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Abstract

Over the last two decades many airline markets have been deregulated, resulting in increased competition
and use of different types of networks. At the same time there has been an intense discussion on
environmental taxation of airline traffic. It is likely that an optimal environmental tax and the effects of a
tax differ between different types of aviation markets. In this paper we derive optimal environmental
taxes for different types of airline markets. The first type of market is a multiproduct monopoly airline
operating either a point-to-point network or a hub-and-spoke network. The optimal tax is shown to be
similar in construction to an optimal tax for a monopolist. We also compare the environmental impact of
the two types of networks. Given no differences in marginal damages between airports we find that an
airline will always choose the network with the highest environmental damages. The second type of
market we investigate is a multiproduct duopoly, where two airlines compete in both passengers and
flights. The formulation of the optimal tax is similar to the optimal tax of a single product oligopoly.
However, we also show that it is, because of strategic effects, difficult to determine the effects of the tax
on the number of flights.
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1. Introduction®

In this paper we discuss the issue of optimal environmental taxation for different types
of aviation markets. In the standard perfect competition model the optimal prescription
isatax equal to marginal external damages, a so-called Pigouvian tax. However, airline
markets has two properties that affect the optimal environmental tax: imperfect
competition and network effects. Most airline markets consists of only a few actors and
in many cases only one or two airlines operate on a particular route. Network effects
occur because aviation markets (connections) in many cases are related on the demand
and/or cost side. One interesting development of airline markets has been the increased
use of hub-and-spoke operations (see e.g. Borenstein 1992). The main explanation for
the formation of hub-and-spoke networks is probably economies of traffic density (e.g.
Caves et al. 1984), but there could also be positive effects on the demand side since
hubbing can result in more frequent flights to a larger number of cities (market
presence).

The environmental impact from the aviation sector depends on the number of flights,
types of aircraft engines that are used, and the location of the airports. In this paper we
take technology as given, even though this is probably an equally important factor for
environmental improvements. Instead we focus on the number of flights as the
environmental impact. In the model presented an airline has two choice variables,
number of passengers and number of flights. We follow the standard approach (see e.g.
DeVany 1975, Schmalensee 1977) and assume that demand is increasing in capacity
(number of flights) since delay costs are decreasing in capacity. Consequently an airline
has incentives to increase the number of flights in order to increase demand for air
travel.

In the first part of the paper we elaborate on the model presented in Nero and Black
(1998). They analyse a monopoly airline and the differences in environmental impact
between a point-to-point network and hub-and-spoke network. Here we extend this
model to cover non-symmetric equilibrium, thereby allowing for different effects on the
number of flights at different connections. We derive optimal environmental taxes for

the two types of networks, and compare the environmental impacts of the two networks,
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by comparing the number of flights. In the second part of the paper we extend the
discussion to a market with two airlines. The airlines make decisions both about the
number of passengers and the number flights, which means that the airlines are
multiproduct duopolists. The two "products’, passengers and flights, are related through
the demand function; where market demand depends on the aggregate number of
passengers and flights. Given this model we derive the optimal environmental tax and
the comparative statics of the tax.

2. General outline of the model
In order to derive useful result we will work with a rather simple model. For any city
pair ij the cost function for an airline is given by:

Cij = CQij +(b+ tij )F; D

ij !

where Q; is the number of passengers, F; the number of flights, c is the marginal
passenger cost, b is the marginal flight cost, net of any environmental tax, and t; isthe

environmental tax. The cost function is the same as in Nero and Black (1998),% and
admittedly the assumption of separability and the absence of economies of scope are
restrictive.® The demand on city pair ij is a function of price, number of flights and a

market-specific demand shift parameter, W . We assume the following inverse demand:

Pij — M/eFija/eQiille =W F'bQi}s . (2)

i ij ' ij

Throughout the paper we restrict the absolute value of the price-elasticity, e, to be

larger than unity, and the flight elasticity, a, to be lower than unity.* For the inverse

2 Their model in turn builds on the models by DeVany (1975) and Schmalensee (1977).

® The assumption is made for analytical convenience, but it should be noted that the comparison between
the two types of network could be affected by changing the functional form of the cost function.

