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Spatial surveillance is a special case of multivariate surveillance. Thus, in this review of spatial 

outbreak methods, the relation to general multivariate surveillance approaches is discussed. Different 

outbreak models are needed for different public health applications. We will discuss methods for the 

detection of: 1) Spatial clusters of increased incidence, 2) Increased incidence at only one (unknown) 

location, 3) Simultaneous increase at all locations, 4) Outbreaks with a time lag between the onsets in 

different regions. Spatial outbreaks are characterized by the relation between the times of the onsets of 

the outbreaks at different locations. The sufficient reduction plays an important role in finding a 

likelihood ratio method. The change at the outbreak may be a step change from the non-epidemic 

period to an increased incidence level. However, errors in the estimation of the baseline have great 

influence and nonparametric methods are of interest. For the seasonal influenza in Sweden the 

outbreak was characterized by a monotonic increase following the constant non-epidemic level. A 

semiparametric generalized likelihood ratio surveillance method was used. Appropriate evaluation 

metrics are important since they should agree with the aim of the application. Evaluation in spatial 

and other multivariate surveillance requires special concern.  

 

Keywords: Monitoring, Influenza, Sufficiency, Semiparametric, Generalized likelihood, Timeliness, 

Predicted value. 

1. Introduction 

The first versions of sequential surveillance were developed around 1930 by Walter A. Shewhart. He 

introduced control charts for industrial applications. The area of industrial quality control dominated 

the development of surveillance theory for a long time. Although industrial applications are still 

important, many new applications have come into focus. Emerging needs in other areas and the 

availability of powerful computing resources have encouraged the development of more advanced and 

efficient methods. The threats of bioterrorism and new contagious diseases have been important 

reasons behind the increased research activity in the theory of surveillance. Kaufmann et al. (1997) 

stated that the delay of one day in the detection of and response to an epidemic due to a bioterrorist 

attack could result in the loss of thousands of lives and millions of dollars. Even if such severe threats 
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should become less pronounced in the future, there are now systems for the collection of public health 

information. Statistical surveillance systems will be expected to take care of such information for 

monitoring different kinds of health care services. Reviews on surveillance in public health are given 

by e.g. Sonesson and Bock (2003), Tsui et al. (2008), and Woodall et al. (2010). 

 Even though methods have been developed under different scientific cultures, inferential 

similarities can be identified. The aim of on-line surveillance is to give an alert signal as soon as 

possible after an important change has occurred. Overviews of the inferential issues in surveillance 

are given for example by Lai (1995), in the text book by Ryan (2000), and in the discussion in 

connection with the paper by Frisén (2009). Separate lines of research in theory, engineering, finance, 

and public health have come together in recent years, and progress in one area has been used in 

others. The theory of statistical surveillance will be further developed in response to the demands of 

applications in various fields. A cross-fertilization back to the applications could then be expected. 

 The detection of outbreaks of epidemiological diseases is an important area of on-line 

surveillance. In recent years, there have been several events that highlight the importance of outbreak 

detection. The outbreaks of new kinds of influenza (SARS, avian flu, and H1N1) are such recent 

examples. By obvious reason there is a lack of knowledge on new diseases. Hopefully, methods 

designed and evaluated for known periodical diseases or symptoms, such as the yearly influenza 

epidemic, will be useful to detect such new and unexpected diseases. An early detection of the onset 

of an outbreak of a known disease is also important in itself. It is useful in order for health authorities 

to act timely and also for the planning of health care resources. The surveillance of seasonal influenza 

outbreaks in Sweden will be used as an example throughout the paper. Epidemics, such as influenza, 

are for several reasons very costly to society, and it is therefore of great value to monitor the epidemic 

period in order to properly allocate medical resources (Andersson et al. (2008b)). The incidences of 

different diseases and symptoms are monitored by international, national, and local authorities to 

detect outbreaks of infectious diseases. Today many countries have advanced routine systems to 

detect outbreaks of diseases or symptoms. Hulth et al. (2010) describe the practical usage of 

computer-supported outbreak detection in five European countries. 

Several different definitions of an outbreak are used, explicitly or implicitly, in the literature. This 

is obvious in the broad overviews given by Shmueli and Burkom (2010) and Unkel et al. (2012). The 

present statistical review is based on different outbreak models and their correspondence to methods 

and evaluations. The choice of method and evaluation procedure depends on which definition is used. 

Therefore, it is important to state the definition and the aim explicitly. Different methods are optimal 

under different conditions. The methods can be seen as complements to each other.  

Seasonality, autocorrelation, and other complexities can be important for some applications. Often 

this can be handled by some regression technique to give standardized residuals. The data can often be 

explained by different models, and the aim is important for the choice of model. For influenza in 

Sweden Andersson et al. (2008a) concluded that simple models were useful for the outbreak detection 
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purpose. Although complex stochastic models can be important in some situations, they will not be 

discussed in any detail in this review.  

Sometimes information on the incidence at different locations is available. It is then desirable to 

generalize the univariate method to utilize this information. Two examples of reviews on spatial 

public health surveillance are Lawson and Kleinman (2005) and Tsui et al. (2011). Spatial 

surveillance is a special case of multivariate surveillance, as pointed out for example by Sonesson and 

Frisén (2005) and Joner et al. (2008).  

In Section 2, we will discuss different aims in outbreak detection and corresponding methods for 

univariate surveillance. In Section 3, we will discuss general approaches of how to construct 

multivariate surveillance from univariate surveillance. The discussion on outbreak models in Section 

2 and the review on multivariate surveillance in Section 3 are brought together in Section 4. Here, we 

adapt the technique for multivariate surveillance to different aims of spatial outbreak detection. In 

Section 5, we discuss evaluation metrics. Concluding remarks are given in the final section.   

2. Univariate outbreak detection 

Different definitions of an outbreak are used, explicitly or implicitly, in the literature. To make the 

differences explicit, we start by describing univariate outbreak detection. This is a prerequisite for 

describing different aims of spatial outbreak detection in Section 4.  

At each time point, t, a new observation is made on a process Y. We state the model for discrete 

time. Weekly data are available for influenza in Sweden. We want to detect the change from one state, 

non-epidemic, to another state, outbreak, as soon as possible after it has occurred, in order to give 

warnings and take corrective actions. Different univariate surveillance methods can be used 

depending on the optimality criteria. Frisén (2003) describes how different ways of summarizing the 

partial likelihoods (summation, maximum, etc) correspond to different optimality criteria, and optimal 

methods.  

