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Okounkov bodies and geodesic rays in Kähler geometry
David Witt Nyström

ABSTRACT
This thesis presents three papers dealing with questions in Kähler geometry.

In the first paper we construct a transform, called the Chebyshev transform, which

maps continuous hermitian metrics on a big line bundle to convex functions on the asso-

ciated Okounkov body. We show that this generalizes the classical Legendre transform in

convex and toric geometry, and also Chebyshev constants in pluripotential theory. Our

main result is that the integral of the difference of two transforms over the Okounkov

body is equal to the Monge-Ampère energy of the two metrics. The Monge-Ampère

energy, sometimes also called the Aubin-Mabuchi energy or the Aubin-Yau functional,

is a well-known functional in Kähler geometry; it is the primitive function to the Monge-

Ampère operator. As a special case we get that the weighted transfinite diameter is equal

to the mean over the unit simplex of the weighted directional Chebyshev constants. As

an application we prove the differentiability of the Monge-Ampère on the ample cone,

extending previous work by Berman-Boucksom.

In the second paper we associate to a test configuration for a polarized variety a

filtration of the section ring of the line bundle. Using the recent work of Boucksom-Chen

we get a concave function on the Okounkov body whose law with respect to Lebesgue

measure determines the asymptotic distribution of the weights of the test configuration.

We show that this is a generalization of a well-known result in toric geometry.

In the third paper, starting with the data of a curve of singularity types, we use the

Legendre transform to construct weak geodesic rays in the space of positive singular

metrics on an ample line bundle L. Using this we associate weak geodesics to suitable

filtrations of the algebra of sections of L. In particular this works for the natural filtration

coming from an algebraic test configuration, and we show how this in the non-trivial case

recovers the weak geodesic ray of Phong-Sturm.

Keywords: ample line bundles, Okounkov bodies, Monge-Ampère operator, Legendre

transform, Chebyshev constants, test configurations, weak geodesic rays.



ii



Preface

This thesis consists of an introduction and the following papers.

• David Witt Nyström,
Transforming metrics on a line bundle to the Okounkov body,
submitted.

• David Witt Nyström,
Test configurations and Okounkov bodies,
accepted for publication in Compositio Mathematica.

• Julius Ross and David Witt Nyström,
Analytic test configurations and geodesic rays,
submitted.

In order not to loose focus, the following paper is not included in this thesis.

• Robert Berman, Sebastien Boucksom and David Witt Nyström,
Fekete points and convergence towards equilibrium measure on

complex manifolds,
Acta Mathematica 207 (2011), no. 1, 1-27.
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INTRODUCTION





0
INTRODUCTION

At the International Congress of Mathematicians (abbreviated ICM) in Madrid,
2006, four mathematicians were awarded the Fields medal, generally regarded
as the highest accolade in mathematics. One of them stole the show, without
even showing up. The russian Grigori Perelman had in 2002 posted on the inter-
net a solution to one of the longstanding problems in mathematics, the Poincaré
conjecture. By the time of the ICM in 2006 a consensus had been reached
among the experts that Perelman’s solution was correct. Perelman however had
gotten disillusioned with the mathematical community, and refused to come to
Madrid to pick up his medal. The three other recipients of the Fields medal that
year were Terence Tao, Wendelin Werner and Andrei Okounkov. A large part
of this thesis revolves around a mathematical invention due to the other russian
in the bunch, Andrei Okounkov.

3



4 CHAPTER 0. INTRODUCTION

If one divides mathematics into its major subfields, say algebra, number
theory, analysis, geometry, probability theory and discrete mathematics, then
this thesis belongs to the land of geometry. If one wants to be more specific, we
are doing algebraic geometry, which means that one uses algebraic equations
to define the geometries of interest. The geometric shapes one studies are in
general very complicated and either hard or impossible to visualize. For one
thing we allow the dimension of our spaces to be arbitrarily large.

In 1996 Okounkov published a paper titled "Brunn-Minkowski inequality
for multiplicities." In it he took one of the complicated geometric objects that
we are interested in and showed how to produce a simplified image of it. These
images sort of look like blobs, and are called Okounkov bodies, after their in-
ventor. Since they are so simple they do not tell us everything about the com-
plicated object we started with, but they still give us some clues.

It took more than ten years though until other mathematicians started to
realize the usefulness of these images, and by then Okounkov himself was doing
different things. In 2008 two research teams working independently developed
the ideas of Okounkov much further (see [18, 22]), and found new applications.
Other researchers (including myself) hopped on the train.

In the modern take on geometry one starts with a very flexible object called
a manifold. Up close it should look just like flat space of some chosen dimen-
sion, but its global behaviour can be complicated. One can twist and stretch
the manifold however one likes, as long as one does not tear or break it. The
manifold is the white canvas for the geometer. One should note that already
the white canvas has a lot of structure in itself, which is studied in the field of
topology. One then proceeds to give the manifold some additional structure,
making it more rigid. What kind of structure depends on what kind of geom-
etry one works with. In algebraic geometry the additional structure tells you
what functions on the manifold should be thought of as polynomials or rational
functions, i.e. quotients of polynomials. In Riemannian geometry the struc-
ture one imposes on the manifold is that of a metric. A metric enables you to
measure the lenght of curves along the manifold, and also areas and volumes.
This is what gives a manifold a precise geometric shape, so the object is now
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very rigid. The most important concept in this area is that of curvature. The
curvature of a manifold with metric measures the local non-flatness of it in a
precise mathematical way. In two dimensions the curvature is just a function on
the manifold, often called the Gaussian curvature. The ordinary plane has zero
curvature since it is flat, the sphere has constant positive curvature and there are
also spaces with constant negative curvature. These negatively curved (hyper-
bolic) spaces locally look like the surface of a saddle. However, for most spaces
the curvature will vary from point to point. In higher dimensions a function is
not enough to capture the non-flatness of a space, so the curvature is a much
more complicated kind of object (a (1, 3)-tensor for those in the know). Even
though the curvature in dimensions higher than two is a complicated object one
can still form a function from it called the scalar curvature. The scalar curvature
at a point measures how the size of a ball with radius r centered at that point
compares to the size of a ball in flat space with the same radius as the radius
shrinks to zero.

The combination of algebraic geometry with Riemannian geometry is called
Kähler geometry. In Kähler geometry one equips the manifolds with metrics,
giving rise to curvature. The metrics one uses are not arbitrary though, they are
supposed to be adapted to the algebraic structure of the manifold.

Most researchers studying Okounkov bodies have focused on algebraic geo-
metric aspects. The first and second article in this thesis uses Okounkov bodies
rather in the setting of Kähler geometry. Recall that the Okounkov body is a
simplified image of a manifold. In Kähler geometry we add a metric to the
manifold, and the point of the first paper is to show that this extra information
can be incorporated as a graph over the original image.

The second and third paper are motivated by one of the big open problems in
Kähler geometry, the Yau-Tian-Donaldson conjecture. The metrics one looks at
in Kähler geometry come in classes. The Yau-Tian-Donaldson conjecture says
something about when a class contains a metric such that the scalar curvature
of the space becomes constant.

In the formulation of the conjecture objects called test configurations come
in. To each test configuration there is an associated sequence of numbers, and
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the asymptotics of these numbers conjecturally decides if one can find this spe-
cial kind of metric or not. In the second paper, using the work of Boucksom-
Chen in [7] we show how to draw a graph over the Okounkov body which
encodes some of this number asymptotics.

The third paper is a collaboration with Julius Ross from the University of
Cambridge.

A geodesic is a curve whose length between any two nearby points is mini-
mal among all curves between those points. A geodesic ray is a geodesic which
continues indefinately in some direction.

The space of metrics in a Kähler class is infinite dimensional, nevertheless
the work of Mabuchi, Semmes and Donaldson (see [24], [33], [12]) has showed
that this space has a beautiful geometry, and one can talk about its geodesics.
Given a geodesic ray in there one can calculate a number, and there is a con-
jecture due to Donaldson which says that if all these numbers are positive there
will be a metric in the class with constant scalar curvature.

Phong-Sturm showed in [28] how to use the data of a test configuration to
construct weak versions of these geodesic rays. Inspired by this, we present in
the third paper a general construction of weak geodesic rays. We define objects
called analytic test configurations, and show how to construct weak geodesic
rays using these. We also prove that ordinary test configurations give rise to
analytic ones, and in the case of a non-trivial analytic test configuration we
show that our geodesic rays coincide with those constructed by Phong-Sturm.

Before going into the details of the different papers we will start by recalling
some basic material on algebraic and Kähler geometry.

0.1 Kähler geometry

The exposition given here is by necessity extremely sketchy. For a proper treat-
ment of this material see e.g. [17] and [21].

In algebraic geometry one studies the geometry of the set of solutions to
polynomial equations. The simplest case is the circle which is given by the
equation x2 + y2 = 1. It gets more interesting when looking at the solutions of
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an equation like y2 = x3−x. The geometric object one thus gets is an example
of an elliptic curve. The theory of elliptic curves is extremely rich, e.g. a result
on elliptic curves was the key in Andrew Wiles proof of Fermat’s Last Theorem
in 1994.

0.1.1 Projective manifolds

Often one lets the variables take complex values, not only real ones. When
doing this the circle transforms into a sphere, and the elliptic curve becomes a
torus. Actually, this is only after adding points at infinity, making the shapes
compact, i.e. of finite extent.

Let us be more precise. Complex n-dimensional space Cn consists of all n-
tuples (z1, ..., zn) of complex numbers zi. If we want to compactify Cn adding
all the points at infinity, we construct the n-dimensional complex projective
space Pn. Points in Pn correspond to complex lines in Cn+1 going through the
origin. If we pick n + 1 complex numbers Z0, ..., Zn not all zero, then the set
of points λ(Z0, ..., Zn) with λ ∈ C gives a complex line in Cn+1 through the
origin, so we get a point in Pn. This point is denoted by [Z0 : ... : Zn] and the
Zi:s are called homogeneous coordinates.

If p is a homogeneous polynomial in the variables Z0, ..., Zn then p is zero
at a point (Z0, ..., Zn) if and only if p is zero on the whole line generated by
(Z0, ..., Zn). Thus the equation p = 0 on Cn+1 descends to an equation on Pn.
If we have a polynomial equation on Cn we can homogenize it and thus by the
above procedure get an equation on Pn which has the effect of adding points at
infinity to the solution, making it compact. This is what we did to get the sphere
and the torus in our previous example.

A subsetX of Pn is called a projective algebraic set if it is the common zero
set of some collection of homogeneous polynomials. IfX does not happen to be
the union of two proper algebraic subsets, then X is called a projective variety.
If X is smooth as well, i.e. locally looks like Cm for some m, then X is called
a projective manifold.

Note here that the elliptic curve given by y2 = x3 − x consists of two



8 CHAPTER 0. INTRODUCTION

disconnected pieces when viewed as a subset of the (x, y)-plane. But when we
move to the complex projective picture as above, what we get is one connected
piece, a torus. This showcases some of the advantages one has in using complex
numbers in geometry.

0.1.2 Holomorphic functions

When doing complex analysis in C the main object of study is usually the set of
holomorphic functions, i.e. complex valued functions f satisfying the Cauchy-
Riemann equations

∂f

∂x
= −i∂f

∂y
.

Instead of thinking of a function f as depending on the real variables x and y
one can just as well think of it as depending on the complex parameters z and z̄.
Then the Cauchy-Riemann equation becomes equivalent to the d-bar equation

∂f

∂z̄
= 0.

Intuitively it says that a function is holomorphic if it only depends on z and
not z̄. One thus sees that any polynomial in z (and not z̄) is holomorphic. In
fact any holomorphic function f can locally araound a point a be written as a
convergent power series

f(z) =
∑
i

ai(z − a)i,

i.e. holomorphic functions are analytic.
One can generalize this to higher dimensions, thus a complex valued func-

tion on Cn is holomorphic if for all 1 ≤ i ≤ n,

∂f

∂z̄i
= 0.

Consider the complex projective space Pn. A point p in Pn has homoge-
neous coordinates [Z0 : ... : Zn]. At least one of these coordinates must by
definition be non-zero, so let us say that Z0 = 1. The set of points in Pn with
Z0 = 1 is naturally identified with Cn, and we say that a function on that part
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of Pn is holomorphic if it is holomorphic on Cn. If we happen to be at a point
where Z0 = 0 then for some other index i we have that Zi = 1, and then we
get another identification with Cn. We have thus defined what it means for a
function to be locally holomorphic on Pn.

Let X be a projective manifold as defined above, sitting inside some Pn.
We say that a function f on some part of X is holomorphic if it locally is the
restriction of a holomorphic function on some piece of Pn. We know that X
looks like Cm for some m (m ≤ n). In fact locally around each point in X
we can find m holomorphic functions giving us holomorphic coordinates zi.
A manifold with this property is called a complex manifold, so a projective
manifold is also a complex manifold.

A map between two complex manifolds is called holomorphic if the compo-
sition with any holomorphic coordinte on the target manifold is holomorphic.
If there exists a holomorphic bijection between two complex manifolds, then
we think of them as just two incarnations of the same complex manifold. In
this sense, the embedding of a projective manifold into projective space is not
unique, each manifold will have infinately many different (biholomorphic) em-
beddings.

0.1.3 Line bundles and sections

Because a projective manifold X is compact, the only functions that are holo-
morphic on the whole ofX are the constants. This is one reason for introducing
holomorphic line bundles on X. A holomorphic line bundle L on X is a family
of complex lines Lx ∼= C holomorphically parametrized by the points x in X,
and such that the parametrization is locally trivial. The last statement means
that around a point x there is a neighbourhood U such that the collection of
lines Ly, y ∈ U looks like U × C. A section s of L is a function which maps
each point x ∈ X to some point on its associated line Lx. Since the line bundle
is locally trivial, locally around a point x a section just looks like an ordinary
complex valued function. However, since the line bundle can "twist," globally
the section does not in general correspond to an ordinary function. A section is
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called holomorphic if it locally looks holomorphic. Thanks to the twisting of
a line bundle, we can have non-trivial holomorphic sections, even though there
are no non-trivial holomorphic functions.

We can look at the example Pn. There is a natural line bundle on Pn denoted
by O(1). The line of O(1) corresponding to a point [Z0 : ... : Zn] in Pn

is defined as the dual of the line generated by (Z0, ..., Zn). A homogeneous
coordinate Zi is not a well-defined function on Pn but to each point [Z0 : ... :
Zn] it gives an element in the dual space by mapping λ(Z0, ..., Zn) to λZi.
Thus each homogeneous coordinate Zi correspond to a holomorphic section of
O(1).

The set of holomorphic sections of a line bundle L is denoted byH0(X,L).
It is a vector space, and a fundamental fact is that it is always finite dimen-
sional. This is in stark contrast to the local picture, where the vector space of
holomorphic functions on an open subset of Cn has infinite dimensions.

0.1.4 Chern classes, self-intersection and volume

Any manifold M has an associated collection of algrebraic objects (groups)
called the homology groups Hk(M,Z), where k ranges from zero to the real
dimension of M, say m. They are real vector spaces, and heuristically the di-
mension of the homology groups measure the number of holes inM of different
dimensions. A submanifold of dimension k gives you an element inHk(M,Z),
but two different submanifolds does not necessarily give you two different ele-
ments. There are also cohomology groups Hk(M,Z), whose elements can be
reperesented by differential forms of degree k on M (when M is smooth). For
oriented compact manifolds (such as projective manifolds) the Poincaré duality
states that for any k there is a canonical isomorphism between the homology
group Hk(M,z) and the cohomology group Hm−k(M,Z), where m was the
real dimension of M.

Recall that a function is called meromorphic if it locally can be written as the
quotient of two holomorphic functions where the denominator is not identically
zero. Similarly one can talk about meromorphic sections of a line bundle. Even
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if a line bundle has no non-trivial holomorphic section one can always find a
meromorphic one. If f is a meromorphic section, let Z(f) denote the zero set
counted with multiplicities, and let P (f) denote the polar set, again counted
with multiplicities. One can show that the homology class of Z(f) − P (f) in
H2(X,Z) is independent of the particular choice of f, thus we get an invariant
of the line bundle L. By taking the Poincare dual we end up with a cohomology
class in H2(X,Z) which is called the first Chern class of L, denoted by c1(L).
The element c1(L) can be represented by a differential form ω of degree 2,
and c1(L)n denotes the element represented by ωn, i.e. ω wedged with itself n
times. Since X has real dimension 2n this is a form of full degree, so we can
integrate it over X to get an integer (Ln) which is called the self-intersection of
L. If L has n holomorphic sections whose common zero set is a finite collection
of points then (Ln) is the number of these points counted with multiplicity. This
explains why (L)n is called the self-intersection.

If we have two holomorphic line bundles L1 and L2 we can take their point-
wise tensor product and this will again be a holomorphic line bundle, denoted
by L1 ⊗ L2. Sometimes, instead of this multiplicative notation one uses ad-
ditive notation, i.e. L1 + L2. This is because of the association between line
bundles and divisors, and divisors are thought of as being added, not multiplied.
This is the convention we will use in this thesis. A line bundle L tensored with
itself k times will thus be denoted by kL. The k:th power of O(1) is usually
written as O(k). If we have a homogeneous polynomial of degree k then by
the same kind of argument as above this yields a holomorphic section of O(k).
In fact, the space of holomorphic sections of O(k) is isomorphic to the set of
homogeneous polynomial of degree k. An easy calculation thus gives that

dimH0(Pn,O(k)) =
(
n+ k

n

)
=
kn

n!
+ o(kn).

One can prove that for any line bundle L there exists a constant C such that

dimH0(X, kL) = C
kn

n!
+ o(kn).

The constant C for a particular line bundle L is called the volume of L, denoted
vol(L), and it is an important invariant of the line bundle. A line bundle with
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positive volume is called big.

IfX is a projective manifold which is embedded in PN for someN, then one
can restrict the line bundle O(1) to X and get a holomorphic line bundle on X.
A line bundle L on X which is the restriction of O(1) under some embedding
of X into projective space is called very ample. If some positive power of L is
very ample then L is called ample.

From the definition one sees that the volume of a line bundle is always non-
negative, but it does not have to be an integer, in fact it can even be irrational.
The self-intersection on the other hand is always an integer, but it can be nega-
tive. However, from the asymptotic Riemann-Roch theorem it follows that for
ample line bundles the self-intersection and the volume coincide.

An interesting property of the self-intersection of ample line bundles is that
it is 1/n-concave. In other words, if L1 and L2 are two ample line bundles then

((L1 + L2)n)1/n ≥ (Ln1 )1/n + (Ln2 )1/n. (1)

Since for ample line bundles the self-intersection and the volume coincides, the
volume is 1/n-concave in the ample case. Using a result due to Fujita one can
in fact prove that the inequality

vol(L1 + L2)1/n ≥ vol(L1)1/n + vol(L2)1/n (2)

extends to the whole class of big line bundles.

Using Jensen’s inequality it follows that 1/n-concavity implies log-concavity
(see e.g. [16]), thus the volume functional is also log-concave.

0.1.5 The Brunn-Minkowski inequality

It was in order to explain 1/n-concavity inequalities such as (1) and (2) that
Okounkov introduced Okounkov bodies. To understand his motivation we need
to recall a classic result in convex geometry, the Brunn-Minkowski inequality.

A convex body in Rn is a compact convex set with non-empty interior. That
it is convex means that the line segment between any two points in the body lies
in the body. Examples include the ball and the hypercube. If A and B are any
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subsets of Rn their Minkowski sum A+B is defined as

A+B := {x+ y : x ∈ A, y ∈ B}.

If A and B are convex bodies, one easily sees that their Minkowski sum A +
B also will be a convex body. The Brunn-Minkowski inequality relates the
Lebesgue volume of the sum A+B with the volumes of A and B.

THEOREM 1. Let A and B be two convex bodies in Rn. Then we have that

vol(A+B)1/n ≥ vol(A)1/n + vol(B)1/n. (3)

For an exposition on the Brunn-Minkowski inequality see [16].
Note the similarity between (2) and (3). Okounkov’s idea in [26] and [27]

was to, given a line bundle L, construct a convex body ∆(L), with the property
that its volume equals (Ln) or vol(L). If the construction works so that

∆(L1 + L2) ⊇ ∆(L1) + ∆(L2),

then the inequalities (1) and (2) would follow from the Brunn-Minkowski in-
equality.

0.1.6 Okounkov bodies

Okounkov found a way to associate to any ample line bundle L a convex body
∆(L), now called the Okounkov body of L. This had the right kind of proper-
ties, making inequality (2) a consequence of the Brunn-Minkowski inequality.
Later, Lazarsfeld-Mustaţă in [22] and Kaveh-Khovanskii in [18] independently
showed that Okounkov’s construction worked in a much more general setting,
e.g. L could be big and it would still have the same properties, thus showing
that inequality (2) also follows from Brunn-Minkowski.

Let us now describe the construction of the Okounkov body of a big line
bundle L.

When defining the Okounkov body, one can either use a flag of irreducible
subvarieties, or work with local coordinates. For simplicity we choose here to
work with local coordinates.
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Suppose we have chosen a point p in X, and local holomorphic coordinates
z1, ..., zn centered at p, and let e ∈ H0(U,L) be a local trivialization of L
around p. If we divide a section s ∈ H0(X,L) by e we get a local holomorphic
function. It has an unique represention as a convergent power series in the
variables zi,

s

e
=
∑

aαz
α,

which for convenience we will simply write as

s =
∑

aαz
α.

We consider the lexicographic order on the multiindices α, and let v(s) denote
the smallest index α such that aα 6= 0. Recall that the lexicographic order is
defined so that α < β if for some index j, αi = βi when i < j and αj < βj .

Let
∆1(L) :=

{
v(s) : s ∈ H0(X,L) \ {0}

}
.

If k is a positive integer, ek is a local trivialization of kL. By looking at the
power series of s/ek for sections s ∈ H0(X, kL) we get sets

∆k(L) :=
{
v(s)
k

: s ∈ H0(X, kL) \ {0}
}
.

If s ∈ H0(X,L), then sk ∈ H0(X, kL), and one easily sees that v(sk) =
kv(s). This is the why in the definition of ∆k(L) the points v(s) are scaled by
1/k.

DEFINITION 1. The Okounkov body ∆(L) of a big line bundle L is defined as

∆(L) :=
∞⋃
k=1

∆k(L).

Remark. Note that the Okounkov body ∆(L) of a line bundle L in fact
depends on the choice of point p inX and local coordinates zi.We will however
supress this in the notation, writing ∆(L) instead of the perhaps more proper
but cumbersome ∆(L, p, (zi)).

From the article [22] by Lazarsfeld-Mustaţă we recall some results on Ok-
ounkov bodies of line bundles.
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LEMMA 2. The number of points in ∆k(L) is equal to the dimension of the

vector space H0(kL).

LEMMA 3. The Okounkov body ∆(L) of a big line bundle is a convex body.

The most important property of the Okounkov body is its relation to the
volume of the line bundle, described in the following theorem.

THEOREM 4. For any big line bundle it holds that

vol(L) = n!volRn(∆(L)),

where the volume of the Okounkov body is measured with respect to the standard

Lesbesgue measure on Rn.

Using a result of Khovanskii on semigroups one can show that the points
in ∆k(L) almost fill the intersection of ∆(L) with the scaled integer lattice
(1/k)Zn. Since the number of points in this intersection is easily computed to
be

volRn(∆(L))kn + o(kn),

Theorem 8 then follows using Lemma 5 and the definition of vol(L). For a
detailed proof see [22].

0.1.7 Toric geometry and moment polytopes

In general the Okounkov body of a line bundle is difficult to compute. There
are certain interesting cases though where we know exactly what they look like.

Toric manifolds are manifolds that are extremely symmetric. By definition
a toric manifold is a manifold which has an action of the algebraic torus (C∗)n

with an open dense orbit. The easiest example is given by the sphere. Yet they
do not have to be that simple, so the class of toric manifolds is sufficiently rich
geometrically to attract a lot of interest. If the toric manifold X is projective as
well, it means that X is the compactification of an embedded copy of (C∗)n in
some projective space PN . If we restrict O(1) to X, we get that the algebraic
torus action lifts to an action on the restricted line bundle. Such a line bundle is
called a toric line bundle.
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Let us think about how one can embed (C∗)n into projective space to get a
projective toric manifold. A lattice polytope P in Rn is by definition the convex
hull of a finite collection of points in the integer lattice Zn. Let NP denote the
number of lattice points in P, and let αi, 1 ≤ i ≤ NP be an enumeration of
these lattice points. We get a map fP from (C∗)n into PNP−1 by letting

fP (z) := [zα1 , ..., zαNP ].

This might not be an embedding. But we can do the same thing for the lattice
polytopes kP, for k ∈ N, and we thus a get sequence of maps fkP . It turns out
that fkP will be an embedding for k sufficiently large. By taking the closure of
the image of fkP we get what is called a toric variety, i.e. it has the right kind
of algebraic torus action, but it might not be smooth manifold. We will denote
the corresponding toric variety by XP . The polytope P is called the moment
polytope of the toric variety XP .

The unit n-simplex Σn is the lattice polytope in Rn spanned by the origin
and the unit vectors ei. One can show that XΣn = Pn. Polytopes which give
rise to toric manifolds, i.e. smooth toric varieties, are called Delzant polytopes,
so we see that Σn is Delzant. In fact, a lattice polytope P is Delzant if and only
if a neighbourhood of any vertex in P can be transformed to a neighbourhood
of the origin in Σn by an element in GL(n,Z) and a translation.

Given a Delzant polytope P we thus get a projective toric manifold XP .

The map fP extends to a map from XP to PNP−1, and we denote the pullback
of O(1) to XP by LP . One can see that for any k, kLP = LkP . Since for large
k fkP is an embedding it follows that LP is an ample toric line bundle

One can understand the spaces of holomorphic sections to the powers of Lp
by looking at the polytope P. Indeed we have that

H0(XP , kLP ) ∼=
⊕

α∈kP∩Zn
< zα > . (4)

More specifically there is a basis {sα} for the space of sections H0(XP , kLP )
such that for any α, β ∈ kP ∩ Zn,

sα/sβ = zα−β
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on the copy of (C∗)n. The coordinates zi are given by map fkP .
As in the case of Okounkov bodies, from (4) one sees that

vol(LP ) = n!vol(P ).

So what is the relation between P and the Okounkov body ∆(L)? Note that
the Okounkov body depended upon us choosing local coordinates around some
point. We know that P is Delzant, so we can transform it so that one of its
vertices lies at the origin, and locally P looks like the unit simplex around
that point. This shape of P easily implies that the compactification of (C∗)n

includes Cn. Thus we can use the origin in Cn as our point and zi as our local
coordinats. Using s0 as the local trivialization, we get from (4) that

∆k(L) = P ∩ (1/k)Zn,

and thus
∆(L) = P.

This means that one can think of Okounkov bodies as generalizing the cor-
respondence between toric line bundles and polytopes in toric geometry.

For a proper exposition of toric geometry we refer the reader to the book
[15] by Fulton.

0.1.8 Symplectic geometry and moment maps

We have not yet explained why we call the polytope P corresponding to a toric
manifolds XP the moment polytope of XP . This leads us into the field of
symplectic geometry.

DEFINITION 2. A 2-form ω on a manifoldM is symplectic if it is non-degenerate

and closed. The pair (M,ω) is then called a symplectic manifold.

The non-degeneracy means that for any point p ∈ M and any element v in
the tangent space at p there is a tangent vector w ∈ TpM such that ωp(v, w) 6=
0. It turns out that symplectic manifolds must be of even real dimension 2n for
some n, and then one can formulate the non-degeneracy as ωn 6= 0.
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Say that S1 acts on (M,ω), i.e. ω is left invariant under the S1-action on
M. Then the action is generated by a vector field X. We say that the action is
Hamiltonian if there is a function H solving the equation

dH = ω(X, ·).

Indeed one can show that the one form ω(X, ·) always is closed, so the action
is Hamiltonian if ω(X, ·) is exact.

Let now the real n-torus Tn := (S1)n act on (M,ω). We can decompose
the torus action into n commutative circle actions. We say that the torus action
is Hamiltonian if each of these circle actions are Hamiltonian. If we let Hi

denote the Hamiltonian of the i:th S1-action we can put these together to get a
map µ fromM to Rn, µ := (H1, ...,Hn). The map µ is called the moment map
of the torus action.

Remark. Instead of just looking at Tn one can look at any Lie group G
acting on (M,ω). If the action is Hamiltonian one can define a moment map
µ in a more invariant way than we did above, namely as a map from M to the
dual of the Lie algebra of G.

0.1.9 Plurisubharmonic functions

A function u on some open subset U of C is called harmonic if ∆u = 0. Here
∆ denotes the Laplacian, i.e.

∆ :=
∂2

∂x2
+

∂2

∂y2
.

If u is an upper semicontinuous function from U to [−∞,∞) such that the
Laplacian ∆u is positive in the sence of distributions then u is called subhar-
monic. An upper semicontinuous function u from an open subset of Cn to
[−∞,∞) is called plurisubharmonic if the restriction of u to any complex line
is locally subharmonic. If u happens to be C2 then this is equivalent to the
complex Hessian (

∂2u

∂zi∂z̄j

)
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being positive semidefinite. If the Hessian is positive definite u is said to be
strictly plurisubharmonic. The notion of plurisubharmonicity is preserved by
biholomorphisms, hence it makes sense to talk about functions being plurisub-
harmonic locally on a complex manifold, and in particular on a projective man-
ifold.

0.1.10 Hermitian metrics on line bundles

Given a projective manifold X with an ample line bundle L, there is a natural
class of symplectic structures ω on X, namely those symplectic forms that be-
long to the first Chern class of L, c1(L). There is a more geometric way to think
about these symplectic forms ω.

A 2-form ω is said to be (1, 1) if

ω(·, ·) = ω(J ·, J ·).

Here J denotes the almost complex structure on the tangent space defined by

J
∂

∂xi
=

∂

∂yi
, J

∂

∂yi
= − ∂

∂xi
.

That a (1, 1)-form ω is strictly positive means that for any v ∈ TpX

ωp(v, Jv) > 0.

Such an ω is clearly non-degenerate, thus is a symplectic form. A strictly pos-
itive closed (1, 1)-form is called a Kähler form. A Kähler form ω gives rise
to a Riemannian metric gω on X by saying that if v and w lie in TpX then
gω(v, w) := ω(v, Jw).

A hermitian metric h = e−φ on L is a smooth choice of scalar product on
the complex line Lp at each point p on the manifold. If f is a local holomorphic
frame for L in some neighbourhood Uf , then one writes

|f |2h = hf = e−φf ,

where φf is a smooth function onUf . We will use the convention to let φ denote
the metric h = e−φ, thus if φ is a metric on L, kφ is a metric on kL. Sometimes
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φ is intead referred to as the weight of the metric h = e−φ. This convention is
used in paper I, but not in the rest of the thesis.

The curvature of a smooth metric is given by ddcφ which is the (1, 1)-form
locally defined as ddcφf , where f is any local holomorphic frame. Here dc is
short-hand for the differential operator

i

4π
(∂̄ − ∂),

so ddc = i/2π∂∂̄. A classic fact is that the curvature form of a smooth metric
φ lies in the first Chern class of L.

The metric φ is said to be positive if the curvature ddcφ is strictly positive as
a (1, 1)-form, which is equivalent to the function φf being strictly plurisubhar-
monic for any local frame f . We let H(L) denote the space of positive metrics
on L. A famous theorem, the Kodaira embedding theorem, states that a line
bundle has a positive metric iff it is ample. That an ample line bundle has a
positive metric is easy to show, it is the converse which is hard to prove.

The curvature form ddcφ of a positive metric φ is thus a Kähler form in
c1(L). On the other hand, if L is ample, by the ddc-lemma (see e.g. [17]), any
form ω in c1(L) can be written as the curvature form of a smooth metric φ+ u,

where φ is a positive metric and u is a smooth function. At the point where u
attains its minimum we have that ω ≥ ddcφ, and thus ω is strictly positive at
that point. If ω is symplectic it follows that ω will be strictly positive on the
whole of X, thus φ + u is a positive metric. This means that any symplectic
form in c1(L) is the curvature form of some positive metric. If two positive
metrics φ and ψ have the same curvature, then ddc(φ − ψ) = 0. This implies
that φ−ψ is harmonic on X, which by the maximum principle gives that φ−ψ
is a constant.

Therefore any symplectic (Kähler) form in c1(L) correspond to a positive
metric on L, which is unique up to a constant.

0.1.11 The moment polytope revisited

Since Tn ⊂ (C∗)n any toric manifold XP has a natural Tn-action on it. And
as we have seen in the previous section, given an ample toric line bundle LP
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we have natural symplectic structures on our manifold, coming from positive
metrics on LP . By averaging a symplectic form ω over the action we get a
symplectic form ωav which is invariant under the action.

We can trivialize of L over (C∗)n so that sα = zα. With respect to this
trivialization a positive metric φ corresponds to a plurisubharmonic function φ̃
on (C∗)n. That φ extends to the whole manifold forces a growth condition on
the function φ̃, namely that

φ̃− ln
( ∑
α∈P∩Zn

|zα|2
)

(5)

remains bounded.
If ddcφ is Tn-invariant then φmust be Tn-invariant, and thus φ̃(z1, ..., zn) =

φ̃(|z1|, ..., |zn|). Let f denote the function f(w1, ..., wn) := (ew1 , ..., ewn). It
follows that u := φ̃ ◦ f is plurisubharmonic and independent of the imaginary
parts yi ofwi. It is a well-known fact that any such function is a convex function
of the real parts xi of wi. An easy calculation yields that

ddcu =
1

4π

∑ ∂2u

∂xi∂xj
dyi ∧ dxj . (6)

We observe that
(1/2)d

∂u

∂xi
= ddcu(2π

∂

∂yi
, ·).

Now ddcφ̃ = f−1∗ddcu and the pushforward of 2π ∂
∂θi

under f−1 is 2π ∂
∂yi

.

Since 2π ∂
∂θi

generates the i:th circle action on (C∗)n it follows that

Hi = (1/2)
∂u

∂xi
◦ f−1

solves the Hamiltonian equation. Thus the Tn-action is Hamiltonian and a
moment map is given by (1/2)∇u ◦ f−1.

What is the image of the moment map µ? Looking at the growth condition
(5) we get that

u− ln
( ∑
α∈P∩Zn

e2α·x)
is bounded. Clearly

∇ ln(e2α·x) = 2α.
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It is not hard to see that the image of

(1/2)∇ ln
( ∑
α∈P∩Zn

eα·x
)

is the interior of P. It follows that the image of µ is also the interior of P.
This shows why we call P the moment polytope, since it is the image of a

moment map µ.

0.1.12 The Monge-Ampère energy

We have seen above that a postive metric φ gives rise to a symplectic form in
c1(L) by taking the curvature ddcφ. Taking the top power of this form gives us
a volume form (ddcφ)n. This form is called the Monge-Ampère measure of φ
and is also denoted by MA(φ). Since ddcφ ∈ c1(L), integrating MA(φ) over
X we get ∫

X

MA(φ) =
∫
X

c1(L)n = vol(L),

the volume of L.
An important bifunctional on the space of positive metrics is the Monge-

Ampère energy E . It first appeared in the works of Mabuchi and Aubin (see [3]
for references). Because of this it sometimes goes under the name of Aubin-
Mabuchi energy, e.g. in paper III. The Aubin-Yau functional is yet another
name given to it.

Given two positive metrics φ and ψ the Monge-Ampère energy of the pair
is defined as

E(φ, ψ) :=
1

n+ 1

n∑
j=0

∫
X

(ddcφ)j ∧ (ddcψ)n−j .

The Monge-Ampère energy has the cocycle property, i.e. for all positive
metrics ψ,ϕ and ψ′

E(ψ,ϕ) + E(ϕ,ψ′) + E(ψ′, ψ) = 0.

It is very strongly connected with the Monge-Ampère operator, which maps
a metric to its Monge-Ampère measure. For any positive metric φ and smooth
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function u,
d

dt |t=0
E(φ+ tu, ψ) =

∫
X

uMA(φ). (7)

One way of formulating (7) is to say that the Monge-Ampère operator is the
differential of the Monge-Ampère energy.

0.1.13 The real Monge-Ampère operator

Let u be a smooth strictly convex function on Rn. There is a real version of the
Monge-Ampère operator, mapping convex functions to Borel measures on Rn.
When u is smooth we can write this as

MAR(u) :=
n!
2n

det
(

∂2u

∂xi∂xj

)
dx,

where dx denotes the Lebesgue measure on Rn. Since u is strictly convex the
Hessian matrix (

∂2u

∂xi∂xj

)
is positive definite, thus MAR(u) is a positive measure.

Depending on the growth of u at infinity the measure MA(u) can have
either finite or infinite mass.

Let P be a lattice polytope in Rn. Assume that there is a constant C such
that

ln
( ∑
α∈P∩Zn

e2α·x)− C ≤ u ≤ ln
( ∑
α∈P∩Zn

e2α·x)+ C. (8)

As we saw above this implies that the image of∇u is the interior of 2P.What is
the mass ofMA(u)? We have that det(∇2u)dx = (∇u)∗dx, which means that
the Monge-Ampère measure is the pullback of the Lebesgue measure under the
gradient map times n!/2n. This implies that the mass of the Monge-Ampère
measure is the volume of 2P times n!/2n, i.e.∫

Rn
MAR(u) = n!vol(P ).

One can also define the real Monge-Ampère energy of a pair of smooth
strictly convex functions u and v, both being bounded as in (8). Let ut :=
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tu+ (1− t)v. Then we define

ER(u, v) :=
∫ 1

t=0

∫
Rn

(u− v)MA(ut).

If we differentiate ER(ut, v) with respect to t we clearly get∫
Rn
u̇tMA(ut),

and this makes it the natural real analog of the Monge-Ampère energy.

One can show that the real Monge-Ampère energy also has the cocycle
property.

0.1.14 The Legendre transform

Let u be a smooth strictly convex function on Rn, and let ∆(u) denote the
image of the gradient ∇u. The Legendre transform of u, denoted by Lu is the
function on ∆(u) defined by

Lu(y) := sup{x · y − u(x) : x ∈ Rn}.

We have that Lu is convex since it is the supremum over the linear and hence
convex functions x·y−u(x).One can show that it is smooth and strictly convex
as long as u is smooth and strictly convex.

Since u is smooth and strictly convex, we see that u(x)−x · y is minimized
exactly where ∇u(x) = y, and thus Lu(y) = x · y − u(x) where x solves the
equation ∇u(x) = y. Using this one can show that ∇Lu(y) = x, where again
x solves the equation∇u(x) = y.

We can take the Legendre transform of Lu and we similarly get that

L(Lu)(x) = y · x− Lu(y),

where y solves the equation∇Lu(y) = x. From the above we see that it means
that ∇u(x) = y and thus

L(Lu)(x) = y · x− (x · y − u(x)) = u(x).
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This shows that the Legendre transform is an involution.
Let u and v be smooth strictly convex functions both satisfying the bound

(8) for some constant C. Thus the Legendre transforms Lu and Lv are convex
functions on 2P ◦. We claim that

E(u, v) =
n!
2n

∫
2P◦

(Lv − Lu)dx, (9)

where dx denotes the Lebesgue measure.

Proof. Let us consider f(t) := E(ut, v) as a function of t, where as above
ut = tu+ (1− t)v. Let also

g(t) :=
n!
2n

∫
2P◦

(Lv − Lut)dx.

We wish to prove that f(1) = g(1). The derivative of f with respect to t was
given by

ḟ(t) =
∫
u̇tMA(ut).

The derivative of g is given by

ġ(t) = − n!
2n

∫
2P◦

(
d

dt
Lut)dx.

Since Lut(y) = x · y − ut(x) where∇ut(x) = y, one easily gets that

d

dt
Lut(y) = −u̇t(x) = −u̇t ◦ (∇u)−1(y).

Therefore

ġ(t) = − n!
2n

∫
2P◦

(
d

dt
Lut)dx =

n!
2n

∫
2P◦

u̇t ◦ (∇ut)−1dx =

=
n!
2n

∫
Rn
u̇t(∇ut)∗dx =

∫
Rn
u̇tMA(ut).

In the last step we used the fact that

n!
2n

(∇u)∗dx = MA(ut).

Since f(0) = g(0) = 0 and ḟ(t) = ġ(t) for all t we get that f(1) = g(1),
which is what we wanted.

One can interpret this result as saying that the Legendre transform linearizes
the real Monge-Ampère operator.
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0.1.15 Symplectic potentials

Let u be a plurisubharmonic function on Cn which does not depend on the y-
variables. Then as we noted above u is a convex function of the x-variables.
We have chosen the definition of the real Monge-Ampère measure of u so that
it equals the pushforward of MAC(u) on the strip Rn × [0, 2π)n to Rn.

Let φ and ψ be two Tn-invariant positive metrics of an ample toric line
bundle LP . Let as before f(w1, ..., wn) := (ew1 , ..., ewn), but we now think of
f as mapping the cylinder Rn × Tn biholomorphically to (C∗)n. If we equate
the metrics with their standard trivialization over (C∗)n then uφ := φ◦f−1 and
uψ := ψ ◦ f−1 are plurisubharmonic functions independent of the y-variables
on Tn, and thus we can think of them as convex functions on Rn. We get that∫

X

(φ− ψ)MA(φt) =
∫

Rn×Tn
(uφ − uψ)MAC(uφt) =

=
∫

Rn
(uφ − uψ)MAR(uφt).

Since the left-hand-side is the t-derivative of E(φt, ψ) and the right-hand-side
is the derivative of E(uφt , uψ), integrating over t gives us that

E(φ, ψ) = E(uφ, uψ). (10)

We know that the image of the gradient of uφ and uψ is the interior of 2P.
From section (0.1.14) we know that the Legendre transforms Luφ and Luψ are
convex functions on 2P ◦, so the Legendre transforms of uφ/2 and uψ/2 are
convex functions on P ◦. It is easy to see that for any y ∈ P 0 we have that

Luφ(2y) = 2L(uφ/2)(y). (11)

The Legendre transform L(uφ/2) times 2 is called the symplectic potential of
φ, and we will denote it by Lφ (hopefully not causing to much confusion).
Putting (9) and (10) together and using equation (11) we get that

E(φ, ψ) = n!
∫
P◦

(Lψ − Lφ)dx. (12)
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0.2 Paper I

As we have seen, Okounkov bodies can be seen as a generalization of the mo-
ment polytope associated to a toric line bundle. Inspired by that, one can wonder
if there is a generalized Legendre transform which associates to a positive met-
ric of a line bundle L a convex function on the interior of the Okounkov body L.
Of course, in order to be interesting it would have to have some nice properties.
For instance, one would like to be able to calculate the Monge-Ampère energy
by integrating the difference of the transforms over the Okounkov body, as in
(12).

The first paper in this thesis proposes a transform of this kind, the Cheby-
shev transform. The Chebyshev transform of a positive metric φ, denoted by
c[φ], is a convex function on ∆(L)◦, and we prove the corresponding formula

E(φ, ψ) = n!
∫

∆(L)◦
(c[ψ]− c[φ])dx.

In fact, the setting of the paper is more general. Instead of only looking
at ample line bundles we widen our scope to include all big line bundles, i.e.
those having positive volume. A big line bundle that is not ample has no positive
metrics though. So we are forced to look at more general types of metrics.

