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   In this paper we assume that choice of commodities at the individual (household) 
level is made in the budget set and that the choice can be described by a probability 
density function.  
   Describing choice as random is less restrictive in a behavioural sense than to 
assume utility maximization. To emphasize that, we add a section of comments by 
“leading” economists on the descriptive value of utility maximization. 
  We find that for all positive continuous function f(x, y) the expected demand 
functions         Ex ( , , )x yp p m , E y ( , , )x yp p m are homogeneous of degree zero in 

prices and income ( , , )x yp p m and that “law of demand ” ( the own price derivatives 

of the expected demand functions are negative) is valid. 
   We calculate (expected) demand functions, elasticity (classify goods as substitutes 
etc.) and consumer´s surplus just as in conventional theory. Functions used in 
examples include convex, constant, lower bounded and decreasing functions.  
 
  Why not keep descriptions as simple as possible? 
 
Entia non sunt multiplicanda praetor necessitatem 
Beings ought not to be multiplied except out of necessity 
 
 “Occam´s razor” 
 
Encyclopedia Brittannica 
 

mailto:lars-goeran.larsson@economics.gu.se
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1. INTRODUCTION  AND MAIN RESULTS 
 
   The main purpose of this paper is to see what properties expected demand 

functions    Ex ( , , )x yp p m , E y ( , , )x yp p m have if we abandon the assumption of 

maximising utility functions. Here x and y are choice variables (commodities),  
( , , )x yp p m  prices and income and E denotes expected value. 

   We think maximization of utility functions is too complex and doubtful in a 
descriptive (behavioural) interpretation. That we are not alone in this belief can be 
seen in some comments on the mainstream ideas, extensions and alternatives that 
have been given (see section 3). 
   On some econometric tests of traditional theory see Klevmarken (1979). On 
another test of the neoclassical theory of consumer behaviour using an experimental 
approach (see Sippel (1997)). 
 
   A simple approach with less of optimal behaviour (“Occam´s razor”). 
 
   To this end we assume that choice can be described as random in the budget set. 
We start by assuming a positive integrable continuous function f(x, y) which we 
convert into a probability density function p(x, y, a, b ) defined in the budget set 

 D= 2

2( , ) in R :  and x 0, 0x yx y p x p x m y    , where, (
x

m
a

p
  ,

y

m
b

p
 ). 

This density function is assumed to describe the choice of commodities in a bounded 
set (here the budget set).  
We calculate in general form (and in specific examples) the expected demand 

functions Ex ( , , )x yp p m , E y ( , , )x yp p m and study its properties.                    

   The properties of expected demand functions in our continuous function f(x, y) 
approach are: 
Demand functions are homogeneous of degree zero in prices and income ( , , )x yp p m  

Negativity (“Law of demand”) is valid at the individual and market level for two 
choice variables. In other words the own price derivatives of the expected demand 
functions are negative. 
In formal terms: The diagonal of the following price derivative matrix is negative. 
 

(
    

    

    
    

).         
 

     

   
 and so on. 

 
Budget balancedness (adding up) ( see below) is not valid  

E ( ( , , ) ( , , ))x x y y x yp x p p m p y p p m m   

Note that the expected choice is found in the budget set and not on the budget line. 
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Proof of negativity and homogeneity is found in section 5. 
 
   There is no need to use a behaviourally and mathematically more complex 
approach to obtain these results (“Occam´s razor”).                              
 A continuous probability density function describing choice is sufficient. 
 
   Comparison with the utility maximising approach 
 
    As an example of a behaviourally and mathematically more complex approach we 
present the traditional neoclassical utility maximising consumer model (in section 2.1 
)  and extensions of it to prove “law of demand” ( in section 2.2 ). We here briefly 
state the neoclassical results of section 2.1   and compare with our results 
    The independent properties of demand functions in expected form are: 
Budget balancedness (adding up) E ( ( , , ) ( , , ))x x y y x yp x p p m p y p p m m   

and negative semi definiteness of the symmetric substitution matrix. 

 
x y

x y

p p

m m

p p

Ex Ex Ex
Ex Ey

Ey Ey Ey

   
   
   

. 

