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Self Oscillations and Cooling of Carbon Based NEMS Devices
ANDERS NORDENFELT

Condensed Matter Theory

Department of Physics

University of Gothenburg

ABSTRACT

We investigate the electromechanical properties of a number of system ge-
ometries featuring a doubly clamped Carbon Nanotube or Graphene sheet
with a deflection sensitive resistance and an electronic feedback in the form
of a Lorentz force or an electrostatic attraction. The nanotube is subjected
to a constant current- or voltage bias and it is shown that when the electro-
mechanical coupling exceeds a certain critical value the system becomes un-
stable to self-excitations of the mechanical vibrations accompanied by oscilla-
tions in the voltage drop and current through the nanotube. The critical value
typically depends on the quality factor and some function of the mechanical
and electronic relaxation times. We discuss applications of the devices as ac-
tive tunable radiofrequency oscillators and for cooling.

Keywords: Nanoelectromechanical systems, NEMS, carbon nanotubes, sus-
pended carbon nanotubes, self oscillations, negative differential resistance,
oscillator, transmission line, cooling.
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CHAPTER 1

Introduction

In recent years much progress has been made in the development and fabri-
cation of high performance nano electromechanical devices. The material that
has boosted this rapid development, and which has been the focus of interest
of the nano-physics community for almost a decade, is the two-dimensional
carbon compund Graphene [1] and its close relative, the Carbon Nanotube
(CNT) [2]. Apart from their excellent electronic performance, these materials
posess mechanical properties that opens up for completely novel applications.
High resonance frequencies combined with very low mechnical dissipation
makes it possible to couple the electronic and mechanical degrees of freedom
in ways that are unprecedented.

As part of this enterprise, extensive research has been aimed at examining
how the electronic transport properties of carbon nanotubes and graphene
are affected by mechanical deflection and a number of mechanisms that con-
tribute to this change of conductance have been identified and quantified. The
main purpose of the work presented in this thesis has been to explore and
classify different ways to obtain electromechanical instability with resulting
self-oscillations of suspended Carbon Nanotubes with such a displacement
sensitive resistance. The active feedback mechanism that gives rise to the in-
stability is typically a magnetically induced Lorentz force or an electrostatic
attraction.

Most of the CNT-based devices that have been considered in the litterature
are passive resonators that perform filtering of incoming radio-frequency sig-
nals. The bulk of the material presented here, however, points to another area
of applications, namely the possibility to construct active tunable CNT-based
oscillator devices that transform an incoming dc-signal to an ac-signal. To
date, most of the active oscillators that have been realized in experiments rely
on distance dependent field emission of electrons from a singly-clamped CNT
to an electrode, see for example [3-5]. Another approach, which was proposed
theoretically in the paper [6], relies on distance dependent electron injection
from an STM tip into a doubly-clamped CNT. The advantage with some of
the schemes proposed in this thesis is that, if succesfully implemented, they
wouldn’t require as precise geometry controle as its predecessors. Moreover,
they are readily applicable to any device geometry that gives rise to a deflec-
tion sensitive resistance.



Chapter 1. Introduction

The story doesn’t end there though. One of the side results obtained is
that most of the schemes can be reversed so that instead of producing self-
oscillations they cool down the spontaneus motion of the nanowire, see Chap-
ter 6. Furthermore, in Chapter 7 we demonstrate that by increasing the com-
plexity of the systems slightly there emerges a possibility to selectively excite
harmonics above a certain frequency cut-off. In Chapter 8 the transmission
line is analyzed within the same framework, and finally in Chapter 9 there
is an analysis of a system in which the magnetic field plays a threefold role
giving rise to a phenomenon which we chose to call ‘Spintromechanics’.



CHAPTER 2

LElementary Properties of Carbon Nanotubes and
Graphene

(n,0) zigzag

() armchair

Figure 2.1: Lattice structure of graphene with the chiral vectors of armchair- and
zigzag carbon nanotubes marked with dashed lines in the figure.

The study of carbon nanotubes and graphene nano-ribbons belongs to a
sub-discipline of condensed matter physics commonly referred to as Meso-
scopic Physics. This sub-discipline deals with objects whose spacial dimen-
sions are on both the macroscopic and atomic scale, and thus exhibit some
quantum behaviour that would not be present on the larger scale but at the
same time allow some of its properties to be modelled by classical equations.
Carbon nanotubes and graphene fit into this picture since its mechanical mo-
tion can often be succesfully modelled by continuum mechanics whereas the
electronic transport properties may be fundamentally altered by small changes
in their composition. As the same suggests, the radius of the nanotube is typi-
cally a few nanometers whilst the length may be considerably longer, the cur-
rent world record beeing a few centimeters. Carbon Nanotubes can be thought
of as a sheet of graphene that has been wrapped into a tube. Although they
are not produced in this manner the picture nevertheless serves as a conve-
nient means of classifying different types of carbon nanotubes. Graphene is a
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Chapter 2. Elementary Properties of Carbon Nanotubes and Graphene

Figure 2.2: Graph of the dispersion relation for graphene given by equation 2.1.

carbon compund with a two-dimensional hexagonal structure which is usu-
ally represented by two lattice vectors d@; and @, as shown in figure (2.1). A
tube can be formed by wrapping the sheet joining two atoms separated by a
vector which is an integer linear combination of the lattice vectors. This vec-
tor is called the chiral vector and its representation (m, n) in the lattice basis
defines the so called chirality of the nanotube. Moreover, carbon nanotubes
can be either single-walled or multi-walled.

2.1 Electronic properties

The band structure of graphene is usually calculated using a tight-binding
model and the resulting approximate dispersion relation is given by

— —

E(?) = iyl\/?) +2cos(k - @) +2cos(k - dy) + COS(? (dy—ay), (21)
where the constant v, comes from an overlap integral between the p. atomic
orbitals centered at the two atomic sites in each lattice cell respectively. The
dispersion relation given by (2.1) is plotted in Figure 2.2. The K-points are
sometimes called Dirac points since the dispersion relation around these ex-
hibits a linear rather than quadratic behaviour with respect to the momen-
tum. This fact alone is responsible for much of the peculiar electronic prop-
erties of the material. Graphene is considered to be a semi-metal since, in
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2.2. Mechanical properties

Figure 2.3: Illustration of a suspended Carbon Nanotube. Curtesy of Yury Tarakanov
and Gustav Sonne.

spite of the absence of a bandgap, the density of states at the fermi level is
zero. Hence, at zero temperature a perfect graphene sheet is in principal a
non-conducting material. The conductivity can however be manipulated by
either inserting impurities or through electronic doping by a gate electrode.
The latter method, which is very important for our considerations, will be dis-
cussed more in later chapters. For a comprehensive review of the electronic
properties of graphene see for example Ref [7].

The electronic band structures of different kinds of carbon nanotubes are
obtained from that of graphene by imposing certain boundary conditions spec-
ified by the chirality of the tube. It turns out that there is a simple way of de-
termining whether the carbon nanotube is metallic or semiconducting based
on its chirality. If m —n is an integer multiple of 3 then it is metallic, otherwise
it is semiconducting. The explanation for this, together with a full treatment
of the other transport properties, can be found in Ref [8].

2.2 Mechanical properties

The systems which we will consider consists in part of a mechanical resonator
suspended in both of its ends over a trench. This setup, exemplified by a car-
bon nanotube, is depicted in figure (2.3). The equations governing the dynam-
ics of the mechical resonator also differ depending on whether we consider a
carbon nanotube or a graphene sheet. In particular the non-linear forces scale
differently, something that will be important for the discussion in Chapter
7. If we first consider a carbon nanotube, the appropriate equation to use is
the Euler-Bernoulli beam equation, which including a geometric non-linearity

5



Chapter 2. Elementary Properties of Carbon Nanotubes and Graphene

term and an external force F,,; reads:

9z 92z Oz EA (L /02\? 922
ES@ —‘—pAw —|—’}/§ = (i/(; (g) dX) w + Fext- (22)

Here E is the Young’s modulus, p the mass density, A the cross sectional area,
S the area moment of inertia, v the damping coefficient and L the length of the
nanotube. If we let  denote the radius of the nanotube we have that A = 77
and S = 7r* /4. For the kind of dynamical systems we will consider, the most
rational way to deal with equation (2.2) is to express the vertical deflection as
a series expansion

2t 2) =AY un(t)gn(z/L). (23)

Using the notation & = x/L, the mode shapes are given by the expression
on(2) =Cy{(sin(k, ) — sinh(k,))(cos(k,z) — cosh(k,z)) (2.4)
— (cos(k,) — cosh(k,))(sin(k,z) — sinh(k,z)}, (2.5)

where (), are normalization constants chosen so that fol ¢n(2)?d2 = 1 and
the constants £, satisfy the equation cos(k,) cosh(k,) = 1. The corresponding
vibrational frequencies are given by

ES
= k2, =—. 2.

In many cases, it is sufficient to take into account only the fundamental mode
¢o. If we neglect the nonlinear force term, set the timescale to 7 = wyt and
project the fundamental mode onto equation (7.2) we obtain

1
iWHMMMMZ%AMNM& 27)

where K = kjES/L? is the spring constant. The right hand side of course
becomes particularly simple when the external force is almost uniform across
the tube, which is the case for the Lorentz force that will play a central role in
the following chapters. The constant () = 1/ will be referred to as the quality
factor of the nanotube. At the time of writing, nanotubes with a Q-factor as
high as 10° have been reported, [9,10]. For further discussion on the mechani-
cal properties and dynamics of carbon nanotubes see for example Ref [11,12].