DEFINITION 3. A continuous hermitian metric h = e−ψ on a line bundle L is

a continuous choice of scalar product on the complex line Lp at each point p

on the manifold. If f is a local frame for L on Uf , then one writes

|f |2 = hf = e−ψf ,

where ψf is a continuous function on Uf .

Note that a continuous metric does not have to be locally plurisubharmonic.
Thus any line bundle will have (lots of) continuous metrics. We also have to
consider metric that are locally plurisubharmonic but not necessarily continu-
ous.

DEFINITION 4. A positive singular metric ψ is a metric that can be written as

ψ := φ+u, where φ is a continuous metric and u is a ddcφ-psh function, i.e. u

is upper semicontinuous and ddcψ := ddcφ+ ddcu is a positive (1, 1)-current.
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The last statement in the definition simply means that φ + u is locally
plurisubharmonic.

We let PSH(L) denote the space of positive singular metrics on L.
As an important example, if {si} is a finite collection of holomorphic sec-

tions of kL, we get a positive metric ψ := 1
k ln(

∑
|si|2) which is defined by

letting for any local frame f ,

e−ψf :=
|f |2

(
∑
|si|2)1/k

.

A line bundle which has a singular positive metric is called pseudoeffective.
When L is big, then we know that for k large, kL has lots of holomorphic
sections, so we get positive singular metrics onL by the above procedure, which
means that L is pseudoeffective.

A positive singular metric φ is said to have minimal singularities if for any
other positive singular metric ψ we have that ψ ≤ φ + C for some constant
C. If a positive singular metric is continuous, then clearly it has minimial sin-
gularities, but in general there are no continuous positive singular metrics. A
standard way to find positive singular metrics with minimal singularities is by
envelopes.

Let φ be a continuous metric (not necessarily positive) on a big line bundle
L. Then we can form the envelope P (φ) by letting

P (φ) := sup{ψ ≤ φ : ψ ∈ PSH(L)}.

It is easy to show that P (φ) is a positive singular metric bounded by φ, and that
it has minimal singularities. The way to think of this is that we get P (φ) by
projecting φ down to the space of positive singular metrics.

There is a theory for defining the (non-pluripolar) Monge-Ampère opera-
tor and the Monge-Ampère energy for positive singular metrics with minimal
singularities. This is based upon the pioneering work of Bedford and Taylor
in the 80’s on extending the Monge-Ampère operator to the class of locally
bounded plurisubharmonic functions. Later e.g. Boucksom, Eyssidieux, Guedj
and Zeriahi have extended this to the geometric setting of big line bundles on
manifolds.
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It means that one can define the Monge-Ampère energy E(φ, ψ) when φ and
ψ are two positive singular metrics with minimal singularities. When φ and ψ
are smooth positive metrics on an ample line bundle then this coincides with the
classical definition. If φ and ψ are two continuous metrics, not positive, then we
can define their Monge-Ampère energy E(φ, ψ) as the Monge-Ampère energy
of the envelopes P (φ) and P (ψ).

0.2.1 Capacity, transfinite diameter and Chebyshev constants

The question is how to transform a given metric to a convex function on the
Okounkov body? The method we found was inspired by classical constructions
in potential theory of the complex plane and generalizations of these introduced
by Leja, Zaharjuta, Bloom-Levenberg et. al. in the context of pluripotential
theory in Cn (see [5, 32, 38]).

Let K be a compact subset of C. One way of measuring its size would be
to measure its area. However, in potential theory one is interested in different
notions of size, called capacities. One of these is called logarithmic capacity
(see e.g. [32]). Intuitively, the logarithmic capacity of a setK, denoted cap(K),
measures how much electric charge one can fit in the set while maintaining a
unit amount of potential energy.

The Lelong class L is the class of subharmonic functions u on C that are
bounded from above by ln(1 + |z|2) plus some constant. If we think of C
as embedded in P1, then the Lelong class exactly corresponds to the positive
singular metrics on O(1).

Given a compact K, we let φK denote the envelope

φK := (sup{φ : φ ≤ 0 on K,φ ∈ L})∗ .

The star ∗ means that we take the uppersemicontinuous regularization of the
supremum. The Monge-Ampère measure of φK (i.e. ddcφK) describes the
equilibrium distribution of charge on K. Using this, one can show that if K and
K ′ are two compacts, then

E(φK , φK′) = ln cap(K ′)− ln cap(K). (13)
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A collection {xi} of k points inK are called Fekete points if they maximize
the quantity ( ∏

1≤i<j≤k

|xi − xj |
)1/(k2)

among all sets of k points in K. We denote this maximum by δk. As k tends to
infinity δk converges to a quantity δ(K) which is called the transfinite diameter
of K. Fekete proved (see e.g. [32] for references) that this transfinite diameter
coincides with the logarithic capacity of K.

Yet another quantity is the Chebyshev constant. We let ||.||K denote the
norm which takes the supremum of the absolute value on K. Let Pk denote the
space of polynomials in z with zk as highest degree term. Let for any k

Yk(K) := inf {||p||K : p ∈ Pk} .

One defines the Chebyshev constant C(K) of K as the following limit

C(K) := lim
k→∞

(Yk(K))1/k
.

It is well known that this number also coincides with the aforementioned capac-
ity and transfinite diameter.

In Cn things get more complicated, but there are still analogs of the one-
variable quantities. Given a compact K there is a similar notion of logarithmic
capacity. The Lelong class L is now the class of plurisubharmonic functions on
Cn that are bounded from above by ln(1 +

∑
|zi|2). Again if we think of Cn

as embedded in Pn, then the Leleong class corresponds to the positive singular
metrics on O(1). Given K we get an envelope φK exactly as in C, and for two
compacts K and K ′ equation (13) holds.

Leja (see e.g. [38] for references) defined the notion of a transfinite diameter
δ(K) for compacts K in Cn, using Vandermonde determinants. Leja got a
sequence of numbers δk and he defined the transfinite diameter δ(K) as the
lim sup of this sequence.

By extending the concept of a Chebyshev constant Zaharjuta in [38] was
able to prove that that Leja’s sequence actually converged to the transfinite dia-
mater. Zaharjuta got his new Chebyshev constant by defining a certain convex
function on a simplex, and then taking the exponent of the mean value of this.
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For any α ∈ Nn let Pα denote the space of polynomials of the form

zα +
∑
β∈I

aβz
β

where β ∈ I if |β| ≤ |α| and β ≤ α with respect to the lexicographic order (see
section 0.1.6). Let

Yα(K) := inf{||p||K : p ∈ Pα}.

Let Σn−1 denote the set of α = (α1, ..., αn) where αi ≥ 0 for all i and
∑
αi =

1. Let αk be a sequence in Nn such that |αk| = k and αk/k converges to some
point α in Σn−1. Then Zaharjuta defined the directional Chebyshev constant
C(K,α) as

C(K,α) := lim
k→∞

(Yαk(K))1/k.

He proved that this number did not depend on the specific choice of sequence
αk, and that the function lnC(K,α) was convex on Σn−1. For this he used the
submultiplicativity of Y, namely that

Yα+β(K) ≤ Yα(K)Yβ(K).

Then Zaharjuta proved that

ln δ(K) =
1

vol(Σn−1)

∫
Σn−1

lnC(K,α)dα.

Let us go back to the complex plane and introduce the weighted setting.
Here we are considering weighted compact sets (K,φ) where φ is a continuous
function on K. The weight φ is to be understood as an external field. We can
define weighted analogs of the capacity, transfinite diameter and Chebyshev
constant. Let P (K,φ) be the envelope defined as

P (K,φ) := (sup{ψ : φ ≤ φ on K,ψ ∈ L})∗ .

Then given two weighted compacts (K,φ) and (K ′, ψ) we have that

E(P (K,φ), P (K ′, ψ)) = ln cap(K ′, ψ)− ln cap(K,φ).
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The weighted transfinite diameter is defined as the unweighted one, only
that we look at the weighted quantity( ∏

1≤i<j≤k

|xi − xj |e−φ(xi)/2−φ(xj)/2
)1/(k2)

.

We thus get a weighted transfinite diameter δ(K,φ) by taking the limit as k
tends to infinity.

The weighted Chebyshev constant is computed as the unweighted one only
using the supremum norm

||p||K,kφ := sup
{
|p(x)|e−kφ(x)/2 : x ∈ K

}
instead of ||.||Kon the spaces Pk.

As before the weighted capacity and transfinite diameter will coincide, but
in general the weighted Chebyshev constant will not yield the same number.
There is a formula relating the different quantities, but we will not go into it
here.

Also in the weighted setting in Cn we have this phenomena. The weighted
logarithmic capacity was proven to coincide with the weighted transfinite di-
ameter by Berman-Boucksom in [3]. Bloom-Levenberg studied the weighted
directional Chebyshev constants in [5] and they found a formula relating the in-
tegral of the convex function lnC(K,φ, α) with the logaritm of the transfinite
diameter, showing that they do not coincide in general.

The space of polynomials in z of degree k or less is naturally isomorphic to
the space of holomorphic sections toO(k) on P1, H0(P1,O(k)) The supremum
norms ||.||K and ||.||K,kφ are also norms on this space. Since not only Pk but
Pm for all 0 ≤ m ≤ k are affine subspaces of H0(P1,O(k)), inspired by the
idea of directional Chebyshev constants we get new directional quantities by
looking at

Yk,m(K,φ) := inf{||p||2K,kφ : p ∈ Pm}.

Of course, if φ = 0, corresponding to the unweighted setting Yk,m = Ym, so
we get nothing new. But in general we get something different. If we let mk

be a sequence of natural numbers so that mk ≤ k and mk/k converges to some
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α ∈ [0, 1] then we define C(K,φ, α) as the limit of (Yk,mk(K,φ))1/k. In the
same way as Zaharjuta did, because of submultiplicativity one can prove that
C(K,φ, α) is well-defined and that lnC(K,φ, α) is a convex function on the
unit interval. In the paper we call this convex function the Chebyshev transform
of (K,φ), and we denote it by c[K,φ] It will follow as a consequence of our
main theorem that if the set is regular, i.e. P (K,φ) is continuous, then the
integral of the Chebyshev transform is equal to the logaritm of the transfinite
diameter and hence the logaritm of the logarithmic capacity. We will postpone
the discussion of our proof till later. Note that the weighted Chebyshev constant
is the exponential of the value of the Chebyshev transform at the point one. In
the unweighted case, the Chebyshev transform is linear, and goes from zero at
zero to twice the logarithm of the classical Chebyshev constant, so integrating
gives us back the classical constant.

One can do the same thing in Cn.Given a weighted compact (K,φ) we thus
get a convex function on the full unit simplex Σn in Rn which we again call the
Chebyshev transform of (K,φ). When φ = 0 then the function is linear, zero at
the origin and equal to a constant times the logarithm of Zaharjuta’s function on
the boundary Σn−1, giving back Zaharjuta’s integral when integrating over the
whole unit simplex. We get, again as a consequence of our main theorem, that
when (K,φ) is regular, then n! times the integral of the Chebyshev transform
equals the logarithm of the transfinite diameter. This means that by the work of
Berman-Boucksom in [3] we get that

E(P (K,φ), P (K ′, ψ)) = n!
∫

Σn

(c[K ′, ψ]− c[K,φ])dα. (14)

Note here that the unit simplex is the Okounkov body of O(1). If we let K
be the whole Pn, and let φ be a continuous metric on O(1), then this gives us
a transform from metrics to convex functions on the Okounkov body with the
desired property that equation (14) should hold.

Since Pn is toric, there is already the Legendre transform mapping metrics
that are Tn-invariant to convex functions on Σn. It is not hard to show that for
Tn-invariant metrics the Chebyshev transform is nothing else than the Legendre
transform. So one can say that we have extended the Legendre transform to also



34 CHAPTER 0. INTRODUCTION

include non-invariant metrics.

0.2.2 The Chebyshev transform

We will now describe how to extend this construction to the case of an arbitrary
big line bundle L on a projective manifold X. Given a continuous metric φ we
get supremum norms ||.||kφ on the spaces H0(X, kL) by letting

||s||2kφ := sup
{
|s(x)|2e−kφ(x) : x ∈ X

}
.

Say that we have chosen a point p ∈ X and local coordinates zi around that
point. We want affine subspaces in H0(X, kL) that can play the role that the
Pm:s played in the case ofO(1). Let α be a point in ∆k(L). It means that there
is a section s ∈ H0(X, kL) that locally can be written as zkα plus higher order
terms. We let Aα,k denote the affine space of sections in H0(X, kL) locally of
the form

zkα + higher order terms.

Let F [φ](kα, k) be defined as

F [φ](kα, k) := inf{ln ||s||2kφ : s ∈ Aα,k}.

This mimicks the definition of the directional Chebyshev constants, only that
here we take the logarithm from the start.

Let s be a section in H0(X, kL) and s′ a section in H0(X,mL), such that
locally s = zkα + higher order terms and s′ = zmβ + higher order terms. Then
ss′ lies in H0(X, (k+m)L) and ss′ = zkα+mβ + higher order terms. We also
have that ||ss′||2(k+m)φ ≤ ||s||

2
kφ||s′||2mφ. This implies that F [φ] is subadditive,

meaning that

F [φ](kα+mβ, k +m) ≤ F [φ](kα, k) + F [φ](mβ,m).

Using this we show that if αk is a sequence in ∆k, where k tends to infinity
and αk tends to some point α ∈ ∆(L)◦, then the sequence 1/kF [φ](kα, k)
converges to a number c[φ](α). This number does not depend of the particular
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choice of sequence αk, and the function c[φ](α) is convex in α.We call c[φ] the
Chebyshev transform of the metric φ.

Our main theorem is then as follows.

THEOREM 5. For any two continuous metrics φ and ψ on a big line bundle L,

we have that

E(φ, ψ) = n!
∫

∆(L)◦
(c[ψ]− c[φ])dx. (15)

It is easy to see that if φ = ψ + 1, then c[ψ] = c[φ] + 1. We also have that
E(ψ + 1, ψ) = vol(L). So in this special case equation (15) reduces to the fact
that n! times the volume of the Okounkov body is equal to the volume of the
line bundle.

Building on this Yuan show in [37] how to construct a Chebyshev transform
in the setting of Arakelov geometry. He proves a statement like theorem 5 but
with the Monge-Ampère energy replaced by the adelic volume.

0.2.3 Proof of main theorem

The proof of Theorem 5 relies on the use of certain L2-norms instead of supre-
mum norms. If we pick a smooth volume form dV onX, then we get aL2-norm
||.||kφ,dV on the space H0(X, kL), by letting

||s||kφ,dV :=
∫
X

|s|2e−kφdV.

If α ∈ ∆k, we can consider the number F2[φ](kα, k), defined as

F2[φ](kα, k) := inf{ln ||s||2kφ,dV : s ∈ Aα,k}.

The supremum norm and the L2 norm are asymptotically equivalent (one says
that dV has the Bernstein-Markov property) which means that one can just as
well use F2 to compute the Chebyshev transform. F2 is however not subaddi-
tive, which is why we chose to use the supremum norm ||.||kφ in the definition.
The point of using a L2 norm is that we can construct an orthonormal basis
for H0(X, kL). Let sα be the section in Akα,k which minimized the L2-norm.
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Then one notes that {
e−F2[φ](kα,k)sα : α ∈ ∆k(L)

}
(16)

is an orthonormal basis for H0(X, kL).
Using this observation, it is easy to show that the Chebyshev transform coin-

sides with the Legendre transform on Tn-invariant metrics on toric line bundles.
In [3] Boucksom-Berman introduce bifunctionals Lk of Donaldson type. If

we have a pair of continuous metrics φ and ψ, Lk(φ, ψ) is defined as

Lk(φ, ψ) :=
n!

2kn+1
ln
(

volB(kφ, dV )
volB(kψ, dV )

)
.

Here B(kφ, dV ) denotes the unit ball in H0(X, kL) with respect to the L2-
norm ||.||kφ,dV . The volume of this unit ball is not well-defined without picking
a measure, so we choose a linear isomorphism with Cm, m being the dimension
of the vector space, and take the Lebesgue measure there. When measuring the
quotient of the volume of two unit balls, then this quotient is independent of the
choice of isomorphism we made, thus it is well-defined.

Let si be an orthonormal basis with respect to ||.||kφ,dV and ti an orthonor-
mal basis with respect to ||.||kψ,dV . If Ak is the change of basis matrix between
them, then one observes that

|detAk|2 =
volB(kψ, dV )
volB(kφ, dV )

. (17)

Consider the orthonormal basis (16) and the corresponding one for the norm
||.||kψ,dV . Since we know that sα and tα lies in Aα,k, and the difference of two
elements in Aα,k can be written as a linear combination of elements in Aβ,k for
β > α, it follows that the change of basis matrix Ak is triangular. Thus

|detAk|2 =
( ∏
α∈∆k(L)

eF2[φ](kα,k)−F2[ψ](kα,k)
)2

.

Combining this with equation (17) and the definition of Lk we get that

Lk(φ, ψ) =
n!
kn

∑
α∈∆k(L)

(1/kF2[ψ](kα, k)− 1/kF2[φ](kα, k)).
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Since 1/kF2[φ] and 1/kF2[ψ] converge to c[φ] and c[ψ] respectively, it is not
hard to show that

lim
k→∞

Lk(φ, ψ) = n!
∫

∆(L)◦
(c[ψ]− c[φ])dx.

The main theorem in [3] states that the Lk functionals converge to the
Monge-Ampère energy, so this gives us our main theorem.

0.2.4 Differentiability of Monge-Ampère energy

The paper also contains an application of the Main Theorem to the study of the
Monge-Ampère energy.

In [22] Lazarsfeld-Mustaţă showed how one can use Okouknov bodies to
prove the differentiability of the volume functional on the space of big line
bundles. This was already known, but the new proof using Okounkov bodies
was in a sense more intuitive.

In [3] Berman-Boucksom proved that the Monge-Ampère energy was dif-
ferentiable as a functional on the space of continuous metrics on a fixed big line
bundle.

In our paper we combine the result of Berman-Boucksom and the strategy
of Lazarsfeld and Mustaţă, using our formula for the Monge-Ampère energy,
and prove that the Monge-Ampère energy is differentiable as a functional on
the space of continuous metrics on line bundles in the ample cone. That is, in
contrast to Berman-Boucksom, we let the underlying line bundle vary as well.

0.3 Paper II

The second paper relates Okounkov bodies with test configurations. The main
motivation for introducing and studying test configurations comes from the Yau-
Tian-Donaldson conjecture.
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0.3.1 The Yau-Tian-Donaldson conjecture

We have seen that given an ample line bundle L on a projective manifold X
there is a natural class of symplectic structures on X, namely the Kähler forms
in c1(L). We could interpret these as the curvature forms of positive metrics
on L (see Section 0.1.10). We also saw that a Kähler form ω gives rise to a
Riemannian metric gω. Such a metric is called a Kähler metric. The curvature
tensor R of a Riemannian metric at a point takes as input two tangent vectors
and produces an endomorphism of the tangent space, so it has type (1, 3). By
contraction of the full curvature tensorR one gets the Ricci curvatureRicwhich
has type (0, 2), i.e. it is a 2-form, and then the scalar curvature which is a
function. Of course, in the process one loses more and more information.

For a Riemann surface the scalar curvature is twice the Gaussian curvature.
The uniformization theorem tells us that any Riemann surface (which we think
of as a complex manifold) has a J-invariant Riemannian metric with constant
scalar curvature.

The Yau-Tian-Donaldson conjecture concerns the question when there ex-
ists a Kähler form in c1(L) whose Kähler metric has constant scalar curvature.
We will use the abbreviation cscK for constant scalar curvature. When L is a
multiple of the canonical bundle KX then the Kähler metric is cscK iff it is a
Kähler-Einstein metric. The Ricci curvature form Ric(gω) can be seen to lie
in c1(K−1

X ). A metric is Kähler-Einstein if the Ricci curvature Ric(gω) is a
multiple µ of the Kähler form ω ∈ c1(L),

Ric(gω) = µω.

From the uniformazation theorem follows that any compact Riemann surface
has a Kähler-Einstein metric.

By scaling the constant µ can be chosen to be zero or plus or minus one.
Yau proved the existence of a Kähler-Einstein metric when µ = 0, i.e. when
KX is trivial. It was in fact a special case of the Calabi conjecture which was
proved by Yau (see e.g. [29] for references). Existence of such metrics when
µ = −1, i.e. KX being ample was proved independently by Aubin and Yau
(again see [29]). A manifold with K−1

X (called the anticanonical bundle) ample
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is called Fano. There are known obstructions to the existence of Kähler-Einsten
metrics in the Fano case. The obstuctions due to Matsushima and Futaki both
uses non-trivial automorphisms of X. E.g. the Futaki-invariant is a function on
the space of holomorphic vector fields on X which if non-zero rules out the
existence of a Kähler-Einstein metric. Tian later found an example of a Fano
manifold without holomorphic vector fields but still no Kähler-Einstein metric,
so this was not the end of the story.

Yau conjectured that the existence of a cscK metric with Kähler form in
c1(L) should be equivalent to the pair (X,L) being stable in the sense of GIT
(geometric invariant theory) (see e.g. [29] and [35]).

When Yau stated his conjecture, it was not clear what it should mean for a
pair (X,L) to be stable in this context. In fact several new notions of stability
has been put forward since.

The Yau-Tian-Donaldson conjecture is Yau’s conjecture with the stability
condition interpreted as K-stability. K-stability is a stability notion due to
Donaldson building on the work of Tian. The definition of K-stability relies
on the concept of a test configuration, which we will describe next.

0.3.2 Test configurations

Heuristically a test configuration can be thought of as a degenerated symmetry.
Even though a manifold has no holomorphic symmetries it has lots of these
degenerated symmetries.

Let us be more precise.

DEFINITION 5. A test configuration of a pair (X,L) (X projective and L am-

ple) consists of:

(i) a scheme X with a C∗-action ρ,

(ii) an C∗-equivariant line bundle L over X ,

(iii) and a flat C∗-equivariant projection π : X → C such that L restricted to

the fiber over 1 is isomorphic to rL for some r > 0.
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The zero fiber X0 := π−1(0) of the test configuration is the degeneration
of X which has a C∗-symmetry. In general the degeneration X0 can be very
singular, it might not even be a scheme.

As we remarked, given a holomorphic vector field one can compute its
Futaki invariant, and this being nonzero excludes the possibility of finding a
Kähler-Einstein metric. But in general there might not be any non-zero holo-
morphic vector fields, so this stability notion (Futaki invariant being zero) turns
out to be too weak.

Donaldson shows how to define a Futaki invariant of a test configuration,
generalizing the one of vector fields, and defines K-stability using this. A pair
(X,L) isK-stable if the Futaki invariant of any non-trivial test configuration of
(X,L) is positive.

An example of a test configuration is the deformation to the normal bundle
of a submanifold (or more generally to the normal cone of a subscheme) Y ⊂
X . Consider X ×C and let X be the blow-up of X ×C along Y at zero. Let L̄
be the pullback of the line bundle L � C on X × C using π. Let E denote the
exceptional divisor of the blow-up. E is a Pm-bundle over Y, m = codim(Y ),
and is naturally identified with the compactified normal bundle of Y in X.If
c > 0 is sufficiently small the line bundle L := L̄ − cE will be ample. The
trivial C∗-action on X×C lifts to X since Y ×{0} is invariant, and it is shown
in [31] that this defines a test configuration. The central fiber is the union of X
with E, where the C∗-action on X is trivial while for smooth Y the action on
E is the natural one on the normal bundle seen as a holomorphic vector bundle.

0.3.3 Toric test configurations

When X is toric and L is a toric line bundle, then one can speak of toric test
configurations. In [13] Donaldson describes the relationship between toric test
configurations and the geometry of polytopes. Let g be a positive concave ra-
tional piecewise affine function defined on P, where P is the moment polytope
of L. One may define a polytope Q in Rn+1 with P as its base and the graph of
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g as its roof, i.e.

Q := {(x, y) : x ∈ P, y ∈ [0, g(x)]}.

That g is a concave rational piecewise affine function means precisely that Q
is a rational polytope, i.e. it is the convex hull of a finite set of rational points
in Rn. In fact, by scaling we can without loss of generality assume that Q is
a lattice polytope. Then Q corresponds to a toric line bundle LQ over a toric
variety XQ of dimension n + 1. We may write the correspondence between
integer lattice points of kQ and basis elements for H0(kLQ) as

(α, η) ∈ kQ ∩ Zn+1 ↔ t−ηzα ∈ H0(kLQ).

There is a natural C∗-action ρ given by multiplication in the t-coordinate. We
also get a projection π of XQ down to P1, by letting

π(x) :=
t−η+1zα(x)
t−ηzα(x)

for any η, α such that this is well defined. Donaldson shows in [13] that if one
excludes π−1(∞), then the triple LQ, ρ and π is a test configuration, so π is flat
and the fiber over 1 of (XQ, LQ) is isomorphic to (XP , LP ).

Donaldson also has a formula for the Futaki invariant F of a toric test con-
figurations associated to a function g. Consider the affine subspace spanned by
a facet of P. Pick an integer basis for the n− 1-dimensional lattice inside. This
yields an isomorphism with Rn−1, and we let dσ be the pullback of Lebesgue
measure. This measure will not depend on a particular choice of basis. Do-
ing this for all facets gives us a measure dσ on ∂P. The formula for the Futaki
invariant F now reads:

F =
1

2vol(P )

(
a

∫
P

fdx−
∫
∂P

fdσ

)
,

where a = vol(∂P )/vol(P ).

Using this formula (and some hard analysis) Donaldson proved in [14] the
Yau-Tian-Donaldson conjecture for toric surfaces.
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As we have seen, heuristically, the relationship between a general line bun-
dle L and its Okounkov body is supposed to mimic the relationship between a
toric line bundle and its associated polytope. Therefore, one would hope that
one could translate a general test configuration into some geometric data on the
Okounkov body, as in the toric case.

0.3.4 Filtrations of the section ring

The collection of vector spaces of sections H0(X, kL) can be given the struc-
ture of a graded algebra by using tensor multiplications (s ∈ H0(X, kL) and
t ∈ H0(X,mL) implies that st := s ⊗ t ∈ H0(X, (k + m)L)). The total
algebra is called the section ring of L and denoted by R(L).

In [7] Boucksom-Chen showed how certain filtrations of the section ring
give rise to concave functions on the Okounkov body, and how this concave
function captures information about the asymptotic behaviour of the filtration.

Let us first define what we mean by a filtration.

DEFINITION 6. By a filtration F of a graded algebra ⊕kVk we mean a vector

space-valued map from R× N,

F : (λ, k) 7−→ FλVk,

such that for any k, FλVk is a family of subspaces of Vk that is decreasing and

left-continuous in λ.

In [7] Boucksom-Chen consider filtrations which behaves well with respect
to the multiplicative structure of the algebra.

They give the following definition.

DEFINITION 7. Let F be a filtration of a graded algebra ⊕kVk. We shall say

that

(i) F is multiplicative if

(FλVk)(FηVm) ⊆ Fλ+ηVk+m

for all k,m ∈ N and λ, η ∈ R.
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(ii) F is pointwise left-bounded if for each k FλVk = Vk for some λ.

(iii) F is linearly right-bounded if there exist a constant C such that for all k,

FkCVk = {0}.

A filtration F is said to be admissible (in lack of a better word) if it is

multiplicative, pointwise left-bounded and linearly right-bounded.

Let F be an admissible filtration of the section ring. For any real number λ
we consider the subring R(L, λ) := ⊕kFkλH0(X, kL).

Following [22] one can define the Okounkov body ofR(L, λ), simply using
the sections in the subring in the construction. We thus get a family of convex
sets ∆(L, λ). We get a function G[F ] on ∆(L) by letting

G[F ](x) := sup{λ : x ∈ ∆(L, λ)}.

The fact that F is multiplicative makes G[F ] concave, thus G[F ] is called the
concave transform of the filtration F .

Given a filtrationF one can encode the way the dimension ofFλH0(X, kL)
jumps as a function of λ by considering the positive measures

µk :=
d

dλ
(−dimFkλH0(X, kL)).

The next theorem is the main result in [7].

THEOREM 6. The sequence µk/kn converges weakly as measures to the push-

forward measure G[F ]∗(dx|∆(L)), where dx|∆(L) denotes the restriction of

Lebesgue measure to the Okounkov body.

0.3.5 The concave transform of a test configuration

The main observation in paper 2 is that a test configuration gives rise to an
admissible filtration of the section ring. Building on this, it was subsequently
noted by Szekylyhidi in [34] that specifying a test configurations is equivalent
to specifying a finitely generated filtration of the section ring, which means that
one can recreate the test configuration from the filtration.



44 CHAPTER 0. INTRODUCTION

We will briefly describe how one gets the filtration starting from a test con-
figuration.

For simplicity assume L1
∼= L, i.e. r = 1. Let s ∈ H0(X, kL) be a

holomorphic section. Then using the C∗-action ρ on L⊗k we get a canonical
extension s̄ ∈ H0(X \X0,L⊗k) which is invariant under the action ρ, simply
by letting

s̄(ρ(τ)x) := ρ(τ)s(x) (18)

for any τ ∈ C∗ and x ∈ X.
We prove that this section extends over X0 to a global meromorphic section

of L⊗k. We then get a filtration by letting FλH0(X, kL) consist of those sec-
tions whose extension to X vanish along X0 to order λ or more (when λ < 0
the section is allowed a pole of at most order −λ). Another way to put it is
to say that a section lies in FλH0(X, kL) if its extension multiplied by z−λ

extends to a global holomorphic section. Here z is the holomorphic variable on
the base C.

That the filtration we get is multiplicative is immediate, and the bounded-
ness follows from a result due to Phong-Sturm (see [28]). Thus from the work
of Boucksom-Chen we see that get a concave function on the Okounkov body.
We will call this function the concave transform of the test configuration, de-
noted by G[T ] if T denotes the test configuration.

We furthermore show that in the case of a toric test configuration, our con-
cave transform coincides with the piecewise linear function g considered by
Donaldson.

Using Theorem 6 we know that the functionG[T ] captures the leading term
in the asymptotics of the measures µk associated to the filtration.

In order to calculate the Futaki invariant one usually look at the weights of
the C∗ action on H0(X0, L

⊗k
0 ), where L0 := L|X0 . These weights are also

encoded in the filtration, and summing the weights is the same as taking the
first moment of the measure µk.

Let wk be the first moment of µk (i.e. wk :=
∫
xµk) and

dk := dimH0(X, kL).
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Then from the equivariant Riemann-Roch theorem one gets that there is an
asymptotic expansion in powers of k of the expression wk/kdk (see e.g. [13]),

wk
kdk

= F0 − k−1F1 +O(k−2).

F1 is the Futaki invariant of T that we have denoted by F or F (T ).
Since dk = vol(L)kn/n!+o(kn) and µk/kn converges weakly as measures

to G[T ]∗dx|∆(L) we get that

F0 =
n!

vol(∆(L))

∫
∆(L)

G[T ]dx.

The Futaki invariant also depends on the second order asymptotics of wk
and dk which is therefore in general not captured by G[T ] and ∆(L) alone.
The toric case is very special in this sense. E.g. since the lattice points in
kP enumerate a basis for H0(XP , kLP ) the shape of P determines the Hilbert
polynomial of LP , i.e. the full asymptotics of dk and not only the leading term.
However, in [34] Szekylyhidi shows how one can use these ideas to study the
Futaki invariant.

0.3.6 Product test configurations and geodesic rays

There is a natural Riemannian metric we can put onH(L), the space of positive
metrics on L. The tangent space of H(L) is naturally identified with C∞(X).
Let dVφ := MA(φ)/n!. The norm of a tangent vector u at a point φ inH(L) is
then given by

||u||2φ :=
∫
X

|u|2MA(φ)/n!.

This metric is called the Mabuchi metric (see [24], [33], [12]).
If we have a C∗-action ρ on X which lifts to L we can think of it as a

simple kind of test configuration where X ∼= X × C and L = L � C. The
weight measures µk then correspond to the weight measures of the C∗-action
on H0(X, kL).

Let φ be a positive S1-invariant metric on L. Using the action ρ, we get a
geodesic ray φt in H(L) such that φ1 = φ. Let us denote the t derivative at
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the point one by φ̇. It is a real-valued function on X. By the function φ̇/2 we
can push forward the measure dVφ to a measure on R, which we denote by µφ.
This measure does not depend on the particular choice of positive S1-invariant
metric φ. In fact, we have the following.

THEOREM 7. If we denote the product test configuration by T , and the corre-

sponding concave transform by G[T ], then for any positive S1-invariant metric

φ it holds that

µφ = G[T ]∗dx|∆(L). (19)

The rescaled weight measures µk/kn converges weakly to the right-hand-
side of (6). Using the approach of Berndtsson in [4], one can also show that the
sequence µk/kn converges weakly to the left-hand-side of (6), thus proving the
theorem.

What this result tells us is that the level sets of the moment map φ̇/2 are
related to to the level sets of G[T ]. This relationship is investigated further by
Julius Ross and the author in a paper still in preparation.

0.4 Paper III

The third paper is joint with Julius Ross from the University of Cambridge. It
presents a general construction of weak geodesic rays in the space of positive
singular metrics of an ample line bundle L.

But let us first review some background material.

In the last section we touched upon the subject of geodesics in the space of
positive metrics on a line bundle. An important motivation for studying such
geodesics is again the Yau-Tian-Donaldson conjecture.

0.4.1 The Mabuchi K-energy

Let S = S(φ) denote the scalar curvature of the Kähler metric associated to
ddcφ. We want to understand when we can find a metric φ in H(L) such that
the scalar curvature S(φ) is constant (i.e. a cscK metric). Let S̄ be the average
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of S,

S̄ :=
1

vol(X)

∫
X

S(φ)MA(φ).

In fact

S(φ)MA(φ) = nRic(φ) ∧ (ddcφ)n−1,

so it follows that S̄ is a topological constant depending only on c1(L) and
c1(KX).

Similar to the variational defininition of the Monge-Ampère energy

d

dt
E(φt, ψ) :=

∫
X

φ̇tMA(φt)

one can define a functional K that involves the scalar curvature by letting

d

dt
K(φt, ψ) :=

1
vol(X)

∫
X

(S̄ − S(φt))MA(φt).

The bifunctional K thus defined is called the Mabuchi K-energy. It has the
cocycle property just as the Monge-Ampère energy, and therefore we can fix ψ
and identify the K-energy with the functional K(·, ψ) on H(L). We see that if
S(φ) is constant then φ is a critical point of the K-energy.

One can show that the K-energy is convex along any geodesic, and even
strictly convex if the automorphism group is discrete. So in that case, if any two
points inH(L) could be joined by a geodesic it would imply that a metric with
constant scalar curvature would be unique. A recent result of Lempert-Vivas
in [23] however shows that there are situations whereH(L) is not geodesically
connected.

The question of uniqueness of cscK metrics is thus related to geodesic seg-
ments in H(L). The question of existence is conjecturally related to geodesic
rays rather than segments.

Heuristically, if the K-energy is bounded from below and proper in H(L),
one should be able to find a critical point φ, which would give us a cscK metric.
So the non-existence of such a metric should imply something about the bound-
ary behaviour of the K-energy. A conjecture due to Donaldson in [11] says that
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there is no cscK metric in H(L) iff there is a geodesic ray φt, t ∈ [0,∞) in
H(L) with

d

dt
K(φt, ψ) < 0

for all t.

0.4.2 Geodesic rays

Thus understanding geodesics and in particular geodesic rays has a possible
bearing on the existence problem for cscK metric. A number of authors have
studied this (e.g. Chen-Tian, Donaldson, Phong-Sturm, Mabuchi and Semmes
among others).

It was realized in [11, 24, 33] that a curve φt is a geodesic iff it solves a
homogeneous Monge-Ampère equation on X × A where A is an annulus or a
puntured disc, the case of a punctured disc corresponds to geodesic rays.

Specifically, let A := {ea < |z| < eb} be an annulus and let π be the
projection from X × A to X. Given a curve φt, a < t < b, of positive met-
rics, consider the metric Φ(x,w) := φln |w|(x) on π∗(L). Then the geodesic
equation for φt is equivalent to the degenerate homogeneous Monge-Ampère
equation

Ωn+1 = 0 on X ×A, (20)

where Ω = p∗1ω0 +ddcΦ and p∗1ω0 is the pullback of the curvature of the initial
metric.

Arrezo-Tian in [1] have shown how to construct geodesic rays given some
special data using the Cauchy-Kowaleski theorem. See also the work of Chen
in [10].

It is generally hard to construct geodesic rays, since the assumptions are
so strong. Because of the difficulties many authors (e.g. Chen, Phong-Sturm,
Song-Zelditch and Sun) have studied a more general class of curves in the space
of positive singular metrics called weak geodesics.

Let φt be a curve in PSH(L). This curve is called a weak geodesic if the
metric Φ(x,w) := φln |w|(x) is a locally bounded positive singular metric on
π∗(L) which solves the homogeneous Monge-Ampère equation MA(φt) = 0
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on X ×A. When A is a punctured disc φt is called a weak geodesic ray. In this
case we usually think of the parameter t as going from zero to plus infinity.

These weak geodesic rays are easier to construct than true ones. E.g. one
can use envelope techniques.

Let φ be a smooth metric on an ample line bundle L. Then we can consider
the envelope P (φ) which is defined as

P (φ) := sup{ψ : ψ ≤ φ, ψ ∈ PSH(L)}.

Then P (φ) is a positive singular metric (i.e. not smooth) and by the work
of Bedford-Taylor the Monge-Ampère of P (φ) is zero on the set where the
envelope P (φ) is strictly less than φ (see [2]). By looking at the productX×P1

say and a suitable smooth metric on L � O(1) one can use a variant of this
envelope construction to produce weak geodesic rays. In order to get something
non-trivial though one has to impose some condition on the allowed behaviour
at the origin for the candidate metrics in the envelope.

0.4.3 Phong-Sturm rays

Because of the connection to the Yau-Tian-Donaldson conjecture one is partic-
ularly interested in (weak) geodesic rays associated to test configurations. Pick
a positive metric φ and a test configuration T . In [28] Phong-Sturm show how
to construct a weak geodesic ray φt emanating from φ using the test configu-
ration. The behaviour of φt as t tends to infinity is then governed by the test
configuration.

We will briefly describe their construction here.
Using φ one gets scalar products (·, ·)kφ on the vector spaces H0(X, kL),

by letting

(s1, s2)kφ :=
∫
X

s1s2e
−kφMA(φ).

Recall that a test configuration give rise to a filtration F of each vector space
H0(X, kL) (see section 0.3.5). Let λi be an enumeration in increasing order of
the numbers where FλH0(X, kL) drops in dimension. There is a unique de-
composition of H0(X, kL) into a direct sum of mutually orthogonal subspaces
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Vi such that FλV is the sum of Vi over the indices i such that λi ≥ λ. If we
allow for λi to be equal to λj even when i 6= j, we can assume that all the sub-
spaces Vi are one dimensional. This additional decomposition is not unique, but
that will not matter in what follows. Let si be a section in Vi of unit length, then
{si} is an orthonormal basis. Consider the curve of positive singular metrics

Φk(t) :=
1
k

ln
(∑

i

etλi |si|2
)
.

The Phong-Sturm ray is the limit

φt := lim
k→∞

(sup
l≥k

Φl(t))∗. (21)

Phong-Sturm prove that the curve φt is a weak geodesic ray. That φ0 = φ

follows from a celebrated result by Bouche-Catlin-Tian-Zelditch [6, 9, 36, 39]
on Bergman kernel asymptotics.

Note that in linking geodesics with the Mabuchi K-energy the regularity was
essential. Therefore it is important to know what kind of regularity the weak
geodesic rays possess. In [30] Phong-Sturm prove that the weak geodesic rays
φt are of class C1,α for any 0 < α < 1.

0.4.4 The Legendre transform

A test configuration is an algebraic object, while positive singular metrics and
weak geodesic rays belong to the more analytical realm of pluripotential theory.
The object of the third paper is to show that one can use a larger class than the
(algebraic) test configurations to construct weak geodesic rays. We call the
objects in this larger class analytical test configurations, because in this context
they play a role similar to that of an ordinary test configurations.

Before giving the definition of an analytic test configuration we will dis-
cuss the Kiselman minimum principle and the Legendre transform of curves of
positive metrics.

A very important property of the class of plurisubharmonic functions is that
it is closed under taking maximum, and the supremum of a family of plurisub-
harmonic functions is plurisubharmonic after regularization. Onthe other hand,
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the minimum of two plurisubharmonic functions is very seldom plurisubhar-
monic. There is one situation though where one gets plurisubharmonic func-
tions after taking infimum, this is described by Kiselman’s minimum principle
(see [20]).

THEOREM 8. Let Ω be a pseudoconvex domain in Cn×Cm such that if (x, y) ∈
Ω then (x, y′) ∈ Ω for all y′ such that Re y = Re y′. Let π be the projection

π(x, y) = x, and assume for simplicity that the fibers are connected. Let u

be a plurisubharmonic function on Ω which is independent of Im y. Then the

function v on π(Ω) defined by

v(x) := inf{u(x, y) : (x, y) ∈ Ω}

is plurisubharmonic.

Let φt be a weak geodesic ray in PSH(L). Thinking of t as a complex
coordinate where φt is independent of Im t means that φt is a positive singular
metric on X × {t ≥ 0}. By choosing a suitible open cover of X by pseudocon-
vex domains the Kiselman minimum principle implies that the metric

ψ0 := inf{φt : t ≥ 0}

lies in PSH(L), unless it is identically −∞. For any real number λ the curve
φt − tλ is still a weak geodesic ray. Thus we get a family of positive singular
metrics

ψλ := inf{φt − tλ : t ≥ 0}

parametrized by λ. That φt is locally plurisubharmonic in all variables and in-
dependent of Im t implies that φt is convex in t. Since ψλ is the infimum of
metrics that are linear and thus concave in λ we get that the curve ψλ is concave
in λ.

A curve φt in PSH(L) independent of Im t which is a locally bounded
positive singular metric onX×{t ≥ 0} is called a weak subgeodesic ray. From
the procedure above we see that any weak subgeodesic ray produces a concave
curve of positive singular metrics. Note that even if the original curve φt is



52 CHAPTER 0. INTRODUCTION

smooth, the concave curve ψλ can be highly singular (e.g. it will be identically
−∞ for λ >> 0).

We call ψλ the Legendre transform of the subgeodesic φt. Kiselman in [20]
and others have used the local version of this Legendre transform to study sin-
gularities of plurisubharmonic functions. Here it gives us information of the
limit behaviour of φt as t tends to infinity.

There is also a Legendre transform going in the opposite direction. Let ψλ,
λ ∈ R be a concave curve of positive singular metrics such that ψλ is equal to
some locally bounded metric ψ−∞ for λ << 0, and −∞ for λ >> 0. Then we
can consider the curve φt defined by

φt := (sup{ψλ + tλ : λ ∈ R})∗,

where the star means we take the upper semicontinuous regularization. Then φt
is a weak subgeodesic ray.

If we start with a weak subgeodesic ray φt, since the Legendre transform is
an involution it follows that the Legendre transform of the concave curve ψλ is
our original φt. So if φt happened to be a weak geodesic the Legendre transform
of ψλ would subsequently be a weak geodesic.