 For details (see Jehle and Reny (2001 pp 82-83)). 
 
   As noted above we find that the first matrix has a negative diagonal (“law of 
demand”).We find it without using utility maximization and the substitution matrix. 
We also note that budget balancedness (adding up) (see above) is not valid  
 
    What we found using examples (in  section 6). 
 
   The substitution matrix has a negative diagonal and is non symmetric. 
The latter implies that symmetry property of the substitution matrix is not a general 
property (for all f(x, y)). As is well known the symmetry property of neoclassical 
theory comes from assumptions about the differentiability of the utility function.  
   There is an inconsistency between the random approach and the differentiability 
approach – as in example 3 section 6 we have a function f(x, y) = x y  a Cobb-Douglas 
form where the neoclassical solution has a symmetric substitution matrix but the 
random approach with a lower bound has a non-symmetric substitution matrix.  
See also Varian (1992) on the intuitivity of utililty maximization in section 3 (below). 
   Negative definiteness of the substitution matrix is a stronger  property than 
negative semi definiteness as in the traditional theory. 
  
   Many types of choice behaviour.   Since our general results so far are valid for any 
integrable continuous function f(x, y) we note the great variety of functions that can 
be used. Convex, decreasing and constant functions are such examples (see section 
6). There is no need to only use increasing functions (“high consumption”= high 
probability for consumption near the budget line). Decreasing functions can describe 
“low consumption”. Note that constant functions (example 1)resembles constant 
utility but give own price negativity and a unique solution. 
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   From independent to gross complementary goods by introducing lower bounds on 
choice. 
We calculate numerical elasticities (own price and cross price) to classify goods as 
gross substitutes, independent or gross complements. For the same function we can 
find changes in classification from independent goods to gross complements by 
introducing lower bounds on choice. Furthermore note the change in type of goods 
from substitutes to complements in example 10 and 6. . Both have a linear form but 
example 10 has an increasing function “ high consumption” and example 6 has an 
decreasing function  “low consumption”.  
    We can also study demand responses to changes in economic policy (taxes and 
subsidies). We can calculate consumer´s surplus for welfare analysis.  
 
  The content of the paper follows 
 
In section 2.1 Utility maximization we present the neoclassical utility maximising 
model, its results and its assumptions to obtain these results.  
In section 2:2 Utility maximization and negativity we present some assumptions 
added to the model to prove “ the law of demand”  ( negativity of own price 
derivative). Notably concavity of the utility function plus a numerical condition is 
used ( quasiconcavity is not sufficient). 
In section 3.1 On the descriptive value of utility maximization comments from 
“leading economists” on utility maximization are added. 
 Section 3.2 Separate description of behaviour from prescription of how to behave 
contains  some  comments on the headline notably by (Frank 2008). 
Section 4 comments on extensions of the random approach. 
In section 5 we give our proof of negativity and homogeneity 
Section 6 contains some examples. 
 
                                          2 TRADITIONAL THEORY AND “LAW OF DEMAND” 
 

2.1. Utility maximization 
  

In the traditional “rational” theory of choice based on maximization of an increasing 
quasiconcave utility function (u(x ,y)) subject to a budget constraint the derived 
demand functions( ( , , ), ( , , )x y x yx p p m y p p m ) have certain testable properties. The 

demand functions are homogeneous of degree zero in the variables prices and 
income ( , ,x yp p m ). The choice is mostly found on the budget line (the adding up 

property).Furthermore the substitution matrix of the demand function is symmetric 
and negative semi definite (see Jehle and Reny (2001)). 

For good x ( , ,x yp p m ) we have  ( , , ) 0x y

x

x x
x p p m

p m

 
 

   
 
                                  Traditional theory in expected form 
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   To facilitate a comparison or our expected demand approach with traditional 
theory we note that the latter can be expressed in expected values. In testing and/or 
estimation we have 
E(x) = ( , , ) ( ) ( , , )x y x yx p p m E x p p m  , 

where  is a random error term with E( )=0  . This assumption gives the result that 

the expected demand function have the same slope as the ordinary demand function 

x xp pEx x , and so on for the other properties.  

