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Preface 

The main task of the Nordic Expert Group for Criteria Documentation of Health 

Risks from Chemicals (NEG) is to produce criteria documents to be used by the 

regulatory authorities as the scientific basis for setting occupational exposure 

limits for chemical substances. For each document NEG appoints one or several 

authors. An evaluation is made of all relevant published, peer-reviewed original 

literature found. The document aims at establishing dose-response/dose-effect 

relationships and defining a critical effect. No numerical values for occupational 

exposure limits are proposed. Whereas NEG adopts the documents by consensus 

procedures, thereby granting the quality and conclusions, the authors are re-

sponsible for the factual content of the document.  

The evaluation of the literature and the drafting of this document on poly-

chlorinated biphenyls (PCBs) was done by M Ph Birgitta Lindell, Swedish Work 

Environment Authority, Stockholm. The draft versions were discussed within 

NEG and the final version was accepted by the present NEG experts on May 24, 

2011. Editorial work and technical editing were performed by the NEG secre-

tariat. The following present and former experts participated in the elaboration of 

the document:  
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1. Introduction 

Polychlorinated biphenyls (PCBs) are a class of 209 congeners, in which 1–10 

chlorine atoms are attached to biphenyl in different combinations. The PCBs have 

been commercially produced as complex mixtures since 1929. Because of their 

chemical and physical stability and electrical insulating properties, they have had 

a variety of uses in industry. However, due to their harmful effect on the environ-

ment, the production and use of PCBs is banned or restricted worldwide. There-

fore, PCBs are nowadays mainly regarded as ubiquitous environmental pollutants, 

but they can still occur in work environments, especially when renovating and 

demolishing buildings and in recycling and waste management.  

This document was initiated with the intention to focus on possible effects on 

human health from occupational exposure of PCBs today, but such data are scarce, 

although new data have been published on cohorts exposed long ago. Since there 

are indications that effects may occur in the general population at PCB body burdens 

in the range of those expected from daily intake, data on the general population 

were considered relevant and were included in the document. Yet, it should  

be noted that the congener pattern at exposure from food differs from that at 

occupational exposure. Selected data on toxic effects in experimental animals are 

also reviewed. For a number of toxicological endpoints, the no-effect levels in 

rodents and monkeys are high (in the low mg/kg body weight (bw)/day range for 

technical PCB mixtures), and these endpoints are described very briefly or not at 

all in this document.  

PCB levels expressed in the original publications as ppb or µg/kg (ng/g) wet 

weight in serum, plasma or whole blood are stated as µg/l throughout this docu-

ment, whereas lipid-adjusted values are given as ng/g lipid. 

As a basis for this document, we have used previously published reviews, mainly 

those produced by the World Health Organization/International Programme on 

Chemical Safety (WHO/IPCS), 2003 (188), the Agency for Toxic Substances and 

Disease Registry (ATSDR), 2000 (19) and the European Food Safety Authority 

(EFSA), 2005 (98).  

2. Substance identification  

PCBs are aromatic compounds, which do not occur naturally. In the PCB molecule, 

1–10 chlorine atoms are attached to biphenyl (Figure 1). The general chemical 

formula is C12H(10-n)Cln, where n is the number of chlorine atoms. Depending on 

position and number of chlorine atoms, there are theoretically 209 individual PCB 

compounds (congeners). These PCB compounds can be categorised by degree of 

chlorination in ten homologue groups (Table 1). PCBs of a given homologue with 

different substitution patterns are called isomers. 

The conventional numbering of substituent positions is shown in Figure 1. In 

1980, Ballschmiter and Zell developed a numbering system that gives a specific 

BZ number to each PCB congener. The congeners were numbered from PCB 1 to 

PCB 209 in ascending order based on the number of chlorine substitutions within 
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Figure 1. Biphenyl molecule according to the IUPAC numbering system. In PCBs, some 

or all of the hydrogens attached to carbon atoms numbered 2–6 and 2′–6′ are substituted 

with chlorines.  

each homologue. An unprimed number was considered lower than the same 

number when primed (Figure 1) (25). Slight changes in the original BZ congener 

numbering system have later been recommended. These changes included a re-

numbering of the BZ numbers 107, 108, 109 to 109, 107, 108 and of BZ numbers 

199, 200, 201 to 200, 201 and 199, respectively. However, in general, authors have 

not adopted the revised numbering of congeners 107–109. Thus, the numbering 

system commonly used is that published by Ballschmiter et al (1992), where only 

the original BZ numbers 199–201 are changed (188, 270). A nomenclature for 

PCB congeners based on the International Union of Pure and Applied Chemistry 

(IUPAC) is shown in Table 2. The relation between PCB congener numbers and 

the Chemical Abstracts Service (CAS) numbers is shown in Table 3. 

In the biphenyl molecule, the two benzene rings can rotate around the 1,1′-bond 

(Figure 1). The two extreme configurations are the planar, in which the two benzene 

rings are in the same plane, and the non-planar in which the benzene rings are at a 

90° angle to each other. The probability of attaining a planar configuration is largely 

determined by the number of substitutions in the ortho-positions (2, 2′, 6, 6′). The 

replacement of hydrogen atoms in the ortho-positions with larger chlorine atoms  
 

Table 1. The PCB homologue groups (103). 

Homologue group 

 

CAS No.  

of group 

No. of 

isomers  

Congener No. 

 

Molecular 

weight 

Chlorine  

(% w/w) 

Monochlorobiphenyl  27323-18-8   3 PCB 1 – PCB 3 188.7 19 

Dichlorobiphenyl  25512-42-9 12 PCB 4 – PCB 15 223.1 32 

Trichlorobiphenyl  25323-68-6 24 PCB 16 – PCB 39 257.6 41 

Tetrachlorobiphenyl  26914-33-0 42 PCB 40 – PCB 81 292.0 49 

Pentachlorobiphenyl  25429-29-2 46 PCB 82 – PCB 127 326.4 54 

Hexachlorobiphenyl  26601-64-9 42 PCB 128 – PCB 169 360.9 59 

Heptachlorobiphenyl  28655-71-2 24 PCB 170 – PCB 193 395.3 63 

Octachlorobiphenyl  55722-26-4 12 PCB 194 – PCB 205 429.8 66 

Nonachlorobiphenyl  53742-07-7   3 PCB 206 – PCB 208 464.2 69 

Decachlorobiphenyl  2051-24-3   1 PCB 209 498.7 71 

All PCBs  1336-36-3 209 PCB 1 – PCB 209 – – 

CAS: Chemical Abstracts Service, w: weight.  
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Table 2. Nomenclature conversion table 
 
(PCB congener numbers in bold)

 a, b
 (188). 

Chlorine position  

on each ring 

None 2   3   4 2,3 2,4 2,5 2,6 3,4 3,5 2,3,4 2,3,5 2,3,6 2,4,5 2,4,6 3,4,5 2,3,4,5 2,3,4,6 2,3,5,6 2,3,4,5,6 

                     None 0 1   2   3   5   7   9 10 12 14   21   23   24   29   30   38   61   62   65 116 

2′  4   6   8 16 17 18 19 33 34   41   43   45   48   50   76   86   88   93 142 

3′   11 13 20 25 26 27 35 36   55   57   59   67   69   78 106 108 112 160 

4′    15 22 28 31 32 37 39   60   63   64   74   75   81 114 115 117 166 

2′,3′     40 42 44 46 56 58   82   83   84   97   98 122 129 131 134 173 

2′,4′      47 49 51 66 68   85   90   91   99 100
c
 123 137 139 147 181 

2′,5′       52 53 70 72   87   92   95 101 103 124 141 144 151 185 

2′,6′        54 71 73   89   94   96 102 104 125 143 145 152 186 

3′,4′         77 79 105 109 110 118 119 126 156 158 163 190 

3′,5′          80 107 111 113 120 121 127 159 161 165 192 

2′,3′,4′           128 130 132 138 140 157 170 171 177 195 

2′,3′,5′            133 135 146 148 162 172 175 178 198 

2′,3′,6′             136 149 150 164 174 176 179 200 

2′,4′,5′              153 154 167 180 183 187 203 

2′,4′,6′               155 168 182 184 188 204 

3′,4′,5′                169 189 191 193 205 

2′,3′,4′,5′                 194 196 199 206 

2′,3′,4′,6′                  197 201 207 

2′,3′,5′,6′                   202 208 

2′,3′,4′,5′,6′                    209 
a 
For a number of PCB congeners, the indicated (truncated) structural names are not according to strict IUPAC rules (primed and unprimed numbers are interchanged). 

A comprehensive survey of the PCB nomenclature, including IUPAC names, is given in Mills et al, 2007 (270). 
b 
Revised PCB numbering system (includes also the revised numbering of congeners 107-109). 

c 
Example: The IUPAC name for PCB 100 is 2,2′,4,4′,6-pentachlorobiphenyl. 

 = dioxin-like congeners (also included in the WHO TEF and TEQ concept, for details see page 5). 

IUPAC: International Union of Pure and Applied Chemistry. 
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Table 3. PCB congener numbers
 a
 (in bold) versus CAS numbers. Adapted from US EPA (397). 

  1  2051-60-7 26 38444-81-4 51 68194-04-7 76 70362-48-0 101 37680-73-2 126 57465-28-8 151 52663-63-5 176 52663-65-7 201 40186-71-8 

  2  2051-61-8 27 38444-76-7 52 35693-99-3 77 32598-13-3 102 68194-06-9 127 39635-33-1 152 68194-09-2 177 52663-70-4 202  2136-99-4 

  3  2051-62-9 28  7012-37-5 53 41464-41-9 78 70362-49-1 103 60145-21-3 128 38380-07-3 153 35065-27-1 178 52663-67-9 203 52663-76-0 

  4 13029-08-8 29 15862-07-4 54 15968-05-5 79 41464-48-6 104 56558-16-8 129 55215-18-4 154 60145-22-4 179 52663-64-6 204 74472-52-9 

  5 16605-91-7 30 35693-92-6 55 74338-24-2 80 33284-52-5 105 32598-14-4 130 52663-66-8 155 33979-03-2 180 35065-29-3 205 74472-53-0 

  6 25569-80-6 31 16606-02-3 56 41464-43-1 81 70362-50-4 106 70424-69-0 131 61798-70-7 156 38380-08-4 181 74472-47-2 206 40186-72-9 

  7 33284-50-3 32 38444-77-8 57 70424-67-8 82 52663-62-4 107 70424-68-9 132 38380-05-1 157 69782-90-7 182 60145-23-5 207 52663-79-3 

  8 34883-43-7 33 38444-86-9 58 41464-49-7 83 60145-20-2 108 70362-41-3 133 35694-04-3 158 74472-42-7 183 52663-69-1 208 52663-77-1 

  9 34883-39-1 34 37680-68-5 59 74472-33-6 84 52663-60-2 109 74472-35-8 134 52704-70-8 159 39635-35-3 184 74472-48-3 209  2051-24-3 

10 33146-45-1 35 37680-69-6 60 33025-41-1 85 65510-45-4 110 38380-03-9 135 52744-13-5 160 41411-62-5 185 52712-05-7   

11  2050-67-1 36 38444-87-0 61 33284-53-6 86 55312-69-1 111 39635-32-0 136 38411-22-2 161 74472-43-8 186 74472-49-4   

12  2974-92-7 37 38444-90-5 62 54230-22-7 87 38380-02-8 112 74472-36-9 137 35694-06-5 162 39635-34-2 187 52663-68-0   

13  2974-90-5 38 53555-66-1 63 74472-34-7 88 55215-17-3 113 68194-10-5 138 35065-28-2 163 74472-44-9 188 74487-85-7   

14 34883-41-5 39 38444-88-1 64 52663-58-8 89 73575-57-2 114 74472-37-0 139 56030-56-9 164 74472-45-0 189 39635-31-9   

15  2050-68-2 40 38444-93-8 65 33284-54-7 90 68194-07-0 115 74472-38-1 140 59291-64-4 165 74472-46-1 190 41411-64-7   

16  38444-78-9 41 52663-59-9 66 32598-10-0 91 68194-05-8 116 18259-05-7 141 52712-04-6 166 41411-63-6 191 74472-50-7   

17 37680-66-3 42 36559-22-5 67 73575-53-8 92 52663-61-3 117 68194-11-6 142 41411-61-4 167 52663-72-6 192 74472-51-8   

18 37680-65-2 43 70362-46-8 68 73575-52-7 93 73575-56-1 118 31508-00-6 143 68194-15-0 168 59291-65-5 193 69782-91-8   

19 38444-73-4 44 41464-39-5 69 60233-24-1 94 73575-55-0 119 56558-17-9 144 68194-14-9 169 32774-16-6 194 35694-08-7   

20 38444-84-7 45 70362-45-7 70 32598-11-1 95 38379-99-6 120 68194-12-7 145 74472-40-5 170 35065-30-6 195 52663-78-2   

21 55702-46-0 46 41464-47-5 71 41464-46-4 96 73575-54-9 121 56558-18-0 146 51908-16-8 171 52663-71-5 196 42740-50-1   

22 38444-85-8 47  2437-79-8 72 41464-42-0 97 41464-51-1 122 76842-07-4 147 68194-13-8 172 52663-74-8 197 33091-17-7   

23 55720-44-0 48 70362-47-9 73 74338-23-1 98 60233-25-2 123 65510-44-3 148 74472-41-6 173 68194-16-1 198 68194-17-2   

24 55702-45-9 49 41464-40-8 74 32690-93-0 99 38380-01-7 124 70424-70-3 149 38380-04-0 174 38411-25-5 199 52663-75-9   

25 55712-37-3 50 62796-65-0 75 32598-12-2 100 39485-83-1 125 74472-39-2 150 68194-08-1 175 40186-70-7 200 52663-73-7   
a 
The numbering presented in the table is identical to that published by Ballschmiter et al, 1992 (270). 

 = dioxin-like congeners (also included in the WHO TEF and TEQ concept, for details see page 5).  

CAS: Chemical Abstracts Service, EPA: Environmental Protection Agency, US: United States. 
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forces the benzene rings to rotate out of the planar configuration. The benzene 

rings of non-ortho-substituted PCBs (n = 20), as well as mono-ortho-substituted 

PCBs (n = 48), may assume a planar configuration and are referred to as planar or 

coplanar congeners. The benzene rings of other congeners cannot assume a planar 

or coplanar configuration and are referred to as non-planar or non-coplanar con-

geners (19, 116, 285, 397). 

Among the planar PCBs, 4 non-ortho and 8 mono-ortho PCBs chlorinated in 

both para and at least two meta positions are (nowadays) referred to as dioxin-like 

PCBs (or aryl hydrocarbon (Ah) receptor agonists) (Table 2) and have been in-

cluded in the WHO TEF and TEQ concept (166, 271, 402). Each of these 12 PCB 

congeners is attributed a specific toxic equivalency factor (TEF), which indicates 

the degree of dioxin-like toxicity compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD), which itself has been assigned a TEF of 1.0 (19, 402) (Table 4). PCBs 

126 and 169 are the most toxic congeners in this respect with TEFs of 0.1 and 

0.03, respectively. The contribution of a congener to the degree of toxicity also 

depends on the exposure level. For dioxin-like compounds, this can be expressed 

as total toxic equivalents (TEQs). The sum of TEQs for a mixture is calculated by 

multiplying the concentration of each dioxin-like compound (e.g. the 12 PCBs) 

with its assigned TEF and then adding the resulting TEQ concentrations. For in-

clusion in the TEF concept, a compound must 1) show a structural relationship to 

the polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans 

(PCDFs), 2) bind to the Ah receptor, 3) elicit Ah receptor-mediated biochemical 

and toxic responses and 4) be persistent and accumulate in the food chain (1, 402).  

 
Table 4. PCB-toxic equivalency factors (TEFs) (1, 397, 401, 402).  

Congener No. IUPAC  WHO 1994 WHO 1997 WHO 2005 

 chlorobiphenyl prefix Humans 

 

Humans/ 

mammals 

Humans/ 

mammals 

Non-ortho substituted     

PCB 77 3,3′,4,4′-Tetra- 0.0005 0.0001 0.0001 

PCB 81 3,4,4′,5-Tetra-     – 0.0001 0.0003 

PCB 126 3,3′,4,4′,5-Penta- 0.1 0.1 0.1 

PCB 169 3,3′,4,4′,5,5′-Hexa- 0.01 0.01 0.03 

Mono-ortho substituted     

PCB 105 2,3,3′,4,4′-Penta- 0.0001 0.0001 0.00003 

PCB 114 2,3,4,4′,5-Penta- 0.0005 0.0005 0.00003 

PCB 118 2,3′,4,4′,5-Penta- 0.0001 0.0001 0.00003 

PCB 123 2,3′,4,4′,5′-Penta- 0.0001 0.0001 0.00003 

PCB 156 2,3,3′,4,4′,5-Hexa- 0.0005 0.0005 0.00003 

PCB 157 2,3,3′,4,4′,5′-Hexa- 0.0005 0.0005 0.00003 

PCB 167 2,3′,4,4′,5,5′-Hexa- 0.00001 0.00001 0.00003 

PCB 189 2,3,3′,4,4′,5,5′-Hepta- 0.0001 0.0001 0.00003 

Di-ortho substituted
  a

     

PCB 170 2,2′,3,3′,4,4′,5-Hepta- 0.0001     –     – 

PCB 180 2,2′,3,4,4′,5,5′-Hepta- 0.00001     –     – 

Reference compound    

TCDD  1.0 1.0 1.0 
a
 These PCBs were withdrawn from the WHO TEF concept for dioxin-like compounds at the re-

evaluation in 1997.  

IUPAC: International Union of Pure and Applied Chemistry, TCDD: 2,3,7,8-tetrachlorodibenzo- 

p-dioxin, WHO: World Health Organization. 
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3. Physical and chemical properties  

Pure single PCB compounds are mostly colourless or slightly yellowish, often 

crystalline compounds. Commercial products, however, are liquid mixtures of 

these compounds with a colour ranging from light yellow to dark colour. They do 

not crystallise at low temperatures but turn into solid resins (73, 188). Physical 

and chemical data for some of the most toxic and/or environmentally prevalent 

PCB congeners and for some PCB mixtures (i.e. Aroclors, trade name used in 

Unites States (US)) are given in Tables 5–6, respectively.  

In general, PCBs are relatively insoluble in water, with the highest solubilities 

among the ortho-chlorinated congeners. Solubility decreases rapidly in the ortho-

vacant congeners and decreases further with increased chlorination (19, 188). All 

PCB congeners are lipophilic and dissolve easily in non-polar organic solvents 

and in biological lipids (188, 419). Furthermore, PCBs are relatively non-volatile 

(188), although lower chlorinated PCB congeners have a considerably higher 

vapour pressure than the higher chlorinated ones. Therefore, the composition in 

air is dominated by the lower chlorinated congeners (98). In consequence, the 

vapour pressure of more low-chlorinated PCB mixtures is higher than that of 

highly chlorinated PCB mixtures. Because of the chlorine in the molecule, the 

density of PCBs is rather high (Table 6). 

Many of the congeners are very persistent in both the environment and within 

biological systems (56, 419). PCBs generally are characterised by chemical and 

physical inertness. They resist both acids, alkalis and oxidants and are, in practice, 

fire-resistant because of their high flash-points (187, 188, 419). However, at high 

temperatures, PCBs are combustible. Combustion by-products include hydrogen 

chloride and PCDFs. Pyrolysis of technical-grade materials containing PCBs and 

chlorobenzenes (such as some dielectric fluids) may also produce PCDDs (188). 

Conversion factors for different PCB mixtures depend on the degree of chlori-

nation and are between 0.065 (Aroclor 1260) and 0.12 ppb (Aroclor 1221) for 1 

µg/m
3
 (419). 

4. Occurrence, production and use 

PCBs were originally synthesised in 1881 by the German chemists Schmidt and 

Schulz. PCBs have been industrially manufactured as mixtures for commercial pur-

poses since 1929. The total global PCB production between 1930 and 1993 has 

been estimated to around 1.3 million tonnes, of which more than 70 % are tri-, tetra- 

and pentachlorinated congeners (44). About one third of the total amount has ended 

up in the environment (434). The production decreased in the mid-1970s because 

the chemicals had become a severe environmental problem (143). However, PCBs 

are still present in the environment and their entry into it still occurs, especially due 

to improper disposal practices or leaks in electrical equipment and hydraulic 

systems still in use. Further, PCB caulk and paint in buildings can cause extensive 

PCB contamination of the building interiors and surrounding soil (168).  
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Table 5. Physical and chemical data for some of the most toxic and/or environmentally 

prevalent PCB congeners (19, 188, 380). 

Congener Molecular 

formula 

Melting  

point (°C) 

Boiling  

point (°C) 

Vapour pressure 

(10
-6

 kPa at 25°C) 

Log  

Kow 

Water solu-

bility (µg/l) 

PCB 1
 a
 C12H9Cl 34 274 184 4.5 4 830 (25°C) 

PCB 77 C12H6Cl4 173   360
 b 

0.06  

2.18 

6.0–6.6    175 (25°C) 

0.6 (25°C) 

PCB 81 C12H6Cl4 - - - - - 

PCB 105 C12H5Cl5 - - 0.87 7.0 3.4 (25°C) 

PCB 118 C12H5Cl5 - - 1.20 7.1 13.4 (20°C) 

PCB 126 C12H5Cl5 - - - - - 

PCB 138 C12H4Cl6 78.5–80   400
 b
 0.53 6.5–7.4

 b
 15.9

 b 

1.5 (20°C) 

PCB 153 C12H4Cl6 103–104 - 0.05 

0.12 

0.46 

6.7 

8.3 

7.8 

0.9 (25°C) 

PCB 156 C12H4Cl6 - - 0.21 7.6 5.3 (20°C) 

PCB 163 C12H4Cl6 - - 0.08 7.2 1.2 (25°C) 

PCB 169 C12H4Cl6 201–202 - 0.05 

0.08 

7.4 0.04–12.3
 b
 

0.5 (25°C) 

PCB 180 C12H3Cl7 109–110 240–280  

(2.66 kPa) 

0.13 6.7–7.2
 b
 

8.3 

0.2 (25°C)   

0.3–6.6
 b
 

3.9 (20°C) 

PCB 183 C12H3Cl7 83 - - 8.3 4.9 (20°C) 
a 
Included based on its significantly different solubility and vapour pressure. 

b 
Calculated. 

Kow: octanol/water partition coefficient.  

 
 

Table 6. Approximate homologue composition and physical properties of some com-

mercial PCB products (73, 103). 

 Aroclor 

 1221 1232 1016 1242 1248 1254 1260 

Composition (%)        

Biphenyl 11   6 < 0.01 - - - - 

Monochlorobiphenyl 51 26   1   1 - - - 

Dichlorobiphenyl 32 29 20 17   1 - - 

Trichlorobiphenyl   4 24 57 40 23 - - 

Tetrachlorobiphenyl   2 15 21 32 50 16 - 

Pentachlorobiphenyl   0.5   0.5   1 10 20 60 12 

Hexachlorobiphenyl - - < 0.01   0.5   1 23 46 

Heptachlorobiphenyl - - - - -   1 36 

Octachlorobiphenyl - - - - - - 6 

        

Properties        

Density (g/cm
3 
at 25°C) 1.18 

 

 1.26,  

1.27 

1.37 

 

1.38 

 

 1.41,  

1.44 

 1.50,  

1.54 

1.56,  

1.62 

Viscosity (cp at 38°C) 5 8 20 24 70 700 resin 

Water solubility  

(µg/l at 25°C)  

200,  

15 000 
a
 

1 450 
a
   240,  

420 

240  52,  

54 

12 3 

Vapour pressure  

(10
-6

 kPa at 25°C)  

893 613 53 53 53 11 5.3 

Log Kow
.
 2.8 3.2 4.4 4.1 6.1 6.5 6.9 

Flashpoint (°C)  141–150 152–154 170 176–180 193–196 None to 

boiling 

None to 

boiling 
a 
Estimated. 

Kow: octanol/water partition coefficient. 
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A significant part of human exposure to PCB derives from food. Food of animal 

origin is the main contributor to dietary PCB exposure (98).  

PCBs have been manufactured under several trade names of which the most 

well known are Aroclor (US), Clophen (Germany) and Kanechlor (Japan) (Table 

7) (103, 187). Depending on the production conditions, the degree of chlorination 

of PCB mixtures can be up to 68 %. The homologue composition of the mixtures 

varies greatly (Table 6) and the concentrations of single isomers within each homo-

logue group also deviate from each other in different products and batches. About 

130 of the 209 congeners have been identified in commercial formulations at 

concentrations above 0.05 %. Generally, technical mixtures of PCBs consist of 

about 70–100 PCB congeners with mono- and non-ortho substituted PCBs as 

minor or trace constituents. Technical PCB mixtures also contain other dioxin-like 

compounds such as PCDFs as impurities (98, 162, 187, 252). It has been noticed 

that the total aryl hydrocarbon TEQs for different batches of the same Aroclor 

may differ considerably (78).  

Due to their low electrical conductivity in connection with high thermal con-

ductivity and thermal resistance, the PCBs have been used as cooling liquids in 

electrical equipment such as transformers and capacitors. PCBs have also been 

used as hydraulic oils, in heat-exchange systems and in vacuum pumps. Besides 

this usage in closed systems, large amounts of PCBs were used for other appli-

cations, e.g. inks, dyes, paints, surface coatings, sealants, caulking materials, 

adhesives, flame retardants, pesticide formulations, plasticisers, cutting and lub-

ricating oils (18, 98, 103, 162, 187, 269). In western countries, PCBs were used in 

public building construction for various purposes in the 1960s and 1970s, mainly 

as an additive to caulk, grouts and paints. PCBs were also used as a major con-

stituent of permanent elastic sealants on polysulphide rubber basis and as flame 

retardant coatings of acoustic ceiling tiles (162). In Sweden, PCBs were extensive-

ly used as plasticisers in elastic sealants used in joints between concrete blocks  

in buildings from 1956 to 1972 (378). 

Because of the toxic properties, persistence, and bioaccumulation of PCBs in 

the environment, PCB production and use is banned or restricted worldwide (44, 

64, 187, 188). In the US, the production, use and distribution of PCBs were banned 

in 1979 except in completely closed systems (129, 398). In the European Union 

(EU), open applications were banned in 1976 (Dir 76/403/EEC) and in the EU 

 
Table 7. Trade names of PCB products and PCB containing mixtures (187). 

Aceclor Clophen Hivar Polychlorobiphenyl 

Apirolio Clorphen Hydol Pydraul 

Aroclor Delor Inclor Pyralene 

Arubren Diaclor Inerteen Pyranol 

Asbestol Dialor Kanechlor Pyroclor 

Askarel Disconon Kennechlor Saf-T-Kuhl 

Bakola 131 Dk Montar Santotherm FR 

Biclor Duconol Nepolin Santovac 

Chlorextol Dykanol No-Flomol Siclonyl 

Chlorinaol EEC-18 PCB Solvol 

Chlorinated Biphenyl Elemex PCBs Sovol 

Chlorinated Diphenyl Eucarel Phenoclor Therminol FR 

Chlorobiphenyl Febchlor Polychlorinated biphenyl  
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directive from 1996 (Dir 96/59/EC) it was stated that a complete phase out should 

be reached before 2010 (108). In Sweden, the use of PCBs was restricted in 1972 

and allowed only in closed systems. New equipment containing PCBs was pro-

hibited from 1978, whereas old installations containing PCBs were allowed until 

1995 (2, 32). Buildings containing PCB shall be decontaminated by the latest in 

2016 (379). No new PCB-containing products have been allowed in Norway since 

1980, in Finland since 1985, in Denmark since 1986 and in Iceland since 1988 (2).  

5. Measurements and analysis of workplace exposure  

The quantification of PCBs in biological samples usually consists of three dis- 

tinct steps: extraction of PCBs from the sample matrix by solvents, removal of 

impurities on columns, and quantification by gas chromatography (GC) with a 

suitable detector (188). Serum is considered a suitable matrix for occupational  

and environmental exposure estimation. It is homogenous and does not coagulate 

during freezing. Also plasma is often used as matrix in many laboratories (20).  

The extraction of lipophilic PCBs from serum or plasma is mostly done with 

solvents or solvent mixtures like hexane:dichloromethane (306), hexane:diethyl 

ether (53), hexane (142) or acetonitrile (431). The solvent extract is often washed 

with acid or base to remove large quantities of organic co-extractives. This ensures 

that subsequent commonly used column chromatography procedures are not over-

loaded by organic material. Adsorbent columns reported for sample purification 

include silica gel (20, 201, 431), Florisil (88, 201, 306, 363), carbon (130), basic 

alumina (201), potassium silicate (431) and acid impregnated silica gel columns 

(431). Also liquid-lipophilic gel partitioning as the lipid extractive step without 

acid treatment has been reported for blood samples (290, 417). During extraction 

and sample clean-up, care has to be taken to avoid losses of the lower chlorinated 

PCB congeners due to their relatively high volatility (98).  

At air sampling, samples are taken either from the general workplace air or the 

breathing zone of workers. Usually, Florisil or XAD-2 adsorbent tubes are used 

with or without glass fibre filters placed in front of the tube. Using both adsorbent 

and filter ensures that PCBs in both gas and particulate form are collected (213).  

Surface sampling of PCBs can be carried out by the wet-wipe procedure at which 

an area is wiped with a cotton gauze pad dampened with hexane (187).  

Recovery of various PCB mixtures (16–54 % chlorinated) was 94–100 % in dust 

samples collected on glass fibre filters and solid sorbent sampling (Florisil, OVS 

sampler, XAD-2) (278, 286). 

Modern techniques for identification and quantification are mainly based on  

GC with electron capture detection (ECD) or mass spectrometric detection (MS). 

Capillary or high-resolution GC has made it possible to achieve lower detection 

limits and better separation of individual PCB congeners for quantification, and 

today high-resolution GC-ECD is the analytical method of choice (19, 51, 88, 98, 

142, 188, 255, 419). For the non-ortho PCB congeners, and preferably also for  

the mono-ortho-substituted PCBs, MS must be used (419). MS has also been 

recommended when multiple individual congener measurements are required, 
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although recently GC-µECD has been proposed suitable for mass screening (45, 

188).  

A detection limit of 1 ng/l in human plasma was reported with GC-µECD (45). 

GC-MS in electron impact (EI) mode has been used in some studies to identify 

individual congeners (130, 201, 290, 291, 431), but has been reported to be less 

sensitive than GC-ECD (51, 363). However, using GC-MS with negative chemical 

ionisation (NCI) can improve the sensitivity. The detection limits for 24 individual 

congeners varied from 10 to 80 ng/l in serum for GC-MS-NCI (212).  

In air samples, PCBs are often determined by GC-ECD, but also GC-MS-EI can 

be used. The detection limits vary from low ng/m
3
 to µg/m

3
 for GC-ECD (19). 

With GC-MS-EI, detection limits less than 1 pg/m
3
 have been reported (79). 

6. Exposure data 

The levels of PCBs in human food, the exposure in the general population, acci-

dental exposures and occupational exposures were discussed in depth by IPCS, 

1993 (187). The present document focuses on more recent data on occupational 

exposure, but contains also some data on background exposure in the general 

population. Food of animal origin is a main source of PCB exposure and ex-

posure is mainly to the high-chlorinated PCB congeners that accumulate in the 

food chain. Some exposure to more low-chlorinated PCBs may occur from air, 

e.g. in contaminated buildings (19, 125, 349). In occupational settings, inhalation 

is a major exposure route to PCBs (18, 19, 188), at least if respirators are not used, 

but dermal exposure as well as ingestion of PCBs have been demonstrated and 

may be of importance (252, 299). Occupational exposure may be to both high- 

and low-chlorinated PCBs, but the latter constitute a minor part of the PCB load 

in blood at current low-level exposure (98, 169, 253, 354, 423). 

Usually, the sum of some indicator congeners is used to describe PCB levels. 

The six individual PCB congeners 28, 52, 101, 138, 153 and 180 are often used as 

indicators to assess environmental exposure. Sometimes, a seventh congener, PCB 

118, is included into the group of indicator PCBs (98, 423).  

6.1 Environmental exposure  

6.1.1 General  

Food ingestion is the major route of PCB exposure in the general population (18, 

98). The congener pattern for different food products varies. Vegetables account 

for a major part of the intake of lower chlorinated congeners, whereas fatty foods 

such as fish, dairy products and meat play a greater role for exposure to higher 

chlorinated PCBs (19). The relative contribution from different food items varies  

a great deal between countries. In Finland, about 85 % of the total PCB load of 

occupationally non-exposed persons originates from fish consumption (409), 

whereas in Sweden it is estimated that 57 % of the total PCB intake originates 

from fish and fish products (84). In Sweden, the daily intake of non-dioxin-like 

PCBs (sum of 23 congeners) was calculated based on a national dietary survey 
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1997–98 and analytical data from food samples. The calculated median daily in-

take (1 207 persons) by men and women of different age groups (17–75 years) was 

found to be in the range of 6.2–9.6 ng/kg bw and 5.5–12 ng/kg bw, respectively 

(98). However, there are subpopulations, e.g. fishermen, with higher dietary ex-

posure to PCBs. It has been estimated that the daily intake of non-dioxin-like 

PCBs from fish can reach approximately 80 ng/kg bw or even more in Baltic  

Sea fishermen (before taking into account the rest of the diet). Further, in many 

European countries, the daily intake of PCB by breastfed infants is significantly 

higher (per kg bw) than that of adults and adolescents (98). 

Thus, there are still subpopulations in the general population with rather high 

plasma/serum concentrations of PCBs. For example, a comparison between Inuit 

women (from Greenland) and Swedish men showed that the levels of many PCB 

congeners were higher in the Inuits (Table 8). Yet, overall, it can be stated that the 

PCB body burdens in humans have decreased, as evidenced by lower levels re-

ported in human adipose tissue, blood serum and breast milk, although a recent 

study on background levels of PCBs in the US population indicate that lower 

chlorinated (less than five chlorines) PCB serum levels have not changed con-

siderably during the last decades. The slow reduction results from the constant 

feed of degraded and metabolised higher chlorinated PCBs (19, 178). 

A mean PCB level of 146 ng/g lipid (range 30–402 ng/g lipid) in breast milk 

(PCBs 28, 52, 101, 105, 118, 138, 153, 156, 167, 180) was indicated in a Swedish 

study covering the period 1996–2003 (273 primiparous mothers). The highest mean 

values were found for PCBs 153, 138 and 180 (62, 31 and 29 ng/g lipid, respectively), 

whereas PCB 28 showed the largest variation in levels (0.3–307 ng/g lipid). Mean  

Table 8. Mean plasma/serum levels of PCBs in different groups in the general population, 

i.e. Inuit women (77) and Swedish men (133). 

PCB congener 

number 

Inuit women,  

n = 153, age 49–64 years 

 Swedish men,  

n = 115, age 41–75 years 

 Plasma 
a
 PCB levels, ng/g lipid  Serum 

b
 PCB levels, ng/g lipid 

 GM Range  AM  Range 

PCB 28 7.7 nd–111  5.8 < 2.0–78 

PCB 52 7.3 nd–80  4.2 < 2.0–16 

PCB 99 88 9.3–295  -  -  

PCB 101 8.9 nd–37  4.2 < 2.0–18 

PCB 105 22 nd–78  6.6 < 2.0–28 

PCB 118 122 20–372  42  4.3–143 

PCB 138 418 71–1 385  142  3.1–335 

PCB 153 579 94–1 993  294  23–627 

PCB 156 77 11–296  23  7.9–50 

PCB 167 - -  10 < 2.0–30 

PCB 170 132 20–606  -  - 

PCB 180 351 58–1 709  216  71–480 

PCB 183 42 7.4–160  -  - 

PCB 187 164 24–660  -  - 

      
∑ PCBs 2 051 341–7 384  -  - 
a
 Samples from the year 2000. 

b
 Sampling year was not given, but the study was published in the year 2000. 

AM: arithmetic mean, GM: geometric mean, nd: not detected, -: not analysed. 
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values for the mono-ortho-PCBs decreased in the following order: PCB 118 (12 

ng/g lipid) > PCB 156 (4.7 ng/g lipid) > PCBs 105, 167 (1.4 ng/g lipid). The de-

cline in average level for different PCBs was about 5–10 % per year (238). 

A substantial reduction of background PCB exposure between the mid 1990s 

and the early 2000s has also been indicated in Swedish men. Sixty % lower PCB 

levels in plasma (geometric means of lipid-adjusted PCB concentrations for the 

sum of 7 PCBs) were observed in a control group of construction workers com-

pared to a group of historical controls (construction material industry and food 

industry workers). The mean plasma level (sum of PCBs 28, 52, 101, 118, 138, 

153, 180) was 230 ng/g lipid (range 90–1 100) or 0.8 µg/l (range 0.4–2.0) in the 

samples from 2002, whereas the lipid-adjusted mean value in the historical con-

trol group was 580 ng/g lipid (354) (see Section 6.2). 

In a study from 2007, serum concentrations of around 110 PCBs (from di- to 

decachlorinated congeners) in 87 Koreans (25 incinerator workers, 52 residents 

nearby and 10 residents not near the incinerator) were reported (or not detected). 