0.4.5 Analytic test configurations

The objective of paper 3 was to find a more general analytical procedure to con-
struct weak geodesics than the one proposed by Phong-Sturm. Recall that in
the heuristics behind using test configurations to construct weak geodesic rays
the test configuration encodes the limiting behaviour of the ray as t tends to
infinity. We have seen that a way to understand this limiting behaviour is to
apply the Legendre transform and thus get a concave curve of positive singular
metrics. In our paper we consider certain equivalence classes of concave curves
of metrics that we call analytic test configurations. Given this data and a start-
ing metric φ, we show how to construct a weak geodesic ray by an envelope
procedure followed by a Legendre transform.

Let us be more precise.
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First some definitions from pluripotential theory. A set is called complete
pluripolar if it can be described locally as the set where a plurisubharmonic
function is minus infinity. We say that a positive singular metric ψ has small
unbounded locus if the set where ψ fails to be locally bounded is contained in a
closed complete pluripolar subset of X (see [8]).

We can now define what we mean by a test curve.

DEFINITION 8. A map λ 7→ ψλ from R to PSH(L) is called a test curve if

(i) ψλ is concave in λ,

(ii) and ψλ has small unbounded locus whenever ψλ 6≡ −∞.

There should also exist a constant C such that

(iii) ψλ is equal to some locally bounded positive metric ψ−∞ for λ < −C,

(iiii) and ψλ ≡ −∞ for λ > C.

We say that two metrics ψ1 and ψ2 in PSH(L) have the same singularity
type if for some constant C we have that

ψ1 − C ≤ ψ2 ≤ ψ1 + C.

We let Sing(L) denote the set of singularity types in PSH(L).

If we have a test curve ψλ we get a curve [ψλ] in Sing(L), where of course
[ψ] denotes the equivalence class of ψ.

DEFINITION 9. A concave curve [ψλ] in Sing(L) which is the image of a test

curve ψλ under the natural projection ψ 7→ [ψ] is called an analytic test con-

figuration.

We say that the analytic test configuration [ψλ] is trivial if there exists a
number λc such that [ψλ] = [φ] for λ < λc and [ψλ] = [−∞] for λ > λc.
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0.4.6 Maximal envelopes

Our process of constructing weak geodesics has two steps. The first step con-
sists in taking certain envelopes, called maximal envelopes.

Let φ be a continuous metric and ψ a positive singular metric. Then the
envelope Pψφ is defined as

Pψφ := sup{ψ′ ≤ min{φ, ψ} : ψ′ ∈ PSH(L)}.

This is a new positive singular metric. We can also form an envelope with
respect to the singularity type [ψ] rather than ψ, by letting

P[ψ]φ := lim
C→∞

Pψ+Cφ.

After taking the usc regularization we get a positive singular metric φ[ψ] which
we call the maximal envelope of φ with respect to the singularity type [ψ].

DEFINITION 10. If ψ ∈ PSH(L), then ψ is said to be maximal with respect

to a metric φ if ψ ≤ φ and furthermore ψ = φ a.e. with respect to MA(ψ).

Since ψ might not be locally bounded by MA(ψ) we mean the nonpluripo-
lar Monge-Ampère measure of ψ (see [8]).

A key technical result in our paper is the proof that the maximal envelope
φ[ψ] of any continuous metric φ with respect to any singularity type [ψ] is max-
imal with respect of φ.

Given a positive metric φ and an analytic test configuration [ψλ] we get a
new concave curve by considering the curve of maximal envelopes φ[ψλ]. It is
not hard to show that this is a test curve. So we can let φt be the Legendre
transform

φt := (sup{φ[ψλ] + tλ : λ ∈ R})∗.

Our main theorem is then the following.

THEOREM 9. For any positive metric φ and any analytic test configuration [ψλ]
it holds that the Legendre transform

φt := (sup{φ[ψλ] + tλ : λ ∈ R})∗

is a weak geodesic ray emanating from φ.
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0.4.7 Proof of main theorem

We have already remarked that the Legendre transform φt is a weak subgeodesic.
It is well-known that in order to prove that a weak subgeodesic φt is a weak
geodesic it suffices to show that the Monge-Ampère energy E(φt, φ) is linear in
t. E.g. this is what Phong-Sturm did to prove that their ray was a weak geodesic.

To calculate the energy E(φt, φ) we use the following lemma.

LEMMA 10. Suppose that ψ is maximal with respect to a positive metric φ with

small unbounded locus, and let t > 0. Then we have that

t

∫
X

MA(ψ) ≤ E(max{ψ + t, φ}, φ) ≤ t
∫
X

MA(φ). (22)

Remark. This is one place where the somewhat annoying assumption of
the metrics in the test curve having small unbounded locus comes into the argu-
ment.

Let N be a big natural number and let ϕi := φ[ψi/N ], i ∈ Z. Then φt can be
approximated by

φNt := max
i
{ϕi + ti/N}.

Let

φN,Mt := maxi≤M{ϕi + ti/N}.

=
∑
j

E(ϕ≤j , ϕ≤j−1).

Using the concavity of φN,Mt we show that

E(φN,M+1
t , φN,Mt ) = E(max{ϕM+1 + t/N, ϕM}, ϕM ).

Since ϕM+1 is maximal with respect to ϕM we can use Lemma 10 to conclude
that

t

N

∫
X

MA(ϕM+1) ≤ E(φN,M+1
t , φN,Mt ) ≤ t

N

∫
X

MA(ϕM ).
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Let i be such that ϕi = φ. Then φN,it = φ + ti/N. By the cocycle property of
the Monge-Ampère energy we get that

E(φNt , φ) = E(φNt , φ
N,i
t ) + E(φN,it , φ) =

=
∑
M≥i

E(φN,M+1
t , φN,Mt ) + ti/N

∫
X

MA(φ).

By letting N tend to infinity and using continuity properties of the Monge-
Ampère energy one arrives at the following equation:

E(φt, φ) = −t
∫ ∞
λ=−∞

λdF (λ),

where
F (λ) :=

∫
X

MA(φ[ψλ]).

In particular it shows that the Monge-Ampère energy is linear in t, thus theorem
9 follows.

0.4.8 Connection to the work of Phong-Sturm

One natural question is how this relates to the construction of Phong-Sturm.
Let F be an admissible filtration of the section ring R(L) (see section 0.3.4

for the definition). Let us also choose a positive metric φ.We saw above that we
have an orthonormal basis {si} ofH0(X, kL) with respect to the scalar product
(·, ·)kφ, where the section si is associated to the weight λi (see section 0.4.3).
Let ψk,λ denote the metric

ψk,λ :=
1
k

ln
( ∑
i∈Ik,λ

|si|2
)
,

where Ik,λ := {i : λi ≥ kλ}. Thus ψk,λ is the Bergman metric associated to
the projection down to the subspace FkλH0(X, kL).

In our paper we prove that for any λ the sequence of metrics ψk,λ converges
and the usc regularization of the limit is a positive singular metric denoted φFλ
(with the possibility that φFλ ≡ −∞). This is in fact a test curve, so it defines an
analytic test configuration. Using a a Skoda-type division theorem we are also
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able to prove that the metrics φFλ are maximal with respect to φ, thus it follows
that the Legendre transform of this test curve is a weak geodesic ray emanating
from φ.

In the case of an (algebraic) test configuration we can use the associated
filtration to thus get weak geodesic rays emanating from any positive metric φ
we choose.

Let us compare the k:th step approximation of this ray with the correspond-
ing approximation of the Phong-Sturm ray. Note that

ψk,λi/k + tλi/k =
1
k

ln
( ∑
j∈Ik,λi

etλi |sj |2
)
.

We thus get that our k:th step approximation is

Ψk(t) := sup
λ
{ψk,λ + tλ} = sup

λi

{ψk,λi/k + tλi/k} =

= sup
λi

{1
k

ln
( ∑
j∈Ik,λi

etλi |sj |2
)}
.

Compare this to the approximation of the Phong-Sturm ray:

Φk(t) :=
1
k

ln
(∑

i

etλi |si|2
)
.

Here is an elementary lemma.

LEMMA 11. If {ai : i ∈ I} is a finite set of real numbers and k a positive

integer then

max
i∈I

ai ≤
1
k

ln
(∑
i∈I

ekai
)
≤ max

i∈I
ai +

1
k

ln |I|. (23)

It shows that for k large, 1/k times the logarithm of a sum of exponetials
ekai is closely approximated by the maximum of the numbers ai. If we let

ai =
1
k

ln |si(x)|2 + tλi/k,

then we see that Φk(t)(x) is approximated by max{ai}. On the other hand, by
the same lemma we get that max{ai} also approximates

1
k

ln
( ∑
i,j:λj≥λj

etλi |sj(x)|2
)
.
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But another application of the lemma tells us that this is approximated by
max{bi}, where

bi =
1
k

ln
( ∑
λj≥λj

|sj(x)|2
)

+ tλi/k = ψk,λi/k(x) + tλi/k.

This shows that Ψk(t)− Φk(t) tends to zero as k tends to infinity.
This makes it very probable that the two weak geodesic rays coincide, but it

is not a proof since one has to take into account the different limiting procedures
in the definitions. We do prove that when the analytic test configuration we get
is non-trivial, then the two rays do coincide.
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1
Transforming metrics on a line bundle

to the Okounkov body

ABSTRACT

Let L be a big holomorphic line bundle on a compact complex manifold X.
We show how to associate a convex function on the Okounkov body of L to
any continuous metric e−ψ on L. We will call this the Chebyshev transform of
ψ, denoted by c[ψ]. Our main theorem states that n! times the integral of the
difference of the Chebyshev transforms of two weights is equal to the Monge-
Ampère energy of the weights, which is a well-known functional in Kähler-
Einstein geometry and Arakelov geometry. We show that this can be seen as
a generalization of classical results on Chebyshev constants and the Legendre

65
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transform of invariant metrics on toric manifolds. As an application we prove
the differentiability of the Monge-Ampère energy in the ample cone.

1.1 Introduction

In [8] and [9] Kaveh-Khovanskii and Lazarsfeld-Mustaţă initiated a systematic
study of Okounkov bodies of divisors and more generally of linear series. Our
goal is to contribute with an analytic viewpoint.

It was Okounkov who in his papers [10] and [11] introduced a way of asso-
ciating a convex body in Rn to any ample divisor on a n-dimensional projective
variety. This convex body, called the Okounkov body of the divisor and denoted
by ∆(L), can then be studied using convex geometry. It was recognized in [9]
that the construction works for arbitrary big divisors.

We will restrict ourselves to a complex projective manifold X, and instead of
divisors we will for the most part use the language of holomorphic line bundles.
Because of this, in the construction of the Okounkov body, we prefer choosing
local holomorphic coordinates instead of the equivalent use of a flag of subva-
rieties (see [9]). We use additive notation for line bundles, i.e. we will write
kL instead of L⊗k for the k:th tensor power of L. We will also use the additive
notation for metrics. If h is a hermitian metric on a line bundle, we may write
it as h = e−ψ, and call ψ a weight. Thus if ψ is a weight on L, kψ is a weight
on kL.

The main motivation for studying Okounkov bodies has been their connec-
tion to the volume function on divisors. Recall that the volume of a line bundle
L is defined as

vol(L) := lim sup
k→∞

n!
kn

dim(H0(kL)).

A line bundle is said to be big if it has positive volume. From here on, all line
bundles L we consider will be assumed to be big. By Theorem A in [9], for any
big line bundle L it holds that

volRn(∆(L)) =
1
n!

vol(L).
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We are interested in studying certain functionals on the space of weights on
L that refine vol(L) (see below).

A weight ψ is said to be psh if

ddcψ ≥ 0

as a current. Given two locally bounded psh weights ψ and ϕwe define E(ψ,ϕ)
as

1
n+ 1

n∑
j=0

∫
X

(ψ − ϕ)(ddcψ)j ∧ (ddcϕ)n−j ,

which we will refer to as the Monge-Ampère energy of ψ and ϕ. This bifunc-
tional first appeared in the works of Mabuchi and Aubin in Kähler-Einstein
geometry (see [1] and references therein).

If ψ and ϕ are continuous but not necessarily psh, we may still define
a Monge-Ampère energy, by first projecting them down to the space of psh
weights,

P (ψ) := sup{ψ′ : ψ′ ≤ ψ,ψ′ psh}.

We are therefore led to consider the functional

E(ψ,ϕ) :=
1

n+ 1

n∑
j=0

∫
Ω

(P (ψ)−P (ϕ))(ddcP (ψ))j ∧ (ddcP (ϕ))n−j , (1.1)

where Ω denotes the dense Zariski-open set where both P (ψ) and P (ϕ) are
locally bounded. For psh weights ψ, trivially P (ψ) = ψ, therefore there is
no ambiguity in the notation. The Monge-Ampère energy can be seen as a
generalization of the volume since if we let ψ be equal to ϕ + 1, from e.g. [1]
we have that

E(ψ,ϕ) =
∫

Ω

(ddcP (ϕ))n = vol(L).

Given a continuous weight ψ, we will show how to construct an associated
convex function on the interior of the Okounkov body of L which we will call
the Chebyshev transform of ψ, denoted by c[ψ]. The construction can be seen
to generalize both the Chebyshev constants in classical potential theory and the
Legendre transform of convex functions (see subsections 9.2 and 9.3 respec-
tively).
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First we construct ∆(L). Choose a point p ∈ X and local holomorphic
coordinates z1, ..., zn centered at p. Choose also a trivialization of L around p.
With respect to this trivialization any holomorphic section s ∈ H0(L) can be
written as a convergent power series in the coordinates zi,

s =
∑
α

aαz
α.

Consider the lexicographic order on Nn, and let v(s) denote the smallest index
α (i.e. with respect to the lexicographic order) such that

aα 6= 0.

We let v(H0(L)) denote the set {v(s) : s ∈ H0(L)}, and finally let the Ok-
ounkov body of L, denoted by ∆(L), be defined as closed convex hull in Rn of
the union ⋃

k≥1

1
k
v(H0(kL)).

Observe that the construction depends on the choice of p and the holomorphic
coordinates. For other choices, the Okounkov bodies will in general differ.

Now let ψ be a continuous weight on L. There are associated supremum
norms on the spaces of sections H0(kL),

||s||2kψ := sup
x∈X
{|s(x)|2e−kψ(x)}.

If v(s) = kα for some section s ∈ H0(kL), we letAα,k denote the affine space
of sections in H0(kL) of the form

zkα + higher order terms.

We define the discrete Chebyshev transform F [ψ] on
⋃
k≥1 v(H0(kL)) × {k}

as
F [ψ](kα, k) := inf{ln ||s||2kψ : s ∈ Aα,k}.

THEOREM 1. For any point p ∈ ∆(L)◦ and any sequenceα(k) ∈ 1
kv(H0(kL))

converging to p, the limit

lim
k→∞

1
k
F [ψ](kα(k), k)
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exists and only depends on p. We may therefore define the Chebyshev transform

of ψ by letting

c[ψ](p) := lim
k→∞

1
k
F [ψ](kα(k), k),

for any sequence α(k) converging to p.

The main observation underlying the proof is the fact that the discrete Cheby-
shev transforms are subadditive. Our proof is thus very much inspired by the
work of Zaharjuta, who in [14] used subadditive functions on Nn when study-
ing directional Chebyshev constants, and also by the article [3] where Bloom-
Levenberg extend Zaharjutas results to a more general weighted setting, but still
in Cn (we show in section 7 how to recover the formula of Bloom-Levenberg
from Theorem 1).

We prove a general statement concerning subadditive functions on subsemi-
groups of Nd that generalizes a result of Zaharjuta.

THEOREM 2. Let Γ ⊆ Nd be a semigroup which generates Zd as a group, and

let F be a subadditive function on Γ which is locally bounded from below by

some linear function. Then for any sequence α(k) ∈ Γ such that |α(k)| → ∞
and α(k)

|α(k)| → p ∈ Σ(Γ)◦ (Σ(Γ) denotes the convex cone generated by Γ) for

some point p in the interior of Σ(Γ), the limit

lim
k→∞

F (α(k))
|α(k)|

exists and only depends on F and p. Furthermore the function

c[F ](p) := lim
k→∞

F (α(k))
|α(k)|

thus defined on Σ(Γ)◦ ∩ Σ◦ is convex.

Theorem 1 will follow from Theorem 2.

It should be pointed out that related Chebyshev transforms play an important
role in [12] in the context of Arakelov geometry.

Our main result on the Chebyshev transform is the following.
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THEOREM 3. Let ψ and ϕ be two continuous weights on L. Then it holds that

E(ψ,ϕ) = n!
∫

∆(L)◦
(c[ϕ]− c[ψ])dλ, (1.2)

where dλ denotes the Lebesgue measure on ∆(L).

The proof of Theorem 3 relies on the fact that one can use certain L2-norms
related to the weight, called Bernstein-Markov norms, to compute the Cheby-
shev transform. With the help of these one can interpret the right-hand side
in equation (1.2) as a limit of Donaldson bifunctionals Lk(ψ,ϕ). On the other
hand, the main theorem in [1] says that the bifunctionals Lk(ψ,ϕ) converges to
the Monge-Ampère energy when k tends to infinity, which gives us our theo-
rem.

Because of the homogeneity of the Okounkov body, i.e.

∆(kL) = k∆(L),

one may define the Okounkov body of an arbitrary Q-divisor D by letting

∆(D) :=
1
p

∆(pD),

for any integer p clearing all denominators in D. Theorem B in [9] states that
one may in fact associate an Okounkov body to an arbitrary big R-divisor, such
that the Okounkov bodies are fibers of a closed convex cone in Rn ×N1(X)R,
where N1(X)R denotes the Neron-Severi space of R-divisors. We show that
this can be done also on the level of Chebyshev transforms, i.e. there is a con-
tinuous and indeed convex extension of the Chebyshev transforms to the space
of continuous weights on big R-divisors. We prove Theorem 3 for weights on
ample R-divisors.

As an application we prove that the Monge-Ampère energy is differentiable
in the ample cone. In [1] Berman-Boucksom consider as a function of t the
Monge-Ampère of weights ψt and ϕ, where ψt vary smoothly with t. Theorem
B in [1] states that the function

F (t) := EL(ψt, ϕ)
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then is differentiable in t, and that the derivative is given by

Ḟ (t) =
∫

Ω

ψ̇t(ddcP (ψt))n,

where ψ̇t denotes the derivative of ψt at t. In section 9 we prove a generalization
of this in the ample setting where the underlying R-divisor Lt varies with t
within the ample cone.

THEOREM 4. Let Ai, i = 1, ...,m be a finite collection of ample line bundles,

and for each i let ψi and ϕi be two continuous weights on Ai. Let O denote the

open cone in Rm such that a ∈ O iff
∑
aiAi is an ample R-divisor. Then the

function

F (a) := EP
aiAi(

∑
aiψi,

∑
aiϕi)

is C1 on O.

We also calculate the differential. If we consider the special case where A
is ample and ϕ is some positive continuous weight on A, and let

F (t) := EL+tA(ψ1 + tϕ, ψ2 + tϕ)

for some continuous weights ψ1 and ψ2 on an ample divisor L. Then our calcu-
lations show that

Ḟ (0) =
n−1∑
j=0

∫
X

(P (ψ1)− P (ψ2))ddcϕ ∧ (ddcP (ψ1))j ∧ (ddcP (ψ2))n−j−1.

(1.3)
Another special case is the following. If A is an ample divisor and sA is

a defining section for A, by multiplying with s⊗tkA we get embeddings of the
spaces H0(k(L− tA)) into H0(kL). There is also an associated map between
the spaces of weights, where ψL maps to

ψL−tA := ψL − t ln |sA|2.

It follows from the proof of Theorem 4 that

d

dt |0
EX(ψL−tA, ϕL−tA) = −EA(ψL, ϕL).
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Our proof uses the same approach as the proof of the differentiability of
the volume in [9]. Since the Monge-Ampère energy is given by the integral
of Chebyshev transforms over Okounkov bodies, when we differentiate we get
one term coming from the variation of the Okounkov body, as studied in [9], and
one term coming from the variation of the Chebyshev transforms. We observe
that if one in formula (1.3) as Ψ chooses the positive weight ln |s|2, and let
ψ0 = ϕ0 + 1, using the Lelong-Poincare formula one recovers the formula for
the derivative of the volume in the ample cone, i.e.

d

dt |0
volX(L+ tA) = nvol[A](L|[A]),

where [A] denotes the divisor {s = 0}.

1.1.1 Organization

In section 2 we start by defining the Okounkov body of a semigroup, and we
recall a result on semigroups by Khovanskii that will be of great use later on.

Section 3 deals with subadditive functions on subsemigroups of Nn+1 and
contains the proof of Theorem 2.

The definition of the Okounkov body of a line bundle follows in section 4.
In section 5 we define the discrete Chebyshev transform of a weight, and

prove that this function has the properties needed for Thereom 2 to be applica-
ble. We thus prove Theorem 1. We also show that the difference between two
Chebyshev transforms is bounded on the interior of the Okounkov body.

The Monge-Ampère energy of weights is introduced in section 6. Here we
also state our main theorem, Theorem 3.

In section 7 we show how one can use Bernstein-Markov norms instead of
supremum norms in the construction of the Chebyshev transform.

The proof of Theorem 3 follows in section 8.
Section 9 discusses previuos results.
In subsection 9.1 we observe that if we in (1.2) let ϕ be equal to ψ+ 1, then

we recover Theorem A in [9], i.e. that

volRn(∆(L)) =
1
n!

vol(L).
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In subsection 9.2 we move on to clarify the connection to the classical
Chebyshev constants. We see that if we embed C into P1 and choose our
weights wisely then formula (1.2) gives us the classical result in potential the-
ory that the Chebyshev constant and transfinite diamter of a regular compact set
in C coincides. See subsection 9.2 for definitions.

Subsection 9.3 studies the case of a toric manifold, with a torus invariant
line bundle and invariant weights. We calculate the Chebyshev transforms, and
observe that for invariant weights, the Chebyshev transform equals the Legen-
dre transform of the weight seen as a function on Rn.

We show in section 10 that if the line bundle is ample, the Chebyshev trans-
form is defined on the zero-fiber of the Okounkov body, not only in the interior.
Using the Ohsawa-Takegoshi extension theorem we prove that

EY (P (ϕ)|Y , P (ψ)|Y ) = (n− 1)!
∫

∆(L)0

(c[ψ]− c[ϕ])(0, α)dα, (1.4)

where ∆(L)0 denotes the zero-fiber of ∆(L), and Y is a submanifold locally
given by the equation z1 = 0.

In section 11 we show how to translate the results of Bloom-Levenberg to
our language of Chebyshev transforms. We reprove Theorem 2.9 in [3] using
our Theorem 3, equation (1.4) and a recursion formula from [1].

We show in section 12 how to construct a convex and therefore continuous
extension of the Chebyshev transform to arbitrary big R-divisors.

In section 13 we move on to prove Theorem 4 concerning the differentiabil-
ity of the Monge-Ampère energy in the ample cone.

1.1.2 Acknowledgement

First of all I would like to thank Robert Berman for proposing the problem to
me. In addition to Robert Berman I would also like to thank Bo Berndtsson and
Sebastien Boucksom for their numerous valuable comments and suggestions
concerning this article.



74 CHAPTER 1. PAPER I

1.2 The Okounkov body of a semigroup

Let Γ ⊆ Nn+1 be a semigroup. We denote by Σ(Γ) ⊆ Rn+1 the closed convex
cone spanned by Γ. By ∆k(Γ) we will denote the set

∆k(Γ) := {α : (kα, k) ∈ Γ} ⊆ Rn.

DEFINITION 1. The Okounkov body ∆(Γ) of the semigroup Γ is defined as

∆(Γ) := {α : (α, 1) ∈ Σ(Γ)} ⊆ Rn.

It is clear that for all non-negative k,

∆k(Γ) ⊆ ∆(Γ).

The next theorem is a result of Khovanskii from [7].

THEOREM 5. Assume that Γ ⊆ Nn+1 is a finitely generated semigroup which

generates Zn+1 as a group. Then there exists an element z ∈ Σ(Γ), such that

(z + Σ(Γ)) ∩ Zn+1 ⊆ Γ.

When working with Okounkov bodies of semigroups it is sometimes useful
to reformulate Theorem 5 into the following lemma.

LEMMA 6. Suppose that Γ is finitely generated, generates Zn+1 as a group,

and also that ∆(Γ) is bounded. Then there exists a constant C such that for all

k, if

α ∈ ∆(Γ) ∩
(

1
k

Z
)n

and if the distance between α and the boundary of ∆(Γ) is greater than C/k,

then in fact we have that

α ∈ ∆k(Γ).

Proof. By definition we that

α ∈ ∆(Γ) ∩
(

1
k

Z
)n

iff (kα, k) ∈ Σ(Γ) ∩ Zn+1.
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Also by definition

α ∈ ∆k(Γ) iff (kα, k) ∈ Γ.

By Theorem 5 we have that

(kα, k) ∈ Γ if (kα, k)− z ∈ Σ(Γ),

and since Σ(Γ) is a cone, (kα, k)−z ∈ Σ(Γ) iff (α, 1)−z/k ∈ Σ(Γ). If (α, 1)
lies further than |z|/k from the boundary of Σ(Γ), then trivially (α, 1)− z/k ∈
Σ(Γ). Since by assumtion the Okounkov body is bounded, the distance between
(α, 1) and the boundary of Σ(Γ) is greater than some constant times the distance
between α and the boundary of ∆(Γ). The lemma follows.

COROLLARY 7. Suppose that Γ generates Zn+1 as a group, and also that ∆(Γ)
is bounded. Then ∆(Γ) is equal to the closure of the union ∪k≥0∆k(Γ).

Proof. That
∪k≥0∆k(Γ) ⊆ ∆(Γ)

is clear. For the opposite direction, we exhaust ∆(Γ) by Okounkov bodies of
finitely generated subsemigroups of Γ. Therefore, without loss of generality we
may assume that Γ is finitely generated. We apply Lemma 6 which says that
all the ( 1

kZ)n lattice points in ∆(Γ) whose distance to the boundary of ∆(Γ)
is greater that some constant depending on the element z in (5), divided by k,
actually lie in ∆k(Γ). The corollary follows.

1.3 Subadditive functions on semigroups

Let Γ be a semigroup. A real-valued function F on Γ is said to be subadditive

if for all α, β ∈ Γ it holds that

F (α+ β) ≤ F (α) + F (β).

If α ∈ Rn+1, we denote the sum of its coordinates
∑
αi by |α|. We also let

Σ0 ⊆ Rn+1 denote the set

Σ0 := {(α1, ..., αn+1) : |α| = 1, θi > 0}.
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In [3] Bloom-Levenberg observe that one can extract from [14] the follow-
ing theorem on subadditive functions on Nn+1.

THEOREM 8. Let F be a subadditive function on Nn+1 which is bounded from

below by some linear function. Then for any sequence α(k) ∈ Nn+1 such that

|α(k)| → ∞ when k tends to infinity and such that

α(k)/|α(k)| → θ ∈ Σ0,

it holds that the limit

c[F ](θ) := lim
k→∞

F (α(k))
|α(k)|

exists and does only depend on θ. Furthermore, the function c[F ] thus defined

is convex on Σ0.

We will give a proof of this theorem which also shows that it holds locally,
i.e. that F does not need to be subadditive on the whole of Nn+1 but only on
some open convex cone and only for large |α|. Then Zaharjuta’s theorem still
holds for the part of Σ0 lying in the open cone. We will divide the proof into a
couple of lemmas.

LEMMA 9. Let O be an open convex cone in Rn+1
+ and let F be a subadditive

function on (O \ B(0,M)) ∩ Nn+1, where B(0,M) denotes the ball of radius

M centered at the origin, and M is any positive number. Then for any closed

convex cone K ⊆ O there exists a constant CK such that

F (α) ≤ CK |α|

on (K \B(0,M)) ∩ Nn+1.

Proof. Pick points in (O \ B(0,M)) ∩ Nn+1 such that if we denote by Γ the
semigroup generated by the points, the convex cone Σ(Γ) should contain (K \
B(0,M)) and the distance between the boundaries should be positive. The
points should also generate Zn+1 as a group. Then from Theorem 5 it follows
that there exists an M ′ such that

(K \B(0,M ′)) ∩ Nn+1 ⊆ Γ. (1.5)
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Let αi denote the generators of Γ we picked. The inclusion (1.5) means that for
all α ∈ (K \B(0,M ′)) ∩ Nn+1 there exist non-negative integers ai such that

α =
∑

aiαi.

By the subadditivity we therefore get that

F (α) ≤
∑

aiF (αi) ≤ C
∑

ai ≤ C|α|.

Since only finitely many points in (K \ B(0,M)) ∩ Nn+1 do not lie in (K \
B(0,M ′)) ∩ Nn+1 the lemma follows.

LEMMA 10. Let O,K and F be as in the statement of Lemma 9. Let α be a

point in (K◦\B(0,M))∩Nn+1, and let γ(k) be a sequence in (K\B(0,M))∩
Nn+1 such that

|γ(k)| → ∞

when k tends to infinity and that

γ(k)
|γ(k)|

→ p ∈ K◦

for some point p in the interior of K. Let l be the ray starting in α/|α|, going

through p, and let q denote the first intersection of l with the boundary of K.

Denote by t the number such that

p = t
α

|α|
+ (1− t)q.

Then there exists a constant CK depending only of F and K such that

lim sup
k→∞

F (γ(k))
|γ(k)|

≤ tF (α)
|α|

+ (1− t)CK .

Proof. We can pick points βi in (K \ B(0,M)) ∩ Nn+1 with βi/|βi| lying
arbitrarily close to q, such that if Γ denotes the semigroup generated by the
points βi and α, Γ generates Zn+1 as a group and

p ∈ Σ(Γ)◦.
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Therefore from Theorem 5 it follows that for large k γ(k) can be written

γ(k) = aα+
∑

aiβi

for non-negative integers ai and a. The subadditivity of F gives us that

F (γ(k)) ≤ aF (α) +
∑

aiF (βi) ≤ aF (α) + CK
∑

ai|βi|,

where we in the last inequality used Lemma 9. Dividing by |γ(k)| we get

F (γ(k))
|γ(k)|

≤ a|α|
|γ(k)|

F (α)
|α|

+ CK
∑ ai|βi|
|γ(k)|

.

Our claim is that a|α|
|γ(k)| will tend to t and that

∑ ai|βi|
|γ(k)| will tend to (1 − t).

Consider the equations

γ(k)
|γ(k)|

=
a|α|
|γ(k)|

α

|α|
+
∑ ai|βi|
|γ(k)|

βi
|βi|

and

p = t
α

|α|
+ (1− t)q.

Observe that

t =
|p− α

|α| |
|q − α|

.

If | γ(k)
|γ(k)| − p| < δ and | βi|βi| − q| < δ for all i, then we see that

a|α|
|γ(k)|

≤
|p− α

|α| |+ δ

|q − α
|α| | − δ

≤ t+ ε(δ),

where ε(δ) goes to zero as δ goes to zero. Similarly we have that

a|α|
|γ(k)|

≥
|p− α

|α| | − δ
|q − α

|α| |+ δ
≥ t− ε′(δ), (1.6)

where ε′(δ) goes to zero as δ goes to zero. Since

a|α|
|γ(k)|

+
∑ ai|βi|
|γ(k)|

= 1,
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inequality (1.6) implies that

∑ ai|βi|
|γ(k)|

≤ 1− t+ ε′(δ).

The lemma follows.

COROLLARY 11. Let O and F be as in the statement of Lemma 9. Then for

any sequence α(k) in O ∩Zn+1 such that |α(k)| → ∞ when k tends to infinity

and such that α(k)/|α(k)| converges to some point p in O the limit

lim
k→∞

F (α)
|α(k)|

exists and only depends on F and p.

Proof. Let α(k) and β(k) be two such sequences converging to p. Let K ⊆ O

be some closed cone such that p ∈ K◦. Let us as in Lemma 10 write

p = tk
β(k)
|β(k)|

+ (1− tk)qk.

For any ε > 0, tk is greater than 1 − ε when k is large enough. By Lemma 10
we have that for such k

lim sup
m→∞

F (α(m))
|α(m)|

≤ (1− tk)
F (β(k))
|β(k)|

+ εCK ≤
F (β(k))
|β(k)|

+ εCK + εC,

where C comes from the lower bound

F (β)
|β|

≥ C

which holds for all β by assumption. Since ε tends to zero when k gets large
we have that

lim sup
k→∞

F (α(k))
|α(k)|

≤ lim inf
k→∞

F (β(k))
|β(k)|

.

By letting α(k) = β(k) we get existence of the limit, and by symmetry the limit
is unique.
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PROPOSITION 12. The function c[F ] on O ∩ Σ◦ defined by

c[F ](p) := lim
k→∞

F (α(k))
|α(k)|

for any sequence α(k) such that |α(k)| → ∞ and α(k)
|α(k)| → p, which is well-

defined according to Corollary 11, is convex, and therefore continuous.

Proof. First we wish to show that c[F ] is lower semicontinuous. Let p be a
point in O ∩Σ◦ and qn a sequence converging to p. From Lemma 10 it follows
that

c[F ](p) ≤ lim inf
qn→p

c[F ](qn),

which is equivalent to lower semicontinuity.
Using this the lemma will follow if we show that for any two points p and q

in O ∩ Σ◦ it holds that

2c[F ](
p+ q

2
) ≤ c[F ](p) + c[F ](q). (1.7)

Choose sequences α(k), β(k) ∈ O ∩ Nn+1 such that

α(k)
|α(k)|

→ p,
β(k)
|β(k)|

→ q,

and for simplicity assume that |α(k)| = |β(k)|. Then

α(k) + β(k)
|α(k) + β(k)|

→ p+ q

2
.

Hence

2c[F ](
p+ q

2
) = lim

k→∞

F (α(k) + β(k))
|α(k)|

≤ lim
k→∞

F (α(k))
|α(k)|

+ lim
k→∞

F (β(k))
|β(k)|

=

= c[F ](p) + c[F ](q).

Together with Theorem 5 these lemmas yield a general result for subadditive
functions on subsemigroups of Nn+1.

A function F defined on a coneO is said to be locally linearly bounded from

below if for each point p ∈ O there exists an open subcone O′ ⊆ O containing
p and a linear function λ on O′ such that F ≥ λ on O′.
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THEOREM 13. Let Γ ⊆ Nn+1 be a semigroup which generates Zn+1 as a

group, and letF be a subadditive function on Γ which is locally linearly bounded

from below. Then for any sequence α(k) ∈ Γ such that |α(k)| → ∞ and
α(k)
|α(k)| → p ∈ Σ(Γ)◦ for some point p in the interior of Σ(Γ), the limit

lim
k→∞

F (α(k))
|α(k)|

exists and only depends on F and p. Furthermore the function

c[F ](p) := lim
k→∞

F (α(k))
|α(k)|

thus defined on Σ(Γ)◦ ∩ Σ◦ is convex.

Proof. By Theorem 5 it follows that for any point p ∈ Σ(Γ)◦ there exists an
open convex cone O and a number M such that

(O \B(0,M)) ∩ Nn+1 ⊆ Γ.

We can also choose O such that F is bounded from below by a linear func-
tion on O. Therefore the theorem follows immediately from Corollary 11 and
Proposition 12.

We will show how this theorem can be seen as the counterpart to Theorem
5 for subadditive functions.

DEFINITION 2. Let Γ be a subsemigroup of Nn+1 and let F be a subadditive

function of Γ which is locally linearly bounded from below. One defines the

convex envelope of F, denoted by P (F ), as the supremum of all linear functions

on Σ(Γ)◦ dominated by F, or which ammounts to the same thing, the supremum

of all convex one-homogeneous functions on Σ(Γ)◦ dominated by F.

THEOREM 14. If Γ generates Zn+1 as a group, then for any subadditive func-

tion F on Γ which is locally linearly bounded from below it holds that

F (α) = P (F )(α) + o(|α|)

for α ∈ Γ ∩ Σ(Γ)◦.
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Proof. That

F (α) ≥ P (F )(α)

follows from the definition. If we let c[F ] be defined on the whole of Σ(Γ)◦ by
letting

c[F ](α) := |α|c[F ](
α

|α|
),

it follows from Theorem 13 that c[F ] will be convex and one-homogeneous. It
will also be dominated by F since by the subadditivity

F (α)
|α|

≥ F (kα)
|kα|

for all positive integers and therefore

F (α)
|α|

≥ lim
k→∞

F (kα)
|kα|

= c[F ](
α

|α|
).

It follows that

P (F ) ≥ c[F ].

For α ∈ Γ by definition we have that

P (F )(α) ≤ F (kα)
k

for all positive integers k. At the same time

c[F ](α) = lim
k→∞

F (kα)
k

,

hence we get that

P (F )(α) ≤ c[F ](α)

for α ∈ Γ Since both P (F ) and c[F ] are convex they are continuous, so by the
homogeneity we get that

P (F ) ≤ c[F ]

on Σ(Γ)◦, and thereforeP (F ) = c[F ]. The theorem now follows from Theorem
13.
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1.4 The Okounkov body of a line bundle

In this section, following Okounkov, we will show how to associate a semigroup
to a line bundle.

DEFINITION 3. An order < on Nn is additive if α < β and α′ < β′ implies

that

α+ α′ < β + β′.

One example of an additive order is the lexicographic order where

(α1, ..., αn) <lex (β1, ..., βn)

iff there exists an index j such that αj < βj and αi = βi for i < j.

Let X be a compact projective complex manifold of dimension n, and L a
holomorphic line bundle, which we will assume to be big. Suppose we have
chosen a point p in X, and local holomorphic coordinates z1, ..., zn around that
point, and let ep ∈ H0(U,L) be a local trivialization of L around p. Any holo-
morphic section s ∈ H0(X, kL) has an unique represention as a convergent
power series in the variables zi,

s

ekp
=
∑

aαz
α,

which for convenience we will simply write as

s =
∑

aαz
α.

We consider the lexicographic order on the multiindices α, and let v(s) denote
the smallest index α such that aα 6= 0.

DEFINITION 4. Let Γ(L) denote the set⋃
k≥0

(
v(H0(kL))× {k}

)
⊆ Nn+1.

It is a semigroup, since for s ∈ H0(kL) and t ∈ H0(mL)

v(st) = v(s) + v(t). (1.8)

The Okounkov body of L, denoted by ∆(L), is defined as the Okounkov body of

the associated semigroup Γ(L).
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We write ∆k(Γ(L)) simply as ∆k(L).
Let us recall some basic facts on Okounkov bodies (see e.g. [9] for proofs).

LEMMA 15. The number of points in ∆k(L) is equal to the dimension of the

vector space H0(kL).

LEMMA 16. The Okounkov body of a big line bundle is bounded, hence com-

pact.

LEMMA 17. If L is a big line bundle, Γ(L) generates Zn+1 as a group. In fact

Γ(L) contains a translated unit simplex.

Remark. Note that the additivity of v as seen in equation (1.8) only de-
pends on the fact that the lexicographic order is additive. Therefore we could
have used any total additive order on Nn to define a semigroup Γ̃(L), and the
associated Okounkov body ∆̃(L). We will only consider the case where the
Okounkov body ∆̃(L) is bounded, and the semigroup Γ̃(L) generates Nn as a
group.

LEMMA 18. For any closed set K contained in the convex hull of ∆M (L) for

some M, there exists a constant CK such that if

α ∈ K ∩ (
1
k

Z)n

and the distance between α and the boundary of K is greater than CK
k , then

α ∈ ∆k(L).

Proof. Let Γ be the semigroup generated by the elements (Mβ,M) where β ∈
∆M (L), and some unit simplex in Γ(L). Applying Lemma 6 gives the lemma.

LEMMA 19. If K is relatively compact in the interior of ∆(L), there exists a

number M such that for k > M ,

α ∈ K ∩ (
1
k

Z)n

implies that α ∈ ∆k(L).
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Proof. This is a consequence of Lemma 18 by choosing M such that the dis-
tance between K and the convex hull of ∆M (L) is strictly positive, therefore
greater than CK

k for large k.

1.5 The Chebyshev transform

DEFINITION 5. A continuous hermitian metric h = e−ψ on a line bundle L is

a continuous choice of scalar product on the complex line Lp at each point p

on the manifold. If f is a local frame for L on Uf , then one writes

|f |2 = hf = e−ψf ,

where ψf is a continuous function on Uf . If h = e−ψ is a metric, ψ is called a

weight.

We will show how one to a given continuous weight associates a subadditive
function on the semigroup Γ(L).

For all (kα, k) ∈ Γ(L), let us denote by Aα,k the affine space of sections in
H0(kL) of the form

zkα + higher order terms.

Consider the supremum norm ||.||kψ on H0(kL) given by

||s||2kψ := sup
x∈X
{|s(x)|2e−kψ(x)}.

DEFINITION 6. We define the discrete Chebyshev transform F [ψ] on Γ(L) by

F [ψ](kα, k) := inf{ln ||s||2kψ : s ∈ Aα,k}.

A section s in Aα,k} which minimizes the supremum norm is called a
Chebyshev section.

LEMMA 20. The function F [ψ] is subadditive.

Proof. Let (kα, k) and (lβ, l) be two points in Γ(L), and denote by γ

γ :=
kα+ lβ

k + l
.
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Thus we have that

(kα, k) + (lβ, l) = ((k + l)γ, k + l).

Let s be some section in Aα,k and s′ some section in Aβ,l. Since

ss′ = (zkα + higher order terms)(zlβ + higher order terms) =

= z(k+l)γ + higher order terms,

we see that ss′ ∈ Aγ,k+l.We also note that the supremum of the product of two
functions is less or equal to the product of the supremums, i.e.

||ss′||2(k+l)ψ ≤ ||s||
2
kψ||s′||2lψ.

It follows that

inf{||s||2kψ : s ∈ Aα,k} inf{||s′||2lψ : s′ ∈ Aβ,l} ≤ inf{||t||2γ,k+l : t ∈ Aγ,k+l},

which gives the lemma by taking the logarithm.

LEMMA 21. There exists a constant C such that for all (kα, k) ∈ Γ(L),

F [ψ](kα, k) ≥ C|(kα, k)|

.

Proof. Let r > 0 be such that the polydisc D of radius r centered at p is fully
contained in the coordinate chart of z1, ..., zn. We can also assume that our
trivialization ep ∈ H0(U,L) of L is defined on D, i.e. D ⊆ U. Let s be a
section in Aα,k and let

s̃ :=
s

ekp
.

Denote by ψp the trivialization of ψ. Hence

|s|2e−kψ = |s̃|2e−kψp .

Since ψp is continuous,
e−ψp > A
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on D for some constant A. This yields that

||s||2 ≥ sup
x∈D
{|s̃(x)|2e−kψp(x)} ≥ Ak sup

x∈D
{|s̃(x)|2}.

We claim that
sup
x∈D
{|s̃(x)|2} ≥ rk|α|.

Observe that
sup
z∈D
{|zkα|2} = rk|α|.

One now shows that

sup
z∈D
{|zkα|2} ≤ sup

z∈D
{|zkα + higher order terms|2}

by simply reducing it to the case of one variable where it is immediate. We get
that

||s||2 ≥ Akrk|α|

and hence

F [ψ](kα, k) ≥ k lnA+ k|α| ln r ≥ C(k + k|α|),

if we choose C to be less than both lnA and ln r.

DEFINITION 7. We define the Chebyshev transform of ψ, denoted by c[ψ] as

the convex envelope of F [ψ] on Σ(Γ)◦. It is convex and one-homogeneous. We

will also identify it with its restriction to ∆(L)◦, the interior of the Okounkov

body of L. Recall that by definition

∆(L) := Σ(L) ∩ (Rn × {1}).