 

2.1 Step change from an estimated baseline 

The most commonly used approach to outbreak detection aims to detect a step change from a 

parametric model for the non-epidemic periods. A signal is given as soon as one observation exceeds 

a threshold, usually a 95% prediction interval. A very successful method of this kind is the England-

Wales method (see Farrington and Beale (1993), Farrington et al. (1996), Farrington and Beale 

(1998), and Farrington and Andrews (2004). An alarm is triggered when the last observation exceeds 

a limit. With respect to how the information from different time points is summarized, this is a variant 

of the Shewhart surveillance method. 
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 Likelihood based methods may give optimal weighting of the different observations. In Le Strat 

and Carrat (1999), a Hidden Markov model (HMM) is suggested, which allows for switching between 

states with different statistical properties: the non-epidemic state, with low incidence rates, and the 

epidemic state, characterized by an increased incidence. The cyclical regression suggested in Serfling 

(1963) was used to model the seasonal effect. It was found that the seasonality had a period of 52 

weeks. Surveillance methods for the detection of a step increase in a Poisson distribution in public 

health were compared by Han et al. (2009). 

  Höhle and Paul (2008) use the CUSUM method to summarize the deviations from a parametric 

model and discuss the effect of estimating unknown parameters. In Andersson, et al. (2008a), it is 

concluded that parametric methods are not suitable when the parameters describing the incidence 

curve vary much from year to year, as is the case with influenza in Sweden. 

  

2.2 Gradually increasing incidence 

Outbreaks are always characterized by an increased incidence. However, the increase is seldom in one 

step. We will here consider an outbreak defined as a change from an unknown baseline to a 

monotonically increasing incidence, as suggested by Frisén and Andersson (2009). The suggested 

method aims at detecting a change from a constant level to an increasing regression, i.e. a change in 

monotonicity. In Andersson, et al. (2008a) on Swedish influenza data it was suggested that the 

incidence could be modeled using a Poisson distribution. The parameter λ(t) of the distribution at time 

t has a constant value λ0 before the outbreak but increases with time after the onset of the outbreak. 

We will use τ to denote the unknown time of the onset. For some applications, τ is naturally regarded 

as a parameter and for others as a stochastic variable. 

We have 
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with λ0  λ1  λ2  ...  λs .The aim at decision time s is to determine whether or not the outbreak has 

started yet, thus if τ≤s or τ>s. The state at the outbreak is characterized by a monotonically increasing 

expected incidence.  

Generalized likelihood ratios (GLR) can be used by replacing the parameters with the maximum 

likelihood estimators under the monotonicity restrictions as derived in Frisén et al. (2010a) for the 

exponential family. The method is semiparametric since the distribution is parametric, but the 

regression is nonparametric. A user-friendly computer program can be downloaded at 

www.statistics.gu.se/surveillance. The method is also available in the R package Surveillance, 

described in Höhle (2010) and available on CRAN, and in the open JAVA package CASE described 

in Cakici et al. (2010).  
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The method was applied to the incidence of influenza in Sweden as a whole by Frisén et al. (2009) 

and compared favorably to other methods. In Section 4.4.2 we will adapt this method to spatial 

surveillance. 

3. Multivariate surveillance 

Spatial surveillance is multivariate. After the section on univariate outbreak detection, we will now 

review general approaches to adapting univariate methods for multivariate problems. This is a 

prerequisite for Section 4 on spatial outbreak detection. General reviews on multivariate surveillance 

methods can be found for example in Basseville and Nikiforov (1993) and Bersimis et al. (2007). 

Jiang and Tsui (2008) base their framework on the relationship between control charts and statistical 

hypothesis testing. Frisén (2010) bases the overview on inference principles and emphasizes the times 

of the different changes. Reviews on issues of multivariate surveillance in public health are given by 

e.g. Marshall et al. (2004), Burkom et al. (2005), and Rolka et al. (2007).  

The process under surveillance is a p-variate vector, denoted by { ( ), 1,2,...}t t Y Y , where 

Y(t) = {Y1(t), Y2(t),..., Yp(t)}. The components of the vector here represent the incidence of a disease 

at p  different locations. At decision time s, we base the decision on the available information, Ys = 

{Y(1), Y(2)... Y(s)}.  

There are several approaches to multivariate surveillance. The most commonly used approach is 

the reduction to one scalar statistic for each time. This will be described in Section 3.1. Another 

common approach, described in Section 3.2, is to use several univariate systems in parallel. There are 

also other approaches but these two are used in many of the spatial outbreak methods described in 

Section 4.  

 

3.1 Reduction to one scalar statistic for each time 

It is always sensible to reduce dimension in multivariate problems provided that this does not reduce 

the important information. The most far-reaching reduction is the reduction to a scalar for each time. 

This is a common way to handle multivariate surveillance. In multivariate surveillance the 

observations at each time point consist of a vector. This vector can be transformed to a scalar statistic 

for that time point. The accumulation over time can then be made by a univariate surveillance method.  

One natural reduction when dealing with multivariate normal variables is to use the Hotelling T2 

statistic suggested by Hotelling (1947). This statistic is defined as  

2 1
0 ( ) 0( ) ( ( ) ( )) ( ( ) ( ))T

tT t t t t t  YY μ S Y μ ,  
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where ( )tYS  is the sample covariance matrix. Originally, the Hotelling T2 statistic was used in a 

Shewhart approach, and this is sometimes referred to as the Hotelling T2 control chart.  

One example of scalar accumulation is when, for each time point, a statistic representing the 

important aspects of the spatial pattern is constructed from a purely spatial analysis. This statistic can 

then be used in a surveillance method. The reduction to a univariate variable can be followed by 

univariate monitoring of any kind. For examples of how this is used in cluster detection, see Section 

4.1.  

For the influenza incidence in a country, like Sweden, it is natural to use the incidence for the 

country as a whole for each time point, as in Frisén and Andersson (2009). Using the sum over 

locations means that no regional information is utilized. Other reductions than the sum are more 

efficient, as is seen in Section 4.4.  

 

3.2 Parallel outbreak detection 

Another stepwise way to handle multivariate surveillance is to first reduce the data to a surveillance 

statistic for each variable. This is, in a sense, an opposite technique to that in Section 3.1. Both 

methods are very common. They have different optimality properties. By the parallel approach, each 

process is monitored separately and an overall alarm is called if some condition is fulfilled. The most 

common overall alarm condition is that one of the surveillance statistics indicates an alarm. 

References to methods using this approach for spatial surveillance will be given in Sections 4.1 and 

4.2. 

4. Methods for spatial outbreak detection 

Different applications require different models and methods. Some structure is necessary in order to 

get detection power. Otherwise, the power will be diluted. On the other hand, false assumptions may 

lead to misleading results. We will discuss methods for the detection of the following kinds of 

outbreaks: 1) Spatial clusters of increased incidence, 2) Increased incidence at only one (unknown) 

location, 3) Simultaneous increase at all locations, 4) Outbreaks with a time lag between the onsets in 

different regions. 