* The restrictions of the elasticities have some support by empirical findings. Summarising major survey
results on price elasticities Oum et a. (1992) finds that most studies show values of the price elasticity
between 0.8 and 2.0. However, it should be noted that some studies indicate that business passengers are
less price elastic, with values around 1.0 (see for example Oum et a. 1986 and Oum et al. 1993). DeVany
(1972) estimate the flight elasticity for domestic US flights to around 1.2, while Morrison and Winston
(1986) find flight elasticities for business passengers to be around 0.2 and for leisure travel roughly 0.05.
Berechman and de Wit (1996), using European data, estimate the flight elasticity to 0.7 for business
passengers and 0.3 for leisure passengers.



demand function the absolute value of the inverse price-elasticity is given by s, where
s <1, and the flight-elasticity is given by b times €.

For the monopoly model we assume a network with three cities: h, 1, 2, where city h
is a potential hub. In the point-to-point network the airline operates the network with
traffic on all city-pairs, i.e. there are three direct connections hl, h2, and 12. In the hub-
and-spoke network, where city h is the hub airport, the airline operates the network with
traffic on connection hl and h2, and passengers travelling between city 1 and 2 are
funnelled through the hub h. For the oligopoly model we only consider competition on
one connection.

The regulator has only one instrument available: the environmental tax. The goal for
the regulator isto set an optimal tax in the sense that the tax maximises social welfare,
and the regulator determines the taxes before the airlines make their decisions. It should
be noted that we do not model the possible effect of the tax on investments in cleaner

technology; an effect which could affect the environmental impact and the optimal tax.

3. Monopoly network market and environmental taxation
In this section we derive optimal taxes for the point-to-point network and the hub-and-

spoke network. Let f ={n1,h212} denote the set of all city-pairs and let k ={h1,h2}

denote the set of city-pairs with a direct connection in a hub-and-spoke network.

Point-to-point network
We assume that an airline maximises its profits with respect to passengers and flights,

and that the profit for an airline operating a point-to-point network is:

pp = é. (P., - C)Qij - (b+tij)Fij . ©)

i f

First order conditions and the equilibrium levels of passengers and flights are therefore:

(4)

" _(p-g+ihig = (S yws
g, "9, 270> @ = (g

ijo

and, substituting in for Q; and using thefact that a =b/s:
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We assume that the regulator maximises the unweighted sum of consumer- and
producer surplus net of damage costs. The objective function for the regulator is
therefore:

o Qi F; (6)
W=a ooF; (Q,F)dFdQ - C; - D; (Fij ) +1F

i 00

where D; is the external damage cost, which is a function only of flights; we assume
that externa damages are dtrictly increasing in F;. The regulator sets three

environmental taxes, one for each connection. Differentiating the regulators objective

function with respect to the environmental tax t. , substituting in for b from the first

ij?

order condition in (5), and solving for t; we have:

E. do. dF. 7
( . Pij - C) Q” +Qij Pij (i' b ) : ( )
t = D; i b+1 dt 1-s F dt
TF, dF, '

dt

The optimal environmental tax thus consists of two parts, the marginal damage cost of
flights (which would correspond to the standard Pigouvian tax), and a correction part
due to the monopoly situation at the connection. This formulation of the optimal
environmental tax problem resembles the optimal environmental tax of a single product
monopolist (Barnett 1980). The difference is that the second part of the tax expression
conssts of two welfare effects: the effect on output and the effect on flights.

Substituting in the price- and flight elasticity and using the fact that P. =", the

' e-1

optimal tax can be written:
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Differentiating the second part of the tax expression it can be shown that, for a given
change in output and flights, the second part is decreasing in both the price- and flight
elasticity. The intuition behind this is the same as in the monopoly case; the more elastic
demand is the smaller is the welfare loss associated with the reduction in output and
flights. In order to determine the sign of the second part of the tax expression we need to
know the sign of the tax effects on passengers and flights. Since:

. L F; <0 and 99, 2% &
dt. @-a)b+t;) di, F, dt

ij ]

the second part of the optimal tax is non-negative.” Consequently the optimal tax is
lower than the corresponding Pigouvian tax. The reason for this is that the tax has a
negative effect on output and flights, and since the monopolist is already supplying a
less than optimal level there is a negative welfare effect of this reduction. The
magnitude of the second part depends on the elasticities and the magnitude of the effects
on output and flights.