   The independent properties of demand functions in expected form are: 
Budget balancedness (adding up) E ( ( , , ) ( , , ))x x y y x yp x p p m p y p p m m   

and negative semi definiteness of the symmetric substitution matrix. 

 
x y

x y

p p

m m

p p

Ex Ex Ex
Ex Ey

Ey Ey Ey

   
   
   

. 

 For details (see Jehle and Reny (2001 pp 82-83)). 
The traditional approach is not without mathematical complexity. 
Just take a look in any advanced textbook in microeconomics. 
 
  2.2. Utility maximization and negativity 
 

 A negative slope of demand (negativity) in relation to own price (
( , , )

0
x y

x

x p p m

p





) 

is not valid in traditional theory without making further assumptions.  
    That the traditional theory holds the negativity result for important can be seen as 
it is formulated as a “law “(see Varian (2006)). “If the demand for a good increases 
when income increases, then the demand for that good must decrease when its 

price increases” (see Varian (2006 p 147)). The normal goods assumption ( 0)
x

m





 is 

sufficient to give negativity at the individual and market level (sum of individual 
demands).  
   The importance can also be seen in that papers are published in the highly ranked 
journal Econometrica. One paper (see Quah (2000 p 916 and p 912)) introduce 
convex indirect utility functions plus some numerical elasticity condition to prove 
negativity. Other proofs referred to in Quah (2000) use concavity of the direct utility 
function plus some numerical elasticity condition. 
   Focus on the expected law of demand at the aggregate (market) level can be found 
in Hildenbrand (1983) and Härdle, Hildenbrand and Jerison (1991)). The latter 
aggregate approaches look at density functions of household income distribution 
and focus less on “rational” choice. 
  The extended traditional approach is not without mathematical complexity either 
as can be seen in the quoted references. 
 
 
 3 COMMENTS ON THE TRADITIONALAPPROACH 
  
 3.1. On the descriptive value of utility maximization 
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   As we saw there is no need to use a utility function and its maximization to find the 
above general and specific results. We think maximization of utility functions is too 
complex and doubtful in a descriptive interpretation. That we are not alone in this 
belief can be seen in some critical remarks against the mainstream ideas, extensions 
and alternatives that have been given.    
 
Samuelson (1947) (“Nobel” price winner) (Atheneum edition 1970 p 117). After he 
concludes his chapter 6 on theory of consumer`s behaviour by stating its empirical 
meaning in difference and differential form (p 116) he comments “ Many writers 
have held the utility analysis to be an integral and important part of economic 
theory. Some have even sought to employ its applicability as a test criterion by which 
economics might be separated from the other social sciences. Nevertheless, I 
wonder how much economic theory would be changed if either of two conditions 
above were found to be empirically untrue. I suspect, very little”. 
 
Varian (1992) After writing the properties of demand functions on page 99 in Varian 
1992, he gives on p 123 the following comment 
“this is a rather non intuitive result: a particular combination of price and income 
derivatives has to result in a negative semidefinite matrix. However it follows 
inexorably from the logic of maximizing behaviour.” 
 
Stigler (1961) (“Nobel” price winner) on price dispersion as one measure of 
ignorance about the market and the introduction of a probabilistic search theory. 
 
Herbert Simon (1965) (“Nobel” price winner) on “bounded rational behaviour”. 
 
Barten (1969) on empirical tests of the traditional theory of demand.  
According to Klevmarken (1979 ) the classical theory of demand is rejected. 
 
Kahneman - Tversky (1974) (Kahneman “Nobel” price winner) on behavioural 
elements in economic choice.  
We now have a new field of research in economics – behavioural economics. 
  