Arithmetic means of total PCB and dioxin-like PCB concentrations increased 

with age (stratified age groups, 21– > 50 years) and were 110–421 ng/g lipid  

and 2.6–10.8 pg TEQs/g lipid. Penta-, hexa- and heptachlorinated congeners 

contributed to more than 80 % of the detected total PCBs. The most abundant 

congeners were PCB 153 (mean value: 54.9 ng/g lipid), PCB 138/163 (34 ng/g), 

PCB 180 (28.4 ng/g), PCB 187 (12.3 ng/g) and PCB 118 (9.6 ng/g), all of which 

contributed to approximately 57 % of total PCBs. PCB 118 contributed to more 

than 50 % of the dioxin-like PCBs. The mean concentration of PCB 126 was 47 

pg/g lipid. Several congeners (PCBs 12, 14, 21, 23, 36, 39, 42, 50, 54, 62/65, 69, 

75, 104, 106, 107, 109, 116, 140, 143, 145, 150, 160, 161, 173, 182, 186 and 192) 

were not detected in any samples (287) (see Section 6.2). 

In a meta-analytical approach, 37 articles published from 1990 to 2003 on PCB 

concentrations in blood, serum and plasma of subjects in different countries be-

longing to control groups or to reference groups of non-exposed individuals were 

selected and analysed. In total, 16 studies were selected for final analysis (number 

of determined congeners and dioxin-like congeners are only stated in five of these). 

In order to standardise the presentation of results, all the data were expressed as 

weight/volume. Thus, data reported as µg/g lipid (in plasma/serum) were trans-

formed to µg/l plasma/serum considering a standard concentration of total lipids 

of 646 mg/100 ml serum, as suggested by Akins et al (4). The mean-median values 

of total PCBs varied between 1.2 and 8.3 µg/l plasma/serum in males and be-

tween 2.7 and 5.2 µg/l in females. The range was 0.9–56 µg/l for total PCBs and 

0.2–2.4 µg/l for PCB 153 (259).  

In Germany, the reference values (95
th

 percentile of the pooled data) for the sum 

of the indicator congeners (PCBs 138, 153, 180) given by Kappos et al (1998) 

varied from 3.2 to 12.2 µg/l in plasma and 2.5–6.8 µg/l in whole blood (increasing 

with age). The mean values for the sum of PCBs in the age group 36–45 years were 

3.8 µg/l in plasma and 2.1 µg/l in whole blood. Only samples after 1994 were taken 

into account. According to the authors, some caution is indicated since part of the 

data had been obtained by non-random sampling (203). Heudorf et al suggested 

new provisional reference values based on PCB plasma levels analysed in Germany 
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in 1998. The 95
th

 percentiles in different age groups (18–65 years) were 3.0–9.4 

µg/l for the PCB sum, 1.0–2.9 µg/l for PCB 138, 1.3–4.0 µg/l for PCB 153 and 

0.9–3.3 µg/l for PCB 180. Mean values in the same age groups were 0.9–4.1 µg/l 

for the sum of the PCBs. The PCB compounds 28, 52 and 101 were below the de-

tection limit in all blood samples (172). The German human biomonitoring com-

mission presented reference values in whole blood (95
th

 percentile) for different 

age groups (18–69 years) for PCB 138: 0.4–2.2 µg/l, PCB 153: 0.6–3.3 µg/l, PCB 

180: 0.3–2.4 µg/l and for the sum of these PCBs: 1.1–7.8 µg/l, based on a German 

environmental survey performed 1997/1999 (347). 

In Finland, an upper reference limit value of 3 µg/l serum has been set for the 

general population (254). This value has been estimated for the sum of 8 PCB con-

geners (PCBs 28, 47, 52, 74, 101, 138, 153 and 180) with 3–7 chlorine atoms in the 

molecule. The reference limit is not adjusted to the age of the persons investigated. 

Re-evaluation of the reference limit value is, however, under way (295).  

6.1.2 Exposure in PCB-contaminated buildings (e.g. schools and office buildings)  

Some exposure to PCBs may occur through dermal contact (soil and house dust) 

and inhalation of ambient and indoor air (269). PCB exposure in buildings is most 

likely the result of volatilisation, since levels of PCB on dust particles are very low 

compared to the gaseous phase (98). Sources of PCBs are e.g. sealants, paints, ca-

pacitors of fluorescent lamp ballasts, coatings or ceiling tiles (211). The congener 

pattern in air depends on the PCB source. For example, some Aroclors contained 

large amounts of mono- and dichlorinated congeners, whereas other Aroclors con-

tained little or none (Table 6). However, only a weak influence of PCB contami-

nated air on the total PCB blood level was found in several studies, because the 

concentration of the low-chlorinated and more volatile PCBs (e.g. PCBs 28 and 

52) in blood was still low (despite an increase) compared to the mean PCB blood 

concentration caused by food intake (125, 157, 349).  

PCB levels of 10–20 µg/m
3
 have been reported in a number of schools in Ger-

many (98), although it has been stated that typical concentrations range between 

0.5 and 10 µg/m
3
 (125). Blood or plasma PCB levels in teachers and employees  

in commercial buildings are presented in Table 9. 

Data on dioxin-like PCBs in indoor air of buildings with PCB containing mate-

rials are very limited (162). However, Kohler et al measured the PCB levels in 

indoor air in four Swiss public buildings containing joint sealants with PCBs and 

in one PCB contaminated industrial building (211). All dioxin-like PCBs and six 

indicator congeners (PCBs 28, 52, 101, 138, 153, 180) were measured. In the four 

public buildings, the sum of the latter multiplied by 5 gave a total PCB value of 

0.7–4.2 µg/m
3
. The most abundant of the indicator congeners were PCBs 28, 52 

and 101. The most common dioxin-like congeners were PCB 118 (≤ 0.010 µg/m
3
) 

and PCB 105 (≤ 0.0044 µg/m
3
). The level of PCB 126 was below the detection 

limit in three of the buildings (0.000014 µg/m
3 

in the fourth building). In the con-

taminated industrial building, the levels of PCBs 28, 52, 101, 138, 153 and 180 

were 1.1, 1.2, 0.24, 0.03, 0.03 and 0.004 µg/m
3
, respectively, giving a total PCB 

value of 13 µg/m
3
 (six congeners × 5). The most abundant dioxin-like congeners 

were PCB 118 (0.066 µg/m
3
) and PCB 105 (0.021 µg/m

3
). The level of PCB 126  
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Table 9. Plasma or blood PCB levels in teachers in schools and employees in commercial buildings.  

Facility or work Country 

Year 
a
 

No. of  

subjects 

Sample 

matrix 

No. of congeners 

analysed 

PCB level, µg/l Reference 

 Exposed, 

mean (range) 

Controls, 

mean 

 

Commercial building Germany 

2002 

583 exposed Plasma PCBs 28, 52 and 101 

 

PCBs 138, 153 and 180 

 

All 6 PCBs 

0.14 (0–0.68) 

0.11 (median) 

2.48 (0.28–9.72) 

2.16 (median) 

2.65 (0.3–9.95) 

2.32 (median) 

- (45, 46) 

Schools  Germany 

1997 

18 exposed 

11 controls 

Blood 8 including 

PCB 28 

PCB 52 

PCB 101 

PCB 138 

PCB 153 

PCB 180 

 

0.24 

0.07 

0.02 

0.70 

0.96 

0.62 

 

0.03 

0.03 

0.01 

0.52 

0.77 

0.63 

(349) 

Schools  Germany 

1994–

1995 

96 exposed
 
 

55 controls 

Blood 6 
b
 including 

PCB 28 

PCB 138 

PCB 153 

PCB 180 

 

0.05–0.10 

0.66 
 c
 

0.95 
 c
 

0.70 
 c  

 

0.04 

(125) 

 a
 Year of sample collection. 

 b 
One school also analysed all dioxin-like PCBs except PCB 81. 

 c
 Including controls. 
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was very low (0.000043 µg/m
3
). It was stated that levels of dioxin-like PCB ex-

pressed as TEQs correlated well with the total indoor air PCB concentration and 

that a concentration of dioxin-like PCB of 1.2 pg TEQs/m
3
 corresponds to a total 

PCB level of 1 µg/m
3
 (211).  

A survey on PCB congener levels in indoor air collected in 384 rooms of 181 

public buildings, mainly schools, in Germany indicated that some low-chlorinated 

PCBs exhibited the highest concentrations (e.g. maximum values for PCBs 8, 18, 

28, 31, 52 and 101 were 0.11–0.31 µg/m
3
). The sum of the six indicator congeners 

(PCBs 28, 52, 101, 138, 153, 180) multiplied by 5 gave about 2 µg/m
3
 of total 

PCBs as a maximum value. The 12 dioxin-like PCBs and PCDDs/PCDFs were 

also determined in four of the buildings. PCB 118 was by far the dioxin-like PCB 

occurring at the highest level and the congeners 118, 126 and 156 accounted for 

85–95 % of the PCB-TEQs. TEQs of mono-ortho PCBs were 2–4 times higher 

than TEQs of non-ortho PCBs. Total TEQs (PCB + PCDD/PCDF) ranged from 

0.4–5.9 pg/m
3 

(162).  

Teachers’ exposure to PCBs in three contaminated German schools was assessed 

by monitoring PCB compounds in air and blood. Maximal indoor air values for 

total PCBs (six indicator congeners × 5) ranged from 1.6 to 10.7 µg/m
3
 and mean 

values were 0.6–7.5 µg/m
3
. PCBs 28 and 52 contributed to almost 90 % of the sum 

of the six indicator congeners in two schools, whereas PCBs 101, 138 and 153 

dominated in one school. One school was also analysed for dioxin-like congeners 

with a maximum total level of 0.012 µg/m
3
 and 12 pg/m

3 
as an estimated sum of 

TEQs. No increase in blood levels could be detected for PCBs 138, 153 and 180 

in exposed teachers compared to controls, whereas school specific differences 

were found for PCBs 28 and 101 (PCB 52 could not be evaluated). Mean PCB 28 

blood concentrations were 0.05–0.1 µg/l in the three schools and 0.04 µg/l in the 

control group (with a considerable inter-individual variability). The blood levels 

of PCB 101 were 0.08 µg/l in one school and 0.04 µg/l in controls (125).  

In a later German study, the effect of a heavy indoor air PCB contamination (up 

to 12 µg/m
3
 for PCBs 28 and 52, respectively) on PCB blood levels of teachers (the 

six indicator congeners, PCBs 126, 169) was investigated. Blood analysis showed 

increased levels of PCB 28 (0.24 vs. 0.03 µg/l), PCB 52 (0.07 vs. 0.03 µg/l) and 

PCB 101 (0.02 vs. 0.01 µg/l) compared to a control group, but this increment was 

small compared to the total PCB load. A rough estimation suggested that this in-

crease elevated the total PCB blood concentration of about 13 %. There were only 

minor differences (values in the range of the usual background concentration) be-

tween the groups regarding PCBs 138, 153 and 180. Moreover, blood lipid ana-

lyses revealed only slight differences in non-ortho PCBs (PCB 126: 156 vs. 132 

pg/g lipid, PCB 169: 117 vs. 96 pg/g lipid) (349). 

In a study of 583 subjects who had worked 1–40 years in a German commercial 

building with PCB contamination from insulation material and elastic sealing com-

pounds, plasma samples (from 2002) were analysed for six indicator congeners 

(PCBs 28, 52, 101, 138, 153, 180). The mean PCB sum was 2.6 µg/l (maximum 

10 µg/l). The mean sums for PCBs 138–180 and for PCBs 28–101 were 2.5 µg/l 

(maximum 9.7 µg/l) and 0.14 µg/l (maximum 0.7 µg/l), respectively. The median 

air concentrations in the building were 0.11 (PCB 28), 0.125 (PCB 52), 0.011 
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(PCB 101) and < 0.002 µg/m
3
 (PCBs 138, 153, 180). The median sum of PCBs 

was given as 1.28 µg/m
3 
(45). 

In a Finnish study, the mean serum PCB concentration of 24 residents of PCB-

containing buildings (sum of PCBs 28, 52, 77, 101, 118, 126, 138, 153, 169, 180) 

was 2.1 µg/l (range 0.95–4.1), whereas the mean value in a control group was 1.8 

µg/l (range 0.23–12.6) (298).  

In a Swedish study, some 30 PCB congeners were detected in blood samples 

from 21 inhabitants of flats in PCB-containing buildings, although only 15 could 

be quantified in all samples. Most of these congeners were only slightly elevated 

compared to controls (median levels were generally < 2 times higher, 3 times 

higher for PCB 74), but the concentrations of the two low-chlorinated PCBs 28 

and 66 were several times higher (30 and 8 times). Total PCBs was 434 ng/g lipid, 

compared to 226 ng/g lipid in controls, as median concentrations in blood (198). 

6.2 Occupational exposure  

In occupational settings, inhalation is a major exposure route to PCBs (18, 19, 

188), at least if respirators are not used, but dermal exposure as well as ingestion 

of PCBs have been demonstrated and may be of importance (252, 299). Although 

production of PCBs has ceased, occupational PCB exposure may still occur during 

handling of waste and as a result of recollecting electrical equipment that contains 

PCBs. In the US and Canada, many PCB transformers and PCB capacitors may 

still be in use and those who repair and maintain that equipment and those in the 

reclamation industry responsible for disassembly of PCB-containing transformers/ 

capacitors are considered to have the highest potential for exposure. Exposure to 

PCBs may also occur when renovating and demolishing buildings (19, 212, 321). 

A large building can contain up to 100 kg of PCBs and workers are exposed to 

PCB-containing dust especially while grinding the old PCB-contaminated seam. 

When PCBs spread as dust particles, the congener pattern is similar to that deter-

mined for the equivalent sealant (299, 378). However, occupational exposure  

may also be due to PCB vapour emission, whereby the congener pattern in air is 

dominated by lower chlorinated congeners (98, 125, 351). The content of lower 

chlorinated congeners differs considerably between PCB mixtures (Table 6).  

The PCB level in serum or plasma can be used as a measure of the combined ex-

posure of PCBs (from air, food etc.). PCB levels in serum, plasma or whole blood 

in some occupationally exposed groups are shown in Tables 10–12. For data on 

occupationally exposed teachers and employees in commercial buildings, see 

Section 6.1.2 and Table 9.  

In a Swedish study, Sundahl et al evaluated renovation workers’ exposure to 

PCBs. Air was sampled in the breathing zone of the workers during exchange of 

PCB-containing elastic sealants with PCB free materials. Measurements included 

seven indicator congeners (PCBs 28, 52, 101, 118, 138, 153 and 180). The pattern 

of the PCBs in the workplace air was different from that of the sealant and con-

tained higher levels of lighter components. For air samples, a conversion factor of 

6 was used to obtain the total PCB concentration from the sum of four congeners 

(PCBs 28, 52, 101 and 138). The total PCB concentrations in the workplace air at 
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the beginning were generally above 10 µg/m
3
 (up to 120 µg/m

3
). Later, when the 

techniques were optimised to take better care of dust and gases produced during 

the cutting and grinding etc., the levels were below or close to 10 µg/m
3
 (378). 

Workers in Finland replacing mastic sealants in prefabricated houses have also 

been found to be exposed to PCBs (213). The concentrations of PCB congeners 

28, 52, 77, 101, 138, 153 and 180 in samples taken from the breathing zone of six 

workers were low, ranging from not detected to 8.7 µg/m
3
. The four higher chlori-

nated congeners were found in higher levels than the less chlorinated PCBs, but 

correlations between air and serum levels were noted only for PCB 28 (r = 0.70) 

and PCB 52 (r = 0.80). In serum samples from 22 workers, the mean (range) total 

PCB concentration (sum of 24 PCBs) was 3.9 µg/l (0.6–17.8) as compared to  

1.7 µg/l (0.3–3.0) in controls. Most of the PCB burden was due to more highly 

chlorinated congeners (> 4 chlorines) with a mean value of 3.5 µg/l (1.4 µg/l for 

controls). Further, serum levels of the sum of the 10 most abundant PCB con-

geners in elastic polysulphide sealants were 2–10 times higher in samples taken  

in the autumn after the renovation season than in samples from the same workers  

(n = 5) taken in the spring. The difference was explained by higher concentrations 

of PCBs 118, 138, 153 and 180. The authors concluded that some PCB exposure 

took place despite “appropriate” working equipment and personal protection (213). 

PCB exposure during the removal of old sealants has also been assessed in a 

Finnish study by Priha et al. In the calculations, inhalation, dermal and ingestion 

exposures were considered as possible exposure pathways and US Environmental 

Protection Agency (EPA) risk assessment models were used. The PCB profile  

of the studied sealant samples (10 congeners were determined) closely resembled 

that of Aroclors 1260 or 1254. The major congeners found were PCBs 101, 138, 

153 and 180 (Aroclor 1260 type) and PCBs 52, 101, 118, 138 and 153 (Aroclor 

1254 type). PCBs spread as part of demolition dust and the congener pattern was 

similar to that determined for the equivalent sealant. The PCB levels and the total 

inhalable dust levels during the removal and grinding of sealants were measured  

in the breathing zone (outside the mask) of 14 workers (16 measurements). The 

median total inhalable dust level was 6.4 mg/m
3
 (range < 0.1–309) and the median 

total PCB concentration calculated as Aroclor 1260 or 1254 was 26 µg/m
3 
(range 

6–803). The authors stated that the estimated exposure of the workers (all exposure 

routes) was about 10-fold higher than that of the general population (average die-

tary intake of PCBs 0.02 µg/kg bw/day). However, the serum PCB levels for the 

workers were only 3–4 times higher. According to the authors, exposure via in-

halation is reduced by at least a factor of 10 when respirators are worn appropriate-

ly during dusty work operations and they suggested that their risk calculations 

therefore overestimated the real exposure (299). 

In a Swedish study (354), the overall plasma PCB level in 36 abatement workers 

with at least 6 months experience of PCB removal from old sealants in the two pre-

vious years (2000–2001) was approximately twice as high as in a control group of 

33 matched construction workers without occupational PCB  exposure. The geo-

metric mean levels expressed as the sum of 19 PCB congeners (tri- to hepta-

chlorinated) were 2.3 µg/l (range 0.56–7.8) vs. 0.9 µg/l (0.45–2.2) or 580 ng/g lipid 

(160–2 200) vs. 260 ng/g lipid (110–1 200) as lipid-adjusted values. Mean levels 
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expressed as the sum of seven indicator congeners (PCBs 28, 52, 101, 118, 138, 

153 and 180) were 1.6 µg/l (0.4–4.9) vs. 0.8 µg/l (0.4–2.0) or 410 ng/g lipid (120–

1 800) vs. 230 ng/g lipid (90–1 100) as lipid-adjusted values. The highly chlorinated 

congeners PCB 153, 138 and 180 dominated in plasma in both exposed individuals 

and controls, and the geometric mean quotients did not differ considerably be-

tween the groups. Geometric means (exposed vs. controls) were 0.51 vs. 0.29 μg/l 

(PCB 153), 0.46 vs. 0.21 μg/l (PCB 138) and 0.35 vs. 0.24 μg/l (PCB 180). How-

ever, there were much higher levels of many less chlorinated PCBs in the exposed 

workers than in the controls (Figure 2). PCBs 66 and 56/60 were clearly elevated 

in the exposed group with geometric means of 0.065 vs. 0.0028 μg/l and 0.036 vs. 

0.0012 μg/l. The dioxin-like PCBs 105 and 118 had mean values of 0.034 and 0.11 

μg/l (0.0061 and 0.033 μg/l in controls). A follow-up of 25 workers after 10 months 

of additional exposure showed that the overall PCB burden in plasma was practi-

cally unaltered. For some congeners, notably PCBs 44, 47, 52, 70, 87, 95, 101 

and 110, significant reductions were seen, but the contribution of these PCBs was 

limited. Subjects reporting no use of respiratory protection (n = 5) showed an in-

crease of 12 ng/g lipid in the sum of 19 PCBs (geometric mean) over the study 

period as opposed to the other workers (n = 20) who presented a slight decrease of 

3 ng/g lipid. It was suggested that the higher total serum values among the abate-

ment workers as compared to controls were secondary to historical exposure and 

probably explained by less stringent protection of the exposed group prior to the 

implementation of the current safety regulations. In the occupationally exposed 

group of abatement workers, the geometric mean value (sum of seven PCBs) was 

lower than in historical controls, although not significant after age adjustment (410 

vs. 580 ng/g lipid) (354) (see also Table 20 in Chapter 12).  

In a pilot study, Herrick et al investigated serum PCB levels and congener pro-

files among US male construction workers. A blood sample was collected in 2005 

from 6 workers (two were retired) who had installed and/or removed PCB-con-

taining caulking material from buildings. The referent group consisted of 358 men 

who were seeking infertility diagnosis from a hospital (2000–2003). The mean 

sum of 57 PCBs in serum for workers and referents were approximately 2.8 and 

1.3 µg/l, respectively. Serum concentrations for the construction workers and the 

referents were highest for PCBs 118, 138, 153, 170 and 180 (approximately 50 % 

and 60 %, respectively, of the total PCB concentrations). Mean serum levels of the 

heavy congeners (PCBs 84–209) were 2.61 µg/l (range 0.79–8.33) in workers and 

1.19 µg/l in referents. Further, the mean levels of the more volatile, lighter di-, tri- 

and tetrachloro-PCBs (PCBs 6–74) were higher among the construction workers 

than among controls with a mean (range) of 0.23 µg/l (0.15–0.38) vs. 0.09 µg/l. In 

the only subject involved in removing PCB caulk at the time of the blood sampling, 

the contribution of PCB congeners 16, 26, 28, 33, 60, 66 and 74 was markedly 

higher than in the other 5 workers. Generally, seven PCBs (PCBs 6, 8, 16, 26, 33, 

37 and 41) comprised 60 % of the sum of the light congeners for the construction 

workers. It should be mentioned that the workers’ mean serum value exceeded the 

reference mean by a factor of 5 or more for PCBs 6, 16, 26, 33, 37, 41, 70, 97 and 

136 (169). Most of these congeners have not been measured in other studies of 

workers removing PCB caulk (e.g. (213, 423). The mean serum concentrations  
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Figure 2. PCB levels in abatement workers and controls as reported by Seldén et al (354). 
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(µg/l) of the dioxin-like PCBs for workers and referents in the study by Herrick et 

al were as follows: PCB 157/201/177: 0.594 vs. 0.023, PCB 118: 0.136 vs. 0.076, 

PCB 156: 0.112 vs. 0.034, PCB 105/141: 0.032 vs. 0.019, PCB 167: 0.025 vs. 0.010, 

PCB 77/110: 0.009 vs. 0.005, and PCB 189: 0.007 vs. 0.004 (169).  

The mean sum of 24 PCBs (including five dioxin-like congeners) found in the 

serum of 26 workers in a hazardous waste disposal plant in Finland was 3.4 µg/l 

(range 1.9–10.9) compared to 1.6 µg/l (0.3–3.0) for 21 controls. Serum levels 

(µg/l) were stated for some congeners and were as follows (workers vs. controls) 

PCB 28: ≤ 2.3 vs. ≤ 0.3, PCB 153: ≤ 2.0 vs. ≤ 1.1, PCB 180: ≤ 1.6 vs. ≤ 0.7, PCB 

101: ≤ 1.4 vs. not detected, PCB 138: ≤ 1.3 vs. ≤ 0.6 and PCB 52: not detected vs. 

≤ 0.2. The main PCB compounds found in waste incineration originated earlier 

from capacitor and transformer oils. Therefore, nine low-chlorinated PCB com-

pounds (PCBs 8, 18, 28, 33, 44, 47, 66, 74, 101) have traditionally been measured 

in workers’ serum to evaluate their exposure to PCBs. Nowadays, construction 

waste and contaminated soil containing mainly highly chlorinated congeners 

(PCBs 101, 118, 138, 153, 180) seem to be the main sources of PCBs in waste 

incineration in Finland. The mean proportion of PCB compounds with four or less 

chlorine atoms in this study was 20 % for workers and 14 % for the controls (212). 

There was no difference in the plasma level of the sum of seven indicator con-

geners (PCBs 28, 52, 101, 118, 138, 153, 180) between 29 male workers at a 

hazardous waste incineration plant and 60 matched controls in a Swedish study. 

The mean values were 682 ng/g lipid (range 241–1 576) vs. 680 (234–4 523) ng/g 

lipid, respectively. However, the mean levels of PCBs 28 and 52 were significant-

ly higher in exposed workers than in controls; 62 ng/g lipid (range 4–724) and 2.5 

(0.5–13) ng/g lipid, respectively, for workers, and 3.3 ng/g lipid (0.7–29) and 1.3 

(0.5–12) ng/g lipid, respectively, for controls. These results were quite concordant 

with the congener profile of the air monitoring analyses. Air samples from various 

locations within the plant showed air levels of 0.001–0.031 µg/m
3
 for PCB 28  

and 0.0005–0.008 µg/m
3
 for PCB 52. The highest values for the other measured 

PCB congeners were 0.005 (PCB 101), 0.003 (PCB 153), 0.003 (PCB 138), 0.002 

(PCB 118) and 0.0007 (PCB 180) µg/m
3
. Estimated total PCB levels were 0.014–

0.26 µg/m
3
 at different locations (355). 

The mean total PCB concentrations (PCBs 28, 52, 101, 138, 153 and 180) in 

pooled blood samples taken in 1997 in Spain from 14 workers at a municipal solid-

waste incinerator, 93 persons living near an incinerator and 91 persons living far 

from an incinerator were 1.47, 2.11 and 1.99 µg/l, respectively. The sum of PCBs 

138, 153, and 180 were 1.42, 2.06, and 1.94 µg/l, respectively. The workers ex-

perienced a slight decrease in PCB concentrations compared to the levels in 1995 

before incinerator functioning (= background level). In 1995 and in 1997, PCBs 

28 and 52 were not detected and PCB 101 was found at very low levels (138).  

In a German study (published in 1992), no significant differences were found 

between 53 workers occupied in a municipal waste incinerator and 63 controls 

with respect to plasma levels of PCBs. The mean of the sum of PCBs 138, 153 

and 180 was 6.33 µg/l for workers and 6.22 µg/l for controls. The levels of PCB 

28, 52, and 101 were below the detection limits in both workers and controls (10). 
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In a Korean study from 2007, serum mean levels of total and dioxin-like PCBs 

in 25 workers at municipal solid waste incinerators were 215 and 15.6 ng/g lipid, 

respectively. Around 110 PCBs (di- to decachlorinated congeners) were analysed. 

No significant difference in congener or homologue distributions were found be-

tween the workers and residents nearby or > 10 km from the incinerator (287).  

The mean serum PCB level from 17 employees at two adjacent US scrap metal 

dealers was 7.5 µg/l. The PCB concentrations were significantly related to eating 

lunch outside the lunchroom, which according to the author suggested hand-to-

mouth contact as a source of exposure. Full-shift personal-breathing-zone air 

samples were collected for PCBs. No PCBs were found in any air or wipe samples 

taken by the Occupational Safety and Health Administration (OSHA). Bulk samples 

ranged from non-detectable to 265 ppm (257). 

A mean serum PCB level of 7.4 µg/l (range 0.26–92) was obtained when 14 con-

geners (PCBs 52, 74, 99, 101, 118, 138, 146, 153, 177, 178, 180, 183, 194 and 201) 

were measured in samples collected 1996 in a cohort of US capacitor plant workers 

(n = 180) occupationally exposed to PCBs many years earlier (PCBs were used in 

the company 1952–1978). On average, these 14 PCBs accounted for almost 80 % 

of the total across all 38 PCBs measured and the highest levels were found for 

PCB 74 (123). A comparison between this cohort and a subgroup from the general 

population with extensive PCB exposure from food showed the differences in con-

gener pattern in serum (Table 10).  

A similar mean PCB level (measured 2003–2006) was reported for another 

population of capacitor workers (129 men, 112 women) with att least 3 months of 

employment 1946–1977 at US capacitor factories (351). The serum PCB levels (27 

PCBs measured) were 7.5 µg/l (1 190 ng/g lipid) in men and 5.8 µg/l (860 ng/g 

lipid) in women, and 6.6 µg/l (1 020 ng/g lipid) in both genders combined (approxi-

mately 2-fold higher than in individuals who had not been working at the facilities). 

The geometric mean sums of the “light” PCBs (PCBs 28, 56, 66, 74, 99 and 101) 

were 2.8 µg/l (450 ng/g lipid) and 2.3 µg/l (340 ng/g lipid) in men and women, 

respectively, whereas the geometric means of “heavy” PCBs were 4.1 µg/l (650 

ng/g lipid) and 3.2 µg/l (470 ng/g lipid), respectively. The total cumulative 

occupational exposure to PCBs (assessed by industrial hygienists) was significant-

ly and positively associated with total PCB serum levels in 2004 after adjustment 

e.g. for age and body mass index. Cumulative exposure during the years that Aro-

clor 1016 was used (1971–1977) was most strongly related to the occupational 

“light” congeners, particularly PCB 74, although two “heavy” occupational con-

geners (PCBs 105 and 118) were also significant. The strength of an association 

for the years that Aroclor 1242 was used (1953–1971) was similar for both the 

occupational “light” and “heavy” congeners, and exposure to Aroclor 1254 (used 

1946–1953) was significantly associated only with PCB 156. In general, the 

associations for “heavy” congeners were weaker in magnitude than those for the 

“light” PCBs. Serum PCB levels in 1976 (available for a subgroup) showed that 

PCB levels had decreased considerably during the 28-year interval (Table 11) 

(351).  
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Table 10. Proportions (%) of 14 PCBs in serum from former PCB exposed US capacitor 

workers and fish eaters (123). 

PCB congener  Former capacitor plant workers 
a
 (n = 180)  Fish eaters

 b
 (n = 217) 

 Mean Range  Mean Range 

PCB 52 0.1 0–5  0 0–0 

PCB 74 33 0–87  4 0–12 

PCB 99 6 0–19  3 0–12 

PCB 101 0.1 0–3  0.3 0–15 

PCB 118 9 0–28  7 0–23 

PCB 138 16 3–35  29 0–47 

PCB 146 2 0–34  2 0–7 

PCB 153 19 0–40  24 15–43 

PCB 177 0.2 0–2  0.4 0–3 

PCB 178 0.3 0–19  0.4 0–4 

PCB 180 10 0.3–33  22 12–61 

PCB 183 1 0–5  1 0–4 

PCB 194 2 0–15  3 0–8 

PCB 201 3 0–22  5 0–15 
∑ PCBs

 c
 (µg/l) 7.4 0.3–92  5.0 0.5–23 

a 
PCBs used 1952–1978, serum samples taken in 1996. 

b 
Heavy consumers of fish from the Great Lakes. 

c 
The sum of 14 PCBs accounted on average for 78 % and 81 % of total PCBs (38 and 62 PCBs 

measured) in the cohorts of capacitor plant workers and fish eaters, respectively. 

US: United States. 

 

 

 

Table 11. Geometric means of PCB concentrations (wet weight, µg/l) in sera of former 

capacitor workers
 a
. Adapted from Seegal et al (351). 

PCB congener or summed score Men (n = 33) Women (n = 12) All (n = 45) 

 1976 2004 1976 2004
 d
 1976 2004 

Occupational PCBs       

PCB 28 12.13 0.11
 b
 9.23 0.49

 b,
 
e
 11.27 0.17

 c
 

PCB 74 8.67 1.74
 d
 5.71 4.89 

e,
 
e
 7.75 2.29

 d
 

PCB 105 0.68 0.12
 d
 0.36 0.24

 b, e
 0.58 0.14

 c
 

PCB 118 1.69 0.32
 d
 1.77 0.91 

e,
 
e
 1.71 0.42

 d
 

PCB 156 0.24 0.21
c
 0.15 0.30

 b, e
 0.21 0.23

 d
 

Occupational summed PCBs       

Light PCBs (PCBs 28 and 74) 23.20 2.15
 c
 16.77 5.79

 b,
 
e
 21.27 2.80

 d
 

Heavy PCBs (PCBs 105, 118 and 156)  2.78 0.76
 d
 2.62 1.55 

e, e
 2.74 0.92

 c
 

Total PCBs (light and heavy) 26.56 3.05
 d
 19.80 7.44

 b, e
 24.56 3.86

 d
 

Occupational and non-occupational summed PCBs     

Light PCBs (PCBs 28, 74 and 56, 66, 

99, 101) 

28.82 3.58
 c
 20.76 6.98

 b, e
 26.41 4.28

 d
 

Heavy PCBs (PCBs 105, 118, 156 and 

138, 146, 153, 167, 170, 172, 174, 177, 

178, 180, 183, 187, 199, 203)  

9.01 4.42
 d
 9.27 7.29

 e,
 
e
 9.08 5.05

 c
 

Total PCBs (occupational and  

non-occupational) 

40.37 8.38
 d
 31.62 15.05

 b, e
 37.82 9.80

 d
 

a 
Employed at least 3 months 1946–1977. 

b 
p ≤ 0.05, paired t-test comparing 1976 and 2004 PCB concentrations. 

c 
p ≤ 0.01, paired t-test comparing 1976 and 2004 PCB concentrations. 

d 
p ≤ 0.001, paired t-test comparing 1976 and 2004 PCB concentrations. 

e 
p ≤ 0.05, t-test comparing 2004 PCB concentrations for males versus females. 
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Table 12. Serum, plasma or blood PCB levels in populations with occupational exposure. 

Facility or work Country 

Year 
a
 

No. of 

subjects  

Sample 

matrix 

No. of congeners 

quantified  

PCB level, mean (range) Reference 

µg/l  ng/g lipid  

     Exposed Controls Exposed Controls  

Removal of PCB-

containing caulk 

US 

2000–2005 

6 workers, 

358 controls 

Serum 57 (incl PCBs 77, 

105, 118, 156, 157, 

167, 189) 

2.83 (1.05–8.70) 

2
 b
 (median) 

1.28
 b
 (NG) 

1
 b
 (median) 

- - (169) 

Removal of PCB-

containing sealants  

Sweden 

2002 

36 workers, 

33 controls 

Plasma 19 (incl PCBs 105, 

118) 

2.3 (0.56–7.8) 0.9 (0.45–2.2) 580  

(160–2 200) 

260  

(110–1 200) 

(354) 

Elastic polysulphide 

sealant renovation 

Finland 

1999–2000 

22 workers, 

21 controls 

Serum 24 (incl PCBs 77, 

105, 118, 126, 169) 

3.9 (0.6–17.8) 

1.9 (median) 

1.7 (0.3–3.0) 

1.5 (median) 

- - (213) 

Capacitor plant US 1996
 c
 180 workers Serum 14 (incl PCB 118)  7.39 (0.26–92) - - - (123) 

Capacitor plant US 

2003–2006
  d
 

241 workers Serum 27 (incl PCBs 105, 

118, 156, 167) 

6.65 (NG) - 1 020 (NG) - (351) 

Transformer repair 

work 

US
 e
 35 current + 

17 former 

workers, 

56 controls  

Serum 27 PCBs  Current exposure 

53.7 (4.3–253) 

Past exposure 

38.6 (1.5–143) 

20.0 (0.5–181)  - - (114) 

Waste incinerator Finland 

2001 

26 workers, 

21 controls 

Serum 24 (incl PCBs 77, 

105, 118, 126, 169) 

3.4 (1.9–10.9) 

2.9 (median) 

1.6 (0.3–3.0) 

1.5 (median) 

- - (212) 

Municipal waste 

incinerator 

Korea 25 workers, 

52
 f
 + 10

 g
 

controls 

Serum 110 PCBs (di- to 

decachlorinated)  

of which, sum of 

dioxin-like 

- - 215 

 

15.6 

281
 f 

, 114
 g
 

 

21.7
 
 
f
, 9.7

  g
 

(287) 
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Table 12. Serum, plasma or blood PCB levels in populations with occupational exposure. 

Facility or work Country 

Year 
a
 

No. of 

subjects  

Sample 

matrix 

No. of congeners 

quantified  

PCB level, mean (range) Reference 

µg/l  ng/g lipid  

     Exposed Controls Exposed Controls  

Municipal waste 

incinerator 

Germany  53 workers, 

63 controls 

Plasma 6 (PCBs 28, 52, 101, 

138, 153, 180) 

6.33 (1.80–36.8) 

5.58 (median) 

6.22 (0.99–20.91) 

4.15 (median) 

- - (10) 

Municipal solid-

waste incinerator 

Spain 1997 14 workers, 

93
 f
 + 91

 g
 

controls
 
 

Blood 6 (PCBs 28, 52, 101, 

138, 153, 180) 

1.47 (NG) 2.11
 f
 (1.45–2.88) 

1.99
 g
 (1.15–2.66) 

- - (138) 

Hazardous waste 

incinerator 

Sweden  29 workers, 

60 controls 

Plasma 7 (PCBs 28, 52, 101, 

118, 138, 153, 180) 

- - 682  

(241–1 576) 

680 

(234–4 523) 

(355) 

Scrap metal dealer US 1993 17 workers Serum Not stated 7.5
 h 

(< 1–65.3) - - - (257) 
a
 Year of sample collection. 

b 
Calculated as the sum of the mean or median values for the group of light PCBs (sum of PCBs 6–74) and the group of heavy PCBs (sum of PCBs 84–209).  

c 
Samples from 1996, but workers were exposed before 1978. 

d 
Samples from 2003–2006, but workers exposed before 1978.  

e
 Samples probably from the beginning of 1980s. 

f
 Subjects living near an incinerator. 

g
 Subjects living far from an incinerator. 

h 
Excluding an outlier of 65.3 µg/l. 