At one occasion we will also briefly consider the mechanics of a suspended
graphene sheet, see Figure (2.4). The complete derivation of the mechanics
of graphene is to long to be covered here, but can be found for example in
Ref [13]. After a few simplifications, for example that we only need to take
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2.2. Mechanical properties

Figure 2.4: Illustration of a suspended Graphene Nanoribbon.

into account the vertical streching, the one-dimensional equation of motion of
a doubly clamped graphene sheet reads

pi(t,x) + pyi(t, x) — Todoz(t, ) — T10:{(0p2(t, 2))*} = Pu(t,z),  (2.8)

where p is the area mass density of graphene, P,(¢,z) is the pressure in the
vertical direction, 7y = (A + 2u)d, Th = /2 + p, A and p being the so called
Lamé-parameters and ¢ a parameter that quantifies the initial in-plane strech-
ing. For further discussion, see for example Ref [14].



CHAPTER 3

Sources of the Electro-Mechanical Coupling

There are two kinds of external forces F.,; that will occur throughout this the-
sis. The first is the electrostatic attraction between the charge on the nanotube
and the charge on some external object placed in its vicinity, for example an
STM-tip or a gate electrode. The second, and the one that will be given most
attention, is the magnetically induced Lorentz force acting on moving charges
inside the nanotube. The latter has the advantage that the direction of the
force can be changed by simply adjusting the direction of the magnetic field.
In order to couple the mechanical and electronic degrees of freedom we also
need some mechanism in which the mechanical subsystem acts back on the
electronic subsystem. The main feature that we will rely upon in every sys-
tem geometry considered is some kind of sensitivity of the conductance of the
carbon nanotube to its vertical displacement. There are a number of ways to
obtain this sensitivity, some of which have already been analyzed theoreti-
cally and been observed in experiments. Before looking at these in more de-
tail we first introduce what will later be referred to as the characteristic length
scale of the system. For simplicity we assume that we only have to consider
the fundamental bending mode with amplitude u. Moreover we assume that
the resistance R(u) of the nanowire is dependent on the amplitude, by some
mechanism yet to be specified, and we define

_ R(u)
R/ (u)

(= . (3.1)

The characteristic length scale could be thought of as the distance the wire
has to move from its stationary point of deflection in order for the resistance
to be reduced to half of its original value. That is, the shorter ¢ the higher
sensitivity. Important to remember is that this length scale is a "local property’
since in most cases it will depend on the stationary deflection. Hence, the
characteristic length is not a property of the system geometry alone but may
also depend on external parameters such as applied fields and other forcings.

3.0.1 Mechanical Strain

The natural starting point is perhaps to investigate the change in conductance
of a carbon nanotube due to pure mechanical strain. The effect does indeed

8
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Figure 3.1: Graph taken from the paper [15] by E.D. Minot, Y. Yaish et. al., showing the
conductance as a function of displacement for a 1.9 um long metallic carbon nanotube
with a diameter of 6.5 nm.

show up for a sufficiently large bending, something that was reported in the
papers [15,16] and later in [17]. In the experiments performed, the strain on
the nanotube was applied through an atomic force microscope. The conduc-
tance of a particular metallic carbon nanotube as a function of mechanical
bending is shown in Figure (3.1). As one can see, in this case the nanotube has
to be bent approximately 50 nm (corresponding to approximately 3% ratio be-
tween the deflection and nanotube length) before the effect shows up clearly.
From inspection of the graph we estimate the characteristic length scale for
this coupling to be at best of the order of 100 nm but for practical purposes
probably much longer. The reason why this reduction in conductance occurs
is not completely settled. It has been suggested that the effect is due to a local
distortion in the sp* bond, another suggestion is that there is an opening of a
band gap. It should also be noted that for some nanotubes the conductance
may increase due to mechanical strain. For further discussions on the topic
we refer to the papers cited above.

3.0.2 Electronic Doping

The effect of electronic doping on the conductance of a semiconducting car-
bon nanotube has been investigated thoroughly in the papers [18,19] and [20].
The basic mechanism could be outlined as follows: An electrode (gate) is put
in the vicinity of the nanotube and by adjusting the applied gate voltage one
can controle the number of electronic carriers, which in turn affects the con-
ductance of the nanotube, see Figure (3.2). In order to understand how the

9



Chapter 3. Sources of the Electro-Mechanical Coupling

Figure 3.2: [llustration of a carbon nanotube suspended over a gate. Image used with
the permission of Y. Tarakanov.

mechanical deflection of the nanowire comes into play we assume the charge
on the tube to be simply the product of the gate voltage and the mutual capac-
itance between the nanotube and the gate: ¢ = V,C,. Put in differential terms
we have

dq = 0V,Cy + V400, (3.2)

The gate voltage is assumed to be fixed, which is why the first term on the
right hand side disappears. However, the capacitance depends on the distance
between the nanotube and the gate. This is why the charge and ultimately
the conductance depends on the displacement of the nanotube. Experimental
evidence of this phenomenon was reported in the paper of V. Sazonova, Y.
Yaish et al. "A tunable carbon nanotube electromechanical oscillator” [21]. In
the cited paper the mechanism was utilized to detect the oscillating motion
of the nanowire and thereby determine its resonance frequency. Experiments
demonstrating the same effect have also been performed more recently, see
for example [22,23]. We expect the typical characteristic length scale for the
electronic doping coupling to lie somewhere between 10~" m and 10~% m. For
detailed calculations we refer to Appendix A. An almost identical analysis can
be carried out for graphene, see Refs. [7,24].

3.0.3 Electronic tunneling

The phenomenon of electronic tunneling would, if implemented sucessfully
into our schemes, result in a very short characteristic length. If we imagine
a system with an STM-tip positioned just a few tenths of a nanometer above
the nanotube acting as the contact, see Figure 3.3, the conductance at the junc-
tion would be proportional to the propability of electrons tunneling between
the STM-tip and the nanotube. This tunneling probability may change drasti-

10



Figure 3.3: Illustration of an STM-tip positioned above a suspended carbon nanotube.

cally on a distance of just 0.1 nm. Despite its great sensitivity, implementing
this kind of geometry poses some serious challenges since the amplitude of
oscillation of the nanotube is greatly limited due to the short distance to the
tip. There is a certain risk that if the nanotube hits the STM-tip it will remain
attached to it because of some attractive force, for example a Van der Waals
force. The system does however exhibit many interesting phenomena, and
the coupling with mechanical degrees of freedom have attracted attention re-
cently, see for example [25-27].

11



CHAPTER 4

Time Scales and I-V Characteristics

Before exploring the main material we will make a small departure to discuss
some concepts that will be useful in the sequel. Let us for the moment think
of our system as a black box with unknown composition. We may perform
experiments on this box by sending some electronic input signal and then an-
alyze the results in terms of voltage drop, current, current-voltage oscillations
and so on. In this thesis we will consider two such inputs, or biases as they
are commonly called. Those are voltage bias and current bias respectively. In
the voltage bias regime the circuit is held at constant voltage drop and it is
assumed that the resistance of the box is much larger than the resistance of the
circuit connecting it to the voltage source. In the current bias regime, on the
other hand, one end of the circuit is fed by a constant external current. Volt-
age bias is technically and conceptually more straighforward and it is what
virtually all of our every day electric equipment operate under. Current bias
is somewhat more complicated on the mesoscopic scale since ultimately you
need a potential difference to accelerate the electrons. Technically it is accom-
plished by connecting the system to a voltage source in series with a resistance
much larger than the resistance of the box. Due to the difference in resistance,
almost the entire potential drop will reside over the external resistor so that
the system "feels” only an external current.

4.1 1-V Curves

So far we have not said anything about the interior of the box. It may be
very simple, for example if it contains only a resistor. On the other hand it
may also be complex with many coupled degrees of freedom. Our every day
intuition tells us that if we increase the voltage bias the current through the
circuit should increase. That would indeed be the case for an ordinary resis-
tor. Correspondingly, in the current bias regime we expect the voltage drop
over the box to increase if more charge is supplied. While this is true in most
cases it need not be for a sufficiently complicated box. The way in which the
current depends on voltage or vice versa is usually illustrated with so called
I-V curves. In the voltage bias regime, if it happens that the current actually
decreases with increasing voltage in some interval one speaks of an N-shaped
I-V characteristic. Conversely, in the current bias regime, if the voltage drop

12



4.1. I-V Curves
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Figure 4.1: Schematic illustration of a system with an S-shaped I-V characteristic per-
forming self-oscillations in the current bias regime.

Figure 4.2: Schematic illustration of a system with an N-shaped I-V characteristic
performing self-oscillations in the voltage bias regime.

decreases with increasing external current in some interval one speaks of an S-
shaped I-V characteristic. Typically in the latter case the system can be made
to perform current-voltage selfoscillations by connecting a sufficiently large
capacitor in parallel to the box and applying an external current within the
critical interval as illustrated in figure (4.1). To achieve selfoscillations in the
case of an N-shaped I-V curve it is usually sufficient to connect a large enough
inductor in series, see Figure (4.2). There are actually two sides of the coin for
each of these I-V characteristics. Suppose you have a system which in the cur-
rent bias regime yields an S-shaped I-V curve. If we then switch regime and
apply a constant voltage in the interval of negative slope (dV/dI < 0) the sys-
tem will exhibit a phenomenon called bi-stability. As can be seen from figure
(4.3), in this case there are three different currents that correspond to the given
voltage bias, two of which are stable in the sense that small deviations will not
take the system far away from its stationary state. Many of the systems we will
encounter have neither S-shaped nor N-shaped I-V curves. Indeed, these I-V

13
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Figure 4.3: A system exhibiting an S-shaped I-V curve in the current bias regime
which is now subject to a voltage bias within the critical interval. As illustrated, there
are three different currents that correspond to the given voltage bias, two of which
are stable in the sense that small deviations will not take the system far away from its
stationary state.

characteristics are by no means necessary for the current and voltage to start
to oscillate under constant forcing. The above discussion nevertheless serves
a purpose in that it introduces some useful concepts and that it provides a
tool to better understand the nature of the electro-mechanical instability. It
might be the case that the instability is mainly caused by the mechanical (or
some other) subsystem, and that the current voltage fluctuations are merely a
reaction to the mechanical subsystem. If one concludes, however, that an S- or
N-shaped I-V curve, (also sometimes called negative differential resistance), is
necessary for self oscillations, that usually indicates that the instability mainly
resides in the electronic subsystem.