PROPOSITION 22. For any sequence (kα(k), k) in Γ(L), k →∞, such that

lim
k→∞

α(k) = p ∈ ∆(L)◦,

it holds that

c[ψ](p) = lim
k→∞

1
k

ln ||tα(k),k||2,

where tα(k),k is a Chebyshev section in Aα((k),k.
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Proof. By Lemma 20 and Lemma 21 we can apply Theorem 14 to the function
F [ψ] and get that

c[ψ](p) = |(p, 1)|c[ψ](
(p, 1)
|(p, 1)|

) = |(p, 1)| lim
k→∞

F [ψ](kα, k)
k|(α(k), 1)|

=

= lim
k→∞

F [ψ](kα, k)
k

= lim
k→∞

1
k

ln ||tα(k),k||2.

LEMMA 23. Let ψ be a continuous weight on L and consider the continuous

weight on L given by ψ + C for some constant C. Then it holds that

F [ψ + C](kα, k) = F [ψ](kα, k)− kC, (1.9)

and that

c[ψ + C] = c[ψ]− C

on ∆(L)◦.

Proof. For any section s ∈ H0(kL) we have that

||s||2k(ψ+C) = e−kC ||s||2kψ,

therefore
ln ||s||2k(ψ+C) = ln ||s||2kψ − kC.

The lemma thus follows from the definitions.

LEMMA 24. If ψ and ϕ are two continuous weights such that

ψ ≤ ϕ,

then

F [ψ] ≥ F [ϕ],

and also

c[ψ] ≥ c[ϕ].

Proof. Follows immediately from the definitions.
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PROPOSITION 25. For any two continuous weights on L, ψ and ϕ, the differ-

ence of the Chebyshev transforms, c[ψ] − c[ϕ], is continuous and bounded on

∆(L)◦.

Proof. It is the difference of two convex hence continuous functions, and is
therefore continuous. Since ψ − ϕ is a continuous function on the compact
space X, there exists a constant C such that

ψ ≤ ϕ+ C.

Thus by Lemma 24 and Lemma 23 we have that

c[ψ] ≤ c[ϕ+ C] = c[ϕ]− C.

By symmetry we see that c[ψ]− c[ϕ] is bounded on ∆(L)◦.

For Okounkov bodies we have that

∆(mL) = m∆(L),

see e.g. [9]. The Chebyshev transforms also exhibit a homogeneity property.

PROPOSITION 26. Let ψ be a continuous weight on L. Consider the weight

mψ on mL. For any p ∈ ∆(L)◦ it holds that

c[mψ](mp) = mc[ψ](p).

Proof. We observe that trivially Amα,k = Aα,km, as affine subspaces of
H0(kmL), and hence

F [mψ](kmα, k) = F [ψ](kmα, km).

Let α(k)→ p ∈ ∆(L)◦.We get that

c[mψ](mp) = |(mp, 1)|c[mψ](
(mp, 1)
|(mp, 1)|

) =

= |(mp, 1)| lim
k→∞

F [mψ](kmα(k), k)
k|(mα(k), 1)|

=

= lim
k→∞

F [ψ](kmα(k), km)
k

= mc[ψ](p).



90 CHAPTER 1. PAPER I

1.6 The Monge-Ampère energy of weights

One may define a partial order on the space of weights to a given line bundle.
Let ψ <w ϕ if

ψ ≤ ϕ+O(1)

on X. If a weight is maximal with respect to the order <w, it is said to have
minimal singularities. It is a fact that a weight with minimal singularities on
a big line bundle is locally bounded on a dense Zariski-open subset of X (see
e.g. [1]). On an ample line bundle, the weights with minimal singularities are
exactly those who are locally bounded.

Let ψ and ϕ be two locally bounded psh-weights. By MAm(ψ,ϕ) we will
denote the positive current

m∑
j=0

(ddcψ)j ∧ (ddcϕ)m−j ,

and by MA(ψ) we will mean the positive measure (ddcψ)n.

DEFINITION 8. If ψ and ϕ are two psh weights with minimal singularities, then

we define the Monge-Amp

‘ere energy of ψ with respect to ϕ as

E(ψ,ϕ) :=
1

n+ 1

∫
Ω

(ψ − ϕ)MAn(ψ,ϕ),

where Ω is a dense Zariski-open subset of X on which ψ and ϕ are locally

bounded.

Remark. In [1] Berman-Boucksom use the notation E(ψ)− E(ϕ) for what
we denote by E(ψ,ϕ). Thus they consider E(ψ) as a functional defined only up
to a constant.

An important aspect of the Monge-Ampère energy (and a motivation for
calling it an energy) is its cocycle property, i.e. that

E(ψ,ϕ) + E(ϕ,ψ′) + E(ψ′, ψ) = 0

for all weights ψ,ϕ and ψ′ (see e.g. [1]).
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DEFINITION 9. If ψ is a continuous weight and K a compact subset of X , the

psh envelope of ψ with respect to K, PK(ψ), is given by

PK(ψ) := sup{ϕ : ϕ psh weight on L, ϕ ≤ ψ on K}.

For any ψ and K, as one may check, PK(ψ) will be psh and have minimal
singularities. When K = X, we will simply write P (ψ) for PX(ψ).

If ψ and ϕ are continuous weights, we will call

E(P (ψ), P (ϕ))

the Monge-Ampère energy of ψ with respect to ϕ, and we will denote it by
E(ψ,ϕ). Since for psh weights ψ, trivially P (ψ) = ψ, therefore the notation is
unambiguous.

We refer the reader to [5] for a more thorough exposition on Monge-Ampère
measures and psh envelopes.

We now state our main result.

THEOREM 27. Let ψ and ϕ be continuous weights on L. Then it holds that

E(ϕ,ψ) = n!
∫

∆(L)◦
(c[ψ]− c[ϕ])dλ, (1.10)

where dλ denotes the Lebesgue measure on ∆(L)◦.

The proof of Theorem 27 will depend on the fact that one can also use L2-
norms to compute the Chebyshev transform of a continuous weight. This will
be explained in the next section.

1.7 Bernstein-Markov norms

DEFINITION 10. Let µ be a positive measure on X, and ψ a continuous weight

on a line bundle L. One says that µ satisfies the Bernstein-Markov property

with respect to ψ if for each ε > 0 there exists C = C(ε) such that for all

non-negative k and all holomorphic sections s ∈ H0(kL) we have that

sup
x∈X
{|s(x)|2e−kψ(x)} ≤ Ceεk

∫
X

|s|2e−kψdµ. (1.11)
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If ψ is a continuous weight on L and µ a Bernstein-Markov measure on X
with respect to ψ, we will call the L2-norm on H0(kL) defined by

||s||2kψ,µ :=
∫
X

|s|2e−kψdµ

a Bernstein-Markov norm. We will also call the pair (ψ, µ) a Bernstein-Markov
pair on (X,L).

For any continuous weight ψ on L there exist measures µ such that (ψ, µ)
is a Bernstein-Markov pair. In fact it is easy to show that any smooth volume
form dV on X satisfies the Bernstein-Markov property with respect to any con-
tinuous weight, see e.g. [1].

A pair (E,ψ) where E is a subset of X and ψ is a continuous weight on L
is called a weighted subset. The equilibrium weight ψE of (E,ψ) is defined as

ψE := sup{ϕ : ϕ is psh, ϕ ≤ ψ on E}.

A weighted set (E,ψ) is said to be regular if the equilibrium weight ψE is upper
semicontinuous.

DEFINITION 11. If a compact K ⊆ X is the support of a positive measure

µ, one says that µ satisfies the Bernstein-Markov property with respect to the

weighted set (K,ψ) if for all k and s ∈ H0(kL) inequality (1.11) holds when

X is replaced with K.

LEMMA 28. If µ is a smooth volume form and (K,ψ) is a compact regular

weighted subset, then the restriction of µ to K satisfies the Bernstein-Markov

property with respect to (K,ψ).

For a proof we refer to [1].
We want to be able to use a Bernstein-Markov norm instead of the supre-

mum norm to calculate the Chebyshev transform of a continuous weight ψ.
We pick a positive measure µ with the Bernstein-Markov property with re-

spect to ψ. For all (kα, k) ∈ Γ(L), let tα,k be the section in H0(kL) of the
form

zkα + higher order terms
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that minimizes the L2-norm

||tα,k||2kψ,µ :=
∫
X

|tα,k|2e−kψdµ.

It follows that

< tα,k, tβ,k >kψ= 0

for α 6= β, since otherwise the sections tα,k would not be minimizing. Hence

{tα,k : α ∈ ∆k(L)}

is an orthogonal basis for H0(kL) with respect to ||.||kψ,µ. Indeed they are
orthogonal, and by Lemma 5 we have that

#{tα,k : α ∈ ∆k(L)} = #∆k(L) = dim(H0(kL)),

therefore it must be a basis.

DEFINITION 12. We define the discrete Chebyshev transform F [ψ, µ] of (ψ, µ)
on Γ by

F [ψ, µ](kα, k) := ln ||tα,k||2kψ,µ.

We also denote 1
kF [ψ, µ](kα, k) by ck[ψ, µ](α).

We will sometimes write ck[ψ] when we mean ck[ψ, µ], considering µ as
fixed.

PROPOSITION 29. For any sequence (kα(k), k) in Γ(L), k →∞, such that

lim
k→∞

α(k) = p ∈ ∆(L)◦,

it holds that

c[ψ](p) = lim
k→∞

ck[ψ, µ](α(k)).

Proof. For a point (kα, k) ∈ Γ, let tα,k be the minimizer with respect to the
Bernstein-Markov norm. By the Bernstein-Markov property we get that

||tα,k||2sup ≤ Ceεk||t
µ
α,k||

2
µ,
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and hence

F [ψ](kα, k) ≤ F [ψ, µ](kα, k) + lnC + εk. (1.12)

Let s be any section in Aα,k. We have that by definition

||tα,k||2µ ≤ ||s||2µ ≤ µ(X)||s||2sup,

so

F [ψ, µ](kα, k) ≤ F [ψ](kα, k) + lnµ(X). (1.13)

Equations (1.12) and (1.13) put together gives that

F [ψ](kα, k)− lnC−εk ≤ F [ψ, µ](kα, k) ≤ F [ψ](kα, k)+lnµ(X). (1.14)

It follows that

lim
k→∞

F [ψ, µ](kα(k), k)
k

= lim
k→∞

F [ψ](kα(k), k)
k

= c[ψ](p),

which gives the proposition.

LEMMA 30. Let ψ be a continuous weight on L and consider the continuous

weight on L given by ψ + C for some constant C. Then it holds that

F [ψ + C, µ](kα, k) = F [ψ, µ](kα, k)− kC.

Proof. This follows exactly as in the case of the suprumum norm, see proof of
Lemma 23.

PROPOSITION 31. Let (ψ, µ) and (ϕ, ν) be two Bernstein-Markov pairs, and

assume that

ψ ≤ ϕ

Then for every ε > 0 there exists a constant C ′ such that

F [ψ, µ](kα, k) ≥ F [ϕ, ν](kα, k)− C ′ − εk.
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Proof. Let tψα,k and tϕα,k be the minimizing sections with respect to the Bernstein-
Markov norms ||.||kψ,µ and ||.||kϕ respectively. From equation (1.14) and Propo-
sition 31 we get that

F [ψ, µ](kα, k) ≥ F [ψ](kα, k)− lnC − εk ≥ F [ϕ](kα, k)− lnC − εk ≥

≥ F [ϕ, ν]− ln ν(X)− lnC − εk.

PROPOSITION 32. For any two Bernstein-Markov pairs on (X,L), (ψ, µ) and

(ϕ, ν) the difference of the discrete Chebyshev transforms

ck[ψ, µ]− ck[ϕ, ν]

is uniformly bounded on ∆(L)◦.

Proof. By symmetry it suffices to find an upper bound. Let C̃ be a constant
such that ψ ≤ ϕ+ C̃. By Lemma 30 and Proposition 31 we get that

ck[ψ, µ](α) =
1
k
F [ψ, µ](kα, k) ≥ 1

k
F [ϕ+ C, ν](kα, k)− C ′

k
− ε =

=
1
k
F [ϕ, ν](kα, k)− C − C ′

k
− ε = ck[ϕ, ν](α)− C − C ′

k
− ε.

The proposition follows.

1.8 Proof of main theorem

1.8.1 Preliminary results

Let B2(µ, kϕ) denote the unit ball in H0(kL) with respect to the norm

|| · ||kφ,µ :=
∫
X

|.|2e−kϕdµ,

i.e.

B2(µ, kϕ) := {s ∈ H0(kL) :
∫
X

|s|2e−kϕdµ ≤ 1}.
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Consider the quotient of the volume of two unit balls

volB2(µ, kϕ)
volB2(ν, kψ)

with respect to the Lebesgue measure on H0(kL), where we by some linear
isomorphism identify H0(kL) with CN , N = h0(kL). In fact the quotient of
the volumes does not depend on how we choose to represent H0(kL).

LEMMA 33.
volB2(µ, kϕ)
volB2(ν, kψ)

=
det(

∫
sis̄je

−kψdν)ij
det(

∫
sis̄je−kϕdµ)ij

, (1.15)

where {si} is any basis for H0(kL).

Proof. First we show that the right hand side does not depend on the basis. Let
{ti} be some orthonormal basis with respect to

∫
|.|2e−kψdν, and letA = (aij)

be the matrix such that

si =
∑

aijtj .

Then we see that∫
sis̄je

−kψdν =
∫

(
∑

aiktk)(
∑

ajltl)e−kψdν =
∑

aikājk. (1.16)

Therefore by linear algebra we get that

det
(∫

sis̄je
−kψdν

)
ij

= det(AA∗) = |detA|2. (1.17)

If we let {s′i} be a new basis,

s′i =
∑

bijsj , B = (bij),

then

det
(∫

s′is̄
′
je
−kψdν

)
ij

= |detB|2det
(∫

sis̄je
−kψdν

)
ij

.

Since |detB|2 also will show up in the denominator, we see that the quotient
does not depend on the choice of basis.
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Let as above {ti} be an orthonormal basis with respect to
∫
|.|2e−kψdν and

let {si} be an orthonormal basis with respect to
∫
|.|2e−kϕdµ and let

si =
∑

aijtj , A = (aij).

It is clear that
volB2(µ, kϕ)
volB2(ν, kψ)

= |detA|2.

Note that the square in the right-hand side comes from the fact that we take the
determinant of A as a complex matrix. By equations (1.16) and (1.17) we also
have that

det
(∫

sis̄je
−kψdν

)
ij

= |detA|2,

and since {si} were chosen to be orthonormal

det
(∫

sis̄je
−kϕdµ

)
ij

= 1.

The lemma follows.

DEFINITION 13. Let (ϕ, µ) and (ψ, ν) be two Bernstein-Markov pairs on (X,L).
The Donaldson Lk bifunctional on (ϕ,ψ) is defined as

Lk(ϕ,ψ) :=
n!

2kn+1
ln
(

volB2(µ, kϕ)
volB2(ν, kψ)

)
.

Theorem A in [1] states that for Bernstein-Markov pairs the Donaldson Lk
bifunctional converges to the Monge-Ampère energy.

THEOREM 34. Let (ϕ, µ) and (ψ, ν) be two Bernstein-Markov pairs on (X,L).
Then it holds that

lim
k→∞

Lk(ϕ,ψ) = E(ϕ,ψ).

We will use this result to prove our main result, Theorem 27, stating that the
Monge-Ampère energy of two continuous weights is equal to the integral of the
difference of the respective Chebyshev transforms over the Okounkov body.
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1.8.2 Proof of Theorem 27

Proof. We let {si} be a basis for H0(kL) such that

si = zkαi + higher order terms,

where αi ∈ ∆k(L) is some ordering of ∆k(L). Let

si =
∑

aijt
ψ
αj ,k

, A = (aij).

From the proof of Lemma 33 we see that

det
(∫

X

sis̄je
−kψdν

)
ij

= |detA|2det
(∫

X

tψαi,k t̄
ψ
αj ,k

e−kψdν

)
ij

=

= |detA|2
∏

α∈∆k(L)

||tψα,k||
2,

since tψα,k constitute an orthogonal basis. Also since the lowest term of si is
zkαi we must have that aij = 0 for j < i and aii = 1. Hence detA = 1, and
consequently

det
(∫

X

sis̄je
−kψdν

)
ij

=
∏

α∈∆k(L)

||tψα,k||
2.

From equation (1.15) we get that

Lk(ϕ,ψ) =
n!
kn

∑
α∈∆k(L)

(ck[ψ](α)− ck[ϕ](α)).

For all k let c̃k[ψ] denote the function on ∆(L)◦ assuming the value of
ck[ψ] in the nearest lattice point of ∆k(L) (or the mean of the values if there
are multiple lattice points at equal distance). Then

n!
kn

∑
α∈∆k(L)

(ck[ψ](α)− ck[ϕ](α)) = n!
∫

∆(L)◦
(c̃k[ψ]− c̃k[ϕ])dλ+ ε(k),

where the error term ε(k) goes to zero as k tends to infinity since by Kho-
vanskii’s theorem we have that ∆k(L) fills out more and more of ∆(L)◦ ∩
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((1/k)Z)n. By Propositions 29 and 32 we can thus use dominated convergence
to conclude that

lim
k→∞

Lk(ϕ,ψ) = n!
∫

∆(L)◦
(c[ψ]− c[ϕ])dλ.

Combined with Theorem 34 this proves the theorem.

1.9 Previous results

Some instances of formula (1.10) are previously known. Here follows three
such instances.

1.9.1 The volume as a Monge-Ampère energy

We consider the case where we let ϕ = ψ + 1. It is easy to see that this means
that P (ϕ)− P (ψ) = 1, thus

E(ϕ,ψ) =
1

n+ 1

∫
Ω

MAn(P (ϕ), P (ψ)). (1.18)

Furthermore it has been shown by Berman-Boucksom (see e.g. [1]) that for any
n-tuple of psh weights ψi with minimal singularities it holds that∫

Ω

ddcψ1 ∧ ... ∧ ddcψn = vol(L), (1.19)

where Ω denotes the dense Zariski-open set where the weights ψi are all locally
bounded. Equations (1.18) and (1.19) together yields that

E(ϕ,ψ) = vol(L). (1.20)

Any minimizing section with respect to
∫
|.|2e−kψ will also minimize the norm∫

|.|2e−k(ψ+1) =
∫
|.|2e−kϕ.

It follows that c[ψ]− c[ϕ] is identically one. Therefore∫
∆(L)◦

(c[ψ]− c[ϕ])dλ = volRn(∆(L)). (1.21)
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Equations (1.20) and (1.21) and Theorem 27 then gives us that

vol(L) = n!volRn(∆(L)).

We have thus recovered Theorem A in [9].

1.9.2 Chebyshev constants and the transfinite diameter

Let K be a regular compact set in C. We let ||.||K denote the norm which
takes the supremum of the absolute value on K. Let Pk denote the space of
polynomials in z with zk as highest degree term. Let for any k

Yk(K) := inf{||p||K : p ∈ Pk}.

One defines the Chebyshev constant C(K) of K as the following limit

C(K) := lim
k→∞

(Yk(K))1/k.

Let {xi}ki=1 be a set of k points in K. Let dk({xi}) denote the product of
their mutual distances, i.e.

dk({xi}) :=
∏
i<j

|xi − xj |.

One calls the points {xi} Fekete points if among the set of k-tuples of points
in K they maximize the function dk. Define Tk(K) as dk({xi}) for any set of
Fekete points {xi}ki=1. Then the transfinite diameter T (K) of K is defined as

T (K) := lim
k→∞

(Tk(K))1/(k2).

We will now think of C as imbedded in the complex projective space P1.

Let Z0, Z1 be a basis for H0(O(1)), therefore [Z0, Z1] are homogeneous coor-
dinates for P1. Let

z :=
Z1

Z0
and w :=

Z0

Z1
.

Let p denote the point at infinity

[0, 1].
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Then w is a holomorphic coordinate around p, and Z1 is a local trivialization
of the line bundle O(1) around p. Thus we will identify a section Zα0 Z

k−α
1 ∈

H0(O(k)) with the polynomial wα as well as with zk−α. This means that the
Okounkov body ∆(O(1)) of O(1) is the unit interval [0, 1] in R. We observe
that a section s ∈ H0(O(k)) lies in Pi as a polynomial in z if and only if

s = wk−i + higher order terms.

For a section s let s̃ denote the corresponding polynomial in z. Consider the
weight PK(ln |Z0|2). It will be continuous since K is assumed to be regular
(see e.g. [1]). Then we have the following lemma.

LEMMA 35. For any α ∈ [0, 1], i.e. that lies in the Okounkov body ofO(1), we

have that

c[PK(ln |Z0|2)](α) = 2(1− α) lnC(K).

Proof. By basic properties of the projection operator PK (see [1]) it holds that
for for any section s ∈ H0(O(k))

sup
K
{|s|2e−k ln |Z0|2} = sup

P1
{|s|2e−kPK(ln |Z0|2)}. (1.22)

Since the conversion to the z-variable means letting Z0 be identically one, we
also have that

sup
K
{|s|2e−k ln |Z0|2} = sup

K
{|s̃|2} = ||s̃||2K . (1.23)

We see that s ∈ Aα,k iff s̃ = zk−kα + lower order terms. Hence

F [PK(ln |Z0|2)](kα, k) = 2 lnYkα−k(K),

and

c[PK(ln |Z0|2)](α) = lim
k→∞

F [PK(ln |Z0|2)](kα, k)
k

=

= lim
k→∞

2
k

lnYkα−k(K) = lim
k→∞

2(1− α) ln(Yk−kα(K))k−kα =

= 2(1− α) lnC(K).
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Let K and K ′ be two regular compact subsets of C. From Theorem 27 and
Lemma 35 we get that

E(PK′(ln |Z0|2), PK(ln |Z0|2)) =

=
∫

(0,1)

(c[PK(ln |Z0|2)]− c[PK′(ln |Z0|2)])dλ(α)

=
∫

(0,1)

(2(1− α) lnC(K)− 2(1− α) lnC(K ′)) dλ(α) =

= lnC(K)− lnC(K ′).

On the other hand it follows from Corollary A in [1] that

lnT (K)− lnT (K ′) = E(PK′(ln |Z0|2), PK(ln |Z0|2)). (1.24)

Thus by Theorem 27, using Lemma 35 and equation (1.24) we get that

lnT (K)− lnT (K ′) = lnC(K)− lnC(K ′).

In fact it is easy to check that for the unit disc D, T (D) = C(D) = 1, so we
recover the classical result in potential theory that the transfinite diameter T (K)
and the Chebyshev constant C(K) are equal.

For a thorough exposition on the subject of the transfinite diameter and ca-
pacities of compacts in C we refer the reader to the book [13] by Saff-Totik.

1.9.3 Invariant weights on toric varieties

Let X be a smooth projective toric variety. We will view X as a compactified
(C∗)n, such that the torus action on X via this identification corresponds to the
usual torus action on (C∗)n. As is well-known, there is a polytope ∆ naturally
associated to the embedding (C∗)n ⊆ X. We assume that ∆ lies in the non-
negative orthant of Rn. There is a line bundle L∆ with a trivialization on (C∗)n

such that
∆k(L∆) = ∆ ∩ (

1
k

Z)n,

and any section s ∈ H0(kL∆) can in fact be written as a linear combination of
the monomials zα where

α ∈ k∆ ∩ Zn.
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Let dV be a smooth volume form on X invariant under the torus action.
Then it holds that for any torus invariant weight ψ,∫

X

zαz̄βe−kψdV = 0

when α 6= β. This follows from Fubini since trivially the monomials are or-
thogonal with respect to the Lebesgue measure on e.g. tori. Because of this for
any torus invariant weight ψ the minimizing sections tψa,k are given by zkα, and
consequently

ck[ψ, dV ](α) =
1
k

ln
∫
X

|zkα|2e−kψdV.

Assume for simplicity that ψ is positive.

LEMMA 36. For any strictly positive torus invariant weight ψ we have that

c[ψ](α) = ln
(

sup
z∈Cn
{|zα|2e−ψ(z)}

)
.

Proof. We have that∫
X

|zkα|2e−kψdV ≤ dV (X) sup
X
{|zkα|2e−kψ} =

= dV (X)
(

sup
z∈X
{|zα|2e−ψ(z)}

)k
,

which yieds the inequality

c[ψ](α) ≤ ln
(

sup
z∈X
{|zα|2e−ψ(z)}

)
.

By the Bernstein-Markov property of dV with respect to ψ we get that∫
X

|zkα|2e−kψdV ≥ Ce−εk sup
z∈X
{|zkα|2e−kψ(z)} =

= Ce−εk
(

sup
z∈X
{|zα|2e−ψ(z)}

)k
.

Using Proposition 29 it follows from this that

c[ψ](α) = ln
(

sup
z∈X
{|zα|2e−ψ}

)
.
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Since ψ is a weight on L∆ it obeys certain growth conditions in Cn. In fact for
α lying in the interior of ∆ = ∆(L∆) it holds that

sup
X
{|zα|2e−ψ(z)} = sup

z∈Cn
{|zα|2e−ψ(z)},

and the lemma follows.

Remark. If we do not assume that the weight ψ is strictly positive, the
lemma still holds if we in the supremum replace ψ with the projection P (ψ).

Let Θ denote the map from (C∗)n to Rn that maps z to (ln |z1|, ..., ln |zn|).
Since we assumed ψ to be torus invariant, the function ψ ◦Θ−1 is well-defined
on Rn.We will denoteψ◦Θ−1 byψΘ. Sinceψ was assumed to be psh, it follows
that ψΘ will be convex on Rn. Recall the definition of the Legendre transform.
Given a convex function g on Rn the Legendre transform of g, denoted g∗,
evaluated in a point p ∈ Rn is given by

g∗(p) := sup
x∈Rn
{〈p, x〉 − g(x)}.

Observe that

ln
(
(|zα|2e−ψ) ◦Θ−1(x)

)
= 2〈α, x〉 − ψΘ(x). (1.25)

Thus by equation (1.25) and Lemma 36 we get that

c[ψ](α) = 2
(
ψΘ

2

)∗
(α).

The function on the right is called the symplectic potential of ψ, denoted by uψ.
Theorem (27) now gives us that for any two invariant weights ψ and ϕ on L it
holds that

E(ψ,ϕ) = n!
∫

∆◦
(uϕ − uψ)dλ,

which is well-known in toric geometry. In fact this can be derived from the fact
that the real Monge-Ampère measure of a convex function is the pullback of
the Lebegue measure with respect to the gradient of the convex function times
a constant.
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1.10 The Chebyshev transform on the zero-fiber

Let us assume that
z1 = 0

is a local equation around p for an irreducible variety which we denote by Y.
Let H0(X|Y, kL) denote the image of the restriction map from H0(X, kL) to
H0(Y, kL|Y ), and let Γ(X|Y,L) denote the semigroup

∪k≥0

(
v(H0(X|Y, kL))× {k}

)
⊂ Nn.

Note that since z2, ..., zn are local coordinates on Y, v(H0(X|Y, kL) will be a
set of vectors in Nn−1.

DEFINITION 14. The restricted Okounkov body ∆X|Y (L) is defined as the Ok-

ounkov body of the semigroup Γ(X|Y,L).

LEMMA 37. If Y is not contained in the augmented base locus B+(L), then

Γ(X|Y,L) generates Zn as a group.

This is part of Lemma 2.16 in [9].
Remark. The augmented base locus B+(L) of L is defined as the base

locus of any sufficiently small perturbation L − εA, where A is some ample
line bundle. Here we are only interested in the case where L is ample, and then
it is easy to see that the augmented base locus B+(L) always is empty.

Assume now that L is ample. We will show that the Chebyshev transform
c[ψ] can be defined not only in the interior of the Okounkov body but also on
the zero fiber,

∆(L)0 := ∆(L) ∩
(
{0} × Rn−1

)
.

From Theorem 4.24 in [9] we get the following fact,

∆(L)0 = ∆X|Y (L). (1.26)

Note that since the Okounkov body lies in the positive orthant of Rn,∆(L)0

is a part of the boundary of ∆(L), hence the Chebyshev transform of a contin-
uous weight is a priori not defined on the zero-fiber. Nevertheless, we want
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to show that one can extend the Chebyshev transform to the interior of zero-
fiber ∆(L)0. To do this, we need to know how Γ behaves near this boundary,
something which Theorem 5 does not tell us anything about.

LEMMA 38. Assume L to be ample, and p any point in the interior of ∆(L)0.

Let ΣZ
n+1 denote the unit simplex in Zn+1, ΣR

n−1 the unit simplex in Rn−1, and

let S denote the simplex {0} × ΣR
n−1 × {0}. Then Γ(L) contains a translated

unit simplex (α, k) + Σn+1 such that (kp, k) lies in the interior of the (n− 1)-

simplex

(α, k) + S

(i.e interior with respect to the Rn−1 topology).

Proof. The augmented base locus of L is empty since L is ample, thus by
Lemma 37 we may use Lemma 6 in combination with equation (1.26) to reach
the conclusion that for large k, there are sections sk such that (p, k) lies in the
interior of (v(sk), k) + S with respect to the Rn−1 topology. We may write L
as a difference of two very ample divisors A and B. We may choose B such
that ∆1(B) contains Σn in Zn, and A such that ∆1(A) contains origo. Now

kL = B + (kL−B).

Since L is ample, for k large we can find sections s′k ∈ H0(kL−B) such that
v(s′k) = v(sk). We get that

(v(sk), k) + Σn ⊆ Γ(L),

by multiplying s′k by the sections of B corresponding to the points in the unit
simplex Σn ⊆ ∆1(B). Also observe that

(k + 1)L = A+ (kL−B).

Now by multiplying s′k with the section of A corresponding to origo in ∆1(A)
we get

(v(s′k), k) + (0, ..., 0, 1) ⊆ Γ(L).

Since
Σn × {0} ∪ (0, ..., 0, 1) = Σn+1
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we get

(v(s′k), k) + Σn+1 ⊆ Γ(L).

Remark. The proof is very close to the argument in [9] which shows the
existence of a unit simplex in Γ(L), when L is big. The difference here is that
we need to control the position of the unit simplex, but the main trick of writing
L as a difference of two very ample divisors is the same.

LEMMA 39. Let p be as in the statement of Lemma 38. Then there exists a

neighbourhood U of p such that if we denote the intersection U ∩∆(L) by Ũ ,

for k large it holds that

(kŨ , k) ∩ Zn+1 ⊆ Γ(L).

Proof. Let (α,m) + ΣZ
n+1 ⊆ Γ(L) be as in the statement of Lemma 38, and let

DZ ⊆ Γ(L) denote the set

DZ := (α,m) + ΣZ
n × {0} = (α+ ΣZ

n)× {m}.

Let also DR denote the set

DR := (α+ ΣR
n)× {m}.

Since trivially

ΣZ
n + ...+ ΣZ

n︸ ︷︷ ︸
k

= (kΣR
n) ∩ Zn,

we have that

(kDR, km) ∩ Zn+1 = DZ + ...+DZ︸ ︷︷ ︸
k

⊆ Γ(L).

Therefore the lemma holds when k is a multiple of m. Furthermore, since m
and m+ 1 are relatively prime, if k is greater than m(m+ 1) we can write

k = k1m+ k2(m+ 1),
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where both k1 and k2 are non-negative, and k2 ≤ m. Thus we consider the set

DZ + ...+DZ︸ ︷︷ ︸
k1

+k2(α,m+ 1) ⊆ Γ(L).

Because of the bound k2 ≤ m, and since (α,m+ 1) lies on the zero fiber, for a
neighbourhood Ũ of p, when k gets large we must have that

(kŨ , k) ∩ Zn+1 ⊆ DZ + ...+DZ︸ ︷︷ ︸
k1

+k2(α,m+ 1) ⊆ Γ(L).

COROLLARY 40. Assume L is ample, then the chebyshev function c[ψ] is well-

defined on the interior of the zero-fiber, ∆(L)0, and it is continuous and convex

on its extended domain ∆(L)◦ ∪∆(L)◦0.

Proof. The proof goes exactly as for the case of an interior point, now using
Lemma 39 instead of Theorem 5.

LEMMA 41. Assume L is ample, and ψ is a continuous weight. Then for any

regular compact setK it holds that the projection PK(ψ) also is continuous. In

particular, since X is regular, P (ψ) is continuous when L is ample.

Proof. See e.g. [1].

We will have use for the Ohsawa-Takegoshi extension theorem. We choose
to record one version (see e.g. [6]).

THEOREM 42. Let L be a holomorphic line bundle and let S be a divisor.

Assume that L and S have metrics ΨL and ΨS respectively satisfying

ddcΨL ≥ (1 + δ)ddcΨS + ddcΨKX ,

where ΨKX is some smooth metric on the canonical bundle KX . Assume also

that

ddcΨL ≥ ddc(ΨS + ΨKX ).
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Then any holomorphic section t̃ of the restriction of L to S extends holomor-

phically to a section t of L over X satisfying∫
X

|t|2e−ΨLωn ≤ Cδ
∫
S

|t̃|2e−ΨL
dS

|ds|2e−ΨS
.

Here ωn is a smooth volume form on X and dS is a smooth volume form on S.

LEMMA 43. Suppose L is ample. Let A be an ample line bundle, with a holo-

morphic section s such that locally s = z1. Also assume that the zero-set of s,

which we will denote by Y , is a smooth submanifold. Then for all α ∈ ∆X|Y (L)
we have that

cX [ϕ](0, α) = cY [P (ϕ)|Y ](α). (1.27)

Proof. We may choose z̃1 = z2, ..., z̃n−1 = zn as holomorphic coordinates on
Y around p. We consider the discrete Chebyshev transforms of the restrictions
of P (ϕ) and P (ψ) to Y. Since L is ample, by Lemma 41 P (ϕ) and P (ψ)
are continuous, therefore the restrictions will also be continuous psh-weights
on L|Y , therefore the Chebyshev transforms cY [P (ϕ)|Y ] and cY [P (ψ)|Y ] are
well-defined.

We note that if t ∈ H0(X, kL) and

t = zk(0,α) + higher order terms,

the restriction of t to Y will be given by

t|Y = z̃kα + higher order terms.

Furthermore

sup
Y
{|t|Y |2e−kP (ϕ)} ≤ sup

X
{|t|2e−kP (ϕ)}.

This gives the inequality

cX [ϕ](0, α) ≥ cY [P (ϕ)|Y ](α),

by taking t to be some minimizing section with respect to the supremum norm
on X.
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For the opposite inequality we use Proposition 29 which says that one can
use Bernstein-Markov norms to compute the Chebyshev transform.

If t̃ ∈ H0(Y, kL|Y ),

t̃ = z̃kα + higher order terms,

then if k is large enough there exists a section t ∈ H0(X, kL) such that t|Y = t̃.

This is because we assumed L to be ample, so we have extension properties (by
e.g. Ohsawa-Takegoshi). We observe that any such extension must look like

t = zk(0,α) + higher order terms,

because if we had that

t = zk(β1,β) + higher order terms

with β1 > 0, then since all higher order terms also restrict to zero,

tY = 0,

which is a contradiction.
Let Ψ be some smooth strictly positive weight on L. Then for some m

ddcmΨ > (1 + δ)ddcΨA + ddcΨKX

and
ddcmΨ > ddcΨA + ddcΨKX ,

where ΨA and ΨKX are weights on A and KX respectively. We have that
ddcP (ϕ) ≥ 0, hence

ddc((k −m)P (ϕ) +mΨ) > (1 + δ)ddcΨA + ddcΨKX

and
ddc((k −m)P (ϕ) +mΨ) > ddcΨA + ddcΨKX

for all k > m. Since P (ϕ) is continuous hence locally bounded, we also have
that for some constant C,

Ψ− C < P (ϕ) < Ψ + C.



1.10. THE CHEBYSHEV TRANSFORM ON THE ZERO-FIBER 111

We can apply Theorem 42 to these weights, and get that for large k, given a
t̃ ∈ H0(Y, kL|Y ) there exists an extension t ∈ H0(X, kL) such that∫

X

|t|2e−kP (ϕ)ωn ≤ emC
∫
X

|t|2e−(k−m)P (ϕ)−mΨdµ

≤ emCCδ
∫
Y

|t̃|2e−(k−m)P (ϕ)−mΨdν ≤ e2mCCδ

∫
Y

|t̃|2e−kP (ϕ)dν,

where Cδ is constant only depending on δ and dν is a smooth volume form on
Y . By letting t̃ be the minimizing section with respect to

∫
Y
|.|2e−kP (ϕ)dν and

using Proposition 29 we get that

cX [ϕ](0, α) ≤ cY [P (ϕ)|Y ](α),

since ∫
X

|t|2e−kϕωn ≤
∫
X

|t|2e−kP (ϕ)ωn.

PROPOSITION 44. Let L, A and Y be as in the statement of Lemma 43. Then

we have that

EY (P (ϕ)|Y , P (ψ)|Y ) = (n− 1)!
∫

∆(L)0

(c[ψ]− c[ϕ])(0, α)dα.

Proof. The proposition follows from Lemma 43 by integration of equality (1.27)
over the interior of the zero-fiber, and Theorem 27 which says that

EY (P (ϕ)|Y , P (ψ)|Y ) = (n− 1)!
∫

∆(L|Y )

cY [P (ψ)|Y ]− cY [P (ϕ)|Y ]dλ.

We will cite Proposition 4.7 from [1] which is a recursion formula relating
the Monge-Ampère energy and the restricted energy.

PROPOSITION 45. Suppose L is ample, let s ∈ H0(L), and let Y be the smooth

submanifold defined by s. Let ψ and ϕ be two continuous weights. Then

(n+ 1)EX(ψ,ϕ)− nEY (P (ψ)|Y , P (ϕ)|Y ) =

=
∫
X

(ln |s|2 − P (ϕ))MA(P (ϕ))−
∫
X

(ln |s|2 − P (ψ))MA(P (ψ)).
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In particular, combining Theorem 27, Proposition 44 and Proposition 45 we
get the following.

PROPOSITION 46. Let L, s and Y be as in Proposition 45. Then it holds that∫
∆(L)◦

(cX [ϕ]− cX [ψ])dλn =
1

n+ 1

∫
∆(L)◦0

(cX [ϕ]− cX [ψ])dλn−1 +

+
1

(n+ 1)!

∫
X

(ln |s|2 − P (ϕ))MA(P (ϕ))−

− 1
(n+ 1)!

∫
X

(ln |s|2 − P (ψ))MA(P (ψ)).

1.11 Directional Chebyshev constants in Cn

In [3] Bloom-Levenberg define the weighted version of the directional Cheby-
shev constants originally introduced by Zaharjuta in [14]. In this section we
will describe how this relates to the Chebyshev transforms we have introduced.

The setting in [3] is as follows. Let <1 be the order on Nn such that α <1 β

if |α| < |β|, or if |α| = |β| and α <lex β. Let Pα denote the set of polynomials
p(z1, ..., zn) in the variables zi such that

p = zα + lower order terms.

Observe that here we want lower order terms, and not higher order terms. Let
K be a compact set and h an admissible weight function on K. For any α ∈ Nn

they define the weighted Chebyshev constant Y3(α) as

Y3(α) := inf{sup
z∈K
{|h(z)|α|p(z)|} : p ∈ Pα}.

They then show that the limit

τh(K, θ) := lim
α/deg(α)→θ

Y3(α)1/deg(α)

exists. These limits are called directional Chebyshev constants.
In our setting we wish to view Cn as an affine space lying in Pn. Also,

polynomials in zi can be interpreted as sections of multiples of the line bundle



1.11. DIRECTIONAL CHEBYSHEV CONSTANTS IN CN 113

O(1) on Pn in the following sense. Let Z0, ..., Zn be a basis for H0(O(1)) on
Pn, and identify them with the homogeneous coordinates [Z0, ..., Zn]. We can
choose

p := [1 : 0 : ... : 0]

to be our base point, and let zi := Zi
Z0

be holomorphic coordinates around
p. We also let Z0 be our local trivialization of the bundle. Given a section
s ∈ H0(O(k))we represent it as a function in zi by dividing by a power of Z0

s

Zk0
=
∑

aαz
α.

Therefore we see that

Z(α0,α1,...,αn) 7→ z(α1,...,αn).

We could also choose a different set of coordinates. Let

q := [0 : ... : 0 : 1]

be our new base point, and let wi := Zi
Zn

be coordinates around q. Let Zn be
the local trivialization around q. Given a section s ∈ H0(O(k)) we represent it
as a function in wi by dividing by a power of Zn

s

Zkn
=
∑

bαw
α.

Hence
Z(α0,α1,...,αn) 7→ w(α0,...,αn−1).

To define Chebyshev transforms we need an additive order on Nn. Since the
semigroup Γ(O(1)) will not depend on the order, we are free to choose any
additive order. Let <2 be the order which corresponds to inverting the order <1

with respect to the zi variables, i.e.

(α0, ..., αn−1) <2 (β0, ..., βn−1)

iff
(β1, ..., βn) <1 (α1, ..., αn).
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Therefore

z(α1,...,αn) + lower order terms = w(α0,...,αn−1) + higher order terms. (1.28)

We may identify the weight function h with a metric h = e−ψ/2 on O(1).
Consider the weight PK(ψ). For simplicity assume that K is regular. Since
O(1) is ample from Lemma 41 it follows that PK(ψ) is continuous, therefore
the Chebyshev transform c[PK(ψ)] is well-defined. It is a simple fact that

sup
z∈K
{|s(z)|2e−kψ(z)} = sup

z∈Pn
{|s(z)|2e−kPK(ψ)(z)}. (1.29)

Let α0 = 0, and let k =
∑n

1 αi. By (1.28) we see that s ∈ A(α0,...,αn−1),k

iff it is on the form

z(α1,...,αn) + lower order terms.

By (1.29) it follows that

lnY3(α1, ..., αn) = F [PK(ψ)](kα, k).

Thus we get that for θ = (θ1, ..., θn) ∈ Σ0

c[PK(ψ)](0, θ1, ..., θn−1) = 2 ln τh(θ1, ..., θn). (1.30)

Observe that the order <2 we used to defined the Chebyshev transform has
the property that (0, α) <2 (β1, β) when β1 > 0. It was this property of the
lexicographic order we used in the proof of Proposition 44. Therefore the theo-
rem holds also for Chebyshev transforms defined using <2 instead of <lex . Let
(K ′, h′) be another weighted set in Cn, and let ψ′ be the corresponding weight
on O(1) associated to h′. Then integrating (1.30) gives us that

1
meas(Σ0)

∫
Σ0

ln τh(K, θ)− ln τh
′
(K ′, θ)dθ =

=
(n− 1)!

2

∫
∆(O(1))0

c[PK(ψ)]− c[PK′(ψ′)]dθ, (1.31)

where Y := {Z0 = 0}. Here we used that ∆(O(1))0 is a (n− 1)-dimensional
unit simplex, and thus

meas(∆(O(1))0) =
1

(n− 1)!
.
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Bloom-Levenberg define a weighted transfinite diameter dh(K) ofK which
is given by

dh(K) := exp
(

1
meas(Σ0)

∫
Σ0

ln τh(K, θ)dθ
)
.

There is also another transfinite diameter, δh(K), which is defined as a limit of
certain Vandermonde determinants. By Corollary A in [1] we have that

ln δh(K)− ln δh
′
(K ′) =

(n+ 1)
2n

E(PK′(ψ′), PK(ψ)).