NG: not given, US: United States. 

 

 

 



 

 25 

7. Toxicokinetics 

7.1 Uptake and distribution 

Humans can absorb PCBs by the oral and dermal routes and by inhalation. Inhala-

tion exposure has been considered as a major route of occupational exposure to 

PCBs, although a significant contribution to the accumulation of PCBs in adipose 

tissue and serum from dermal exposure has been reported in some old studies  

e.g. on capacitor manufacturing workers (19, 233). Limited animal data indicate 

rapid and extensive uptake of lower chlorinated PCBs at inhalation exposure (180). 

Further, PCBs are well absorbed by experimental animals when administered 

orally (19, 382). Dermal uptake has also been documented (127, 128). 

In a recent study in rats, it was estimated that 40 µg of a PCB mixture generated 

from Aroclor 1242 was inhaled, assuming a breathing frequency of 95 breaths/ 

minute and a tidal volume of 1.5 ml/breath. The animals were exposed (nose-only) 

to 2 400 µg/m
3
 of the vapour mixture, which consisted mainly (approximately 90 %) 

of mono-, di- and trichlorobiphenyls, for a total of 2 hours (two 1-hour exposures 

separated by a 1-hour break). The PCB load (body burden) at the end of exposure 

was calculated to be 33 g, based on the amount of PCBs measured in five tissues 

(totally 5 µg/rat). The majority of the PCBs in blood at the end of exposure (mass 

percentage of total PCBs) were tri-, and tetrachlorinated congeners (approximately 

35 % each) and pentachlorinated congeners (just over 25 %), whereas trichlorinated 

PCBs dominated in liver, lung, brain and adipose tissue and constituted approxi-

mately 50–60 %. Together these data indicated that inhalation was an efficient 

route of exposure for uptake of lower chlorinated PCBs, with an uptake of at least 

80 % (180).  

In the gastrointestinal tract, PCBs are absorbed by passive diffusion. Studies in 

rats have shown that all PCB congeners are well absorbed, with > 90 % absorption 

of the lower chlorinated congeners and somewhat lower absorption of the higher 

chlorinated congeners such as octachlorobiphenyls (98). Tanabe et al showed that 

the absorption efficiencies of individual congeners ranged from 66 % to 96 % in 

rats following 5 days of daily peroral administration of Kanechlor-300, -400, -500 

and -600. The absorption efficiencies tended to be smaller as the number of 

chlorine atoms increased (382). 

At dermal application, the degree of PCB chlorination has been shown to affect 

the rate and degree of penetration into skin and systemic absorption. Further, it 

has been suggested that the rate of absorption may be mediated, at least partly, by 

transdermal metabolism, mainly of the lower chlorinated congeners (127, 128). In 

rats, dermal penetration varied inversely with degree of chlorination of PCBs. 
14

C-

labelled mono-, di-, tetra- and hexachlorobiphenyls in acetone (0.4 mg/kg bw) were 

administered onto a 1 cm
2
 clipped area on the backs of the animals and a stainless 

steel wire-mesh shield was glued over the dose site (the applied dose was left on the 

site for up to 48 hours). Distribution of radioactivity in the dose site and selected 

tissues was determined by serial sacrifice for up to 2 weeks. Systemic absorption 

was greatest for the mono- and dichlorobiphenyls, which penetrated the skin rapidly 

and were retained very little, whereas the more highly chlorinated PCBs remained 
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at the site of exposure (in the skin) and slowly entered the systemic circulation. 

Nearly 100 % of the applied dose of PCB 3 and 85 % of the dose of PCB 15 was 

systemically absorbed after 24 hours. Only around 35 % and 10 % of PCBs 47 and 

155, respectively, had reached the systemic circulation at that time. The cumulative 

systemic absorption for the latter compounds was approximately 60 % (PCB 47) 

and 15 % (PCB 155) at 48 hours, and around 75 % (PCB 47) and almost 30 % 

(PCB 155) at 14 days (128).  

In a recent review, the skin permeability coefficient (Kp) and flux values were 

calculated based on two studies by Garner et al (127, 128). Kp ranges (10
-6 

cm/ 

hour) were 3–4 (PCB 3), 2–3 (PCB 15), 0.2–1 (PCB 47) and 0.2–0.4 (PCB 155). 

Reported flux values (µg/cm
2
/hour) were 2.9–4.1 (PCB 3), 2.8–3.5 (PCB 15),  

0.3–1.5 (PCB 47) and 0.4–0.8 (PCB 155) (197). 

Some data concerning in vivo percutaneous absorption of PCBs in adult rhesus 

monkeys were reported by ATSDR. 
14

C-labelled Aroclor 1242 was administered 

topically or intravenously and urinary and faecal excretion of radioactivity was mea-

sured for the next 30 days. Topical administration of Aroclor 1242 in soil, mineral 

oil, trichlorobenzene or acetone resulted in 14, 20, 18 and 21 % absorption of the 

administered dose, respectively (estimated in relation to data obtained at intra-

venous administration). Similarly, the in vivo percutaneous absorption of Aroclor 

1254 in mineral oil and trichlorobenzene was 21 and 15 %, respectively. Further, 

after 15 minutes of dermal exposure, 93 % of the applied dose of Aroclor 1242 in 

trichlorobenzene was removed from skin by washing with soap and water, whereas 

at 24 hours, only 26 % of the applied dose was removed from the skin (19, 418).  

In some old studies, inhalation exposure was considered to be a major route of 

occupational exposure to PCBs. Indirect evidence of absorption of PCBs by this 

route in humans was based on the fact that individual congeners were detected in 

tissues and body fluids of subjects exposed in occupational settings where air con-

centrations were also measured (19). ATSDR concluded that a maximum of 80 % 

of the levels commonly seen in adipose tissue of exposed capacitor workers may 

have been absorbed by the inhalation route, whereas a maximum of 20 % would 

have been derived from dermal or oral exposure. ATSDR reported that the con-

centration of PCBs in wipe samples from the face and hands of two employees 

varied from 0.05 to 5 µg/cm
2
. A dermal exposure of 5 µg/cm

2
 over the hands and 

face (ca 200 cm
2
) or the entire body (ca 20 000 cm

2
), assuming 100 % absorption 

into the main body reservoir (10 kg adipose), would represent 0.2–20 % of a 50 

µg/g adipose level, which was commonly seen among capacitor workers (19, 425). 

On the other hand, a major contribution to total PCB body burden from dermal 

occupational PCB exposure rather than from inhalation has been suggested by 

some authors (233).  

The highest concentration of most PCBs has been found in adipose tissue, but 

disposition of PCBs is affected by degree and position of chlorination (252). PCBs 

of low chlorination rapidly distribute to the tissues, whereas most higher chlori-

nated PCBs are more slowly distributed (128). The predominant PCB carriers in 

human plasma are in the lipoprotein fraction (19). PCBs tend to distribute first in-

to highly perfused tissues such as liver and muscle and are then redistributed to 

tissues with high lipid content and low perfusion such as adipose tissue and skin 
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(128). The higher chlorinated congeners accumulate more extensively in fatty 

tissues, because of their great lipophilicity (422). However, calculated tissue:blood 

partition coefficients for liver, skin, muscles and fat for all 209 PCB congeners  

revealed that the partition coefficients decrease in the presence of adjacent unsub-

stituted meta and para carbons (252). Further, PCB levels in brain (lipid basis) are 

generally much lower than the levels found in e.g. subcutaneous fat, possibly due 

to the nature of the more polar brain lipids (19). In experimental animals, PCB 

126 exhibits a dose-dependent liver retention by binding to the cytochrome P450 

(CYP) isozyme CYP1A2 (94). 

Due to its fat content, human milk can accumulate a large amount of PCBs. 

Human milk represents a good indicator for lipophilic unmetabolised PCBs stored 

in the body since fat is mobilised for the production of milk during lactation  

(152). Animal studies have revealed that large amounts of PCBs can be eliminated 

through lactation (119). In addition, offspring can be exposed to PCBs through 

transplacental transfer and concentrations of PCBs in humans are much higher in 

cord blood than in breast milk (19, 188). The PCB levels (PCBs 118, 138, 153, 

180) in maternal and cord plasma have been shown to be similar when expressed 

on a lipid basis (otherwise higher in maternal than in cord plasma) (341). 

The route of exposure may also be a relevant determinant of PCB distribution 

(252). Much lower blood concentrations and total excretion but much higher tissue 

concentrations were found on the 11th day post-dosing after dermal compared to 

intravenous exposure of swine to PCB 77 (304). 

A study in ferrets demonstrated that the olfactory system may be a potentially 

significant portal for the entry of airborne PCBs, but further studies are needed  

to confirm this observation (19).  

7.2 Biotransformation and excretion 

The congener patterns in blood derived from food exposure differ from the patterns 

derived from occupational exposure due to the accumulation of high-chlorinated 

PCBs in the food chain (98, 252, 253). PCB profiles in human serum immediately 

following exposure reflect the profiles in the exposure sources, although selective 

metabolism and excretion begin to alter the congener profile within 4–24 hours 

(19). PCB congeners of low chlorination are quickly metabolised and eliminated, 

whereas most higher chlorinated PCBs are more slowly metabolised and eliminated 

(128). Higher chlorinated PCB congeners (4–10 chlorines) exhibit the greatest de-

gree of resistance to metabolism. They may undergo several dechlorination steps 

to lower chlorinated metabolites before they are oxidised by hepatic enzymes (433). 

The rate of metabolism is also dependent on the positions of chlorination. PCB 

congeners with non-chlorinated meta/para-positions and chlorinated neighbouring 

ortho/meta-positions are rapidly metabolised (98, 188). Furthermore, the pattern 

and levels of CYP isoenzymes and other enzymes in the target tissue will have an 

influence on metabolism (19). Also, species differ in the ability to metabolise 

PCBs (48).  

Metabolism of PCBs leads to formation of reactive intermediates with potential 

for adduct formation. The initial step in the biotransformation of PCBs involves oxi-
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dation by CYP enzymes including epoxide formation and an alternative route for 

direct insertion of a hydroxyl group to PCB congeners less easily forming arene 

oxides (19, 98). Thus, PCBs are first metabolised to phenolic compounds, which 

can be further oxidised to dihydroxy metabolites. When the hydroxyl groups are 

ortho or para to each other (catechol or hydroquinone), oxidation by peroxidases 

to quinones via semiquinone intermediates may occur. These quinones and semi-

quinones are capable of reacting with DNA to form adducts, preferentially with 

guanine bases. It has been suggested that mainly PCB-derived para-quinones are 

involved in the major DNA adduction (433). However, the majority of all hydroxy-

lated PCBs in humans are excreted in a non-conjugated form or further converted 

and excreted as glucuronide or sulphate conjugates. Only five major hydroxy-PCB 

congeners of all potential hydroxy-PCBs (approximately 50) are retained in the 

blood plasma bound to proteins, primarily transthyretin. The major hydroxy-PCB 

congeners in blood are present in concentrations about 5–10 fold less than the most 

persistent PCB congeners (98, 366).  

PCB congeners with free meta/para-positions in at least one of the phenyl rings 

may form PCB methylsulphone metabolites in a multi-step pathway involving 

glutathione conjugates. These are excreted in the bile and undergo cleavage in the 

large intestine. Methylation of the resulting thiols followed by reabsorption and  

S-oxidation yields methylsulphonyl PCBs. Methylsulphone metabolites of PCBs 

have been detected in several organs (98, 252). The concentration of methylsulpho-

nyl PCBs in human blood is low, but it is notable that some of these metabolites 

accumulate in a highly tissue- and cell-specific manner, with liver and lung as 

target tissues. The corresponding maternal PCB congeners are only present in 

trace concentrations or are non-detectable due to their rapid metabolism (98).  

Biotransformation is necessary for the majority of PCB excretion, but limited 

excretion of parent PCBs does occur (19). Elimination of PCBs largely depends on 

the excretion of the polar hydroxylated metabolites in urine and faeces (98). Con-

geners like PCB 153 are not metabolised well and are excreted primarily as the 

parent compounds in the faeces (279). Generally, for higher chlorinated congeners 

such as penta- and hexachlorobiphenyls, the predominant route of excretion is via 

faeces, whereas lower chlorinated congeners are excreted mainly in urine (19). 

Another important route of PCB excretion is breast milk (19). There is significant 

elimination of unchanged PCB and its neutral metabolites (methylsulphonyl PCB) 

via breast milk (98). 

In two studies on different occupational cohorts, the half-times for some PCB 

mixtures in serum were estimated, but congener specific PCB analysis was not con-

ducted. The half-times were 1.8 and 2.6 years for Aroclor 1242, 3.3 and 4.8 years 

for Aroclor 1254 and 4.1 years for Aroclor 1260. According to ATSDR, these 

studies were well-designed and provided the best estimates of half-times of PCB 

mixtures following occupational exposure (19). In both studies, a more rapid eli-

mination of PCBs was found in individuals with higher initial serum PCB levels. 

Further, PCB elimination over a 3-year period was studied in 8 occupationally 

exposed women. Mean half-times (whole blood) for single congeners were 27.5 

years (PCB 153), 16.3 years (PCB 138), 9.9 years (PCB 180), 8.4 years (PCB 74) 

and 3 years (PCB 28) (19). In a study of 39 individuals who had been exposed  
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Table 13. PCB half-times of former capacitor workers 
a
. Adapted from (351). 

PCB congener or summed score PCB half-time (years)
 a
  

 Men (n = 33) Women (n = 12) All 

Occupational PCBs    

PCB 28 4.2      6.6
 b
 4.6 

PCB 74 12.1     124.9
  c

 15.9 

PCB 105 10.9 46.5 13.7 

PCB 118 11.6   29.2
 b
 13.8 

PCB 156 33.3 90.1 41.0 

Occupational summed PCBs    

Light PCBs (PCBs 28 and 74) 8.2   18.2
 b
 9.6 

Heavy PCBs (PCBs 105, 118 and 156)  14.9   37.2
 c
 17.8 

Total PCBs (light and heavy) 9.0   19.8
 b
 10.5 

a 
Calculated using the geometric means of data (collected in 1976 and 2004) expressed on a wet 

weight basis. 
b 
p ≤ 0.01, significant rank transformation analysis of variance test between men and women. 

c 
p ≤ 0.05, significant rank transformation analysis of variance test between men and women. 

 

at two capacitor plants, PCBs were measured in serum from samples obtained in 

1976 and 1983 (19). The half-times (geometric mean) were as follows: > 20 years 

(PCB 163), 12.4 years (PCB 153), 6–7 years (PCB 138), 5.8 years (PCB 118), 3.9 

years (PCB 105), 3.3 years (PCB 99), 3.2 years (PCB 74) and 1.4 years (PCB 28).  

Longer half-times were reported for some PCB congeners in a recent study. 

This is possibly due to the fact that serum PCB concentrations decrease in a non-

linear, at least two-component, pharmacokinetic manner with the fastest decrease 

occurring shortly after exposure. The half-times of PCBs 28, 74, 105, 118 and 156 

were estimated in serum of 45 former capacitor workers over a 28-year period 

(1976–2004). The data indicted a gender difference with women exhibiting half-

times 1.5–10 times longer than men (Table 13). However, men had higher serum 

PCB levels in 1976 than women, which may explain the longer half-times in 

women (351). 

8. Biological monitoring  

Several investigators have examined whole blood, serum, plasma, breast milk, 

hair and adipose tissue in biomonitoring of PCB exposure. Caution is appropriate 

when comparing exposure estimates (even in the same matrix) or health effects 

reported by different investigators, because the approach for analysing PCBs in 

biological samples differs, which may have considerable impact on the reported 

PCB levels. There are several methods and approaches available for analysing 

PCBs in biological samples (Chapter 5) (19, 98, 188). 

PCBs are stored at highest concentrations in adipose tissue, but because of the 

difficulties in acquiring adipose tissue samples, serum is considered as a more 

suitable matrix for occupational and environmental exposure assessment. Also 

plasma is often used as matrix (19, 20). Investigators typically express measure-

ments on a wet weight basis (PCB per unit volume or weight of serum, e.g. µg/l 

serum or ng/g serum) or as lipid-standardised values where the serum concentra-

tions are divided by serum lipids. The concentrations of lipophilic compounds like 
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PCBs in serum/plasma are often expressed as ng/g lipid in order to obtain biomarker 

values that reflect the body burden (31, 322, 345). Total serum lipids can be deter-

mined by gravimetric methods or easier as the sum of enzymatically determined 

lipid fractions (total cholesterol + triglycerides + phospholipids). Total serum lipids 

may also be predicted by three different formulae, requiring only values of serum 

cholesterol and triglycerides (31).  

Authors report PCB concentrations as Aroclors, as sum of homologues or as 

individual congeners (188). PCB residue data in humans and animals suggest that 

tissue or body burdens of PCBs should be based on individual congeners or groups 

of congeners and not based on profiles of commercial PCB formulations (19). The 

most appropriate approach is to analyse for individual congeners, but the selection 

criteria for inclusion of congeners is very critical (183, 188). In most analytical in-

vestigations of PCBs, a limited number of congeners have been determined and 

there are different ways of calculating the total PCB concentration of a given 

sample based on this information (98). In a recent study, in which PCB congeners 

in the serum of volunteers were determined, it was found that total PCBs and 

dioxin-like PCBs highly correlated with PCBs 153 and 118, respectively. Thus, 

these two congeners could be satisfactory indicators for total PCBs and dioxin-

like PCBs in human serum. In the case of TEQ concentrations, PCB 126 showed  

a high correlation and would be a suitable indicator for TEQ values (287).  

The individual congeners found in humans do not reflect the original PCB mix-

tures (56). Overall, PCBs 138, 153 and 180 are the most consistently detected and 

quantitatively dominant congeners found in human tissues (19). The pattern of 

PCB congeners in adipose tissue will reflect long-term intakes and PCBs in breast 

milk largely reflects the concentrations of the congeners in adipose tissue (98). 

The six individual PCB congeners 28, 52, 101, 138, 153 and 180 are often used  

as indicators to assess environmental exposure but are not selected from a toxico-

logical point of view. Sometimes a seventh congener, PCB 118, is included into 

the group of indicator PCBs (98, 423).  

When analysing indoor air, samples are mostly dominated by the highly volatile, 

lower chlorinated PCB congeners 28 and 52, while the more persistent PCBs 138, 

153 and 180 are normally of minor importance due to their lower volatility (98). 

In one study, a relation between the levels in serum and the levels found in the 

breathing zone was reported for PCB 28 (r = 0.70) and PCB 52 (r = 0.80) (213).  

The congener pattern reported in human studies on environmental exposures 

differs substantially from those found in occupationally exposed workers (252, 

253). Freels et al reported that PCB 74 was the most common congener in capa-

citor plant workers occupationally exposed to PCBs many years earlier (123).  

It has been suggested that this congener is particularly resistant to metabolism  

or a result of dechlorination of higher chlorinated congeners such as PCB 99 or 

118 (427). Wingfors et al identified indicators of exposure related to the removal 

of old elastic sealants. The easily metabolised PCBs 44, 70 and 110 were found  

to be good markers of recent occupational exposure and the relatively persistent 

PCBs 56/60 and 66 of more long-term occupational exposure. The very persistent 

PCBs 153 and 180 were considered as markers of background (dietary) exposure. 

This set of indicator PCBs was suggested by the authors to be used instead of the 
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traditional set of seven indicator PCBs (see above) to trace occupational PCB ex-

posure e.g. during the removal of PCB-containing sealants. Alternatively, the five 

PCB components (PCBs 44, 56/60, 66, 70 and 110) might be analysed in addition 

to the common indicator PCBs (423).  

9. Mechanisms of toxicity 

9.1 Introduction 

PCBs exhibit a wide range of mechanisms of action that depend on the chlorine 

substitution pattern in the molecule. The presence or absence of chlorine in the 

ortho (2,2´,6,6´) positions is of particular importance. Four non-ortho-PCBs con-

taining chlorines in the meta and para positions are dioxin-like and can have high-

affinity binding to the Ah receptor, a cytosolic receptor protein present in most 

vertebrate tissues. Most, if not all, toxic and biological effects of the PCB con-

geners with high binding affinity to the Ah receptor are mediated through the Ah 

receptor. With an increasing number of ortho chlorines, the binding affinity to the 

Ah receptor decreases drastically. In this group of ortho-substituted congeners, only 

some mono-ortho-substituted PCBs exhibit some binding to the Ah receptor and 

thus some dioxin-like toxicity, but these mono-ortho dioxin-like congeners may 

act via non-Ah receptor-mediated mechanisms as well. Certain endpoints such as 

porphyrin accumulation, alterations in circulating thyroid hormone concentrations, 

neurotoxicity and carcinogenicity could arise by both Ah receptor-mediated and 

non-Ah receptor-mediated mechanisms. In addition, non-Ah receptor-mediated 

mechanisms of action may be shared by certain di-, tri- and tetrachloro-ortho-sub-

stituted PCBs. PCB congeners with two or more ortho chlorines do not exhibit 

any significant dioxin-like toxicity due to lack of binding to the Ah receptor, but 

multiple ortho-substituted PCBs have other pronounced mechanisms of action, 

e.g. resulting in effects on neurological development, dopamine levels and tumour 

promotion. However, in general, the more specific effects of multiple ortho PCBs 

are seen at considerably higher dose levels than the pronounced dioxin-like effects 

that are associated with some PCBs that are potent Ah receptor agonists (109, 166, 

188, 402). The degree of dioxin-like toxicity (Ah-receptor mediated mechanisms) 

can be estimated by the TEF and TEQ concept (Chapter 2). Further, a relative 

potency scheme for estimating neurotoxic effects for non-dioxin-like PCBs based 

on e.g. interference with intracellular signalling pathways dependent on calcium 

homeostasis has been suggested (361).  

9.2 Groupings of PCB congeners 

Congener-specific analysis combined with the WHO TEF and TEQ concept may 

be useful for characterising dioxin-like health effects, although the TEFs at pre-

sent are primarily intended for estimating exposure and risks via oral ingestion 

(19, 402). Other mechanism-based approaches involve grouping of PCB congeners 

with respect to their CYP enzyme induction properties, only or in combination with 

occurrence (Table 14).  
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Table 14. Type of induction of microsomal cytochrome P450 (CYP)-dependent mixed-

function oxidases (MFOs) of some important PCB congeners (265). 

Induction mechanism 

3-methylchol-

anthrene-type 

Mixed type, 

common
 a, b

 

Mixed type, 

uncommon
 a, c

 

Phenobarbital-

type 
b
 

Weak or non-

inducers 
b
 

(Group 1A) (Group 1B) (Group 4) (Group 2) (Group 3) 

PCB 77 PCB 105 PCB 37 PCB 87 PCB 18 

PCB 126 PCB 118 PCB 81 PCB 99
 
 PCB 44 

PCB 169 PCB 128 PCB 114 PCB 101 PCB 49 

 PCB 138 PCB 119 PCB 153 PCB 52 

 PCB 156 PCB 123 PCB 180 PCB 70 

 PCB 170 PCB 157 PCB 183
 
 PCB 74 

  PCB 158 PCB 194 PCB 151 

  PCB 167  PCB 177 

  PCB 168  PCB 187 

  PCB 189  PCB 201 
a
 Both 3-methylcholanthrene and phenobarbital inducers. 

b 
Frequently found in the environmental samples and relatively abundant in tissues. 

c
 Reported infrequently in environmental samples and in relatively low concentrations. 

Dioxin-like congeners. 

 

An alternative grouping that takes into account the biological action of PCBs 

was proposed by Wolff et al (426). PCB congeners were grouped as follows 

(congener number as designated by Ballschmitter and Zell, 1980 (25)):  

Group 1: potentially oestrogenic  

1A: not persistent, weak phenobarbital inducers  

(PCBs 31, 44, 49, 52, 70)  

1B: persistent, weak phenobarbital inducers  

(PCBs 101, 174, 177, 187, 201),  

Group 2: potentially antioestrogenic and immunotoxic, dioxin-like 

2A: moderately persistent, non-/mono-ortho-substituted  

(PCBs 66, 74, 77, 105, 118, 126, 156, 167, 169) 

2B: persistent di-ortho-substituted  

(PCBs 128, 138, 170),  

Group 3: persistent, phenobarbital, CYP1A and CYP2B-inducers  

(PCBs 99, 153,180, 183, 196, 203). 

Another classification scheme for PCB grouping based on purported endocrine 

activity suggested by Cooke et al, 2001 included oestrogenic congeners (PCBs 

4/10, 5/8, 15/17, 18, 31, 44, 47, 48, 52, 70, 99, 101, 136, 153, 188) and antioestro-

genic congeners (PCBs 77/110, 105, 114, 126, 156 /171, 169) (52, 274). 

Further, there are structure-based groupings, e.g. mono-ortho- and di-ortho-

substituted congeners (63). Moysich et al, 1999, made three groupings based on 

degree of chlorination (272):  

- lower chlorinated PCBs (di-, tri- and tetrachlorinated),  

- moderately chlorinated PCBs (penta-, hexa- and heptachlorinated), 

- higher chlorinated PCBs (octa- and nonachlorinated).  
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9.3 Enzyme induction 

PCBs induce hepatic phase I and phase II enzymes to varying degrees. The con-

geners that show high-affinity binding to the Ah receptor such as non-ortho  

PCBs can be potent inducers of 3-methylcholanthrene-type CYPs like CYP1A1 

and CYP1A2. Induction of 7-ethoxyresorufin-O-deethylase (EROD) activity is a 

marker of CYP1A1 activity (19, 188, 280). CYP1A1 is involved in the metabolism 

of steroid hormones and polycyclic aromatic hydrocarbons (PAHs) in humans and 

a result of induction of CYP1A1 is an increased capacity for bioactivation of PAHs 

(47, 348). In contrast, the PCBs that have an ortho-substitution pattern induce en-

zymes in the CYP2 and CYP3 families, which resemble the induction by pheno-

barbital. In this respect, the mono-ortho PCBs take an intermediate position, as 

they can induce enzymes from the CYP1 as well as the CYP2 and CYP3 families, 

a property that is generally lost for the di-ortho-substituted PCBs (188). Enzyme 

induction (especially for dioxin-like PCBs) leads to proliferation of the endoplasmic 

reticulum in the liver, resulting in increase in liver size and alteration in liver func-

tion (57). Type of induction of microsomal cytochrome P450 (CYP)-dependent 

mixed-function oxidases (MFOs) of some important PCB congeners are shown in 

Table 14.  

9.4 Inhibition of body weight gain and porphyria 

Activation of the Ah receptor leads to changes in gene expression and signal trans-

duction. Changes in cell proliferation and differentiation, inhibition of body weight 

gain and porphyria appear to predominantly involve Ah receptor initiated mecha-

nisms (19, 188). 

9.5 Immune effects and cardiovascular effects 

Dioxin-like PCBs may disrupt endothelial barrier function, activate oxidative stress-

sensitive signalling pathways and induce subsequent proinflammatory events (inter-

leukin (IL)-6), indicating a possible role in the pathology of atherosclerosis and 

cardiovascular disease. Induction of CYP1A1 and activation of nuclear factor 

kappa B (NFB) have been proposed as critical mediators for an endothelial cell 

inflammatory response (164). Endothelial cell dysfunction via activation of 

CYP1A1 and increased cellular oxidative stress, and subsequent overactivation  

of the DNA repair enzyme poly(ADP(adenosine diphosphate)-ribose) polymerase 

and depletion of cellular NADPH (nicotinamide adenine dinucleotide phosphate) 

was indicated in a recent study. It was suggested that depletion of NADPH levels 

in endothelial cells would result in a decreased production of nitric oxide and re-

duced vasodilatation, which might predispose exposed individuals to development 

of hypertension and cardiovascular disease (163). Both coplanar and non-coplanar 

PCBs can cause endothelial cell dysfunction as determined by markers such as ex-

pression of cytokines and adhesion molecules (165). Exposure of vascular endo-

thelial cells to environmentally relevant concentrations of PCB 153 induced gene 

networks implicated in the process of inflammation and adhesion (117). 
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PCBs can cause immunosuppression. In vivo immune defects include decreased 

thymic weight, reduced B cell numbers, reduced cytotoxic T-lymphocyte response 

and reductions in plaque forming cell response and immunoglobulin (Ig) M. The 

non-dioxin-like PCBs tested (e.g. PCB 153, 170, 180) were less potent in vivo than 

the dioxin-like PCBs (98). 

Mechanisms of immunotoxic actions of PCBs that are independent of the Ah 

receptor, e.g. reduced lipopolysaccharide induced proliferative response in spleno-

cytes, reduced antibody secretion and impaired neutrophil function, have been in-

dicated in vitro (98). The results from studies on neutrophils suggest the involve-

ment of an Ah receptor independent mechanism that involves increases in intra-

cellular calcium, or, PCB effects on a signal transduction pathway that is dependent 

on calcium availability. Some studies indicate activation of phospholipase A2, 

release of arachidonic acid from triglycerides and production of prostaglandins  

as a probable mechanism (19).  

9.6 Endocrine effects and effects on the retinoid system 

PCBs cause alterations of several hormonal systems, including thyroid and sex 

steroids (267). Generally, dioxin-like PCBs are considered more potent than non-

dioxin-like PCBs for such effects (346). The effects of the endocrine disrupting 

pollutants depend probably on changes induced in the production or metabolism 

of endogenous hormones (resulting in changed levels in the target tissues) and on 

the direct interaction of the pollutants with the hormonal receptors (95).  

The planar PCBs 77, 126 and 169 (or their metabolites) and commercial mix-

tures that contain them (Arocolor 1254) seem to possess not only antithyroid but 

also some thyreomimetic properties in developmental studies. Since thyroid hor-

mones, oestrogens and androgens play an important role in the development, PCB 

exposure during sensitive developmental periods may result in adverse effects on 

the growth and functional integrity of the organism, especially the brain (396). 

Changes in plasma levels of total thyroxine (T4), free T4 and total triiodothyronine 

(T3) may e.g. be related to hypothyroidism in foetal and early prenatal life, which 

may result in profound effects on the developing brain including hearing deficits 

(346). 

Animal studies suggest that PCBs can disrupt the production of thyroid hor-

mones both in the thyroid and in peripheral tissues, interfere with their transport to 

peripheral tissues and accelerate the metabolic clearance of thyroid hormones (19). 

Disruption in thyroid hormone homeostasis occurs through mechanisms that trans-

cend all congener groups of PCBs, thus appear to involve Ah receptor mediated as 

well as Ah receptor independent actions (19). One possible mechanism for dioxin-

like PCBs is the induction of uridine diphospho-glucuronosyl transferase (UDP-

GT), which catalyses the metabolic elimination of T4 to T4-glucuronide conjugate 

(19, 98, 346). Hydroxylated PCBs can inhibit type I deiodinase activity and have 

been found to act as inhibitors of T2 sulphotransferase activity in vitro (366). An-

other mechanism includes inhibition of the binding of T4 to transthyretin, although 

thyroxine-binding globulin is a more important T4 plasma transport protein for 

humans than transthyretin and binds most PCBs very weakly or not at all. It would 
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appear therefore that plasma transport of T4 is less sensitive to PCB exposure in 

humans than in rodents. Still, the effects on T4 supply to the brain may be similar 

in humans and rodents due to the involvement of transthyretin in this process (19, 

98, 346, 396). 

PCB congeners and hydroxylated PCBs, especially mono- and dihydroxy-PCBs, 

have been shown to possess oestrogenic and antioestrogenic effects (19, 56). PCB-

induced oestrogenic activities have generally been characterised as weak compared 

to the endogenous hormone 17ß-estradiol (19). The exact mechanisms of oestro-

genic or antioestrogenic activities of non-dioxin-like PCBs are not fully character-

ised. The reported results are often contradictory, derived from data obtained in 

different in vitro and in vivo models (294). Oestrogenic and antioestrogenic effects 

can be mediated by binding to the oestrogen receptor and hydroxylated PCBs are 

postulated to be at least partly involved (19, 188). Interaction with the oestrogen 

receptor has also been observed after exposure to methylsulphone PCB metabolites 

(188). In addition to direct interactions with oestrogen receptors, other influences 

on oestrogenic mechanisms are possible. Human oestrogen sulphotransferase e.g., 

may be inhibited by hydroxylated PCBs and may thus increase the availability of 

endogenous oestrogens (396). Further, PCBs may cause increased metabolism 

and excretion of oestradiol because of enzyme induction of the phenobarbital 

type. Also, coplanar PCBs activate the Ah receptor and cause induction of CYP 

families that catalyse the metabolism of oestradiol. In addition to inducing CYPs, 

some of the PCBs and metabolites can directly inhibit these enzymes (56).  

Some PCB congeners may increase gonadotropin-releasing hormone or produce 

effects beyond the receptor for gonadotropin-releasing hormone. PCBs may also 

affect production and release of luteinising hormone from the pituitary gland by 

mechanisms unrelated to oestrogenic action (188).  

Furthermore, PCB congeners can be androgenic or antiandrogenic. In mice and 

rats, anogenital distance is an indicator of prenatal androgenisation (higher andro-

gen level - longer anogenital distance) (396). Non-dioxin-like PCBs may interfere 

with the binding of testosterone to the androgen receptor, and the dioxin-like PCB 

77 has been shown to lower testosterone levels in rats (98, 346).  

Carpenter et al stated that the net activity of most PCB mixtures is to mimic the 

actions of oestrogen (57). Yilmaz et al suggested that low-chlorinated PCB mix-

tures such as Aroclor 1221 have oestrogenic properties, whereas high-chlorinated 

PCB mixtures such as Aroclor 1254 may exert antioestrogenic effects (430). The 

majority of the studies found that lower-molecular-weight PCBs may elicit oestro-

genic activity both in vitro and in vivo (294). Among the congeners suggested as 

oestrogenic are PCBs 4/10, 5/8, 17, 18, 28, 31, 44, 47, 48, 49, 52, 66, 70, 74, 82, 

95, 99, 101, 110, 128, 136, 179 and 188 (52, 89, 133, 274, 294, 411). Yet some of 

the lower chlorinated congeners (e.g. PCBs 8, 28, 31, 70, 101) were not oestro-

genic at in vitro screening as reported by de Castro et al (89). The three most pre-

valent non-dioxin-like congeners, PCBs 138, 153 and 180, and other high-chlori-

nated non-dioxin-like PCBs (PCBs 170, 187, 194, 199, 203) have been reported to 

be antioestrogenic in vitro, but PCB 153 has also been reported as oestrogenic and 

PCB 138 as antiandrogenic (39, 133, 294, 411). The dioxin-like PCBs are generally 

considered as antioestrogenic (294). 
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PCBs have also been shown to decrease the aromatase activity in the brain of 

new-born male rats after maternal exposure. During critical developmental periods, 

changes in aromatase activity may result in changes in several brain regions, 

altering sex-dependent neurobehaviour (346). Still, any hormonal effect is likely 

to be species-, tissue, and developmental stage-specific (188).  

Modulation of glucocorticoid synthesis has been observed in vivo. One possible 

explanation is inhibition of CYP11B enzyme activity in the adrenals by methyl-

sulphone PCBs (188).  

Decreased hepatic vitamin A stores have been found in vivo at peroral admini-

stration of some PCBs. Compared to TCDD, the hepatic vitamin A reducing 

potencies of PCB 126, PCB 77 and PCB 153 were 0.05, 0.0001 and 0.00001, re-

spectively, in male rats (184). It has been suggested that the mechanism of vitamin 

A reduction involves both induction and inhibition of retinoid specific enzyme 

activities (227). Further, effects of PCBs on vitamin A can partly be explained by 

the fact that transthyretin forms a complex with the retinol binding protein (188).  

9.7 Diabetes 

The contribution of exposure to persistent organic pollutants (POPs) to the inci-

dence of diabetes has received much attention in recent years. Carpenter stated 

that, although a specific mechanism is not known, most POPs induce a great 

number and variety of genes, including several that alter insulin action (58). 

Mechanistic studies have indicated effects of TCDD on the expression of genes 

implicated in type 2 diabetes (151). Insulin receptor substrate 1 (IRS-1) expression 

was significantly downregulated in cells treated with 17β-oestradiol and TCDD. 

IRS-1 interacts in the initiation of cellular functions regulated by insulin, in-

cluding insulin-initiated cell signalling. This results in the transport of a glucose 

transporter protein (GLUT4) to the cell membrane. A decrease in intracellular 

IRS-1 with a subsequent decrease in function of GLUT4 results in insulin resi-

stance and hyperglycemia in human cells (174). A link between dioxin-like com-

pounds and diabetes through interaction between the Ah receptor and the peroxi-

some proliferator-activated receptor γ (PPAR γ)-mediated signalling pathways 

(PPAR antagonism) was suggested by Remillard and Bunce (307). Further, adipo-

cytokines have been connected to obesity and insulin resistance, and it has been 

shown that TCDD may induce low-grade inflammation of adipose tissue and also 

downregulation of adiponectin, one of the major secretory products of adipose 

tissue known to augment the effects of insulin on glucose homeostasis (273). An 

interaction between PCB 153 and adiponectin in obese women was suggested in  

a recent small study, although it cannot be excluded that PCB 153 was only a bio-

marker of exposure to some other active pollutant. It was hypothesised that PCB 

153 may downregulate adiponectin through induction of CYP2B (273). A PCB- 

stimulated increase of insulin release from insulinoma cells, in part due to an in-

crease in intracellular free calcium, has been shown in animal models with PCB 

47, PCB 153 and Aroclor 1254. This may play a role in the development of in-

sulin resistance (110). 
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9.8 Bone effects 

Several studies of wildlife suggest that organochlorines including PCBs can im-

pair bone strength and alter bone composition (200, 241, 320). The underlying 

toxicological mechanisms are yet not fully understood (241, 320). Studies in Baltic 

seals have indicated that bone lesions may be associated with contaminant medi-

ated vitamin D and thyroid disruption. However, antioestrogenic activity has been 

proposed as another possible explanation for bone effects of e.g. PCBs (200, 320). 