Myerson (1999) (“Nobel” price winner) p 1069 “This assumption of perfect 
rationality is certainly imperfect as a description of real human behaviour”  
 
3.2. Separate description of   behaviour from prescription of how to behave 
 
  The extension of the traditional theory by introducing new constraints ( time 
constraints, lower bounds, rationing ) and also parameters in the utility function ( 
taste, peer groups, prices ) to make the theory more “realistic” could  explain many ( 
almost all) choices as “rational”. 
 One question is: how can we test these extended theories? 
 A second question is: can we assume that the optimal model is explaining 
(describing) actual economic behaviour?                                 
In a prescriptive interpretation of the optimal model someone else ( economists, 
mathematicians etc.) calculate and give advice. 
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If economic behaviour is almost rational who would need prescriptions of optimal 
behaviour? 
 
   In the long run there is a “problem” maintaining neoclassical utility theory as a 
description of actual behaviour and at the same time give advice to improve 
behaviour. 
 
  To separate the study of consumer choice into a descriptive part (consumer 
behaviour) and normative (prescriptive) part might be useful in the future. The 
normative part may contain improvement of consumer choice by better information 
of prices and quality, optimal search theories of prices and quality, utility 
maximization with more complex preferences and constraints. The use of 
optimization methods in economic models reflects the important aspect of helping 
forming better decisions in the world. This does not necessarily mean that they are 
good models for explaining (describing) actual economic behaviour. 
   As a textbook of Robert H Frank puts it: “But even where economic models fail on 
descriptive grounds, they often provide useful guidance for decisions” (Frank 2008 p 
6).  
 

4 SOME EXTENSIONS OF THE RANDOM APPROACH 
 

    There is no “Giffen good” in this expected demand approach or in the examples. 
To allow for”Giffen good” some new information is needed. In traditional utility 
theory shift variables (s) are introduced in the utility functions u(x,y,s). Something 
similar could be used in the function f(x, y, s). If as an example, a theory is based on 
monetary variables like price dependent preferences in utility theory (see Kalman 

1968) we can have price dependent functions ( ( , , ))xf x y p  and integrate them to 

find expected demand. The result can be demand functions which are non-
homogenous in prices and income or have non-negative own price slopes. 
    Negativity might not be compatible with any choice behaviour, but if we know 
more then we know more. 
    Constraints such as time restrictions could also be used in the same manner 
perhaps together with the budget constraint. To find examples of expected demand 
and supply functions in consumer theory and theory of the firm where choice is 
made in bounded sets should be possible. 
    Recently, behavioural sciences and behavioural economics have supplied 
economics with examples of choice behaviour. It this choice behaviour can be 
expressed in specific density functions these functions can be integrated over the 
budget set to relate them to economic variables. Help to integrate more complex 
density functions can be done by experts. In waiting for a “final theory”, which of 
course is an illusion, probability formulated choice gives a link between traditional 
theory of negativity and homogeneity and theories of behaviour within the budget 
set.  
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                         5.  THE PROPERTIES OF EXPECTED DEMAND FUNCTIONS 
 
   We prove that expected demand functions have negative own price slope and are 
homogeneous of degree zero in prices and income. We use continuous density 
functions describing household choice of commodities in a bounded set . 
 

5:1 One dimensional frequency function of choice p(x, a) 
 
   To find the frequency function p(x, a) we start by assuming a positive continuous 

integrable function f(x)>0 defined on the interval I =  0,c
.
  Put 

x

m
a c

p
  . Define 

 

0 0
( ) ( )  and G(a)= ( ) . We then have

( )
( ) . 

( )

a a

F a f x dx xf x dx

G a
E x a

F a



 

 
 

F (a) is the area below the positive function f(x) in the interval (0, a) and the 
frequency function  

p(x, a) = f(x)/F(a).Remember that a density function has the property ( )
A

p x dx =1 . 

Note that the parameter (a ) is part of the frequency function and that (a) is a 
variable in the expected value function. 
 

Properties of E(x) 
 
  Next we want to find some properties of E(x). We can use the chain rule of 

differentiation
( ) ( )

 
x x

E x dE x a

p da p

 


 
 

  We take 

 

 

2 2

2 0 0

( ) 1 1
'( ) ( ) '( ) ( ) ( ( ) ( ) ( ) ( ))

( ) ( )

( )
( ) ( ) 0

( )

a a

dE x
G a F a F a G a af a F a f a G a

da F a F a

f a
a f x dx xf x dx

F a

   

   

 

(1)      
( )

0
dE x

da
  

 
  We have found that the expected demand function have negative own-price slope 
for all continuous choice frequency functions.  