4.2 Time Scales

In Chapter 2 we identified an important time scale, namely that corresponding
to the mechanical frequency of oscillation wy. From elementary circuit theory
we are also familiar with other characteristic time scales such as the relaxation
time of an RC-circuit, with the corresponding frequency

wr = 1/(RC). (4.1)

14



4.2. Time Scales

Moreover, we have the frequency of an LC-circuit
wr =1/VLC. (4.2)

In the systems considered in the following chapter we will assume that there
is a nonzero resistance and in most cases some effective capacitance, external
and/or internal. The effective capacitance referred to here should not be con-
tused with the gate capacitance mentioned in Section (3.0.2). In the case of
voltage bias we will also assume that there is some effective inductance in the
circuit, external and/or internal. We will see that the relationships between
the mechanical and electronic time scales play a central role in the subsequent
calculations.

15



CHAPTER b

Magnetomotive Instability

Before we proceed we will make a brief summary of what we have discussed
so far. We have identified three mechanisms or geometries in which the con-
ductance of the CNT depends on the mechanical displacement: 1) Mechanical
strain, 2) Electronic doping and 3) Electronic tunneling. To each mechanism is
associated a certain characteristic length scale ¢ (which may depend on exter-
nal parameters). Moreover we have discussed two different electronic feed-
backs on the mechanical motion: 1) A magnetically induced Lorentz force
which is proportional to the current through the nanotube and 2) An elec-
trostatic attraction between the nanotube and some other object, typically an
STM-tip. We have also discussed two different regimes under which these
systems may operate: 1) Current bias regime and 2) Voltage bias regime. In
pricipal one can combine these modes of operation in several different ways
and from a practical point of view there are advantages and disadvanatges
with each of these. The analysis has shown, however, that the most important
is probably the voltage bias regime combined with Lorentz force feedback.
The reason for this will hopefully become clear in the following three chap-
ters. Here we will exclusively consider the Lorentz force feedback, starting
with the mathematically simpler current bias regime.

5.1 Self oscillations in the current bias regime

Consider the setup depicted in figure (5.1). We have a suspended semicon-
ducting CNT which is subject to an external current and a constant magnetic
field. The direction of the magnetic field is of vital importance as we will
explore later. How to model the mechanical motion has already been dis-
cussed in Chapter 2. Let us assume as before that we only need to consider
the fundamenatal bending mode with a time dependent amplitude u(t). The
equation of motion then reads

mii + v+ ku = LH . (5.1)

The right hand side of equation (5.1) is the Lorentz force proportional to the
current through the wire, where L denotes the effective length of the wire. In
order to model the electronic part we first write the equation for the charge

q=1Io— Ions. 5.2)

16



5.1. Self oscillations in the current bias regime

=0

Figure 5.1: Sketch of the current biased oscillator device. A semiconducting carbon
nanotube is suspended over a gate electrode and connected to an external dc current
source. A uniform magnetic field, applied perpendicular to the direction of the cur-
rent, gives rise to a Lorentz force that deflects the tube towards the gate. This affects
the resistance and provides a feedback mechanism that for large enough magnetic
tields leads to self-sustained nanotube oscillations. The inset shows an equivalent
electric circuit of the device.

17



Chapter 5. Magnetomotive Instability

This simply states that the time derivative of the charge at the left lead is the
charge provided per unit time by the external current minus the charge escap-
ing through the wire per unit time. If we divide equation (5.2) by the capaci-
tance we get the equivalent equation for the voltage

V== (Iy— L) (5.3)

What remains is an expression for the current through the wire, which is sim-
ply Ohm’s law but now with a position dependent resistance:

v

oo (5.4)

Icnt -

For fixed external parameters there is a unique stationary solution (i = 0,
=0,V = 0) to the above system of equations given by

Vo = R(ug)lo, (5.5)
Uy = LZIO. (5.6)

In order to elucidate the role of all parameters involved it is convenient to
switch to the dimensionless time

T = wol, (5.7)

and the dimensionless variables
B =u/l(ugp), (5.8)
p=V/W. (5.9)

It is important to note that the scaling, except possibly the time scaling, de-
pends on the stationary deflection. As length scale we have made use of the
characteristic length introduced in Chapter 3 for which the dependence on w
is written explicitly. Furthermore, we introduce the dimensionless conduc-
tance:

Ry
R(p)’
where R, simply denotes the resistance at the stationary point of deflection.
The dimensioneless conductance has the desired property that f(5,) = f'(5) =
1, (Bo = wo/l(up)). In dimensionless variables the system of equations can be
expressed as

f(B) = (5.10)

B+Q7'B+ 8= Bopf(B), (5.11)
o= ‘;—fu —of(B).
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5.1. Self oscillations in the current bias regime

The significance of the parameters introduced earlier have now become clearer.
From a mathematical point of view there are only three parameters that define
the system: (1) The electromechanical coupling parameter (3, which also hap-
pens to be the stationary point of deflection in rescaled coordinates, (2) The
quality factor () and finally (3) The ratio between the electronic and mechan-
ical frequences wp/wy (Where wrp = 1/(R,C')). Expressed in physical param-
eters, the electromechanical coupling parameter for this particular system is
given by

_ LHI

In order to find the necessary conditions for instability the most straightfor-
ward procedure in this case is to perform a linear stability analysis, a method
which is outlined in Appendix B. It is sometimes possible to obtain exact ex-
pressions if the dimension of the system is sufficiently low. Indeed, for the
system (5.11) we have the following exact criterion for instability:

Bo (5.12)

1 wowr + Q(wj + wi)
Q  wolwo + Qug)

Bo > B = (5.13)

In the limit of high quality factors we have the somewhat simpler expression

Bo > o 2~ (”R + ﬂ) . (5.14)

_Q wo WR

Clearly, the system’s succeptability to selfexcitations increases as the charac-
teristic frequencies w, and wy approach each other. This kind of limiting value
where the quality factor competes against the ratio between two characteris-
tic timescales will occur frequently throughout the remainder of this thesis.
We may now return to the question touched upon before, namely in which
direction to orient the magnetic field. The answer lies implicit in the formu-
las just derived but may not be self evident. If we recall the definition of the
characteristic length scale, there is a sign convention that defines the positive
B-direction as the direction towards increasing conductance, or equivalently,
decreasing resistance. Since the critical value . is always positive for this
setup it means that in order to obtain instability the magnetic field has to be
directed so as to push the carbon nanotube towards increasing conductance.
The latter is not always the case as we will see in the next section. The formu-
las which we have derived so far does not provide any information on how
the instability evolves in time. The first question to adress is the shape of the
I-V curve discussed in Chapter 4. For this purpose it is useful to return to the
equations for the stationary solution in original variables:

Vo = R(ug)lo, (5.15)
Uy = LZIO. (5.16)
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Chapter 5. Magnetomotive Instability

For nonzero magnetic field, u, can be used as a parametrization of 1, and I
and we may write the derivative dV;/dl, as

d‘/o d‘/o duo , d]() dUO
S0 _THT (g T 20 17
Iy~ duo dl, ( oR(uo) + R(UO)duo) al, 617)
From this follows that
d
d—‘]/o <0 <= [y =Pu(lp) > 1. (5.18)
0

This means that the slope is negative precisely when 3, > 1 yielding an S-
shaped I-V curve. Upon inspection we also see that in this situation there is
indeed one and only one critical capacitance, since 3. — 1 as wg — 0 (which
corresponds to the limit C' — oo). Moreover, from the discussion in Chap-
ter 4 we also know that from an S-shaped I-V curve we can have bistability
if we change to voltage bias, but that is another story. A situation with such
a high coupling parameter must however be considered rare and in a more
realistic situation we would expect ; < 1. In this case the time-evolution can
be studied analytically by making the ansatz 5 = 3, + A(7) sin(w), assuming
A(7) to be a slowly varying function on the timescale of the rapid oscillations,
and solve for ¢ by a perturbation expansion ¢ = 1+ Ap; + A%py + Adp3 + - - -,
see [28]. Despite the fact that the system has only three dimensions the calcula-
tions beyond second order are somewhat cumbersome. There is however the
phenomenon of a deviation of the average voltage from its stationary value
which can be understood as the occurence of constant terms in the pertur-
bation expansion of ¢. The lowest order constant term is found to be propor-
tional to A? and if we let A, denote the saturation amplitude of the mechanical
oscillation then for small A, the voltage drop (rise) can be approximated by

Vi = Vo 2= (1+wi/wh) f"(Bo)
Vo T A+ wi/wh)
This phenomenon can be seen clearly from the computer simulation presented
in figure (5.2).

A2, (5.19)

Using the same technique we can derive an equation for the time evolution
of the amplitude:

A ﬁ - ﬁc A2(t)
A(t) = aqwoA(t) l( 3 ) + b 00| (5.20)
where
= é WoWRr
! 2wi + Wi
4 =, 2 9 4
b = dwy — dwiwp + 3wp . (5.21)

2(wg + w3)(4wi + w3)
1 <3w%—w§) 0€R 16 82€R

+ — TR
2\ w2+wd ) ouy 2 "o
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5.1. Self oscillations in the current bias regime
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Figure 5.2: Time evolution of (A) the mechanical deflection of a suspended carbon
nanotube and (B) the voltage drop over a vibrating nanotube of quality factor @Q = 100
and resistance R(u)/Ry = (1 + e~2(—%0)/¢r) /2, as calculated from Egs. (5.1) and (5.3)
for the RC-frequency wr = wy, the coupling parameter 5y = 1.15. = 0.0219, and the
initial conditions «(0) = 0, 4(0) = 0, and V' (0) = 0. The grey areas span the envelopes
of the unresolved oscillations while the dashed lines mark their time averaged values.
As can be seen, the time averaged voltage drop deviates more and more from the
static value V; as the amplitude of the mechanical oscillation increases. Image created
by Yury Tarakanov, [29].
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Chapter 5. Magnetomotive Instability
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Figure 5.3: Saturation amplitude A, normalized to the characteristic length (g,
for a carbon nanotube of quality factor () = 100 and resistance R(u)/Ry = (1 +
e2(u=u0)/tr) /9 as calculated from Egs. (5.1) and (5.2) using the initial conditions
u(0) =0, 2(0) =0, and V(0) = 0. Results in the "soft" instability regime (wr = wy) for
different values of the coupling parameter 3, which are all larger than than but close
to the critical onset value /3., are marked by solid circles while solid squares are used
to mark results in the "hard" instability regime (wr = 2wp). The solid lines are guides
for the eye.