9.9 Neurotoxicity 

PCB mixtures, like different Aroclors, and single PCB congeners have been shown 

to directly affect neuronal cells (346).  

Mechanistic studies in vivo and in vitro have shown that PCB congeners that are 

not effective Ah receptor agonists can affect components of the nervous system 

directly in at least four different ways by:  

- altering intracellular concentrations of calcium by interference with intra-

cellular sequestration mechanisms of calcium and increased activation of 

protein kinase C, thereby altering intracellular signal transduction pathways,  

- inducing apoptosis subsequent to activation of the ryanodine receptor and 

increased production of reactive oxygen species (ROS). Cell death and in-

creased ROS formation has also been mediated through the N-methyl-D-

aspartate (NMDA) receptor,  

- changing the levels of neurotransmitters such as dopamine and acetylcholine, 

the latter may be due to interference with PCBs on thyroid hormone levels, 

because cholinergic fibres are particularly sensitive to thyroid hormone de-

ficiency, and  

- increasing the release of arachidonic acid through mediation of phospholipase 

A(2) activity.  

Many of these effects have also been observed with dioxin-like PCBs, although 

non-dioxin-like PCBs generally are more potent when tested in the same systems. 

Non-dioxin-like PCBs have been shown to be more potent in causing changes in 

the phosphokinase C signalling pathway and calcium homeostasis and in reducing 

dopamine levels in the brain. These endpoints are thought to be related to modu-

lation of motor activity, learning and memory, neural damage and abnormal brain 

development (98, 346). 

A reduced amount of NR1 subunit of NMDA receptors with a subsequent re-

duced function of the glutamate-nitric oxide-cyclic guanosine monophosphate 

(cGMP) pathway in cerebellum, leading to a decreased ability to learn, was ob-

served after treatment with the non-dioxin-like PCBs 138 and 180. Further, an 

increase in extracellular γ-aminobutyric acid (GABA) in cerebellum with im-

paired motor coordination was seen after treatment with the non-dioxin-like PCB 

52 (37).  

Caudle et al investigated mechanisms by which PCBs may disrupt normal 

functioning of the nigrostriatal dopamine system in mice at administration of a  

1:1 mixture of Aroclor 1254:1260. Upon analysis of all congeners present in the 
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brain, PCBs 95, 118, 138, 153, 170 and 180 were found at higher concentrations. 

Reduction in vesicular monoamine transporter 2 levels in the striatum was detected 

but no changes in striatal dopamine (and metabolite) levels. Also, a reduction in 

nigrostriatal dopamine transporter protein levels and function was seen. No in-

fluence on dopamine transporter protein levels in frontal cortex, hypothalamus 

and midbrain was found. The levels of other neurotransmitter transporters (e.g. 

for serotonin, epinephrine, glutamate) present in striatum and frontal cortex were 

not altered. The changes may represent a precursory event leading to deficits in 

dopamine levels and further damage to the dopaminergic system (60). 

Also, learning could possibly be impaired by inhibition of nitric oxide synthase 

by ortho-substituted PCBs and their hydroxylated metabolites as well as hydro-

xylated metabolites of non-ortho PCBs (396).  

Further, indirect influences via effects on steroids are possible because most 

transmitter systems such as serotonin, dopamine, acetylcholine and glutamate can 

be influenced by sexual hormones, and individual PCBs may have oestrogenic, 

antioestrogenic, androgenic or antiandrogenic activity (396). Both dioxin-like and 

non-dioxin-like PCBs as well as some hydroxyl metabolites have been shown to 

interfere with endocrine systems (sex-steroids, thyroid hormones) and with retinoids 

(metabolites of vitamin A), thereby acting on multiple endpoints. Through these 

mechanisms they impair neurological development and functioning, with dioxin-

like PCBs more potent than non-dioxin-like PCBs (346). The effects may be due 

to PCB regulation of CYP oxygenases that activate or deactivate different steroid 

hormones, to interference of PCBs with the hormone receptor or with the hormone 

transport protein (346). 

9.10 Genotoxicity and carcinogenicity 

There is evidence that both Ah receptor dependent and independent mechanisms 

may be involved in PCB-induced cancer (19). Sandahl et al suggested that indirect 

effects on DNA, like DNA damage secondary to oxidative stress, may be the basis 

for the carcinogenic actions of PCBs (331). It has been suggested that the carcino-

genic effects of both TCDD and phenobarbital may in part reside in the capacity 

of the induced CYP enzymes to leak oxidants and thus promote cell division and 

oxidative DNA damage (289). 

Dioxin-like compounds do neither bind covalently to DNA, nor induce direct 

genotoxic effects, but might be indirectly genotoxic by increasing the formation of 

ROS (196). The indirect genotoxicity may be via an Ah receptor dependent induc-

tion of the CYP1 family (e.g. CYP1A1), which leads to an induction of oxidative 

stress (i.e. increased ROS formation and oxidative DNA damage). This is due to 

inefficient electron transfer during P450 metabolism or the production of redox 

active oestradiol metabolites as a result of CYP1 mediated oestrogen metabolism. 

The effects of dioxin-like compounds on hormone and growth factor systems, cyto-

kines and other signal transducer pathways indicate that they are also powerful 

growth dysregulators (196, 280, 289). 

Further, experimental evidence supports the hypothesis that lower chlorinated 

PCBs are metabolically activated to electrophilic species, which bind to DNA. The 
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reactive metabolites may result from arene oxides and/or catechol and p-hydro-

quinone species, which are oxidised to semiquinones and/or quinones. Formation 

of these oxygenated compounds is accompanied by production of ROS and oxi-

dative DNA damage. The results raise the possibility that lower chlorinated PCBs 

may be genotoxic (19, 56, 98, 256). One major route to aneuploid cancer cells is 

through an unstable tetraploid intermediate, and in a recent study it was suggested 

that PCB 2 hydroquinone and PCB 3 hydroquinone may be involved in cancer 

initiation through induction of polyploidisation (122).  

A general mechanistic hypothesis for PCB promotion of liver tumours involves 

indirect stimulation of cell proliferation following cell or tissue injury by reactive 

metabolites of PCBs. Alternatively, the cell injury could be caused by increased 

intracellular concentrations of other reactive species caused by an overall imbalance 

from PCB-induced perturbations of cellular biochemical processes, including in-

duction/repression of enzymes and/or disruption of calcium homeostatic processes 

and signal transduction pathways (19).  

A mode of action of PCB mixtures for cancer in Sprague Dawley rats was pre-

sented in a recent publication (49). The following steps were suggested: 1) PCB/ 

TEQ accumulation in rat tissues, 2) PCB/TEQ repression of constitutive MFOs,  

3) PCB/TEQ induction of other MFOs, 4) MFO-mediated formation of redox-

cycling quinones (RCQs), 5) RCQ-mediated formation of O2
. -

, 6) O2
. - 

dismutation 

to H2O2 and 7) H2O2-mediated mitotic signalling, resulting in the proliferation of 

spontaneously or otherwise initiated cells to form hepatic tumours as in tumour 

promotion. In this cancer process, tumour growth and development is controlled 

by the net activity of multiple MFO-RCQ-ROS mitotic signalling cascades. 

Glutathionylated oestrogen catechols (RCQs) were identified in rat livers (49). 

Inhibition of apoptosis of preneoplastic cells, a mechanism of TCDD pro-

motion, has been observed after PCB exposure (98). However, PCB promotion  

of tumours does not appear to be solely an Ah receptor mediated process. Tetra- 

and hexachlorinated PCBs that are not Ah receptor agonists have been shown to 

be potent inhibitors of intercellular communication in vitro and/or to promote liver 

tumours in vivo (19, 188). In addition, sulphonated and hydroxylated PCB meta-

bolites have been reported to inhibit gap junction intercellular communication in 

vitro (98, 204, 256). Machala et al showed that the strongest inhibition potencies 

were found for some persistent high-molecular weight 4-hydroxy-PCBs (4-OH-

PCB 146, 4-OH-PCB 187), but also that several low-molecular weight hydro-

xylated PCBs inhibited intercellular communication, which is potentially asso-

ciated with promotional effects (256).  

The fact that PCBs may cause immunosuppression may at least in part explain 

their carcinogenic actions (56).  

10. Effects in animals and in vitro studies  

The precise composition or the content of PCDFs and other impurities in com-

mercial PCB mixtures is seldom known, although the approximate homologue 

composition is well-known (Table 6, Chapter 4), and even minor contamination 
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(in the range of 0.1 %) with potent dioxin-like compounds may be sufficient to 

explain (or have a significant impact on) the observed adverse effects (98, 188, 

402). However, it has been suggested that PCB mixtures containing a higher per-

centage of moderately chlorinated homologues (tetra-, penta- and hexachlorinated 

congeners) are more toxic than mixtures containing a lower proportion regarding 

effects related to Ah receptor binding and disruption of calcium homeostasis. 

Accordingly e.g., the Aroclors 1242, 1248 and 1254 would be more toxic than 

Aroclor 1221 (a lesser chlorinated mixture) and Aroclors 1262 and 1268 (more 

heavily chlorinated mixtures) (361). Yet, there might be other mechanisms of 

importance not taken into consideration in the above cited assessment of toxicity 

of PCB mixtures. 

For technical PCB mixtures, no effects were seen in rodents and monkeys in the 

low mg/kg bw/day range for a number of toxicological endpoints (e.g. respiratory, 

renal) (98). These endpoints are not considered relevant for the occupational expo-

sure situation and are mentioned here very briefly or not at all. Some studies con-

cerning other effects more relevant for the risk assessment of PCBs are described 

below. Mostly, low-dose studies and the most sensitive species have been selected, 

although especially for single congeners, some high-dose studies are described to 

facilitate comparison. The subhuman primates and guinea pigs are generally more 

sensitive to PCBs than dogs, rats, mice and rabbits (207). Dermal/ocular, immuno-

logical and neurobehavioral changes are particularly sensitive indicators of toxicity 

in monkeys exposed either as adults or during pre- and/or postnatal periods (19). 

The dioxin-like PCBs are generally considered to be the most toxic PCB con-

geners, although the potency differs considerably between different dioxin-like 

PCBs and the amounts present in commercial PCB mixtures are small compared 

to the amounts of non-dioxin-like congeners (98, 188, 402). For PCB 126, the most 

potent of the dioxin-like PCBs, increased incidences of non-neoplastic lesions (in 

liver, lung, thyroid gland, spleen, thymus, pancreas, heart, adrenal cortex, kidney, 

clitoral gland and mesenteric artery) as well as neoplastic lesions were seen in 

female rats at dose levels ≤ 1 µg/kg bw/day at long-term peroral administration. 

Body weights were decreased at doses ≥ 0.175 µg/kg bw. Significantly increased 

incidences of toxic hepatopathy as well as bronchiolar metaplasia of alveolar 

epithelium were seen at dose levels ≥ 0.03 µg/kg bw. Liver weights and activity of 

enzymes, e.g. EROD, in the liver and the lung were significantly increased at dose 

levels as low as 0.01 µg/kg bw (280) (see also Sections 10.2.2–10.2.4 and 10.4).  

10.1 Effects of single exposure 

The acute toxicity of Aroclors after a single oral exposure is generally low in rats 

(187). The lethal dose for 50 % of the exposed animals at single administration 

(LD50) has been reported to be 4 250, 1 010–1 295 and 1 315 mg/kg bw for Aro-

clors 1242, 1254 and 1260, respectively (188). The time to death is short, less than 

three days (2). Clinical signs in rats include diarrhoea, respiratory depression, de-

hydration, decreased response to pain stimuli, unusual gait, oliguria and coma. 

Histopathological changes (vacuolar degeneration, fatty infiltration) in liver and 

kidney have been seen after a single high dose of a PCB mixture. Further, patho-
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logical findings like haemorrhagic lung, stomach and pancreas have been reported 

(188). Monkeys sacrificed 4 days after gastric intubation of Aroclor 1248 at 1 500 

or 3 000 mg/kg bw exhibited enlarged livers with proliferation of the endoplasmic 

reticulum and hypertrophy and hyperplasia of the gastric mucosa (187). At dermal 

administration to rabbits, LD50s were 794–1 269 mg/kg bw for Aroclors 1242 and 

1248, 1 260–3 169 mg/kg for Aroclors 1221 and 1262, and 1 260–2 000 mg/kg for 

Aroclors 1232 and 1260 (19).  

Only a few LD50s for individual congeners have been reported. Values between 

1 800 and 5 800 mg/kg bw for PCBs 31, 52, 101, 149 and 183 were reported for 

NMRI mice at peroral administration, whereas the LD50 for PCB 153 was 1 000 

mg/kg bw. Much lower LD50s have been reported for non-ortho PCBs. Oral LD50s 

for PCB 77 and PCB 169 in guinea pigs were reported as < 1 and 0.5 mg/kg bw 

(2). For TCDD, the acute toxicity varies over 5 000-fold between animal species 

at oral administration, with guinea pigs as the most sensitive species (oral LD50 

0.001 mg/kg bw) (2, 280).  

10.2 Effects of repeated exposure  

10.2.1 Dermal and ocular effects 

PCB-related dermal and ocular effects are well characterised in monkeys after long-

term oral exposure to commercial PCB mixtures. PCDFs may have contributed at 

least to some of these effects (19). Ocular effects and changes to finger-/toenails 

and nailbeds were reported as the most sensitive clinical responses in adult rhesus 

monkeys to daily ingestion of Aroclor 1254 for several months (15).  

Nail changes were reported in female rhesus monkeys at treatment with 5 µg/kg 

bw/day of commercial Aroclor 1254 over a 37-month period, although the same 

authors reported that nail and nailbed changes were seen in monkeys receiving 40 

or 80 µg/kg bw/day over a 72-month period (not mentioned for the 5- and 20-µg/kg 

bw/day groups) (15, 16, 19). In addition, dose-related ocular effects including eye 

exudate and prominence of the tarsal (Meibomian) glands were reported and en-

largement and/or inflammation of the tarsal glands were stated to occur at the 

lowest dose level (5 µg/kg bw/day). This dose level corresponded to mean blood 

PCB levels around 10 µg/l (determined at 19–27 and 55 months of PCB exposure) 

(15, 19, 386, 387). At peroral treatment of rhesus monkeys with 200 µg/kg bw/day 

of Aroclor 1254 for up to 28 months, the prominent clinical findings included 

Meibomian gland enlargement, blepharitis, loss of eyelashes, periorbital and facial 

oedema, finger nail detachment, and gingival hyperplasia and necrosis of varying 

severity (19, 388).  

Dermal and ocular signs of toxicity including acne, alopecia, erythema and 

swelling of the eyelids were seen to some degree after 2–6 months in rhesus 

monkeys at peroral administration of approximately 100 µg/kg bw/day of Aroclor 

1248 (19, 26). 

Facial oedema and reddening of the eyelids were reported when rhesus monkeys 

were exposed perorally to estimated doses of 120 µg/kg bw/day of Aroclor 1242 

for 2 months (19).  
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In a study on cynomolgus monkeys, dermal signs were seen in a monkey given a 

PCB mixture containing PCDFs (2 mg PCB/kg bw/day + 8 µg PCDFs/kg bw/day) 

in the diet for 20 weeks but were not observed in a monkey given the PCB mix-

ture with PCDFs removed (215).  

Treatment of rats for 90 days with several PCB congeners in the diet, both di-

oxin-like and non-dioxin-like, did not result in any treatment-related histological 

alterations in the eye or optic nerve. Doses ranged from 9 µg/kg bw/day for the 

dioxin-like PCB 126 to approximately 4 mg/kg/day for some mono- and di-ortho-

substituted congeners (19).  

10.2.2 Immunological and haematological effects 

Immunological effects of PCBs include morphological changes in organs related 

to the immune system, e.g. thymus, spleen and lymph nodes, as well as functional 

impairment of humoral and cell-mediated immune responses (19, 98, 188). No 

cross-species generalisations can be made regarding effects on the thymus, spleen 

and lymph nodes (188). Immunological effects occur in all species examined at 

high doses, and in some species, such as the monkey, at low dose levels (188). In 

general, data indicate that the dioxin-like congeners are more potent than the non-

dioxin-like congeners and that higher chlorinated Aroclors are more immunotoxic 

than lower chlorinated Aroclors (166). Thymic atrophy is one of the hallmark im-

munotoxic responses to dioxin-like compounds (280). Antibody production against 

sheep red blood cells has been suggested as a sensitive endpoint for assessing PCB 

effects, which can be seen as decreased IgG and IgM levels (188). 

In early studies, decreased antibody responses to sheep red blood cells, increased 

susceptibility to bacterial infections and/or histopathological changes in the thymus, 

spleen and lymph nodes were found in adult monkeys and their offspring at oral 

administration of Aroclor 1254 or 1248 at 100–200 µg/kg bw/day doses. However, 

these findings are limited by small numbers of animals and dose levels (19). 

A more extensive characterisation of immunological effects in non-human pri-

mates was done in later studies. It involved assessments on groups of 16 female 

rhesus monkeys performed after 23 and 55 months of oral exposure to 5, 20, 40 or 

80 µg/kg bw/day of Aroclor 1254 (in a gelatine capsule). The mean levels in whole 

blood at 19–27 months were around 10, 34, 75 and 112 µg/l, respectively. At 55 

months, the corresponding mean levels were 10, 40, 60 and 124 µg/l. The immune 

parameters that were most consistently affected in the monkeys were IgM and IgG 

antibody responses to sheep red blood cells. Significant dose-related decreases 

were seen at a level as low as 5 µg/kg bw/day. The data suggest that the effects of 

Aroclor 1254 at the investigated dose levels may be due to altered T-lymphocyte 

and/or macrophage function. The B-lymphocytes did not appear to be the primary 

target since antibody synthesis to pneumococcal vaccine was not supressed (19, 

188, 386, 387). Analytical laboratory data during the prebreeding phase for rhesus 

monkeys given 5, 20, 40 or 80 µg/kg bw/day of Aroclor 1254 demonstrated a 

linear decrease in mean platelet volume levels over time for the 3 higher dose 

groups. The overall levels were significantly lower at 20 and 80 µg/kg bw. Further, 

a linear decrease over time for red blood cell count was reported for monkeys in 

the two highest dose groups and the overall level was significantly lower (p < 0.05) 
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at 80 µg/kg bw. In addition, significantly lower (p < 0.05) overall haematocrit and 

haemoglobin concentrations were seen at 80 µg/kg bw (12).  

Thymic atrophy was reported in adolescent male rats exposed to Aroclor 1242 in 

the diet or by inhalation (33 µg/kg bw/day in food or whole body exposure to 0.9 

µg/m
3
, 23 hours/day) for 30 days. It was calculated that the rats were inhaling an 

average of 0.46 µg PCB/kg bw/day (assuming complete absorption), but dermal 

and oral uptake may have contributed to absorption, yielding a higher total dose 

(59).  

In a recent inhalation study, no significant effects on measured immune para-

meters were reported in rats repeatedly exposed to high levels of PCB vapour. 

Analysis of bronchoalveolar lavage (BAL) fluid showed no significant changes  

in total and differential cell counts (macrophages, neutrophils, lymphocytes), 

levels of total protein, lactate dehydrogenase activity or cytokine (IL-1 IL-1 

IL-2, IL-4, IL-6, IL-10, IL-12, interferon-, tumour necrosis factor alpha (TNF)) 

levels. Histological evaluation of the upper respiratory tract and lung showed un-

remarkable or minimal changes that were not considered treatment-related, but  

no further details were reported. The rats were exposed nose-only for 2 hours/ 

day (two 1-hour exposures separated by a 2 hour break) for 4 (n = 2) or 10 days  

(n = 7) to 8 200 µg/m
3
 of a vapour PCB mixture generated from Aroclor 1242 and 

consisting mainly (ca 90 %) of mono-, di- and trichlorobiphenyls. Assuming an 

uptake of 80 % (indicated from acute exposure data, see Section 7.1) and a body 

weight of 200 g, the inhaled amount would correspond to approximately 560 µg 

PCBs/kg bw/day (180). 

A series of toxicity studies was performed on rats, which were exposed to diets 

containing four dose levels of various single congeners for 13 weeks. Endpoints 

relevant to the immune system included total and differential white blood cell 

counts, spleen weight, and histology of the spleen, thymus, mesenteric lymph nodes 

and bone marrow. Thymic changes (reductions in cortical and medullary volume, 

atrophy) and to a lesser extent changes in the bone marrow were observed at expo-

sure to PCB 126 (about 0.8 µg/kg bw/day). Reduced cortical and medullary volume 

and thymic weight were seen following treatment with PCB 105 (males/females: 

4.3/4 mg/kg bw/day), whereas mild morphological changes in the thymus were 

found after treatment with PCB 28 (males/females: 3.8/4 mg/kg bw/day) and PCB 

153 (males/females: 3.5/4.1 mg/kg bw/day). No effects relevant to the immune 

system were reported following exposure to PCB 77 (males/females: doses up to 

0.77/0.89 mg/kg bw/day), PCB 118 (males/females: doses up to 0.68/0.17 mg/kg 

bw/day) or PCB 128 (males/females: doses up to 4.2/4.4 mg/kg bw/day) (19, 65-

69, 227).  

In a National Toxicology Program (NTP) study, the incidence of thymic atrophy 

was significantly elevated after administration of PCB 126 by gavage to female 

rats at daily doses ≥ 0.55 µg/kg bw for 31 weeks or ≥ 0.175 µg/kg bw for two years. 

Atrophy of lymphoid follicle in the spleen was seen at 1 µg PCB 126/kg bw for 

two years (280). In a similar study with PCB 153 (doses up to 3 mg/kg bw/day),  

a significantly increased incidence of bone marrow hyperplasia was recorded at 

administration for two years at the highest dose level (279). 
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In vitro phagocytosis was evaluated on human neutrophils and monocytes with 

PCBs 138, 153, 169 and 180 in equal concentrations (5–25 ppm). The three in-

dividual non-coplanar PCBs significantly reduced both neutrophil and monocyte 

phagocytosis, compared to the unexposed control. PCB 169 significantly reduced 

monocyte (but not neutrophil) phagocytosis, but to a lesser extent than the non-co-

planar PCBs. Neutrophil viability, but not monocyte viability, was decreased for 

the three non-coplanar PCBs (236). 

PCBs 28 and 52 caused rapid cell death among rat thymocytes in vitro, where-

as PCB 77 did not cause this effect at the same exposure concentration. PCB 52 

induced apoptosis in mice spleen cells in vitro, in contrast to some dioxin-like 

PCBs (132). 

10.2.3 Hepatic effects  

Hepatotoxicity is a well-documented effect in animals exposed to commercial 

mixtures or single congeners of PCBs. The spectrum of possible hepatic effects  

in animals includes microsomal enzyme induction, liver enlargement, increased 

serum levels of liver enzymes and lipids, altered porphyrin and vitamin A meta-

bolism, and histologic alterations that progress to fatty and necrotic lesions and/or 

tumours. Mild liver effects seem to be reversible (19). Hepatic enzyme induction 

and liver pathology occur in all species studied, although with differing suscepti-

bility (2). A gradation between different groups of PCBs for liver effects (histo-

logy) in animals has been reported, although there are deviations; non-ortho > 

mono-ortho > di-ortho > others (28). 

Induction of microsomal enzymes appears to be one of the most sensitive hepa-

tic alterations produced by PCB mixtures in laboratory animals and was seen in rats 

fed 30 µg/kg bw/day (lowest dose tested) of Aroclors 1242, 1248, 1254 or 1260 for 

4 weeks. Further, hepatic microsomal enzyme activities, liver weight and lipid de-

position in the liver were increased in rats fed 250 µg/kg bw/day Aroclor 1242 for 

2 months (19, 98, 245).  

No histological changes were seen in the liver of adolescent male rats following 

whole-body exposure to 0.9 µg/m
3
 Aroclor 1242 vapour 23 hours/day for 30 days 

or after exposure to 33 µg/kg bw/day in the diet for 30 days. It was calculated that 

the rats were inhaling an average of 0.46 µg PCBs/kg bw/day (assuming complete 

absorption), but dermal and oral uptake may have contributed to absorption, 

yielding a higher total dose (59).  

Further, no treatment-related changes in the liver (histologic evaluation) were 

stated to occur (no details reported) in rats exposed to high PCB levels. The rats 

were exposed nose-only to 8 200 µg/m
3
 of a vapour PCB mixture generated from 

Aroclor 1242 consisting mainly (ca 90 %) of mono-, di- and trichlorobiphenyls. 

The animals were exposed in total for 2 hours/day (two 1-hour exposures separated 

by a 2-hour break) for 4 (n = 2) or 10 days (n = 7). Assuming an uptake of 80 % 

(indicated from acute exposure data, see Section 7.1) and a body weight of 200 g, 

the inhaled amount would correspond to approximately 560 µg PCBs/kg bw/day 

(180). 

Intermediate and chronic duration oral studies indicate that monkeys are more 

sensitive than rats and other laboratory species to the hepatotoxic effects of PCBs 
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(19). When given in the diet to rhesus monkeys, approximately 100 and 200  

µg/kg bw/day of Aroclor 1248 induced significantly higher serum glutamic 

pyruvic transaminase activities and significantly lower albumin/globulin ratios in 

serum, as compared to controls at month 8. One monkey from each group died 

after administration for 173 days (low-dose group) and 370 days (high-dose group), 

respectively. These animals showed e.g. lipid accumulation and focal areas of 

necrosis in the liver (19, 26). Exposure to Aroclor 1254 caused liver enlargement, 

fatty degeneration, hepatocellular necrosis, and hypertrophic and hyperplastic 

changes in the bile duct in rhesus monkeys fed 200 µg/kg bw/day for 12–28 

months (19).  

Rhesus monkeys that ingested capsules containing 5, 20, 40 or 80 µg/kg bw/day 

Aroclor 1254 for 72 months had a dose-related increase in relative liver weights. 

The average liver weight for the monkeys in the 80 µg/kg bw/day group was ap-

proximately 50 % larger than that in the control group and was attributed to hyper-

plasia. Also e.g. decreased serum levels of total bilirubin (80 µg/kg bw/day, p < 

0.05) and cholesterol (40 and 80 µg/kg bw/day, p < 0.05) with significant linear 

dose-related trends were reported. A comprehensive analysis of plasma lipids/lipo-

proteins after 37 months revealed that plasma triglycerides were significantly ele-

vated at all doses tested except 40 µg/kg bw/day. Suppression of total cholesterol 

became significant at 40 µg/kg bw/day and high-density lipoprotein cholesterol 

decreased significantly at 80 µg/kg bw/day. The concentration of PCBs in the blood 

of monkeys given 5, 20, 40 or 80 µg/kg bw/day Aroclor 1254 increased in a dose-

related manner during the first 10 months of dosing, from an average predosing 

level of 2.3 µg/l to an average of 10, 32, 68 and 105 µg/l, respectively. After 25 

months of dosing when approximately 90 % of the monkeys had attained a steady 

state, the average concentrations were 10, 37, 72 and 118 µg/l, respectively (12, 

16, 19, 29, 98). 

In studies of single congeners, subchronic toxicity was investigated in rats 

following dietary exposure for 13 weeks. Hepatic effects included increased liver 

weight, biochemical changes and histopathology. The most toxic congener was 

PCB 126 with a lowest observed adverse effect level (LOAEL) of about 0.8 µg/kg 

bw/day, which was approximately 1/50 of the LOAEL of around 40 µg/kg bw/ 

day for PCB 105 (19, 65, 67). The no observed adverse effect levels (NOAELs) 

for effects on liver for PCBs 28, 128 and 153 were judged to be in the range of 

30–40 µg/kg bw/day, whereas the corresponding LOAELs were 10 times higher. 

Significantly increased liver EROD activities (expression of dioxin-like activity) 

were reported at the highest dose levels for PCBs 28 and 128, i.e. about 4 mg/kg 

bw/day, and at ≥ 4 µg/kg bw/day for PCB 153. EFSA estimated body burdens at  

the NOAELs (from the reported accumulated concentrations in the fat tissue) of 

0.4, 0.8 and 1.2 mg/kg bw for PCBs 28, 128 and 153, respectively (68, 69, 98, 

227). Considering dose-response and severity of liver effects, the order of toxicity 

according to ATSDR was as follows: PCB 126 > PCB 105 > PCB 118 > PCB 77 

> PCB 153 > PCB 28 > PCB 128 (19). However, in one 13-week study in rats, 

PCB 128 was estimated to be equally hepatotoxic as PCB 153 (362). Still, minor 

contamination of dioxin-like compounds may have been present (and sufficient)  
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to explain the effects seen at administration of the non-dioxin-like PCB congeners 

(98).  

The liver was shown as a primary target tissue in an NTP study on female rats 

administered 0.01, 0.03, 0.1, 0.175, 0.3, 0.55 and 1 µg PCB 126/kg bw by gavage 

for 5 days/week for up to two years (280). Hepatic EROD and pentoxyresorufin-

O-deethylase (PROD) activities were significantly increased at all dose levels and 

acetanilide-4-hydroxylase at doses ≥ 0.03 µg/kg bw at all interim evaluations (14, 

31, 53 weeks). Absolute and relative liver weights were significantly increased in 

all dosed groups at 14 and 31 weeks and in all groups administered ≥ 0.175 µg/kg 

bw at 53 weeks. Hepatic cell proliferation data showed significant increases at 

doses ≥ 0.175 µg/kg bw at 14 and/or 31 weeks but not at 53 weeks. Increased in-

cidences of hepatocyte hypertrophy were seen after 31 weeks (minimal to mild 

changes) and 2 years of administration at doses ≥ 0.03 µg/kg bw, and increased in 

severity at the two highest dose levels with time. A number of other dose-related 

non-neoplastic liver lesions were found at 53 weeks and 2 years, e.g. inflammation, 

diffuse fatty change and oval cell hyperplasia at ≥ 0.1 µg/kg bw (2 years) and bile 

duct hyperplasia at ≥ 0.175 µg/kg bw (2 years). Significantly increased and dose-

related incidences of toxic hepatopathy were seen at ≥ 0.03 µg/kg bw (the degree 

increased with dose) (280). For neoplastic lesions of the liver, see Section 10.4. 

In a similar 2-year study of PCB 153 (purity > 99 %), groups of female rats re-

ceived 0, 0.01, 0.1, 0.3, 1 or 3 mg/kg bw/day by gavage for up to 105 weeks. EROD 

activity in the liver was significantly elevated at all dose levels at week 31 but  

not at week 53 (this may indicate some dioxin-like contamination). Significant 

elevations were also seen for acetanilide-4-hydroxylase (week 31) and pentoxy-

resorufin-O-deethylase (weeks 14, 31, 53) at doses ≥ 0.1 mg/kg bw. Absolute and 

relative liver weights were significantly greater in rats administered ≥ 0.1mg/kg 

bw at week 53. The incidences of hepatocyte hypertrophy were significantly in-

creased at doses ≥ 0.3 mg/kg bw at 31 and 53 weeks and in all dosed groups at  

2 years, although the grade of lesion was minimal to rather mild. Further, at two 

years, diffuse fatty changes in the liver and bile duct hyperplasia were increased  

at doses ≥ 0.3 mg/kg bw and the incidence of oval cell hyperplasia of the liver 

significantly increased at 3 mg/kg bw (all these changes were rather slight). Toxic 

hepatopathy was not indicated in this study (279).  

CYP1A gene expression was studied in cultures of hepatocytes from human 

donors, rats and rhesus monkeys, and in human hepatoma cells at exposure to 

PCB 126 and Aroclor 1254. There were large species differences and human was 

the least sensitive species. For example, the half maximal effective concentration 

(EC50) for induction of CYP1A enzyme activity (EROD) was 2.2 × 10
-10

 M and 

3.3 × 10
-10

 M for monkey and rat cells, respectively, and 1.5 × 10
-7

 M/4.5 × 10
-8 

M 

for human cells (hepatoma cells/hepatocytes) for PCB 126. Corresponding EC50s 

for Aroclor 1254 were 1.5 × 10
-7

 M (monkey cells), ≥ 2.7 × 10
-6 

M (rat cells) and 

> 3.0 × 10
-4 

M/ ≥ 4.8 × 10
-5 

M for human cells (hepatoma cells/hepatocytes) (359). 

10.2.4 Endocrine effects and effects on the retinoid system 

Studies in animals including rodents and non-human primates provide strong evi-

dence of thyroid hormone involvement in PCB toxicity. Depending on dose and 
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duration, PCBs can disrupt the production and disposition of thyroid hormones at 

a variety of levels, and in some studies, histological changes in the thyroid gland 

were seen (19). 

In chronic-duration studies, enlarged thyroid glands and follicles with desqua-

mated cells were observed in rhesus monkeys exposed to 200 µg/kg bw/day Aro-

clor 1254 for 28 months, whereas treatment with the same dose for 12 months did 

not induce histological alterations in the thyroid in cynomolgus monkeys (19). 

Further, no treatment-related alterations on thyroid tissue were shown in rhesus 

monkeys receiving doses of 5, 20, 40 or 80 µg/kg bw/day Aroclor 1254 for 72 

months at histopathological examination. Also, no significant differences between 

treatment groups for T4, % T3 uptake and free T4 index were indicated and there 

was no evidence of a linear dose-related trend (16). 

Various effects on the thyroid gland and thyroid hormone system have been ob-

served in rats exposed to Aroclor 1254. Total concentrations of T4 and T3 in serum 

were depressed at administration of approximately 90 µg/kg bw/day in the diet  

for 5 months. At this dose level, a significant depression of the serum level of total 

T4 was reported on day 35 compared to the control and pre-treatment levels (19, 

54). In another study, serum levels of T4 decreased when weanling rats received 

daily gavage dosages of 100 µg/kg bw/day Aroclor 1254 for 15 weeks (141). On 

the contrary, adolescent male rats exposed to Aroclor 1242 (33 µg/kg bw/day in 

food or whole body exposure to 0.9 µg/m
3
, 23 hours/day) for 30 days had higher 

serum concentrations of total T3 and total T4 than rats in a control group (especially 

following inhalation exposure). In the rats exposed to the aerosol, histological 

changes typical of thyroid-stimulating hormone (TSH) stimulation were seen as 

well. It was calculated that the rats were inhaling an average of 0.46 µg PCB/kg 

bw/day (assuming complete absorption), but dermal and oral uptake may have 

contributed to absorption, yielding a higher total dose (59). 

Also, histopathological lesions of the thyroid gland developed in male and fe-

male rats at exposure to single PCB congeners in food for 13 weeks. These changes 

were evident to varying degrees of severity for PCB 126 (~ 0.8 µg/kg bw/day), PCB 

105 (~ 40 µg/kg bw/day), PCB 77 (~ 80 µg/kg bw/day), PCB 118 (males/females: 

70/170 µg/kg bw/day), PCB 28 (~ 360 µg/kg bw/day), PCB 128 (~ 430 µg/kg 

bw/day) and PCB 153 (males/females: 346/428 µg/kg bw/day) (65-69, 227). The 

NOAELs for effects on thyroid of the non-dioxin-like PCBs 28, 128 and 153 

were 30–40 µg/kg bw/day. EFSA estimated body burdens at the NOAELs (from 

the reported accumulated concentrations in the fat tissue) of 0.4, 0.8 and 1.2 mg/kg 

bw for PCBs 28, 128 and 153, respectively (68, 69, 98, 227). However, several 

PCDDs, PCDFs and apparently PCB 126 are potent thyroid toxicants and, thus, 

minor contamination might be sufficient to explain (or partly explain) the effects 

seen at administration of non-dioxin-like PCB congeners (98).  

A 2-year NTP gavage study on female rats (0.03, 0.1, 0.175, 0.3, 0.55 and 1 µg/ 

kg bw/day, 5 days/week, and 0.01 µg/kg bw/day for up to 53 weeks only) con-

firmed alterations in the thyroid hormone homeostasis by PCB 126 (280). Down-

ward trend in serum total and free T4 concentrations as well as a trend towards in-

creased serum concentrations of total T3 and TSH with higher PCB 126 concentra-

tions were evident. At the 14-week interim evaluation, significantly decreased 
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serum concentrations of total and free T4 were seen at levels ≥ 0.55 µg/kg bw and 

significantly increased serum concentrations of total T3 and TSH at ≥ 0.3 and ≥ 0.55 

µg/kg bw, respectively. At week 53, total and free T4 levels were significantly 

decreased at ≥ 0.175 and ≥ 0.03 µg/kg bw, respectively. Total T3 levels were 

significantly increased at ≥ 0.175 µg/kg bw, whereas no significant increase of 

TSH levels were seen at any dose level. At 14, 31 and 53 weeks, the incidences 

of follicular cell hypertrophy of the thyroid gland were generally increased in all 

dosed groups. After administration of PCB 126 for 2 years, these incidences were 

significantly increased in the 0.3- and 0.55-µg/kg bw dose groups (280).  