4.1 Clusters 

Unusual aggregations and spreading patterns in space can give information on health hazards. Cluster 

detection methods aim to detect increased incidences in regions that are close in space. Thus, an 

outbreak is characterized by a non-homogenous distribution in space, and the aim is to detect a 
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departure from spatial randomness. Different assumptions are made on the spatial process and 

different kinds of clusters are of interest. 

There is much literature on cluster detection. Older literature considers retrospective hypothesis 

testing. Simple retrospective tests of the space-time interaction can be based on the Knox statistic 

described by Knox (1964) where the proportion of observations close in time and space is recorded. 

Many other statistics for retrospective tests of clustering have also been suggested based on different 

statistical models.  

Prospective surveillance will now be discussed with emphasis on the inference approaches. Most 

methods are stepwise. Either the spatial pattern is summarized first and then the time-development, as 

described in Sections 3.1, or vice versa, as in Section 3.2. We will now give examples of how specific 

methods use the different approaches. 

By the summarizing technique described in Section 3.1 we first compute a statistic measuring the 

clustering tendency for each time point and then summarize over time by some univariate surveillance 

method. Rogerson (2001) suggested that the local Knox statistic could be used for each time, and the 

information was accumulated by the univariate CUSUM method. The method was criticized by 

Marshall et al. (2007) by distributional arguments and by the ARL performance. Zhou and Lawson 

(2008) characterized the spatial pattern by a Bayesian model for each time, and the statistic was then 

monitored by the EWMA method.  

The general multivariate technique of parallel surveillance (described in Section 3.2) has also been 

used. The timely detection of clusters in space within the framework of Bayesian hierarchical Poisson 

models is treated by Corberan and Lawson (2011). They summarize increasing tendenciesfor each 

region in parallel by an advanced estimation technique and comparisons between successive values. 

Then, they summarize over regions by noting for how many of the regions a threshold is exceed. 

Raubertas (1989) uses a first step by smoothing the spatial data and then makes a parallel CUSUM for 

each region and makes a general alarm as soon as there is an alarm for any of the regions.  

The many papers by Kulldorff (for example Kulldorff (2001)) and the computer programs (see 

Kulldorff (2010)) on scans for areas with high incidence of a disease have been important for the 

development of spatial surveillance. Shmueli and Burkom (2010) state that it is the most widely used 

method for detecting the emergence of localized disease clusters. By the SaTScan method (Kulldorff 

(2001)) possible circular regions are scanned for increased incidence. The method is based on 

likelihood ratios and developed within the framework of statistical tests. It has later been developed in 

different directions (for example elliptical regions).  

Sonesson (2007) showed that the scan method by Kulldorff can be expressed as a CUSUM method 

since the partial likelihood ratios are summarized by maximization over possible outbreak times. The 

important difference to CUSUM, as it is used in surveillance, is that Kulldorff conditions on the total 

number of events for the time periods (between the possible change point and the decision time). This 
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condition makes the method fit within the hypothesis testing framework and p-values can be 

calculated. It also gives conditional levels of incidence. 

Sonesson (2007) suggested a new method based on the parallell CUSUM by Raubertas (1989) but 

with circular clusters, as in the method by Kulldorff. He also suggested that other surveillance 

methods than CUSUM should be used for summarizing the partial likelihoods over time. Sonesson 

(2007) examined the surveillance properties of the methods by Raubertas, Kulldorff, and himself by 

simulations for some simple situations and by application to the detection of tularemia clusters in 

Sweden. This seems to be the first evaluation of the widely used method by Kulldorff in a 

surveillance context.  

Assunçãoa and Correab (2009) make advanced use of the spatial and temporal likelihood 

expressions. The statistic for the spatial interaction is a likelihood ratio based on a fixed shift within 

the cluster. A fixed radius for the cluster and estimated purely spatial and purely temporal functions 

are used. The summarizing over time is made by the Shiryaev Roberts approach. 

Spatial surveillance is often seen as identical with cluster detection and there is plenty of literature 

on cluster detection. However, there are also other spatial abnormalities which demand detection 

methods and some will now be described. 

 

4.2 Outbreak at only one location out of many 

Sometimes it can be assumed that the change appears in only one out of many locations. Tartakovsky 

and Veeravalli (2004) described the parallel surveillance of a multichannel system where one (and 

only one) channel may have a change. A parallel approach for each location may be assumed to be the 

best solution and is usually used for such problems. However, the properties of the method depend on 

how the results from different parallel surveillance methods are combined. The most commonly used 

method is the union intersection method, where an alarm is given as soon as there is an alarm for any 

of the locations. As regards the combination of p-values in hypothesis testing, it was demonstrated by 

Frisén (1974) that the choice of method for combination depends on the size of the change. This 

indicates that no truly simple optimality result can be expected. 

 Sonesson (2007) compared the detection ability of cluster detection methods for some different 

cluster sizes and found that the SaTScan method by Kulldorff (2001) was the best choice when the 

cluster was constituted by only one position. Jiang et al. (2011) examined the effect of radius in 

cluster detection and concluded that a correspondence between actual radius and that of the method 

has a large effect. 

If only a few locations out of many are affected, similar properties as for only one location will 

occur.  
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4.3 Simultaneous change at all locations  

The case where the onsets are simultaneous, that is τi = τ for i=1,...p, is of special interest. In most 

papers on multivariate surveillance it is implicitly assumed that the changes occur simultaneously. 

Multivariate surveillance is often evaluated by ARL1. The consequences of this will be further 

discussed in Section 5.2. 

 Wessman (1998) and Frisén et al. (2011) demonstrated that if all processes have the same change 

points, then the univariate vector of partial likelihood ratios {L(s,t), t=1,...s}, for τ<s against τ=s, is 

sufficient for the sequence of distributional families. Thus, in order to monitor a simultaneous and 

fully specified change, it is possible to construct a univariate surveillance procedure based on the 

sufficient sequence of likelihood ratios. Zhou et al. (2010) used this result for the simultaneous shifts 

of mean and variance in a normal distribution.  

 

4.4    Outbreaks with time lags  

The relation between different locations is important in the monitoring of outbreaks. In some 

situations the time lag in the onset of the outbreak in different regions is rather well known. The 

spreading pattern of influenza in Sweden is described in Section 4.4.1. Another example where a time 

lag is relevant is when there is an early but rough indicator which may be combined with a later and 

more accurate one. In Hulth et al. (2009) and Ginsberg et al. (2009) it was shown that data of search 

patterns on the Internet could be used as an early proxy for influenza incidence. In Ginsberg et al. 