Then by Theorem 27, equation (1.31) and Proposition 46 we get that

ln δh(K)− ln δh
′
(K ′) =

= ln dh(K)− ln dh
′
(K ′) +

1
n

∫
Pn

1
2

(ln |Z0|2 − PK(ψ))MA(PK(ψ))−

− 1
n

∫
Pn

1
2

(ln |Z0|2 − PK′(ψ′))MA(PK′(ψ′)).

In fact, the positive measure MA(PK(ψ)) has support on K, and PK(ψ) = ψ

a.e. with respect to MA(PK(ψ)). In the notation of [3], (ψ − ln |Z0|2)/2 is
denoted Q, and MA(PK(ψ)) is denoted (ddcV ∗K,Q)n. Thus in their notation

ln δh(K)− ln δh
′
(K ′) =

= ln dh(K)− ln dh
′
(K ′)− 1

n

∫
K

Q(ddcV ∗K,Q)n +
1
n

∫
K′
Q′(ddcV ∗K′,Q′)

n.

For the unit ball B, with h ≡ 1 ≡ |Z0|2 and therefore Qh = 0, it is straight-
forward to show that we have an equality

δh(B) = dh(K).

Using this we get that

ln δh(K) = ln dh(K)− 1
n

∫
K

Q(ddcV ∗K,Q)n.

By taking the exponential we have derived the formula of Theorem 2.9 in [3].
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1.12 Chebyshev transforms of weighted Q- and R-
divisors

Because of the homogeneity of Okounkov bodies, one may define the Ok-
ounkov body ∆(D) of any big Q-divisor D. Set

∆(D) :=
1
p

∆(pD)

for any p that clears the denominators inD. In [9] Lazarsfeld-Mustaţă show that
this mapping of a Q-divisor to its Okounkov body has a continuous extension
to the class of R-divisors.

In Proposition 26 we saw that Chebyshev transforms also are homogeneous
under scaling. Therefore we may define the Chebyshev transform of a Q-divisor
D with weight ψ, by letting

c[ψ](α) =
1
p
c[pψ](pα), α ∈ ∆(D)◦, (1.32)

for any p clearing the denominators in D. We wish to show that this can be
extended continuously to the class of weighted R-divisors.

We will use the construction introduced in [9]. Let D1, ..., Dr be divisors
such that every divisor is numerically equivalent to a unique sum∑

aiDi, ai ∈ Z.

Lazarsfeld-Mustaţă show that for effective divisors the coefficients ai may be
chosen non-negative.

DEFINITION 15. The semigroup of X, Γ(X), is defined as

Γ(X) :=
⋃
a∈Nr

(
v(H0(OX(

∑
aiDi)))× {a}

)
⊆ Zn+r,

where v stands for the usual valuation,

s = zα + higher order terms ⇒ s 7→ α.
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Lazarsfeld-Mustaţă show in [9] that Γ(X) generates Zn+r as a group.
Let Σ(Γ(X)) denote the closed convex cone spanned by Γ(X), and let for

a ∈ Nr

∆(a) := Σ(Γ(X)) ∩ (Rn × {a}).

By [9] for any big Q-divisor D =
∑
aiDi,

∆(a) = ∆(D), a = (a1, ..., ar).

Let for each 1 ≤ i ≤ r ψi be a continuous weights on Di. Then for a ∈ Nr,∑
aiψ is a continuous weight on

∑
aiDi. For an element (α, a) ∈ Γ(X), let

Aα,a ⊆ H0(
∑
aiDi) be the set of sections of the form

zα + higher order terms.

DEFINITION 16. The discrete global Chebyshev transform F [ψ1, ..., ψr] is de-

fined by

F [ψ1, ..., ψr](α, a) := inf{ln ||s||2α,a : s ∈ Aα,a}

for (α, a) ∈ Γ(X).

LEMMA 47. F [ψ1, ..., ψr] is subadditive on Γ(X).

Proof. If s ∈ H0(OX(
∑
aiDi)),

s = zα + higher order terms,

and t ∈ H0(OX(
∑
biDi)),

t = zβ + higher order terms,

then st ∈ H0(OX(
∑

(ai + bi)Di)) and

st = zα+β + higher order terms.

Thus the subadditivity of F [ψ1, ..., ψr] follows exactly as for F [ψ] in Lemma
20.

LEMMA 48. F [ψ1, ..., ψr] is locally linearly bounded from below.
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Proof. Let (α, a) ∈ Σ(Γ(X))◦. Let ψi,p be the trivializations of the weights
ψi, then ∑

aiψi,p

is the trivialization of
∑
aiψi. Let D be as in the proof of Lemma 21, and

choose A such that

e−
P
aiψi,p > A.

Since the inequality

e−
P
biψi,p > A

holds for all b in a neighbourhood of a, the lower bound follows as in the proof
of Lemma 21.

DEFINITION 17. The global Chebyshev transform c[ψ1, ..., ψr]of the r-tuple

(ψ1, ..., ψr) is defined as the convex envelope of F [ψ1, ..., ψr] on Σ(Γ(X))◦.

PROPOSITION 49. For any sequence (α(k), a(k)) ∈ Γ(X) such that

|(α(k), a(k))| → ∞ and

(α(k), a(k))
|(α(k), a(k))|

→ (p, a) ∈ Σ(Γ(X))◦

it holds that

lim
k→∞

F [ψ1, ..., ψr](α(k), a(k))
|(α(k), a(k))|

= c[ψ1, ..., ψr](p, a).

Proof. By Lemma 47 and Lemma 48 we can use Theorem 14, which gives us
the proposition.

PROPOSITION 50. For rational a, i.e a = (a1, ..., ar) ∈ Qr, the global Cheby-

shev transform c[ψ1, ..., ψr](p, a) coincides with c [
∑
aiψi] (p),where the Cheby-

shev transform of the Q-divisor
∑
aiDi as defined by (1.32).

Proof. By construction it is clear that for all (α, a) ∈ Γ(X) we have that

F [ψ1, ..., ψr](α, ka) = F
[∑

aiψi

]
(α, k).
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Choose a sequence (α(k), ka) ∈ Γ(X) such that

lim
k→∞

(α(k), ka))
|(α(k), ka))|

=
(p, a)
|(p, a)|

,

where we only consider those k such that ka is an integer. Then by Proposition
49 we have that

c[ψ1, ..., ψr](p, a) = lim
k→∞

|(p, a)|F [ψ1, ..., ψr](α(k), ka)
|(α(k), ka)|

=

= lim
k→∞

|(p, a)|F [
∑
aiψi] (α(k), k)
|(α(k), ka)|

= lim
k→∞

(
|(p, a)|k
|(α(k), ka)|

)
c
[∑

aiψi

]
(p) =

= c
[∑

aiψi

]
(p).

Now that we have defined the Chebyshev transform for weighted R−divisors
we wish to show that the formula of Theorem 27 holds true also in this case.
First we need some preliminary lemmas.

LEMMA 51. The function E(tψ, tϕ) is (n+ 1)-homogeneous in t for t > 0, i.e.

E(tψ, tϕ) = tn+1E(ψ,ϕ).

Proof. For weights with minimal singularities ψ′ and ϕ′, by definition of the
Monge-Ampère energy we have that

E(tψ, tϕ) =
1

n+ 1

∫
Ω

(tψ′ − tϕ′)MAn(tψ′, tϕ′) =

=
tn+1

n+ 1

∫
Ω

(ψ′ − ϕ′)MAn(ψ′, ϕ′) = tn+1E(ψ,ϕ). (1.33)

We also observe that tψ′ is a psh weight on tL iff ψ′ is a psh weight on L.
Therefore we get that

P (tψ) = tP (ψ). (1.34)

Combining (1.33) and (1.34) the lemma follows.
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LEMMA 52. Assume that L is ample. Let ψ and ψ′ be two continuous weights

on L, and let ϕ and ϕ′ be two continuous weights on some other big line bundle

L′. Then the function

E(ψ + tϕ, ψ′ + tϕ′)

is continuous in t for t such that L+ tL′ is ample.

Proof. We show continuity at t = 0. Since L is ample, for some ε > 0

L+ εL′

will be ample. Furthermore the Monge-Ampère energy is homogeneous. We
may write

L+ tεL′

as
(1− t)(L+

t

1− t
(L+ εL′)),

thus without loss of generality we can assume that L′ is ample. By the cocycle
property of the Monge-Ampère energy we have that for any continuous weight
ϕ̃ on L′

E(ψ+tϕ, ψ′+tϕ′) = E(ψ+tϕ, ψ+tϕ̃)+E(ψ+tϕ̃, ψ′+tϕ̃)+E(ψ′+tϕ̃, ψ′+tϕ′).

Thus it suffices to consider two special cases. The first where we assume that
ψ = ψ′. In the second case we instead assume that ϕ = ϕ′ and that ϕ is psh.

First assume that ψ = ψ′. Since E(ψ,ψ) = 0, we must show that E(ψ +
tϕ, ψ + tϕ′) tends to zero when t tends to zero. Lemma 1.14 in [1] tells us that
the projection operator is 1-Lipschitz continuous. In our case this means that

sup
X
|P (ψ + tϕ)− P (ψ + tϕ′)| ≤ t sup

X
|ϕ− ϕ′|.

We get that

|E(ψ + tϕ, ψ + tϕ′)| =

=
1

n+ 1
|
∫
X

(P (ψ + tϕ)− P (ψ + tϕ′))MAn(P (ψ + tϕ), P (ψ + tϕ′))| ≤

≤ t sup
X
|ϕ− ϕ′| 1

n+ 1

∫
X

MAn(P (ψ + tϕ), P (ψ + tϕ′)) =

= t sup
X
|ϕ− ϕ′|vol(L+ tL′).
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Since the volume is continuous (see e.g. [1]), we get continuity in this case.
Now we intead assume that ϕ = ϕ′ and that ϕ is psh. We first show right-

continuity. Since ϕ is psh, for all r ≤ t we have that

P (ψ + rϕ) + (t− r)ϕ

is psh and it is clearly dominated by ψ + tϕ, thus by the definition of the pro-
jection operator

P (ψ + tϕ) ≥ P (ψ + rϕ) + (t− r)ϕ.

It follows that P (ψ + tϕ)− tϕ is increasing in t. Also

ddc(P (ψ + tϕ)− tϕ) ≥ −tddcϕ,

thus by standard results in potential thoery we have that

ddc lim
t→0

(P (ψ + tϕ)− tϕ) ≥ 0.

This gives us that
lim
t→0

(P (ψ + tϕ)− tϕ) = P (ψ).

The same holds for
P (ψ′ + tϕ)− tϕ.

We now write P (ψ + tϕ) as

(P (ψ + tϕ)− tϕ) + tϕ

and P (ψ′ + tϕ) as
(P (ψ′ + tϕ)− tϕ) + tϕ

in the expression for
E(ψ + tϕ, ψ′ + tϕ)

and the right-continuity follows from the fact that mixed Monge-Ampère oper-
ators are continuous along pointwise decreasing sequences of psh or quasi-psh
weights converging to a weight with minimal singularities (see [5]). For the
left-continuity we use the homogeneity of the Monge-Ampère energy exactly
as above to reduce to the case of right-continuity already considered.
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We are now ready to prove our main theorem in the setting of weighted
ample R-divisors.

THEOREM 53. For ample R-divisors
∑
aiDi we have that

E(
∑

aiψi,
∑

aiϕi) =

= n!
∫

∆(
P
aiDi)

(c[ϕ1, ..., ϕr](p, a)− c[ψ1, ..., ψr](p, a))dλ(p). (1.35)

Proof. First we show that (1.35) holds when a ∈ Qr. By the homogeneity of
the Okounkov body and the Chebyshev transform we have that

n!
∫

∆(tL)◦
(c[tψ]− c[tϕ])dλ = tn+1n!

∫
∆(L)◦

(c[ψ]− c[ϕ])dλ =

= tn+1E(ϕ,ψ) = E(tϕ, tψ),

where the last equality follows from Lemma 51. Then by Proposition 50, (1.35)
holds for a ∈ Qr. Therefore by the continuity of the Monge-Ampère energy,
the continuity of the global Chebyshev transform, and the fact that equation
(1.35) holds for rational a, the proposition follows.

1.13 Differentiability of the Monge-Ampère energy

We wish to understand the behaviour of the Monge-Ampère energy E(ψt, ϕt)
when the weights ψt and ϕt vary with t. In [1] Berman-Boucksom study the
case where ψt and ϕt are weights on a fixed line bundle or more generally a R-
divisor. We are interested in the case where the underlying R-divisor is allowed
to vary as well. In [9] Lazarsfeld-Mustaţă prove the differentiability of the vol-
ume by studying the variation of the Okounkov bodies. Since our Theorem 27
and Theorem 53 states that the Monge-Ampère energy is given by the integra-
tion of the difference of Chebyshev transforms on the Okounkov body, we wish
to use the same approach as Lazarsfeld-Mustaţă did in [9]. The situation be-
comes a bit more involved, since we have to consider not only the variation of
the Okounkov bodies but also the variation of the Chebyshev transforms.

In this section we will assume that L is an ample R-divisor.
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To account for the variation of the Chebyshev transform when the underly-
ing line bundle changes it becomes necessary to consider not only continuous
weights but also weights with singularities. Specifically weights of the form

ψ − t ln |s|2,

where ψ is a continuous weight on L, s is some section of an ample line bundle
A, and t is positive. Observe that these weights only have +∞ singularities.

In fact, by general approximation arguments one can show that the results
that we have established for continuous weights also hold for weights that are
lower semicontinuous and only have +∞ singularities. But for completeness
we include arguments proving this for ψ − t ln |s|2.

Let Ψ be some fixed continuous positive weight on A. For any number R
we denote by ln |s|2+R the weight

ln |s|2+R := max(ln |s|2,Ψ−R).

LEMMA 54. For R� 0 we have that

P (ψ − t ln |s|2+R) = P (ψ − r ln |s|2).

Proof. That
P (ψ − t ln |s|2+R) ≤ P (ψ − t ln |s|2)

is clear since
ψ − t ln |s|2+R ≤ ψ − t ln |s|2.

P (ψ − t ln |s|2) is psh, therefore upper semicontinuous by definition, which
means that it is locally bounded from above. Thus locally we can find R � 0
such that

ψ − t(Ψ−R) ≥ P (ψ − t ln |s|2).

But we have assumed that our manifoldX is compact, so there exists anR such
that ψ − t(Ψ − R) dominates P (ψ − t ln |s|2) on the whole of X. The same
must be true for ψ − t ln |s|2+R. By definition P (ψ − t ln |s|2+R) dominates
all psh weights less or equal to ψ − t ln |s|2+R, in particular it must dominate
P (ψ − r ln |s|2).
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LEMMA 55. If L is integral, i.e. a line bundle, then for R� 0 such that

P (ψ − t ln |s|2+R) = P (ψ − t ln |s|2),

we have that F [ψ − t ln |s|2+R] = F [ψ − t ln |s|2].

Proof. This follows the fact that for all weights ϕ and all sections s it holds that

sup
x∈X
{|s(x)|2e−ϕ(x)} = sup

x∈X
{|s(x)|2e−P (ϕ)(x)},

see e.g. [1].

From Lemma 55 it follows that the Chebyshev transform c[ψ − t ln |s|2] is
well-defined, also for R−divisors, and that Proposition 22 holds in this case.
The formula for the Monge-Ampère energy as the integral of Chebyshev trans-
forms will also still hold.

PROPOSITION 56. For any continuous weight ϕ on L− tA it holds that

E(ψ − t ln |s|2, ϕ) = (1.36)

= n!
∫

∆(L−tA)◦
c[ϕ]− c[ψ − t ln |s|2]dλ. (1.37)

Proof. For integral L, choose an R� 0 such that

P (ψ − t ln |s|2+R) = P (ψ − t ln |s|2).

Then (1.36) follows in this case from Theorem 27 and Lemma 55. By ho-
mogeneity (1.36) holds for rational L, and by continuity for arbitrary ample
R-divisors.

Theorem B in [1] states that the Monge-Ampère energy is differentiable
when the weights correspond to a fixed big line bundle. By the comment in the
beginning of section 4 in [1] this holds more generally for big (1, 1) cohomol-
ogy classes, e.g. R-divisors. We thus have the following.

THEOREM 57. Let ψt be a smooth family of weights on a big R-divisor D, and

ϕ any psh-weight with minimal singularities. Then the function

f(t) := E(ψt, ϕ)
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is differentiable, and

f ′(0) =
∫

Ω

uMA(P (ψ0)),

where u = d
dt |0ψt.

We also need to consider the case where

ψt = ψ0 + t(Φ− ln |s|2),

where Φ is some continuous weight on A.

LEMMA 58. For every ε there exists a R� 0 such that

P (ψ0 + t(Φ− ln |s|2+R)) = P (ψ0 + t(Φ− ln |s|2))

for t ≥ ε.

Proof. Recall that ln |s|2+R was defined as max{Ψ−R, ln |s|2} for some con-
tinuous weight Ψ on A. That

P (ψ0 + t(Φ− ln |s|2+R)) ≤ P (ψ0 + t(Φ− ln |s|2))

is clear since

ψ0 + t(Φ− ln |s|2+R) ≤ ψ0 + t(Φ− ln |s|2)

and the projection operator is monotone. When

R ≥ P (ψ0 + t(Φ− ln |s|2))− ψ0 − tΦ
t

+ Ψ

we get that

P (ψ0 + t(Φ− ln |s|2+R)) = P (ψ0 + t(Φ− ln |s|2))

because for such R

ψ0 + t(Φ− ln |s|2+R) ≥ ψ − t(Ψ−R) ≥ P (ψ0 + t(Φ− ln |s|2))
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and the same is true for the projection. By the homogeneity of the projection
operator we have that

P (ψ0 + t(Φ− ln |s|2))− ψ0 − tΦ
t

+ Ψ =

= P (
ψ0

t
+ Φ− ln |s|2)− ψ0

t
− Φ + Ψ.

We also have that for t > r

P (
ψ0

t
+ Φ− ln |s|2)− ψ0

t
≤ P (

ψ0

t
+ Φ− ln |s|2)− P (ψ0)

t
≤

≤ P (
ψ0

r
+ Φ− ln |s|2)− P (ψ0)

r

by the same arguments as in the proof of Lemma 52. P (ψ0
r +Φ− ln |s|2) is psh

and therefore upper semicontinuous, and sinceL is ample, P (ψ0) is continuous.
This yields that

P (
ψ0

r
+ Φ− ln |s|2)− P (ψ0)

r
− Φ + Ψ

is an upper semicontinuous function on the compact spaceX, so it has an upper
bound. The lemma follows by setting r = 1/ε and choosing R larger than

P (
ψ0

r
+ Φ− ln |s|2)− P (ψ0)

r
− Φ + Ψ.

We state and prove a slight variation of Lemma 3.1 in [2].

LEMMA 59. Let fk be a sequence of concave functions on the unit interval,

and let g be a function on [0, 1] such that fk converges to g pointwise. It follows

that

g′(0) ≤ lim inf
k→∞

f ′k(0).

Proof. Since fk is concave we have that

fk(0) + f ′k(0)t ≥ fk(t)

hence
lim inf
k→∞

tf ′k(0) ≥ g(t)− g(0).

The lemma follows by letting t tend to zero.
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We now prove that Theorem 57 holds true also in our singular setting.

LEMMA 60. The function

f(t) := E(ψ0 + t(Φ− ln |s|2), ϕ)

is right-differentiable at zero and

d

dt |0+
f(t) =

∫
Ω

(Φ− ln |s|2)MA(P (ψ0)).

Proof. Let us denote Φ− ln |s|2 by u, and let

uk := Φ− ln |s|2+k.

Let fk denote the function

fk(t) := E(ψ0 + tuk, ϕ).

By e.g. [1] the functions fk are concave, and by Theorem 57 they are differen-
tiable. By Lemma 58 we get that for any ε > 0 there exists a k such that f = fk

on (ε, 1). Therefore it follows that f is concave and that

fk → f

pointwise. Since f is concave it is right-differentiable. We also have that

f ′k(0) =
∫

Ω

ukMA(P (ψ0))

by Theorem 57. Thus from Lemma 59 we get that

f ′(0) ≤
∫

Ω

uMA(P (ψ0)).

Since f is concave the derivative is decreasig, for all ε > 0

f ′(0) ≥ f ′(ε) = lim
k→∞

∫
Ω

ukMA(P (ψ0 + εuk)) =
∫

Ω

uMA(P (ψ0 + εu)),

where the last step follows by monotone convergence since

MA(P (ψ0 + εuk)) = MA(P (ψ0 + εu))
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for large k by Lemma 58. The projection operator is 1-Lipschitz continuous,
therefore we get that P (ψ0 + εuk) will converge to P (ψ0) uniformly. The
Monge-Ampère operator is continuous along sequences of psh weights with
minimal singularities converging uniformly (see [5]), hence

lim
ε→0

∫
Ω

uMA(P (ψ0 + εu)) =
∫

Ω

uMA(P (ψ0)),

and the lemma follows.

We will also need an integration by parts formula involving ln |s|2.

LEMMA 61. Let ϕ and ϕ′ be continuous weights on an ample R-divisor L. Let

ψ be a continuous psh weight on an ample line bundle A, and let s ∈ H0(A)
be a section such that its zero set variety Y is a smooth submanifold. Then it

holds that ∫
X

(ψ − ln |s|2)ddc(P (ϕ)− P (ϕ′)) ∧MAn−1(P (ϕ), P (ϕ′)) =

=
∫
X

(P (ϕ)− P (ϕ′))ddcψ ∧MAn−1(P (ϕ), P (ϕ′))− nEY (P (ϕ)|Y , P (ϕ′)|Y ).

Proof. The lemma will follow by the Lelong-Poincare formula as soon as we
establish that∫

X

(ψ − ln |s|2)ddc(P (ϕ)− P (ϕ′)) ∧MAn−1(P (ϕ), P (ϕ′)) =

=
∫
X

(P (ϕ)− P (ϕ′))ddc(ψ − ln |s|2) ∧MAn−1(P (ϕ), P (ϕ′)),

which is an integration by parts formula. By [5] we may integrate by parts when
the functions are differences of quasi-psh weights with minimal singularities.
We denote by uk the quasi-psh weight with minimal singularities ψ − ln |s|2+k
and get that∫

X

ukdd
c(P (ϕ)− P (ϕ′)) ∧MAn−1(P (ϕ), P (ϕ′)) =

=
∫
X

(P (ϕ)− P (ϕ′))ddcuk ∧MAn−1(P (ϕ), P (ϕ′)).
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Since P (ϕ) and P (ϕ′) are both continuous, by the Chern-Levine-Nirenberg
inequalities (see e.g. [6]) we get that∫
X

|(ψ− ln |s|2)|ddcP (ϕ)∧MAn−1(P (ϕ), P (ϕ′)) ≤ C
∫
X

|(ψ− ln |s|2)|dV

and∫
X

|(ψ−ln |s|2)|ddcP (ϕ′)∧MAn−1(P (ϕ), P (ϕ′)) ≤ C ′
∫
X

|(ψ−ln |s|2)|dV

for some constants C and C ′ and some smooth volume form dV. By standard
results ln |s|2 is locally integrable, thus both integrals are finite. This means that
we can use monotone convergence to conclude that the LHS will converge to∫

X

(ψ − ln |s|2)ddc(P (ϕ)− P (ϕ′)) ∧MAn−1(P (ϕ), P (ϕ′))

when k goes to infinity. A special case of Proposition 4.9 in [6], chapter 3, is
that monotone convergence for Monge-Ampère expressions holds when one of
the terms has analytic singularities and the others are locally bounded. By this
it follows that the LHS will converge to∫

X

(P (ϕ)− P (ϕ′))ddc(ψ − ln |s|2) ∧MAn−1(P (ϕ), P (ϕ′)),

and we are done.

Assume that we have chosen our coordinates z1, ..., zn centered at p such
that

z1 = 0

is a local equation for an irreducible variety Y. Assume also that Y is the zero-
set of a holomorphic section s ∈ H0(A) of an ample line bundle A. Then by
Theorem 4.24 in [9] the Okounkov bodies of L and L+ tA with respect to these
coordinates are related in the following way

∆(L) = (∆(L+ tA)− te1) ∩ (R+)n.

There is also correspondence between the Chebyshev transforms of weights on
L and L+ tA.
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PROPOSITION 62. Let A and s be as above. Suppose also that we have chosen

the holomorphic coordinates so that z1 = s locally. Then for a ≥ r it holds

that

cL[ψ](a, α)− cL[ϕ](a, α) =

= cL−rA[ψ − r ln |s|2](a− r, α)− cL−rA[ϕ− r ln |s|2](a− r, α). (1.38)

Proof. First assume that L is integral. Since we have that locally s = z1, for
t ∈ H0(kL),

t = zk(a,α) + higher order terms,

if and only if
t

srk
= zk(a−r,α) + higher order terms.

We also have that

sup
x∈X
{|t(x)|2e−kϕ(x)} = sup

x∈X
{ |t(x)|2

|srk(x)|2
e−k(ϕ(x)−r ln |s(x)|2)}.

Thus (1.38) holds for integral L. By the homogeneity and continuity of the
Chebyshev transform it will therefore hold for ample R-divisors.

We are now ready to state and prove our generalization of Theorem 57 in
the ample setting, where the underlying R-divisor is allowed to vary within the
ample cone.

THEOREM 63. Let Ai, i = 1, ...,m be a finite collection of ample line bundles,

and for each i let ϕi and ϕ′i be two continuous weights on Ai. Let O denote the

open cone in Rm such that a ∈ O iff
∑
aiAi is an ample R-divisor. Then the

function

f(a) := EP
aiAi(

∑
aiϕi,

∑
aiϕ
′
i)

is C1 on O.

Proof. Let a be a point in O, and denote
∑
aiAi by L. Denote

∑
aiϕ by ϕ

and
∑
aiϕ
′
i by ϕ′. We want to calculate the partial derivatives of F at a. Thus
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we let L′ be an ample line bundle, let ψ and ψ′ be two continuous metrics on
L′ and we consider the function

f(t) := EL+tL′(ϕ+ tψ, ϕ′ + tψ′).

We claim that f is differentiable at t = 0, and that the derivative varies contin-
uously with L, ϕ and ϕ′.

We may assume that L′ has a non-trivial section s such that Y := {s = 0} is
a smooth manifold, since otherwise because of the homogeneity we may just as
well consider some large multiple of L′ instead. We choose local holomorphic
coordinates such that z1 = s. Recall that the Okounkov bodies of L and L+tL′

are related in the following way

∆(L) = (∆(L+ tL′)− te1) ∩ (R+)n. (1.39)

Let ∆(L)r denote the fiber over r of the projection of the Okounkov body
down to the first coordinate, i.e.

∆(L)r := ∆(L) ∩ ({r} × Rn−1).

Then one may write equation (1.39) as

∆(L+ tL′) = ∪0≤r≤t∆(L+ tL′)r ∪ (∆(L) + te1). (1.40)

Furthermore the energy is given by integration of the Chebyshev transforms
over the Okounkov bodies. Using (1.40) and Proposition 62 we get that

EL+tL′(ϕ+ tψt, ϕ
′ + tψ′t) =

= n!
∫

∆(L+tL′)◦
c[ϕ′ + tψ′t]− c[ϕ+ tψt]dλ =

= n!
∫ t

r=0

∫
∆(L+tL′)◦r

c[ϕ′ + tψ′t](r, α)− c[ϕ+ tψt](r, α)dαdr +

+n!
∫

∆(L)◦
c[ϕ′ + t(ψ′t − ln |s|2)]− c[ϕ+ t(ψt − ln |s|2)]dp =

= n!
∫ t

r=0

∫
∆(L+tL′)◦r

c[ϕ′ + tψ′t](r, α)− c[ϕ+ tψt](r, α)dαdr +

+EL(ϕ+ t(ψt − ln |s|2), ϕ′ + t(ψ′t − ln |s|2)).
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Hence by Theorem 57 and the fundamental theorem of calculus it follows
that this function is right-differentiable. We also want to calculate the right-
derivative.

We get that

d

dt |0+
EL+tL′(ϕ+ tψt, ϕ

′ + tψ′t) =

= n!
∫

∆(L)◦0

c[ϕ′](0, α)− c[ϕ](0, α)dα+

+
d

dt |0+
EL(ϕ+ t(ψt − ln |s|2), ϕ′ + t(ψ′t − ln |s|2)) =

= nEY (P (ϕ′)|Y , P (ϕ)|Y ) +
d

dt |0+
EL(ϕ+ t(ψt − ln |s|2), ϕ′ + t(ψ′t − ln |s|2)),

using Proposition 44 in the last step. Since in the second term the divisor L
does not change with t, we may use Theorem 57. Also, because of the cocycle
property of the Monge-Ampère energy, we only need to consider two cases, one
where ϕ = ϕ′, and the other one where we let ϕ 6= ϕ′ but instead assume that
ψt = ψ′t = ψ is some fixed smooth positive metric on L′.

First assume that ϕ = ϕ′. The first term disappears and we get that

d

dt |0+
EL+tL′(ϕ+ tψt, ϕ+ tψ′t) =

=
d

dt |0
EL(ϕ+ t(ψt − ln |s|2), ϕ+ t(ψ′t − ln |s|2)) =

=
∫
X

(ψ0 − ln |s|2)MA(P (ϕ))−
∫
X

(ψ′0 − ln |s|2)MA(P (ϕ)) =

=
∫
X

(ψ0 − ψ′0)MA(P (ϕ)). (1.41)

Here we used Lemma 60.

This term depends continuously on the weight ϕ.

Now let ϕ 6= ϕ′ but instead assume that ψt = ψ′t = ψ is some fixed smooth
positive metric on L′. Then we have that
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d

dt |0+
EL+tL′(ϕ+ tψ, ϕ′ + tψ) =

= nEY (P (ϕ)|Y , P (ϕ′)|Y ) + (1.42)

+
d

dt |0
EL(ϕ+ t(ψ − ln |s|2), ϕ′ + t(ψ − ln |s|2)) =

= nEY (P (ϕ)|Y , P (ϕ′)|Y ) +
∫
X

(ψ − ln |s|2)MA(P (ϕ))−

−
∫
X

(ψ − ln |s|2)MA(P (ϕ′)) =

= nEY (P (ϕ)|Y , P (ϕ′)|Y ) +

+
∫
X

(ψ − ln |s|2)ddc(P (ϕ)− P (ϕ′)) ∧MAn−1(P (ϕ), P (ϕ′)) =

=
∫
X

(P (ϕ)− P (ϕ′))ddcψ ∧MAn−1(P (ϕ), P (ϕ′)). (1.43)

In the last step we used Lemma 61.

This will also depend continuously on the pair (ϕ,ϕ′) exactly as in Lemma
52.

By definition a R−divisor can be written as a finite positive sum of ample
line bundles, thus since we have shown that the Monge-Ampère energy is con-
tinuously partially right-differentiable in the ample integral directions it follows
that the function f is right-differentible when L′ is any ample R-divisor. Since
the derivatives we have calculated for ample line bundles are linear, the same
formulas hold for arbitrary R-divisors.

Now we consider the question of left-differentiability By Lemma 51 the
Monge-Ampère energy is (n + 1)−homogeneous. For some possibly large k,
kL − L′ is ample. Because of the homogeneity of the Monge-Ampère energy,
without loss of generality, we may assume that L− L′ is ample, otherwise just
change L to kL. Also

1
1− t

(L− tL′) = L+
t

1− t
(L− L′).
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Using this and the homogeneity we get that

EL−tL′(ϕ− tψt, ϕ′ − tψ′t) =

= (1− t)n+1EL+ t
1−t (L−L′)(ϕ+

t

1− t
(ϕ− ψt), ϕ′ +

t

1− t
(ϕ′ − ψ′t)).(1.44)

The left-differentiability thus follows from the previous case by equation (1.44)
and the chain rule.

To show the differentiability of f then, we only need to calculate the left-
derivative to make sure it coincides with the right-derivative. Recall that be-
cause of the cocycle property we only needed to consider two cases. First as-
sume that ϕ = ϕ′. Equations (1.44) and (1.41) now yields that

d

dt |0−
EL+tL′(ϕ+ tψt, ϕ+ tψ′t) = − d

dt |0+
EL−tL′(ϕ− tψt, ϕ− tψ′t) =

− d

dt |0+
(1− t)n+1EL+ t

1−t (L−L′)(ϕ+
t

1− t
(ϕ− ψt), ϕ+

t

1− t
(ϕ− ψ′t)) =

= − d

dt |0+
EL+ t

1−t (L−L′)(ϕ+
t

1− t
(ϕ− ψt), ϕ+

t

1− t
(ϕ− ψ′t)) =

−
∫
X

((ϕ− ψ0)− (ϕ− ψ′0))MA(P (ϕ)) =
∫
X

(ψ0 − ψ′0)MA(P (ϕ)) =

=
d

dt |0+
EL+tL′(ϕ+ tψt, ϕ+ tψ′t).

Now let ϕ 6= ϕ′ but instead assume that ψt = ψ′t = ψ is some smooth
positive weight on L′. By the cocycle property we may also assume that ϕ and
ϕ− ψ are smooth and positive. By equation (1.42) we get that



1.13. DIFFERENTIABILITY OF THE MONGE-AMPÈRE ENERGY 135

d

dt |0−
EL+tL′(ϕ+ tψ, ϕ′ + tψ) =

= − d

dt |0+
(1− t)n+1EL+ t

1−t (L−L′)(ϕ+
t

1− t
(ϕ− ψ), ϕ′ +

t

1− t
(ϕ′ − ψ)) =

= (n+ 1)EL(ϕ.ϕ′)−

− d

dt |0+
EL+ t

1−t (L−L′)(ϕ+
t

1− t
(ϕ− ψ), ϕ′ +

t

1− t
(ϕ′ − ψ)) =

= (n+ 1)EL(ϕ.ϕ′)−

−
∫
X

(P (ϕ)− P (ϕ′))ddc(ϕ− ψ) ∧MAn−1(P (ϕ), P (ϕ′))−

−
∫
X

((ϕ− ψ)− (ϕ′ − ψ))MA(P (ϕ′)) =

=
∫
X

(P (ϕ)− P (ϕ′))ddc(ψ) ∧MAn−1(P (ϕ), P (ϕ′)) =

=
d

dt |0+
EL+tL′(ϕ+ tψ, ϕ′ + tψ).

We used that ϕ′ = P (ϕ′) a.e. with respect to MA(P (ϕ′)) (see e.g. [1]). We
also used the observation that

ddcϕ ∧MAn−1(P (ϕ), P (ϕ′)) + MA(P (ϕ′)) = MAn(P (ϕ), P (ϕ′)),

and that by definition∫
(P (ϕ)− P (ϕ′))MAn(P (ϕ), P (ϕ′)) = (n+ 1)EL(ϕ,ϕ′).

The differentiability of f follows, and we saw that the derivative depended con-
tinuously on L, ϕ and ϕ′. Hence the function F is C1 on O.

Note that in the special case where ψt = ψ0 + tΨ and ϕt = ϕ0 + tΨ for
some fixed positive weight Ψ on L′, our calculations show that

f ′(0) =
n−1∑
j=0

∫
X

(P (ψ0)− P (ϕ0))ddcΨ ∧ (ddcP (ψ0))j ∧ (ddcP (ϕ0))n−j−1.
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Let ψ0 = ψ1 + 1 and as Ψ choose ln |s|2 where s is a defining section for an
ample divisor A. Then f(t) = volX(L + tA) and using the Lelong-Poincare
formula on the RHS of equation above one recovers the classical result that

d

dt |0
volX(L+ tA) = nvolA(L|A).
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towards equilibrium measures on complex manifolds Acta Math...

[3] T Bloom and N Levenberg Transfinite diameter dotions in Cn and integrals of

Vandermonde determinants Ark. Mat. 48 (2010), no. 1, 17-40.

[4] S Boucksom On the volume of a line bundle Internat. J. Math 13 (2002), no 10.

1043-1063.

[5] S Boucksom, P Eyssidieux, V Guedj and A Zeriahi Monge-Ampère equations in

big cohomology classes Acta Math. 205 (2010), no. 2, 199-262.

[6] J-P Demailly Complex analytic and differential geometry Book available at www-

fourier.ujf-grenoble.fr/ demailly/

[7] A Khovanskii Newton polyhedron, Hilbert polynomial and sums of finite sets

Funct. Anal. Appl. no. 26 (1993), 331-348.

[8] A Khovanski and K Kaveh Convex bodies and algebraic equations on affine vari-

etes Preprint in 2008 at arxiv:math/0804.4095.
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2
Test configurations and

Okounkov bodies

ABSTRACT

We associate to a test configuration for a polarized variety a filtration of
the section ring of the line bundle. Using the recent work of Boucksom-Chen
we get a concave function on the Okounkov body whose law with respect to
Lebesgue measure determines the asymptotic distribution of the weights of the
test configuration. We show that this is a generalization of a well-known result
in toric geometry. As an application, we prove that the pushforward of the
Lebesgue measure on the Okounkov body is equal to a Duistermaat-Heckman
measure of a certain deformation of the manifold. Via the Duisteraat-Heckman
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formula, we get as a corollary that in the special case of an effective C×-action
on the manifold lifting to the line bundle, the pushforward of the Lebesgue
measure on the Okounkov body is piecewise polynomial.

2.1 Introduction

2.1.1 Okounkov bodies

In [14] Okounkov introduced a way to associate a convex body in Rn to any
ample divisor on a n-dimensional projective variety. This procedure was later
shown to work in a more general setting by Lazarsfeld-Mustaţă in [12] and by
Kaveh-Khovanskii in [8] and [9].

Let L be a big line bundle on a complex projective manifold X of dimen-
sion n. The Okounkov body of L, denoted by ∆(L), is a convex subset of Rn,
constructed in such a way so that the set-valued mapping

∆ : L 7−→ ∆(L)

has some very nice properties (for the explicit construction see Section 2.2). It
is homogeneous, i.e. for any k ∈ N

∆(kL) = k∆(L).

Here kL denotes the the k:th tensor power of the line bundle L. Secondly, the
mapping is convex, in the sense that for any big line bundles L and L′, and any
k,m ∈ N, the following holds

∆(kL+mL′) ⊇ k∆(L) +m∆(L′),

where the plus sign on the right hand side refers to Minkowski addition, i.e.

A+B := {x+ y : x ∈ A, y ∈ B}.

Recall that the volume of a line bundle L, denoted by vol(L), is defined by

vol(L) := lim sup
k→∞

dimH0(kL)
kn/n!

.
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By definition L is big if vol(L) > 0. The third and crucial property, which
makes Okounkov bodies useful as a tool in birational geometry, is that for any
L

vol(L) = n!volRn(∆(L)).

where the volume of the Okounkov body is measured with respect to the stan-
dard Lesbesgue measure on Rn.

2.1.2 Test configurations

Given an ample line bundle L on X, a class of algebraic deformations of the
pair (X,L), called test configurations, were introduced by Donaldson in [5],
generalizing a previous notion of Tian [21] in the context of Fano manifolds. In
short, a test configuration consists of:

(i) a scheme X with a C×-action ρ,

(ii) an C×-equivariant line bundle L over X ,

(iii) and a flat C×-equivariant projection π : X → C such that L restricted to
the fiber over 1 is isomorphic to rL for some r > 0.

To a test configuration T there are associated discrete weight measures µ̃(T , k)
(see Section 2.4 for the definition). The asymptotics of the first moments of
these measures, together with the Hilbert polynomial, is used to define the
Futaki invariant (see Section 2.4). This in turn is used to formulate stability
conditions, such as K-stability, on the pair (X,L). These conditions are con-
jectured to be equivalent to the existence of a constant scalar curvature metric
with Kähler form in c1(L), a conjecture which is sometimes called the Yau-
Tian-Donaldson conjecture. This is one of the big open problems in Kähler
geometry. By the works of e.g. Yau, Tian and Donaldson, a lot of progress has
been made, in particular in the case of Kähler-Einstein metrics, i.e. when L is
a multiple of the canonical bundle. For more on this, we refer the reader to the
expository article [15] by Phong-Sturm.

When L is assumed to be a toric line bundle on a toric variety with associ-
ated polytope P, it was shown by Donaldson in [5] that a torus equivariant test
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configuration is equivalent to specifying a concave rationally piecewise affine
function on the polytope P. This has made it possible to translate algebraic sta-
bility conditions on L into geometric conditions on P, which has proved very
useful.

Specifically, Donaldson has a formula for the Futaki invariant which only
involves the moment polytope and the piecewise affine function (see [5]).

Heuristically, the relationship between a general line bundle L and its Ok-
ounkov body is supposed to mimic the relationship between a toric line bundle
and its associated polytope. Therefore, one would hope that one could translate
a general test configuration into some geometric data on the Okounkov body.
The main goal of this article is to show that this in fact can be done, thus pre-
senting a generalization of the well-known toric picture referred to above, and
described in greater detail in Section 2.7.

In this article we show how to get a concave function on the Okounkov body,
which generalizes the toric picture. Using the concave function one can com-
pute the leading order term in the asymptotic expansion of the first moments.
However, the Okounkov body and the concave function on it does not in general
determine the Futaki invariant, since it also involves the second-order terms in
the expansions. What is special about the toric case is that there the moment
polytope and the piecewise affine function determine the full asymptotics of the
Hilbert polynomial and the first moments of the weight measures.

2.1.3 The concave transform of a test configuration

By a filtration F of the section ring ⊕kH0(kL) we mean a vector space-valued
map from R× N,

F : (t, k) 7−→ FtH0(kL),

such that for any k, FtH0(kL) is a family of subspaces of H0(kL) that is
decreasing and left-continuous in t. F is said to be multiplicative if

(FtH0(kL))(FsH0(mL)) ⊆ Ft+sH0((k +m)L),
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it is left-bounded if for all k

F−tH0(kL) = H0(kL) for t� 1,

and is said to linearly right-bounded if there exist a C such that

FtH0(kL) = {0} for t ≥ Ck.

The filtration F is called admissible if it has all the above properties.
Given a filtration F , one may associate discrete measures ν(F , k) on R in

the following way

ν(F , k) :=
1
kn

d

dt
(−dimFtkH0(kL)),

where the differentiation is done in the sense of distributions.
In their article [2] Boucksom-Chen show how any admissible filtration F

of the section ring ⊕kH0(kL) of L gives rise to a concave function G[F ] on
the Okounkov body ∆(L) of L. G[F ] is called the concave transform of F .
The main result of [2], Theorem A, states that the discrete measures ν(F , k)
converge weakly as k tends to infinity to G[F ]∗dλ|∆(L), the push-forward of
the Lebesgue measure on ∆(L) with respect to the concave transform of F .

Let T be a test configuration on (X,L). Given a section s ∈ H0(kL), there
is a unique invariant meromorphic extension to configuration scheme X . Using
the vanishing order of this extension along the central fiber of X we define a
filtration of the section ring ⊕kH0(kL), which we show has the property that
for any k

µ̃(T , k) = ν(F , k).

We will denote the associated concave transform by G[T ]. Combined with
Theorem A of [2] we thus get our first main result.

THEOREM 1. Given a test configuration T of L there is a concave function

G[T ] on the Okounkov body ∆(L) such that the measures µ̃(T , k) converge

weakly as k tends to infinity to the measure G[T ]∗dλ|∆(L).