In a similar 2-year NTP study of PCB 153 (purity > 99 %), groups of female rats 

received 0, 0.01, 0.1, 0.3, 1 or 3 mg/kg bw/day by gavage, 5 days/week for up to 

105 weeks. Significant decreases in thyroid hormone concentrations in serum 

(week 14: total and free T4, total T3; week 53: total and free T4) were seen at the 

highest dose level. No significant differences in TSH were seen in any dosed group. 

At 2 years, incidences of minimal to mild thyroid follicular cell hypertrophy were 

significantly increased at 0.3 and 3 mg/kg bw/day. An increased liver EROD 

activity was found at all dose levels at week 31, which may indicate some dioxin-

like contamination (279).  

Significantly reduced levels of vitamin D3 metabolites in serum were seen in fe-

male rats given 5, 20 or 40 mg/kg diet of a mixture with a PCB pattern resembling 

that of human breast milk. The mixture was given from 50 days prior to mating and 

until the offspring was born. The dosages correspond to an average daily intake of 

about 0.5, 2 or 4 mg PCB/kg bw, respectively, assuming an average body weight 

of 200 g and a daily diet consumption of 20 g (239).  

Hepatic vitamin A levels were dose-dependently reduced both in male and female 

rats following dietary exposure for 13 weeks to some individual PCBs. The lowest 

dose at which liver vitamin A was significantly reduced was ~ 0.8 µg/kg bw/day 

(LOAEL for liver toxicity) for PCB 126, ~ 40 µg/kg bw/day for PCB 105 (LOAEL 

for liver toxicity), 0.77/0.89 mg/kg bw/day (males/females) for PCB 77, 3.5/4.1 

mg/kg bw/day (males/females) for PCB 153 and 4.4 mg/kg bw/day for PCB 128 

(females, not observed in males). In contrast, PCB 118 (doses up to 0.68 mg/kg 

bw/day) had no effects on vitamin A levels in the liver. Other effects on the retinoid 

system for a few of the congeners included reduction in pulmonary vitamin A and 

elevated vitamin A levels in the kidneys (65-68, 227). Ulbrich and Stahlmann re-

ported that an oral dose of 10 mg/kg bw/day of Aroclor 1254 reduced hepatic vita-

min A levels in mice and rats (396). 

10.2.5 Bone effects  

Several studies of wildlife suggest that organochlorines including PCBs can im-

pair bone strength and alter bone composition (200, 241, 320). However, there  

are a limited number of experimental studies showing lesional effects of PCBs  

on bone tissue. 

Andrews reported significant effects on rat femur characteristics including de-

creased femur length, a narrowing of the femur marrow cavity and a weaker bone 

in young male rats given Aroclor 1254. The animals were dosed with 0.1, 1, 10 or 

25 mg/kg bw/day intragastrically for up to 15 weeks. Femur weight, volume and 
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length were decreased (p < 0.01) at 25 mg/kg bw after 10 and 15 weeks, whereas 

femur density was increased (p < 0.01) at all dose levels at 10 weeks and at the two 

lowest dose levels at 15 weeks. Significant decreases of other morphometric para-

meters were found at 10 and 25 mg/kg bw. Bone strength was reduced at 25 mg/kg 

bw after 15 weeks (p < 0.05). Serum calcium levels were elevated (p < 0.01) at 5 

and 10 weeks (10 and 25 mg/kg bw) but not affected after 15 weeks of exposure. 

Serum parathyroid hormone, phosphorus, alkaline phosphatase, lactate dehydro-

genase and 1,25-dihydroxy vitamin D3 concentrations were not significantly 

affected at any dose level or time period. The body weight was reduced (p < 0.01) 

at the highest dose and the relative liver weight significantly increased at the three 

highest dose levels. Significant elevations of alkaline phosphatase and/or lactate 

dehydrogenase in urine were seen at all dose levels but were not completely dose-

related (9).  

Yilmaz et al investigated Aroclors 1221 and 1254 (suggested to have oestrogenic 

and antioestrogenic properties, respectively) following subcutaneous administration 

of 10 mg/kg bw every other day for a period of 5–6 weeks to intact or ovariecto-

mised rats. Histopathological examination of bone tissue was performed and the 

level of urinary deoxypyridinoline, a bone resorption marker, and parathyroid 

hormone, calcitonin, osteocalcin, inorganic phosphate and alkaline phosphatase 

levels in serum were measured. Administration of Aroclor 1221 led to increased 

calcium and alkaline phosphatase levels in serum (p < 0.05) of intact animals, 

whereas increased calcium (p < 0.01) and inorganic phosphate levels (p < 0.001)  

in serum were seen at administration of Aroclor 1254. In the ovariectomised rats, 

Aroclor 1221 reduced deoxypyridinoline levels (p < 0.05) and increased inorganic 

phosphate (p < 0.05) compared to the ovariectomised control group, whereas 

Aroclor 1254 raised urinary deoxypyridinoline (p < 0.01) and serum parathyroid 

hormone (p < 0.001). Histopathological examination of intact animals indicated 

that Aroclor 1254 interfered with normal structure of the bone tissue and caused 

necrosis in some areas and brought about production of hyalinated cartilage. In the 

ovariectomised animals, these effects were expanded (430).  

Effects of Aroclor 1254 on femoral bone metabolism in adult male rats were 

studied by Ramajayam et al (305). The rats were given 2 mg/kg bw intraperi-

toneally daily for 30 days. Decreased (p < 0.05) body weight and absolute weight 

of femur was seen in the treated animals (this was prevented by simultaneous 

peroral treatment with vitamin E or vitamin C). Decreased activity of superoxide 

dismutase, glutathione peroxidase and alkaline phosphatase in femur (p < 0.05) 

and increase in bone tartrate resistant acid phosphatase (TRAP) activity in femur 

(p < 0.05) were also found. In addition, a 5-fold increase (p < 0.05) in lipid per-

oxidation in the femur, measured as malondialdehyde, and a decrease in femoral 

collagen (p < 0.05) compared to control were induced by Aroclor 1254 treatment. 

Glutathione-S-transferase (GST) activity was unaltered. The study suggested that 

Aroclor 1254 induced oxidative stress, which affected femoral bone metabolism 

in rats. Further, it was shown that supplementation of vitamin C or vitamin E 

protected the femur from oxidative stress (305). 

Impaired bone strength and altered bone composition were seen in female rats 

given 5 or 6 doses à 64 µg/kg bw of PCB 126 intraperitoneally for 3 months (total 
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dose 320–384 µg/kg bw). The treatments also decreased body weight gain and in-

creased relative liver weight (242, 243). 

10.2.6 Effects on body weight gain  

A decrease in body weight gain was observed in adolescent male rats exposed to 

0.9 µg/m
3
 Aroclor 1242, 23 hours a day for 30 days. The rate of body weight gain 

was 33 % as compared to 39 % in controls. It was calculated that the rats were in-

haling an average of 0.46 µg PCBs/kg bw/day (assuming complete absorption), but 

dermal and oral uptake may have contributed to absorption, yielding a higher total 

dose (59). In a recent study, a significantly lower average body weight gain was 

observed in rats exposed nose-only 2 hours/day (two 1-hour exposures separated 

by a 2-hour break) for 4 (n = 2) or 10 days (n = 7) to 8 200 µg/m
3
 of a vapour PCB 

mixture generated from Aroclor 1242 as compared to sham exposed animals. The 

mixture consisted mainly (ca 90 %) of mono-, di- and trichlorobiphenyls. Assuming 

an uptake of 80 % (indicated from acute exposure data, Section 7.1) and a body 

weight of 200 g, the inhaled amount would correspond to approximately 560 µg 

PCBs/kg bw/day (180). 

ATSDR stated that monkeys were particularly sensitive to adverse effects of 

PCBs on body weight/body weight gain. Effects were seen in monkeys fed Aro-

clors 1248 and 1242 at dose levels of approximately 100 and 120 µg/kg bw/day, 

respectively (19, 26).  

Additional data on body weight changes appear in other sections. 

10.2.7 Neurological effects 

Relatively little is known about neurotoxicity and neurobehavioral effects of re-

peated exposure to PCBs in adult animals although effects following exposure  

of young animals have been reported in some studies. The most consistent result 

from studies that examined the neurochemical effects of PCBs is a decrease in 

dopamine concentrations in different areas of the brain (19).  

In a rat study, 52 weeks of exposure by diet to Aroclors 1016, 1242, 1254 or 1260 

was not considered to yield any functional or morphological changes indicative  

of PCB-induced neurotoxicity. The functional observational battery assessed auto-

nomic function, muscle tonus and equilibrium, sensimotor function and central 

nervous system function. PCB intakes ranged from 1.3 to 14.1 mg/kg bw/day de-

pending on the Aroclor mixture. In the Aroclor 1254 groups, decreased body weight 

gain was evident late in the study in males receiving approximately 5.8 mg/kg  

bw/day and in all female dose groups (approximately 1.7, 3.6 and 6.9 mg/kg bw/ 

day) (19).  

The exploratory behaviour measured by the open field tests was slowed in adole-

scent male rats (only males were studied) exposed for 30 days to Aroclor 1242 

either by inhalation (whole body exposure) to 0.9 µg/m
3
 vapour, 23 hours/day or 

via diet (0.44 mg/kg) to 33 µg/kg bw/day. It was calculated that the rats were in-

haling an average of 0.46 µg PCB/kg bw/day (assuming complete absorption), but 

dermal and oral uptake may have contributed to absorption (59). In another study, 

alterations in behaviour including hyperactivity were seen in male rats tested as 

adults. The rats were fed a diet supplemented with environmental concentrations of 
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Aroclor 1248 between ages 35 and 65 days (starting around puberty). The mean 

of the total PCB concentration in adipose tissue was 1.05 µg/g (30). 

In monkeys, doses of 0.8–3.2 mg/kg/day Aroclor 1016 in the diet for 20 weeks 

did not alter the concentrations of noradrenaline, adrenaline or serotonin in the 

brain. A similar exposure protocol with Aroclor 1016 (predominantly di- to tetra-

chlorinated PCBs) or 1260 (predominantly hexa- and heptachlorinated congeners) 

resulted in dose-dependent decreases in dopamine contents in several areas of the 

brain. Because the concentration of total PCBs was higher in the brains of monkeys 

treated with Aroclor 1260 than in those treated with Aroclor 1016, the authors sug-

gested that lightly chlorinated congeners were more effective in reducing central 

dopamine levels than highly chlorinated ones (19). 

The lowest doses giving significant decreases in dopamine concentration in some 

brain areas in 90-day single congener studies in rats were 4.5 µg/kg bw/day for PCB 

128 (females: frontal cortex), 37 µg/kg bw/day for PCB 28 (females: substantia 

nigra), 170 µg/kg bw/day for PCB 118 (females: caudate nucleus, substantia nigra), 

428 µg/kg bw/day for PCB 153 (females: frontal cortex) and 4 327 µg/kg bw/day 

for PCB 105 (males: caudate nucleus) (19, 65, 66, 68, 69, 227).  

Shain and co-workers performed an extensive structure-activity relationship study 

in vitro. The PCB congeners were tested in PC12 cells (cell line derived from a pheo-

chromocytoma of the rat adrenal medulla) and the neurotoxic activity was measured 

as the concentration that reduced the cell dopamine content by 50 % (EC50). Data 

indicated that ortho- and ortho-, para-chlorine substituted congeners were most 

potent in reducing cell dopamine content. EC50s < 100 µM (64–97 µM) were seen 

for PCBs 4, 18, 49, 50, 52, 69 and 104. Congeners without ortho-chlorine substitu-

tions (PCBs 2, 3, 13, 14, 15, 39, 77, 126) had little or no effect on the dopamine 

content. Common indicator congeners like PCBs 101, 118, 138, 153 or 180 were 

not tested (357).  

In another in vitro study, the effects of 35 PCBs on the uptake of dopamine into 

rat brain synaptic vesicles were investigated. The 50 % inhibition concentration 

(IC50) was used as a measure of neurotoxic activity. IC50s < 10 µM (corresponding 

to 1.6–3.2 µg/ml) were noted in the most active of the tested congeners (PCBs 41, 

51, 91, 103, 112, 118, 143 and 190). PCB 153 had an IC50 value of 14 µM (5.1 

µg/ml). The PCBs with the lowest activity were PCBs 15, 54, 77, 126, and 169 

(IC50 > 50 µM, corresponding to > 11–18 µg/ml). Generally the uptake of dop-

amine into vesicles was inhibited by the ortho-chlorinated biphenyls and not by 

the non-ortho-substituted PCBs (260). PCBs 28, 52, 101, 138 and 180 were not 

tested in the study. 

Dopaminergic cells are considered especially vulnerable to ROS, and in a later 

in vitro study by Mariussen et al, induction of cell death and ROS formation was 

investigated. Cultured rat cerebellar granule cells were exposed to PCBs 153 and 

126 and to Aroclors 1242 and 1254. PCB 153 and Aroclors 1242 and 1254 induced 

a concentration-dependent increase in cell death and ROS formation. The con-

centrations causing 50 % cell death were 8, 30 and 10 µM, respectively, although 

ROS formation was more efficient with the Aroclors than with PCB 153. PCB 126 

had no apparent effects even at 50 µM (261). However, several studies indicate 

the Ah receptor as having a role in influencing or mediating apoptotic processes. 
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One study showed that PCB 77 was more efficient than PCB 153 in inducing 

apoptosis and reducing cell viability in cortical neuronal rat cell cultures at the 

concentrations used (30–100 µM) (330).  

Another in vitro study indicated that Aroclor 1254 and the ortho-substituted 

PCB congeners 4, 52, 70, 88, 95, 103, 104 and 153 disrupt Ca
2+

 transport in cen-

tral neurons by direct interaction with ryanodine receptors in specific regions of 

the central nervous system. Of the PCBs assayed, PCB 95 exhibited the highest 

potency. PCBs 4, 52 and 103 and Aroclor 1254 were 2–3 fold less potent than 

PCB 95 (the other tested congeners were even less potent) and PCBs 66 and 126 

were inactive (279, 428).  

Based on data from other in vitro studies, PCBs 53, 95 and 110 were considered 

as the most neurotoxic congeners by use of a suggested scheme for assessment of 

relative neurotoxic potential (361).  

10.3 Mutagenicity and genotoxicity 

It has been concluded that the overall negative results of in vitro and in vivo geno-

toxicity studies indicate that technical PCB mixtures are not directly mutagenic 

(19, 98). However, there are some indications of involvement of indirect genotoxic 

mechanisms in the development of PCB-induced cancer (19).  

PCB mixtures, e.g. Aroclor 1254, have been found to be generally inactive as 

mutagens in S. typhimurium strains and in several other tests of genotoxicity that 

may be predictive of tumour initiation capability (19, 98). Aroclor 1254 was shown 

to induce chromosomal damage and unscheduled DNA synthesis in a few studies 

in vitro (in mammalian/human cells without metabolic activation), but this may be 

a consequence of high test concentrations. Negative results were obtained when 

genotoxic effects were investigated in vivo in several studies in rats following acute 

oral exposure to high doses of e.g. Aroclors 1242 and 1254, in two rat studies with 

intermediate duration oral exposure (about 1–2 months) to Aroclor 1254 and in 

Drosophila melanogaster administered Clophens 30 and 50 (19) (having chlorine 

contents of 30 and 50 %, respectively) (277). In one study, transient DNA damage 

in liver cells was seen in rats treated with a high single dose of Aroclor 1254 (19). 

In a few studies, binding of highly chlorinated congeners such as PCB 136 and 

PCB 153 to DNA, e.g. in the liver, has been reported in rodents (98). In a recent 

study, oxidative DNA damage expressed as accumulation of M1dG adducts (3-(2´-

deoxy--D-erythro-pentofuranosyl)-pyrimido(1,2-)-purin-10(3H)-one) in the 

liver was seen in rats exposed for a year to 1 µg/kg bw/day of PCB 126 perorally, 

whereas no significant effect was seen with PCB 153 at doses of 1 mg/kg bw/day. 

Co-administration of equal proportions of PCB 153 and PCB 126 resulted in dose-

dependent increases in M1dG adduct accumulation from 0.3 to 1 µg/kg bw/day of 

PCB 126 and with 0.3–1 mg/kg bw/day of PCB 153. Thus, PCB 153 potentiated 

the PCB 126-mediated DNA damage. The co-administration of different amounts 

of PCB 153 with fixed amounts of PCB 126 (0.3 µg/kg bw/day) demonstrated 

more M1dG adduct accumulation with higher doses of PCB 153 (196). 

Also, experimental evidence supports the hypothesis that lower chlorinated bi-

phenyls are metabolically activated to electrophilic species, which bind to DNA. 
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The incubation of PCBs 1, 2, 3, 12 and 38 with calf thymus DNA and rat liver 

microsomes, followed by oxidation with a peroxidase, produced 1–3 major DNA 

adducts (19, 98). In an in vitro study, modified DNA bases formed after bioactiva-

tion of PCBs with rat, mouse and human hepatic microsomes were compared in 

the 
32

P-postlabelling assay. Eight congeners ranging from mono- to hexachlorinated 

biphenyls were tested. Modified DNA bases revealed as spots (ROS might be re-

sponsible for their formation) were formed with mono-, di- and trichlorinated 

congeners, but not with higher chlorinated congeners. Higher adduct levels were 

obtained with the rodent microsomes compared to human microsomes. Using the 

same technique, low levels of DNA damage were also seen in human hepatocytes 

exposed to Aroclors 1016 and 1254 (98). Furthermore, it has been shown that 

PCB-derived monochlorinated phenyl-1,4-benzoquinones can bind to DNA in 

vitro and form specific adducts with guanine bases at the N
2
-position (433).  

Gene mutations in S. typhimurium and unscheduled DNA repair in Chinese 

hamster ovary cells, indicative of DNA damage, occurred in in vitro studies with 

PCB 3 (98). Further, PCB 3 was shown to induce gene mutations in the livers of 

transgenic Fisher 344 rats following intraperitoneal injections (600 µmol/ kg, 113 

mg/kg bw) once/week for 4 weeks. Both oxidative stress and/or adduct formation 

could have caused the observed increase in mutations. This study was considered 

by the authors to be the first to demonstrate the mutagenicity of a PCB in vivo 

(234).  

When the mutagenicity of PCB 3 and metabolites was investigated in cultured 

Chinese hamster V79 cells the results indicated that gene mutations were caused by 

quinoid metabolites (2´,5´-quinone; 3´,4´-quinone) at non-cytotoxic concentrations. 

A significant increase in the mutant frequency of the hypoxanthine-guanine phos-

phoribosyltransferase (HPRT) gene was seen by treatment with 0.6–1.3 µM 3´,4´-

quinone and 0.5–1.5 µM 2,5´-quinone. The induction of chromosome and genome 

mutations, detected as micronuclei, was observed only at higher, cytotoxic con-

centrations of monohydroxylated, catecholic and quinoid metabolites of PCB 3 

(432).  

Another study investigated effects of the hydroquinones of PCB 1 (2-chloro-

2´,5´-dihydroxybiphenyl), PCB 2 (3-chloro-2´,5´-dihydroxybiphenyl) and PCB 3 

(4-chloro-2´,5´-dihydroxybiphenyl) and of the catechol of PCB 3 (4-chloro-3´,4´-

dihydroxybiphenyl) on Chinese hamster V79 cells. The PCB 2 and PCB 3 hydro-

quinones very efficiently induced a polyploidisation of V79 cells; the percentage 

of metaphases with tetraploid chromosome number increased at concentrations  

≥ 5 µM for both hydroquinones. PCB 2 and PCB 3 hydroquinones produced 

significant cell death at concentrations ≥ 2.5 µM. The PCB 3 catechol caused a 

significant increase in the sister chromatid exchange frequency at > 5 µM (122). 

PCB 52, a tetrachlorinated congener, did not induce gene mutations in S. 

typhimurium with or without metabolic activation (98). Sargent et al reported 

dose-related chromosome breakage in human lymphocytes in vitro in a range of 

non-toxic concentrations of PCB 77 (10
-1

–10
-4

µg/ml), but no effect of PCB 52 

(332). No increases in micronucleus frequencies or DNA single strand breaks 

(comet assay) were seen in another in vitro study in human lymphocytes treated 

with PCB 77, whereas DNA  single strand breaks were observed following 
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treatment with PCB 52 in an early in vitro study on mammalian cells (98). A 

recent study indicated that both PCB 52 and PCB 77 caused  DNA damage in 

cultured human lymphocytes in the comet assay and that the non-dioxin-like PCB 

52 was at least one order of magnitude more potent than PCB 77 (significant 

effects at 1 and 10 µM, respectively) (331). 

10.4 Carcinogenicity 

The carcinogenicity of PCB mixtures has been evaluated in a number of studies in 

rodents at oral exposure. The studies indicate that commercial PCB mixtures have 

carcinogenic potential, mainly in the liver, but also to some extent in the thyroid, 

at doses in excess of those inducing other effects (i.e. in the mg/kg bw range) (19, 

98, 185, 186, 279). The International Agency for Research on Cancer (IARC) 

concluded in 1987 that there was sufficient evidence for carcinogenicity of PCBs 

in animals. PCBs were classified by IARC without distinction between dioxin-like 

and non-dioxin-like congeners (98, 186). The dioxin-like PCB 126 is a complete 

carcinogen in experimental animals and was recently classified by IARC as a 

human carcinogen (Group 1) based on animal data and mechanistic information 

(24).  

Some tumours (most were benign) were observed in rhesus monkeys perorally 

dosed with 0, 5, 20, 40 or 80 µg/kg bw/day of Aroclor 1254 for approximately 6 

years (16 animals/group). Only one animal in a certain dose group (or in the con-

trol group) was affected by a defined type of tumour (with the exception of uterus 

tumours in one group). However, the total numbers of tumours seemed to be in-

creased in the groups receiving 20–80 µg/kg bw/day. The total numbers of tumours 

in all groups were 3, 1, 9, 8 and 7 and the number of monkeys with tumours were 

3, 1, 7, 7 and 7 (16). Yet, the study was not designed as a cancer study (e.g. some 

monkeys were necropsied during the study and these data are included as well).  

It was also stated by the authors that few tumours were seen in the study. 

The comparative carcinogenicity of Aroclors 1016, 1242, 1254 and 1260 was 

examined in Sprague Dawley rats given 50, 100 and 200; 50 and 100; 25, 50 and 

100; and 25, 50 and 100 mg/kg diet, respectively, for 2 years. The corresponding 

mean doses (low to high doses) were 2.0–11.2 (Aroclor 1016), 2.0–5.7 (Aroclor 

1242), 1.0–6.1 (Aroclor 1254) and 1.0–5.8 mg/kg bw/day (Aroclor 1260). Aroclor 

1254 had the highest dioxin-like activity measured on a TEQ basis. No overt signs 

of toxicity were seen in any treatment group, although dose-related decreases in 

body weights were observed, mainly with Aroclor 1254 and especially in females. 

The liver was the primary target organ in both males and females. Hepatocellular 

hypertrophy and hepatic foci (foci of cellular alteration sometimes preceding 

tumours), the principal findings, were observed for all Aroclor treatment groups, 

although the incidences differed with dose, sex and type of Aroclor. The hepatic 

tumour response was clearly sex-dependent. For females, a significant and general-

ly dose-related increase in the incidence of hepatic neoplasms was measured for 

all treatment groups, except the low-dose group of Aroclor 1016. The carcinogenic 

potency was in the following order: Aroclor 1254 > 1260 = 1242 > 1016. Actually, 

the tumour incidence differed between the Aroclor mixtures in a manner that 
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paralleled the differences between Aroclors in total TEQs. For males, a significant 

response (liver tumours) was observed only for the high dose of Aroclor 1260. 

Both increases and decreases were seen for non-hepatic tumours. Slight non-dose-

related increases in the incidence of thyroid gland follicular cell adenoma s were 

observed for males receiving Aroclors 1242, 1254 and 1260. For females, a sig-

nificantly decreased trend in the incidence of neoplastic mammary gland lesions 

was observed at administration of Aroclors 1242, 1254 or 1260. The morpho-

logical appearance of the thyroid tumours was characteristic of those that develop 

as a secondary response to chronic overstimulation by TSH (264). The presumed 

mechanism was induction of hepatic enzymes by Aroclor treatment, followed by 

increased metabolism of T3 and T4 and decreased levels in peripheral blood, and 

as a result enhanced release of TSH from the pituitary gland. This effect is con-

sidered as a risk factor in the development of thyroid cancer in rodents, but not in 

humans. This is based on the fact that the transport of thyroid hormones in the 

blood follows a different mechanism in humans than in rodents (98, 264). 

It was stated by the authors (264), that the results of this comprehensive study 

clearly indicate that the carcinogenic potency of PCBs is less than was previously 

assumed. EFSA concluded that the study by Mayes et al (264) demonstrated that 

the total TEQ-doses, associated with dioxin-like constituents within technical mix-

tures, but not the doses of total PCBs, are mainly, if not exclusively, responsible 

for the development of liver neoplasms (98). In fact, a comparison with cancer data 

obtained from chronic exposure of female rats to TCDD showed a very similar 

dose-response relationship for liver neoplasms (98). 

In a later study in rats (49), decreased incidences for females of pituitary tumours 

(Aroclors 1242, 1254 and 1260), thyroid and skin tumours (Aroclor 1254) as well  

as adrenal tumours and leukaemia/lymphoma (Aroclor 1242) were reported (in 

addition to the decrease in mammary tumours). In males, decreased incidences of 

adrenal, pancreas, prostate and skin tumours were noticed for Aroclors 1242 and 

1254. The decreased tumour incidences in males and females were shown at dose 

levels of 100 mg/kg diet (49), corresponding to approximately 5 mg/kg bw (93). 

The NTP has conducted a series of gavage studies in female Harlan Sprague 

Dawley rats to evaluate the carcinogenicity of some PCB congeners administered 

alone or as binary mixtures (279-283). PCB 126 (99 % pure), the most potent di-

oxin-like coplanar PCB, was administered to female rats 5 days/week for up to  

2 years at doses of 0, 0.03, 0.1, 0.175, 0.3, 0.55 or 1 µg/kg bw/day. Increased in-

cidences of liver tumours and lung tumours were seen at dose levels ≥ 0.3 and 

≥ 0.55 µg/kg bw, respectively. It was concluded that there was clear evidence of 

carcinogenic activity of PCB 126 based on increased incidences of cholangio-

carcinoma of the liver (0/53, 0/55, 1/53, 0/53, 5/53, 6/51, 22/53), squamous neo-

plasms of the lung (cystic keratinising epithelioma: 0/53, 0/55, 0/53, 0/53, 1/53, 

11/51, 35/51; squamous cell carcinoma: 0/53, 0/55, 0/53, 0/53, 0/53, 1/51, 2/51) 

and gingival squamous cell carcinoma of the oral mucosa (0/53, 1/55, 1/53, 1/53, 

2/53, 2/53, 7/53). Hepatocellular adenoma (1/53, 2/55, 1/53, 0/53, 2/53, 4/51, 7/53) 

and hepatocholangioma (0/53, 0/55, 0/53, 0/53, 0/53, 0/51, 3/53) were also con-

sidered to be related to the administration of PCB 126. Equivocal findings were 

e.g. neoplasms of the adrenal cortex. There were lower incidences of mammary 
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gland and pituitary gland neoplasms following PCB 126 administration, which 

was believed to be related to a general endocrine effect as a result of reductions in 

body weight gain. Body weights were decreased at doses ≥ 0.175 µg/kg bw. Also, 

increased incidences of non-neoplastic lesions were seen in many tissues, in-

cluding the liver and lung (280).  

Similarly, the non-dioxin-like congener PCB 153 (purity > 99 %) was adminis-

tered to female rats for up to 2 years at daily doses of 0, 0.01, 0.1, 0.3, 1 or 3 mg/kg 

bw. The exposure caused non-neoplastic lesions in the liver, although hepatic cell 

proliferation was not significantly affected at the interim evaluations. Four ex-

posed animals (1 and 3 mg/kg bw groups) developed rare cholangiomas of the 

liver at 2 years and based on this it was concluded that there was equivocal evi-

dence of carcinogenic activity of PCB 153 in this study. Liver EROD activity was 

significantly elevated at all dose levels at week 31, but not at week 53, possibly 

indicating influence of some dioxin-like contamination (279).  

When a binary constant ratio mixture of PCB 126 (0, 0.01, 0.1, 0.3 or 1 µg/kg 

bw) and PCB 153 (0, 0.01, 0.1, 0.3 or 1 mg/kg bw) was administered to female 

rats for 2 years there were increased and dose-related non-neoplastic effects, e.g. 

in the liver, lung, oral mucosa, thyroid gland and pancreas, mainly at doses of 0.1 

µg/kg bw (PCB 126) plus 0.1 mg/kg bw (PCB 153) and higher. Further, there was 

clear evidence of carcinogenic activity mainly based on increased incidences of 

cholangiocarcinoma (0/53, 0/53, 1/52, 9/52, 30/51), hepatocholangioma (0/53, 

0/53, 0/52, 2/52, 6/51), hepatocellular adenoma (0/53, 0/53, 3/52, 5/52, 27/51), 

cystic keratinising epithelioma of the lung (0/53, 0/53, 0/52, 1/53, 11/52) and gin-

gival squamous cell carcinoma of the oral mucosa (0/53, 0/53, 2/53, 5/53, 9/53). 

Increased incidences of pancreatic acinar neoplasms were also considered to be re-

lated to administration of the binary mixture. Furthermore, an effect of increasing 

the proportion of PCB 153 in the PCB mixture (0.1, 0.3 or 3 mg/kg bw; PCB 126: 

0.3 µg/kg bw) was found in several tissues, most notably in the liver. Concerning 

neoplastic lesions, a significant increase was seen in the incidences of cholangio-

carcinoma and of hepatocellular adenoma (281).  

In a recent 2-year NTP study, female rats were administered 0, 0.1, 0.22, 0.46, 1 

or 4.6 mg/kg bw PCB 118 (purity > 99 %). Clear evidence of carcinogenic activity 

of PCB 118 was reported based on increased incidences of neoplasms of the liver 

(cholangiocarcinoma: 0/52, 0/51, 0/52, 0/52, 3/52, 36/49; hepatocholangioma: 

0/52, 0/51, 0/52, 0/52, 0/52, 4/49; hepatocellular adenoma: 0/52, 1/51, 1/52, 4/52, 

12/52, 24/49) and cystic keratinising epithelioma of the lung (0/51, 0/52, 0/52, 

0/52, 0/52, 20/50). Occurrence of carcinoma in the uterus was considered to be 

related to the administration of PCB 118. The incidences were 2/52, 2/52, 1/52, 

3/52, 4/52, 3/52 (11/50 in a group receiving 4.6 mg/kg bw PCB 118 for 30 weeks 

with no PCB administration thereafter). Equivocal findings were occurrences of 

squamous cell carcinoma of the uterus and acinar neoplasms of the pancreas (283).  

When a binary mixture of PCB 126 (0, 0.062, 0.187, 0.622, 1.866 or 3.11 µg/kg 

bw) and PCB 118 (0, 0.01, 0.03, 0.1, 0.3 or 0.5 mg/kg bw) was given to female 

rats in a similar way for 2 years there was clear evidence of carcinogenic activity 

mainly based on increased incidences of cholangiocarcinoma (0/53, 0/51, 5/53, 

19/53, 28/53, 12/65), hepatocellular adenoma (2/53, 1/51, 0/53, 4/53, 17/53, 5/65) 
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and cystic keratinising epithelioma of the lung (0/53, 0/51, 0/53, 20/53, 49/53, 

41/66). The marginally increased occurrence of gingival squamous cell carcinoma 

of the oral mucosa was also considered to be related to administration of the 

mixture (282).  

It is well documented that orally administered commercial PCB mixtures can 

promote tumours in the liver and lung of rats and mice following initiation with 

various genotoxic carcinogens. The commercial PCBs showing promotion in these 

studies were generally the higher chlorinated mixtures (> 50 % chlorine by weight, 

e.g. Aroclor 1254) (19, 188). Further, Aroclor 1254 was tested on rat prostate cells 

in vitro and was shown to disrupt gap junctions and expression of connexin 32 and 

43, and increase double-stranded DNA breaks, suggesting that PCBs may be able 

to transform prostate cells leading to carcinogenesis (302).  

Single congeners reported to have promoting activity in short-term assays (rat 

liver) were the dioxin-like PCBs 105, 114, 118 and 126, and some non-dioxin-like 

di-ortho-substituted PCBs (PCBs 47, 49, 153). The non-dioxin-like PCBs 28 and 

101 were not found as efficacious tumour promoters in the livers of female rats. 

The dioxin-like PCBs were generally considered to be more effective than the non-

dioxin-like PCBs, although PCB 118 has been reported to be a very weak tumour 

promoter (19, 98, 216, 404). However, some in vitro studies indicated that non-

dioxin-like tetra- and hexachlorinated congeners (PCBs 52, 128 and 153) were 

potent inhibitors of gap junctional cellular communication, an assay that is indica-

tive of tumour promotion capacity (19, 98).  

Further, a study by van der Plas et al suggested that the majority of the tumour 

promotion potential of PCB mixtures resides in the non-dioxin-like fraction. Aro-

clor 1260 was studied in female Sprague Dawley rats and the hepatic tumour pro-

moting activity of a fraction containing the dioxin-like PCBs or the dominating 

(around 90 % w/w) non-planar 2–4 ortho fraction was investigated. After initiation, 

the animals received a weekly subcutaneous injection of Aroclor 1260 (10 mg/kg 

bw), a fraction containing all dioxin-like PCBs (1 mg/kg bw; mainly non-ortho 

PCBs, 0.0006 µg TEQs/kg bw), a non-dioxin-like 2–4 ortho PCB fraction (1, 3 or 

9 mg/kg bw), a combined 0–4 ortho PCB fraction (10 mg/kg bw, 0.0006 µg TEQs/ 

kg bw) or PCB 153 (1 or 9 mg/kg bw). Approximately 80 % of the tumour pro-

moting capacity of the 0–4 ortho fraction could be explained by the 2–4 ortho 

fraction, while the dioxin-like fraction had only a negligible contribution. Also, it 

was striking that the 1-mg/kg bw/week 2–4 ortho fraction showed a statistically 

significant effect on the parameter best reflecting the promoting potential, while 

the same concentration of the dioxin-like fraction did not. Neither was there a 

significant effect in the low-dose group of PCB 153 (404).  

PCBs 52 and 77 and some more low-chlorinated congeners like PCBs 3 and 15 

have been suggested to be active in some tests of tumour promotion (rat liver) and 

to have tumour initiating activity in rat liver (98, 106, 216). Further, the initiating 

activity of metabolites of PCB 3 was studied in vivo in the resistant hepatocyte 

model and it was shown that two of nine investigated metabolites, 4-hydroxy- 

PCB 3 and 3,4-benzoquinone-PCB 3, had significantly increased initiating activity 

(107).  
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10.5 Reproductive and developmental effects 

Toxic effects on fertility and reproductive organs have been observed in a number 

of studies in animals exposed to PCB mixtures. In rodents, these effects have been 

seen at rather high or very high oral doses (some mg/kg bw/day or more), whereas 

minks and monkeys are particularly sensitive to reproductive effects (data on mink 

are not mentioned here since it is unclear if the mink is an appropriate surrogate to 

predict human toxicity) (19, 188). Effects reported in female rats include prolonged 

oestrus, reduced implantation rate and delayed first oestrus in offspring. Effects 

seen in female monkeys are e.g. prolonged menstruation, decreased fertility and 

decreased foetal survival (19, 188). In males, high oral doses have induced reduc-

tions in sperm counts and impaired fertility in weanling rats, but not in adult rats 

or mice (19). Effects on gonads and sperms were reported in monkeys at peroral 

administration of PCB mixtures (3, 6, 19).  

PCBs are generally not teratogenic in animals, unless high doses are used. De-

velopmental toxicity as evidenced by e.g. reduced birth weight, and postnatal 

growth and viability can occur in rodents treated with PCB mixtures in the ab-

sence of overt signs of maternal toxicity. The neurobehavioral effects include 

effects on motor activity, learning and memory, and sexual behaviour (19, 396). 

Monkeys seem to be much more sensitive to developmental effects of PCBs than 

rodents and the most sensitive developmental endpoints seem to be those in-

volving neurobehavioural functions. However, in all these studies in monkeys, 

maternal toxicity was also evident (19, 188).  