(2009) it was found that the lag between information by Google and traditional CDC-data was about 

two weeks. The method described in Section 4.4.2 may possibly be useful also for such situations, 

where the lag is in the reporting rather than in the onset of the outbreak at the various locations. 

However, the motive for the suggested method was the spreading pattern.  

 

4.4.1 The spatial spreading pattern of influenza in Sweden 

Data on epidemic diseases are collected by national and international institutes, for example the 

European Centre for Disease Prevention and Control in Europe and the Centers for Disease Control 

and Prevention in the US. In Sweden, data on infectious diseases are collected by the Swedish 

Institute for Infectious Disease Control, SMI. The monitoring of influenza in Sweden is mostly based 

on the sum of reports of all Swedish laboratory diagnoses of influenza (LDI). Andersson, et al. 

(2008a) and Andersson, et al. (2008b) give descriptions of the collection and properties of these data 

for the whole country.  

 The spatial pattern of how a disease spreads between regions is important. Spatial clustering of 

adverse health events is often discussed. However, in some situations, such as in the case of influenza 

in Sweden, the outbreak pattern is not characterized by clustering.  
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Schiöler (2011) searched for geographical patterns in the spread of influenza in Sweden. A spread 

from south to north or from west to east had been discussed. No such pattern was found. Instead it 

was found that influenza epidemics tend to start in the larger cities and then spread to the smaller 

ones. Data from areas classified as Metropolitan areas generally showed an earlier outbreak than those 

from the Locality areas. The Metropolitan areas have major international airports nearby, and 

commuting to other countries is common. This is a possible explanation for the early start of the 

influenza season in these areas. This explanation is also in accordance with the results of Crepey and 

Barthelemy (2007), who investigated the relation between traveling and influenza in the US as well as 

in France and found a stable impact. 

The time difference in the onset of the influenza outbreak between the group of Metropolitan areas 

and the group of Locality areas was about one week. This information was used to increase the 

efficiency of the surveillance system, as described in the next section.   

 

4.4.2 Spatial outbreak surveillance based on sufficient reduction 

Knowledge about the relation between the times of the onsets of the outbreaks is essential. In Frisén et 

al. (2010b) it was demonstrated that the relation between the change points of the different processes 

is very important, since it affects the properties of different surveillance methods in different ways. 

Thus, any knowledge on the change points should be utilized. Different methods are suitable for 

different relations. Without any information about this relation it is not possible to derive a good 

method. The time τi of the onset of the outbreak of process Yi may not be the same for all i=1,...p. For 

notational convenience we order the processes according to the order of onset, so that 1 ... p   . 

For some purposes, it may be of interest to monitor each location separately. However, the aim here, 

as often, is to detect an outbreak in any of the processes, which means that we aim at detecting the 

first one.  

Due to the complexity of multivariate problems we will now examine the possibilities, in the case 

of outbreak detection, to minimize the complexity without any loss of information. A sufficient 

reduction will not reduce the information and still allows a joint solution to the full surveillance 

problem.  

 We assume that the different processes are identically distributed except for the time of the onset. 

and that the distributions of the processes all belong to the one-parameter exponential family. For the 

influenza in Sweden, the Poisson distribution was demonstrated to be relevant by Andersson, et al. 

(2008a).  

Frisén, et al. (2011) studied the case of step changes in the general one-parameter exponential 

family (including the Poisson distribution) and identified the sufficient reduction for some cases. 

Modification to gradual change is of interest for influenza outbreaks. In Section 2.2 we studied the 

univariate case where a process Yi increases monotonically from the onset of the outbreak τi and 
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onwards. In Schiöler and Frisén (2012) it was demonstrated that a sufficient reduction to a univariate 

statistic exists for the situation with known time lags between the outbreaks of several processes. 

 The sufficient statistic can be used in a univariate surveillance method. Schiöler and Frisén (2012) 

derive a generalized likelihood ratio method based on the sufficient reduction. If the outbreaks appear 

simultaneously for the different processes, then we have a univariate sufficient statistic with one 

change point, and optimal methods can be derived. However, when the outbreaks appear at different 

times, the sufficient statistic has more than one change point in the distribution. Even though each 

component has one change point, the distribution of the sufficient statistic is not constant either for t< 

τi or for t≥τi. The proofs commonly used for minimax or expected delay optimality require that there is 

only one change between two distributions. Since no method with exact optimality can be expected, 

the properties of the methods have to be described. This can be done for example by a simulation 

study based on models relevant for the application. A simulation study was made to examine 

robustness and other properties of the method, as discussed in Section 5.  

The method was applied to nine seasons of influenza in Sweden and the multivariate method 

proved more efficient than the earlier method based on the total incidence in Sweden.  

5. Evaluation of methods for spatial outbreak detection  

In order to interpret an alarm or a lack of alarm one needs to know the properties of the method used. 

If frequent false alarms can be expected, an alarm may not give cause for serious concern.  

In order to choose an appropriate method in practice one needs to know which factors influence 

the detection ability and which methods are preferable in a given situation. The urgent need for further 

discussion on metrics for evaluation of surveillance was stressed in Fricker (2011) as well as in the 

discussion and rejoinder. 

The choice of the alarm limit can be made by examining the results of some limits when applied to 

a model, historical data, or simulated data. If a simulation study is used, it should be based on models 

relevant for the application. Even if a nonparametric method is suggested, a parametric model is 

needed to generate data for the simulation study.  

Some evaluation criteria will now be discussed. We will discuss measures for false alarms and 

detection delay as well as a measure for the balance between these measures. 

 

5.1 False alarms 

Surveillance, where we make successive decision, differs from hypothesis testing in the view of false 

alarms. In hypotheses testing a fixed significance level is important. In contrast, the commonly used 

methods in surveillance have a probability of any false alarm that tends to one as time tends to 
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infinity. It has been suggested that this can be avoided by letting the alarm limit tend to infinity. 

However, this will seriously harm the ability to detect late changes, as demonstrated by Bock (2008). 

Thus, false alarms are not regarded in the same way in surveillance as in hypothesis testing. The False 

Discovery Rate (FDR), was suggested by Benjamini and Hochberg (1995) for hypothesis testing with 

multiple comparisons. FDR is the proportion of rejections which are false. It has been suggested also 

for surveillance problems but the FDR is not as important in surveillance as in hypothesis testing 

because of the different views on false alarms.  

 Since false alarms are unavoidable in surveillance, the expected time to false alarms is important. 