The main significance of Formula (5.21) is that if the coefficient b, is negative,
then we can predict the saturation amplitude as the solution of a second order
algebraic equation. In the opposite case, however, there is no stationary so-
lution and one would have to continue the perturbation expansion to higher
orders, which in practise is almost an impossibility. These two cases, which
are illustrated in Figure (5.3) corresponds to two different types of instability
which we call soft- and hard instability respectively. In the case of soft in-
stability, which in our case is most likely to occur for relatively low wg, it is
in principle possible to, through the strength of the magnetic field, adjust the
saturation amplitude to a value arbitrarily close to zero.
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5.2. Self oscillations in the voltage bias regime

5.2 Self oscillations in the voltage bias regime

We will now consider a similar oscillator device which instead of an external
current source is driven by a constant voltage bias V4. In order to achieve self-
oscillations in this regime it is necessary that there be some inductance £ in
the circuit, which we assume can be represented by an external inductor in
series with the CNT, see figure (5.4).

<

Figure 5.4: Sketch of the voltage biased oscillator device. A semiconducting or metal-
lic carbon nanotube is suspended over a gate electrode and connected to an external
dc voltage source. A uniform magnetic field, applied perpendicular to the direction
of the current, gives rise to a Lorentz force that deflects the tube away from or towards
the gate electrode. Which direction that can give rise to selfexcitations is determined
by the ratio wr/wy (see text). The inset shows an equivalent electric circuit of the
device.

It is now important to distinguish between the voltage bias V; on the one hand
and the voltage drop over the CNT which as before will be denoted V. The
current through the CNT is denoted /.,; while the current through the induc-
tor, which is the sum of 1., and the capacitive current, is denoted I. The
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Chapter 5. Magnetomotive Instability

dynamics of this system is governed by the equations:

mii + i+ ku = LHV/R(u), (5.22)
. 1

V= E(I - 'Icnt)>

Vo=V —LI=0.

The last equation, which simply states that the total voltage drop over the
circuit be zero, determines the time evolution of the current. A stationary
solution to (5.22) must satisfy the equations

Iy = Vo/R(uo), (5.23)
Uy = LZIO, (5.24)

and as we can see, in the voltage bias regime it need not be unique. Switching
to the dimensionless parameters

T = wot, (5.25)
ﬁ = U/E(UO),
v =V/W,
=1/l
the system of equations may be written
B+Q7'B+ 8= bopf(B), (5.26)
o= o f(B),
0
- w? B
V= 1)

where f(/3) is the dimensionless conductance defined by equation (5.10), w;, =
1/V/LC is the LC-frequency and

PR AL /Ry
O kl(uo)
This four-dimensional system can be analyzed by the same techniques used

before, though resulting in somewhat more complicated expressions. The con-
dition for stability is given by the two inequalities

(5.27)

§— F(B) < Bo <0+ F(b), (5.28)
where
oy lwr Wi wr/wotwi/(wiQ)
R P Yy (5.29)

F(fo) = /(1 + wr/(@0Q) + w3 /w3 — fo)? — 4w} /)L~ fo).  (5.30)
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5.2. Self oscillations in the voltage bias regime
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Figure 5.5: Graphs of the functions 6 + F'(fy), o and § — F(f3y) for different system
parameters. Instability obtains when either of the two inequalities 6 — F'(5y) < By <
d + F(fp) is reversed. See the text for details.

Hence, selfexcitations will occur when either of these inequalities is reversed.
However, for fixed system parameters (wy, wr, wr, @) only one (if any) of these
inequalities can be reversed by varying /3, through the magnetic field. One can
show that the instability condition boils down to

|Bol > [6Be|, Sgn(fo) = Sgn(se), (5.31)

where the critical electro-mechanical coupling parameter (. is given by

1 ( w? — w2 +w%/Q+wao).

be==5 wrwo + wi/Q w? — w?

Q

We may now identify three cases: (1) If wy = w;, there cannot be any instability
regardless of the value of . This singular behaviour is illustrated in Figure
(5.5(a)). (2) If w;, > wy we have instability for 5, < (. with . negative, see
Figure (5.5(b)). (3) If w;, < wy we have instability for 5, > (. with . posi-
tive, see Figure (5.5(c)). As mentioned before, the physical interpretation of
the sign of f, is that if it is negative the carbon nanotube is pushed towards
increasing resistance and if it is positive the nanotube is pushed towards de-
creasing resistance. This circumstance might be of importance if we wish to

(5.32)
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Chapter 5. Magnetomotive Instability

utilize the effect of pure mechanical strain on the resistance. In this case the
deflection dependence of the resistance is symmetric around the straight equi-
librium configuration of the nanotube, hence, the sign of 3 cannot be reversed
by simply changing the direction of the magnetic field. Moreover, for metallic
nanotubes the resistance is indeed likely to increase with bending as already
noted in Chapter 3, see [15], [17]. If we let the capacitance go to zero equation

(5.32) reduces to
1 Ro £W0 1 )
=+ + =), 5.33
2 Q (ﬁwo Ry Q ( )

which is the same value one would obtain for the three-dimensional dynami-
cal system

B+Q7'6+ 0= Bov, (5.34)
. Ry
= —(1- .
U= (1= v/ f(5)
Thus, by letting the capacitance go to zero we have in effect excluded the
charge as a variable of the system and the relation between the voltage drop
over the nanotube and the current is simply given by Ohm Law: V' = I R(u).
By direct comparison with equations (5.11) and (5.19), for the system (5.34) we
get the corresponding estimate for the deviation of the time averaged current
I,, from the static value I, as a function of mechanical saturation amplitude
A
low = 1o 2= (14 (Lwo)?/R5)(2 = f"(5o))
Iy 4(1 4 (Lwo)?/RY)

An increase in the effective resistance, which in the voltage bias regime man-
ifests itself as a reduction in time averaged current, appears to be a com-
mon feature of many self-oscillation occurences reported in the litterature. In
Ref [30], by S. Perisau et al., the authors describe the deviation in timeaver-
aged current observed in experiments perfomed on singly clamped carbon
nanotubes in a field emission environment:

A2, (5.35)

"It is always in the same direction: the current decreases when the nanowire
enters into self oscillation and increases when it stops self oscillating. This counter
intuitive and intriguing phenomenon also appears in a wide range of fields such as
physiology, biology, hydrodynamics and electronics..”

If, in our case, we assume that f”(;) = 0 then we will indeed only observe
a decrease in the averaged current. As we will see in Chapter 9 though, from
theoretical considerations there may very well be situations when the time
averaged current in fact increases due to mechanical self-oscillation.
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CHAPTER 6

Cooling

One of the major advantages with the Lorentz force feedback is that the electro-
mechanical coupling parameter can be controlled in magnitude by an external
tield that does not interfere too much with the other system parameters. Apart
from this, in most cases one can switch the sign of the coupling parameter by
simply reversing the direction of the magnetic field. As elucidated in the pre-
vious sections, selfexcitations can only occur if the coupling parameter has a
certain sign, and a natural question arises what would be the effect on the me-
chanical motion if the sign was switched. The answer is, not surprisingly, that
the spontaneous motion of the nanowire would be damped. This may open
up the possibility to use the same setup as a device for "cooling’ the nanowire,
in the sense that its spontaneous motion is reduced below the magnitude that
would obtain as a result of thermodynamic equilibrium with the environment.
The idea to cool a nanowire by coupling its mechanical motion to an electronic
subsystem via a magnetic field is not new and has been explored for example
in the papers [31-34]. The ultimate goal of cooling is to reduce the motion of
the nanowire to its quantum mechanical ground state. Such a pursuit needs
a quantum mechanical treatment and the systems at hand cannot easily be
formulated in that framework, mainly because we have included a resistance.