10.5.1 Effects on fertility 

Groups of female rhesus monkeys were exposed to diets containing Aroclor 1248 

at levels corresponding to approximately 100 and 200 µg/kg bw/day. Within 4 

months, menstrual bleeding and the duration of the menstrual cycle were increased, 

particularly in the high-dose group. In addition, flattening and prolongation of the 

serum progesterone peak during the menstrual cycle was observed. After 6–7 

months of exposure, the females were mated with control males. Reproductive 

dysfunction was obvious. There were 8/8 and 6/8 conceptions (the remaining 2 

high-dose animals were bred 5 times without success). Resorptions or abortions 

occurred in 3/8 and 4/6 of low- and high-dose impregnated monkeys, compared  

to 0/12 in controls, and one of the two infants from the high-dose group was still-

born. Following the total exposure period of about one and a half year, the mothers 

were put on a control diet. Their menstrual cycles and serum progesterone levels 

returned to pre-exposure values and their reproductive status showed a recovery. 

One year after exposure ceased they were mated and 8/8 and 7/7 of the former 

low- and high-dose females conceived. Abortions or resorptions were observed in 

1/8 and 1/7, respectively, and one of the infants of the former high-dose group was 

stillborn (5, 6, 19, 26). 

No irregularities in the menstrual cycles or alterations in serum oestradiol or  

progesterone were seen in groups of 8 adult female rhesus monkeys fed a diet  

containing 0.5 or 1.0 ppm of Aroclor 1248, 3 days/week. After being on the ex-

perimental diets for 7 months the females were bred to control males. Six out  
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of 8 animals in the low-dose group and 7/8 animals in the high-dose group gave 

birth to live infants (6). The dose levels in food would correspond to approximately 

6.3 and 13 µg/kg bw/day (43, 336). 

Other groups of adult, female rhesus monkeys were fed diets containing Aroclor 

1016 equivalent to approximately 7.5 and 30 µg/kg bw/day (stated not to contain 

PCDFs). The females were mated with untreated males after 7 months of exposure. 

No maternal toxicity or reproductive dysfunction was seen (27, 187).  

Doses of 0, 5, 20, 40 or 80 µg/kg bw/day of Aroclor 1254 (containing 5.2 mg 

PCDFs/kg) were given perorally in capsules to groups of 16 female rhesus monkeys 

for up to 72 months (12, 13, 15, 16, 188). No significant exposure-related changes 

in serum levels of oestrogen and progesterone, menstrual duration or menstrual 

cycle length or effects on incidences of anovulatory cycles were found during the 

premating phase (12, 15). After 37 months of exposure, the females were mated 

with untreated males and dosing was continued throughout mating and gestation. 

Maternal treatment was discontinued after approximately 7 weeks of lactation, 

restarted when the infants were weaned at 22 weeks of age and continued for the 

following 8 months. Incidences for impregnation success were 11/16, 10/16, 4/15, 

6/14 and 5/15 in the control to high-dose groups. There was a significant decrease 

in the conception rate at the three highest dose levels (results at 5 µg/kg bw/day 

were not statistically significant (p = 0.085) after adjusting for the total number of 

matings). No statistically significant differences in the average gestation lengths 

across dose groups were seen. At 5 µg/kg bw/day, there were 2 suspected resorp-

tions, 2 stillbirths, 1 abortion and 1 post-partum death. In the three higher dose 

groups, the number of suspected resorption/abortion/post-partum death (no still-

births) were 4 (20 µg/kg bw/day), 3 (40 µg/kg bw/day) and 5 (80 µg/kg bw/day), 

compared to 1 stillbirth and 1 abortion in the control group. The geometric mean 

concentrations of PCBs in the blood of the dams during the first 8 weeks post-

partum (determinations at parturition, 4 and 8 weeks post-partum) were 2, 7 and 

30 µg/l in the control, 5 and 40 µg/kg bw/day groups, respectively. The corre-

sponding values in the infants were 10 (controls), 25 and 31 µg/l at parturition, and 

2 (controls), 47 and 404 µg/l at 21 weeks post-partum (13, 19). However, blood 

values differed considerably within groups. Blood values in infants at parturition 

were 2–66 µg/l (5 animals) in controls and 8–98 µg/l (4 animals) in the low-dose 

group. Necropsies performed at the end of the post-weaning exposure period 

showed no exposure-related histopathological changes in the uterus and other 

parts of the reproductive system or increased incidences or severity of endometri-

osis (13, 16, 19). 

Four adult male rhesus monkeys given Aroclor 1242 in capsules at a dose of 200 

µg/kg bw/day for 6 months showed severe structural alterations on gonads and 

accessory organs and adversely affected spermatogenic activity with few and ab-

normal sperms. Mean testosterone levels declined during the treatment period, but 

significantly only in 2/4 animals. The treatment slightly reduced body weights (3).  

In a study of four male rhesus monkeys fed approximately 100 µg/kg bw/day  

of Aroclor 1248 for one and a half year, no effects on sperm morphology and via-

bility or ability to fertilise unexposed females were shown during the first year of 

exposure. One monkey developed clinical signs of toxicity, decreased libido, a 
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marked decrease in sperm counts and an absence of mature spermatozoa after the 

first year of exposure and this animal failed to impregnate females. No such effects 

were found in the remaining 3 males. However, a biopsy taken one year after re-

moval from the experimental diet showed a complete recovery of spermatogenesis 

(6, 19). 

When adult male rats were injected intraperitoneally with 0.75, 1.5 or 3 mg/kg 

bw/day of Aroclor 1254 for 20 days, sperm count, motility and daily sperm pro-

duction were significantly and dose-dependently decreased at the two higher dose 

levels. These dose levels also caused significant decreases in body weight, testis 

weight and absolute and relative epididymal weight. Induction of oxidative stress 

in testicular mitochondria was evident (8). 

Fertility in rats was markedly reduced in male offspring exposed to Aroclor 

1254 on lactation days 1, 3, 5, 7 and 9 and mated with untreated females 130–150 

days post-weaning. Significant decreases in numbers of implants and embryos (21 

and 29 % lower than controls, respectively) were observed at 8 mg/kg bw/day, but 

sperm production, morphology and motility were not affected and plasma follicle-

stimulating hormone and testosterone concentrations were not reduced (19, 326). 

In contrast, fertility was not impaired in male offspring of rats administered 30 

mg/kg/day doses of Aroclors 1221, 1242 or 1260 by gavage on gestation days 12–

20, but this study did not include postnatal exposure (19).  

No significant treatment effects related to birth weight, litter size, sex ratio, per 

cent live births or implantation sites were seen when a PCB mixture consisting  

of 35 % Aroclor 1242, 35 % Aroclor 1248, 15 % Aroclor 1254 and 15 % Aroclor 

1260, and with relatively low Ah receptor activity, was given perorally to rat 

dams from 28 days prior to breading and until weaning at doses of 1 or 3 mg/kg 

bw/day (296, 324).  

In a 2-generation reproduction study, male and female weanling rats were fed 

diets containing Aroclor 1254 in amounts equivalent to 0.06, 0.32, 1.5, and 7.6 

mg/kg bw/day or diets containing Aroclor 1260 in amounts equivalent to 0.39, 1.5 

and 7.4 mg/kg bw/day. The F0 rats were started on the diet at 3–4 weeks of age 

and the F1 rats at weaning. Exposure was continuous through mating, gestation 

and lactation. For Aroclor 1254, a NOAEL of 0.32 mg/kg bw was established 

based on pup survival and litter size at birth. However, increased relative liver 

weights were found in F1 male weanlings at 0.06 mg/kg bw and in all weanlings  

at ≥ 0.32 mg/kg bw. No effect on reproduction was observed with Aroclor 1260, 

although increased relative liver weights were found in weanlings at all doses 

tested (244).  

Transgenerational effects were investigated in rats (mainly females) following 

intraperitoneal administration of Aroclor 1221. Dams (F0) were injected (0.1, 1 or 

10 mg/kg bw) on gestational days 16 and 18. The treatments had no significant 

effect on litter sizes. Litter sex ratio was skewed towards females in the F1 and F2 

generations (mainly in the 0.1 and 1 mg/kg bw groups), although not significantly 

when the F1 and F2 generations were analysed separately. Compared to controls, 

serum concentrations of progesterone and luteinising hormone were profoundly 

altered in F2 females (significantly lower values in proestrus at all dose levels),  
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but not significantly altered in F1 females. No significant effects on postnatal 

maturational markers (eye opening and markers for timing of puberty) were seen 

in the F1 or F2 generation (372).  

Various single congeners were investigated in a series of toxicity studies in 

which groups of rats were exposed to diets providing four dose levels for 13 weeks. 

Histological examinations of the female reproductive organs and mammary glands 

showed mild changes in the ovaries in rats (7/10) exposed to PCB 126 at 8.7 µg/kg 

bw/day, but not at 0.8 µg/kg bw/day (19, 67). No effects in female reproductive 

tissues were found at the highest dose level following exposure to PCB 77 (0.9 mg/ 

kg bw/day), PCB 105 (4 mg/kg bw/day), PCB 118 (0.17 mg/kg bw/day), PCB 28 

(4 mg/kg bw/day), PCB 128 (4.4 mg/kg bw/day) or PCB 153 (4.1 mg/kg bw/day). 

Measurements of luteinising hormone and follicle-stimulating hormone in serum, 

performed only in the female rats exposed to PCB 77 and PCB 28, showed no ex-

posure-related changes (19).  

In an NTP-study, however, significantly increased incidences of inflammation 

in the ovary, oviduct and uterus were seen in rats administered 1 or 3 mg/kg bw/ 

day of PCB 153 (purity > 99 %) for 2 years. Groups of female rats had received 

0.01, 0.1, 0.3, 1 or 3 mg/kg bw/day by gavage 5 days/week for up to 105 weeks 

(279). 

No effects in male reproductive tissues were seen in rats at histological ex-

aminations following exposure to diets providing 4 dose levels of some single 

PCB congeners for 13 weeks. The largest administered doses were 0.8 mg/kg 

bw/day (PCB 77), 4.3 mg/kg bw/day (PCB 105), 0.7 mg/kg bw/day (PCB 118), 

7.4 µg/kg bw/day (PCB 126), 3.8 mg/kg bw/day (PCB 28) (4.2 mg/kg bw/day 

(PCB 128) or 3.5 mg/kg bw/day (PCB 153). Measurements of serum testosterone 

concentrations, performed only in the male rats exposed to PCBs 28 and 77, 

showed no exposure-related changes (19). 

In mice, some effects were seen following administration in diet of PCB 77 at 

an estimated dose level of 0.6 mg/kg bw/day. Female mice received PCB 77 for  

2 weeks before mating with unexposed males and subsequently throughout gesta-

tion and lactation. Female offspring (F1 generation) were fed the same diets as the 

dams from weaning until 7 weeks of age, at which time they were mated with un-

exposed males. Fecundity, litter size, sex ratio and 4- and 21-day survival were re-

corded. No significant effects were seen at 0.6 mg/kg bw in the F0 and F1 females, 

but all offspring of the F1 females died before 4 days of age. Further, at the same 

dose level, the fertilising ability of the eggs in vitro was reduced and the egg de-

generation rate was increased (only evaluated in F1 females). No effects were 

shown in male offspring (F1 generation) of dams administered dietary doses of  

0.6 mg/kg bw/day when the same parameters as in female offspring and sperm 

motion parameters were recorded (19, 181, 182). 

10.5.2 Effects on offspring  

10.5.2.1 Effects on weight, growth, viability, signs of toxicity, effects on sexual 

behaviour: PCB mixtures 

Decreased birth weights, a small stature and a decreased body weight gain during 

nursing were seen in the 6 infants born to female rhesus monkeys exposed to a diet 
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that provided approximately 100 or 200 µg/kg bw/day of Aroclor 1248 (only one 

from the high-dose group). Osseous development evaluated radiographically was 

normal. The infants had areas of hyperpigmentation of the skin at birth, and signs 

of PCB intoxication (e.g. acne, loss of eye lashes) developed within 2 months. The 

mothers were exposed before gestation, were maintained on the diets during the 

gestation and for 3 months following delivery, and had signs of PCB intoxication. 

Three of the 6 infants died between days 44 and 239. Gross and microscopic ex-

amination of the major organs revealed changes in thymus, spleen lymph nodes, 

bone marrow and liver (5, 6, 19). 

One year after receiving a control diet, the females were bred again. The birth 

weights of the offspring in the former low-dose group (~ 100 µg/kg bw/day) were 

not significantly different from controls, but signs of PCB intoxication, e.g. mild 

dermatological lesions and some hyperpigmentation, developed during suckling. 

1/7 infants in this group died shortly after weaning and showed signs of PCB 

toxicity at autopsy. A significant weight deficit of approximately 15 % at birth as 

compared to controls was reported in offspring conceived 32 months after the end 

of the maternal exposure to Aroclor 1248 (~ 100 µg/kg bw/day) (6, 235, 336). 

Similarly, mild dermatological lesions and hyperpigmentation developed during 

nursing in rhesus infants, whose mothers were fed Aroclor 1248 in concentrations 

of 0.5 or 1.0 ppm 3 times/week (corresponding to 6.3 and 13 µg/kg bw/day). Ex-

posure started prior to breeding and continued until after offspring were weaned at 

4 months of age. The birth weights were slightly, but not significantly, lower than 

in controls (6, 43, 336). 

Female rhesus monkeys fed a diet that provided approximately 7.5 or 30 µg/kg 

bw/day Aroclor 1016 were mated after 7 months of exposure and were then further 

exposed throughout gestation and a 4-month nursing period. Head circumference 

and crown-to-rump-length of the offspring at birth were not affected by Aroclor 

1016, but mean birth weight in the high-dose group was significantly lower than 

in controls. Both groups of neonates showed some hyperpigmentation (27, 235, 

336). 

Female rhesus monkeys ingested 0, 5, 20, 40 or 80 µg/kg bw/day of Aroclor 

1254 (containing 5.2 mg PCDFs/kg) for 37 months and were then mated with un-

treated males. Maternal treatment was continued through gestation and was dis-

continued after 7 weeks of lactation. There were few infants in the different groups 

due to resorptions, abortions and stillbirths, and most of the infants were females. 

Mean birth weights were not significantly affected by maternal treatment. Each 

infant was subjected to anthropometric measurements and clinical examinations 

until it was 122 weeks old and some data implied smaller head size with increasing 

PCB dose, but these data were difficult to interpret. Slight clinical signs of PCB 

intoxication manifested as nail lesions, gum recession and inflammation and/or 

enlargement of the tarsal glands were seen in the offspring even at the lowest dose 

level, but were less severe than those of their dams and generally appeared after 

weaning (nail bed prominence occurred also at birth). Reductions in antibody 

levels to sheep red blood cells were indicated in offspring of mothers receiving  

5 or 40 µg Aroclor 1254/kg bw (no surviving pups in the other dose groups). 

Immunological testing was initiated when the infants were 20 weeks old and a 
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notable reduction in IgM titres to sheep red blood cells was found in the low-dose 

group (5 µg/kg bw). The geometric mean concentration of PCBs in the blood was 

7 µg/l in the dams receiving 5 µg/kg bw during the first 8 weeks post-partum and 

25 and 47 µg/l, respectively, in the infants of that dose group at parturition and 

after 21 weeks of nursing. Blood values differed considerably within groups, e.g. 

blood values in infants were 8–98 µg/l (4 animals) in the low-dose group at par-

turition (13, 16, 19, 188). 

Mild effects on the immune system were noted when groups of rhesus monkeys 

(3 males, 3 females) and cynomolgus monkeys (10 males) were dosed from birth 

to 20 weeks of age with 7.5 µg/kg bw/day (a third of the dose given 3 times daily) 

of a reconstituted PCB mixture (15 PCBs) with a composition analogous to that 

found in human breast milk. Significant reduction over time in IgM and IgG anti-

bodies to sheep red blood cells (both kind of monkeys) and, for rhesus monkeys, a 

treatment-related reduction in the level of the human leukocyte antigen (HLA-DR) 

cell surface marker in peripheral blood leukocytes was found. A significant de-

crease in absolute mean B lymphocyte numbers was reported for the treated cyno-

molgus monkeys compared to controls, but the effect was transient, and the authors 

stated that no significant differences in haematology were found for the cyno-

molgus monkeys. There were significant increasing trends with time for serum 

cholesterol and decreasing trends for serum γ-glutamyl transferase and alkaline 

phosphatase, but no significant differences between exposed and control groups 

for any of the individual hepatic endpoints were found in the final samples. For 

the treated rhesus monkeys, there was an increase in platelet number, and trends 

with time for cholesterol, serum γ-glutamyl transferase and alkaline phosphatase 

similar to those for cynomolgus monkeys. Clinical findings for cynomolgus 

monkeys were a slight oedema under the eyes in 5/10 animals. Skeletal develop-

ment was normal in all infants (determined by X-rays at birth) and no significant 

differences in birth weights or body weight gains through weaning were observed 

compared to controls. The weakly dioxin-like PCBs 105, 118, 156, 157 and 189 

contributed to almost 1/4 of the mixture. The most common PCBs were PCBs 74, 

118, 138, 153 and 180 (almost 3/4 of the mixture). The average PCB levels in 

blood (14 congeners) at the end of the 20-week dosing period were 2.4 µg/l (range 

1.8–2.8 µg/l) in treated cynomolgus monkeys, 1.3 µg/l in similarly treated rhesus 

monkeys (dosed in liquid diet) and 14.4 µg/l in 3 rhesus monkeys dosed in corn 

oil, compared to 0.25–0.34 µg/l in controls. The authors concluded that the effects 

on the immune system possibly were of no biological significance (14). 

In mice and rats, anogenital distance is an indicator of prenatal androgenisation 

(higher androgen level - longer anogenital distance). PCBs have been shown to  

increase as well as decrease male anogenital distance (396). Increased anogenital 

distance, especially in the adult period (studied days 3, 21 and 60 after birth), was 

seen in male offspring of pregnant mice fed 0.05 mg/kg bw/day of Aroclor 1016 

during gestation days 16–18. No effect on anogenital distance was seen in female 

offspring. Also, decreased epididymal weight and increased prostate weight were 

found and the effect on the prostate was intensified when the offspring reached the 

adult stage. No effect was found on the testicular weight or size and the treatment 

did not induce foetal resorption, affect litter size or body weight in offspring. The 
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androgen receptor binding activity was determined in cellular preparations of the 

prostate and was permanently increased. It was also shown in vitro that Aroclor 

1016 induced prostate growth, but did not induce epithelial hyperplasia of the 

prostate at the doses used (5 and 50 pg/ml) (145). 

Significantly increased relative uterine and brain weights on postnatal day 21 

were seen in the offspring of rat mothers that had received 4 mg/kg bw/day of a re-

constituted PCB mixture simulating the congener content of human milk via food 

from 50 days prior to mating until birth, but not in the offspring of mothers that 

had received Aroclor 1254. Increased relative liver weights were seen in pups of 

both groups. Further, antiandrogenic effects were observed in male offspring in 

the adult stage. Markedly reduced serum testosterone levels and relative testes 

weights were shown in both treatment groups. There was also a decreased aromatase 

activity in the brains of the new-born male pups (significant only in the reconsti-

tuted mixture group), and male rats in the reconstituted mixture group exhibited  

a behavioural feminisation in a sweet preference test as adults, suggesting long-

lasting changes in neuronal brain organisation. Aromatase plays a key role in 

sexual brain differentiation in rodents. No significant changes in number of im-

plantation sites, litter size or sex ratio were found in any of the treatment groups, 

but the average pup weights (both groups) at birth and during lactation were lower 

(p < 0.05) than in controls. The reconstituted mixture contained PCBs 153 (28 %), 

138 (22 %), 180 (14 %), 170 (7.4 %), 118 (7.3 %), 28 (5.9 %), 187 (4.8 %), 156 

(3.8 %), 146 (3.1 %), 105 (2.5 %), 101 (1.4 %) and 0.002–0.008 % of PCBs 77, 

126 and 169. Aroclor 1254 consists of more than 100 PCB congeners whereby the 

concentrations of the 14 measured congeners amounted to approximately 50 % of 

the total PCB concentration (152). 

In a later rat study, an identical mixture was given in a similar way at different 

doses resulting in an average daily intake of 0.5, 2 or 4 mg/kg bw. Significant 

reductions of serum testosterone concentrations at the highest dose level and a 

dose-dependent elevation of sweet preference (significant at the highest dose) 

were found in adult male offspring. In addition, dose-dependent reductions of 

serum testosterone (significant at the two higher dose levels) and 17--oestradiol 

concentrations (significant at all three levels) were found in weanling female off-

spring (205). Significantly reduced levels of vitamin D3 metabolites in serum in 

female offspring (not investigated in males) were reported in a previous paper at 4 

mg/kg bw/day at postnatal day 21 (239). It was stated that the PCB concentrations 

in adipose tissue from offspring of the low-dose group were approximately 10 

times higher than values at the upper margin of current human exposure (205). 

In studies by Cocchi et al (70) and Colciago et al (74), a reconstituted mixture 

of four PCB congeners (PCBs 138, 153, 180, each representing 1/3 of the total; 

PCB 126 at a concentration 10
4
 times lower) was injected subcutaneously to rat 

dams from gestation days 15–19 and then twice a week till weaning. It was calcu-

lated that this treatment schedule provided an average daily intake of 3.7–4 mg/kg 

bw. PCB levels in brain were higher in the offspring than in the dams at birth, 

whereas the opposite was seen in the liver. However, lactation was the major source 

of exposure in the pups. PCB 126 was not detectable in any of the brain samples 

(from birth to day 60 postnatally). No signs of gross toxicity in offspring at birth, 
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or differences in the number of pups per litter, sex ratio or postnatal mortality were 

seen. A constant reduction of the growth rate was shown in both male and female 

offspring from weaning to adulthood. Pituitary growth hormone expression and 

hypothalamic somatostatin expression were altered day 60 postnatally, especially 

in male offspring. Plasma levels of insulin-like growth factor-1 were higher in 

PCB exposed rats of both sexes. In adulthood, PCBs caused significant reduction 

of bone mineral content and cortical bone thickness of tibiae in male rats. Plasma 

testosterone and thyroid hormone concentrations in males and females were not 

significantly affected by the exposure. No significant alterations in relative weights 

of ovary, prostate and testis were observed in offspring and ovarian cyclicity was 

unaffected. Yet, the results indicated that the PCB exposure produced changes in 

the dimorphic hypothalamic expression of both aromatase and the 5α-reductases, 

which were still evident in the adult animals. These enzymes are important for brain 

masculinisation and differentiation into male and female brains. Female puberty 

onset occurred earlier than in control animals without cycle irregularity, while 

testicular descent in males was delayed. A slight but significant impairment of 

sexual behaviour was also noted in males, whereas the exposure did not seem to 

affect female sexual behaviour. 

The effects of prenatal exposure to the lightly chlorinated PCB mixture Aroclor 

1221 on reproductive behaviours were investigated in adult female rat offspring. 

Rat dams were injected intraperitoneally (0.1, 1 or 10 mg/kg bw) on gestational 

days 16 and 18 and female-typical sexual behaviours were tested in female off-

spring, with start postnatal day 50. No significant effects were seen in the low-

dose group, when compared to the control group. Overall, the greatest number of 

effects was seen in the intermediate-dose group. Among the most robust findings 

in this group was that females vocalised significantly less, (suggestive of a de-

creased stress response) and required a significantly greater number of mating 

trials to exhibit receptivity, compared to controls (371).  

The effects of gestational (and in some studies lactational) exposures to Aroclor 

1254 in rodents on the thyroid gland and thyroid hormone status of foetuses/neo-

nates/pups have been examined in numerous studies. Lesions in the thyroid and 

depressed serum T4 and sometimes also T3 levels were generally seen at rather high 

dose levels (≥ 1 mg/kg bw/day perorally) (19). However, in one study, depression 

in both serum total T4 (not significant) and T3 concentrations was seen in rat off-

spring exposed to a lower dose of Aroclor 1254.  Dams were dosed with about 0.1 

mg/kg bw/day during gestation and lactation, and pups also via diet through post-

natal day 30. In addition, significantly decreased choline acetyltransferase activity 

in hippocampus and basal forebrain was reported at this exposure at 30 days, 

although there was a significant increase in activity at 15 days of exposure at this 

dose level (19, 303).  

It has been suggested that PCBs might impair hearing due to damage to the 

outer hair cells of the cochlea via a thyroid hormone dependent mechanism (316). 

A study with cross-fostering of PCB-treated (6 mg/kg bw/day, perorally) and un-

exposed litters showed that the critical period for the ototoxicity of developmental 

Aroclor 1254 exposure was within the first few postnatal weeks in rat, consistent 

with the greater degree of postnatal hypothyroxinaemia resulting from the greater 
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magnitude of exposure via lactation (78, 199). Further, the rat cochlea develops 

postnatally, whereas cochlear tissue in humans develops almost entirely prenatally 

(78, 135).  

In another study in rats, doses of 1, 4 or 8 mg Aroclor 1254 were given via oral 

gavage from gestation day 6 through postnatal day 21. Body weight deficits were 

found in the pups in the mid- and high-dose groups and mortalities in these groups 

were 15 % and 50 %, respectively, at postnatal day 21. Exposure to Aroclor signi-

ficantly reduced circulating total T4 concentrations from postnatal day 7 in a dose-

dependent manner (all treatment groups, both sexes) compared to controls, but con-

centrations had returned to near control levels at the age of 30–45 days. The effects 

on free T4 in serum were similar. Effects on T3 were less evident and no significant 

reductions were found at the lowest dose level. No significant changes in TSH con-

centrations were seen. Permanent auditory deficits at the frequency of 1 kHz were 

seen in the adult offspring in the mid- and high-dose group. Auditory thresholds 

were not significantly affected at higher frequencies (4–40 kHz). Animals from 

the high-dose group showed reduced auditory startle amplitudes at postnatal day 

24 but not when tested as adults (19, 135). A later study by the same authors (167) 

showed that the developmental exposure of rats to Aroclor 1254 produced a per-

manent low- to mid-frequency auditory dysfunction and data indicated a LOAEL 

of 1 mg/kg bw/day. Decreased auditory brainstem response amplitudes at 1 and 4 

kHz were seen in all dose groups (same as above) when offspring were tested as 

adults (167, 199).  

Further, significant effects were seen on auditory function in adult rat offspring, 

whose mothers had been given a PCB mixture consisting of 35 % Aroclor 1242, 

35 % Aroclor 1248, 15 % Aroclor 1254 and 15 % Aroclor 1260 (with relatively low 

Ah receptor activity) perorally from 28 days prior to breading and until weaning, 

at doses of 1 or 3 mg/kg bw/day. Compared to controls, the groups exposed to the 

PCB mixture had elevated auditory brainstem response thresholds and distortion 

product otoacoustic emission (DPOAE) thresholds and attenuated DPOAE ampli-

tudes (the latter significant only at 3 mg/kg bw/day). The effects of PCB exposure 

were less pronounced in rats exposed to the PCBs in combination with methyl mer-

cury (296). In an earlier, similar study by the same authors, DPOAE amplitudes 

decreased and DPOAE and auditory brainstem response thresholds were elevated 

across a range of frequencies at 3 mg/kg bw/day, whereas 1 mg/kg bw/day was 

the NOAEL (297).  

10.5.2.2 Effects on weight, growth, viability, signs of toxicity, effects on sexual 

behaviour: Single congeners  

Reproductive effects were evaluated in the offspring of rat dams given 0.2, 0.6  

or 1.8 mg/kg bw of PCB 169 by gavage on day 1 of gestation. Reduced maternal 

body weight gain, extended mean duration of gestation and reduced mean litter 

size were seen in the high-dose group. The mating success was reduced and the 

pregnancy rate dramatically reduced when the F1 males and females of the high-

dose group were paired with treated as well as untreated partners. Preliminary 

analysis of behavioural records indicated a reduction of specific aspects of sexual 

behaviour in the treated males (19).  
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Effects of peroral administration of PCB 118 on gestation day 6 (0.37 mg/kg bw 

by gavage) were evaluated in male rat offspring. Significant increase in anogenital 

distance was seen on postnatal days 15 and 21 and prostate and seminal vesicle 

weights were increased in the adult offspring (relative testis and epididymis weights 

were reduced). Sperm and spermatid counts were significantly reduced and number 

of abnormal sperms increased, although levels of luteinising hormone and testo-

sterone were normal. However, when male animals from the same litters were 

mated with non-exposed females, the numbers of pregnant females, litter size and 

viable foetuses were not different from control. Increased body and liver weights 

and decreased relative thymus and spleen weights were also reported in adult male 

offspring (217). The authors also stated that offspring from the same litters had 

increased T4 at puberty (results published elsewhere).  

When pregnant rats were given 10 µg/kg bw of PCB 126 or 0.1 mg/kg bw of 

PCB 77 orally on day 15 of gestation, the birth weights of the pups were reduced 

(PCB 126) or increased (PCB 77). The age at vaginal opening was delayed in the 

female pups exposed to PCB 126, whereas no such effect was seen with PCB 77. 

The anogenital distance was significantly reduced in male progeny and the testo-

sterone concentration decreased in the adult male offspring exposed to PCB 126. 

Also male sexual behaviour was altered in the offspring, but sperm production 

was not affected and the pregnancy outcome at mating with untreated females  

was normal. With PCB 77, the sperm production was increased, an effect that cor-

related with the increased testicular weight. The testosterone concentration was 

reduced in the male offspring as adults. No significant effects on pregnancy out-

come were seen when the male progeny was mated with untreated females (115). 

Effects of PCB 126 on development were studied in rat offspring (mainly in 

females) of dams orally administrated 0, 1 or 3 µg/kg bw/day from at least 2 weeks 

prior to mating and until 20 days after delivery. In the high-dose group, 3/7 females 

failed to become pregnant during the 4-week mating period, but no remarkable 

changes were observed in the reproductive organs. In offspring, retarded growth 

was seen in both dosed groups, and histological changes in the ovaries, con-

comitant reduced ovarian weights and delayed vaginal opening (delay in puberty) 

in the high-dose group. External urogenital anomalies were shown in both dosed 

groups in female offspring, but not in male offspring (358). 

PCB 77 (0.25 or 1 mg/kg bw) and PCB 47 (1 or 20 mg/kg bw) given intraperi-

toneally on gestational days 7–18 increased anogenital distance and decreased 

sexual behaviour as adults in female rat offspring at both doses of PCB 77 and at 

the high dose of PCB 47. No effects on the sexual behaviour or anogenital dis-

tance were found in males. Litter size, sex ratio and survival of the pups were un-

affected by the PCB treatments, but the proportion of individuals with eyes open 

by postnatal day 15 was significantly reduced in males and females in the PCB 77 

groups and in the high-dose group of PCB 47. There were no signs of toxicity in 

the PCB-treated dams or their offspring (407).  

Pregnant rats were given a single dose of PCB 132 (1 or 10 mg/kg bw) intraperi-

toneally on gestational day 15 and effects on parameters related to reproductive 

organs and sperm function were investigated in adult male offspring. Among the 

findings in offspring from the 1-mg/kg bw group were significant decreases in 
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average cauda epididymal weight and epididymal sperm count, and a non-sig-

nificant decrease in motile epididymal sperm count. Testicular histopathology 

revealed no differences in spematogenesis compared to controls in any of the 

groups (179).  

No significant differences compared to controls were seen in body weight, organ 

weights (liver, kidney, testis, prostate, seminal vesicle, ovary), body length or ano-

genital distance in offspring of rat dams which had received 1 or 4 mg/kg bw/day 

of PCB 153 orally on gestation days 10–16. Further, no significant changes in the 

plasma concentrations of T4, T3 or TSH were seen in offspring, compared to con-

trols, except a dose-dependent significant (p < 0.05) increase in T3 in 1-week-old 

males (210).  

Developmental toxicity as evidenced by reduced birth weight, reduced serum T4 

and changes in haematology and serum biochemistry parameters was reported in 

offspring from rats dosed orally with 0.25 or 1 µg/kg/day of PCB 126 beginning 5 

weeks before and continuing through gestation and lactation. No significant effect 

on litter size was observed at 1 µg/kg/day (19). 

Subtle signs of toxicity (all exposure groups), increased liver weights and de-

creased thymus weights (high-dose groups) were seen in offspring of rats exposed 

perorally to 0.25 or 1 µg/kg bw/day PCB 126 or 2 or 8 mg/kg bw/day PCB 77 

during gestation days 10–16. No effects on gestational length, litter size, per cent 

live births or birth weights were observed (339).  

Elevated auditory thresholds for 0.5 and 1 kHz tones were recorded in offspring 

from rats that received 1 µg/kg bw/day of PCB 126 for 35 days prior to breeding 

and throughout gestation and lactation. The NOAEL was 0.25 µg/kg bw/day (19, 

199).  

Peroral administration of 6 mg/kg bw/day of PCB 95 to rats from gestation day 5 

to weaning at postnatal day 21 did not result in differences in litter size, sex ratio or 

weight gain compared to controls. However, abnormal development of the primary 

auditory cortex was seen, although hearing sensitivity and brainstem auditory re-

sponses of pups were normal (206).  

Administration of approximately 0.8 or 1 mg/kg of PCB 126 to mice on ges-

tation day 10 significantly increased the percentage of foetuses with cleft palate 

(19). No foetuses with cleft palate were seen after administration of up to 271 mg 

PCB 153. Combined administration of PCB 126 and PCB 153 significantly re-

duced the incidence of cleft palate compared to that produced by PCB 126 alone 

(19). A dose-related increase in embryotoxicity and in the incidence of malformed 

foetuses, mainly showing cleft palate and hydronephrosis were found in the off-

spring of mice administered daily doses of 2, 4, 8 or 16 mg/bw of PCB 169 on 

days 6–15 of gestation. Dose levels of 0.1 and 1 mg/kg bw were without effects. 

The authors reported that PCBs 77 and 128 also produced the same teratogenic 

effects, though they were less potent (187).  

10.5.2.3 Behavioural effects (except sexual behaviour): PCB mixtures  

Neurobehavioral studies were conducted in the 3 surviving rhesus infants born to 

mothers fed a diet providing approximately 100 µg/kg bw/day Aroclor 1248 before 

and during gestation and during lactation. Relative to controls, exposed monkeys 
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showed hyperlocomotor activity in tests at 6 and 11–12 months of age, which 

correlated with peak PCB body burdens. Peak PCB body burdens were also cor-

related with increased errors in 5 of 9 learning tasks conducted between 7 and 24 

months of age. The results indicated a deficiency in learning various types of dis-

crimination problems (including spatial and colour discrimination reversal tasks at 

7–8 months of age) (42, 43). As young adults, these PCB exposed infants were 

less active than controls (336). 

Hyperlocomotor activity at 12 months of age was also reported in 5 infants de-

livered by the females after 0.5–1.5 years on a control diet (43). Further, 4 infants 

conceived approximately 1 year after the end of the maternal treatment with Aro-

clor 1248 (~ 100 µg/kg bw/day) for one and a half year were tested to investigate 

discrimination reversal learning at 14 months of age. No significant effects of 

PCB treatment were seen in those tests. For 3 infants conceived 32 months after 

the end of maternal exposure to Aroclor 1248, tests at 14 months of age showed 

that performance was facilitated on the shape problem (336). Tests of the same 

infant monkeys at 6 years of age (n = 4) or at 4 years of age (n = 3) showed neuro-

behavioural deficits reflected as impaired performance on a spatial learning and 

memory task (delayed spatial alternation (DSA), both cohorts combined). It was 

suggested that these effects were associated with impairments in attentional or 

associational processes, rather than memory impairment. None of the PCB ex-

posed monkeys exhibited toxic signs at the time of testing (19, 235, 335). 

Two groups of breeding mothers (rhesus monkeys) were fed Aroclor 1248 three 

times/week in concentrations of 0.5 and 1.0 ppm, respectively (approximately 6.3 

and 13 µg/kg bw/day). Exposure started prior to breeding and continued until after 

offspring were weaned at 4 months of age. Five offspring from each group were 

tested for locomotor activity at 12 months and mean activity levels were higher than 

in controls, especially for the 0.5 ppm group (43, 336). The offspring of mothers fed 

1.0 ppm Aroclor 1248 was tested on discrimination reversal learning at 14 months 

of age, but no statistically significant effects were seen (336). 

Effects on learning and behavioural tasks were also studied in infants of female 

rhesus monkeys fed a diet providing approximately 7.5 or 30 µg/kg bw/day (7 days/ 

week, 6 infants/group) of Aroclor 1016. The female monkeys were mated after 7 

months of exposure and then further exposed throughout gestation and until the 

offspring were weaned at 4 months of age. Offspring were tested at 14 months of 

age (discrimination reversal learning) and at 4 years of age (DSA test). Offspring 

in the high-dose group were significantly impaired in their ability to learn a simple 

spatial discrimination reversal problem, requiring more than 2.5 times as many 

trials as matched controls to reach criterion. They required, however, significantly 

fewer trials than controls to reach criterion on a shape discrimination reversal 

problem. Fewer trials compared to controls (not significant) were also noticed for 

offspring in the low-dose group on the shape discrimination reversal problem. 

Further, a significant decrease was observed in DSA performance in the high-dose 

group compared to the low-dose group. The performance was impaired in the 

high-dose group but facilitated in the low-dose group, and none of the two PCB 

treated groups differed significantly from controls. The authors suggested that the 

facilitated performance was due to decreased attention paid to weak, peripheral 
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stimuli which would narrow the focus of attention. By the time of behavioural 

testing, no toxic health signs related to PCBs were exhibited (235, 335, 336).  