The false alarm measure most commonly used in surveillance is  0 |AARL E t    , where tA is 

the time of the alarm. This is naturally generalized for multivariate surveillance as E[tAmin=] = 

E[tA1=, ... p=] where tA is the time of the general alarm for the multivariate situation. ARL0 of 

the multivariate procedure, as suggested above, can be interpreted as the expected time until a false 

alarm. When methods are compared it is common to use the same false alarm tendency for all 

methods. It requires a very large number of replicates to ensure that there is not an error in the false 

alarm value that makes the comparison biased. The technique suggested by Frisén and Sonesson 

(2006) can be used to ensure that the alarm limit was determined with enough accuracy to make the 

error in the important properties negligible. Alternatively, the median run length, MRL0, can be used 

instead of the expected value with the same generalization for the multivariate situation as for ARL0. 

MRL0 is more convenient to use in simulation studies since it requires considerably fewer replicates to 

give the same accuracy of the alarm limit. For both the spatial and the univariate influenza in Sweden 

MRL0 was set to 780 for all methods. 

 In univariate theoretical work the false alarm probability, PFA=P(tA<), is sometimes used. This is 

naturally generalized for multivariate surveillance as 

      min min min min
1

A A
i

PFA P t P t i P i   




      =    minA j jP t P    . 

Note that the distribution of min influences the suggested multivariate PFA expression. 

 

5.2 Delay 

Timeliness in detection is of extreme interest in surveillance. Unfortunately, the expected delay can be 

quite different for different change points. The expected delay is a function of τ. In Section 5.2.1 we 

will describe this dependency of the delay on τ. Often, a summarizing measure which gives only one 

value of the delay is used, and such measures are described in Section 5.2.2. 
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5.2.1 Delay as a function of the time of the change 

We start by recapturing the univariate case where the expected delay for a specific value of τ is ED(τ) 

= E{max(0, tA-τ)}. Since ED(τ) for most methods tends to zero, it is useful to study the delay 

conditional on no alarms before τ. For a specific value of τ, the Conditional Expected Delay, CED, is 

  A ACED E t t        . 

 The first use of the term CED and calculation for a specific value of τ, different from 1 and ∞, 

seems to be by Zacks and Kenett (1994). Frisén and Wessman (1998) reported CED as a function of τ, 

and in Frisén (2003) and Frisén and Sonesson (2006) it was strongly advocated that the whole CED 

curve should be studied. 

 CED can be generalized for multivariate surveillance to CED(τ1, τ2... τp) = min min[ ]A AE t t   , 

see Frisén, et al. (2010b). This delay measure depends on all the change points. However, there is 

often some relation between the change times which simplifies the picture. The CED curves differ 

considerably for different relations between the values of the change times. For simultaneous 

outbreaks, the multivariate CED reduces to the univariate one. For the case of influenza in Sweden, 

the assumption of a time lag considerably reduced the complexity. The CED had it worst value (three 

weeks) when the outbreak occurred at the start of the surveillance but was reduced to about two weeks 

when the outbreak occurred late. This is natural since we used a nonparametric method which needed 

time to gather information. Assunçãoa and Correab (2009) suggested a modified measure, CED*(τ), 

for cluster detection. Here the delay is not the time between the outbreak and the alarm. Instead, only 

those events which belong to the space time cluster are regarded.  

Sometimes the time available for action is limited. In such situations it is important to use a 

surveillance system with high detection ability within the existing time frame. This property can be 

measured by the Probability of Successful Detection, PSD, which was suggested by Frisén (1992). It 

measures the probability that an alarm is called within d time units. In the multivariate case it was 

defined by Frisén (2009b) as  

1 min min( , ... ) ( | )p A APSD d P t d t       . 

PSD can be calculated and compared for different values of d, as is done in Marshall, et al. (2004). If 

we expect sudden and major changes, we may want a method with high immediate detection ability (a 

high PSD for a small d). In a situation where we expect small changes, the long term detection ability 

(a high PSD for a large d) may be more important. 

5.2.2 Summarized delay 

The most commonly used measure of the detection ability is the average run length, given that the 

change occurs immediately (τ=1). This is widely used in univariate surveillance and often named 

zero-state ARL or ARL1. In univariate surveillance the ARL1 has a simple relation to CED, namely 
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ARL1=CED(1)+1. To consider only τ=1 in the univariate case is a limitation, and the univariate ARL1 

is criticized as a formal optimality criterion for example by Frisén (2003). ARL1 is the most 

commonly used evaluation measure also in the multivariate case. However, it is seldom explicitly 

defined. One possibility is to define the multivariate zero-state ARL as E[tA|τmin=1]. However, the 

values of CED for min=1 vary a lot for different relations between the values of τmin and the change 

times of the other processes. Thus, there is no unique ARL1 with the definition E[tA|τmin=1]. Another 

possibility is to define the multivariate zero-state ARL as E[tA| τ1= τ2= …  τp =1]. This is the definition 

implicit in most publications. Here, it is assumed that all processes change at the same time. As was 

seen in Section 4.3 a sufficient reduction to a univariate problem exists when all processes change at 

the same time. Thus, a reduction to a univariate surveillance statistic is the proper procedure by the 

sufficiency principle. Thus, we have a univariate inference. ARL1 is thus questionable as a formal 

measure for comparing methods for genuinely multivariate problems.   

 The opposite way to avoid the dependence on τ in the univariate case is to use the steady-state 

conditional expected delay, lim ( )SSCED CED





 . The asymptotic measure is often used also in 

multivariate situations, but this is not without problems. It is often implicit that the situation 

1=2=...=p=t,  t is considered. For equal change points we have a unique delay value for each 

method. However, this is another example of the situation where univariate surveillance can be used 

instead of multivariate surveillance since there is a sufficient reduction to univariate surveillance. For 

other situations than simultaneous changes there is no simple asymptotic CED. Even though all the τ 

values tend to infinity, it also matters how they do this. Specification of how the times of the change 

points are related is necessary.  

 A commonly used optimality criterion is the minimax criterion by Lorden (1971). This avoids the 

dependency on τ by using the least favorable value of τ. This and other advanced measures can be 

generalized to the multivariate situation, but some structure on the problem is necessary to make the 

measure comprehensive. The sufficiency principle can be a useful at derivation of relevant measures. 

 
5.3 Predictive value 

When a method calls an alarm, we need to know whether this alarm is a strong or weak indication of a 

change. The predictive value is a well-established measure in epidemiology. In surveillance, however, 

we need a variant that also incorporates time. The difference in surveillance, as compared to situations 

involving only one decision, is that we can get an alarm at any time point, and therefore the predictive 

value is a function of the time of the alarm. In order to interpret an alarm at time tA, it is necessary to 

consider the balance between the risk of false alarms, the detection ability, and the probability of a 

change. If we have one change point τ and this is regarded as a random variable, this can be done by 

the probability of an outbreak at an alarm, as suggested by Frisén (1992):  
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1

1

( ) ( )
( ) ( | )

( ) ( ) ( ) ( )

t

A
i

A t

A A
i

P t t i P i
PV t P t t t

P t t i P i P t t t P t

 


   





  
   

      




.  