( )
0 

x

E x

p





 

Homogeneity of degree zero in price and income is obvious since 
x

m
a

p
  is 

homogeneous of degree zero in price and income. 
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Change of variable 
 

  For later use we change variable. Let x=au. We then find 
1 1

2

0 0

1 1

0 0

( , ) ( , ) ( )
( )  where (a) is the Jacobian of the transformation.

( )( , ) ( , )

For the change of variable formula (see Buck(1956 p244)).

a uf a u du a uf a u du G a
E x

F aa f a u du f a u du
  

 

 

 
  We differentiate  

(2)     
 2

( ) 1
'( ) ( ) '( ) ( ) 0

( )

dE x
G a F a F a G a

da F a
  

 

following the result (1)) above. 
The latter result (2) will be useful when we turn to two dimensional choices. 
 

5.2 Choice in two dimensions 
 
To find the frequency function p(x, y, a, b) we start by assuming a positive 
continuous integrable function f (x, y)>0 defined on a set E, where D E . 
For the function f(x, y) we should integrate over the budget set  

D= 2

2( , ) in R :  and x 0, 0x yx y p x p x m y     

 
  To make the calculations simpler we change variables 

 
x y

2

m m
We put x=u =au and y=v =bv to integrate over the set

p p

D = (u,v)  : u 0, v 0,u+v 1R    

 

We then have
´

( , ) ( ( ), ( ))
D D

f x y dxdy ab f x u y v dudv  , 

where the Jacobian (= a b )of the transformation is taken outside the integral on the 
right side. For the change of variable formulas (see Buck (1956 p 244)). 
 
 

Calculating E(x) 
 
  To find E(x) we first integrate f(x, y) over the area D’   

1 1

´ ´ 0 0

( ( ), ( )) ( , , , ) ( , . , ) .

u

D D

ab f x u y v dudv ab f u v a b dudv ab du f u v a b dv



      

We now put the last integral 
1

0

( , , , ) ( , , )

u

f u v a b dv F u a b



  and the volume below 

f(x,y) is 
1

0

( , , )ab F u a b du .The next integral to be calculated is 
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1 1 1

´ 0 0 0

( , , , ) ( , . , ) ( , , )

u

D

aba uf u v a b dudv aba udu f u v a b dv aba uF u a b du



      

We now find 

1 1

0 0

1 1

0 0

( , , ) ( , , )
( , )

( )
( , )

( , , ) ( , , )

aba uF u a b du a uF u a b du
G a b

E x
F a b

ab F u a b du F u a b du

  
 

 

 

   
Finding the properties of expected demand E(x) 

 

  Expected demand is homogeneous of degree zero in prices and income ( , , )x yp p m . 

This follows since 
( , )

( )
( , )

G a b
E x

F a b
 is a function of ( ,

x y

m m
a b

p p
  ) both homogeneous 

of degree zero in prices and income.  

   The chain rule of differentiation helps us to find sensitivity in relation to price ( )xp . 

 
( ) ( )

x x

E x E x a

p a p

  


  
 

Differentiate w r t a. and use the result (2) in one dimension 
( )

0
E x

a





.This in turn gives us

( )
 0

x

E x

p





. 

 
    Negativity is valid for all continuous frequency functions p (x, y, a, b). 
The property is additive so the result is valid at the aggregate (market) level as well. 
Homogeneity was mentioned above. 
 

6. EXAMPLES  
 

   Even if our general results are valid for all continuous functions f(x, y) we also 
illustrate the stochastic approach by presenting some examples. We deliberately 
choose many of them found in microeconomic textbooks. At the same time we find 
other properties of expected demand functions and compare them with traditional 
theory. 
    Each example is calculated as follows. For a given function f(x, y) its volume over 
the budget set is calculated. This volume is used to transfer f(x, y) into the density 
function p(x , y, a, b).To simplify the calculations we do a change of variables. Using 
the density function we calculate the expected demand E(x(a, b)) which then is 
differentiated to find various properties. 
 