We embed our test configuration into C times a projective space PN , so
that the associated action comes from a C×-action on PN . This we can always
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do (see e.g. [19]). The manifold X lies embedded in PN , and we thus via the
action get a family Xτ of submanifolds. As τ tends to 0, Xτ converges in
the sense of currents to an algebraic cycle |X0| (see [6]). We let ωFS denote
the Fubini-Study on PN . Restricted to Xτ the (n, n)-form ωnFS/n! defines a
positive measure, that as τ goes to zero converges to a positive measure dµFS ,
the Fubini-Study volume form on |X0|. There is also a Hamiltonian function h
for the S1-action. Using a result of Donaldson in [6] and Theorem 1 we can
relate this picture with the concave transform by the following Corollary.

COROLLARY 2. Assume that we have embedded the test configuration T in

some PN ×C, let h denote the corresponding Hamiltonian and dµFS the posi-

tive measure on |X0| defined above. Then we have that

h∗dµFS = G[T ]∗dλ|∆(L).

If |X0| is a smooth manifold, on which the S1-action is effective, the mea-
sure h∗dµFS is the sort of measure studied by Duistermaat-Heckman in [7].
They prove that such a Duistermaat-Heckman measure is piecewise polyno-
mial, i.e. the distribution function with respect to Lebesgue measure on R is
piecewise polynomial. For a product test configuration, |X0| ∼= X, therefore
we can apply the result of Duistermaat-Heckman to get the following.

COROLLARY 3. Assume that there is a C×-action on X which lifts to L, and

that the corresponding S1-action is effective. If we denote the associated prod-

uct test configuration by T , the concave transform G[T ] is such that the push-

forward measure G[T ]∗dλ|∆(L) is piecewise polynomial.

We also consider the case of a product test configuration, which means that
there is an algebraic C×-action ρ on the pair (X,L). We let ϕ be a positive S1-
invariant metric on L. Using the action ρ, we get a geodesic ray ϕt of positive
metrics on L such that ϕ1 = ϕ. Let us denote the t derivative at the point one
by ϕ̇. It is a real-valued function on X. There is also a natural volume element,
given by dVϕ := (ddcϕ)n/n!. By the function ϕ̇/2 we can push forward the
measure dVϕ to a measure on R, which we denote by µϕ. This measure does
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not depend on the particular choice of positive S1-invariant metric ϕ. In fact,
we have the following.

THEOREM 4. If we denote the product test configuration by T , and the corre-

sponding concave transform by G[T ], then for any positive S1-invariant metric

ϕ it holds that

µϕ = G[T ]∗dλ|∆(L).

The proof uses Theorem 1 combined with the approach of Berndtsson in [1],
but is simpler in nature.

Phong-Sturm have in their articles [15] and [17] shown that the pair of a test
configuration T and a positive metric ϕ on L canonically determines a C1,1

geodesic ray of positive metrics on L emanating from ϕ. We conjecture that the
analogue of Theorem 4 is true also in that more general case.

In [14] Okounkov considered the case of a connected reductive group G
acting on a projective variety, and there used the concept of an Okounkov body
to prove that in the classical limit the law describing the multiplicities as a
funciton of their respective highest weight was log-concave. The case G =
S1 corresponds to what we have called a product test configuration. However
Okounkov, for his purposes, chooses a flag which is invariant under the group
action, while we let the flag to be chosen independently of the action, focusing
on the resulting concave function on the Okounkov body. See also [10] where
Kaveh-Khovanskii extend the previous work of Okounkov in [14], building a
theory on Okounkov bodies associated to graded G-algebras, obtaining among
other things general results on log-concavity of the accompanying Duistermaat-
Heckman measures.

2.1.4 Organization of the paper

The definition of Okounkov bodies and some fundamental results concerning
them is in Section 2.2, using [12] by Lazarsfeld-Mustaţă as our main reference.

Section 2.3 is devoted to describing the setup, definitions and main results
of the article [2] by Boucksom-Chen on the concave transform of filtrations.
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Section 2.4 contains a brief introduction to test configurations, following
mainly Donaldson in [5] and [6].

We discuss embeddings of test configurations in Section 2.5, and link it to
certain Duistermaat-Heckman measures.

In Section 2.6 we show how to construct the associated filtration to a test
configuration, and prove Theorem 1, Corollary 2 and Corollary 3.

Section 2.7 concerns toric test configurations. We show that what we have
done is a generalization of the toric picture, by proving that in the toric case,
the concave transform is identical to the function on the polytope considered by
Donaldson in [5].

Relying on the work of Ross-Thomas in [18] and [19], we obtain in Section
2.8 an explicit description of the concave transforms corresponding to a special
class of test configurations, namely those arising from a deformation to the
normal cone with respect to some subscheme.

In Section 2.9 we study the case of product test configurations, and relate it
to geodesic rays of positive hermitian metrics. Hence we prove Theorem 4.

2.1.5 Acknowledgements

I wish to thank Robert Berman, Bo Berndtsson, Sebastien Boucksom, Julius
Ross and Xiaowei Wang for many interesting discussions relating to the topic
of this paper.

2.2 The Okounkov body of a line bundle

Let Γ be a subset of Nn+1, and suppose that it is a semigroup with respect to
vector addition, i.e. if α and β lie in Γ, then the sum α+ β should also lie in Γ.
We denote by Σ(Γ) the closed convex cone in Rn+1 spanned by Γ.

DEFINITION 1. The Okounkov body ∆(Γ) of Γ is defined by

∆(Γ) := {α : (α, 1) ∈ Σ(Γ)} ⊆ Rn.
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Since by definition Σ(Γ) is convex, and any slice of a convex body is itself
convex, it follows that the Okounkov body ∆(Γ) is convex.

By ∆k(Γ) we will denote the set

∆k(Γ) := {α : (kα, k) ∈ Γ} ⊆ Rn.

It is clear that for all non-negative k,

∆k(Γ) ⊆ ∆(Γ) ∩ ((1/k)Z)n.

We will explain the procedure, which is due to Okounkov (see [14]), of
associating a semigroup to a big line bundle.

Let X be a complex compact projective manifold of dimension n, and L a
holomorphic line bundle, which we will assume to be big. Suppose we have
chosen a point p in X, and local holomorphic coordinates z1, ..., zn centered at
p, and let ep ∈ H0(U,L) be a local trivialization of L around p. If we divide
a section s ∈ H0(X, kL) by ekp we get a local holomorphic function. It has an
unique represention as a convergent power series in the variables zi,

s

ekp
=
∑

aαz
α,

which for convenience we will simply write as

s =
∑

aαz
α.

We consider the lexicographic order on the multiindices α, and let v(s) denote
the smallest index α such that aα 6= 0.

DEFINITION 2. Let Γ(L) denote the set

{(v(s), k) : s ∈ H0(kL), k ∈ N} ⊆ Nn+1.

It is a semigroup, since for s ∈ H0(kL) and t ∈ H0(mL)

v(st) = v(s) + v(t).

The Okounkov body of L, denoted by ∆(L), is defined as the Okounkov body of

the associated semigroup Γ(L).
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We write ∆k(Γ(L)) simply as ∆k(L).
Remark. Note that the Okounkov body ∆(L) of a line bundle L in fact

depends on the choice of point p inX and local coordinates zi.We will however
supress this in the notation, writing ∆(L) instead of the perhaps more proper
but cumbersome ∆(L, p, (zi)).

From the article [12] by Lazarsfeld-Mustaţă we recall some results on Ok-
ounkov bodies of line bundles.

LEMMA 5. The number of points in ∆k(L) is equal to the dimension of the

vector space H0(kL).

LEMMA 6. We have that

∆(L) = ∪∞k=1∆k(L).

LEMMA 7. The Okounkov body ∆(L) of a big line bundle is a bounded hence

compact convex body.

DEFINITION 3. The volume of a line bundle L, denoted by vol(L), is defined

by

vol(L) := lim sup
k→∞

dimH0(kL)
kn/n!

.

The most important property of the Okounkov body is its relation to the
volume of the line bundle, described in the following theorem.

THEOREM 8. For any big line bundle it holds that

vol(L) = n!volRn(∆(L)),

where the volume of the Okounkov body is measured with respect to the standard

Lesbesgue measure on Rn.

For the proof see [12].

2.3 The concave transform of a filtered linear se-
ries

In this section, we will follow Boucksom-Chen in [2].
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First we recall what is meant by a filtration of a graded algebra.

DEFINITION 4. By a filtration F of a graded algebra ⊕kVk we mean a vector

space-valued map from R× N,

F : (t, k) 7−→ FtVk,

such that for any k, FtVk is a family of subspaces of Vk that is decreasing and

left-continuous in t.

In [2] Boucksom-Chen consider certain filtrations which behaves well with
respect to the multiplicative structure of the algebra.

They give the following definition.

DEFINITION 5. Let F be a filtration of a graded algebra ⊕kVk. We shall say

that

(i) F is multiplicative if

(FtVk)(FsVm) ⊆ Ft+sVk+m

for all k,m ∈ N and s, t ∈ R.

(ii) F is pointwise left-bounded if for each k FtVk = Vk for some t.

(iii) F is linearly right-bounded if there exist a constant C such that for all k,

FkCVk = {0}.

A filtration F is said to be admissible if it is multiplicative, pointwise left-

bounded and linearly right-bounded.

Given a line bundle L on X, its section ring⊕kH0(kL) is a graded algebra.
Boucksom-Chen in [2] show how an admissible filtration on the section

ring ⊕kH0(kL) of a big line bundle L gives rise to a concave function on the
Okounkov body ∆(L). We will review how this is done.

First let us define the following set

∆k,t(L,F) := {v(s)/k : s ∈ FtH0(kL)} ⊆ Rn,
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where as before v(s) = α if locally

s = Czα + higher order terms,

C being some nonzero constant. From the definition it is clear that

∆k,t(L,F) ⊆ ∆k(L),

since

∆k(L) = {v(s)/k : s ∈ H0(kL)}

and FtH0(kL) ⊆ H0(kL). Similarly as in Lemma 5, from [12] we get that

|∆k,t(L,F)| = dimFtH0(kL), (2.1)

where |.| denotes the cardinality of the set.

For each k we may define a function Gk on ∆k(L) by letting

Gk(α) := sup{t : α ∈ ∆k,t(L,F)}.

From the assumption that F is both left- and right-bounded it follows that Gk
is well-defined and real-valued.

LEMMA 9. If we denote by νk(L) the sum of dirac measures at the points of

∆k(L), i.e.

νk(L) :=
∑

α∈∆k(L)

δα,

then we have that

Gk∗νk(L) =
d

dt
(−dimFtH0(kL)).

Proof. By equation (2.1) and the definition of Gk we have that

dimFtH0(kL) = |∆k,t(L,F)| =
∫
{Gk≥t}

dνk(L) =
∫ ∞
t

(Gk)∗(νk(L)).

(2.2)
The lemma now follows by differentiating the equation (2.2).
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On the union ∪∞k=1∆k(L) one may define the function

G[F ](α) := sup{Gk(α)/k : α ∈ ∆k(L)}.

By Boucksom-Chen in [2], or Witt Nyström in [22], one then gets that the
function G[F ] extends to a concave and therefore continuous function on the
interior of ∆(L). In fact one gets that G[F ] is not only the supremum but also
the limit of Gk/k, i.e. for any p ∈ ∆(L)◦

G[F ](p) = lim
k→∞

Gk(αk)/k,

for any sequence αk converging to p.
Remark. To show how this fits into the framework of [22], we note that if

we let
G̃(α, k) := Gk(α/k),

then G̃ is a function on Γ(L). By the multiplicity of F it follows that G̃ is
superadditive, and by the linear right-boundedness, G̃ is going to be linearly
bounded from above. Thus one may apply the results of [22] to this function.

The main result of [2], Theorem A, is that we also have weak convergence
of measures.

THEOREM 10. The measures

1
kn

((Gk/k)∗νk(L))

converge weakly to the measure

G[F ]∗dλ|∆(L)

as k tends to infinity, where dλ|∆(L) denotes the Lebesgue measure on Rn re-

stricted to ∆(L).

2.4 Test configurations

We will give a very brief introduction to the subject of test configurations. Our
main references are the articles [5] and [6] by Donaldson.

First the definition of a test configuration, as introduced by Donaldson in [5].
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DEFINITION 6. A test configuration T for an ample line bundle L over X

consists of:

(i) a scheme X with a C×-action ρ,

(ii) an C×-equivariant line bundle L over X ,

(iii) and a flat C×-equivariant projection π : X → C where C× acts on C by

multiplication, such that L is relatively ample, and such that if we denote

by X1 := π−1(1), then L|X1 → X1 is isomorphic to rL → X for some

r > 0.

By rescaling we can for our purposes without loss of generality assume that
r = 1 in the definition.

A test configuration is called a product test configuration if there is a C×-
action ρ′ on L → X such that L = L × C with ρ acting on L by ρ′ and on
C by multiplication. A test configuration is called trivial if it is a product test
configuration with the action ρ′ being the trivial C×-action.

Since the zero-fiber X0 := π−1(0) is invariant under the action ρ, we get
an induced action on the space H0(kL0), also denoted by ρ, where we have
denoted the restriction of L to X0 by L0. Specifically, we let ρ(τ) act on a
section s ∈ H0(kL0) by

(ρ(τ)(s))(x) := ρ(τ)(s(ρ−1(τ)(x))). (2.3)

Remark. Some authors refer to the inverted variant

(ρ(τ)(s))(x) := ρ−1(τ)(s(ρ(τ)(x)))

as the induced action. This is only a matter of convention, but one has to be
aware that all the weights as defined below changes sign when changing from
one convention to the other.

Any vector space V with a C×-action can be split into weight spaces Vηi
on which ρ(τ) acts as multiplication by τηi , (see e.g. [5]). The numbers ηi with
non-trivial weight spaces are called the weights of the action. Thus we may
write H0(kL0) as

H0(kL0) = ⊕ηVη
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with respect to the induced action ρ.
In [15], Lemma 4, Phong-Sturm give the following linear bound on the

absolute value of the weights.

LEMMA 11. Given a test configuration there is a constant C such that

|ηi| < Ck

whenever dimVηi > 0.

There is an associated weight measure on R :

µ(T , k) :=
∞∑

η=−∞
dimVηδη,

and also the rescaled variant

µ̃(T , k) :=
1
kn

∞∑
η=−∞

dimVηδk−1η. (2.4)

The first moment of the measure µ(T , k), which we will denote by wk,

thus equals the sum of the weights ηi with multiplicity dimVηi . It can also be
seen as the weight of the induced action on the top exterior power of H0(kL0).
The total mass of µ(T , k) is dimH0(kL0), which we will denote by dk. By
the flatness of π it follows that for k large it will be equal to dimH0(kL) (see
e.g. [18]). One is interested in the asymptotics of the weights, and from the
equivariant Riemann-Roch theorem one gets that there is an asymptotic expan-
sion in powers of k of the expression wk/kdk (see e.g. [5]),

wk
kdk

= F0 − k−1F1 +O(k−2). (2.5)

F1 is called the Futaki invariant of T , and will be denoted by F (T ).

DEFINITION 7. A line bundle L is called K-semistable if for all test configu-

rations T of L over X, it holds that F (T ) ≥ 0. L is called K-stable if it is

K-semistable and furthermore F (T ) = 0 iff T is a product test configuration.

Donaldson has conjectured that L being K-stable is equivalent to the exis-
tence of a positive constant scalar curvature hermitian metric with Kähler form
in c1(L) (see [5], [6] and the expository article [16]).
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2.5 Embeddings of test configurations

One way to construct a test configuration of a pair (X,L) is by using a Kodaira
embedding of (X,L) into (PN ,O(1)) for some N . If ρ is a C×-action on PN ,
this gives rise to a product test configuration of (PN ,O(1)). If we restrict to the
image of ρ’s action on (X,L), we end up with a test configuration of (X,L). A
basic fact (see e.g. [19]) is that all test configurations arise this way, so that one
may embed X into PN ×C for some N, the action ρ coming from a C×-action
on PN .

Let T be a test configuration, and assume that we have chosen an embed-
dding as above. Let zi be homogeneous coordinates on PN , and let us define
the following functions

hij :=
ziz̄j
||z||2

.

We assume that we have chosen our coordinates so that the metric ||z||2 is
invariant under the corresponding S1-action on CN+1. Then the infinitesimal
generator of the action ρ is given by a hermitian matrix A. We define a real-
valued function h on PN by

h :=
∑

Aijhij .

It is a Hamiltonian for the S1-action (see [6]). Let ωFS denote the Fubini-Study
form on PN . The zero-fiber X0 of the test configuration can via the embedding
be identified with subsheme of PN , invariant under the action of ρ. By |X0|
we will denote the corresponding algebraic cycle, and we let [X0] denote its
integration current. The wedge product of [X0] with the positive (n, n)-form
ωnFS/n! gives a positive measure, dµFS , with |X0| as its support. We have the
following proposition.

PROPOSITION 12. In the setting as above, the normalized weight measures

µ̃(T , k) of the test configuration converges weakly as k tends to infinity to the

pushforward of the measure dµFS with respect to the Hamiltonian h,

µ̃(T , k)→ h∗dµFS .
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Proof. This is essentially just a reformulation of a result by Donaldson in [6].
Using the weight measures µ̃(T , k), Equation (20) in the proof of Proposition
3 in [6] says that ∫

R
xrdµ̃(T , k) =

∫
|X0|

hrdµFS + o(1).

for any positive integer r. In other words, for all such r, the r-moments of
the measures µ̃(T , k) converge to the r-moment of the pushforward measure
h∗dµFS .But then it is classical that this implies weak convergence of measures.

The measure h∗dµFS is the sort of measure studied by Duistermaat-Heckman
in [7]. They consider a smooth symplectic manifold M with symplectic form
σ, and an effective Hamiltonian torus action on M. This gives rise to a mo-
ment mapping J , which is a map from M to the dual of the Lie algebra of the
torus, which we can naturally identify with Rk, k being the dimension of the
torus (we refer the reader to [7] for the definitions). There is a natural volume
measure on M, given by σn/n!, called the Liouville measure. The pushfor-
ward of the Liouville measure with the moment map J , J∗(σn/n!), is called
a Duistermaat-Heckman measure. They prove that it is absolute continuous
with respect to Lebesgue measure on Rk, and provide an explicit formula, in
the literature referred to as the Duistermaat-Heckman formula, for the density
function f. As a corollary they get the following.

THEOREM 13. The density function f of the measure J∗(σn/n!) is a polyno-

mial of degree less that the dimension of M on each connected component of

the set of regular values of the moment map J.

In our setting the Liouville measure is given by dµFS , and the moment
map J is simply given by the Hamiltonian h. Thus when all components of the
algebraic cycle |X0| are smooth manifolds, and the action is effective, we can
apply Theorem 13 to our measure h∗dµFS and conclude that it is a piecewise
polynomial measure on R. In general of course some components of |X0| may
have singularities. However, one case where we know that X0 is a smooth
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manifolld is when we have a product test configuration, because then X0 = X.

Hence we get the following.

PROPOSITION 14. For a product test configuration, with a corresponding effec-

tive S1-action, it holds that the law of the asymptotic distribution of its weights

is piecewise polynomial.

Proof. By Proposition 12 the law of the asymptotic distribution of weights is
given by the measure h∗dµFS and by the remarks above we can use Theorem
13 to conclude that h∗dµFS is piecewise polynomial.

2.6 The concave transform of a test configuration

Given a test configuration T of L we will show how to get an associated filtra-
tion F of the section ring ⊕kH0(kL).

First note that the C×-action ρ on L via the equation (2.3) gives rise to an
induced action on H0(X , kL) as well as H0(X \ X0, kL), since X \ X0 is
invariant.

Let s ∈ H0(kL) be a holomorphic section. Then using the C×-action ρ
we get a canonical extension s̄ ∈ H0(X \X0, kL) which is invariant under the
action ρ, simply by letting

s̄(ρ(τ)x) := ρ(τ)s(x) (2.6)

for any τ ∈ C× and x ∈ X.
We identify the coordinate t with the projection function π(x), and we also

consider it as a section of the trivial bundle over X . Exactly as for H0(X , kL),
ρ gives rise to an induced action on sections of the trivial bundle, using the same
formula (2.3). We get that

(ρ(τ)t)(x) = ρ(τ)(t(ρ−1(τ)x) = ρ(τ)(τ−1t(x)) = τ−1t(x), (2.7)

where we used that ρ acts on the trivial bundle by multiplication on the t-
coordinate. Thus

ρ(τ)t = τ−1t,
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which shows that the section t has weight −1.
By this it follows that for any section s ∈ H0(kL) and any integer η, we

get a section t−η s̄ ∈ H0(X \X0, kL), which has weight η.

LEMMA 15. For any section s ∈ H0(kL) and any integer η the section t−η s̄

extends to a meromorphic section of kL over the whole of X , which we also

will denote by t−η s̄.

Proof. It is equivalent to saying that for any section s there exists an integer η
such that tη s̄ extends to a holomorphic section S ∈ H0(X , kL). By flatness,
which was assumed in the definition of a test configuration, the direct image
bundle π∗L is in fact a vector bundle over C. Thus it is trivial, since any vector
bundle over C is trivial. By e.g. Lemma 2 in [15] any complex vector bundle
over C with a C×-action has an equivariant trivialization. The trivialization con-
sits of global sections Si, giving a basis at each point t, and with the additional
property that

ρ(τ)Si =
∑

fij(τ)Sj , (2.8)

where the fijs are holomorphic. The action restricts to the fiber over zero,
and thus we have a decomposition in a finite number of weight spaces Vη. By
restricting equation (2.8) to this fiber it follows that the functions fij are Laurent
polynomials in τ whose degrees are bounded from above by the maximum of
the weights η and from below by the minimum of the weights.

Consider a section s ∈ H0(kL). We can write it as s =
∑
aiSi(1). It

follows that

s̄(t) = (
∑

aiρ(t)Si)(t) = (
∑

aifij(t)Sj)(t). (2.9)

Since we observed that the degrees of the Laurent polynomials fijswere bounded
from below, equation (2.9) tells us that s̄(t) extends holomorphically after mul-
tiplying by t raised to some large power.

DEFINITION 8. Given a test configuration T we define a vector space-valued

map F from Z× N by letting

(η, k) 7−→ {s ∈ H0(kL) : t−η s̄ ∈ H0(X , kL)} =: FηH0(kL).
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It is immediate that Fη is decreasing since H0(X , kL) is a C[t]-module.
We can extend F to a filtration by letting

FηH0(kL) := FdηeH0(kL)

for non-integers η, thus making F left-continuous. Since

t−(η+η′)ss′ = (t−η s̄)(t−η
′
s̄′) ∈ H0(X , kL)H0(X ,mL) ⊆ H0(X , (k+m)L)

whenever s ∈ FηH0(kL) and s′ ∈ Fη′H0(kL), we see that

(FηH0(kL))(Fη′H0(mL)) ⊆ Fη+η′H
0((k +m)L),

i.e. F is multiplicative. Furthermore, by Lemma 39 it follows that F is left-
bounded and right-bounded.

PROPOSITION 16. For k � 0

µ(T , k) =
d

dη
(−dimFηH0(kL)).

Proof. Recall that we had the decomposition in weight spaces

H0(kL0) = ⊕ηVη,

and that

µ(T , k) :=
∞∑

η=−∞
dimVηδη.

We have the following isomorphism:

(π∗kL)|{0} ∼= H0(X , kL)/tH0(X , kL),

the right-to-left arrow being given by the restriction map, see e.g. [19]. Also,
for k � 0, (π∗kL)|{0} = H0(kL0), therefore we get that for large k

H0(kL0) ∼= H0(X , kL)/tH0(X , kL), (2.10)

We also have a decomposition ofH0(X , kL) into the sum of its invariant weight
spaces Wη . By Lemma 39 it is clear that a section S ∈ H0(X , kL) lies in Wη
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if and only if it can be written as t−η s̄ for some s ∈ H0(kL), in fact we have
that s = S|X . Thus we get that

Wη
∼= FηH0(kL),

and by the isomorphism (3.38) then

Vη ∼= FηH0(kL)/Fη+1H
0(kL).

Thus we get
dimFηH0(kL) =

∑
η′≥η

dimVη′ , (2.11)

and the lemma follows by differentiating with respect to η on both sides of the
equation (3.39).

PROPOSITION 17. The filtration associated to a test configuration T is always

admissible. If we let Gk[T ] denote the functions on ∆k(L) associated to the

filtration F(T ) as previously definied, then we have that

µ(T , k) = Gk[T ]∗νk(L) (2.12)

and

µ̃(T , k) =
1
kn

((Gk[T ]/k)∗(νk(L))). (2.13)

Proof. The equality of measures (2.12) follows immediately from combining
Lemma 9 and Proposition 16, and (2.13) is just a rescaling of (2.12). Since
by Lemma 38 the weights of a test configuration is linearly bounded, by (2.12)
we get that the same holds for the functions Gk[T ], i.e. the filtration F is
linearly left- and right-bounded. It is hence admissible, since the other defining
properties had already been checked.

THEOREM 18. With the setting as in the proposition above, we have the follow-

ing weak convergence of measures as k tends to infinity

µ̃(T , k)→ G[T ]∗dλ|∆(L).

Proof. Follows from Theorem 10 together with Proposition 17.
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COROLLARY 19. In the asymtotic expansion

wk
kdk

= F0 − k−1F1 +O(k−2)

we have that

F0 =
n!

vol(L)

∫
∆(L)

G(T )dλ.

Proof. Recall that in Section 2.4 we defined wk by

wk :=
∫

R
xdµ(T , k),

i.e. in other words
wk =

∑
η dimVη,

⊕ηVη being the weight space decomposition of H0(kL0).Thus Theorem 18
implies that

lim
k→∞

wk
kn+1

= lim
k→∞

∫
R
xµ̃(T , k) =

∫
R
x(G[T ])∗(dλ|∆(L)) =

∫
∆(L)

G(T )dλ,

(2.14)
using the weak convergence and the definition of the push forward of a measure.
(2.14) together with the standard expansion

dk := dimH0(kL) = knvol(L)/n! + o(kn)

yields the corollary.

Another consequence of Theorem 18 is that it relates the Okounkov body
∆(L) with the central fibre X0, and therefore X, in the sense of the following
corollary.

COROLLARY 20. Assume that we have embedded the test configuration T
in some PN × C, let h denote the corresponding Hamiltonian and dµFS the

Fubini-Study volume measure on |X0| as in Section 2.4. Then we have that

G[T ]∗dλ|∆(L) = h∗dµFS .

Proof. Follows immediately from combining Proposition 12 and Theorem 18.
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As in Section 2.5, if we restrict to the case of product test configurations
where the S1-action is effective, we can apply the Duistermaat-Heckman theo-
rem to these measures, and get the following.

COROLLARY 21. Assume that there is a C×-action on X which lifts to L, and

that the corresponding S1-action is effective. If we denote the associated prod-

uct test configuration by T , the concave transform G[T ] is such that the push-

forward measure G[T ]∗dλ|∆(L) is piecewise polynomial.

Proof. Follows from combining Proposition 14 and Corollary 20.

2.7 Toric test configurations

We will cite some basic facts of toric geometry, all of which can be found in
the article [5] by Donaldson. Let LP → XP be a toric line bundle with cor-
responding polytope P ⊆ Rn. Thus for every k there is a basis for H0(kLP )
such that there is a one-one correspondence between the basis elements and the
integer lattice points of kP. We write this as

α ∈ kP ∩ Zn ↔ zα ∈ H0(kLP ).

In [5] Donaldson describes the relationship between toric test configurations
and the geometry of polytopes. Let g be a positive concave rational piecewise
affine function defined on P. One may define a polytope Q in Rn+1 with P as
its base and the graph of g as its roof, i.e.

Q := {(x, y) : x ∈ P, y ∈ [0, g(x)]}.

That g is rational means precisely that the polytope Q is rational, i.e. it is the
convex hull of a finite set of rational points in Rn. In fact, by scaling we can
without loss of generality assume that Q is integral, i.e. the convex hull of a
finite set of integer points. Then by standard toric geometry this polytope Q
corresponds to a toric line bundle LQ over a toric variety XQ of dimension
n + 1. We may write the correspondence between integer lattice points of kQ
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and basis elements for H0(kLQ) as

(α, η) ∈ kQ ∩ Zn+1 ↔ t−ηzα ∈ H0(kLQ). (2.15)

There is a natural C×-action ρ given by multiplication on the t-variable. We
also get a projection π of XQ down to P1, by letting

π(x) :=
t−η+1zα(x)
t−ηzα(x)

for any η, α such that this is well defined. Donaldson shows in [5] that if one
excludes π−1(∞), then the triple LQ, ρ and π is in fact a test configuration, so
π is flat and the fiber over 1 of (XQ, LQ) is isomorphic to (XP , LP ).

It was shown by Lazarsfeld-Mustaţă in [12], Example 6.1, that if one choses
the coordinates, or actually the flag of subvarieties, so that it is invariant under
the torus action, the Okounkov body of a toric line bundle is equal to its defining
polytope, up to translation. Thus we may assume that P = ∆(LP ) and

v(zα) = α.

The invariant meromorphic extension of the section zα ∈ H0(kLP ) is zα ∈
H0(kLQ), where we have identified XP with the fiber over 1. By our calcu-
lations in Section 2.6, equation (3.36), the weight of t−ηzα is η. Thus we see
that

Gk(α) = sup{η : t−ηzkα ∈ H0(kLQ)} = kg(α),

by the correspondence (2.15) and the fact that g is the defining equation for the
roof of Q. We get that Gk/k is equal to the function g restricted to ∆k(L), and
thus by the convergence of Gk/k to G[T ], that

G[T ] = g.

We see that our concave transform G[T ] is a proper generalization of the
well-known correspondence between test configurations and concave functions
in toric geometry.

It is thus clear that, as was shown for product test configurations in Propo-
sition 21, for toric test configurations it holds that the pushforward measure

G[T ]∗dλ|∆(LP ) = g∗dλ|P
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is the sum of a piecewise polynomial measure and a multiple of a dirac measure,
simply because P is a polytope and g is piecewise affine (the dirac measure part
coming the top of the roof).

2.8 Deformation to the normal cone

One interesting class of test configurations is the ones which arise as a defor-
mation to the normal cone with respect to some subscheme. This is described
in detail by Ross-Thomas in [18] and [19], and we will only give a brief outline
here.

Let Z be any proper subscheme ofX. Consider the blow up ofX×C along
Z ×{0}, and denote it by X . Hence we get a projection π to C by composition
X → X×C→ C.We let P denote the exceptional divisor, and for any positive
rational number c we get a line bundle

Lc := π∗L− cP.

By Kleimans criteria (see e.g. [11]) it follows that Lc is relatively ample for
small c. The action on (X × C, L × C) given by multiplication on the C-
coordinate lifts to an action ρ on (X ,Lc), since both Z × {0} and L × C are
invariant under the action downstairs. Ross-Thomas in [18] show that this data
defines a test configuration.

From the proof of Theorem 4.2 in [18] we get that

H0(X , kLc) =
ck⊕
i=1

tck−iH0(X, kL⊗ J iZ)⊕ tckC[t]H0(kL), (2.16)

for k sufficiently large and ck ∈ N. Here JZ denotes the ideal sheaf of Z, and
the sections of kL are being identified with their invariant extensions. From the
expression (2.16) we can read off the associated filtration F of H0(kL). That

tckH0(kL) ⊆ H0(X , kLc)

means that
F−ckH0(kL) = H0(kL).
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Furthermore, for 0 ≤ i ≤ ck and any s ∈ H0(kL) we get that tck−is ∈
H0(X , kLc) iff s ∈ H0(kL⊗ J iZ). This implies that for −ck ≤ η ≤ 0,

FηH0(kL) = H0(kL⊗ J ck+η
Z ).

Also, when η > 0 we get that FηH0(kL) = {0}. In summary, if we let gc,k be
defined by

gc,k(η) := dmax(η + ck, 0)e

for η ∈ (−∞, 0] and let gc,k ≡ ∞ on (0,∞), then by our calculations

FηH0(kL) = H0(kL⊗ J gc,k(η)
Z ). (2.17)

Thus this natural class of filtrations can be seen as coming from test configura-
tions.

Let us assume that Z is an ample divisor with a defining holomorphic sec-
tion s ∈ H0(Z), i.e. Z = {s = 0}. Let a be a number between zero
and c, then L − aZ is still ample. Using multiplication with ska we can
embed H0(k(L − aZ)) into H0(kL). With respect to this identification of
H0(k(L − aZ)) as a subspace of H0(kL) for all k, we can identify the Ok-
ounkov body of L − aZ with a subset of ∆(L). By vanishing theorems (see
e.g. [12]), for large k

H0(k(L− aZ)) = H0(kL⊗ J kaZ ), (2.18)

and therefore by (2.17)

H0(k(L− aZ)) = Fk(a−c)H
0(kL).

It follows that the part of ∆(L) whereG[T ] is greater or equal to a−c coincides
with ∆(L− aZ).1

Recall that by Theorem 8

volRn∆(L− aZ) =
vol(L− aZ)

n!
.

1We thank Julius Ross for poining this out to us.
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By this, a direct calculation yields that the pushforward measure G[T ]∗dλ|∆(L)

can be written as

vol(L− cZ)
n!

δ0 − χ[−c,0]
d

dx

(
vol(L− (x+ c)Z)

n!

)
dx,

where δ0 denotes the dirac measure at zero and χ[−c,0] the indicator function of
the interval [−c, 0]. Since for any ample (or even nef) line bundle the volume is
given by integration of the top power of the first Chern class,

vol(L) =
∫
X

c1(L)n,

it follows that the volume function is polynomial of degree n in the ample cone.
Thus the measure G[T ]∗dλ|∆(L) is a sum of a polynomial measure of degree
less than n and a dirac measure.

Let again Z be an arbitrary subscheme of X. Consider the blow up of X
along Z, and let E denote the exceptional divisor. If E is irreducible we may
introduce local holomorphic coordinates (zi) on the blow up, such that locally
E is given by the equation z1 = 0.Using these coordinates we get an associated
Okounkov body ∆(L′) where L′ = µ∗L, and µ denotes the projection from the
blow up down to X. However, since all sections of L′ and its multiples are
lifts of sections of L and its multiples, it is customary to think of ∆(L′) as an
Okounkov body ofL (see [12]). We will do that from here on. For s ∈ H0(kL),
the first coordinate of v(s) is equal to the vanishing order of s along Z, i.e. the
largest integer r such that s ∈ H0(kL⊗ J rZ). Thus by (2.17) we get that

∆k,η(L) = {v(s)/k : s ∈ FηH0(kL)} = ∆k(L) ∩ {x1 ≥ gc,k(η)/k}.

Furthermore

Gk(α) = sup{η : α ∈ ∆k,η(L)} =

= sup{η : α1 ≥ gc,k(η)/k} = kmin(α1 − c, 0),

and therefore

G[T ](x) = min(x1 − c, 0).
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2.9 Product test configurations and geodesic rays

There is an interesting interplay between on the one hand test configurations
and geodesic rays in the space of metrics on the other (see e.g. [15] and [17]).
The model case is when we have a product test configuration.

Let HL denote the space of positive hermitian metrics ψ of a positive line
bundle L over X. The tangent space ofHL at any point ψ is naturally identified
with the space of smooth real-valued functions on X. The works of Mabuchi,
Semmes and Donaldson (see [13], [20] and [4]) have shown that there is a nat-
ural Riemannian metric on HL, by letting the norm of a tangent vector u at a
point ψ ∈ HL be defined by

||u||2ψ :=
∫
X

|u|2dVψ,

where dVψ := (ddcψ)n. Let ψt be a ray of metrics, t ∈ (0,∞). We may extend
it to complex valued t in C× if we let ψt be independent on the argument of t.
We say that ψt is a geodesic ray if

(ddcψt)n+1 = 0 (2.19)

on X × C×. The equation (2.19) is the geodesic equation with respect to the
Riemannian metric onHL (see e.g. [17]).

Let T be a product test configuration. That means that there is a C×-action
ρ on the original pair (X,L).Restriction of ρ to the unit circle gives a S1-action.
Let ϕ be an S1-invariant positive metric on L.We get a C× ray τ 7−→ ϕτ ∈ HL
of metrics by letting for any ξ ∈ L

|ξ|ϕτ := |ρ(τ)−1ξ|ϕ. (2.20)

Similarly we get corresponding rays kϕτ in HkL. Since ϕ was assumed to be
S1-invariant, ϕτ only depends on the absolute value |τ |.Also because the action
ρ is holomorphic, it follows that

(ddcϕτ )n+1 = 0,

therefore ϕτ is a geodesic ray.



2.9. PRODUCT TEST CONFIGURATIONS AND GEODESIC RAYS 169

In [1] Berndtsson introduces sequences of spectral measures on R arising
naturally from a geodesic segment of metrics, and shows that they converge
weakly to a certain pushforward of a volume form on X . Inspired by his result,
we consider the analogue in our setting.

Let ϕ̇ denote the derivative of ϕτ at 1, so ϕ̇ is a smooth real-valued function
on X. We consider the positive measure on R we get by pushing forward the
volume form dVϕ := (ddcϕ)n on X with this function divided by two,

µϕ := (ϕ̇/2)∗dVϕ.

The measure µϕ does not does not depend on the choice of S1-invariant metric
ϕ. In fact, we have the following result.

THEOREM 22. Let G[T ] denote the concave transform of the product test con-

figuration. We have an equality of measures

µϕ = G[T ]∗dλ|∆(L).

Proof. We will use one of the main ideas in the proof of the main result of
Berndtsson in [1], Theorem 3.3. However, in our setting where the geodesic
comes from a C×-action things are much simpler since we do not need the
powerful estimates used in [1].

Let dV be some fixed smooth volume form on X. We will introduce two
families of scalar products on H0(kL), parametrized by τ, ||.||τ,1 and ||.||τ,2.
First we let for any s ∈ H0(kL)

||s||2τ,1 :=
∫
X

|s|2kϕτ dV,

while we let

||s||2τ,2 :=
∫
X

|ρ(τ)−1s|2kϕdV = ||ρ(τ)−1s||21,1.

Direct calculations yield that

d

dτ
||s||2τ,1 =

d

dτ

∫
X

|s|2kϕτ dV =
∫
X

(−kϕ̇τ )|s|2kϕτ dV = (T−kϕ̇τ s, s)τ,1,

(2.21)
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where T−kϕ̇τ denotes the Toeplitz operator with symbol −kϕ̇τ .
Differentiating ||.||τ,2 with respect to τ we get that

d

dτ
||s||2τ,2 =

d

dτ
(ρ(τ)−1s, ρ(τ)−1s)1,1 = ((

d

dτ
ρ(τ)−2)s, s)1,1. (2.22)

On the other hand

||s||2τ,1 =
∫
X

|s(x)|2kϕτ dV (x) =
∫
X

|ρ(τ)−1(s(x))|2kϕdV (x) =

=
∫
X

|(ρ(τ)−1s)(x)|2kϕdV (ρ(τ)x) =
∫
X

|ρ(τ)−1s|2kϕdVτ , (2.23)

where dVτ (x) := dV (ρ(τ)x) thus denotes the resulting volume form after the
τ -action. Since dVτ (x) depends smoothly on τ, using (2.23) we get that∣∣∣∣ ddτ |τ=1

||s||2τ,1 −
d

dτ |τ=1
||s||2τ,2

∣∣∣∣ = (2.24)

=
∣∣∣∣ ddτ |τ=1

∫
X

|ρ(τ)−1s|2kϕ(dVτ − dV )
∣∣∣∣ ≤

≤
∫
X

| d
dτ |τ=1

dVτ |
∫
X

|s|2kϕdV = C||s||21,1, (2.25)

where thus C is a uniform constant independent of s and k. Therefore letting
τ = 1 in equations (2.21) and (2.22), and using (2.24) we get that

d

dτ
ρ(τ)|τ=1 = Tkϕ̇/2 + Ek, (2.26)

where the error term Ek is uniformly bounded, ||Ek|| < C ′.

LetA be a self-adjoint operator on aN -dimensional Hilbert space, and let λi
denote the eigenvalues ofA,which therefore are real, counted with multiplicity.
The spectral measure of A, denoted by ν(A), is defined as

ν(A) :=
∑
i

δλi .

We consider the normalized spectral measure of Tkϕ̇/2,

νk :=
1
kn
ν(Tkϕ̇/2/k).
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By Theorem 3.2 in [1], which is a variant of a theorem of Boutet de Monvel-
Guillemin (see [3]), we get that the measures νk converge weakly as k tends to
infinity to the measure µϕ.

Let H0(kL) =
∑
η Vη be the decomposition in weight spaces, and let Pη

denote the projection to Vη. Then

ρ(τ) =
∑
η

τηPη,

and thus
d

dτ
ρ(τ)|τ=1 =

∑
ηPη. (2.27)

From (2.27) we see that the normalized spectral measures of d
dτ ρ(τ)|τ=1,which

we denote by µk, coincides with the previously defined weight measure

µ̃(T , k) =
1
kn

∞∑
η=−∞

dimVηδk−1η.

According to Theorem 18 the sequence µ̃(T , k), and therefore µk, converges
weakly to the measure G[T ]∗dλ|∆(L).

Lastly, by the the min-max principle, when perturbing an operator A by an
operator E with small norm ||E|| < ε, then each eigenvalue is perturbed at
most by ε. Thus from (2.26) it follows that νk − µk converges weakly to zero,
and the theorem follows.

We will relate this result to our previous discussion on Duistermaat-Heckman
measures in Section 2.5 and 2.6, by showing that the map ϕ̇/2 is a Hamiltonian
for the S1-action when the symplectic form is given by ddcϕ. This is of course
well-known (see e.g. [4]), but we include it here for the benefit of the reader.

Let V be the holomorphic vector field on X generating the action ρ. Hence,
the imaginary part ImV of V generates the S1-action. By definition, ϕ̇/2 is a
Hamiltonian if it holds that

ImV cddcϕ = dϕ̇/2, (2.28)

where c denotes the contraction operator.
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If we can show that
−iV cddcϕ = ∂̄ϕ̇/2,

equation (2.28) will follow by taking the real part on both sides. We calculate
locally with respect to some trivialization and without loss of generality we may
assume that

V =
∂

∂z1
.

Recall that by definition

ddcϕ =
i

2

∑ ∂2ϕ

∂zi∂z̄j
dzi ∧ dz̄j .

Hence we get that

−iV cddcϕ =
1
2

∑ ∂2ϕ

∂z1∂z̄j
dz̄j =

1
2
∂̄
∂ϕ

∂z1
.

Since V = ∂/∂z1 generates the action, it follows that locally ∂/∂z1ϕ = ϕ̇, and
we are done.
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3
Analytic test configurations and

geodesic rays

ABSTRACT

Starting with the data of a curve of singularity types, we use the Legen-
dre transform to construct weak geodesic rays in the space of locally bounded
metrics on an ample line bundle L over a compact manifold. Using this we
associate weak geodesics to suitable filtrations of the algebra of sections of L.
In particular this works for the natural filtration coming from an algebraic test
configuration, and we show how this in the non-trivial case recovers the weak
geodesic ray of Phong-Sturm.
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3.1 Introduction

Let H(L) be the space of smooth strictly positive hermitian metrics on an am-
ple line bundle L over a compact manifold X . Then, by the work of Mabuchi,
Semmes and Donaldson (see [24], [32], [18]), H(L) has the structure of an in-
finite dimensional symmetric space with a canonical Riemannian metric. Thus
a natural way to study this space is through its geodesics, an approach that
has been taken up by a number of authors (e.g. Chen-Tian, Donaldson, Phong-
Sturm, Mabuchi and Semmes among others).