Hub-and-spoke network
Now the airline operates a hub-and-spoke network, where city h is the hub. The airline’s

cost function for city pair hj is:

(8)

(9)

Cy =¢cQ, +cQ, +(b+t,)F,, hil k. (10)

The inverse demand for connecting passengers, i.e. passengers travelling between city 1

and city 2 through the hub, is assumed to have the following form:

®> The expressions in the parentheses in equation (8) are non-negative since these are the margina
willingness to pay minus the marginal cost for passengers and flights.
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P, =W5,F2Q.2 : Fy, =min{F,,F.,}. (11)

The reason for this assumption is that we want to catch the effect of "the weakest link".
Even if the number of flights are high at one connection, connecting passengers aso
have to rely on the number of flights at the other connection. In order to make the model
simple we therefore assume that only flights on the connection with the lowest number
of flights affect demand.® For the other markets we assume the same inverse demand

function as before. The profit function for the airline can now be written:

"= é. Pij (Qij )Qij - é. Chj . (12)

hil k

Again the airline maximises its profit with respect to passengers and flights. First order

conditions and the equilibrium number of passengers are:

(13)

) 1/s
) 1/s
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Note that Q,, :2'1’5%% if F, =F,, and in a symmetric equilibrium, where
hi

W, =W,,, we have that Q, =2 Us Qy; - Thus, in a symmetric equilibrium the share of

connecting passengers depends only on the price elasticity, while in the nonsymmetric
equilibrium the share also depends on the demand shift parameters. The first order

conditions for the number of flightsis:

Q5+, M o, =0if Fy £F,, ad (14)
hj T":hj 12 T":hj hj hi hi 1
Qy :TTFhJ b-t,=0if F; >F;;hj* hi:hj,hiT k.
hj



Assuming that F; £ F;, and using the equilibrium solution for the passengers, the first

order condition in (14) yields the following equilibrium level of flights:

C (15)

bC(i)-lls (Whj +2-1/5W122) 1 1
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Consequently, the difference in the number of flights between the point-to-point
network and the hub-and-spoke network depends on the price- and flight elasticities and

on the demand shift parameters. If Fi' <F;' then, for agiven tax, the number of flights

on connection hi is the same as in the point-to-point network:

16
bW, (S )Y 4 (16)

Fu :( L-s )l-a = Fy .

(b+thi)(1' S)

Now the regulator maximises the following objective function:

R Qi F; o (17)
W = a 663., (Q,F)dFdQ - a Chj - Dhj (th)+thj th ,
ijilfoo hil k

by setting two different environmental taxes t,, and t,,. The difference between the

hub-and-spoke network and the point-to-point network is the demand from the
connecting passengers. Whether this affects the tax expression or not depends on
whether the number of flights at the connection is higher or lower than the number of
flights at the other connection. The model is such that for the connection with the
highest number of flights, the airline has no incentive to increase the flights in order to
increase the demand for the connecting passengers (there is still an effect for passengers
travelling directly on that connection). Consequently, for that connection the optimal tax
will not be a function of the connecting passengers. We proceed assuming that

F, <F., which means that the optimal tax for connection hi is the same as in the

® This is also a difference from the model in Nero and Black (1998) where the share of connecting
passengers is exogenous.



point-to-point case. For connection hj , differentiating the regulators objective function

with respect to thetax t,; , using the fist order conditionsin (14) and solving for the tax:

F do. , F. dF, 18
(7hJPhj_C) th+( hj Plz-ZC)dle"'(i'L) éQP hj (18)
D.. b+1 dt,. b+1 dt,. 1-s F. nghj,quJ g dt,.
t = o hj hj hj hj
hj ﬂth thj
dt,

Again, the optimal tax consists of two parts, but the second part now involves the
effects on demand in two markets; passengers travelling directly between airport h and
J, and passengers travelling between airport i and j through the hub airport. As in the
point-to-point case we can substitute in the price- and flight elasticities, and show that
the tax expression is decreasing in both the price- and flight elasticity, for a given
change in output and flights. The comparative statics are also easy to establish; both the
number of passengers and flights are decreasing in the tax. Consequently the second
part of the tax expression is positive. Compared to the point-to-point network, the
second part of the tax expression now consists of two additional positive expressions
stemming from the effect on connecting passengers. The tax is therefore reduced even
more compared to the corresponding Pigouvian tax at the connection with the least
number of flights. For the other connection, the tax is the same as in the point-to-point

network.