Example 1. A constant  function. 
 

  Choosing a constant function can give us a uniform distribution.  
 
Why use the uniform distribution? 
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   The uniform distribution assumption might reflect our ignorance of what 
determines the choice (such as preferences) inside the bounded budget set. If we 
know that choice is taken place in the set we know that expected choice changes 
when the “walls” (budget line and lower bounds) of the set changes. A uniform 
distribution can also approximate a more complex function if we use a lower bound 
as in the example. The assumption also makes for simple calculations (used before in 
economics) and produces some results. To quote Krugman (2008): “express your 
ideas in the simplest possible model.”  
 
   This example has no unique solution in utility theory (a constant utility) and most 
solutions (the demand functions) are independent of price and income. 
 
   The following example shows no such independence of economic variables and is 

 
0

0

0

0

1 2
( ) ( )

3 3

1 2
( ) ( )

3 3

y

x

x

y

E x m p y x
p

E y m p x y
p

  

  

 

the expected demand functions obtained by integrating a uniform distribution over a 
bounded set. 
    The set is bounded by the budget constraint and positive lower bounds 

0 0 0 0   y y  where  and y can be seen as a function of shiftvariables s

if one wishes (one can then use the chain rule to obtain sensitivity wrt s).

x x x 
 

We name these lower levels “subsistence” levels, S levels for short .One early 
example on the use of lower levels is Stone-Geary preferences (Hey 2003 p 80). 
   Given the expected demand we can study properties such as own price and cross 
price derivatives, income derivatives, homogeneity and symmetry properties as in 
ordinary theory. In the example given we have

0, 0, 0, 0,
x y x y xp m p p p pEx Ex Ex Ey Ex Ey      

    In words: Own prise derivative negative, cross price derivatives negative( x and y 
are gross complementary commodities ), income derivative positive (normal good) . 

The own price elasticity of demand is inelastic
( )

1
( )

x
Expx

x

E x p
El

p E x


  


. 

   

x y

m m
If no lower bound we have E(x)= ,E(y)=

3p 3p    .

 
Then x and y are independent commodities Note that the introduction of a lower 
bound changes the character of the commodities from independent to complements. 
    Symmetry of the substitution matrix is not a general property in the present 
approach as seen by introducing numerical values in this example. 
 

 
x y 0 0 Putting m=100, p 10,  p 5,  x =5 and y =6 we find

2 1
E(x)=5 ,  E(y)=7

3 3

 

 

Average expenditure = 0,933m < m. 
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Note the relative closeness to m due to the tight lower border. Identify lower bounds 
and the choice and/or preferences inside the set matter less. The substitution matrix 
in the numerical example is non symmetric and negative definite. 
 

7 1 17 4 8

1 130 5 3 90 45

1 2 22 8 830 15

3 3 3 90 45

       
      

                
          

. 

x

y

Exp

Exp

Exm

( ) 7
The own price elasticity El

( ) 17

( ) 3
The cross price elasticity El

( ) 17

( ) 10
The income elasticity El

( ) 17

x

x

y

y

E x p

p E x

E x p

p E x

E x m

mE x

 
 


 
 



 


 

Note that the homogeneity condition in elasticities hold (sum of elasticities =0). 
For elasticity forms in traditional theory (see Shone (1975 p 91)). 
 

Table of examples 
 
    In the following table we present more examples. The table contains the used 
function f(x, y). It also contains numerical values calculated for

0 0( , , , , ) (10,5,100,5,6)x yp p m x y  and c=a + b=30. The change in consumer´s surplus  

( CS ) is calculated ( triangular elasticity approximation) using a lower price of x(    
from 10 to 9). 
    We give expected demand, the utility maximising solution for each function f(x, y), 
own price elasticity, cross price elasticity and type of commodity following 
classification by cross price (gross complements etc.), average expenditure and 
change in consumer´s surplus. 
   The table is ordered following own price elasticities (from inelastic to elastic).    
Note especially the change in type of goods from independent to complements due 
to introduction of a lower bound for the same function. Example 1 and 2 plus 
example 3 and 4. Furthermore note the change in type of goods from substitutes to 
complements in example10 and 6. Both have a linear form but example 10 has an 
increasing function “ high consumption” and example 6 has an decreasing function  
“low consumption”. Example 12 in one dimension give us a ” Luxury good”. 
 
