHz, CD2Cl2)  -76.79 (s, CF3); 

HRMS calcd for (C22H15DIN2)
+
 m/z 436.0421, found 436.0475. 
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