4. Environmental effectsin the two networks

We can make a direct comparison of the environmental effects of the two types of
networks, at least in a simplified fashion, by comparing the number of flights in the two
networks. Thus, in the comparison we rule out any differences in marginal damages
between airports and any differences in distance between the cities. Thisis probably not
the case in readlity, where the marginal damage could be higher at the hub airport. This
mainly due to congestion which is a negative externality, but congestion can also
increase other external effects such as noise and local emissions (see Carlsson 1999). It
is aso likely that there are differences in distance between the cities. We distinguish

between two cases. (i) non-symmetric equilibrium with different demand-shift



parameters and different capacity and (ii) symmetric equilibrium. The comparison
between the networks is made on the premise that the tax is the same for both networks
(alternatively that there are no environmental taxes). Note that the difference in the
number of flights between the two networks depends on output- and flight elasticities
and the demand shift parameters. From (5) we also have that:

s 19
FS = (W /W, Jra R (19)

Symmetric equilibrium

We begin with the symmetric equilibrium where the demand shift parameters are
identical; consequently the difference in flights between the networks depends only on
the price- and flight elasticities. The following propositions are modified versions of the
propositions given in Nero and Black (1998). The difference is that in our model the
share of connecting passengers in the hub-and-spoke networks depends on the price
elasticity, while in Nero and Black (1998) this share is exogenous.

Proposition 1a: The number of flights at the leg airport is higher under the point-to-

point network than under the hub-and-spoke network if 2% - 2°° > 0.5.

Proof: From the equilibrium levels of flightsin (5) and (15), and using (19) and the fact

1

that W,, =W, , we have that proposition laistrueif 2F° > (1+2°2)+a FP,

ij
This means that when the flight elasticity is low and the price elasticity is high the
number of flights is higher at the leg-airports under the point-to-point network
compared to the hub-and-spoke network. When a ® 0 this is always true, and when
e® 1 this is never true. From the proposition we can calculate critical levels of the
elagticities, i.e. values where the number of flights are the same in the two networks. For
example, when the flight elasticity is 0.5 then the price elasticity would have to be
higher than 2.27 in order for this to be the case.
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Proposition 1b: The total number of flights at the hub airport is always higher under the
hub-and-spoke network.

Proof: From the equilibrium levels of flights in (5) and (15), and using the fact that

1
W, =W, , we have that proposition 1bistrueif 2F" < (1+2°2)22F", Thisimplies

ij
1
that the propositionistrueif (1+2°2)*2 >1, and since a >1 thisisawaystrue.

Proposition 1b is not surprising, but what is interesting is under what conditions the
difference in number of flights is small or large. This follows directly from the
proposition; there is a lower difference in number of flights when the flight elasticity is
low and the price elasticity is high. In that case demand does not increase that much due
to the increase in number of flights, and demand decreases much due to the increase in

prices.

Proposition 1c: The total number of flightsis higher under the point-to-point network if
1552 - 2v¢ >1,

Proof: From the equilibrium levels of flightsin (5) and (15), and using (19) and the fact

1

that W,, =W, , we have that proposition 1c istrueif 6F " > (1+2°2)%2 4F P,

ij?
Consequently, the total number of flights is higher in the point-to-point network when
the flight elasticity islow and the price elasticity is high. If we assume no differencesin
marginal damages between airports, we could also conclude that total external damages
are higher in a point-to-point network when the flight elasticity is low and the price
elasticity is high.” However, the elasticities will also determine the airline's choice of

network. For the airline's choice of network we have the following proposition.

" The flight elaticity would have to be rather low in order for this to be the case. For example if the flight
elasticity is 0.3, then the price elasticity would have to be at least 5.3 in order for thisto be the case, while
if flight elasticity is 0.1, then the price elasticity would have to be at least 2.51.
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Proposition 1d: It is optimal for the airline to operate a hub-and-spoke network when

1>15"® - 2¥°,
Proof: See Proof 1 in the Appendix.

The interesting aspect is that this condition is the opposite of the condition in
Proposition 1c. This means that the airline will choose the network with the largest
number of flights. Given no differences in marginal damage between flights, this also
means that the airline will choose the network with the highest environmental damages.

Nonsymmetric equilibrium
It is easy to extend the propositions to the nonsymmetric case, although the exact

interpretation of them is more complicated. Suppose that F; <F;;hj* hiin the hub-

and-spoke network. A crucial difference between this case and the symmetric case is
then that the number of flights is the same at the other leg airport hi. In this extreme
case, the only effect on this connection is an increased load factor. We can now
establish the following propositions.