The question whether "damping’ automatically results in ‘cooling” and in
that case how much could be disputed. The answer very much depends on
the implicit assumptions of the model, something which we will try to clarify
in the following. A classical treatment of a harmonic oscillator coupled to
a thermal bath consists usually of a stochastic differential equation, whose
general form mathematicians often express in the following way:

dX = b(X,t)dt + B(X,t)dW (6.1)
X(0) = X, (6.2)
where X is the vector whose trajectory we wish to obtain and W (¢) stands for

the so called "Wiener process” or ‘Brownian motion’, which is defined by the
following properties

W (0) = 0, (6.3)
W(t+ At) — W(t) € N(0, At), (6.4)
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Chapter 6. Cooling

and that for all times t; < ¢, < ... < t,_1 < t, the random increments
W(ty) — W(ty),..., W(t,) — W(t,—1) are independent. The formulas (6.1) im-
mediately suggest an Euler type numerical implementation, where for a given
time step dt we simply replace dW by N(0,1)/dt. Later on we will compare
our analytical estimates with computations of this kind. Considering now a
harmonic oscillator coupled to a thermal bath, the standard classical model is

mii + yu + ku = o&(t), (6.5)

where (1) is a stochastic force which in some sense represents the ‘derivative’
of the Wiener process. In particular we have that

(€(t)e =0 (6.6)
(E(DE([E))e = o(t —1'). (6.7)

Given these assumptions it is now a pure mathematical fact that
m(i?) = k{u®) = —. (6.8)

It is thus evident that the stationary state is in some sense the result of a dual-
ism between the diffusion term which will drive the oscillator if it has become
too ‘cold’, and the dissipation term which will bring it down if it has become
too ‘'warm’ or excited. The conceptual twist comes when we try to reconsile
this with the canonical equipartition theorem k(u?) = kgT, which forces us to
put

0? = 2kpTH, (6.9)

which introduces a somewhat ad-hoc dependence between the two parame-
ter o and 7. In the following we will though treat o and ~ as independent.
When estimating the cooling or heating caused by coupling the nanotube to
an electronic subsystem we will do so by analyzing its effect in terms of a
perturbation of the relevant parameters. Since the electronic subsystem is as-
sumed to belong to the "deterministic” part of the dynamics, the parameter in
question is . If we define the effective temperature as T, ;; = k(u?)/kp and as-
sume that the electronic coupling causes a shift in the dissipation term v — 7/,
then, (assuming o remains constant), the cooling coefficient is simply given by

Teff Y
_ = — -1
= (6.10)

where Tj is the environmental temperature. The question is now which v
we are actually competing against. If the nanotube is excited above thermal
equilibrium the natural choise would be v = Q™! so we will assume that this
holds also below thermal equilibrium, though, given the previous discussion,
it is by no means self evident. Considering again the system of equations for
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the voltage biased device described in the previous chapter, but now with a
stochastic force added to it:

B+Q 7 B+ 8 = opf(B) + o&(t), (6.11)

o= Z—f(w —f(8)), 6.12)

b= YLy, (6.13)
WRW(

there are at least two different ways to approach the problem. The one we
will cover first is the more simpler and suggestive but with a more limited
scope, which is shown in Appendix C. As mentioned in the previous chapter,
if || < 1 we can assume that the mechanical motion follows a sinusoidal
path 3(7) = A(7)sin(7) where the amplitude A(7) varies slowly on the time
scale of the rapid oscillations. We then make the Ansétze p = o+Ap;+A%pa+
oy =10 + Aty + A%y + ... and put them into the equations (6.12 - 6.13) and
solve for each power of A successively [28,35]. Given these solutions, if we
equate the cosine terms to the first power of A on both sides of equation (6.11)
we get the following expression for A:

24 = —(BpS +Q7MA, (6.14)

wowr(w? Jwi — 1)
wh(Wi/wg —1)% +wh

S =

(6.15)

Thus, the cooling coefficient becomes

Teff . wowR(w%/wg _ 1) -1
(TO)VB - (l QR 1) W;) ~ (6.16)

The same conclution can be drawn by doing a perturbation analysis on the
roots of the characteristic equation, something that is dicussed further in Ap-
pendix C. In principal the formula holds also if 3,S < 0 but the result is then
heating instead of cooling. The efficiency of either effect is dependent on the
magnitude of the succeptibility S, which attains its absolute maximum of 1/2
when

wowg = |w? — wil. (6.17)

One important thing to notice is that the sign of S depends on the relative
magnitude of wy and w;, something that will form the basis for the analysis
carried out in Chapter 7 on selective self-excitation. It should also be noted
that the succeptibility is zero precisely when wy = wr. A computer simulation
aimed at illustrating the cooling process is shown in Figure (6.1). A completely
analogous treatment of the current biased device results in the cooling coeffi-

cient - ., o .
—ol =11- 6.18
< Ty )CB < ﬁOQWS + W%) 7 (6.18)
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-0.15
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Figure 6.1: The figures display the results of two computer simulations of the system
of equations (6.11 - 6.13) with the stochastic force c£(t) € N(0,0.01). The parameter
values were wy, = 2wy, wr = 3w, @ = 100 and f(5) = (1 — exp(—2(6 — fo))/2. The
figure to the left shows a simulation with §y = 0 and the figure to the right shows a
simulation with 5y = 0.1. A numerical cooling coefficient of (7.¢;/Tp), ~ 0.19 was
obtained which is to be compared with the analytical result (7,¢7/Ty), = 1/6 ~ 0.17.

Just as in the case of selfexcitations, we see that the efficiency is highest when
wp = wg, but important to notice is that the relative magnitude of w, and wg
does not affect the sign of the succeptibility function.
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CHAPTER /

LSelective self-excitation of higher vibrational modes

In the previous chapters only the fundamental bending mode of the mechani-
cal resonator was taken into account. However, by considering also the higher
harmonics a carbon nanotube or a graphene sheet could be viewed as an in-
tinite set of mechanical oscillators with frequencies wy, wy,ws, ... and so on. In
order to include these modes we will step by step generalize some of the con-
cepts introduced earlier, beginning with the mode dependent succeptibility
function for the voltage biased device, which reads:

o _ _wawn(wh/e? = 1)
"R 1R

(7.1)

It is obvious that S,, will be negative for all n such that w, > w; and posi-
tive for all n such that w,, < wy. This simple observation forms the basis for
this entire chapter. If we treat w;, as a freely adjustable parameter then the-
oretically this opens up the possibility to excite an arbitrarily high overtone
of a carbon nanotube, while at the same time the lower harmonics are kept
relatively silent. This will be referred to as selective self-excitation. For pre-
vious theoretical work on this topic see for example [26,27]. Experimentally,
selective self-excitation has been achieved through photothermal actuation,
as reported in the papers [36,37]. In our case, it is worth to emphasize that

\Y
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Figure 7.1: Sketch of the proposed electronic circuit (7.1(a)). The resistor is comprised
of either a graphene sheet or a carbon nanotube suspended over a gate electrode

(7.1(b)).

for this to be possible we really need to be in the voltage bias regime. As
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Chapter 7. Selective self-excitation of higher vibrational modes

we will explore, there are several contributing factors that make the higher
harmonics substantially less prone to become unstable, hence, without this
frequency cut-off it is most likely that the fundamental bending mode would
be excited and possibly even drive the system into a chaotic regime long be-
fore the higher mode in question has even reached the threshold of instability.
The major complications that arise here is due to various intermode crosstalk
which could be mediated either through fluctuations in the resistance but also
through non-linear mechanical forces. In this chapter our model will there-
fore be extended to include these forces and we base our conclusions mainly
on numerical simulations. We will also further discuss the material properties
of carbon nanotubes and compare them with those of graphene.

7.1 Carbon nanotubes

We recall the dynamic equations for a doubly clamped elastic beam affected
by a Lorentz force:

'z 9z 0z EA [* [02\? 0%z

The equations governing the electronic subsystem, see Figure (7.1(a)), reads:

CV =1—V/R[z(t,z)], (7.3)
LI=V,—V, (7.4)

where, as usual, V' is the voltage drop over the capacitor and I the current.
Equations (7.2 - 7.4) are solved numerically using a Galerkin reduced-order
model, which we truncate at the 6th overtone. Hence, for the mechanical de-
flection we make the following Ansatz:

6

2tx) = A un(t)dn(z/L), (7.5)

n=0

where L is the length of the nanowire and ¢,, is the mode shape corresponding
to the frequency w,,. The resistance R is now treated as a functional of the total
vertical bending shape z(¢, z) and is integrated numerically at each time step.
Furthermore we define

1
an = /0 bul)di, 7.6)

where we have used the notation & = /L. In Table (7.1) are listed the frequen-
cies and parameters o, for the first few modes with even index for a carbon
nanotube. The effect of the Lorentz force on each mode will be proportinal to
o, which is the reason why we only need to take into account those with even
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7.1. Carbon nanotubes

index n. Extending our definitions further, the mode dependent characteristic

length is defined as
R

" OR/0u,’
If, as usual, we rely on the sensitivity of the resistance being achieved through

electronic doping controlled by a gate electrode, to a first approximation (see
Appendix A) the relative magnitude of the characteristic lengths should be

A = (7.7)

Ao Quy

Wi (7.8)
Since there is no "unique’ characteristic length for the system as a whole we
put A = 1 nm consistently throughout. Finally we introduce the mode depen-
dent coupling parameter

HJL
R

where K,, = w2 K /w3, K being the effective spring constant for the fundamen-
tal mode. In total, it could thus be argued that the coupling parameter 3,
should decline at a rate given approximately by

Bn = (7.9)

a? w?
B~ —2015,. (7.10)

2
Qg Wy

Recalling from our previous analysis, that (neglecting non-linear forces and
intermode crosstalk) when /3,5, is negative the mode becomes unstable ap-
proximately when

|BnSn| > 1/Q, (7.11)

itis evident that Equation (7.10) puts severe limits on how high frequencies we
can actually reach. Therefore, at this point it could be appropriate to say a few
words about the maximum current that a carbon nanotube can withstand. In
Ref [38] it was reported that for single-walled carbon nanotube with a length
of approximately 1um, at room temperature the current tends to saturate at
around 20p.A. The current carrying capacity of multi-walled carbon nanotubes

Table 7.1: Mode dependent vibrational frequencies w,, and integration constants o,
for the first four bending modes with even index of a carbon nanotube.

n | wp/wo | ap

011 0.83
2|54 0.36
4 || 13.3 0.23
6 || 24.8 0.17
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Q =10%, W =2.323, w, =4.397
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Figure 7.2: Saturation amplitudes Ay, A, A4 and Ag for the respective modes ug, u2,
ug and ug, as a result of computer simulations aimed at selective self-excitation of the
second harmonic of a carbon nanotube with radius r = Inm and length L = 1um.
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Figure 7.3: Time evolution of the envelopes of the rapid oscillations in the fundamen-
tal mode u (top figure) and second harmonic us (bottom figure) of a carbon nanotube
as the results of a computer simulation displaying a normal selective excitation.
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7.1. Carbon nanotubes

is higher though [39].