In a multivariate setting this was generalized by Frisén, et al. (2010b) to 

 

 

min min
1

min

min min min min
1

( ) ( )
( ) ( | )

( ) ( ) ( ) ( )

t

A
i

A t

A A
i

P t t i P i
PV t P t t t

P t t i P i P t t t P t

 


   





  
   

      




. 

The components in the formula generally depend on the relation between the change points. The 

predictive value also depends on whether outbreaks appear frequently or rarely. Knowledge of the 

exact distribution of min is seldom available, but it can still be useful to have a rough indicator. For 

the influenza in Sweden min was assumed to be geometrically distributed with 

1
min( ) (1 )iP i     . This may not give the closest fit to the onset times in Sweden, but in order 

to detect outbreaks which occur at unexpected times we did not want to include information on which 

week is the most common for the onset. From all available historical data on seasonal influenza the 

level of intensity was roughly estimated to be ν = 0.1. With this intensity the PV is above 0.99 with 

the method used, and for a lower intensity, ν = 0.01, which weakens the PV, it is above 0.95. The 

method and alarm limit used were considered potentially useful for the application since the 

predictive value was high.  

6. Discussion 

Statistical surveillance, where timely decisions are made, has become an important part of statistics. 

Simple applications for industrial quality control dominated the development of surveillance theory 

for a long time. Today emerging needs in public health and other areas have triggered the 

development of more advanced methods. The new methods adjust to the complexity of the 

applications by advanced inference. Although methods have been developed under different scientific 

cultures, inferential similarities can be identified. Time is essential in surveillance in contrast to the 

situation in the well developed areas of hypotheses testing and estimation. We have no fixed 

hypotheses but the problem changes with time. It is not only necessary to make the right decision it is 

also essential when it is made. The theory of surveillance tells us when we have enough information 

for the decision. 
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The detection of outbreaks of epidemiological diseases is an important area of on-line surveillance. 

Several different definitions of an outbreak are used, explicitly or implicitly, in the literature. The 

definitions correspond to different aims and has consequences for which methods are suitable.  

A spatial setting is often present in public health surveillance. Spatial surveillance is a special case 

of multivariate surveillance. For multivariate problems it is always hard to derive optimal methods 

and sometimes even hard to define optimality. The description of general multivariate approaches was 

used to identify inferential approaches to spatial outbreak methods.  

Different kinds of spatial outbreaks are characterized by the relation between the times of the 

outbreaks at different locations. The most commonly used definition of a spatial outbreak is an 

emerging cluster. Besides that, there are also other spatial outbreak situations. The contrast between 

an outbreak at only one location among many and simultaneous outbreaks at all locations is 

interesting. A case between these two extremes is the one of a time lag between the outbreaks at 

different locations. The sufficient reduction plays an important role in finding a likelihood ratio 

method. An outbreak can have a step change, but an outbreak can also be characterized by a 

monotonic increase following the non-epidemic constant level. A semiparametric maximum 

likelihood ratio surveillance method was used for the monitoring of the seasonal influenza in Sweden. 

 Evaluation metrics appropriate for spatial outbreak detection is a topic of great concern. Simple 

measures may not always agree with the aim of the application. A prospective method should be 

evaluated with respect to timeliness. The timeliness concerns both false alarms and detection delay. 

The predictive value of an alarm can be used to describe the balance, and it can also be useful for 

deciding how to act at an alarm. Different methods are optimal under different conditions, and the 

methods can be seen as complements to each other. 

 The future for research on surveillance is bright. The number of publications on surveillance has 

increased considerably during the last ten years compared with some competing subjects. The theory 

of statistical surveillance will be further developed in response to the demands of applications in 

various fields. A cross-fertilization back to the applications could then be expected. 

References 

Andersson, E. (2002) Monitoring cyclical processes - A nonparametric approach. Journal of 
Applied Statistics, 29 (7) 973-990. 

Andersson, E., Bock, D. and Frisén, M. (2008a) Modeling influenza incidence for the 
purpose of On-Line monitoring. Statistical Methods in Medical Research, 17 421-
438. 

Andersson, E., Kuhlmann-Berenzon, S., Linde, A., Schiöler, L., Rubinova, S. and Frisén, M. 
(2008b) Predictions by early indicators of the time and height of yearly influenza 
outbreaks in Sweden. Scand. J. Public Health, 36 475-482. 



 

  

17

Assunçãoa, R. and Correab, T. (2009) Surveillance to detect emerging space–time clusters. 
Computational Statistics & Data Analysis, 53 (8) 2817-2830. 

Basseville, M. and Nikiforov, I. (1993) Detection of abrupt changes- Theory and application, 
Englewood Cliffs: Prentice Hall. 

Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. Journal of the Royal Statistical Society, Series 
B, 57 (1) 289-300. 

Bersimis, S., Psarakis, S. and Panaretos, J. (2007) Multivariate Statistical Process Control 
Charts: An Overview. Qual. Reliab. Eng. Int., 23 517-543. 

Bock, D. (2008) Aspects on the control of false alarms in statistical surveillance and the 
impact on the return of financial decision systems. Journal of Applied Statistics, 35 
(2) 213-227. 

Burkom, H. S., Murphy, S., Coberly, J. and Hurt-Mullen, K. (2005) Public Health Monitoring 
Tools for Multiple Data Streams. Morbidity and Mortality Weekly Report 
(Supplement), 54 55-62. 

Cakici, B., Hebing, K., Grünewald, M., Saretok, P. and Hulth, A. (2010) CASE –a 
framework for computer supported outbreak detection. BMC Medical Informatics and 
Decision Making, 10 (14). 

Corberan, A. and Lawson, A. (2011) Conditional Predictive Inference for On-line 
Surveillance of Spatial Disease Incidence Statistics in Medicine, 30 (26) 3095-3116. 

Crepey, P. and Barthelemy, M. (2007) Detecting Robust Patterns in the Spread of Epidemics: 
A Case Study of Influenza in the United States and France. American Journal of  
Epidemiology, 166 (11) 1244-1251. 

Farrington, C. P. and Andrews, N. J. (2004) Outbreak detection: application to infectious 
disease surveillance. In Monitoring the Health of Populations (eds R. Brookmeyer 
and D. F. Stroup). Oxford: Oxford University Press. 