Learning and behavioural effects were studied in 8 male cynomolgus monkeys 

dosed perorally with 7.5 µg/kg bw/day of a mixture of 15 PCBs resembling the 

composition in human milk, from birth to 20 weeks of age. The dose was divided 

into three parts and given three times daily for 7 days/week. The PCBs represented 

80 % of the congeners typically found in breast milk. The PCBs 74, 118, 138, 153 

and 180 contributed to almost 3/4 of the PCBs and the weakly dioxin-like PCBs 

105, 118, 156, 157 and 189 to almost 1/4. Behavioural assessment on a series of 

tasks was performed when the monkeys were 2.5–5 years of age. Robust deficits 

were observed on DSA, fixed interval, and differential reinforcement of low rate 

performance. No group differences were observed for the number of errors on a 

series of non-spatial and spatial discrimination reversal tasks, although there were 

many more errors by some individuals. The results suggested a learning deficit 

rather than a deficit in short-term spatial memory per se, and were indicative of 

difficulty in adaptively changing response pattern, e.g. inability to inhibit inappro-

priate responding, and a less efficient behaviour. Blood and fat levels of PCBs at 

the end of the dosing period were within the range observed in the general human 

population. At 20 weeks of age, PCB levels were 1.84–2.84 µg/l in blood and 

1 694–3 560 ng/g lipid in adipose tissue (19, 98, 308).  

Colciago et al administered a reconstituted mixture of four PCB congeners 

(PCBs 138, 153, 180, each representing 1/3 of the mixture, with traces of PCB 

126) subcutaneously to rat dams on gestation days 15–19 and then twice a week 

till weaning (corresponding to a daily intake of approximately 3.7–4 mg/kg bw). 

An important alteration in memory retention was seen in male offspring as adults. 

Two tests performed to evaluate learning and memory gave opposite results. Spa-

tial memory was unaffected by the treatment. Conversely, the passive avoidance 

test was deeply affected, but only in males. It was indicated that the treatment had 

impaired the ability to fix in memory an adverse event (74). 

No overt signs of maternal toxicity were reported at exposure of rats to a low-

chlorinated PCB mixture (Clophen A30, about 0.4 or 2.4 mg/kg bw/day in the 

diet) that started 60 days prior to mating, extended throughout gestation and lacta-

tion in the dams and continued for the offspring after weaning. However, alterations 

in three activity-dependent behavioural tests were found in adult male offspring 

(females were not tested) in the high-dose group. These tests were performed 22, 

65–75 and 380 days postnatally. No effects were found in the low-dose group. 

Using a cross-fostering design for examination of sensitive periods for PCB effects, 

a subsequent study revealed the importance of the prenatal exposure period for 

these neurobehavioural alterations (19, 188). 

Sable et al investigated developmental exposure to PCBs and/or methyl mercury 

and effects on a differential reinforcement of low rates operant task in adult rats of 

both sexes. PCB exposed male rats showed dose-dependent inhibitory control im-

pairments, but the deficits were not seen when the same PCB doses were given in 

combination with methyl mercury. The PCB mixture consisted of 35 % Aroclor 

1242, 35 % Aroclor 1248, 15 % Aroclor 1254 and 15 % Aroclor 1260 and was 

found to have relatively low Ah receptor activity. The rat dams were given 1 or 3 
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mg/kg bw/day perorally, from 28 days prior to breading and until weaning, alone 

or in combination with methyl mercury (ratios 4.4:1 and 4.9:1) (324).  

10.5.2.4 Behavioural effects (except sexual behaviour): Single congeners  

It was recently shown that developmental exposure to non-dioxin-like PCB con-

geners (PCBs 52, 138 or 180) induces different behavioural alterations (in learning 

or motor coordination) by different mechanisms in rats. Female rats were given 

PCBs (1 mg/kg bw/day) in food from gestational day 7 to postnatal day 21 and 

learning, motor coordination and microdialysis experiments were performed when 

the pups were 3 (males) or 4 (females) months old. The ability to learn a Y maze 

conditional discrimination task was reduced in rats exposed to PCBs 138 or 180, 

but not in rats exposed to PCB 52. Also the function of the glutamate-nitric oxide-

cGMP pathway (cerebellum) was impaired at exposure to PCBs 138 and 180. In 

contrast, PCB 52, but not PCBs 138 or 180, increased extracellular GABA in cere-

bellum and impaired motor coordination (assessed by the rotarod test). The de-

scribed effects for all three congeners were similar in males and females (37).  

In a similar study, female rats were given PCB 153 (1 mg/kg bw/day) or PCB 

126 (0.1 µg/kg bw/day) perorally during gestation (from day 7) and lactation (to 

day 21). Learning tests and microdialysis studies were performed when the pups 

were 3 or 7–8 months old. The results showed that PCBs 126 and 153 impaired 

learning ability and glutamate-nitric oxide-cGMP pathway function in cerebellum 

in young but not in adult (7 months old) rats. In control rats, the function of the 

glutamate-nitric oxide-cGMP pathway and learning ability were lower in adult 

than in young rats, whereas these age-related differences were not present in rats 

exposed to PCBs. All the studied effects were similar in males and females. The 

authors concluded that the two PCBs can induce similar effects but that the di-

oxin-like PCB 126 was 10 000-fold more potent than the non-dioxin-like PCB 

153. Moreover it was suggested that PCBs may induce neurotoxic effects by mech-

anisms that are independent of their role as endocrine disrupters, since young male 

and female rats were affected in a similar manner (293). 

Administration every second day on gestational days 10–20 by gastric tube  

to rats of 2 µg/kg bw of PCB 126 or 1 or 5 mg/kg bw of PCB 118 resulted in im-

paired discrimination learning and elevated activity levels in a visual discrimina-

tion task in male offspring (only males were tested) in the absence of clinical 

maternotoxic and foetotoxic effects. The effects were most marked in the rats ex-

posed to PCB 126. The offspring was exposed in utero but also through mother’s 

milk (175). In a later study, it was concluded that in utero exposure to PCB 126 

produced more severe neurobehavioural effects in rats than postnatal exposure  

(2 µg/kg bw every second day from day 3 to 13 after delivery) (177).  

In the latter study (177), it was reported that male pups from dams treated simi-

larly (days 3–13 postnatally) with 5 mg/kg bw of PCB 153 had increased motor 

activity and some attention problems as compared to the controls, but the ability to 

learn was not seriously affected. Male pups showed a behavioural pattern similar 

to that observed in spontaneously hypertensive rats, an animal model of attention 

deficit hyperactivity disorder (ADHD). Female offspring did not exhibit hyper-

active behaviour, but had slower acquisition of time discrimination as compared  
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to the controls, indicating a sex-specific behavioural effect of PCB 153. The expo-

sures did not affect the body weight of the dams or the physical development of the 

pups. There were low levels of EROD activity in offspring at weaning (176, 177).  

At administration via gavage to rats on gestation days 10–16, deficits in spatial 

learning were observed in female offspring tested as adults at the high-dose levels 

of PCBs 28 and 153 and at both dose levels of PCB 118. Male offspring were not 

affected. The mothers had received 8 or 32 mg/kg bw/day of PCB 28, 16 or 64 

mg/kg bw/day of PCB 153 and 4 or 16 mg/kg bw/day of PCB 118. No signs of 

toxicity or effects on gestational weight gains or liver weights were noticed in the 

dams. When the thyroid hormone status of pups from the litters was evaluated, it 

was found that only PCBs 118 and 153 reduced serum T4 concentrations and that 

serum T4 were equally depressed in male and female rats (337, 338). In a study 

with similar exposure of the dams to PCB 95 (8 and 32 mg/kg bw/day), hypo-

activity was seen in the offspring as adults (both dose levels) but otherwise no 

impairments of neurobehavioural function (340). The same authors reported that 

spatial learning and memory was not impaired in the offspring of rats dosed via 

gavage to PCB 77 (2 or 8 mg/kg bw/day) or PCB 126 (0.25 or 1 µg/kg bw/day) 

during gestation days 10–16 (339).  

Further, Rice et al conducted a series of behavioural studies in offspring from 

rats dosed perorally with 0.25 or 1 µg/kg bw/day of PCB 126 beginning 5 weeks 

before and continuing through gestation and lactation. Generally, no significant 

differences between treated and control rats were seen in neurobehavioural tests 

(19).  

Postnatal reflexes and motor activity were evaluated in male and female rat off-

spring of dams exposed on gestation day 6 to a single low dose of PCB 118 (0.375 

mg/kg bw by gavage). Impairment of postnatal reflexes was found in PCB exposed 

female offspring. Hyperactivity was seen in both sexes at puberty, although no 

hyperactivity was noted earlier (days 30–34) (217). The authors stated that off-

spring from the same litters also had increased T4 levels at puberty (reported else-

where). 

Exposure to PCB 77 from gestational day 6 through weaning significantly in-

creased dopamine concentrations in the brain in rat offspring at exposure levels 

≥ 0.1 mg/kg bw/day. These changes persisted into adulthood (350).  

Low-dose co-exposure to PCBs (e.g. PCBs 52, 153 and 126) and other environ-

mental agents like methyl mercury or polybrominated diphenyl ethers during a 

critical period of the brain’s growth and development can interact and increase de-

fective development behaviour and affect learning and memory abilities. Syner-

gistic interaction from co-exposure to PCB 52 and polybrominated diphenyl ether 

congener 99 on spontaneous behaviour has been indicated. Further, some data 

suggest that PCB 153 and methyl mercury can act synergistically in the low-dose 

range, but not in the high-dose range (for further details on this matter, see e.g. 

references (119, 120). Indeed, some recent studies (139, 365) indicate that methyl 

mercury may protect against the effects of PCB 153 (and vice versa) on early 

development, including neurobehavioural functions, in progeny of rat mothers 

exposed during gestation and lactation.  
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Altered spontaneous motor activity was seen in 4-month-old male mice given  

a single gavage dose of 0.41 mg/kg of PCB 77 at 10 days of age (19) (the critical 

period for exerting effects on brain development in the mouse). When single doses 

of PCB 28 (0.18, 0.36, 3.6 mg/kg bw), PCB 52 (0.20, 0.41, 4.1 mg/kg bw), PCB 

118 (0.23, 0.46, 4.6 mg/kg bw) or PCB 156 (0.25, 0.51, 5.1 mg/kg bw) were given 

to mice in a similar study, dose-related changes in spontaneous behaviour, signif-

icant at the two higher dose levels, were seen in males at exposure to PCBs 28 and 

52 (females were not tested). The highest dose of PCB 52 also caused a deficit in 

learning and memory functions in the adult animal, and affected the cholinergic 

nicotinic receptors in the cerebral cortex (104). Further, PCB 126 (0.046 or 0.46 

mg/kg bw as a single dose) showed effects on the spontaneous behaviour at 2 and 

4 months of age at both dose levels. The highest dose also affected learning and 

memory functions in the adult male mice and in the animals showing this deficit, 

the cholinergic nicotinic receptors in the hippocampus were affected. No behav-

ioural or neurochemical alterations were seen in mice similarly treated with PCB 

105 (0.23, 0.46, 4.6 mg/kg bw) (105). The results for spontaneous behaviour 

variables indicating an effect in 2- and 4-month-old male mice exposed on post-

natal day 10 to an oral single dose of 0.51 mg/kg bw of PCB 153 were given in a 

recent study (120). 

Neurobehavioural studies in which mice were given a single oral dose by gavage 

at 10 days of age were considered by EFSA. However, the corresponding critical 

period for exerting effects on brain development in humans is during foetal life in 

the last trimester and shortly after birth. Thus, EFSA believed that much higher 

exposure levels would be required to obtain a similar situation in foetal life of 

humans if assuming a similar kinetics for persistent PCBs in humans. Also, the 

relevance of high bolus dosing was questioned (98).  

11. Observations in man 

11.1 Effects of single and repeated exposure  

11.1.1 Effects on skin, eyes and mucous membranes  

The predominant finding among individuals exposed occupationally to PCBs  

has been an increased prevalence of abnormal dermatological symptoms (276). 

During acute exposure, irritative effects such as skin rash, itching and burning 

sensations have been reported, as well as eye irritation (2). Skin rash or skin 

irritation in the absence of documented high PCB exposure may be more related 

to exposure to chlorinated benzenes, organic solvents or other compounds present. 

Other dermal effects such as temporary inflammation or oedema of the skin and 

chloracne appear to be related to the incidence and magnitude of the individual’s 

dermal contact with PCB fluids or result from high exposure to heated PCB 

vapours, suggesting PCBs and/or PCDFs as the causative agents (193). Usually, 

chloracne appears in individuals with serum PCB levels 10–20 times higher than 

those of the general population, but there is a great variability among individuals 

and there may also have been exposure to relatively high levels of PCDFs (19, 
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209). Chloracne is induced by exposure to dioxin-like substances and PCDFs are 

relatively potent chloracnegens (19, 193). It has been suggested lately that genetic 

polymorphisms in CYP1A1 and GSTM1 might be related to the susceptibility to 

PCB/PCDF-induced skin manifestations (389). 

Health conditions were evaluated in 80 electric capacitor manufacturing workers 

in Italy exposed for many years to PCB mixtures (more recently mixtures with 42 % 

chlorine content). The PCB content in blood samples was expressed as trichlorobi-

phenyl and pentachlorobiphenyl. Total PCB concentrations were 41–1 319 µg/l in 

60 currently exposed workers in two plants. In plant A workers, the mean blood 

concentration of pentachlorobiphenyls was higher than that of trichlorobiphenyls, 

while the reverse prevailed in plant B workers. Eight cases of chloracne and/or 

folliculitis and 5 cases of dermatitis due to primary irritative or allergic sensitising 

agents were identified. The workers with chloracne were all working in plant A. 

Their whole blood PCB concentrations ranged from 300 to 500 µg/l but did not 

differ significantly from the concentrations of 5 unaffected workers on the same 

job. In workroom air samples, concentrations of trichlorobiphenyls were in the 

range 48–275 μg/m
3
, while significant amounts of pentachlorobiphenyls were 

often detected on surfaces. Further, considerable amounts of PCBs were detected 

on the hands of the workers (262, 263).  

Among 289 US capacitor manufacturing workers, 40 % reported skin rash to 

have occurred after initiation of work in the plant. Burning was reported by 26 %. 

Physical examination revealed that 37 % had dermatological abnormalities, e.g. 

erythema (14 %), dryness (13 %), hyperpigmentation (10 %) and acne (6 %). Red-

ness of the conjunctiva, palpebral hyperpigmentation and oedema were seen in 

17 %, whereas 2 % had abnormal secretions from the eyes and 1 % had enlarge-

ment of the Meibomian glands. The exposure to PCB-containing dielectric fluid 

resulted mainly from inhalation of vapours, but there was also potential for skin 

contact and ingestion. Mean air levels of PCBs were 7–410 μg/m
3 

in some areas 

but ranged between 900 and 11 000 μg/m
3 

in departments where capacitors were 

immersed in the dielectric fluid. To investigate the association between skin ab-

normalities and plasma PCB levels, a subgroup of 22 men and 20 women with 

chloracne, comedones, hyperpigmentation and hyperkeratosis was identified. The 

male workers with skin abnormalities had higher mean concentrations of higher 

homologues of PCBs (calculated as Aroclor 1254) in plasma compared to controls 

(97 vs. 50 µg/l). No significant differences were found for lower homologues of 

PCBs (calculated as Aroclor 1248) or for women. However, PCDFs should be 

considered a possible etiologic factor/co-factor. Various mixtures of PCBs (e.g. 

Aroclors 1254 and 1242) had been used at the facility, but for 5 years prior to the 

study, Aroclor 1016 and to a minor degree Aroclor 1221 had been used exclusive-

ly (118).  

In a survey of workers exposed in a plant with production of large power 

capacitors or at a public utility company with maintenance work on transformers, 

significant, positive correlations of symptoms suggestive of irritation of mucous 

membranes, e.g. irritated or burning eyes, were noted with increasing con-

centration of serum PCBs. A relationship between the incidence of skin rash or 

dermatitis and plasma levels of higher, but not lower, chlorinated PCBs was also 
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found. No cases of chloracne were identified. However, potential confounding 

factors like other irritating compounds were not accounted for. The serum PCB 

levels were many times higher in the workers than in the general population. Geo-

metric mean serum levels were 502 µg/l (range 210–3 330) of low-chlorinated 

PCBs (≤ 4 chlorine atoms) and 44 µg/l (range 20–250) of high-chlorinated PCBs 

(≥ 5 chlorine atoms) for workers in an area of presumed high exposure. Time-

weighted average (TWA) personal air sample concentrations of PCBs in some 

high-exposure areas were up to 264 μg/m
3 

(median 81 μg/m
3
). Also skin con-

tamination by PCBs was indicated (19, 367). 

In a cross-sectional study, 55 transformer repairmen exposed to PCBs from air 

and contaminated surfaces (predominantly from Aroclor 1260) were compared to 

56 subjects never occupationally exposed to PCBs. A thorough skin examination 

was performed, but no definite case of chloracne was identified. According to 

questionnaire responses, a number of irritant symptoms (e.g. eye irritation, chest 

pain on walking, wheezing) were significantly more prevalent in the total group  

of exposed workers than in the comparison group, although the authors regarded 

PCBs as relatively non-irritating. However, neither wheezing nor forced expira-

tory volume for one second (FEV1) was significantly associated with exposure 

after adjustment for smoking. Abnormal findings of conjunctivitis or tearing were 

found in only one exposed worker, indicating that these symptoms were mild and/ 

or transient. A total of 24 personal breathing zone samples (sample duration: 1.0–

5.8 hours) were analysed. Sample concentrations of PCBs were ≤ 60 µg/m
3
. Eight-

hour TWAs of PCBs were 0.01–24 µg/m
3
. Further, PCBs were analysed in both 

serum and lipid tissue, showing at least 2–3 times higher PCB body burdens in the 

currently exposed subjects than in controls. The PCB patterns resembled Aroclor 

1260 (100, 101). The total serum PCB concentrations were, however, substantially 

underestimated. The total serum values (median and mean) as reported in a later 

study (27 PCB peaks were quantified) were approximately 43 and 54 μg/l for 

currently exposed workers, 30 and 39 μg/l for formerly exposed workers and 13 

and 20 μg/l for controls (114). 

Chloracne and other skin manifestations (e.g. hyperkeratosis), abnormal nails as 

well as hypersecretion of the Meibomian glands and abnormal pigmentation of the 

conjunctiva were reported in individuals exposed by accidental ingestion of rice oil 

contaminated with high concentrations of PCBs (Yusho and Yu-Cheng poisoning 

incidents). The victims were also exposed to PCDFs and other structurally related 

chemicals and it has been suggested that PCDFs caused most of the health effects 

seen in the Yusho and Yu-Cheng patients (2, 19, 389). The median PCB level in 

serum of about 400 Yu-Cheng individuals a few years after the incident was 51 µg/l 

(389). No adverse dermal or ocular effects have been reported in subjects with high 

consumption of fish contaminated with PCBs and other environmentally persistent 

chemicals or in other cohorts from the general population, but it is unknown if these 

outcomes were systematically studied (19).  

11.1.2 Immunological effects  

Information on immunological endpoints in PCB exposed workers is scarce, but 

there are some data on effects in the general population from studies of people 
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exposed to PCBs e.g. by consumption of contaminated fish and from the Yusho 

and Yu-Cheng incidents. These findings include increased susceptibility to respira-

tory tract infections, decreased total serum IgA and IgM antibody levels and/or 

changes in T-lymphocyte subsets. ATSDR assessed that the most conclusive 

findings are those in the Yusho and Yu-Cheng populations, the populations that 

experienced the highest levels of PCB exposure, but also exposure to PCDFs. 

Interpretation of the data from the other human studies was considered complicated 

because the responses were generally subtle and exposures included a number of 

persistent toxic substances in addition to PCBs that are also potentially immuno-

toxic. Thus, conclusions of causality cannot be drawn from these studies (19). In  

a recent study, PCBs were associated with arthritis in women (231). The results 

need, however, to be corroborated in other studies.  

In a recent prospective and cross-sectional study, there was no evidence of im-

mune system involvement as expressed by a set of cytokines in Swedish workers 

removing old elastic sealants with PCBs. Male abatement workers (n = 36) with at 

least 6 months experience of PCB removal in the two previous years (2000–2001) 

and a control group of 33 matched construction workers without occupational 

PCB exposure were investigated. Tobacco habits, as well as background exposure 

to PCBs (e.g. consumption of fatty fish), occupational history and general health 

were assessed by use of a questionnaire and the result showed that there were more 

smokers in the exposed group (39 % vs. 9 %). Almost all subjects considered their 

current work as dusty, but 8 exposed subjects and 27 controls denied using any 

respiratory protection in dusty work. The cytokines IL-2, IL-4, IL-6, IL-10, TNFα 

and interferon-γ were measured in plasma, although quantifiable values were ob-

tained in a minority of the determinations. However, there was no significant 

difference between the groups in the proportion of quantifiable cytokine values. 

Dose-response relationships between PCB levels and IL-2 and IL-4 could not  

be evaluated. For the remaining cytokines, no significant relation with PCBs  

was observed. At follow-up 10 months later, a significantly higher proportion of 

quantifiable values were observed for IL-10 and interferon-γ within the exposed 

group as compared to baseline, but the plasma levels did not relate to PCB levels 

in a dose-dependent way and it was considered unlikely by the authors that this 

finding could be attributed to PCBs. The overall plasma PCB level expressed as 

the sum of 19 PCB congeners (including many low-chlorinated congeners) was 

approximately twice as high in the exposed group as in the control group. The geo-

metric mean PCB plasma level was 2.3 µg/l (range 0.56–7.8) vs. 0.9 µg/l (range 

0.45–2.2) (580 vs. 260 ng/g lipid as lipid-adjusted values). Geometric mean levels 

of PCBs 101, 138, 153 and 180 were 0.038, 0.46, 0.51 and 0.35 µg/l, respectively, 

in exposed workers. The sum of seven PCBs (geometric means), although higher 

in the exposed workers compared to the control group (410 vs. 230 ng/g lipid), 

was somewhat lower (not significant after age adjustment) than in a group of 

historical controls (410 vs. 580 ng/g lipid) (354) (see Table 20, Section 12.2). 

In another study (82), immune parameters in 141 patients occupationally ex-

posed to PCBs for more than 6 months were investigated (half of the patients  

were still exposed at the time of the investigation). Most of them were teachers, 

construction workers or telecommunication technicians and 90 % had been 
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exposed to PCBs for more than 20 years. They had also been exposed to other 

chemicals suspected to induce immunological impairments. The patients had dif-

ferent symptoms, e.g. lack of mental concentration, exhaustion, frequent common 

cold diseases, bronchitis and irritations of mucous membranes of the throat and 

nose. Lymphocyte subpopulations, in vitro responses to mitogens and allogeneic 

stimulator cells, plasma neopterin, cytokines, soluble cytokine receptors, soluble 

adhesion molecules, and Ig auto-antibodies were determined. Weak dose-response 

relationships between plasma PCB levels (PCBs 101, 138, 153 and 180) and im-

mune parameters were found. PCBs were weakly associated with in vitro lympho-

cyte stimulation, the numbers of lymphocyte subpopulations in the blood, and 

titres of different autoantibody types against immunoglobulin components. How-

ever, it was stated that few associations remained significant after adjustment for 

multiple testing when the frequency of individuals with impaired immune para-

meters were related to blood levels above the mean. Patients with plasma levels 

of PCB 138 above the mean (> 0.7 µg/l) had more frequently undetectable IL-4 

plasma levels than patients with PCB 138 levels below the mean. Patients with 

plasma PCB 101 levels above the mean (> 0.03 µg/l) had more often low DR+ 

cell counts (the HLA-DR cell surface marker) in the blood than patients with PCB 

101 below the mean. The plasma levels of PCBs 138, 153 and 180 were elevated 

in many of the patients (means for all patients were 0.7, 1.0 and 0.6 µg/l, re-

spectively), whereas none of the patients had levels of PCB 101 that were higher 

than estimated background levels. The 95 % quantiles of blood levels of PCBs 

101, 138, 153 and 180 in the patients were 0.07, 1.4, 2.2 and 1.1 µg/l, respectively 

(see Table 20, Section 12.2). Blood levels of the various compounds (pentachloro-

phenol, hexachlorobenzene, hexachlorocyclohexane-, -, and -, and PCBs) 

were strongly correlated with one another, making it difficult to dissociate the 

impact of individual compounds. To avoid interference from pentachlorophenol, 

patients with pentachlorophenol blood levels > 10 µg/l were excluded from the 

study. The 9 patients with low or absent blood concentrations of the chemicals 

studied had higher T-lymphocyte counts (CD3), higher interferon-γ plasma levels 

and lower γ-glutamyl transferase plasma levels than the 40 patients with blood 

concentrations of all compounds above background, which provides some evi-

dence for a cumulative effect of several weakly active compounds (82). 

Langer et al reported significantly lower serum levels of β2-microglobulin (a 

cell membrane protein involved in the regulation of the immune system response, 

cell-mediated immunity) in workers (n = 242) than in controls. The workers  

had been employed for at least 5 years at a Slovakian factory producing PCBs in 

1955–1985 and were residing in a heavily PCB polluted area. The average TEQs 

in serum of three employees was 137.7 pg/g lipid (PCBs, PCDDs, PCDFs). Two 

control populations from areas much less polluted by PCBs were used (220). The 

same authors later reported an immunomodulatory effect, seen as an increased 

prevalence of thyroid antibodies and glutamic acid decarboxylase antibodies, in 

workers heavily exposed to PCBs (serum samples also contained PCDDs and 

PCDFs) (223, 224) (see also Sections 11.1.5 and 11.1.6). 

In most old occupational studies, few immunological data were reported 

(clinical measurements of white blood cell counts and serum proteins). In one 
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study, total and differential white blood cell counts were determined in 194 

capacitor plant workers who were exposed to Aroclors 1254, 1242 and/or 1016  

for an average of 17 years. The mean area air concentration of PCBs in 1975 was 

690 µg/m
3
 and the average personal TWA level in 1977 was 170 µg/m

3
. In 1976, 

clinical examinations showed some elevations in total white blood cells associated 

with decreased PMNs (polymorphonuclear cells, i.e. neutrophils) and increased 

lymphocytes, monocytes and eosinophils (19).  

The proportions of positive responses to mumps (92 % vs. 89 %) and trichophyton 

(17 % vs. 8 %) antigen following an intradermal injection did not differ significant-

ly in a group of 55 PCB exposed transformer repairmen as compared to 56 controls. 

The mean diameters of the skin reactions to mumps antigen in the two groups 

were identical. Personal breathing zone samples showed concentrations of PCBs 

≤ 60 µg/m
3
. Eight-hour TWAs of PCBs were 0.01–24 µg/m

3
. The PCB patterns 

resembled Aroclor 1260 (100, 101). The measured total serum median values as 

reported in a later study (27 PCB peaks were quantified) were approximately 43 

μg/l for currently exposed workers, 30 μg/l for formerly exposed workers and 13 

μg/l for controls (114). 

The immune status in relation to exposure to dioxin-like compounds, measured 

in chemical-activated luciferase gene expression (CALUX) bioassay, and to serum 

levels of PCBs 138, 153 and 180, was investigated in a study of 200 Flemish adole-

scents (PCBs 28, 52 and 101 were below the limit of detection). Very few signifi-

cant associations with PCBs were seen, whereas dioxin-like compounds were re-

lated to biomarkers of immune status. An inverse association between IgGs and 

sum of PCBs 138, 153 and 180 (p = 0.009) was found (403).  

Serum concentrations of POPs and the prevalence of arthritis were investigated  

in 1 721 adults in the National Health and Nutrition Examination Survey (NHANES) 

1999–2002. PCBs were positively associated with arthritis in women, but not in men. 

Neither PCDDs nor PCDFs were associated with arthritis in either sex. Participants 

were considered to have prevalent arthritis if they answered “yes” to the question: 

Has a doctor or other health professional ever told you that you had arthritis? In 

women, odds ratios (ORs) with 95 % confidence intervals (CIs) for prevalence of 

arthritis across quartiles (1
st
 quartile used as referent) were 2.1 (1.0–4.5), 3.5 (1.7–

7.4) and 2.9 (1.3–6.5) for “dioxin-like” PCBs (PCBs 74, 118, 126 and 169) (p for 

trend 0.02) and 1.6 (0.8–3.1), 2.6 (1.3–5.1) and 2.5 (1.2–5.2) for non-dioxin-like 

PCBs (PCBs 138, 153, 170, 180, 187) (p for trend 0.02), respectively, after adjust-

ment for age, race, body mass index, poverty income ratio and smoking. When 

single congeners were analysed separately, significant trends were seen for PCBs 

74, 118, 170, 180 and 187. For subtypes of arthritis in women, rheumatoid ar-

thritis was more strongly associated with PCBs than was osteoarthritis (231). 

11.1.3 Cardiovascular effects 

In recent years, it has been suggested that POPs including PCBs might contribute 

to the development of inflammatory diseases such as atherosclerosis (147). The 

possible relationship between PCB exposure and cardiovascular disease has been 

investigated in a number of occupational studies of which some reported a slightly, 

but non-significantly, increased risk for ischaemic heart disease. Mortality rates in 
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the occupational cohorts were compared to those in national or state total populations. 

Such comparisons are likely to result in an underestimation of the true risk as the 

general population includes sick and disabled people unable to work due to cardio-

vascular disease (“the healthy worker effect”). Regarding the general population, 

some studies suggest an association between PCBs and hypertension, but there are 

limitations of the studies because of the cross-sectional design. Relevant studies 

are described below.  

A Swedish cohort of 242 male capacitor manufacturing workers exposed to 

PCBs for at least six months during 1965–1978 was followed from 1965 to 1991 

and mortality rates were compared to national death rates. High-exposed workers 

had a higher standard mortality ratio (SMR) for circulatory diseases (3.3, 95 % CI 

1.1–7.7) after at least five years of work and a latency of 20 years or more, but this 

was not observed for ischaemic heart disease (146). 

Among 2 984 male hourly capacitor workers from two production plants in up-

state New York, the SMR for ischaemic heart disease did not differ significantly 

from that of the US male population (208). 

A cohort of 3 588 electrical capacitor workers exposed to PCBs 1957–1977 at 

an Indiana facility was followed until 1986. Mean serum PCB levels (1–4 chlorines) 

were 100–760 µg/l. The mortality for diseases of the heart was lower as compared 

to the US population. According to the authors, the healthy worker effect together 

with the inclusion of persons lost to follow-up could partly explain the low overall 

mortality of the cohort (364). The cohort comprising 3 569 workers was further 

followed through 1998. Cumulative PCB exposure was calculated for each worker 

based on job titles, job codes and era of employment. The overall ischaemic heart 

disease SMR did not differ significantly from that of the Indiana State population 

(321). 

A total of 2 885 white electrical capacitor workers were exposed to PCBs and 

other chemicals between 1944 and 1977 in a plant in Illinois. Before 1952, chlori-

nated naphtalenes were used as a dielectric. In 1952, PCBs were introduced and 

used in large capacitors until 1979. The main exposure to PCBs was through skin 

contact, but airborne exposure occurred in one department. The SMR for ischae-

mic heart disease was 1.1 (95 % CI 0.96–1.3) for white males and lower for white 

females when compared to US standard rates (258). 

A cohort was formed of 2 572 workers manufacturing electrical capacitors em-

ployed for at least 90 days at a New York plant during 1946–1977 or at a Massachu-

setts plant during 1939–1976 and who held jobs identified as having the highest 

PCB exposure. The SMR for ischaemic heart disease did not differ significantly 

from that of the US (300). Also in the total cohort of 14 458 workers with at least 

potential PCB exposure during 1939–1977, the ischaemic heart disease SMR was 

not increased (301). 

Another cohort comprised 138 905 male workers employed full time at any of 

five US electric utility companies at any time during 1950–1986 and with a total 

of at least 6 months of continuous employment. The mortality for diseases of the 

heart was significantly lower as compared to that of the US population (250).  

In a study by Broding et al, 562 subjects who had worked on average 14.7 years 

in a PCB contaminated building scored significantly higher than the control group 
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in subscale “cardiac complaints” on the 24-item Giessen Subjective Complaints 

List (GSCL-24). The subscale scores were, however, low in both groups. Multi-

variate analysis confirmed that work in the contaminated building influenced the 

intensity of complaints, although overall, thorough statistical analysis revealed no 

correlation of symptoms on the GSCL-24 scale and current PCB congener plasma 

concentrations. Several confounding variables (e.g. socioeconomic status, medi-

cation) were not controlled for. The median sum of PCBs in air was 1.28 µg/m
3
. 

The mean plasma level (sum of PCBs 28, 52, 101, 138, 153, 180) in the exposed 

group was 2.6 µg/l (46).  

Results from NHANES 1999–2002 (final sample size 889 persons) indicated an 

association between serum concentrations of five “dioxin-like” PCBs (PCBs 74, 

118, 126, 156 and 169), six non-dioxin-like PCBs (PCBs 99, 138, 153, 170, 180 

and 187) and four organochlorine pesticides and the prevalence of self-reported 

diagnosis of cardiovascular disease, but only among females. Adjustment was 

made for e.g. age, body mass index, total cholesterol, high-density lipoprotein 

cholesterol, triglycerides, C-reactive protein, hypertension, smoking and exercise. 

In females, the adjusted OR for the highest quartile compared to the lowest 

quartile was significant (OR 5.0) for the sum of the five “dioxin-like” PCBs (p for 

trend < 0.01). The highest ORs (9.2 and 10.4) were seen for PCB 156 in the two 

highest quartiles (p for trend < 0.01). The adjusted OR for the sum of the six non-

dioxin-like PCBs (females) was significant for the highest quartile (OR 3.8 and p 

for trend 0.02) and ORs were 9.2–13.4 for PCBs 138, 153 and 170 (all p for trend 

≤ 0.01). The median serum levels (females) in the highest quartiles were 21, 91, 

127 and 36 ng/g lipid, respectively, for PCBs 156, 138, 153 and 170. The authors 

stated that their results were in general agreement with, but stronger than, those of 

previous prospective cohort studies of subjects exposed to high concentrations  

of selected POPs in occupational or accidental settings, but emphasised that their 

results must be interpreted with caution, because of the cross-sectional design and 

use of self-reported disease (147).  

The same authors (148) reported suggestive associations between hypertension 

in men (but not in women) and both the sum of five “dioxin-like” PCBs (PCB 74 

included) and the sum of six non-dioxin-like PCBs when NHANES 1999–2002 

was studied (524 participants). Adjusted ORs in the highest tertiles were 2.3 and 

2.8 (p for trend 0.04), respectively. However, the only significant associations for 

PCBs were seen in men for PCB 156 in the 4
th

 quartile and for PCB 74 in the 3
rd

 

quartile with ORs 3.3 and 3.5, respectively. Hypertension was defined as systolic 

blood pressure equal to or above 140 mm Hg or diastolic blood pressure equal to 

or above 90 mm Hg. Treated hypertensives were excluded.  

Another study using the NHANES 1999–2002 investigated the association of 

11 PCBs in serum with hypertension (2 074–2 556 participants depending on the 

chemical analysed). Persons were assigned to the hypertensive category if a doctor 

had told them that they were hypertensive, or were on antihypertensive drugs, or 

had a systolic blood pressure equal to or above 140 mm Hg or diastolic blood 

pressure equal or above 90 mm Hg. After adjustment (e.g. for age, gender, body 

mass index, smoking, total cholesterol), several PCBs (PCBs 74, 99, 118, 126, 

138/158, 170, 187) remained significantly associated with hypertension (gender 
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data were not reported separately). The strongest adjusted associations were found 

for the dioxin-like PCBs 126 and 118. The group with serum levels of PCB 126 

> 59.1 pg/g lipid had an OR of 2.4 compared to the group with levels ≤ 26.1 pg/g 

lipid. In the group with concentrations of PCB 118 > 27.5 ng/g lipid, the OR was 

2.3 (comparison group had < 12.5 ng/g lipid) (112). In a re-evaluation using data 

from 2 additional years (NHANES 1999–2004) only the “dioxin-like” PCBs 74, 

118 and 126 were significantly related to hypertension (113).  

The general population was also studied in the city Anniston, an area close to  

a Monsanto plant (136). Hypertension was defined as being on antihypertensive 

medication, or having a systolic blood pressure greater than 140 mm Hg or a dia-

stolic blood pressure greater than 90 mm Hg. It was suggested that PCB exposure 

may be an important contributing factor in regulation of blood pressure. Total PCBs 

in serum (37 congeners, non-ortho PCBs not analysed) were measured and recorded 

as tertiles. The occurrence of hypertension was significantly elevated in both the 

2
nd 

(OR 1.60) and 3
rd

 (OR 2.13) tertiles of total PCBs as compared to the 1
st
 tertile 

after adjustment for age (whole study population, n = 758). There was no association 

of total PCBs with hypertension among those on antihypertensive medication. In 

individuals not on antihypertensive medication, however, a significant positive 

relation between serum PCB level and both systolic and diastolic blood pressure 

was evident after adjustment for potentially confounding variables (age, body 

mass index, total lipid, sex, race, smoking and exercise). ORs for the highest to 

lowest tertiles of total serum PCBs exceeded 3.5 for both systolic and diastolic 

hypertension. 