In Figure (7.2) we show the saturation amplitudes for the respective modes
as a result of computer simulations for a coupling parameter 3 in the range -6.6
to -7.1 which, assuming a stationary current of 1 /A, corresponds to a mag-
netic field strength in the interval 2.6-2.8 T. The quality factor was assumed
to be ) = 10* and the electronic frequencies where chosen so as to selectively
excite the second overtone. Figure (7.3) shows the envelopes of the rapid os-
cillations as a function of time of the zeroth and second mode for one of these
simulations. As we can see, in the beginning the fundamental mode oscil-
lates with the largest amplitude but later on the second harmonic experiences
a rapid boost which causes the magnitude of the timeaveraged displacement
in the fundamental mode to decrease. This is because the oscillation increases
the effective resistance leading to a reduced Lorentz force.

6
/21 % 10*

6
/21 % 10*

Figure 7.4: Time evolution of the envelopes of the rapid oscillations in the fundamen-
tal mode uy (top figure) and second harmonic us (bottom figure) of a carbon nanotube
as the results of a computer simulation in the transition regime. Initially the frequency
of the fundamental mode is renormalized above w;, which is later restored when the
second harmonic grows in amplitude.
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Chapter 7. Selective self-excitation of higher vibrational modes

As an illustration of how the non-linear forces can lead to a somewhat
erratic behaviour, in Figure (7.4) we present the results of a computer simu-
lation with the same parameters as in Figure (7.3) except for a slightly larger
coupling parameter. What has happened now is that due to the static deflec-
tion, the fundamental frequency has initially been renormalized so that it is
suddenly larger than w;. As the amplitude for second mode grows, however,
the effective resistance increases which leads to a reduced static deflection of
the fundamental mode which in turn decreses its frequency so that it is again
lower than w;. This could in a way be thought of as a transition regime, be-
cause if the coupling parameter is pushed higher, beyond a second threshold,
the entire system enters a chaotic regime that can not be tracked numerically.
For carbon nanotubes, the critical amplitude when this occurs is largely de-
pendent on the radius of the tube, which is typically not very large. For this
reason, it is worth to turn our attention now to graphene nano-ribbons.

7.2 Graphene nano-ribbons

We recall from Chapter (2) that the one-dimensional equation of motion of a
doubly clamped graphene sheet reads

0?z(t, x) Oz(t,x) T 0?z(t, x) 0 (0z(t )
ot? Pt O a2 'ox oz

3
) = P.(t,z). (7.12)

The important thing to notice is that the nonlinear term is not dependent on
the width of the sheet, unlike the carbon nanotube where the radius entered
explicitly into the equation. Here, it is instead primarily the length of the
nanoribbon that determines the critical amplitude of motion when non-linear
forces become dominant. The mode shapes ¢, are now given by,

dn(x) = V2sin((n + 1)7z), (7.13)

and if we again define o, = fol ¢n(x)dx we obtain the set of parameters pre-
sented in Table (7.2). As we can see, the «,, decline more rapidly than for

Table 7.2: Mode dependent vibrational frequencies w,, and integration constants o,
for the first four streching modes with even index of a graphene nano-ribbon.

n | wp/wo | ap

011 0.90
213 0.30
415 0.18
6|7 0.13
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7.2. Graphene nano-ribbons

carbon nanotubes while the frequencies increase at a slower rate. Both these
facts would make a graphene nano-ribbon inferior to a carbon nanotube if
it hadn’t been for the fact that the amplitude range within the linear regime
is greater by almost a factor ten already when comparing a graphene nano-
ribbon of length 1/m to a nanotube of the same length and with radius 1 nm.
This can be further extended for graphene by simply making it longer. Nu-
merical simulations were performed, now with the coupling parameter

_ HV; 3

==L 7.14
B AR\ (7.14)

where A is the area of the graphene sheet and ¢, = L+/p/Ty. One might think
that a small area is beneficial, but on the other hand a larger sheet has a higher
current carrying capacity so these two factors are likely to cancel each other.
A graphene nanoribbon of width 10nm, which is comparable to the typical
circumference of a carbon nanotube, could be expected to have a current car-
rying capacity of approximately 100 1 A, see Ref [40]. In Figure (7.5) we show
the saturation amplitudes resulting from a number of computer simulations
aimed at exciting the second mode. One obvious difference compared with
carbon nanotubes is that there is less of a difference between the saturation
amplitude of the excited mode and that of the other modes. For graphene
they differ typically by a factor 10 whereas for nanotubes it is almost by a
factor 100.

Q=104 w =1.782, w, = 2.000

10r
87 4@7A0
| HAz
i <Ay
4r —~+Ag
ZW
(% 10 11 12 13
18

Figure 7.5: Saturation amplitudes Ay, Az, A4 and Ag for the respective modes ug, uz,
uy4 and ug, as a result of computer simulations aimed at selective self-excitation of the
second harmonic of a graphene nano-ribbon of width w = 10nm and length L = 1m.
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CHAPTER 8

The Transmission Line

We may carry out the same analysis as in Chapter 5 with the magnetic force
replaced by an electrostatic force. As mentioned before, in this case the typical
geometry would be an STM-tip positioned above the CNT. We may argue that
due to some effective capacitance at the junction there will be a charge build-
up which in turn results in an electrostatic attraction between the STM-tip
and the CNT, see figure (8.1). A first attempt at modelling this kind of system
could be to use the same dynamical systems as before but with the Lorentz
force replaced by the electrostatic force
1

Femt = §ozq2, (81)

for some constant «, ¢ denoting the charge. What we should remember is that
the electrostatic force can only pull in one direction, it cannot be reversed as
in the case of a magnetic field. In particular that means that in the current bias
regime we can only hope to achieve instability whereas in the voltage bias
regime we can obtain both instability and cooling. The resulting formulas are
similar to those already derived and are therefore presented in Appendix C.
In the following section we will instead focus on another model called the
transmission line. The idea behind this model is that due to some internal ca-
pacitance and inductance in the wire the charge cannot escape immediately
but instead propagates like a wave through a medium with a certain finite
velocity. The underlying physical reality that motivates the use of a transmis-
sion line model may vary. A common belief is that the elementary electronic
excitations of a carbon nanotube behave like a so called Luttinger Liquid. A
thorough quantum mechanical treatment of the electronic properties of pre-
cisely this kind of system, an STM-tip placed above a carbon nanotube treated
as a Luttinger Liquid, was done in the papers [41-43]. Here we will attempt
to incorporate mechanics into the consideration and figure out under which
conditions this kind of system will exhibit electro-mechanical instability. A
full quantum mechanical treatment of this problem will not be provided here,
partly because it is too difficult and partly because there is a substantial prob-
ability that it would turn out to be redundant in the end. Instead we will jump
directly into the transmission line model and draw heavily upon the excellent
paper of P. J. Burke [44] for the justification of certain physical parameters.
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Figure 8.1: Illustration of the electrostatic attraction between an STM-tip and a sus-
pended CNT.

We imagine the nanotube to be composed of a series of segments each with
a capacitance C,, and a charge ¢, and that there is also some uniform selfind-
uctance £ in the wire. The electronic scheme for this model is shown in Figure
(8.2). In this idealized model the transmission line does not have an end but
extends without interruption to infinity. Thus, unlike all the previous sys-
tems, here we only have one ‘contact’. The variables ¢,, mark the electrostatic
potential at each segment on the line and 7,, denotes the current between the
potentials ¢,, and ¢,+1. The capacitance at the contact between the STM-tip
and the CNT is denoted Cj and it is assumed that the entire resistance is con-
centrated to this point. As usual, the resistance is dependent on the position
of the CNT. Furthermore, if we assume that all (), except for Cj are equal and
independent of u we obtain the following equations:

Pn+1 — Pn = —,Cj, (82)
n = UnPn, (83)
. d

Gn = @(ann) = In—l - In + 5n0(v - Qpn)/R(U)a (84)
O, = C + AC(u)dro. (8.5)

The difference between the capacitance of the segments and that of the contact
is assumed to be dependent on the position of the nanowire and is here given
by AC(u). We now introduce the following variables:

t
Xn = / o ()t (8.6)
and the following discrete nabla operators
V—Xn = X?’L - X?’L—17 (8.7)
ViXn = Xnt1 — Xn- (8.8)
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Chapter 8. The Transmission Line
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Figure 8.2: Electronic scheme of the transmission line.

Given these definitions we can express the current as

1
I, = _Zv—i-Xm (8.9)
and hence
1 1
In—l - In - _v—(_zv—i-Xn) = Z(Xn+1 - 2Xn + Xn—l)- (810)

The right hand side of the above equation we recognize as the discrete Laplace
Operator. Thus, it is natural to go the continuum limit by making the follow-
ing transitions:

1 1 0%y
Z(Xn+1 — 2Xn + Xn-1) — o2 (8.11)

Ono — 0(). (8.12)
The careful reader may have noticed that, for convenience, the 'step-length’

was circumvented for the Laplace operator, something that we will get back
to later. Equation (8.4) is then transformed to

PX | OX \ wpvoe oy LOPX Ix
(C+ AC(u)&(x))W + EAC (w)ud(z) = e +0(z)(V — a)/R(u) (8.13)
The mechanical motion is given by
i+ it + k= ~(V — (0))2AC" (u). (8.14)

2

We now define a ‘formal” stationary solution (ug, xo(x)) which is the solution
of the above equations which also satisfies the conditions i =@ = x = x =0,
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or equivalently:

. VZAC/(U()>
_ 82)(0(2}) . V "
L = R%)(s( ). (8.16)

The physical significance of the function x(z) is somewhat obscure since it
does not give rise to any potential or current. It is nevertheless convenient to
make the transitions:

U — ug + U. (8.18)

If we keep only linear terms our system of equations becomes

.1, AC. 11w
mii +yu + ku = =V x(0)AC (uy), (8.20)

where / is the characteristic length defined in Chapter (3). One way to solve
these equations is to first obtain the Green’s function ¢(t, z) satisfying