Proposition 2a: The total number of flights and the number of flights at leg airport j is

1 1
higher under the point-to-point network if Y =1+ (%)1-a - (1+ 2“3%)1-a >0.

hj hj

Proof: From the equilibrium levels of flightsin (5) and (15), and using (19) we have that

. : . Wi,y Wi, N .
Proposition 2aistrueif: (1+ (le)l-a)thP -(1+2 ‘32W—12)1'a Fy >0,since F =F.

hj hj

The difference between the symmetric and non-symmetric equilibrium is the demand-
shift parameters. However, as in the symmetric case, the elasticities and the demand
shift parameters will affect the airline's choice of network. We therefore have the
following proposition.
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Proposition 2b: It is optimal for the airline to operate a hub-and-spoke network when

1 1
Y =1+(%)1—a- (1+zl-e%)l-a <0.

hj hj

Proof: The proof is similar to the proof of proposition 1d (using the result of proposition
2a).

Again, an airline will choose the network with the largest number of flights and, given
the assumptions about the damage function, the highest environmental damages. In
Table 1 we present the level of the price elasticity where Y is approximately equal to
zero (i.e. where total traffic and profits are equal between the networks) for different
levels of the demand shift parameter and the flight elasticity.® We then see that when

W,, is larger than W, , tota traffic is higher under a point-to-point network for most

cases.” Furthermore, by looking at the case when the demand shift parameters are equal
it is also easy to make a comparison with the symmetric equilibrium. Not surprisingly
the critical level of the price elasticity is lower in this case, and the reason for this is of
course that in the nonsymmetric case the flights from airport hi are the same in both

networks.

Table 1. Critical levels of the price eladticity.

Demand shift parameters, W, Flight elasticity, a Value of price eladticity, €,
V\Thj where Y » 0

0.5 0.1/0.25/0.5/0.75 129/1.81/3.08/6.01

0.75 0.1/0.25/0.5/0.75 124/1.65/259/4.40

1 0.1/0.25/05/0.75 121/155/227/3.40

15 0.1/0.25/0.5/0.75 117/1.43/1.90/2.40

2 0.1/0.25/0.5/0.75 1.14/1.35/1.69/1.96

Finaly, for the hub airport, it is easy to establish a smilar condition as for the
symmetric case, but where the difference in flights between the networks is low when

W,, islarge compared to W; .

8 Notethat Y isaways increasing in the price elasticity, €.
® Given that city h is the hub airport, it is more likely that the demand shift parameter Whj is larger than

W,, , since these parameters in a sense measure the economic activity (income) in the different cities.
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5. Duopoly market and environmental taxation

After deregulation, airlines now face competition on many routes. One interesting
problem is then how an optima environmental tax should be designed under
competition. We apply a Cournot duopoly model where each airline simultaneously
maximises its profit with respect to passengers and flights. Previous research on
environmental taxation in duopoly models has focused on single product oligopolies
(see e.g. Carlsson 2000, Simpson 1995). The problem with an analysis of multiproduct
oligopolies is especialy to determine conditions for stability of the equilibrium, and to
derive the comparative statics. Here we use the conditions for stability derived by Zhang
and Zhang (1996). There have been some papers on multiproduct oligopoliesin the case
of aviation markets (Brueckner and Spiller 1991 and Oum et a. 1995). However, in
those papers the multiproduct nature of the model is that an airline operates a network
where travel on each city-pair market is seen as a single product, and where each
product (market) is possibly related through the cost function. In our model, the two
products, passengers and flights, are related through the demand function. The inverse

market demand is a function of total number of passengers, Q =q, +q,, where g is
airline i’s number of passengers, and total number of flights, F = f, + f,, where f, is

airline i’s number of flights. Consequently, passengers do not differentiate between the
two airlines’ flights; they only care about total number of flights. The inverse market

demand function is therefore P = W F°Q"®, and the profit for airlinei is;

p' =[P(Q.F)- g, - (b+tq)f,;i=12. (20)

In order to allow for differences between the airlines we impose an exogenous aircraft
engine technology, which in turn affects the emissions from a particular flight.