In this paper we give a general method for constructing weak geodesics in
the space of locally bounded positive metrics on L. The initial data consists
of a fixed smooth positive metric φ and a curve of singular positive metrics
ψλ on L for λ ∈ R that is concave in λ. We are really only interested in the
singularity type of ψλ, so we consider the equivalence class of ψλ under the
relation ψλ ∼ ψ′λ if ψλ−ψ′λ is bounded globally on X . We define the maximal

envelope of this data to be

φλ := sup{ψ : ψ ≤ φ and ψ ∼ ψλ}∗

where the supremum is over positive metrics ψ with the same singularity type
as ψλ, and the star denotes the operation of taking the upper-semicontinuous
regularization.

THEOREM 1. Suppose ψλ is a test curve (as defined in (11)) and φ ∈ H(L),

and consider the Legendre transform of its maximal envelope φλ given by

φ̂t := sup
λ
{φλ + λt}∗ for t ∈ [0,∞).

Then φ̂t is a weak geodesic ray in the space of locally bounded positive metrics

on L that emanates from φ.

We recall what is meant by a weak geodesic. Let A := {ea < |z| < eb} be
an annulus and π be the projection X × A→ X. Given a curve φt, a < t < b,

of positive metrics, consider the metric Φ(x,w) := φlog |w|(x) on π∗(L). Then
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a simple calculation reveals that if the φt are smooth then the geodesic equation
for φt is equivalent to the degenerate homogeneous Monge-Ampère equation

Ωn+1 = 0 on X ×A, (3.1)

where Ω = π∗ω0 + ddcΦ and ω0 is the curvature of the initial metric. A curve
of locally bounded positive metrics is said to be a weak geodesic if it solves
(3.1) in sense of currents.

The first step in our approach to Theorem 1 is showing that the Monge-
Ampère measure of the maximal envelope φλ satisfies

MA(φλ) = 1{φλ=φ}MA(φλ) for all λ, (3.2)

where 1S denotes the characteristic function of a set S. We say that a positive
metric φλ bounded by φ and having property (3.2) is maximal with respect to
φ (see Definition 10), and a test curve φλ where φλ is maximal with respect
to φ for all λ is referred to as a maximal test curve. We show that the Aubin-
Mabuchi energy of the Legendre transform of a maximal test curve is linear in
t, which is well known to be equivalent to (3.1) once it is established the curve
is a subgeodesic.

A now standard conjecture, originally due to Yau, states that for a smooth
projective manifold it should be possible to detect the existence of a constant
scalar curvature Kähler metric algebraically. Through ideas developed by many
authors (e.g. Chen, Donaldson, Mabuchi, Tian) a general picture has emerged
in which such metrics appear as critical points of certain energy functionals that
are convex along smooth geodesics. The input from algebraic geometry arises
through Donaldson’s notion of a test configuration which, roughly speaking, is
a one-parameter algebraic degeneration of our original projective manifold.

In a series of papers, Phong-Sturm show how one can naturally associate a
weak geodesic ray to a test configuration [25, 26, 28]. (See also [1] by Arezzo-
Tian, [11, 12] by Chen, [14] by Chen-Tang and [13] by Chen-Sun for other
constructions of geodesic rays related to test configurations.) We show how the
geodesic constructed above can be viewed as a generalization of the geodesic
of Phong-Sturm.
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Generalizing slightly, suppose that Fk,λ, for k ∈ N, λ ∈ R is a multi-
plicative filtration of the graded algebra ⊕kH0(X, kL). Using our underlying
smooth positive metric φ we have an L2-inner product on eachH0(X, kL), and
thus can consider the associated Bergman metric

φk,λ =
1
k

ln
∑
α

|sα|2

where {sα} is an orthonormal basis for Fk,λk ⊂ H0(X, kL).

THEOREM 2. Suppose that Fk,λ is left continuous and decreasing in λ and

bounded (see (18)). Then there is a well-defined limit

φFλ = ( lim
k→∞

φk,λ)∗.

Furthermore this limit is maximal except possibly for one critical value of λ,

and its Legendre transform is a weak geodesic ray.

In particular this applies to a natural filtration associated to a test configu-
ration, and thus we have associated a weak geodesic to any such test configu-
ration. We prove that, in the case when the analytic test configuration we get
is non-trivial, we recover the construction of Phong-Sturm. Hence one inter-
pretation of Theorem 1 is that in the problem of finding weak geodesics, the
algebraic data of a test configuration can be replaced with a curve of singularity
types which we thus refer to as an analytic test configuration.

It should be stressed that in the problem of finding constant scalar curvature
metrics it is important to have control of the regularity of geodesics under con-
sideration. By using approximations to known regularity results of solutions of
Monge-Ampère equations, Phong-Sturm prove that their weak geodesic is in
fact C1,α for 0 < α < 1 (see [28]). It is interesting to ask whether such regu-
larity holds more generally, which is a topic we hope to address in a future work.

Organization: We start in Section 3.2 with some motivation from convex
analysis, and Section 3.3 contains preliminary material on the space of singular
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metrics, the Monge-Ampère measure and the Aubin-Mabuchi functional. The
real work starts in Section 3.4 where we consider the maximal envelopes as-
sociated to a given singularity type. Along the way we prove a generalization
of a theorem of Bedford-Taylor which says that such envelopes are maximal
(Theorem 20). This is then extended to the case of a test curve of singularities,
and in Section 3.6 we discuss the Legendre transform and prove Theorem 1.

Following these analytic results, we move on to the algebraic picture. In
Section 3.7 we associate a test curve to a suitable filtration of the coordinate
ring of (X,L), and prove Theorem 2. We then recall how such filtrations arise
from test configurations, and in Section 3.9 show how this agrees with the con-
struction of Phong and Sturm.

Acknowledgments: We would like to thank Robert Berman, Bo Berndtsson,
Sebastian Boucksom, Yanir Rubenstein, Richard Thomas for helpful discus-
sions. We also thank Dano Kim for pointing out a mistake in a previous version
of this paper. The first author is supported in part by a Marie Curie Grant
(PIRG-GA-2008-230920).

3.2 Convex motivation

This section contains some motivation from convex analysis in the study of the
homogeneous Monge-Ampère equation. Much of this material is standard; our
main references are the two papers [30] and [31] by Rubinstein-Zelditch. Al-
though this is logically independent of the rest of the paper, the techniques used
are very similar: we shall presently see how solutions to this equation can be
found using the Legendre transform in two different, but ultimately equivalent,
ways.

Let Conv(Rn) denote the space of convex functions on Rn. We take the
convention that the function identically equal to −∞ is in Conv(Rn).

DEFINITION 1. Let φ be a C2 convex function on an open subset of Rn. The

(real) Monge-Ampère measure of φ, denoted by MA(φ), is the Borel measure
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defined as

MA(φ) := d
∂φ

∂x1
∧ ... ∧ d ∂φ

∂xn+1
.

FurthermoreMA has an unique extension to a continuous operator on the cone

of (finite-valued) convex functions (see [31] for references). If φ is C2 then

MA(φ) = det(∇2φ)dx = (∇φ)∗dx, (3.3)

i.e. the Monge-Ampère measure is the pullback of the Lebesgue measure under

the gradient map.

If φ ∈ Conv(Rn), let ∆φ denote the set of subgradients of φ, i.e. the set of
points y in Rn such that the convex function φ − x · y is bounded from below.
So, if φ is differentiable then ∆φ is simply the image of ∇φ. One can easily
check that ∆φ is convex, that if r > 0 then ∆rφ = ∆φ and ∆φ+ψ ⊆ ∆φ + ∆ψ.

When φ is C2 it follows from equation (3.3) that the total mass of the
Monge-Ampère measureMA(φ) equals the Lebesgue volume of the set of gra-
dients ∆φ. An important fact [31] is that this is true for all convex functions on
Rn with linear growth, i.e.∫

Rn
MA(φ) = vol(∆φ). (3.4)

We say two convex functions φ and ψ are equivalent if |φ− ψ| is bounded,
and denote this by φ ∼ ψ. Since for two equivalent convex functions φ and ψ
with linear growth we clearly have that

∆φ = ∆ψ,

it follows from (3.4) that∫
Rn
MA(φ) =

∫
Rn
MA(ψ) whenever φ ∼ ψ.

DEFINITION 2. Let φ ∈ Conv(Rn) and let φ̇ be a bounded continuous function

on Rn. A curve φt in Conv(Rn), t ∈ [a, b], is said to solve the Cauchy problem
for the homogeneous real Monge-Ampère equation, abbreviated as HRMA, with
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initial data (φ, φ̇), if the function Φ(x, t) := φt(x) is convex on Rn× [a, b], and

satisfies the equation

MA(Φ) = 0 on the strip Rn × (a, b),

with initial data

φ0 = φ,
∂

∂t |t=0+
φt = φ̇.

Let φ0 and φ1 be two equivalent convex functions with linear growth, and
φt be the affine curve between them. The energy of φ1 relative to φ0, denoted
by E(φ1, φ0) is defined as

E(φ1, φ0) :=
∫ 1

t=0

(∫
Rn

(φ1 − φ0)MA(φt)
)
dt.

We observe that by the linear growth assumption it follows that the relative
energy E(φ1, φ0) is finite. This energy has a cocycle property, namely if φ0, φ1

and φ2 are equivalent with finite energy then

E(φ2, φ0) = E(φ2, φ1) + E(φ1, φ0),

which is easily seen to be equivalent to the fact that

∂

∂t
E(φt, φ) =

∫
Rn

∂

∂t
φtMA(φt).

The energy along a smooth curve φt of convex functions with linear growth is
related to the Monge-Ampère measure of Φ(x, t) := φt(x) by the identity∫

Rn×[a,b]

MA(Φ) =
∂

∂t |t=b
E(φt, φa)− ∂

∂t |t=a
E(φt, φa). (3.5)

Thus a smooth curve φt of equivalent convex functions of linear growth solves
the HRMA equation if and only if Φ is convex and the energy E(φt, φa) is linear
in t.

As is noted in [30] the Cauchy problem is not always solvable. Nevertheless
there is a standard way to produce solutions φt with t ∈ [0,∞) to the homo-
geneous Monge-Ampère equation with given starting point φ0 = φ using the
Legendre transform. We give a brief account of this.



184 CHAPTER 3. PAPER III

For simplicity assume from now on that φ is differentiable and strictly con-
vex. Recall that the Legendre transform of φ, denoted by φ∗, is the function on
∆φ defined as

φ∗(y) := sup
x
{x · y − φ(x)}

(which we can also think of as being defined on the whole of Rn, by being +∞
outside of ∆φ). Since φ∗ is defined as the supremum of the linear functions
x · y − φ(x), it is convex. In fact, one can show that φ being differentiable and
strictly convex implies that φ∗ is also differentiable and strictly convex.

For a given y ∈ ∆φ, the function x · y − φ(x) is strictly concave, and is
maximized at the point where the gradient is zero. Thus we get that

φ∗(y) = x · y − φ(x) where ∇φ(x) = y, (3.6)

and hence
∇φ∗(y) = x where ∇φ(x) = y.

The Legendre transform is an involution. For using the above formula for φ∗∗

we deduce that ∇φ∗∗(x) = y, for x such that ∇φ∗(y) = x which holds when
∇φ(x) = y, i.e.

∇φ∗∗(x) = ∇φ(x).

If ∇φ(x) = y, then φ∗(y) = x · y − φ(x), therefore

φ∗∗(x) = x · y − φ∗(y) = x · y − (x · y − φ(x)) = φ(x),

and hence φ∗∗ = φ.

LEMMA 3. If φt is a curve of convex functions, then for any point y ∈ ∆φt

∂

∂t
φ∗t (y) = − ∂

∂t
φt(x),

where x is the point such that∇φ(x) = y.

Proof. Let xt be the solution to the equation ∇φt(xt) = y. By the implicit
function theorem xt varies smoothly with t. By equation (3.6) we know

∂

∂t
φ∗t (y) =

∂

∂t
(xt · y − φt(x)) =

∂

∂t
(xt · y − φ(x))− ∂

∂t
φt(x).
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Since xt · y − φ(x) is maximized at x = x0 the derivative of that part vanishes
at t = 0, so we get the lemma for t = 0, and similarly for all t.

This leads us to the following formula relating the energy with the Legendre
transform,

LEMMA 4. We have that

E(φt, φ) =
∫

∆φ

(φ∗ − φ∗t )dy. (3.7)

Proof. We noted above that the derivative with respect to t of the left-hand side
of (3.7) is equal to ∫

Rn

∂

∂t
φtMA(φt).

On the other hand, differentiating the right-hand side yields

∂

∂t

∫
∆φ

(φ∗ − φ∗t )dy = −
∫

∆φ

∂

∂t
φ∗t dy =

∫
∆φ

∂

∂t
φt(∇φ−1

t (y))dy =∫
Rn

∂

∂t
φt(∇φt)∗dy =

∫
Rn

∂

∂t
φtMA(φt),

where we used Lemma 3 and the fact that (∇φt)∗dy = MA(φt). Since both
sides of the equation (3.7) is zero when φt = φ and the derivatives coincide, we
get that they must be equal for all t.

Now fix a smooth bounded strictly concave function u on ∆φ and let

φ̃t := (φ∗ − tu)∗.

By the involution property of the Legendre transform (φ̃t)∗ = φ∗ − tu.

PROPOSITION 5. The curve φ̃t, t ∈ [0,∞) solves the HRMA equation.

To see this note that from (3.7) it follows that

E(φ̃t, φ) =
∫

∆φ

(φ∗ − φ̃∗t )dy =
∫

∆φ

(φ∗ − φ∗ + tu)dy = t

∫
∆φ

udy,

which is linear in t. The convexity of Φ̃(t, x) = φ̃t(x) can of course be shown
directly, but it also follows from another characterization of φ̃t that also involves
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a Legendre transform, but in the t-coordinate instead of in the x-coordinates
which we now discuss.

Let Aλ be the subset of ∆φ where u is greater than or equal to λ and let φλ
be defined as

φλ := sup{ψ ≤ φ : ψ ∈ Conv(Rn),∆ψ ⊆ Aλ}.

LEMMA 6. The curve of functions φλ is concave in λ and

{φλ = φ} = {x : ∇φ(x) ∈ Aλ}.

Proof. Let ψi ≤ φ be such that ∆ψi ⊆ Aλi with i = 1, 2. Let 0 < t < 1. From
our discussion above it follows that tψ1 + (1− t)ψ2 ≤ φ and

∆tψ1+(1−t)ψ2 ⊆ t∆ψ1 + (1− t)∆ψ2 ⊆ tAλ1 + (1− t)Aλ2 ⊆ Atλ1+(1−t)λ2 ,

where the last inclusion follows from the fact that u was assumed to be con-
cave. For the second statement, it is easy to see that in fact φλ is equal to the
supremum of affine functions x · y + C bounded by φ and y lying in Aλ.

DEFINITION 3. For t ≥ 0 let φ̂t be defined as

φ̂t := sup
λ
{φλ + tλ}.

Since for each λ the function (x, t) 7→ φλ(x) + tλ is convex in all its
variables, and the supremum of convex functions is convex, we get Φ̂(x, t) :=
φ̂t(x) is convex.

PROPOSITION 7. We have that φ̃t = φ̂t. In particular this proves that Φ̃ is

convex, thereby proving φ̃t solves the HRMA equation (Proposition 5).

Proof. We claim
∂

∂t
φ̂t(x) = u(∇φ̂t(x)). (3.8)

To see this first consider the right-derivative at t = 0. As we noted above, the
gradient of a Legendre transform is the point where the maximum is attained,
thus in this case

∂

∂t
|t=0+ φ̂t(x) = sup{λ : φλ(x) = φ(x)}.
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By the second statement in Lemma 6 it follows that this supremum is equal to
u(∇φ(x)), and we are done for t = 0. On the other hand it is easy to see that

φ̂t1+t2 = ψ̂t2 ,

with ψ := φ̂t1 . Using this we get that the equation (3.8) holds for all t. Thus by
Lemma 3 the Legendre transform of φ̂t is equal to φ− tu, so by the involution
property of the Legendre transform φ̂t coincides with φ̃.

Now the above discussion can be applied as follows. Let ψλ be a concave
curve in Conv(Rn), with |ψλ − φ| bounded for λ < −C and ψλ ≡ −∞ for
λ > C for some constant C. We call such a curve a test curve. Define φλ as

φλ := sup{ψ : ψ ≤ φ, ψ ≤ ψλ + o(1), ψ ∈ Conv(Rn)}.

Let also u be the function on ∆φ defined by

u(y) := sup{λ : y ∈ ∆ψλ}.

Since ψλ was assumed to be concave it follows that u is concave, so in fact

φλ = sup{ψ ≤ φ : ψ ∈ Conv(Rn),∆ψ ⊆ {u ≥ λ}}.

From Proposition 7, φ̂t solves the homogeneous real Monge-Ampère equa-
tion. Thus in order to get solutions to the HRMA, instead of starting with a
concave function u on ∆φ we can just as well start with a test curve ψλ. In
the subsequent sections we will show how this construction carries over in the
context of positive metrics on line bundles.

3.3 Preliminary Material

We collect here some preliminary material on the space of positive metrics,
the (non pluripolar) Monge-Ampère measure and the Aubin-Mabuchi energy
functional. Most of this material is standard, and we give proofs only for those
results for which we did not find a convenient reference.
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3.3.1 The space of positive singular metrics

Let X be a compact Kähler manifold of complex dimension n, and let L be an
ample line bundle on X. A continuous (or smooth) hermitian metric h = e−φ

on L is a continuous (or smooth) choice of scalar product on the complex line
Lp at each point p on the manifold. If f is a local holomorphic frame for L on
Uf , then one writes

|f |2h = hf = e−φf ,

where φf is a continuous (or smooth) function on Uf . We will use the conven-
tion to let φ denote the metric h = e−φ, thus if φ is a metric on L, kφ is a metric
on kL := L⊗k.

The curvature of a smooth metric is given by ddcφ which is the (1, 1)-form
locally defined as ddcφf , where f is any local holomorphic frame. Here dc is
short-hand for the differential operator

i

2π
(∂ − ∂̄),

so ddc = i/π∂∂̄. A classic fact is that the curvature form of a smooth metric φ
is a representative for the first Chern class of L, denoted by c1(L). The metric
φ is said to be strictly positive if the curvature ddcφ is strictly positive as a
(1, 1)-form, i.e. if for any local holomorphic frame f, the function φf is strictly
plurisubharmonic. We let H(L) denote the space of smooth strictly positive
(i.e. locally strictly plurisubharmonic) metrics on L, which is non-empty since
we assumed that L was ample.

A positive singular metric ψ is a metric that can be written as ψ := φ +
u, where φ is a smooth metric and u is a ddcφ-psh function, i.e. u is upper
semicontinuous and ddcψ := ddcφ + ddcu is a positive (1, 1)-current. For
convenience we also allow u ≡ −∞. We let PSH(L) denote the space of
positive singular metrics on L.

As an important example, if {si} is a finite collection of holomorphic sec-
tions of kL, we get a positive metric ψ := 1

k ln(
∑
|si|2) which is defined by

letting for any local frame f ,

e−ψf :=
|f |2

(
∑
|si|2)1/k

.
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We note that PSH(L) is a convex set, since any convex combination of
positive metrics yields a positive metric. Another important fact is that if ψi ∈
PSH(L) for all i ∈ I are uniformly bounded above by some fixed positive
metric, then the upper semicontinuous regularization of the supremum denoted
by (sup{ψi : i ∈ I})∗ lies in PSH(L) as well. If ψ is in PSH(L), then the
translate ψ + c where c is a real constant is also in PSH(L). For any ψ ∈
PSH(L), ddcψ is a closed positive (1, 1)-current, and from the ddc lemma it
follows that any closed positive current cohomologous with ddcψ can be written
as ddcφ for some φ in PSH(L). By the maximum principle this φ is uniquely
determined up to translation.

If there exists a constant C such that ψ ≤ φ + C, we say that ψ is more
singular than φ, and we will write this as

ψ � φ.

If both ψ � φ and φ � ψ we say that ψ and φ are equivalent, which we write
as ψ ∼ φ. Following [9] an equivalence class [ψ] is called a singularity type,
and we introduce the notation Sing(L) for the set of singularity types. If ψ is
equivalent to an element inH(L) we say that ψ is locally bounded.

The singularity locus of a positive metric ψ is the set where ψ is minus in-
finity, i.e. the set where ψf = −∞ when f is a local frame. The unbounded
locus of ψ is the set where ψ is not locally bounded. Recall that a set is said
to be complete pluripolar if it is locally the singularity locus of a plurisubhar-
monic function. In [9] BEGZ (Boucksom-Eyssidieux-Guedj-Zeriahi) give the
following definition.

DEFINITION 4. A positive metric ψ is said to have small unbounded locus if its

unbounded locus is contained in a closed complete pluripolar subset of X .

We note that metrics of the form 1
k ln(

∑
|si|2) have small unbounded locus,

since they are locally bounded away from the algebraic set ∪i{si = 0} which
is a closed pluripolar set.
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3.3.2 Regularization of positive singular metrics

If f is a plurisubharmonic function on an open subset U of Cn then using a
convolution we can write f as the limit of a decreasing sequence of smooth
plurisubharmonic functions on any relatively compact subset of U.

If ψ is a positive singular metric, we can use a partition of unity with respect
to some open coverUfi to patch together the smooth decreasing approximations
of ψfi . Thus any positive singular metric can be written as the pointwise limit of
a decreasing sequence of smooth metrics, but of course because of the patching
these smooth approximations will in general not be positive.

A fundamental result due to Demailly [16] is that any positive singular met-
ric can be approximated by metrics of the form k−1 ln(

∑
i |si|2), where si are

sections of kL. Let I(ψ) denote the multiplier ideal sheaf of germs of holomor-
phic functions locally integrable against e−ψf dV, where f is a local frame for
L and dV is an arbitrary volume form. We get a scalar product (., .)kψ on the
space H0(kL⊗ I(kψ)) by letting

||s||2kψ :=
∫
X

|s|2e−kψdV.

Let {si} be an orthonormal basis for H0(kL⊗ I(kψ)) and set

ψk :=
1
k

ln(
∑
|si|2).

THEOREM 8. The sequence of metrics ψk converge pointwise to ψ as k tends

to infinity, and there exists a constant C such that for large k,

ψ ≤ ψk +
C

k
.

As a reference see [17], but the results of Demailly are in fact much stronger
than that stated here, and hold in greater generality [16]. When ψ is assumed
to be smooth and strictly positive, a celebrated result by Bouche-Catlin-Tian-
Zelditch [7, 10, 35, 39] on Bergman kernel asymptotics implies that the ψk in
fact converge to ψ in any Cm norm.

Using a variation of this construction Guedj-Zeriahi prove in [21] that any
positive singular metric on an ample line bundle is the pointwise limit of a
decreasing sequence of smooth positive metrics.
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3.3.3 Monge-Ampère measures

Let ψi, 1 ≤ i ≤ n, be an n-tuple of positive metrics, so for each i, ddcψi is a
positive (1, 1)-current. If all ψi are smooth one can consider the wedge product

ddcψ1 ∧ ... ∧ ddcψn, (3.9)

which is a positive measure on X. The fundamental work of Bedford-Taylor
shows that one can still take the wedge product of positive currents ddcψi to
get a positive measure as long as the metrics ψi are all locally bounded. The
Monge-Ampère measure of a locally bounded positive metric ψ, is then defined
as the positive measure

MA(ψ) := (ddcψ)n.

This measure does not put any mass on pluripolar sets (i.e. sets that are locally
contained in the unbounded locus of a local plurisubharmonic function). We
recall the following important continuity property, proved in [2].

THEOREM 9 (Bedford-Taylor). If ψi,k, 1 ≤ i ≤ n + 2, k ∈ N, are sequences

of locally bounded positive metrics such that each ψi,k decreases to a locally

bounded positive metric ψi, then the signed measures (ψ1,k − ψ2,k)ddcψ3,k ∧
... ∧ ddcψn+2,k converge weakly to (ψ1 − ψ2)ddcψ3 ∧ ... ∧ ddcψn+2. If each

sequence of locally bounded positive metrics ψi,k instead increase pointwise

a.e. to a positive metric ψi, then again the measures (ψ1,k − ψ2,k)ddcψ3,k ∧
... ∧ ddcψn+2,k converge weakly to (ψ1 − ψ2)ddcψ3 ∧ ... ∧ ddcψn+2.

Since the curvature form ddcφ of any smooth metric φ is a representative of
c1(L), we see that if φi is any n-tuple of smooth metrics then∫

X

ddcφ1 ∧ ... ∧ ddcφn =
∫
X

c1(L)n (3.10)

which is just a topological invariant of L. Since any positive metric can be ap-
proximated from above in the manner of Theorem 9 by positive metrics that are
smooth, we see that (3.10) still holds if the φi are merely assumed to be locally
bounded instead of smooth.
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Recall that a plurisubharmonic function is, by definition, upper semicontin-
uous, so if ψ is a positive metric then for each local frame f the function ψf is
upper semicontinuous. The plurifine topology is defined as the coarsest topol-
ogy in which all local plurisubharmonic functions are continuous; a basis for
this topology is given by sets of the form A ∩ {u > 0}, where A is open in the
standard topology and u is a local plurisubharmonic function. This topology
has the quasi-Lindelöf property [3, Thm 2.7], meaning that an arbitrary union
of plurifine open sets differs from a countable subunion by at most a pluripolar
set. Any basis set A ∩ {u > 0} is Borel, so it follows from the quasi-Lindelöf
property that the plurifine open (and closed) sets lie in the completion of the
Borel σ-algebra with respect to any Monge-Ampère measure [3, Prop 3.1].

DEFINITION 5. A function f is said to be quasi-continuous on a set Ω if for

every ε > 0 there exists an open set U with capacity less than ε so that f is

continuous on Ω \ U.

We refer to [2] for the definition of capacity. By [3, Thm 4.9] plurisubhar-
monic functions are quasi-continuous.

If fk is a sequence of non-negative continuous functions increasing to the
characteristic function of an open set A then the characteristic function of a ba-
sis set A∩{u > 0} is the increasing limit of the non-negative quasi-continuous
functions

kfk(max{u, 0} −max{u− 1/k, 0}).

From this fact and the quasi-Lindelöf property it follows that the characteris-
tic function of any plurifine open set differs from an increasing limit of non-
negative quasi-continuous functions at most on a pluripolar set.

A fundamental property of the Bedford-Taylor product is that it is local in
the plurifine topology, so if ψi = ψ′i for all i on some plurifine open set O then

1Oddcψ1 ∧ ... ∧ ddcψn = 1Oddcψ′1 ∧ ... ∧ ddcψ′n,

where 1O denotes the characteristic function of O. We also have that the con-
vergence in Theorem 9 is local in this topology [3, Thm 3.2], i.e. we get con-
vergence when testing against bounded quasi-continuous functions.
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LEMMA 10. Let ψk be a sequence of locally bounded positive metrics that

decreases pointwise (or increases a.e.) to a locally bounded positive metric ψ,

and let O be a plurifine open set. Then

1OMA(ψ) ≤ lim inf
k→∞

1OMA(ψk),

where the lim inf is to be understood in the weak sense, i.e. when testing against

non-negative continuous functions.

Proof. Let ui be a sequence of quasi-continuous functions increasing to 1O
except on a pluripolar set. Let f be a non-negative continuous function. Since
uiMA(ψk) converges weakly to uiMA(ψ), and MA(ψk) does not put any
mass on a pluripolar set,∫

X

fuiMA(ψ) = lim
k→∞

∫
X

fuiMA(ψk) ≤ lim inf
k→∞

∫
O

fMA(ψk). (3.11)

Now ui increases to the characteristic function ofO except possibly on a pluripo-
lar set, so letting i tend to infinity in (3.11) yields∫

O

fMA(ψ) ≤ lim inf
k→∞

∫
O

fMA(ψk).

For singular φi there is a (non pluripolar) product constructed by Boucksom-
Eyssidieux-Guedj-Zeriahi [9], building on a local construction due to Bedford-
Taylor [3]. Fix a locally bounded metric φ, and consider the auxiliary metrics
ψi,k := max{ψi, φ− k} for k ∈ N, and the sets

Ok :=
⋂
i

{ψi > φ− k}.

The non-pluripolar product of the currents ddcψi, here denoted by ddcψ1∧ ...∧
ddcψn is defined as the limit

ddcψ1 ∧ ... ∧ ddcψn := lim
k→∞

1Okdd
cψ1,k ∧ ... ∧ ddcψn,k.

Since we are assuming that X is compact this limit is well defined [9, Prop.
1.6]. The (non-pluripolar) Monge-Ampère measure of a positive metric is ψ is
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defined as MA(ψ) := (ddcψ)n. Essentially by construction, the non-pluripolar
product is local in the plurifine topology [9, Prop. 1.4], and is multilinear [9,
Prop 4.4].

Clearly from the definition and (3.10), for any n-tuple of positive metrics
ψi on L, ∫

X

ddcψ1 ∧ ... ∧ ddcψn ≤
∫
X

c1(L)n,

however the inequality may well be strict.

Combining Lemma 10 with the fact that the Monge-Ampère measure is
local in the plurifine topology yields the following continuity result.

LEMMA 11. Let ψk be a sequence of positive metrics decreasing to a positive

metric ψ, and let φ be some locally bounded positive metric. If O is a plurifine

open set contained in {ψ > φ− C} for some constant C then

1OMA(ψ) ≤ lim inf
k→∞

1OMA(ψk), (3.12)

where again the lim inf is to be understood in the weak sense. If ψk instead is

increasing a.e. to ψ, and O is a plurifine open set contained in {ψj > φ− C}
for some natural number j and some constant C then once again

1OMA(ψ) ≤ lim inf
k→∞

1OMA(ψk).

Proof. First assume that ψk is decreasing to ψ. Let ψ′k := max{ψk, φ − C}
and ψ′ := max{ψ, φ− C}. From Lemma 10 it follows that

1OMA(ψ′) ≤ lim inf
k→∞

1OMA(ψ′k),

and since by assumption ψ′ = ψ and ψ′k = ψk on O the lemma follows from
the locality of the non-pluripolar product. The case where ψk is increasing a.e.
follows by the same reasoning.

In [9, Thm 1.16] BEGZ prove the following monotonicity property of the
non-pluripolar product when restricted to metrics with small unbounded locus.
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THEOREM 12. Let ψi, ψ′i be two n-tuples of positive metrics with small un-

bounded locus, and suppose that for all i, ψi is more singular than ψ′i. Then∫
X

ddcψ1 ∧ ... ∧ ddcψn ≤
∫
X

ddcψ′1 ∧ ... ∧ ddcψ′n.

BEGZ also prove a comparison principle for metrics with small unbounded
locus [9, Cor 2.3] and a domination principle [9, Cor 2.5]. When combined
with the comparison principle, the proof of the domination principle in [9] in
fact yields a slightly stronger version:

THEOREM 13. Let φ be a positive metric with small unbounded locus and sup-

pose that there exists a positive metric ρ, more singular than φ, with small

unbounded locus and such that MA(ρ) dominates a volume form. If ψ is a

positive metric more singular than φ and such that ψ ≤ φ a.e. with respect to

MA(φ), then it follows that ψ ≤ φ on the whole of X.

3.3.4 The Aubin-Mabuchi Energy

The Aubin-Mabuchi energy bifunctional maps any pair of equivalent positive
metrics ψ1 and ψ2 to the number

E(ψ1, ψ2) :=
1

n+ 1

n∑
i=0

∫
X

(ψ1 − ψ2)(ddcψ1)i ∧ (ddcψ2)n−i.

Observe
E(ψ + t, ψ) = t

∫
X

MA(ψ).

The Aubin-Mabuchi energy restricted to the class of locally bounded met-
rics has a cocycle property (see, for example, [6, Cor 4.2]), namely if φ0, φ1

and φ2 are locally bounded equivalent metrics then

E(φ0, φ2) = E(φ0, φ1) + E(φ1, φ2).

In fact the proof in [6] of the cocycle property extends to the case where the
equivalent metrics are only assumed to have small unbounded locus, since the
integration-by-parts formula of [9] used in the proof holds in that case.
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This leads to an important monotonicity property. If ψ0, ψ1 and ψ2 are
equivalent with small unbounded locus, and ψ0 ≥ ψ1, then

E(ψ0, ψ2) ≥ E(ψ1, ψ2)

since E(ψ0, ψ2) = E(ψ0, ψ1) + E(ψ1, ψ2), and E(ψ0, ψ1) ≥ 0 as it is the
integral of the positive function ψ0 − ψ1 against a positive measure.

We also record the following lemma, which comes from the locality of the
non-pluripolar product in the plurifine topology.

LEMMA 14. Let ψ1 ∼ ψ2 be such that ψ1 ≥ ψ2. Let ψ′1 and ψ′2 be two other

metrics such that ψ′1 ∼ ψ′2 and assume that {ψ′1 = ψ′2} = {ψ1 = ψ2} and that

ψ′1 = ψ1 and ψ′2 = ψ2 on the set where ψ1 > ψ2. Then

E(ψ′1, ψ
′
2) = E(ψ1, ψ2).

Following Phong-Sturm in [25] we can relate weak geodesics to the energy
functional. Let A := {ea ≤ |z| ≤ eb} be an annulus and let π denote the
standard projection from X × A to X. A curve of metrics φt of L, a ≤ t ≤ b,

can be identified with the rotation invariant metric on π∗L whose restriction to
X × {w} equals φln |w|.

DEFINITION 6. A curve of positive metrics φt, a ≤ t ≤ b, is said to be a weak
subgeodesic if there exists a locally bounded positive metric Φ on π∗L that is

rotation invariant and whose restriction to X × {w} equals φln |w|. A curve φt
is said to be a weak geodesic if it is a weak subgeodesic and furthermore Φ
solves the HCMA equation, i.e.

MA(Φ) = 0

on X ×A◦.

As in the convex setting (3.5) there is a formula [?, 6.3] relating the Aubin-
Mabuchi energy of a locally bounded subgeodesic φt with the Monge-Ampère
measure of Φ, namely

ddctE(φt, φa) = π∗(MA(Φ)), (3.13)
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where π∗(MA(Φ)) denotes the push-forward of the measure MA(Φ) with re-
spect to the projection π. From this we immediately get the following lemma.

LEMMA 15. A curve φt of locally bounded positive metrics is a weak geodesic

if and only if it is a subgeodesic and the Aubin-Mabuchi energy E(φt, φa) is

linear in t.

3.4 Envelopes and maximal metrics

In studying the Dirichlet problem for the HCMA equation it is often possible to
give a solution as an envelope in some space of plurisubharmonic functions (or
positive metrics). Such envelopes will be crucial in our setting as well.

DEFINITION 7. If φ is a continuous metric, not necessarily positive, let Pφ

denote the envelope

Pφ := sup{ψ ≤ φ, ψ ∈ PSH(L)}.

Since φ is assumed to be continuous it follows that (Pφ)∗ ≤ φ, thus Pφ =
(Pφ)∗, so Pφ ∈ PSH(L).

The next theorem is essentially just a reformulation of a local result of
Bedford-Taylor [2, Corollary 9.2] in our global setting. It follows as a special
case of [6, Prop 1.10] (letting K = X).

THEOREM 16. If φ is a continuous metric then Pφ = φ a.e. with respect to

MA(Pφ).

Recall that if A is a closed set and µ is a Borel measure we say that µ is
said to be concentrated on A if 1Aµ = µ, or equivalently µ(Ac) = 0. Thus
another way of formulating Theorem 16 is to say that MA(Pφ) is concentrated
on {Pφ = φ}. We now extend this result to more general envelopes that arise
from the additional data of singularity type.

DEFINITION 8. Given a positive metric ψ ∈ PSH(L) let Pψ denote the pro-

jection operator on PSH(L) defined by

Pψφ := sup{ψ′ ≤ min{φ, ψ}, ψ′ ∈ PSH(L)}.
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We also define P[ψ] by

P[ψ]φ := lim
C→∞

Pψ+Cφ = sup{ψ′ ≤ φ, ψ′ ∼ ψ,ψ′ ∈ PSH(L)}.

Clearly Pψφ is monotone with respect to both ψ and φ. Since min{φ, ψ}
is upper semicontinuous, it follows that the upper semicontinuous regulariza-
tion of Pψφ is still less than min{φ, ψ}, and thus Pψφ ∈ PSH(L). By this
it follows that Pψ(Pψφ) = Pψφ, i.e. that Pψ is indeed a projection operator
on PSH(L). One also notes that the upper semicontinuous regularization of
P[ψ]φ, lies in PSH(L) and is bounded by φ.

DEFINITION 9. The maximal envelope of φ with respect to the singularity type

[ψ] is defined to be

φ[ψ] := (P[ψ]φ)∗.

DEFINITION 10. If ψ ∈ PSH(L), then ψ is said to be maximal with respect

to a metric φ if ψ ≤ φ and furthermore ψ = φ a.e. with respect to MA(ψ).
Similarly, if A is a measurable set, we say that ψ is maximal with respect to φ

on A if ψ ≤ φ and ψ = φ a.e. on A with respect to MA(ψ).

The terminology is justified by a proof below that the maximal envelope
of a continuous metric φ is maximal with respect to φ. Note that we do not
know whether the maximal envelope φ[ψ] is equivalent to ψ. Therefore the
method in the proof of Theorem 16 in [6] does not apply, so instead we will
use an approximation argument. The reason for the use of the word maximal is
motivated by the following property:

PROPOSITION 17. Let ψ be maximal with respect to a metric φ. Suppose also

that there exists a positive metric ρ � ψ with small unbounded locus and such

that MA(ρ) dominates a volume form. Then for any ψ′ ∼ ψ with ψ ≤ φ we

have ψ′ ≤ ψ.

Proof. Since ψ′ ≤ φ, the maximality assumption yields ψ′ ≤ ψ a.e. with re-
spect to MA(ψ), so the proposition thus follows from the domination principle
(Theorem 13).
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The next two lemmas are the main steps in showing that maximal envelopes
are maximal.

LEMMA 18. Let ψk be a sequence of positive metrics increasing a.e. to a pos-

itive metric ψ, and assume that all ψk are maximal with respect to a fixed con-

tinuous metric φ on some plurifine open set O. Then ψ is maximal with respect

to φ on O.

Proof. Since φ was assumed to be continuous, ψ ≤ φ. Now, for all k

{ψk = φ} ⊆ {ψ = φ}

and thus by the the maximality of ψk, we know 1OMA(ψk) is concentrated on
{ψ = φ}. Since ψ ≤ φ we have that {ψ = φ} = {ψ ≥ φ}, and since φ is
continuous this is a closed set. Let C be a constant. The set O ∩{ψ1 > φ−C}
is plurifinely open, so by Lemma 11 it follows that

1O1{ψ1>φ−C}MA(ψ) ≤ lim inf
k→∞

1O1{ψ1>φ−C}MA(ψk). (3.14)

It is easy to see that if µk is a sequence of measures all concentrated on a closed
set A, and

µ ≤ lim inf
k→∞

µk

in the weak sense, then µ is also concentrated on A. It thus follows from (3.14)
that 1O1{ψ1>φ−C}MA(ψ) is concentrated on {ψ = φ}. Since MA(ψ) puts
no mass on the pluripolar set {ψ1 = −∞} the lemma follows by letting C tend
to infinity.

LEMMA 19. Let ψ ∈ PSH(L) and let φ be a continuous metric. Then the

envelope Pψφ is maximal with respect to φ on the plurifine open set {ψ > φ}.

Proof. By definition Pψφ ≤ φ.Now let φk be a sequence of continuous metrics
decreasing pointwise to min{φ, ψ}, so that φk ≤ φ for all k and φk = φ on
the set {ψ > φ}. For example let φk := min{φ, ψk} where ψk is a sequence
of smooth metrics decreasing pointwise to ψ. From Theorem 16 it follows that
MA(Pφk) is concentrated on {Pφk = φk}, and since φk = φ when ψ > φ



200 CHAPTER 3. PAPER III

we get that 1{ψ>φ}MA(Pφk) is concentrated on {Pφk = φ}. Now Pφk is
decreasing in k and limk→∞ Pφk ≤ min{φ, ψ}. At the same time, for any
k ∈ N we clearly have that Pψφ ≤ Pφk, which taken together means that

lim
k→∞

Pφk = Pψφ.

Since Pφk ≤ φ this implies that {Pφk = φ} is decreasing in k and

{Pψφ = φ} =
⋂
k∈Z
{Pφk = φ}. (3.15)

Let O denote the plurifine open set {ψ > φ}∩ {Pψφ > φ−C}. By Lemma 11
we know

1OMA(Pψφ) ≤ lim inf
k→∞

1OMA(Pφk),

and thus we conclude that 1OMA(Pψφ) is concentrated on {Pφk = φ} for
any k, so by (3.15) we get that 1OMA(Pψφ) is concentrated on {Pψφ = φ}.
Since MA(Pψφ) puts no mass on the pluripolar set {Pψφ = −∞}, letting C
tend to infinity yields the lemma.

THEOREM 20. Let ψ ∈ PSH(L) and let φ be a continuous metric. Then φ[ψ]

is maximal with respect to φ, i.e. φ[ψ] = φ a.e. with respect to MA(φ[ψ]).

Proof. P[ψ]φ = φ[ψ] a.e., and since Pψ+Cφ increases to P[ψ]φ, it thus increases
to φ[ψ] a.e.. By Lemma 19 we get that Pψ+Cφ is maximal with respect to φ on
the plurifine open set {ψ > φ − C} and thus also on any set {ψ > φ − C ′}
whenever C ′ ≤ C. From Lemma 18 it thus follows that φ[ψ] is maximal with
respect to φ on the set {ψ > φ− C} for any C. Since MA(φ[ψ]) puts no mass
on {ψ = −∞} the theorem follows.

EXAMPLE 1. Consider the case that s is a section of rL that vanishes along a

divisor D, and set ψ = 1
r ln |s|2. Then the maximal envelope φ[ψ] is considered

by Berman [5, Sec. 4], and equals

sup{ψ′ ≤ φ : ψ′ ∈ PSH(L), νD(ψ′) ≥ 1}∗

where νD denotes the Lelong number alongD. This metric governs the Bergman

kernel asymptotics of sections of kL for k � 0 that vanish along the divisor
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D. The more general case when ψ has analytic singularities is also considered

in [5].

The maximal property gives the following bounds on the energy functional
which will be crucial for our construction of weak geodesics (Theorem 28).

PROPOSITION 21. Suppose that ψ is maximal with respect to a positive metric

φ with small unbounded locus, and let t > 0. Then

t

∫
X

MA(ψ) ≤ E(max{ψ + t, φ}, φ) ≤ t
∫
X

MA(φ). (3.16)

Proof. Since by assumption ψ ≤ φ we know max{ψ + t, φ} ≤ φ+ t, so from
the monotonicity of the Aubin-Mabuchi energy it follows that

E(max{ψ + t, φ}, φ) ≤ E(φ+ t, φ) = t

∫
X

MA(φ)

which gives the upper bound. For the lower bound, first choose an ε with 0 <
ε < t. Again by monotonicity,

E(max{ψ + t, φ}, φ) ≥ E(max{ψ + t, φ},max{ψ + ε, φ}). (3.17)

Now clearly

E(max{ψ + t, φ},max{ψ + ε, φ}) ≥ (t− ε)
∫
{ψ+ε>φ}

MA(ψ). (3.18)

By the assumption that ψ is maximal with respect to φ∫
{ψ=φ}

MA(ψ) =
∫
X

MA(ψ)

and since {ψ = φ} ⊆ {ψ+ ε > φ}, the combination of (3.17) and (3.18) yields

E(max{ψ + t, φ}, φ) ≥ (t− ε)
∫
X

MA(ψ).