Farrington, C. P., Andrews, N. J., Beal, A. D. and Catchpole, M. A. (1996) A Statistical 
Algorithm for the Early Detection of Outbreaks of Infectious Disease. Journal of the 
Royal Statistical Society A, 159 547-563. 

Farrington, C. P. and Beale, A. D. (1993) Computer-aided detection of temporal clusters of 
organisms reported to the Communicable Disease Surveillance Centre. 1993:3 R78-
R82.  

Farrington, C. P. and Beale, A. D. (1998) The Detection of Outbreaks of Infectious Disease. 
In Geomed 97 (eds L. Gierl, A. Cliff, A. J. Valleron, C. P. Farrington and M. Bull), 
pp. 97-117. Leipzig: Teubner verlag  

Fricker, J. R. D. (2011) Some methodological issues in biosurveillance. Statistics in 
Medicine, 30 (5) 403-415. 

Frisén, M. (1974) Stochastic deviation from elliptical shape. Thesis. Department of Statistics, 
University of Gothenburg, Gothenburg. 

Frisén, M. (1992) Evaluations of Methods for Statistical Surveillance. Statistics in Medicine, 
11 (11) 1489-1502. 

Frisén, M. (2003) Statistical surveillance. Optimality and methods. International Statistical 
Review, 71 (2) 403-434. 

Frisén, M. (2009) Optimal sequential surveillance for finance, public health and other areas. 
Editor's special invited paper. Sequential Analysis, 28 (3) 310-337, discussion 338-
393. 

Frisén, M. (2010) Principles for Multivariate Surveillance In Frontiers in Statistical Quality 
Control 9 (eds H.-J. Lenz, P.-T. Wilrich and W. Schmid), pp. 133-144. Heidelberg: 
Physica-Verlag  



 

  

18

Frisén, M. and Andersson, E. (2009) Semiparametric surveillance of outbreaks. Sequential 
Analysis, 28 (4) 434-454. 

Frisén, M., Andersson, E. and Pettersson, K. (2010a) Semiparametric estimation of outbreak 
regression. Statistics, 44 (2) 107 - 117. 

Frisén, M., Andersson, E. and Schiöler, L. (2009) Robust outbreak surveillance of epidemics 
in Sweden Statistics in Medicine, 28 (3) 476-493. 

Frisén, M., Andersson, E. and Schiöler, L. (2010) Evaluation of Multivariate Surveillance. 
Journal of Applied Statistics, 37 (12) 2089-2100. 

Frisén, M., Andersson, E. and Schiöler, L. (2011) Sufficient reduction in multivariate 
surveillance. Communications in Statistics -Theory and Methods, 40 (10) 1821-1838. 

Frisén, M. and Sonesson, C. (2006) Optimal surveillance based on exponentially weighted 
moving averages. Sequential Analysis, 25 (4) 379-403. 

Frisén, M. and Wessman, P. (1998) Quality improvement by likelihood ratio methods for 
surveillance. In Quality Improvement Through Statistical Methods (ed B. Abraham), 
pp. 187-193. Boston: Birkhauser. 

Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S. and Brilliant, L. 
(2009) Detecting influenza epidemics using search engine query data. Nature, 457 
(7232) 1012-1014. 

Han, S., Tsui, K.-L., Ariyajunyab, B. and Kim, S. B. (2009) A Comparison of CUSUM, 
EWMA, and Temporal Scan Statistics for Detection of Increases in Poisson Rates. 
Quality and Reliability Engineering International, 26 279-289. 

Hotelling, H. (1947) Multivariate Quality Control In Techniques of statistical analysis (eds C. 
Eisenhart , M. W. Hastay and W. A. Wallis), pp. 111-184. New York: McGraw-Hill. 

Hulth, A., Andrews, N., Ethelberg, S., Dreesman, J., Faensen, D., van Pelt, W. and 
Schnitzler, J. (2010) Practical usage of computer-supported outbreak detection in five 
European countries. Eurosurveillance, 15 (36) 1-6. 

Hulth, A., Rydevik, G. and Linde, A. (2009) Web Queries as a Source for Syndromic 
Surveillance. PLoS ONE, 4 (2) e4378. 

Höhle, M. (2010) Aberration Detection in R Illustrated by Danish Mortality Monitoring In 
Biosurveillance (eds T. Kass-Hout and X. Zhang): CRC Press. 

Höhle, M. and Paul, M. (2008) Count data regression charts for the monitoring of 
surveillance time series. Computational Statistics & Data Analysis, 52 (9) 4357-4368. 

Jiang, W., Han, S. W., Tsiu, K.-L. and Woodall, W. H. (2011) Spatiotemporal surveillance 
methods in the presence of spatial correlation Statistics in Medicine, 30 (5) 569-583. 

Jiang, W. and Tsui, K.-L. (2008) A theoretical framework and efficiency study of 
multivariate statistical process control charts. IIE Transactions, 40 (7) 650 - 663. 

Joner, J. M. D., Woodall, W. H., Reynolds Jr, M. R. and Fricker, R. D. (2008) A One-sided 
MEWMA Chart for Health Surveillance. Quality and Reliability Engineering 
International, 24 503-518. 

Kaufmann, A. F., Meltzer, M. I. and Schmid, G. P. (1997) The economic impact of a 
bioterrorist attack: Are prevention and postattack intervention programs justifiable? 
Emerging Infectious Diseases, 3 (2) 83-94. 

Knox, E. G. (1964) The detection of space-time interactions. Applied Statistics, 13 25-29. 
Kulldorff, M. (2001) Prospective time periodic geographical disease surveillance using a scan 

statistic. Journal of the Royal Statistical Society A, 164 (1) 61-72. 
Kulldorff, M. (2010) SaTScan version 8.2.1: software for the spatial, temporal, and space-

time scan statistics. (Available from http://www.satscan.org.).  
Lawson, A. B. and Kleinman, K., eds (2005) Spatial and Syndromic Surveillance for Public 

Health, Chichester: Wiley. 



 

  

19

Le Strat, Y. and Carrat, F. (1999) Monitoring epidemiologic surveillance data using hidden 
Markov models. Statistics in Medicine, 18 (24) 3463-3478. 

Lorden, G. (1971) Procedures for reacting to a change in distribution. Annals of 
Mathematical Statistics, 42 (6) 1897-1908. 

Marshall, C., Best, N., Bottle, A. and Aylin, P. (2004) Statistical issues in the prospective 
monitoring of health outcomes across multiple units. Journal of the Royal Statistical 
Society A, 167 (3) 541-559. 