1 AC 1
i— —q + —§ — = —t). 21
§— g0+ () + () = D)6t ) (5.21)
By the use of fourier transform techniques (see appendix D) one can show that
the physically admissable solution to equation (8.21) which does also obey
causality is given by

ot -1t /
g(t,0) = ﬁ 1 — e~ ac@rtwn)t—)y (8.22)
C ,
§(t,0) = O(t — t/)A—Ce—%c@Ww(t—t ), (8.23)

where wp = 1/RC, wy, = 1/vLC and O(t — t') is the Heaviside function. From
the Green’s function we recover x(t,0) through

X(t,0) = % / gt — ¢, 0)u(t))dt, (8.24)

with the time-derivative given by

X(t,0) = % Gt — 1, 0)u(t))dt'. (8.25)
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Chapter 8. The Transmission Line

Finally we combine equations (8.20) and (8.25) to get the time-evolution of u:

2 /
mii-+ i =~ i ourar. 626)

If we make the ansatz '
u(t) = e, (8.27)

where w may be any complex number, the integro-differential equation (8.26)
reduces to the algebraic equation
ViCAC

'k A—CU)OU)R = 0, (828)

(—w® +iwweQ ™" + wg)(AiC(wL + wgr) +iw) +
where as usual @ is the quality factor and wy = /k/m is the mechanical fre-
quency. Solutions to equation (8.28) with negative imaginary part correspond
to solutions to equation (8.26) for which the amplitude increases in time. The
latter would correspond to the instability discussed in previous sections. The
condition for unstable solutions turns out to be

VzC AC/ _1WwWo 1 C 2 (wL+wR)2 _9 C wr, +Wwpr
— — . 2
a9 o, Te <AC) oon @A o, @2

Since the right hand side of the above inequality is always positive, a nec-
essary requirement for self-excitations is that the ratio AC’/AC be positive,
something that is likely to be the case for the geometry considered. In order
to estimate the parameters involved in the expression above we first return to
equation (8.11). Introducing the steplength Ax the correct transition ought to
read

1 (0 s~ 2 e (B0
E(XTL-FI —2Xn + Xn—l) T (Ax)2 - LC Ox?

(8.30)

Obviously, both the capacitance and inductance depends on the discretization
used. In Ref [44], the kinetic inductance per unit length of a carbon nanotube

is estimated as )

2¢2vp

Lk ~ 16 nH/pm, (8.31)

and the quantum capacitance per unit length as

2¢?
= — = alb'/pm. .
Co ~ 100 aF/ (8.32)
hUF

Hence, by putting £ = Lx Az and C = CoAx we obtain

1
wy, = ”EKCQ =vp=8-10°s7", (8.33)
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which is in fact rather slow compared with the typical mechanical resonance
frequences. From the expression (8.34) it is obvious that this fact promotes
instability, in the extreme case of zero inductance there would be no such pos-
sibility. Moving on to the mutual capcitance between the nanotube and the
STM-tip, a fair estimate [25,45] would be AC =1 aF. It is also reasonable that
the two characteristic lengths should be approximately ¢ ~ AC/AC" ~ 1 nm.
Moreover, the resistance is likely to be of the order R ~ 1 M{2. What now
remains is the transmission line capacitance €', which obviously depends on
the mesh size. There is, however, a possibility to circumvent this parameter
completely. As we argued before, the LC-frequency wy, is entirely independent
of the mesh size. Hence, by keeping w;, constant and letting Az — 0, this is
equivalent of taking the limit C' — 0 in expression (8.34), which then becomes:

VZAC

| -1 -1
NG >Q WQR‘l'Q

1
e Qi 8.34
IO NG 834)
If we assume that k& ~ 107°N/m, wy = 10?s™" and @ = 10* then given our
other estimations the critical voltage for instability is roughly

V. ~ 1mV. (8.35)

This is in fact a very modest value, which indicates that the electronic in-
ertia caused by the accumulation of charges inside the nanotube could very
well be sufficient to cause instability. However, there remain some questions
that could be the material for future research, for example how the instability
evolves in time.
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CHAPTER 9

Spintromechanics

In the previous chapters the function of the magnetic field has been onefold,
its only purpose was to induce a Lorentz force. In what follows we will ana-
lyze a system in which the magnetic field in fact plays three roles. Apart from
the Lorentz force feedback it is also responsible for splitting the spin degener-
ate energy levels inside the nanotube and for inducing an electromotive force.

We consider a carbon nanotube suspended between a normal and a spin-
polarized lead, see Figure (9.1). There are two features that are crucial for the
occurence of the phenomena to be discussed in the following. The most ob-
vious is the spin-polarization in the lead acting as the drain which prohibits
electrons with spin up to tunnel from the carbon nanotube into that lead. Full
polarization is not a necessary condition, however, but for clarity we present
the calculations only for this case. Secondly, we assume the electron-electron
repulsion to be so strong that the nanotube can only be populated by one
electron at a time. The latter is often referred to as Coulomb blockade. In prin-
ciple this system can be treated by a full quantum mechanical description, but
much effort can be saved by instead describing it through something called
rate-equations [46,47]. If we let F;, be the probability that the nanotube is un-
populated, P;( the probability that it is populated by an electron with spin up
(down) then, imposing the coulomb blockade constraint, we get the following
simple relation

Po+ P+ P =1 (9.1)

If we let I's and T'}, denote the tunneling coefficients between the nanotube
and the source/drain electrode respectively, (downarrow included to empha-
size that only spin-down electrons can tunnel between the nanotube and the
drain), we obtain the following rate equations:

Py =TsPofy(V,H) = TsPy(1 — f,(V, H)) 9.2)
P =TsPyf,(V,H) - TsP(1 - f|(V,H)) - T},P,

where 1

(V. H) = (exp |:kBLT (£5pH — eV)] + 1) (©-3)

is the Fermi-function describing the available energy states in the source-lead.
In principle one could also introduce the Fermi-function for the drain as well,
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Figure 9.1: (a) A carbon nanotube (CNT) subject to an external magnetic field H,
suspended between normal- (n) and magnetic (m) metal leads biased by voltages
+V}. (b) Electronic energy scheme for the junction: 1 is the chemical potential, £ | are
spin-split levels in the CNT, E](:) and 5,&?)
the wave vector, o is spin).

are electron energy bands in the leads (% is
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Chapter 9. Spintromechanics

but here we have assumed that the energy gap between the spin down level
in the nanotube and the chemical potential in the drain is so large that for the
temperatures considered we may just as well put f; |(V, H) = 0 for the drain
electrode, which means that, first of all, there will always be an available state
in the drain for the spin-down electron to occupy and, secondly, there is no
possibility for electrons to tunnel from the drain into the nanotube. The net
current is given by the expression

J(V,H) = L PV, H) (9.4)

where Pfo)(\/, H) is the stationary probability to find a spin-down electron in
the nanotube, obtained as the time independent solution of the equations (9.2).
Given this solution the current can be expressed as:

) — er AV V)
TP N = ALV

(9.5)

Using a so called "quasi-static’ approximation, which roughly means that the
mechanics is so slow in comparison with the electronics that retardation effects
can be neglected, the dynamics of the fundamental mode of the nanotube is
given by

mii + Yi + wiu = aHLJ(Vy, — aH L) . (9.6)

The right hand side is simply the Lorentz force, but where the current is af-
fected by the electromotive force induced by the vertical motion of the nan-
otube. The parameter a, occurring twice in the equation, is simply a geomet-
rical shape factor corresponding to the particular bending mode. The criterion
for instability of this system turns out to be
o*H2L? w
p= - J (V) Q>O. (9.7)

where J' (V) = dJ(V)/dV is simply the current-voltage characteristic. Evi-
dently, in the "quasi-static” case instability can only occur for a negative differ-
ential resistance, unlike most of the previous systems considered in this the-
sis. The system at hand does however exhibit some interesting features that
were not present before. Assuming that the mechanical motion has the form
u(t) = ug + A(t) cos(wt), where the amplitude A varies slowly on the timescale
of the rapid oscillations, and inserting it into Equation (9.6) we obtain:

A=—d(A); (9.8)
D(A) = % + %/_W %J(V}ﬂLaHLwAsingb)singb.

The behaviour of the function ® for some parameter values is shown in Figure
(9.2). In the figure to the left we see an example of emergence of soft instability
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Figure 9.2: Behaviour of the function ®(A) defined in Eq. (9.8) for different magnetic
fields leading to (a) soft excitation of nanowire oscillations at AV =V, — (eg — pt) /e =
0.34 mV and (b) hard excitation at AV = 0.41 mV. Other parameter values are 7" =

02K, Q=3-10%, '} /Ts = 0.4, w/T's = 0.2

and in the figure to the right we see an example of hard instability. Moreover,
in the rightmost figure we can see that before the onset of hard instability there
is an intermediate region where if the nanotube is given a suffiently large ini-
tial amplitude the system will not bring it back to zero but instead take it to a
stationary state of oscillation marked by the second crossing of the horizontal
line. This intermediate region we call the region of bistability.

In the systems considered in previous chapters, the stationary oscillations
were also associated with a deviation in the time averaged current. This devia-
tion was almost always a reduction, only in exotic situations could you expect
an increase. The system at hand is one of these exotic cases. The formula for
the time averaged current is given by

J= / J(Vy + aH LwAsin ¢)de /27 (9.9)

In Figure (9.3) we merge all the phenomena discussed here into one piece.
In the upper figure we have the regions of stability, bistability and instability
plotted in a diagram showing the voltage versus magnetic field. In the figures
below is shown the average current as we sweep the voltage or magnetic field
over a region passing from stability over to bistability and instability. As is
evident, in the case of hard instability we may obtain a hysteretic behaviour in
the time-averaged current while passing through the bistability region which,
if verified experimentally, would constitute a convincing ’fingerprint” of the
phenomena theoretically derived.
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Figure 9.3: (a) Stability diagram for nanowire oscillations in the (H, AV') plane, where
AV =V;, — (€9 — p)/e. In the white and dark grey regions there is only one stable sta-
tionary state corresponding to a non-moving and a vibrating nanowire, respectively.
The light gray region is where both these states are stable. (b) Average current in units
of eI'g, in (b-1) as a function of bias voltage AV for H = 10 T [horizontal line in (a)]
and in (b-2) as a function of magnetic field H for AV = 0.4 mV [vertical line in (a)].
The full (dashed) lines show the result for an ascending (descending) magnetic field.
48e gray dotted curves correspond to a static nanowire. Other parameters: 7' = 0.2 K,

Q=3-10%,T}/Ts =04, w/Ts = 0.1.