Since ε > 0 was chosen arbitrarily the lower bound in (3.16) follows.
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3.5 Test curves and analytic test configurations

DEFINITION 11. A map λ 7→ ψλ from R to PSH(L) is called a test curve if

there is a constant C such that

(i) ψλ is equal to some locally bounded positive metric ψ−∞ for λ < −C,

(ii) ψλ ≡ −∞ for λ > C,

(iii) ψλ has small unbounded locus whenever ψλ 6≡ −∞, and

(iiii) ψλ is concave in λ.

Observe that since ψλ is concave and constant for λ sufficiently negative it is

decreasing in λ.

Note that the set of test curves forms a convex set, by letting

(
∑

riγi)(λ) :=
∑

riγi(λ).

It is also clear that any translate γa(λ) := γ(λ − a) of a test curve γ is a new
test curve.

We introduce the notation λc for the critical value of a test curve defined as

λc := inf{λ : ψλ ≡ −∞}.

For later use we record here two continuity properties of test curves.

LEMMA 22.

1. A test curve ψλ is left-continuous in λ as long as λ < λc.

2. Suppose that λ < λc and λk is a decreasing sequence that tends to λ.

Then

( lim
k→∞

ψλk)∗ = ψλ. (3.19)

(So a a test curve is right continuous modulo taking an upper semicon-

tinuous regularization.)
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Proof. For (1), let λk increase to some λ < λc, so we need to show that

lim
k→∞

ψλk = ψλ.

By our hypothesis there exists a λ′ such that λ < λ′ < λc, and thus ψλ′ 6≡ −∞.
Since ψλ(x) is concave in λ it is continuous for all x such that ψλ′(x) 6= −∞.
Thus ψλk converges to ψλ at least away from a pluripolar set, i.e. a.e. with
respect to a volume form. On the other hand we have that ψλk is decreasing
in k, so the limit is a positive metric. Now if two positive metrics coincide a.e.
with respect to a volume form it follows that they are equal everywhere, because
this is true locally for plurisubharmonic function.

The proof of (2) is essentially the same. This time λk is a decreasing se-
quence, so as λ < λc we may as well assume that each λk < λ′ and so in
particular ψλk 6≡ −∞. Then the ψλk form an increasing sequence so the left
hand side of (3.19) is a positive metric. But for the same reason as above, the
limit limk→∞ ψλk equals ψλ away from a pluripolar set, and thus the left and
right hand side of (3.19) agree a.e. with respect to a volume form, and thus are
equal everywhere.

DEFINITION 12. A map γ from R to Sing(L) is called an analytic test con-
figuration if it is the composition of a test curve with the natural projection of

PSH(L) to Sing(L).

We say that an analytic test configuration [ψλ] is trivial if [ψλ] = [φ] for
λ < λc and [ψλ] = [−∞] for λ > λc.

As with the set of test curves, the set of analytic test configurations is con-
vex. We now extend the definition of the maximal envelope (Definition 9) to
test curves.

DEFINITION 13. Letψλ be a test curve and φ an element inH(L). The maximal
envelope of φ with respect to ψλ is the map

λ 7→ φλ := φ[ψλ] = (P[ψλ]φ)∗.

It is easy to see that φλ only depends on φ and the analytic test configuration
[ψλ], since if ψ′λ ∼ ψλ we trivially have φ[ψλ] = φ[ψ′λ]. Observe also that since
ψ−∞ is locally bounded, we have φλ = φ for λ < −C.
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DEFINITION 14. We say that a test curve ψλ is maximal if for all λ the metric

ψλ is maximal with respect to ψ−∞.

Since ψλ is decreasing in λ,

{ψλ′ = ψλ} ⊇ {ψλ′ = ψ−∞} if λ ≤ λ′.

It follows that if ψλ is a maximal test curve, ψλ′ is maximal with respect to ψλ
whenever λ ≤ λ′.

PROPOSITION 23. The maximal envelope φλ is a maximal test curve.

Proof. We first show it is a test curve. Pick a real number C. Let λ and λ′ be
two real numbers, and let 0 ≤ t ≤ 1. By the concavity of ψλ,

tPψλ+Cφ+ (1− t)Pψλ′+Cφ ≤ tψλ + (1− t)ψλ′ + C ≤ ψtλ+(1−t)λ′ + C.

Thus from the definition of the projection operator,

tPψλ+Cφ+ (1− t)Pψλ′+Cφ ≤ Pψtλ+(1−t)λ′+Cφ,

which means that Pψλ+Cφ is concave in λ for all C. Since Pψλ+Cφ increases
to P[ψλ]φ, and an increasing sequence of concave functions is concave, we get
that P[ψλ]φ is concave, and because of the monotonicity of the upper semicon-
tinuous regularization it follows that P[ψλ]φ

∗ = φλ also is concave. The other
properties of a test curve are immediate.

Clearly φ−∞ = φ, so that φλ is maximal follows from Theorem 20.

3.6 The Legendre transform and geodesic rays

If f is a convex function in the real variable λ, the set of subderivatives of f,
denoted by ∆f , is the set of t ∈ R such that f(λ)− tλ is bounded from below.
If f happens to be differentiable, then the set subderivatives coincides with the
image of the derivative of f . By convexity of f , the set of subderivatives is
convex, i.e. an interval. Recall that the Legendre transform of f, here denoted
by f̂ , is the function on ∆f defined as

f̂(t) := sup
λ
{tλ− f(λ)}.



3.6. THE LEGENDRE TRANSFORM AND GEODESIC RAYS 205

Since f̂ is defined as the supremum of the linear functions tλ− f(λ), it follows
that f̂ is convex.

If f is concave instead of convex, then of course −f is convex, and one
can define the Legendre transform of f, also denoted by f̂ , as the Legendre
transform of −f, i.e.

f̂(t) := sup
λ
{f(λ) + tλ},

which is thus convex.

DEFINITION 15. The Legendre transform of a test curve ψλ, denoted by ψ̂t, is

given by

ψ̂t := (sup
λ∈R
{ψλ + tλ})∗,

where t ∈ [0,∞).

Recall that the star denotes the operation of taking the upper semicontinuous
regularization.

LEMMA 24. Let ψλ be any test curve (not necessarily maximal). Then the

Legendre transform ψ̂t is locally bounded for all t, and the map t 7→ ψ̂t is a

subgeodesic ray emanating from ψ−∞.

Proof. By assumption, for some λ, ψλ is locally bounded, and trivially ψ̂t ≥
ψλ + tλ, thus ψ̂t is locally bounded. It is clear that for a fixed λ, the curve
ψλ + tλ is a subgeodesic. Clearly supλ∈R{ψλ + tλ} is convex and Lipschitz in
t, and the same is easily seen to hold for ψ̂t. Thus ψ̂t is upper semicontinuous
in the directions in X and also Lipschitz in t, which implies that it is upper
semicontinuous on the productX×R≥0 . Therefore ψ̂t (thought of as a function
on the product) coincides with the upper semicontinuous regularization of of
supλ∈R{ψλ + tλ}.

Now, taking the upper semicontinuous regularization of the supremum of
subgeodesics yields a subgeodesic, as long as it is bounded from above. We
observed above that ψλ ≤ ψ−∞. Now for some constant C, ψC ≡ −∞. It
follows that ψ̂t ≤ ψ−∞ + tC, so it is bounded from above and thus it is a
subgeodesic.
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Finally by definition ψ̂0 = (supλ(ψλ))∗, which clearly is equal to ψ−∞
since ψλ ≤ ψ−∞ (ψλ being decreasing in λ) and ψ∗−∞ = ψ−∞.

One can also consider the inverse Legendre transform, going from sub-
geodesic rays to concave curves of positive metrics.

DEFINITION 16. The Legendre transform of a subgeodesic ray φt, t ∈ [0,∞),
denoted by φ̂λ, λ ∈ R, is defined as

φ̂λ := inf
t∈[0,∞)

{φt − tλ}.

It follows from Kiselman’s minimum principle (see [22]) that for any λ ∈ R,
φ̂λ is a positive metric (we would like to thank Bo Berndtsson for this observa-
tion). Furthermore it is clear that φ̂λ is concave and decreasing in λ. From the
involution property of the (real) Legendre transform it follows that the Legendre
transform of φ̂λ is φt, thus any subgeodesic ray is the Legendre transform of a
concave curve of positive metrics.

The goal of this section is to prove that if ψλ is an maximal test curve then
the Legendre transform ψ̂t of ψλ is a weak geodesic ray emanating from ψ−∞.
By Lemma 24 we know ψ̂t is a subgeodesic ray emanating from ψ−∞. What
remains then is to show that if ψλ is maximal then the Aubin-Mabuchi energy
E(ψ̂t, ψ̂0) is linear in t, which we now do with an approximation argument.

For N ∈ N consider the approximation ψ̂Nt to ψ̂t, given by

ψ̂Nt := sup
k∈Z
{ψk2−N + tk2−N}.

Since ψλ is concave it is continuous in λ at all points such that ψλ(x) > −∞.
From the continuity it follows that ψ̂Nt will increase pointwise to ψ̂t a.e. as N
tends to infinity. Also let ψ̂N,Mt denote the curve

ψ̂N,Mt := sup
k∈Z,k≤M

{ψk2−N + tk2−N}.

Once again, ψ̂Nt and ψ̂N,Mt are all locally bounded.
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LEMMA 25. Let M < M ′ be two integers. Then

ψ̂N,M
′

t = ψM ′2−N + tM ′2−N

implies that

ψ̂N,Mt = ψM2−N + tM2−N .

Proof. Certainly f(λ) := ψλ(x) + tλ is concave in λ. If

ψ̂N,Mt > ψM2−N + tM2−N

at x, then f would be strictly decreasing at λ = M2−N , so by concavity we
would get that f(M ′2−N ) < f(M2−N ) < ψ̂N,Mt (x), which would be a con-
tradiction.

LEMMA 26. If ψλ is a maximal test curve then

t2−N
∫
X

MA(ψ(M+1)2−N ) ≤ E(ψ̂N,M+1
t , ψ̂N,Mt ) ≤ t2−N

∫
X

MA(ψM2−N ).

Proof. By Lemma 25 it follows that ψ̂N,Mt = ψM2−N +tM2−N on the support
of ψ̂N,M+1

t − ψ̂N,Mt and thus Lemma 14 yields

E(ψ̂N,M+1
t , ψ̂N,Mt ) = E(max{ψM2−N , ψ(M+1)2−N + t2−N}, ψM2−N ).(3.20)

Since we assumed that ψλ was maximal we get that ψ(M+1)2−N is maximal
with respect to ψM2−N , and thus the lemma follows immediately from Lemma
21.

Let ψλ be a maximal test curve, and let F (λ) denote the function

F (λ) :=
∫
X

MA(ψλ).

Whenever λ < λ′, ψλ′ ≤ ψλ and therefore it follows from Theorem 12 that
F (λ) is decreasing in λ, hence F (λ) is Riemann integrable.

PROPOSITION 27. If ψλ is a maximal test curve then

E(ψ̂t, ψ̂0) = −t
∫ ∞
λ=−∞

λdF (λ). (3.21)
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Proof. Suppose first m ∈ Z is such that ψm = ψ−∞. For a given N ∈ N set
M = m2N . Then

ψ̂N,Mt = ψ−∞ + tm = ψ̂0 + tm.

By repeatedly using the cocycle property of the Aubin-Mabuchi energy in
combination with Lemma 26 we get that

t
∑
k>M

2−NF ((k + 1)2−N ) ≤ E(ψ̂Nt , ψ̂
N,M
t ) ≤ t

∑
k>M

2−NF (k2−N ). (3.22)

We noted above that ψ̂Nt increases pointwise to ψ̂t a.e. as N tends to infinity.
By the continuity of the Aubin-Mabuchi energy under a.e. pointwise increasing
sequences (11),

E(ψ̂t, ψ̂0 + tm) = t

∫ ∞
λ=m

λF (λ)dλ,

since both the left- and the right-hand side of (3.22) converges to this. Again
using the cocycle property we get that

E(ψ̂t, ψ̂0) = E(ψ̂t, ψ̂0 + tm) + E(ψ̂0 + tm, ψ̂0) =

= t

∫ ∞
λ=m

λF (λ)dλ+ tm

∫
X

MA(ψ−∞) = t

∫ ∞
λ=m

F (λ)dλ+ tmF (m).(3.23)

Since by our assumption the measure dF is zero on (−∞,m), integration by
parts yields

−t
∫ ∞
λ=−∞

λdF (λ) = −λF (λ)|∞m + t

∫ ∞
λ=m

F (λ)dλ =

= tmF (m) +
∫ ∞
λ=m

F (λ)dλ. (3.24)

The proposition follows from combining equation (3.23) and equation (3.24).

THEOREM 28. The Legendre transform ψ̂t of a maximal test curve ψλ is a weak

geodesic ray emanating from ψ−∞.

Proof. That ψ̂t is a subgeodesic emanating from ψ−∞ was proved in Lemma
24. According to Proposition 27 the energy E(ψ̂t, ψ̂0) is linear in t, and there-
fore by Lemma 15 we get that ψ̂t is a geodesic ray.
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These weak geodesics are continuous in φ in the following sense:

PROPOSITION 29. Let ψλ be a test curve and φ, φ′ ∈ H(L). Suppose φλ is the

maximal curve of φ (with respect to ψλ) and similarly for φ′λ. If ||φ−φ′||∞ < C

then

||φ̂t − φ̂′t||∞ < C for all t.

Proof. We claim that ||φλ−φ′λ||∞ < C for all λ. But this is clear since φ ≤ φ′

implies that φλ ≤ φ′λ for all λ. It is also clear that (φ+C)λ = φλ +C when C
is a constant. Now we noted above that φ ≤ φ′ implies that φλ ≤ φ′λ for all λ,
and so it follows that φ̂t ≤ φ̂′t for all t. We also noted that (φ+C)λ = φλ+C,
so consequently φ̂+ Ct = φ̂t + C which proves the lemma.

Let [ψλ] be an analytic test configuration, and let φλ be an associated max-
imal test curve. Then [φλ] defines a new analytic test configuration. This could
possibly differ from [ψλ], but the following proposition tells us that the associ-
ated geodesic rays are the same.

PROPOSITION 30. Let φ′ ∈ H(L). Then the Legendre transform of φ′[φλ] coin-

cides with the Legendre transform of φ′λ := φ′[ψλ].

Proof. Since φ′λ ∼ φλ we get that φ′[φλ] = φ′[φ′λ], thus without loss of generality
we can assume that φ′ = φ. Recall that the critical value λc was defined as

λc := inf{λ : φλ ≡ −∞}.

If λ < λc there exists a λ′ such that λ < λ′ < λc, and thus by the assumption
φλ′ has small unbounded locus. Let C be a constant less than λ such that
φC = φ. By concavity it follows that

φλ ≥ rφ+ (1− r)φλ′ ,

where 0 < r < 1, is chosen such that

λ = rC + (1− r)λ′.

If we let
ρ := rφ+ (1− r)φλ′ ,
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by the multilinearity of the Monge-Ampére operator it follows that MA(ρ)
dominates the volume form rnMA(φ). Furthermore ρ has small unbounded
locus and is more singular than φλ. Thus by Proposition 17 we get that

Pφλ+Cφ ≤ φλ

for any constant C and therefore

φ[φλ] = φλ, (3.25)

whenever λ < λc. If λ > λc then clearly equation (3.25) holds as well since
both sides are identically equal to minus infinity. It follows that for any ε > 0,

φλ ≤ φ[φλ] ≤ φλ−ε,

which implies that

(̂φλ)t ≤ (̂φ[φλ])t ≤ (̂φλ−ε)t = (̂φλ)t + εt.

Since ε > 0 was arbitrary the proposition follows.

3.7 Filtrations of the ring of sections

First we recall what is meant by a filtration of a graded algebra.

DEFINITION 17. A filtration F of a graded algebra ⊕kVk is a vector space-

valued map from R× N,

F : (t, k) 7−→ FtVk,

such that for any k, FtVk is a family of subspaces of Vk that is decreasing and

left-continuous in t.

In [8] Boucksom-Chen consider certain filtrations which behaves well with
respect to the multiplicative structure of the algebra. They give the following
definition.
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DEFINITION 18. Let F be a filtration of a graded algebra ⊕kVk. We shall say

that

(i) F is multiplicative if

(FtVk)(FsVm) ⊆ Ft+sVk+m

for all k,m ∈ N and s, t ∈ R.

(ii) F is (linearly) bounded if there exists a constant C such that F−kCVk =
Vk and FkCVk = {0} for all k.

The goal in this section is to associate an analytic test configuration φFλ to
any bounded multiplicative filtration of the section ring R(L) = ⊕kH0(kL).

Let φ ∈ H(L), and let dV be some smooth volume form on X with unit
mass. This gives the L2-scalar product on H0(kL) by letting

(s, t)kφ :=
∫
X

s(z)t(z)e−kφ(z)dV (z).

For any λ ∈ R let {si,λ} be an orthonormal basis for FkλH0(kL) and define

φk,λ :=
1
k

ln(
∑
|si,λ|2),

which is a positive metric on L.

LEMMA 31. For any λ, the sequence of metrics φk,λ converges to a limit as k

tends to infinity, and the usc regularization of the limit

φFλ := ( lim
k→∞

φk,λ)∗

is a positive metric.

Proof. Since
Kλ(z, w) :=

∑
i

si,λ(z)si,λ(w)

is a reproducing kernel of FkλH0(kL) with respect to (·, ·)kφ, as for the full
Bergman kernel we have the following useful characterization∑

|si,λ|2 = sup{|s|2 : s ∈ FkλH0(kL), ||s||2kφ ≤ 1}. (3.26)
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Let ||s||2∞ := supz∈X{|s(z)|2e−kφ} and define

Fk,λ(z) := sup{|s(z)|2 : s ∈ FkλH0(kL), ||s||2∞ ≤ 1}.

We trivially have the upper bound

Fk,λ(z) ≤ e−kφ(z).

It follows that

(
1
k

lnFk,λ)∗ = (sup{1
k

ln |s|2 : s ∈ FkλH0(kL), ||s||2∞ ≤ 1})∗

is a positive metric. Let λ be fixed, pick a point z ∈ X, and let for all k,
sk ∈ FkλH0(kL) be such that ||sk||∞ = 1 and

Fk,λ(z) = |sk(z)|2.

Since the product sksm lies in F(k+m)λH
0((k + m)L) by the multiplicativity

of F , and ||sksm||∞ ≤ ||sk||∞||sm||∞, we get that

Fk+m,λ(z) ≥ Fk,λ(z)Fm,λ(z), (3.27)

i.e. the map k 7→ Fk,λ(z) is supermultiplicative. The existence of a limit

lim
k→∞

1
k

lnFk,λ(z)

thus follows from Fekete’s lemma (see e.g. [37]). Since we assumed that dV
had unit mass, we get that for any section s

||s||2kφ ≤ ||s||2∞,

and thus by equation (3.26)∑
|si,λ(z)|2 ≥ Fk,λ(z).

On the other hand, by the Bernstein-Markov property of any volume form dV

we have that for any ε > 0 there exists a constant Cε so that

||s||2∞ ≤ Cεeεk||s||2kφ,
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and thus ∑
|si,λ(z)|2 ≤ CεeεkFk,λ(z), (3.28)

(see [37]). It follows that the difference φk,λ(z)− 1
k lnFk,λ(z) tends to zero as

k tends to infinity, thus the convergence of φk,λ follows.
By the supermultiplicativity we get that for any k ∈ N

1
k

lnFk,λ ≤ lim
l→∞

1
l

lnFl,λ = lim
l→∞

φl,λ,

and thus
(
1
k

lnFk,λ)∗ ≤ ( lim
l→∞

φl,λ)∗ =: φFλ . (3.29)

On the other hand, clearly

lim
l→∞

φl,λ ≤ sup
k
{( 1
k

lnFk,λ)∗},

and it follows that
φFλ = (sup

k
{( 1
k

lnFk,λ)∗})∗

so φFλ is indeed a positive metric.

Remark. Since all volume forms dV onX are equivalent, the limit φλ does
not depend on the choice of volume form dV.

LEMMA 32. We have that

φk,λ ≤ φFλ + ε(k),

where ε(k) is a constant independent of λ that tends to zero as k tends to infinity.

Proof. By combining the inequalities (3.28) and (3.29) from the proof of the the
previous lemma we get that for any ε > 0 there exists a constantCε independent
of λ such that

φk,λ ≤ φFλ + ε+ (1/k) lnCε.

This yields the lemma.

PROPOSITION 33. The map λ 7→ φFλ is a test curve.
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Proof. Let λ be such that FkλH0(kL) = H0(kL) for all k. Then φk,λ is the
usual Bergman metric, and by the result on Bergman kernel asymptotics due to
Bouche-Catlin-Tian-Zelditch (see Section 3.3) we get that φk,λ converges to φ.
Trivially we see that if FkλH0(kL) = {0} for all k then φFλ ≡ −∞. By the
boundedness of the filtration we thus have φFλ = φ for λ < −C and φFλ ≡ −∞
for λ > C.

By the multiplicativity of the filtration we see φλ ≡ −∞ if and only if for
all k,

FkλH0(kL) = {0}.

Pick a λ such that φFλ 6≡ −∞, then for some k, FkλH0(kL) is non-trivial.
From Lemma 32 it follows that φFλ has small unbounded locus since φk,λ has
small unbounded locus.

It remains to prove concavity. Let λ1, λ2 ∈ R and let t be a rational point in
the unit interval. Let m be a natural number such that mt is an integer. Given
a point z ∈ X, let s1 ∈ Fkλ1H

0(kL) and s2 ∈ Fkλ2H
0(kL) be two sections

with ||s1||∞ = ||s2||∞ = 1 such that

Fk,λ1 = |s1(z)|2

and
Fk,λ2 = |s2(z)|2.

By the multiplicativity of the filtration,

smt1 s
m(1−t)
2 ∈ Fmk(tλ1+(1−t)λ2)H

0(mkL),

and trivially ||smt1 s
m(1−t)
2 ||∞ ≤ 1. It follows that

Fmk,tλ1+(1−t)λ2(z) ≥ Fk,λ1(z)mtFk,λ2(z)m(1−t).

Taking the logarithm on both sides, dividing by mk, and taking the limit yields
that

φFtλ1+(1−t)λ2
≥ tφFλ1

+ (1− t)φFλ2
(3.30)

except possibly on the pluripolar set where the limits are not equal to their upper
semicontinuous regularization. But it is easily seen that if a positive metric is
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larger than or equal to another except on a pluripolar set then it is in fact larger
than or equal on the whole space. Thus we get that (3.30) holds on the whole
of X. Recall that t was assumed to be rational. If λ1 ≤ λ2, the left-hand side
of (3.30) is decreasing in t since clearly φFλ is decreasing in λ. The right-hand
side of (3.30) is continuous in t, so it follows that the equation (3.30) holds for
all t ∈ (0, 1), i.e. φFλ is concave in λ.

LEMMA 34. For any two φ, ψ ∈ H(L) and any λ ∈ R we have φFλ ∼ ψFλ .

Proof. Assume that φ ≤ ψ, then it is immediate that for all k and λwe have that
φk,λ ≤ ψk,λ, and we thus get that φFλ ≤ ψFλ . Also it is clear that (φ+C)k,λ =
φk,λ + C. When combining these two facts we get the lemma.

DEFINITION 19. We call the map λ 7→ [φFλ ] the analytic test configuration
associated to the filtration F .

So by the previous lemma this analytic test configuration depends only on
F and not on the choice of φ ∈ H(L). Our next goal is to show the curve φFλ is
maximal for λ < λc, for which we will need a Skoda-type division theorem.

THEOREM 35. Let L be an ample line bundle. Assume that L has a smooth

positive metric φ with the property that ddcφ ≥ ddcφKX for some smooth

metric φKX on the canonical bundle KX . Let {si} be a finite collection of

holomorphic sections of L and m > n+ 2 where n = dimX .

Suppose s is a section of mL such that∫
X

|s|2

(
∑
|si|2)m

dV <∞.

Then there exists sections hα ∈ H0((n+ 1)L) such that

s =
∑
α

hαs
α,

where α is a multiindex α = (αi) with
∑
i αi = m − n − 1, and sα are the

monomials sα := Πis
αi
i .
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Proof. Let k be an integer such that n + 2 ≤ k ≤ m. Then given a section
t ∈ H0(kL) with ∫

X

|t|2

(
∑
i |si|2)k

dV <∞

an application of the Skoda division theorem [36, Thm. 2.1] yields sections {ti}
of (k − 1)L such that t =

∑
i tisi and∫

X

|ti|2

(
∑
i |si|2)k−1

dV <∞.

(To apply the cited theorem replace F,E, ψ, η with kL−KX , L, kφ− φKX , φ
respectively and replace αq with k − 1 > n+ 1.)

Now we first apply the above with k = m to the section s, and then apply
again with k = m − 1 to each of the sections ti. Repeating this process with
k = m,m − 1, . . . , n + 2 we see that s can be written as a linear sum of
monomials in the si as required.

PROPOSITION 36. For λ less than the critical value λc we have that

φFλ = lim
k→∞

φ[φk,λ].

Proof. Let φk := φk,−∞, i.e. the Bergman metric 1/k ln(
∑
|si|2), where {si}

is an orthonormal basis for the whole space H0(kL) with respect to (·, ·)kφ.
By the Bernstein-Markov property of any volume form dV (see e.g. [37]), or
simply the maximum principle, we get that

φk ≤ φ+ εk, (3.31)

where εk tends to zero as k tends to infinity. Since φk,λ is decreasing in λ, the
inequality (3.31) still holds when φk is replaced by φk,λ, i.e. φk,λ − εk ≤ φ.

Therefore φk,λ − εk belongs to the class of metrics the supremum of which
yields P[φk,λ]φ, and thus clearly

φk,λ ≤ P[φk,λ]φ+ εk.

Letting k tend to infinity yields

φFλ ≤ ( lim
k→∞

P[φk,λ]φ)∗.
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For the other inequality it is enough to show that for any constant C,

Pφk,λ+C φ ≤ φFλ . (3.32)

By the assumption that λ < λc we have that φFλ 6≡ −∞. Let ψ be a positive
metric dominated by both φk,λ + C and φ, where k is large enough so that kL
fulfills the requirements of Theorem 35. We denote by J (kψ) the multiplier
ideal sheaf of germs of holomorphic functions locally integrable against e−kψ.
Let {si} be an orthonormal basis of H0(kL ⊗ J (kψ)), and denote by ψk the
Bergman metric

ψk :=
1
k

ln(
∑
|si|2).

By Theorem 8 we have that
ψ ≤ ψk + δk

where δk tends to zero as k tends to infinity, and ψk converges pointwise to ψ.
If s lies in H0(kL⊗ J (kψ)), specifically we must have that∫

X

|s|2∑
|si,λ|2

dV <∞,

since we assumed that ψ was dominated by φk,λ+C = 1/k ln(
∑
|si,λ|2) +C.

Similarly if s lies in H0(kmL⊗ J (kmψ)) we have∫
X

|s|2

(
∑
|si,λ|2)m

dV <∞.

From Theorem 35 applied to the sections {si,λ} it thus follows that

s =
∑

hαs
α,

where hα ∈ H0(k(n+ 1)L), and the sα are monomials in the {si,λ} of degree
m − n − 1. Because of the multiplicativity of the filtration each sα lies in
Fk(m−n−1)λH

0(k(m− n− 1)L), and by the boundedness of the filtration we
also have that each hα lies in F−k(n+1)CH

0(k(n+1)L) for some fixed constant
C. We thus get that H0(kmL⊗ J (kmψ)) is contained in

(F−k(n+1)CH
0(k(n+ 1)L))(Fk(m−n−1)λH

0(k(m− n− 1)L))

⊆ Fk(m−n−1)λ−k(n+1)CH
0(kmL). (3.33)



218 CHAPTER 3. PAPER III

Since we assumed that ψ ≤ φ we have that ψkm is less than or equal to the
Bergman metric using an orthonormal basis for H0(kmL ⊗ J (kmψ)) with
respect to φ. Because of (3.33) this Bergman metric is certainly less than or
equal to φkm,λ′ , where

λ′ :=
1
km

(k(m− n− 1)λ− k(n+ 1)C).

Hence

ψkm ≤ φkm,λ′ .

On the other hand, by Lemma 32 we have that

φkm,λ′ ≤ φFλ′ + ε(km),

where ε(km) is a constant independent of λ′ that tends to zero as km tends to
infinity. Since λ′ tends to λ as m tends to infinity we get that ψ ≤ limλ′→λ φ

F
λ′ ,

and thus by Lemma 22 ψ ≤ φFλ . Taking the supremum over all such ψ com-
pletes the proof.

COROLLARY 37. The test curve φFλ is maximal for λ < λc and its Legendre

transform is a geodesic ray.

Proof. Theorem 20 tells us that φ[φk,λ] is maximal with respect to φ = φ−∞.

By Lemma 18 it follows that this is true for the limit φFλ = limk→∞ φ[φk,λ] as
well. Let φλ be the test curve defined by φλ := φFλ for λ < λc and φλ ≡ −∞
for λ ≥ λc. Then we get that φλ is a maximal test curve, thus its Legendre
transform is a geodesic ray. On the other hand, for every ε > 0 we have that

φλ ≤ φFλ ≤ φλ−ε,

and therefore

φ̂t ≤ (̂φF )t ≤ φ̂t + εt.

Since ε was arbitrary we get that the Legendre transform of φFλ coincides with
that of φλ, and thus it is a geodesic ray.



3.8. FILTRATIONS ASSOCIATED TO ALGEBRAIC TEST CONFIGURATIONS219

Remark. Given an analytic test configuration [ψλ] there is a naturally
associated filtration F of the section ring, defined as

FkλH0(kL) := H0(kL⊗ J (kψλ)).

This filtration is bounded, but in general not multiplicative.

3.8 Filtrations associated to algebraic test configu-
rations

We recall briefly Donaldson’s definition of a test configurations [19, 20]. In
order to not confuse them with the our analytic test configurations, we will in
this article refer to them as algebraic test configuration.

DEFINITION 20. An algebraic test configuration T for an ample line bundle L

over X consists of:

(i) a scheme X with a C×-action ρ,

(ii) a C×-equivariant line bundle L over X ,

(iii) and a flat C×-equivariant projection π : X → C where C× acts on C by

multiplication, such that L is relatively ample, and such that if we denote

by X1 := π−1(1), then L|X1 → X1 is isomorphic to rL → X for some

r > 0.

By rescaling we can without loss of generality assume that r = 1 in the
definition. An algebraic test configuration is called a product test configuration

if there is a C×-action ρ′ on L→ X such that L = L×C with ρ acting on L by
ρ′ and on C by multiplication. An algebraic test configuration is called trivial if
it is a product test configuration with the action ρ′ being the trivial C×-action.

Since the zero-fiber X0 := π−1(0) is invariant under the action ρ, we get
an induced action on the space H0(kL0), also denoted by ρ, where we have
denoted the restriction of L to X0 by L0. Specifically, we let ρ(τ) act on a
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section s ∈ H0(kL0) by

(ρ(τ)(s))(x) := ρ(τ)(s(ρ−1(τ)(x))). (3.34)

By standard theory any vector space V with a C×-action can be split into weight
spaces Vλi on which ρ(τ) acts as multiplication by τλi , (see e.g. [19]). The
numbers λi with non-trivial weight spaces are called the weights of the action.
Thus we may write H0(kL0) as

H0(kL0) = ⊕λVλ

with respect to the induced action ρ.

In [26, Lem. 4] Phong-Sturm give the following linear bound on the abso-
lute value of the weights.

LEMMA 38. Given a test configuration there is a constant C such that

|λi| < Ck

whenever dimVλi > 0.

In [38] the second author showed how to get an associated filtration F of
the section ring ⊕kH0(kL) given a test configuration T of L which we now
recall.

First note that the C×-action ρ on L via the equation (3.34) gives rise to
an induced action on H0(X , kL) as well as H0(X \X0, kL), since X \X0 is
invariant. Let s ∈ H0(kL) be a holomorphic section. Then using the C×-action
ρ we get a canonical extension s̄ ∈ H0(X \ X0, kL) which is invariant under
the action ρ, simply by letting

s̄(ρ(τ)x) := ρ(τ)s(x) (3.35)

for any τ ∈ C× and x ∈ X.
We identify the coordinate z with the projection function π(x), and we also

consider it as a section of the trivial bundle over X . Exactly as for H0(X , kL),
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ρ gives rise to an induced action on sections of the trivial bundle, using the same
formula (3.34). We get that

(ρ(τ)z)(x) = ρ(τ)(z(ρ−1(τ)x) = ρ(τ)(τ−1z(x)) = τ−1z(x), (3.36)

where we used that ρ acts on the trivial bundle by multiplication on the z-
coordinate. Thus

ρ(τ)z = τ−1z,

which shows that the section z has weight −1.
By this it follows that for any section s ∈ H0(kL) and any integer λ, we

get a section z−λs̄ ∈ H0(X \X0, kL), which has weight λ.

LEMMA 39. For any section s ∈ H0(kL) and any integer λ the section z−λs̄

extends to a meromorphic section of kL over the whole of X , which we also

will denote by z−λs̄.

Proof. It is equivalent to saying that for any section s there exists an integer λ
such that zλs̄ extends to a holomorphic section S ∈ H0(X , kL). By flatness,
which was assumed in the definition of a test configuration, the direct image
bundle π∗L is in fact a vector bundle over C. Thus it is trivial, since any vector
bundle over C is trivial. Therefore there exists a global section S′ ∈ H0(X , kL)
such that s = S′|X . On the other hand, as for H0(kL0), H0(X , kL) may be
decomposed as a direct sum of invariant subspacesWλ′ such that ρ(τ) restricted
to Wλ′ acts as multiplication by τλ

′
. Let us write

S′ =
∑

S′λ′ , (3.37)

where Sλ′ ∈ Wλ′ . Restricting the equation (3.37) to X gives a decomposition
of s,

s =
∑

sλ′ ,

where sλ′ := S′λ′ |X . From (3.35) and the fact that S′λ′ lies in Wλ′ we get that
for x ∈ X and τ ∈ C× we have that

s̄λ′(ρ(τ)(x)) = ρ(τ)(sλ′(x)) = ρ(τ)(S′λ′(x)) = (ρ(τ)S′λ′)(ρ(τ)(x))) =

= τλ
′
S′λ′(ρ(τ)(x)),
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and therefore s̄λ′ = τλ
′
S′λ′ . Since trivially

s̄ =
∑

s̄λ′

it follows that tλs̄ extends holomorphically as long as λ ≥ max−λ′.

DEFINITION 21. Given a test configuration T we define a vector space-valued

map F from Z× N by letting

(λ, k) 7−→ {s ∈ H0(kL) : z−λs̄ ∈ H0(X , kL)} =: FλH0(kL).

It is immediate that Fλ is decreasing since H0(X , kL) is a C[z]-module.
We can extend F to a filtration by letting

FλH0(kL) := FdλeH0(kL)

for non-integers λ, thus making F left-continuous. Since

z−(λ+λ′)ss′ = (z−λs̄)(z−λ
′
s̄′) ∈ H0(X , kL)H0(X ,mL) ⊆ H0(X , (k+m)L)

whenever s ∈ FλH0(kL) and s′ ∈ Fλ′H0(kL), we see that

(FλH0(kL))(Fλ′H0(mL)) ⊆ Fλ+λ′H
0((k +m)L),

i.e. F is multiplicative.
Recall that we had the decomposition of H0(kL0) into weight spaces Vλ.

LEMMA 40. For each λ, we have that

dimFλH
0(kL) =

∑
λ′≥λ

dimVλ′ .

Proof. We have the following isomorphism:

(π∗kL)|{0} ∼= H0(X , kL)/zH0(X , kL),

the right-to-left arrow being given by the restriction map, see e.g. [29]. Also,
for k � 0, (π∗kL)|{0} = H0(kL0), therefore we get that for large k

H0(kL0) ∼= H0(X , kL)/zH0(X , kL), (3.38)
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We also had a decomposition of H0(X , kL) into the sum of its invariant weight
spaces Wλ. By Lemma 39 it is clear that a section S ∈ H0(X , kL) lies in Wλ

if and only if it can be written as z−λs̄ for some s ∈ H0(kL), in fact we have
that s = S|X . Thus we get that

Wλ
∼= FλH0(kL),

and by the isomorphism (3.38) then

Vλ ∼= FλH0(kL)/Fλ+1H
0(kL).

Thus we get
dimFλH0(kL) =

∑
λ′≥λ

dimVλ′ . (3.39)

Using Lemma 40 together with Lemma 38 shows that the filtration F is
bounded.

3.9 The geodesic rays of Phong and Sturm

In [26] Phong-Sturm show how to construct a weak geodesic ray, starting with
a φ ∈ H(L) and an algebraic test configuration T (see also [33] for how this
works in the toric setting). In the previous section we showed how to associate
an analytic test configuration [φFλ ] to an algebraic test configuration, and thus
get a weak geodesic using the Legendre transform of its maximal envelope.
Recall by Proposition 30 this geodesic is the same as the Legendre transform
of the original test curve φFλ . The goal in this section is to prove that for non-
trivial analytic test configurations this ray coincides with the one constructed by
Phong-Sturm.

To describe what we aim to show, recall that if V is a vector space with a
scalar product, and F is a filtration of V, there is a unique decomposition of V
into a direct sum of mutually orthogonal subspaces Vλi such that

FλV = ⊕λi≥λVλi .
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Furthermore we allow for λi to be equal to λj even when i 6= j, so we can
assume that all the subspaces Vλi are one dimensional. This additional decom-
position is of course not unique, but it will not matter in what follows.

Let φ ∈ H(L) and H0(kL) = ⊕Vλi be the decomposition of H0(kL) with
respect to the scalar product (·, ·)kφ coming from the volume form (ddcφ)n.
Consider next the filtration coming from an algebraic test configuration (note
that then the collection of λi will depend also on k but we omit that from our
notation) and define the normalized weights to be

λ̄i :=
λi
k
,

which form a bounded family by Lemma 38.
Now if si is a vector of unit length in Vλi , then {si} will be an orthonormal

basis for H0(kL). Since the filtration F encodes the C∗-action on H0(kL) it
is easy to see that the basis {si} is the same one as in [26, Lem 7]. In terms of
the notation in the previous sections we have

φk,λ =
∑
λi≥kλ

|si|2 and φFλ = ( lim
k→∞

φk,λ)∗.

DEFINITION 22. Let

Φk(t) :=
1
k

ln(
∑
i

etλi |si|2)

The Phong-Sturm ray is the limit

Φ(t) := lim
k→∞

(sup
l≥k

Φl(t))∗. (3.40)

Our goal is the following:

THEOREM 41. Let φF be the analytic test configuration associated to the fil-

tration F from a test configuration. Assume that φF is non-trivial. Then

Φ(t) = (̂φF )t.

LEMMA 42.

Φ(t) = lim
k→∞

(sup
l≥k

Φl(t))∗ = lim
k→∞

(sup
l≥k

max
i
{φl,λ̄i + tλ̄i})∗. (3.41)
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Proof. Our proof will be based on the elementary fact that if {al,i : i ∈ Il} is a
set of real numbers then

max
i∈Il

al,i ≤
1
l

ln
∑
i∈Il

elal.i ≤ max
i∈Il

al,i +
1
l

ln |Il|. (3.42)

Now pick x ∈ X and t > 0. Let

al,i :=
1
l

ln |si(x)|2 + tλ̄i

and Il be the indexing set for the λi. Then |Il| = O(ln) and

Φl(t) =
1
l

ln

(∑
i

elal,i

)
.

Thus by (3.42)

max
i
{al,i} ≤ Φl(t) ≤ max

i
{al,i}+

|Il|
l
. (3.43)

Now set
bl,i := φl,λ̄i + tλ̄i =

1
l

ln
∑
λj≥λi

|sj(x)|2 + tλ̄i.

For fixed i, pick any j0 such that

max
λj≥λi

|sj(x)|2 = |sj0 |2 and λj0 ≥ λi.

Then

bl,i ≤
1
l

ln(|Il||sj0 |2 + tλ̄i ≤
1
l

ln |sj0 |2 + tλ̄j0 +
ln |Il|
l

= aj0,l +
ln |Il|
l

.

Clearly al,i ≤ bl,i for all i, so we in fact have

max
i
{al,i} ≤ max{bl,i} ≤ max

i
{al,i}+

ln |Il|
l

,

which combined with (3.43) yields

max
i
{bl,i} −

ln |Il|
l
≤ Φl(t) ≤ max

i
{bl,i}+

ln |Il|
l

.

Now taking the supremum over all l ≥ k followed by the upper semicontinuous
regularization and then the limit as k tends to infinity gives the result since
k−1 ln |Ik| tends to zero.
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Proof of Theorem 41. From Lemma 32 we know that there is a constant ε(l)
such that

φl,λ̄i + tλ̄i ≤ φFλ̄i + tλ̄i + ε(l),

where ε(l) is independent of λi and tends to zero as l tends to infinity. Thus we
certainly have

max
i
{φl,λ̄i + tλ̄i} ≤ sup

λ
{φFλ + tλ}+ ε(l),

and so

(sup
l≥k

max
i
{φl,λ̄i + tλ̄i})∗ ≤ (φ̂F )t + sup

l≥k
ε(l).

Hence taking the limit as k tends to infinity and using Lemma 42 gives

Φ(t) ≤ (φ̂F )t.

For the opposite inequality, since we assumed that the analytic test configu-
ration was non-trivial, there is a λ′ < λc such that φ 6= φFλ′ . Set

η = sup{λ : φFλ = φ}

so, by assumption, η is strictly less than λc.

Consider first λ such that φFλ 6= φ and φFλ 6≡ −∞. Then for any δ > 0
there are, for arbitrarily large k, normalized weights λi(k) in (λ − δ, λ), since
otherwise we would have φFλ−δ = φFλ , which is impossible by concavity of φF .
Thus we have for k ≥ k0,

sup
l≥k

max
i
{φl,λi + tλ} ≥ φk,λi(k)(x) + tλi(k) ≥ φk,λ(x) + t(λ− δ).

Therefore

Φ(t) ≥ φFλ + tλ if φFλ 6= φ, and φFλ 6≡ −∞, (3.44)

and in particular

Φ(t) ≥ (sup
λ>η
{φFλ + tλ})∗.
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Now if λ is such that φFλ = φ then using the right continuity part of Lemma
22,

φFλ + tλ = φ+ tλ = ( sup
λ′>η
{φFλ′})∗ + tλ ≤ ( sup

λ′>η
{φFλ + tλ′})∗ ≤ Φ(t),

which along with (3.44) completes the proof.

Remark. A natural conjecture would be that the analytic test configuration
is trivial iff the algebraic test configuration T has non-zero norm (see [34]).
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