Marshall, J. B., Spitzner, D. J. and Woodall, W. H. (2007) Use of the local Knox statistic for 
the prospective monitoring of disease occurrences in space and time. Statistics in 
Medicine, 26 (7) 1579-1593. 

Raubertas, R. F. (1989) An Analysis of Disease Surveillance Data That Uses the Geographic 
Locations of the Reporting Units. Statistics in Medicine, 8 (3) 267-271. 

Rogerson, P. A. (2001) Monitoring point patterns for the development of space-time clusters. 
Journal of the Royal Statistical Society A, 164 (1) 87-96. 

Rolka, H., Burkom, H., Cooper, G. F., Kulldorff, M., Madigan, D. and Wong, W.-K. (2007) 
Issues in applied statistics for public health bioterrorism surveillance using multiple 
data streams: research needs. Statistics in Medicine, 26 (8) 1834-1856. 

Ryan, T. P. (2000) Statistical methods for quality improvement, New York: John Wiley & 
Sons. 

Schiöler, L. (2011) Characterization of influenza outbreaks in Sweden. Scandinavian Journal 
of Public Health, 39 427-436  

Schiöler, L. and Frisén, M. (2012) Multivariate outbreak detection. Journal of Applied 
Statistics, 39 (2) 223-242. 

Serfling, R. (1963) Methods for current statistical analysis of excess pneumonia-influenza 
deaths. Public Health Reports, 78 (6) 494-506. 

Shmueli, G. and Burkom, H. S. (2010) Statistical Challenges Facing Early Outbreak 
Detection in Biosurveillance. Technometrics, 52 (1) 39-51. 

Sonesson, C. (2007) A CUSUM framework for detection of space-time disease clusters using 
scan statistics. Statistics in Medicine, 26 4770-4789. 

Sonesson, C. and Bock, D. (2003) A review and discussion of prospective statistical 
surveillance in public health. Journal of the Royal Statistical Society A, 166 (1) 5-21. 

Sonesson, C. and Frisén, M. (2005) Multivariate surveillance. In Spatial surveillance for 
public health (eds A. Lawson and K. Kleinman), pp. 169-186. New York: Wiley. 

Tartakovsky, A. G. and Veeravalli, V. (2004) Change-point detection in multichannel and 
distributed systems In Applications of Sequential Methodologies (eds N. 
Mukhopadhyay, S. Datta and S. Chattopadhyay). New York: Marcel Dekker, Inc. 

Tsui, K.-L., Chiu, W., Gierlich, P., Liu, X. and Maschek, T. (2008) A Review of Healthcare, 
Public Health and Syndromic Surveillance. Quality Engineering, 20 435-450. 

Tsui, K.-L., Wong, S. Y., Jiang, W. and Lin, C.-F. (2011) Recent Research and 
Developments in Temporal and Spatiotemporal Surveillance for Public Health IEEE 
Transaction on Reliability, 60 (1) 49-58. 

Unkel, S., Farrington, C. P., Garthwaite, P. H., Robertson, C. and Andrews, N. (2012) 
Statistical methods for the prospective detection of infectious disease outbreaks: a 
review. Journal of the Royal Statistical Society A, 175 (1). 

Wessman, P. (1998) Some Principles for surveillance adopted for multivariate processes with 
a common change point. Comm. Stat. Theor. Meth., 27 (5) 1143-1161. 

Woodall, W. H., Grigg, O. A. and Burkom, H. S. (2010) Research issues and ideas on health-
related surveillance In Frontiers in Statistical Quality Control 9 (eds H.-J. Lenz, P.-T. 
Wilrich and W. Schmid), pp. 145-155. Heidelberg: Physica-Verlag. 



 

  

20

Zacks, S. and Kenett, R. S. (1994) Process tracking of time series with change points In 
Recent Advances in Statistics and Probability (eds J. P. Vilaplana and M. L. Puri), pp. 
155-171. Zeist, The Netherlands: International Science Publishers. 

Zhou, H. and Lawson, A. B. (2008) EWMA smoothing and Bayesian spatial modeling for 
health surveillance. Statistics in Medicine, 27 (28) 5907-5928. 

Zhou, Q., Luo, Y. and Wang, Z. (2010) A control chart based on likelihood ratio test for 
detecting patterned mean and variance shifts Computational Statistics & Data 
Analysis, 54 (6) 1634-1645. 

  



 

  

21

 
 

  



 

  

22

 
 

2008:1 Frisén, M.  Introduction to financial surveillance. 

2008:2 
 
2008:3 

Jonsson, R. 
 
Andersson, E. 

 When does Heckman’s two-step procedure for 
censored data work and when does it not? 
Hotelling´s T2 Method in Multivariate On-Line 
Surveillance. On the Delay of an Alarm. 

2008:4 Schiöler, L. & Frisén, M.  On statistical surveillance of the performance of fund 
managers. 

2008:5 Schiöler, L.  Explorative analysis of spatial patterns of influenza 
incidences in Sweden 1999—2008. 

2008:6 Schiöler, L.  Aspects of Surveillance of Outbreaks. 

2008:7 Andersson, E &  
Frisén, M. 

 Statistiska varningssystem för hälsorisker 

2009:1 Frisén, M., Andersson, E. & 
Schiöler, L. 

 Evaluation of Multivariate Surveillance 

2009:2 Frisén, M., Andersson, E. & 
Schiöler, L. 

 Sufficient Reduction in Multivariate Surveillance 

2010:1 Schiöler, L  Modelling the spatial patterns of influenza incidence 
in Sweden 

2010:2 Schiöler, L. & Frisén, M.  Multivariate outbreak detection 

2010:3 Jonsson, R.  Relative Efficiency of a Quantile Method for 
Estimating Parameters in Censored Two-Parameter 
Weibull Distributions 

2010:4 Jonsson, R.  A  CUSUM  procedure for detection of outbreaks in 
Poisson distributed medical health events 

2011:1 Jonsson, R.  Simple conservative confidence intervals for 
comparing matched proportions 

2011:2 Frisén, M  On multivariate control charts 

2011:3 
 
2011:4 
 
2011:5 
 
2011:6 
 
2011:7 

Frisén, M 
 
Knoth, S &Frisén, M 
 
Marianne Frisén 
 
Robert Jonsson 
 
Robert Jonsson 
 

 Methods and evaluations for surveillance  in 
industry, business, finance, and public health 
Minimax Optimality of CUSUM for an Autoregressive 
Model  
Inference principles for multivariate surveillance 

A Markov Chain Model for Analysing the 

Progression of Patient’s Health States 

Tests of Markov Order and Homogeneity in a 

Markov Chain Model for Analyzing Rehabilitation 


	framsida RR121 120302MF.pdf
	RR 12 1 IIE 120302