Emissions from a flight are equal to g, f,, and if g, =q, then the airlines use the same
technology. Each airline maximises its profit with respect to ¢ and f,, givenitsrivas
choice of these variables, and the choice of g and f, is made simultaneoudly. First

order conditions are therefore:

14



(21)

P P
P- + g =0andg—-Db-tg =0.
( C) ﬂq Q| Q| ﬂf qI

We assume that the regulator cannot differentiate the tax between the airlines, and that

he maximises the following objective function:

QF o (22)
W = 0P(z x)dxdz- a C, +tq; f, - D(E),

00 i

by setting the environmental tax, t, where E = § q, f, . Differentiating the objective

function with respect to the tax, substituting in for b from the first order conditionsin

(21) and solving for t we have:

g F do, b df; 23
A P er( 2 a )Y &
(=T 5'b+1 d 1-s TFTdt _,
TE éz.q df, '
o odt

The resulting optimal tax is similar to an optimal tax for a single product duopoly
(Carlsson 2000, Simpson 1995). The difference from a single product duopoly is that
there are welfare effects from effects on both passengers and flights. However, the main
problem is to determine the sign of the tax effect on the number of passengers and
flights. In the single product oligopoly case, output of both firms must not necessarily
be decreasing in the tax since the tax can shift production between firms. However,
under the condition that marginal costs are increasing in the tax industry output will be
decreasing in the tax (see Carlsson 2000). As we will see it is difficult to determine how
the tax will affect the number of flights in this model. This implies that we do not know
if the optimal tax is lower or higher than the marginal damage of flights.

When determining the sign of the comparative statics we will use the stability
condition for multiproduct oligopolies derived by Zhang and Zhang (1996). Let vector
X' denote firm i's passengers and flights, and let X' = R'(X ) denote firm i's reaction
function. A sufficient condition for stability of the equilibrium point is then that for

some matrix norm | %,

15



2 (24)

1R R?[’
H__ <1; p=12,¥.

p

e
d v 2
X X

This condition implies that the magnitude of the eigenvalues of the matrices

R' IR R* IR
ﬂ_zﬂ_l) and (ﬂ 1
X=X 1X* 91X

and Zhang 1996).*° We will assume that the equilibrium is stable, and hence impose this

(

——) are lessthan unity (for a proof of the condition see Zhang

condition on the reaction functions. Furthermore, note that the profit function has the

following properties:

piQiQi <O’ pififi :pififi <0’ pifiQi :piQifi :piQifi >0’ pifiQi <0’ piQit =O’ pifit =-qi’ (25)

where subscripts denote partial derivatives, i,j =12, it j. We assume that both
passengers and flights are strategic substitutes, ie. py, <O and p,, <0."

Differentiating the first order conditions with respect to the tax we have by matrix

notation:
dX' oL o (26)
__'(I RiR") l(Rj(P i) lP}t +(Pi) lPit);I!J =121t j,
. i <o) ! t‘J
where R| :—ﬂRj =-(P})'P}, P} —epq'q' pq" gand P = gp,q'q' Pan g, Let us
X d:)flql pff g éoflqi pflfl g
write the derivative matrix of firmi's reaction function as;
. N & i (27)
R =-—adPi Py =" g,
D §a w0

19 See Szidarovszky and Li (2000) for an extended discussion of stability of multiproduct oligopolies.
They derive stability conditions for a more general case including adaptive expectations. Further, they
show that the necessary conditions for stability given in Zhang and Zhang (1996) must not necessarily
hold. However, this does not affect the discussion in this paper.

" For adiscussion of strategic substitutes and complements see Bulow et al. (1985).
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where D is the determinant of P!

which is greater than zero by the second order

condition. It can then be shown that r!

T <0,and ry =0. The reason for r; being

zero is the assumption about the demand function; the passengers do not differentiate
between the two airlines' flights. This means that the direct and cross effect of flights on

marginal profits will be equal. Furthermore, a sufficient condition for rfiq <0 isthat (see

Proof 2 in the Appendix):

b- sb(g, /Q)? +s(s +1)(q,/Q)? - 25(q, /Q) <O. (28)

The expression in (28) is negative if either the price- or the flight eleasticity is low;

when proceeding we will assume that rfiq < 0. The elements of the matrix:

or ol Tk 0 b @ o @
Joa i

) o . 0= a g
< j i iriy €
@rf rqq T rfq i Mt 0] égi di u

can then be shown to be a,;,g;,d; >0. Notethat the matrix R; R’ is atriangular matrix,

which means that the eigenvalues of RiR’ are the entries on the main diagonal. The
stability condition then implies that the diagonal elements all are less than unity, i.e. that