 
 
 

Functional form 
of f(x, y) 

Expec- 
ted 
demand            

Utility 
maximizing 
solution  

Own 
price 
elasticity 

Cross price 
elasticity. 
Type of 
commodities 

AE Average 
expenditure 

CS  Change 
in Consumer´s 
surplus 
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1 Constant-
uniform with 
lower bounds 
f(x, y)=1 

E(x)= 
5,67 
E(y)= 
7,33 

Infinite 
number of 
solutions 

-0,41 
Inelastic 
demand 

-0,18 
Comple- 
ments 

AE=0,93m 
 
 

2 Constant-
uniform with no 
lower bounds 

E(x)= 
3,33 
E(y)= 
6,67 

Infinite 
number of 
solutions 

-1 
Unit 
elastic 
demand 

0 
Independent 
 

AE=0,67m 
 

CS =3,5 

3 Quasi-concave 
with lower 
bounds. Cobb-
Douglas form 
f(x, y)=xy 

E(x)=5,8 
E(y)=7,6 

x=5 
y=10 

-0,48 
Inelastic 
demand 

-0,20 
Comple- 
ments 
 

AE=0,96m 

4 Quasi-concave 
with no lower 
bounds. Cobb-
Douglas form 
f(x, y)= xy  

E(x)=4 
E(y)=8 

x=5 
y=10 

-1 
Unit 
elastic 
demand 

0 
Independent 
 

AE=0,8m 
 

CS =4,2 

5 Linear 
proportions 
Perfect 
complements 
f(x, y)=min(x, y) 

E(x)=4,1
7 
E(y)= 
6,67 

x=6,67 
y=6,67 

-0,87 
Inelastic 
demand 

-0,13 
Comple- 
ments 
 

AE=0,75m 
 

CS =4,35 

6 Linear  
“low 
consumption” 
f(x, y)=c-x-y 

E(x)= 
3,33 
E(y)= 
5,83 

x=0 
y=0 

-0,91 
Inelastic 
demand 

-0,08 
Comple- 
ments 

AE=0,63m 
 

CS =3,48 

7 “Quasilinear” 

f(x, y)= x y  

E(x)= 
2,86 
E(y)=9,3 

x=0,1 
y=19,8 

-0,93 
Inelastic 
demand 

0,08 
Substitutes  

AE=0,74m 
 

CS =2,99 

8 Quasi-concave 
Cobb Douglas 
form 

f(x, y)= 2x y  

E(x)=5 
E(y)= 
6,67 

x=6,67 
y=6,67 

-1 
Unit 
elastic 
demand 

0 
Independent 
 

AE=0,83m 
 

CS =5,25 

9 Concave 

f(x,y)= x y  

E(x)=3,4
5 
E(y)= 
7,39 

x=3,33 
y=13,33 

-1,05 
Elastic 
demand 

0.05 
Substitutes 
 

AE=0,71m 
 

CS =3,63 

10 Linear 
“High 
consumption” 
f(x, y)=x + y 
 

E(x)=3,3 
E(y)= 
8,33 

x=0 
y=20 

-1,16 
Elastic 
demand 

0,17 
Substitutes 
 

AE=0.75m 
 

CS =3,49 

11 Convex 

f(x, y)= 2 2x y  

E(x)=2,8 
E(y)= 
10,4 

x=0 
y=20 

-1,45 
Elastic 
demand 

0,46 
Substitutes 
 

AE=0,8m 
 

CS =3,0 
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12 Exponential 

f(x)= xe  

E(x)=9 x=10 -1,11 
Elastic 
demand 

Income 
elasticity 
1,11  
Luxury good 

AE=0,9m 
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