CHAPTER 10

Concluding Remarks

To summarize, in this thesis we have explored a number of NEMS devices
with the common feature that they are all capable of producing mechanical
self oscillations. Some of these emerge as a result of a negative differential
resistance but in most cases this is not required. Most of them result in a drop
in average current, but there is at least one exception from this rule. Some
are mathematically relatively simple while others are more complicated, but
as we have seen, simplicity does not stand in opposition to versatility. On the
contrary, even the simplest device demonstrates the entire range of function-
ality, all the way from cooling up to an S-shaped I-V characteristic.

A question that poses itself in light of these results is if there is a more
general framework in which all different instances of electro-mechanical in-
stability fit in. Knowlege of such a general theory could perhaps provide a
tool to tailor the system geomtery so that it, for example, meets the require-
ments of a certain application and not merely come out as a "lucky shot’. But
this belongs to future research.
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|
| Appendix A: Characteristic length of Electronic
Doping

In this section we estimate the characteristic length for a semiconducting car-
bon nanotube suspended over a gate electrode, following closely the deriva-
tion of Zhou et al. [18]. Considering first a semiconducting single walled
carbon nanotube, the dispersion relation ressembles that of relativistic one-
dimensional fermions:

E =t/ (m )2 + (hkvy)?, (10.1)
1dE  Twlk

Here, v is the fermi velocity of graphene and the effective mass m* depends
on the tube diameter d and the fermi velocity v, through the expression m* =
2h/3dvy. For the conductance we employ a Drude model for a one-dimensional
conductor with four channels:

G 4e? Tpup B 4e? lp

~h L b L’
In the formula above vy is the fermi velocity of the carbon nanotube and 75
is the scattering time. The constant G, = 2¢%/h is often referred to as the

conductance quantum. Furthermore, in one dimension the fermi momentum
kr is related to the carrier concentration n through the expression:

(10.3)

™

R

Hence, according to our model, the carrier concentration affects the conduc-

tance by shifting the fermi velocity. In turn, the carrier concentration depends

on the gate voltage V, and gate capacitance per unit length ) according to:
GV —9)

n=-—99_ 7 (10.5)
e

kg = (10.4)

where ¢ is the potential on the nanotube. In summary, after a few manip-
ulations we obtain the following formula for the resistance per unit length

p(n) =1/G(n):
b 1+ (37”717")2
©4elp (%”nr)?

p(n) (10.6)
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Here r is the radius of the tube and [ = vp7r is the mean free path at the fermi
level. Hence, the total resistance is given by

R:/O p(n(x))de. (10.7)

For r <« h(z), where h(x) is the distance to the gate, we may use the following
formula for the gate capacitance per unit length:

271'60
In(2h(x)/r)

Calculating the total resistance from (10.5 — 10.8) is quite a complicated task,
especially if one takes into account that the potential ¢ is also a function of
carrier concentration [20]. If we consider the situation with a straight wire
(h(z) = hp), and for simplicity assume that the potential ¢ is uniform, if we
taylor expand (10.6) and (10.8) to first order and take the limit V;, — ¢ we
obtain the minimal characteristic length

Cylx) =

g

(10.8)

ho In(222)

(ER)mm = a#’", (10.9)

wherea = L/ fOL updz is just a shape factor. If, for example, we take hy = 50nm
we obtain a characteristic length in the order of 10~"m, therefore we estimate
the minimal characteristic length to lie somewhere between 10~"m and 10~5m.
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Appendix B: Linear Stability Analysis

Consider the dynamical system

= f(z,y,2,....)
y=g(x,y,z...)
Z=h(z,y,z....)

and let (z, o, 20, -..) be a stationary solution. The characteristic polynomial
P()) of the stationary solution is defined as

fo=X T, I

g g -\ 4
P()‘): 7 Y ;O F )

h!, h, hL—X ...

where the derivatives are evaluated at the stationary point. If there are solu-
tions to the equation
P(A) =0 (10.10)

with positive real part then small perturbations from the stationary point will
increase in magnitude. This is the mathematical notion of instability. There are
anumber of techniques to determine weather there are such solutions without
actually solving the equation. For dimensions less than five a good method is
the so called argument principle from complex analysis.
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| Appendix C: Instability and Cooling through an

Electrostatic Force

Here we will discuss the systems analyzed in Chapters (5) and (6) but with
the difference that the Lorentz force is replaced by an electrostatic force be-
tween the nanotube and an STM-tip placed in its vicinity, see figure (10.1). For
previous work on similar problems see for example [6,27]. Furthermore we
assume that the tunneling current increases with decreasing distance. Obvi-
ously, in this case we have a situation where the characteristic length is always
positive, so in order to achieve some variability in terms of excitation and cool-
ing we need to be in the voltage bias regime. Hence, for brevity, we will only
consider this case.

The equations governing this system read

mi + yu + ku = %aq{ (10.11)
¢=1-V/R(u), (10.12)
LI =V,—q/C. (10.13)

Introducing the dimensionless current ¢ = I/I,, with I, = V;/R(ug), we have
the equivalent system

B+Q7' B+ 0 =B, (10.14)
. w
o= w—ef(3), (10.15)
. w2
Y= —(1-9p), (10.16)
WRWo
where oy
_ Vo
Bo = t(to)’ (10.17)
The exact condition for instability reads
Loy ten wiy Ly T Wiy @b (wn/wo) (Lt @i/ (@ran@) + 26)
2(1+QW0+W3)+\/4(1+QWO +w§) wh = wr/wo +1/Q '

(10.18)

53



Chapter 10. Concluding Remarks

In order to determine whether we may under certain circumstances achieve
cooling, and in that case at what efficiency, the method outlined in Chapter (6)
will not work, or at least there is no obvious way to extract the correct answer
from it. The reason for this is the qudratic force term, or more specifically the
fact that

/%(a cos(t) + bsin(t))? cos(t)dt = 0 (10.19)
0

for all constants a and b. The method thus falsely indicates that we would have
a null result to first order in amplitude. The correct result is instead obtained
from a perturbation analysis of the characteristic equation. If we consider first
the equation for the harmonic oscillator without coupling term

B+Q7'B+p5=0, (10.20)

the solutions to the corresponding characteristic equation 2z + Q@ 'z +1 = 0

are given by
z=-Q'/2+/Q2/4—1. (10.21)

If we let P(z) be the characteristic polynomial of the coupled system of equa-
tions and treat () as a small parameter we can assume that the "perturbed’
solutions Z satisfying P(Z) = 0 can be expressed as

Z=z+FoP,+ B3P+ ... (10.22)

We now postulate that the succeptibility function is simply S = P, which in
our case yields
wowr(Wi/wg = 1)

SRR SR — 1P Ty
This is the same function we encountered before except for an extra factor 2.
The effect of the electrostatic attraction is thus twice as efficient (expressed in
terms of ;) as the Lorentz force feeback, something that can also be verified
by computer simulations. However, there are several ways to argue why the
magnetomotive regime could be considered more reliable. One complication
with the electrostatic feedback is that when the nanotube moves the mutual
capacitance between the nanotube and the STM-tip is likely to fluctuate, some-
thing that our model does not take into consideration.

S=2

(10.23)
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Figure 10.1: The figure shows an electric circuit kept under a constant voltage drop
containing an STM-tip positioned above a suspended carbon nanotube. Due to the
mutual capacitance between the STM-tip and the CNT, the charge buildup leads to a
feedback mechanism is the form of an electrostatic attraction.
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LAppendix D: Green’s Function for the Transmission

Line
We wish to solve the equation
. 1 i AC . ]- . o /
g — Eg +Fg5(x)+mgé(x) =9(z)o(t —1t"). (10.24)
Let us first introduce the two fourier transforms
flr) = / flx)e "= dz, (10.25)
flw) = / f(t)e™tdt, (10.26)
with the inverse transforms
1 ~ .
= — e 27
o) = 5 [ Foean (10.27)
U [ i
= — wWidw. 2
1(6) =57 [ Flo)e s (10.28)

We know that the action of a fourier transform F on derivatives follow the
rule

F(f' (@) (k) = inF (f(2))(r), (10.29)
thus equation (10.24) has the following equivalent in fourier space:
2 .
9r K ZAC W it
_ _ — — 10.
which can be rewritten as
~ 1 iwt! ZAC _ 1
= i — - —. 10.31
g KJ2 _ wg/w% (6 + (U) C waR)g(O))w% ( 0 3 )
Moreover, we have the identity
3(0) = x / gd (10.32)
9(0) = 5 [ gds. :

56



When integrating equation (10.31) one must decide over which branch in the
complex plane to perform the integral. This will determine the sign of the
resulting expression. We will use the following convention:

1 1 1 1 1
1 — lim, _ 1, _ T
2m / T AT / ol r T gpomiResle = —w/wi]
(10.33)
whereby we obtain
e—iwt’
9(0) = - : 10.34
M) = = s (o + won) (1039
We may now recover the Green’s function by calculating the integral
1 4
9(t,0) = o / 9(0)e" dw. (10.35)

We identify two poles: w = 0 and w = iui/fwi

and i/(wy, + wg)e”@/ACWrFwL)=t) regpectively. For t — ' > 0 we can close the
contour in the upper half plane yielding finally

with residues —i/(wy; + wg)

ot —t')

PP (1— 6—C/AC(LUR+WL)(t—t’)). (10.36)

g(tv 0) =
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