1.2

refeq <l and rere < 1. A sufficient condition for the diagonal elements to be less than

unity is that the absolute values of the diagonal elements of the matrices R; and R’ are
less than unity, i.e. that |r| <1 and |rf | <1. These conditions are similar to stability

conditions for the two markets in isolation, i.e. when the two "markets" are not related
(Zhang and Zhang 1996). Consequently, we have similar conditions as in the single

product case, with the difference that we do not have any restrictions on rfiq , @part from

that it should be negative. Given that the equilibrium is stable, which implies that the

eigenvalues of the matrices RIR’ are all less than unity, we have by the Neumann

lemma (Ortega and Rheinboldt 1970, p. 45) that (I - R'R’)™* exists and that:
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b (30)

< d

)gs

0-RR)*=imA R -

(P_)('D
oo o

This series must converge to a matrix of the same sign as the matrix RIR',
consequently we have that a;,c,d, >0 and b =0. Furthermore, since R\R’ is a
triangular matrix, we havethat a, =a, =a and d, =d, =d.

Using (27) and (30) we can now calculate the effect of the tax on the number of
passengers (see Proof 3 in the Appendix):

ﬂ - aiqipifiQi ) 8 rc;qupjﬂqi (31
dt D D '
negative positive

The first part on the right-hand side in (31), representing the own effect, is negative,
while the second part, the strategic effect, is positive. Consequently, the effect of the tax
on the individual airline's number of passengers is not determined. However, the effect

on the total number of passengers is determined:

dQ — (1+ rqzq)aqlp]%lch (1+ r;-q)aqu?zqz H i (32)
i - <0if|rg| <1.
dt D vg

The total number of passengers is aways decreasing in the tax, which means that at
least one airline's number of passengers must be decreasing in the tax. Consequently, for
a symmetric equilibrium both airlines number of passengers is decreasing in the tax.*
Using (27) and (30) we can also calculate the effect of the tax on the number of flights
(see Proof 3 in the Appendix):

dfi _ G (dipiqiqi i} Cipifiqi )_ q; (Ci rqiquﬂqi +dirfiqu%;qi )+ dirfiqupfj‘iq; (33)
dt D D D '
negative positive negative

12 Note that the equilibrium is symmetric if the airlines use the same technology, i.e. if 0, =0,
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The first part on the right-hand side in (33), representing the own effect, is negative,
while the sum of the second and third part, the strategic effects, is not determined in
sign. Consequently, the effect of the tax on the number of flights for an airline is not
determined.™® The effect on the total number of flightsis:

dF _ 00 (Pgq, - TaPlig * 1 Pag)  Pig%i(Colg +C1) (34)
dt D D
+ d(péz% B r?-qufz% + r:f pézqz) _ pzfzq2 (Clr;q + Cz)

b D

If we impose the restriction that |rf,| <1, then total number of flights is decreasing in the

tax, if c, is not sufficiently larger than c, (which is true for a symmetric equilibrium).

Consequently, under these conditions both airlines number of flights is decreasing in
the tax under a symmetric equilibrium. This result is in a sense dissatisfying, since it
implies that we do not know with certainty how the number of flights will be affected
by the environmental tax. Therefore, the environmental effect of the tax is unclear, and
we might even have the perverse result of increased flights (emissions) from the
environmental tax. It should however be noted that we have ruled out economies of
scope in this mode. This could clearly affect the results

6. Conclusions
Optimal environmental taxation of airline traffic is complicated by several factors, and
in this paper we have discussed networks effects and imperfect competition. The
formulation of the optimal environmental tax is similar to the optimal tax for both a
monopolist and a duopoly market. The environmental tax depends on both the
competitive situation and the type of network that the airline operates. For a monopoly
the optimal tax is always lower than the margina damages, while for a duopoly the
result is ambiguous.

Another interesting result in the paper is that a monopoly airline will choose the type
of network with the highest number of flights. This implies that if there are no

3 However, if we have the extreme case that the competing airline uses a clean technology, i.e. if
q, = 0, then the number of flights is decreasing in the tax.
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differences in marginal damages between flights, an airline will choose the network
with the higher environmental damages. Of course, in reality, the marginal damages
differ between different connections, especially in the case of local externalities. One
implication of adopting a hub-and-spoke network is that the number of flights will
increase at the hub airport, given the construction of our model. Since there are reasons
to believe that the external damages are higher at the hub airport (perhaps mainly due to
the simple fact that the traffic volume is larger), this implies that a regulator, from an
environmental perspective, should pay attention to the adoption of hub-and-spoke
network. However, we have ruled out certain effects of a hub-and-spoke system such as
increased load factors, which could affect the results. This would be a natural extension
of the model presented here. We aso showed that there are significant differences
between a symmetric and a non-symmetric equilibrium. Especially we presented an
extreme case where the number of flights on one route was not affected by the
introduction of a hub-and-spoke network, which of course was in favour for the hub-
and-spoke network.

Even with the seemingly simple model of two competing airlines as multiproduct
duopolists, the analysis became rather complicated. We can show that for a symmetric
equilibrium both airlines number of passengers is decreasing in the tax, and that the
total number of passengers is always decreasing in the tax. The total number of flightsis
decreasing in the tax if some additional, reasonable, conditions are imposed. This
implies that there might be perverse effects of an environmental tax, since at least one
airlines number of flights can be increasing in tax.

The formulation of competing airlines as multiproduct firms is interesting, and a
natural development of this type of model is to link this with the model of Oum et al.
(1995), and thus to include several connections, where the connections are linked
through the cost function. Another interesting development is to introduce adaptive
expectations and use the stability conditions in Szidarovszky and Li (2000).
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Appendix

Proof 1. Proof of Proposition 1d
Using the equilibrium levels of passengersin (4) and (13), and the equilibrium levels of
flightsin (5), (15) and (16), the reduced forms of the profit functions can be written:

P =3+ 2T

p" :2(b+t)—8;)bFH

1
Since F" =[1+ 2"32]EFP we have that profits are higher in the hub-and-spoke

network if:
- 1 -
2(b+1) bb[1+2'62]1-a FP >3(b+t)SbbFP

S

1
[+ 2o2fia >§ > 142> (g)l-a

Proof 2: Sign of elementsin the derivative matrix of firm i'sreaction function
Firm 1's derivative matrix of the reaction function, equation (27), is:

1 ' 16 1 Al anl 1y
R=-gadlpp =- el R Pty
D1 D1 @' plel p%% @fl% pfleG
= L§PuiPas " PaiPie,  PuiPar, - ParPi, U 1€, by
ey U=-—756
’ D1 é_ pj%lch ptﬂz + p]dlql pj%lch B pj%lch p]dlfz + p]dlql pj%lfz Q D1 egl le
Sincep® . ,pL.,p.. ,p:, <0 and pt, =p., >0, it followsdirectly that a,,g, >0.
Pt1,1Poq 1 Pag, 1 P, fiop afy s
Further b, =0 sincep’ ; =p7, and pg, = Pg;, - Finally,

d, =- (bPF (- s%))2 +sPQ((s +1)q—Qi- 2)(b- DbPF 2q

d, =-bP2F 2(b(L- s%)z i s%(b- D((s +1)%- 2)

The expression in the inner parenthesis can be written:

b(1+sz(q—Qi)2 - 2s %i)- (s%b- s%)((s +1)%- 2)
b+bsz(%)2- 2bsq—Qi- s(%)zb(s +1)+2sq—Qib+s(s +1)(%)2- 25%

b- s(%)2b+s(s +1)(q—Qi)22 i 2sq—Qi .

This expression is negative, and consequently d, >0, if s and b are sufficiently low.
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Proof 3: Compar ative statics for the duopoly mar ket
Using (27) and (30) the comparative statics for firm 1 can be written:

edq1

edt U éa1 bl qlq r;% ui gpizfz B pizQz D2 1 épj%lfl B pj%lchl;l 1=
e u—'e e 1 10z € 5 2 UP2t+_§ 1 1 UPJI;
df eCl dl&@rfq rﬁ gDZ @' pQZfz p%Qz g D1 g- pchfl pchch g ﬂ
edt u
uU_é0u 2u é0u0
Since, P}, —gpfl‘g gand P2, gogztu:é g» We have
ft & thu d:)fztg & QU
Xm m'1 bl@qq qlg g ZpiQ2 l;' 1 eqlpfql l]_
100 &

dt & d&gfq r
Finally, sinceb;,ry =0, we have:

dx* _ ea1 Ou 1€ qqufzqz u é, Ou1l gqlpw u
—_— — u ~ P —
d & dUD giapi, - ridpi. g & dHD & bl g

Solving this yields (31) and (33).
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