Significant associations between hypertension and blood level of dioxin-like com-

pounds were reported in a Japanese study on the general population focusing on 

the metabolic syndrome. The adjusted OR for dioxin-like PCBs was significantly 

elevated in the 4
th

 compared to 1
st
 quartile (OR 1.9 and p for trend < 0.01). Hyper-

tension was defined as systolic blood pressure ≥ 130 mm Hg and/or diastolic blood 

pressure ≥ 85 mm Hg, or self-reported history of physician-diagnosed hypertension 

(393) (see also Section 11.1.6). 

11.1.4 Hepatic effects 

Hepatic effects have been investigated in a number of studies of PCB exposed 

workers from the 1970s and 1980s, although hepatic endpoints are essentially 

limited to serum enzymes and other biochemical indices, e.g. serum lipids and 

cholesterol. Definite conclusions regarding human hepatotoxicity are hampered  

by limitations in study design of available studies such as exposure misclassifica-

tion, lack of controls and lack of correction for common confounding variables 

(e.g. age and alcohol consumption) (19, 100). There is no clear indication that 

environmental low-level exposure to PCBs has caused adverse liver effects in 

humans (19). However, increased mortality from chronic liver disease and cirrhosis 

was seen in a population exposed to rice oil contaminated with PCBs/PCDFs (Yu-

Cheng) (19, 390). 

Increased levels of serum enzymes have been correlated with serum PCB levels 

in some of the studies. Particularly, levels of γ-glutamyl transferase, alanine amino-

transferase (ALAT), aspartate aminotransferase (ASAT), alkaline phosphatase and/ 
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or lactate dehydrogenase have been increased. In general, the results of the exposed 

groups were within the expected normal limits, or the number of persons falling 

outside the normal range was not significantly greater than anticipated. Increased 

levels of serum triglycerides and cholesterol have not been reported consistently in 

workers with long-term occupational exposure to PCBs. The variable results can 

be explained at least partially by failure to control for variables known to affect 

serum lipid levels. Increased urinary excretion of porphyrins has been seen in PCB 

exposed workers compared to control groups, although no correlations with blood/ 

serum PCB levels were shown (19, 193).  

Extensive laboratory investigations including serum liver function tests (e.g. 

γ-glutamyl transferase, ALAT, ASAT, alkaline phosphatase and lactate dehydro-

genase) and measures reflecting microsomal enzyme induction were reported in a 

study of 55 transformer repairmen exposed to PCBs (predominantly Aroclor 1260) 

and 56 subjects never occupationally exposed to PCBs. The proportion of current 

alcohol drinkers did not differ significantly between groups. Serum γ-glutamyl 

transferase levels were not significantly different between the exposed and the 

control groups but were significantly and positively correlated with serum PCBs 

(all study participants), more strongly after adjustment for confounding variables, 

possibly indicating enzyme induction. γ-Glutamyl transferase was not significantly 

correlated with adipose tissue PCBs. Further, no correlation between serum lipids 

(including cholesterol, triglycerides) and serum PCBs was found. Clearance of anti-

pyrine, a known substrate for microsomal hepatic enzymes, was determined but 

there was no significant difference in mean plasma half-time of antipyrine between 

the three groups (current and past exposed, controls), although a difference of 

borderline significance (p = 0.07) was observed between the total exposed group 

and the control group. There was no significant correlation between antipyrine 

half-time and either adipose or serum PCB concentration. PCB levels in serum 

and lipid tissue were at least 2–3 times higher in the presently exposed subjects 

than in controls. The PCB patterns resembled Aroclor 1260 (19, 99-101). The 

measured total serum median values as reported in a later study (27 PCB peaks 

were quantified) were approximately 43 μg/l for currently exposed workers,  

30 μg/l for formerly exposed workers and 13 μg/l for controls (114). Personal 

breathing zone samples showed concentrations of PCBs ≤ 60 µg/m
3
. Eight-hour 

TWAs of PCBs were 0.01–24 µg/m
3
. There was also PCB contamination of the 

hands (19, 99-101).  

Significant positive associations between PCB 138 and 153 plasma levels and 

γ-glutamyl transferase plasma levels were reported in a group of 141 patients occu-

pationally exposed to PCBs for more than 6 months (half of the patients were still 

exposed at the time of the investigation). Most of them were teachers, construction 

workers or telecommunication technicians and 90 % had been exposed to PCBs 

for more than 20 years. However, confounding factors such as alcohol consump-

tion were not controlled for and blood levels of PCBs were strongly correlated with 

those of other chlorinated compounds. Mean plasma levels of PCBs 138, 153 and 

180 were 0.7, 1.0 and 0.6 µg/l, respectively (see Section 11.1.2) (82). 

A comparison of 23 Swedish men with a high consumption of Baltic Sea fish 

and 20 men with virtually no fish consumption showed no significant differences 
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in serum levels of γ-glutamyl transferase, ASAT, ALAT, alkaline phosphatase or 

bilirubin. The fish eaters had elevated blood levels of PCBs, other organochlorines 

and methylmercury (19). Serum γ-glutamyl transferase and cholesterol were 

positively correlated with serum PCB levels (these associations were independent 

of e.g. age and alcohol consumption) in 458 residents in Alabama exposed to 

PCBs by ingestion of contaminated fish (containing also p,p′-dichlorodiphenyl-

trichloroethane (DDT)). The geometric mean serum concentration of PCBs (ana-

lysed as Aroclor 1260) was 17.2 μg/l (range 3.2–158) (19, 214).  

In studies of people exposed to PCBs and e.g. PCDFs by ingestion of con-

taminated rice oil (Yusho and Yu-Cheng incidents), increased serum levels of 

enzymes (indicative of microsomal enzyme induction or liver damage) as well as 

markedly elevated serum triglyceride levels with unchanged total serum chole-

sterol have been reported. Further, increased mortality from cirrhosis of the liver 

and from other liver diseases was seen in a cohort of 1 940 Yu-Cheng victims 12 

years after the incident (19). In a later 24-year follow-up study of 1 823 Yu-

Cheng subjects, increased mortality from chronic liver disease and cirrhosis was 

observed in the early period after exposure, but only in men (390). 

11.1.5 Thyroid effects  

An elevated OR for goiter was found in the Yu-Cheng cohort and a number of 

studies have examined the relationships between indices of PCB exposure and 

thyroid hormone status, as indicated from measurements of serum thyroid hor-

mones (19). Findings from human studies have been conflicting (268), but some 

data indicate an inverse association between concentrations of PCBs and T3 and/ 

or T4 in blood. Part of the inconsistency between studies might be due to exposure 

of participants to other endocrine disrupting chemicals and the limited possibility 

to isolate specific effects of PCBs (80, 329). 

In a review by Hagmar, 13 relevant epidemiological studies within this field 

were scrutinised following a literature search for the period ranging from 1966 to 

2002. The studied populations were children, adolescents or adults. According to 

the author, the overall impression was a lack of consistency between studies of 

reported correlations, nor were there any obvious inter-study dose-response asso-

ciations. It was concluded that PCB exposure had not been convincingly shown  

to affect thyroid hormone homeostasis in humans. On the other hand, it was also 

stated that there were intrinsic limitations of the studies used, that comparisons 

between the studies were difficult and that available data did not exclude such 

associations (150).  

One of the studies (99) dealt with in the review by Hagmar was a study on 55 

male workers with a potential of occupational PCB exposure and 56 unexposed 

comparison workers. Total PCBs were analysed in both serum and lipid tissue, 

showing 2–3 times higher PCB body burdens of the presently exposed subjects. 

Despite the finding of a slightly lower mean value for T4 in serum in the exposed 

group, there was no indication of a dose-response association after adjustment  

for age. There was no correlation between PCBs in adipose tissue and T4 values. 

Eight-hour TWAs of PCBs were 0.01–24 µg/m
3
. PCB contamination of the hands 

was also observed (99, 100, 114, 150).  
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In a recent Swedish study on workers removing old elastic PCB-containing sea-

lants, no evidence of effects on thyroid function as measured by serum levels of 

total T3, free T4 and TSH was found. Male workers (n = 36) with at least 6 months 

experience of PCB removal in the two previous years (2000–2001) and a control 

group of matched workers (n = 32) were investigated, but no differences in the 

hormone levels between the groups were found. Further, combining occupationally 

exposed workers and controls, no significant correlations with thyroid function 

parameters were observed, neither for the individual PCB congeners 28, 52, 101, 

118, 138, 153 or 180, nor for the sum of the seven indicator PCBs or the sum of 

all 19 measured PCBs. Tobacco habits, PCB background exposure, occupational 

history and general health were assessed by use of a questionnaire. More smokers 

were found in the exposed group, 39 % vs. 9 %. Eight exposed subjects and 27 

controls denied using any respiratory protection. The overall plasma PCB level 

expressed as the sum of 19 PCB congeners (including many low-chlorinated con-

geners) was approximately twice as high in the exposed group as in the control 

group. The geometric mean of 19 PCBs was 2.3 µg/l (range 0.56–7.8) vs. 0.9 µg/l 

(0.45–2.2) and 580 vs. 260 ng/g lipid as lipid-adjusted values (354) (see also 

Section 11.1.2). 

In a Slovakian study (223), clinical and laboratory signs of thyroid disorders 

(thyroid volume, urinary iodine, hormones and thyroid antibodies) were measured 

in 238 employees of a factory, which had produced PCBs (resembling Aroclor 

1242) in 1955–1985, and in adolescents from the surrounding area polluted by 

PCBs. Controls were adults and adolescents from much less polluted areas. A 

significantly higher thyroid volume (p < 0.001) was found in the employees com-

pared to controls matched by age and sex. Further, increased prevalences of thy-

roid antibodies (against thyroid peroxidase, thyroglobulin or TSH receptor) were 

found among employees compared to adult controls. The levels of total T4, TSH 

and thyroglobulin were approximately the same in workers and controls. The pre-

valence of normal thyroids was significantly lower among employees who had 

worked in the factory for 21–35 years compared to those who had worked for 11–

20 years and compared to age- and sex-matched controls. Very high levels of total 

PCBs in human samples from the area were still found in 1990–1994, e.g. serum 

levels of 1 160–9 600 ng/g lipid and average values of 12 300 ng/g lipid in adipose 

tissue. The most abundant congeners were 28, 118, 138, 153 and 180. The average 

TEQs in employees were 137.7 pg/g lipid in serum (PCBs 126 and 169, PCDDs 

and PCDFs) (223).  

In a later Slovakian study (221), a total of 461 adults were divided in four groups 

according to their domicile as related to the level of environmental pollution. Three 

groups (n = 360) consisted of adults from an area with background pollution or 

from more polluted areas. One group (n = 101) consisted of long-term employees 

of a formerly PCB producing chemical factory subjected to high PCB exposure  

or subjects living in a close vicinity. The frequency of several characteristics of 

thyroid disorders (thyroid volume > 20 ml, hypoechogenicity (reduced ultrasound 

echo), solitary nodules, positive thyroperoxidase antibodies, abnormal TSH level) 

was investigated. Significantly increased frequencies for thyroid volume > 20 ml, 

hypoechogenicity and thyroperoxidase antibodies were observed in the chemical 
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factory employee group compared to the pooled values of the other three groups. 

An association between a very high PCB level in the group of employees (mean: 

7 300 ng/g lipid in serum) and increased thyroid volume was found, the volumes 

being significantly higher than those of the three groups with lower PCB exposure 

(mean: 2 045 ng/g lipid in serum). Also, the thyroid volume and median levels of 

PCBs increased with age (all groups taken together), although the ranges of PCB 

values in all age groups showed very large spans. The positive association between 

serum PCB levels and increased thyroid volume appeared to be more pronounced 

for PCB 101 than for the stable PCB congeners 153 and 180 when thyroid volume 

in the subjects was stratified exclusively according to the levels of the PCB con-

geners. It was stated by the authors that the iodine intake in Slovakia had been 

sufficient since the early 1950s (221).  

In a recent study by the same authors, serum levels of the 15 most abundant 

PCBs, p,p´-dichlorodiphenyldichloroethylene (DDE) and hexachlorobenzene were 

measured in 2 046 adults from two areas in Slovakia. Data were stratified into quin-

tiles of PCB levels (n = 408–410 for each) and studied in relation to markers of 

thyroid effects. Upper PCB levels in serum for each quintile were 627, 906, 1 341, 

2 343 and 101 413 ng/g lipid. Highly significant increases in the number of cases 

were seen for the following parameters (number of cases from the lowest to the 

highest quintile): increased thyroid volume (79/79/84/122/124), positive thyro-

peroxidase antibodies (83/98/88/126/116), increased free T4 (70/84/114/104/128) 

and total T3 (100/105/116/139/132), and decreased TSH (4/5/12/7/20) (222). 

In a recent review, 22 epidemiological studies (published until May 2008) pre-

senting measurements of PCB levels in biological matrices and thyroid hormone 

and TSH levels from adults were included (329). The studies were given quality 

scores and eight studies were considered as Tier I papers (Table 15). These eight 

studies investigated the general population and fish consumers including fishermen. 

The Tier I papers supported a conclusion that serum PCB levels are inversely as-

sociated with both T3 and T4. However, only one of the studies showed an inverse 

relationship with free T4. No measurements of free T3 were performed. For TSH, 

the results were mixed, indicating no relationship with PCB levels. In general, 

most of the Tier II papers, which included studies with methodological limitations 

(e.g. (100)), noted no significant associations between PCBs and TSH or thyroid 

hormones with the exception of T3 (significant inverse association). In the Tier I 

studies, the exposure levels were transformed to a lipid basis using the concentration 

of serum lipid of 7.9 g/l. A significant inverse association between PCB and T3 

serum levels was seen in some, but not all, papers with PCB mean levels of 222–

822 ng/g lipid. A significant inverse association with T4 was reported in some 

studies with mean PCB levels of 269–848 ng/g lipid. Part of the inconsistency of 

the epidemiological study results may be explained by the fact that study participants 

were exposed to other possible endocrine disrupting chemicals. Further, many 

studies report only total PCBs or selected congeners or different groups of con-

geners, which precluded meaningful comparisons of findings across studies (329). 

Dallaire et al studied Inuit adults (n = 623) and measured TSH, free T4, total T3, 

thyroxine-binding globulin and plasma levels of 41 contaminants including PCBs 

and their metabolites, organochlorine pesticides, polybrominated diphenyl ethers, 
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Table 15. Associations in adults from the general population between serum or plasma 

PCB levels and blood concentrations of thyroid and pituitary gland hormones observed  

in Tier I papers. Adapted from the review by Salay and Garabrant (329). 

No. of  

PCBs 

No. of subjects 

and gender 

Sum PCBs 

Mean, ng/g lipid 

Hormones 

T3 T4 Free T4 TSH 

20  1 166 males 

1 279 females 

200 (GM) − 

− 

↔ 

↔ 

− 

− 

↓ 

↔ 

89  179 males 

51 females 

822 vs. 201 
a 
 

305 vs. 157 
a 
 

↓ 

↔ 

↓ 

↓ 

↔ 

↓ 

↔ 

↔ 

89 56 males 806 vs. 204 
a 
 ↓ ↓ ↔ ↓ 

16 124 males 

87 females 

269 (median) 

237 (median) 

↔ 

↓ 

↓ 

↔ 

− 

− 

↑ 

↔ 

10 66 males 235 − ↔ − − 

1 (PCB 153) 196 males 370 (median) − − ↔ ↔ 

57 341 males
 b

 222 (GM)  ↓ − ↔ ↔ 

186 males + females 

608 (TSH)  

192 (T4)  

848 vs. 405 
a
 − ↓/↔

c
 ↔ ↔ 

a 
Referents. 

b 
From infertile couples.  

c 
Inverse association for the 1

st
 quartile of PCB level, no association in the analysis of PCBs as a 

continuous variable.  

GM: geometric mean, T3: triiodothyronine, T4: thyroxine, TSH: thyroid-stimulating hormone. 

↓: significant inverse association (p < 0.05), ↑: significant positive association (p < 0.05),  

↔: no significant association, −: hormone parameter not assessed.  

 

perfluorooctanesulphonate (PFOS) and dioxin-like compounds. Inverse associations 

were found between total T3 concentrations and almost all PCBs congeners and 

their metabolites, as well as organochlorine pesticides and dioxin-like compounds. 

Thyroxine-binding globulin concentrations were inversely related to the less chlori-

nated PCBs, hydroxylated PCBs and organochlorine pesticides. Lowered TSH con-

centrations were associated only with the most chlorinated PCBs and hydroxylated 

metabolites. Some associations were also found for PFOS and 2,2′,4,4′- tetrabromo-

diphenyl ether (BDE-47). The authors summarised that exposure to several poly-

halogenated compounds was associated with modifications of the thyroid para-

meters, mainly by reducing total T3 and thyroxine-binding globulin circulating con-

centrations, although it was almost impossible to isolate specific effects of PCBs 

and their metabolites, as well as of organochlorine pesticides, on the thyroid system 

from epidemiological studies of this population. Further, most Inuit participants 

had a thyroid status within the euthyroid range (80). 

11.1.6 Diabetes  

It has been suggested that environmental exposure to persistent organochlorine 

compounds including PCBs may contribute to elevated incidence of especially 

type 2 diabetes. In several cross-sectional and follow-up studies of the general 

population, groups with higher PCB serum levels had an increased risk for diabetes, 

as compared to groups with lower PCB levels. However, the possibility of a reverse 

causality or that both PCB levels and diabetes are independently related to fat turn-

over cannot be ruled out. There are also some studies not showing an association 

between PCBs and diabetes. In a recent review (110), it was concluded that the 

evidence tends to support associations of dioxin-like PCBs with diabetes (type 2) 
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in cross-sectional studies, although there is a need for large scale prospective studies 

to determine if PCBs and other POPs contribute to development of diabetes. Most 

of the relevant studies are described below.  

In a study by Langer et al, serum glutamic acid decarboxylase antibody values 

exceeded 1.20 U/ml in 40 % (97/240) of factory employees as compared to 10 % 

(74/704) of controls (p < 0.001), suggesting an immunomodulatory effect. In em-

ployees aged 51–60 years, the glutamic acid decarboxylase antibody values ex-

ceeded 1.20 U/ml in 53 % (25/47) as compared to 11 % (13/117) in age-matched 

controls (p < 0.001) (224). Such antibodies are typical markers among patients 

with type 1 diabetes but not for patients with type 2 diabetes (35). 

Longnecker (2006) stated that relevant findings that did not support an asso-

ciation between diabetes and PCBs had been reported in some other studies of 

occupationally exposed workers. According to Longnecker (246), blood glucose 

concentrations were unrelated to serum PCB levels in an old study of capacitor 

workers. Still, a substantial number (29/194) had blood glucose levels above 

normal laboratory standard age- and sex adjusted ranges (based on ± 2 standard 

deviations from mean values) (226). Further, death from diabetes mellitus was 

essentially unrelated to PCB exposure in a cohort of capacitor workers (209) 

employed at the same facilities as those in the previous study (226). Significantly 

elevated SMRs (95 % CI) for diabetes were noted for female capacitor workers, 

but there was no information as to whether any of these women were diabetic 

before employment. The SMRs for diabetes were 3.1 (1.2–6.3, 7 observed deaths) 

in 362 ever-high-exposed female hourly workers and 3.7 (1.2–8.7, 5 observed 

deaths) in 184 hourly women who held a high-exposure job for 6 months or more. 

The SMR for diabetes was no longer significantly elevated in 122 female hourly 

workers who had worked in a high-exposure job for 1 year or more (209). In some 

other studies, no increase in mortality from diabetes mellitus was observed in 

capacitor manufacturing workers (300, 301) or in electric utility workers (250). 

However, mortality is a crude measure of diabetes. 

In a prospective study, the incidence of self-reported adult-onset diabetes 

mellitus in a US polybrominated biphenyl cohort established in 1976 was re-

ported. Follow-up data (n = 1 384) over 25 years showed that higher PCB serum 

levels in women, but not in men, were associated with increased incidence of 

diabetes among those without self-reported diabetes at enrolment. PCB serum 

measurements were available at enrolment, before the development of diabetes. 

Aroclors 1016, 1254 and 1260 were used as standards. The technical detection 

limits for PCBs were 3–5 µg/l. The serum PCB levels were grouped into 4 levels: 

≤ 5, 5.1–7, 7.1–10 and >10 µg/l. An increased incidence density ratio of having 

adult-onset diabetes was seen in women in all three higher PCB exposure groups 

(> 5.1 µg/l) when compared to the reference level (≤ 5 µg/l). After adjusting for 

other risk factors, women in these groups had a significantly increased (2–2.3-fold) 

incidence density ratio of diabetes. Reverse causation was judged to be unlikely 

by the authors. No relationship between exposure to polybrominated biphenyls 

and incidence of diabetes was found (410).  

In a recent study by Langer et al, serum levels of POPs including 15 PCBs were 

measured in 2 046 adults from a heavily polluted area in Slovakia. The data were 
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stratified into quintiles of PCB levels (n = 408–410 for each) and studied in re-

lation to e.g. fasting glucose and insulin, cholesterol and triglycerides. Upper PCB 

levels in serum for each quintile were 627, 906, 1 341, 2 343 and 101 413 ng/g 

lipid. Increasing PCB levels (as sorted in terms of quintiles) resulted in highly 

significant increases in the number of cases with increased fasting glucose (no. of 

cases per quintile: 171/190/235/272/295), increased fasting insulin (88/86/94/105/ 

122) and increased triglycerides (89/119/127/142/134) (222).  

In a later study, ORs for prediabetes and diabetes were given with the 1
st
 quintile 

serving as the reference group. The cohort (the same as in Langer, 2009 (222)) 

consisted of 296 patients with diabetes, 973 individuals with prediabetes and 778 

individuals with normal fasting plasma glucose. Adjusted ORs for the prevalence 

of prediabetes were significantly elevated for PCBs in the 3
rd

, 4
th

 and 5
th

 quintiles 

with ORs (95 % CI) 1.5 (1.1–2.1), 2.3 (1.6–3.2) and 2.7 (1.9–3.9), respectively. 

Adjusted ORs for the prevalence of diabetes were significantly elevated for PCBs 

in the 4
th

 and 5
th

 quintiles with ORs 1.8 (1.05–3.0) and 1.9 (1.1–3.2). Stepwise 

factor selection analysis indicated that the effect of DDT on the prevalence of 

diabetes surpassed that of the other measured POPs (395). 

Diabetes in relation to serum levels of PCBs and 3 chlorinated pesticides (in-

cluding DDE) was studied in an adult Mohawk population (n = 352) living in an 

area near a river and close to three facilities where PCBs (primarily Aroclor 1248) 

had been used. A total of 101 PCBs (excluding some of the most potent dioxin-

like PCBs) were measured in serum and the mean total PCB level was 5 µg/l  

(0.5–48) or 749 ng/g lipid (85–7 110). The levels were < 13 µg/l in 95 % of the 

subjects. The mean total serum levels of PCB 153 and PCB 74 were 0.7 and 0.3 

µg/l, respectively. The corresponding lipid-standardised values were 104 ng/g 

lipid for PCB 153 and 49 ng/g lipid for PCB 74. For total PCBs, a significant 

association for the highest tertile (≥ 5.3 µg/l) versus the lowest tertile (< 2.8 µg/l) 

was obtained with an OR for diabetes of 3.9 (95 % CI 1.5–10.6), but after con-

current adjustment for the other analytes (3 pesticides) the association became 

non-significant. For PCB 153, the association also became non-significant after 

adjustment for the other analytes. For PCB 74, the OR was 4.9 (1.7–14) and 3.6 

(1.0–13) before and after adjustment (calculations for wet weight) (72).  

Self-reported diabetes (positive answer of having been diagnosed with diabetes) 

was positively associated with serum levels of DDE and some PCBs in a study of 

a Canadian native population. Diabetes was reported by 25 of the 101 participants. 

Type 1 and 2 diabetes were not differentiated, but all participants reported the age 

at onset of diabetes to be at least 20 years. ORs for the prevalence of reported 

diabetes for those in the upper 75
th

 percentile for total sum of 8 PCBs (compared 

to those below the 75
th

 (sic!) percentile) were 4.9 (95 % CI 1.3–19) and 5.5 (95 % 

CI 1.3–24) for wet weight and lipid-standardised values, respectively. Similarly, 

ORs for PCBs 74 and 153 were 4.4 and 4.9 (wet weight values) and 6.1 and 6.5 

(lipid-standardised values), respectively. The sum of PCBs was 0.2–42 µg/l (mean 

8.2) and 44–8 863 ng/g lipid (mean 1 384) (292).  

No association between prevalent self-reported diabetes and sum of PCBs in 

serum (19 congeners) or years of sport fish consumption were reported in a study 

of 503 Great Lakes sport fish consumers. In the cohort, 61 cases of diabetes were 
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identified. DDE exposure and dioxin-like mono-ortho PCBs (PCBs 118 and 167) 

were associated with diabetes, but the association of the PCBs with diabetes did 

not remain significant after control for DDE exposure (392). The same authors 

investigated the associations of POP body burdens in 1994–1995 with incident 

diabetes in 1995–2005. DDE and 18 PCBs were analysed in serum (PCB 118 was 

the only dioxin-like PCB included). A total of 36 cases of diabetes were reported 

(data from 471 participants were used to calculate incidence rates). DDE, but not 

PCB 118 or sum of PCBs, was associated with incident diabetes after adjustment 

for age, body mass index and sex. Participants (n = 289) with known diabetes 

status and with repeat measurements of serum PCBs and DDE in 1994–1995 and 

2001–2005 were selected for metabolism analysis. The means of the annual percent 

change in DDE and PCB 132/153 were calculated and were not significantly dif-

ferent in participants with and without diabetes. This suggested that diabetes do 

not affect metabolism rates of these compounds (391).  

The association between serum levels of POPs and prevalence of self-reported 

type 2 diabetes among fishermen and their wives with high consumption of fatty 

fish from the Baltic Sea was investigated in a Swedish study. PCB 153 was ana-

lysed in serum from 380 subjects (196 men and 184 women, 22 diabetics in total). 

After confounder adjustment, PCB 153 was significantly associated with diabetes 

prevalence. An increase of 100 ng/g lipid corresponded to an OR of 1.2 (95 %  

CI 1.03–1.3, p = 0.03). Gender stratified analysis showed consistent positive asso-

ciations with PCB 153 among men. The prevalences of diabetes in relation to 

tertiles of PCB 153 serum levels were 0/64 (≤ 290 ng/g lipid), 4/61 (> 290–475 

ng/g lipid) and 8/58 (> 475 ng/g lipid) (p for trend 0.005). The trend for women 

was not significant, but their levels of PCB 153 in serum were lower. Diabetics 

also had significantly higher serum DDE levels with an increase of 100 ng/g lipid 

corresponding to an OR of 1.05 (95 % CI 1.01–1.09, p = 0.006). It was concluded 

that the study provided support that POP exposure might contribute to type 2 

diabetes mellitus, although the possibility of a reversed causality could not be 

completely excluded (323).  

In a later study (314), the focus was on fishermen’s wives from the Swedish 

east or west coasts, 15 women with type 2 diabetes mellitus and 528 non-diabetic 

women of which 23 participated also in the previous study (323). PCB 153 was 

significantly associated with type 2 diabetes, and an increase of 100 ng/g lipid 

corresponded to an OR of 1.6 (95 % CI 1.0–2.7, p = 0.05). However, the associa-

tion became weaker when age was included in the model. Significant positive 

trends were observed for PCB 153 and type 2 diabetes (p = 0.004) when the ex-

posure variables were categorised in quartiles. Mean (5
th

–95
th

 percentiles) serum 

levels of PCB 153 in women with and without diabetes were 130 (56–250) ng/g 

lipid and 98 (30–220) ng/g lipid, respectively. A positive association between 

serum levels of DDE and prevalence of type 2 diabetes was also found. The authors 

stated that there were no experimental data supporting that di-ortho-PCBs such as 

PCB 153 would have a diabetogenic effect by themselves, but PCB 153 serves as 

a good proxy marker for TCDD TEQs and the total POP-derived TEQs (314).  

In a recent paper, a case-control study (371 cases, 371 controls) within a cohort 

of Swedish women was reported. PCB 153 and DDE were measured in stored 
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serum samples. For 107 out of the 371 cases, serum samples were stored at least 

three years before their type 2 diabetes was diagnosed. In this data set, PCB 153 

and DDE were not associated with an increased risk. However, when only the 39 

cases that were diagnosed at least 7 years after the baseline examination and their 

controls were studied, an increased risk was seen for DDE (311).  

A recent prospective, nested case-control study within the Coronary Artery Risk 

Development in Young Adults (CARDIA) cohort indicated that some POPs in-

cluding PCBs were associated with incident type 2 diabetes over a follow-up of  

18 years (232). Of participants diabetes-free in 1987–1988 (year 2), 90 new cases 

of type 2 diabetes and 90 controls (had remained diabetes-free) were randomly 

selected after follow-up of 18 years. POPs measured in 1987–1988 sera were 8 

organochlorine pesticides (e.g. DDT and DDE), 22 PCBs and 1 polybrominated 

biphenyl. Serum concentrations of individual POPs (1987–88) were divided into 

quartiles (from the distribution in controls) with the lowest quartile used as re-

ference category. The levels of chlorinated POPs in 1987–1988 were much higher 

than current concentrations in the general population (CARDIA 2
nd

 quartile con-

centrations approximated the highest quartile in NHANES subjects). POPs showed 

non-linear associations with type 2 diabetes risk. The associations were strongest 

in the 2
nd

 quartiles of trans-nonachlor, highly chlorinated PCBs and PCB 74 (in 

particular before lipid adjustment), with significantly elevated ORs of 2.8, 3.2, 3.4 

and 3.2 for PCBs 74, 178, 180 and 187, respectively. PCBs with some affinity to 

the Ah receptor (PCBs 105, 118, 156) were not clearly associated with the risk of 

type 2 diabetes. Further, the 16 POPs (all but 4 were PCBs) with ORs ≥ 1.5 in the 

2
nd

 quartile were summed. In order to reduce POP levels in the reference group, 

subjects were categorised in sextiles (with the 1
st
 sextile used as reference group). 

The adjusted ORs in the 2
nd

 sextile for the 16 POPs were 5.9 (95 % CI 1.8–19) and 

5.4 (95 % CI 1.6–18) for wet weights and lipid-adjusted analyses, respectively, 

and the highest risk (OR 21) was seen for subjects with year 2 body mass index 

≥ 30 kg/m
2
. Adjusted ORs were not increased among those with body mass index 

< 30 kg/m
2
. The results were interpreted by the authors as a low-dose effect (in-

verted U-shape), possibly through endocrine disruption (232).  

Striking dose-response relations between serum concentrations of six selected 

POPs (detectable in ≥ 80 % of participants) and prevalences of diabetes (probably 

mainly type 2) were found in a study of 2 016 adult participants (217 diabetics) in 

a US study of the general population (NHANES 1999–2002). Diabetes was strong-

ly positively associated with all six POPs, especially PCB 153, oxychlordane and 

trans-nonachlor after adjustment. Interestingly, no association between obesity and 

diabetes was seen among subjects with non-detectable levels of POPs. However, 

there were few diabetics among those with non-detectable levels of individual POPs 

(e.g. 10/413 for PCB 153) and in the lowest calculated concentration category for 

the sum of the six POPs (< 25
th

 percentile) there was only 1 case in each of the 

body mass index groups ≥ 30 kg/m
2
 (n = 129) and 25- < 30 kg/m

2
 (n = 158). Serum 

levels of PCB 153 using percentiles among detectable values were given as 14.3 

(< 25
th

), 36.7 (25
th

–50
th

), 60.2 (50
th

–75
th

), 93.6 (75
th

–90
th

) and 164 (> 90
th

) ng/g 

lipid. Corresponding adjusted ORs were 2.5, 4.3, 5.9, 5.9 and 6.8. The authors 
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stated that the findings should be interpreted with caution because of the cross-

sectional nature of the study (229).  

In an extended cross-sectional study, associations between serum levels of 19 

selected POPs including 4 PCBs considered as “dioxin-like” (PCBs 74, 118, 126, 

156) and a group of non-dioxin-like PCBs (PCBs 138, 153, 170, 180, 187) and dia-

betes were investigated in 1 721 persons (179 diabetics). PCDFs and PCDDs were 

weakly associated or not associated with diabetes, while POPs belonging to PCBs 

or organochlorine pesticides were strongly associated. When the five subclasses of 

POPs were modelled simultaneously, only “dioxin-like” PCBs and organochlorine 

pesticides were significantly associated with diabetes. Non-dioxin-like PCBs were 

not associated with diabetes. When subjects were divided into quartiles based on 

serum concentrations, the ORs (95 % CI) for the “dioxin-like” PCB were 8.6 (2.3–

32), 16 (2.3–32) and 16 (3.4–71) compared to the lowest quartile. By use of separate 

models, ORs were even higher, e.g. OR 24 (7.0–84) for the highest quartile of 

dioxin-like PCBs. Of the individual dioxin-like PCBs, PCB 118 had the highest 

ORs, 5.1, 6.9, 7.5 and 13 compared to the reference level (non-detectable) (230). 

The relation of serum concentrations of POPs with insulin resistance (homeo-

stasis model assessment of insulin resistance) among 749 non-diabetic subjects 

was investigated using the same dataset. Some 19 POPs (five subclasses) including 

4 “dioxin-like” PCBs and 5 non-dioxin-like PCBs were selected. Significant asso-

ciations with elevated insulin resistance were only found for organochlorine pesti-

cides among subclasses but were also found (≥ 75
th

 percentile) for two non-dioxin-

like PCBs, PCBs 170 and 187, although not for PCB 153. The authors hypo-

thesised that chlordane may be the most important POP involved in the patho-

genesis of type 2 diabetes (228).  

Dirinck et al investigated the associations between serum levels of POPs (in-

cluding PCBs 138, 153, 170 and 180) and the prevalence of obesity. Obese (n = 98) 

and lean (n = 46) participants from the general population were examined (12 obese 

and 1 lean person had type 2 diabetes). An inverse relationship (Spearman rank 

correlation) between weight or body mass index and serum levels of all four in-

dividual PCBs or the sum of the four PCBs was found. Further it was reported that 

PCBs 153, 170 and 180 and sum of the four PCBs did correlate in a significantly 

inverse manner with fasting insulin, and similarly so PCBs 170 and 180 and sum 

of the four PCBs with insulin resistance (homeostasis model assessment). However, 

no significant correlation between fasting glucose and any of the PCBs could be 

established. The sum of the four PCBs in the entire group was 24–827 ng/g lipid 

(median 191) (97).  

In several studies, an association between high dioxin burden and increased risk 

of type 2 diabetes or modified glucose metabolism has been indicated (72, 323). 

The association of PCB 126, hexachlorodibenzo-p-dioxin and DDT with diabetes 

was evaluated in a large study using data from the NHANES 1999–2002 population 

(persons presumed to have type 1 diabetes were excluded from the analyses). Re-

lationships with diagnosed or undiagnosed diabetes and total diabetes were tested. 

All three compounds were significantly associated with diagnosed diabetes and 

PCB 126 and DDT also significantly with undiagnosed diabetes. An OR of 2.6 

(95 % CI 1.3–5.0) was reported for those having a PCB 126 blood concentration 
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> 84 pg/g lipid compared to those having a PCB 126 concentration ≤ 31 pg/g lipid 

when all the three chemicals were included in a combined model for total diabetes. 

The authors concluded that the results suggest that elevated levels of PCB 126 and 

DDT may contribute to the development of diabetes, although it cannot be ruled 

out that persons with diabetes retain more of those pollutants than persons not 

having diabetes (111). 

Uemura et al investigated associations between environmental exposure to 

dioxin-like compounds (including PCBs) and prevalent diabetes in the general 

population in Japan (n = 1 374, 65 subjects were defined as diabetics). Haemo-

globin A1c in plasma (a marker for diabetes) correlated with the accumulated 

TEQs of PCDDs/PCDFs, dioxin-like PCBs and total dioxins. The median TEQs 

for sum of 12 dioxin-like PCBs and for total dioxins in blood were 7.6 and 20 pg 

TEQs/g lipid, respectively. The 3
rd

 and 4
th

 quartiles of dioxin-like PCBs had ad-

justed ORs of 3.1 (95 % CI 1.2–8.8) and 6.8 (95 % CI 2.6–20), respectively (the  

1
st
 plus 2

nd
 quartiles were defined as reference). It was not possible to distinguish 

between type 1 and type 2, but most of the diabetics probably suffered from type  

2 diabetes (394). The same authors also studied the relationship between dioxin-

like compounds and metabolic syndrome (160 subjects were defined as having 

metabolic syndrome, of which 38 also had prevalent diabetes and were excluded). 

All of the TEQs (for PCDDs/PCDFs, PCBs, and total) were associated with the 

prevalence of metabolic syndrome. The OR was 7.3 (95 % CI 2.9–20) for dioxin-

like PCBs with ≥ 12.9 TEQs, compared to the referent category with < 4.3 TEQs 

in adjusted analyses. Further, ORs for the dioxin-like PCBs increased from 1
st
 to 

4
th

 quartiles (p for trend < 0.01) (393). 

A relationship between insulin sensitivity and exposure to PCBs (but not PCDDs 

or PCDFs) was reported in a study from 2008. Seventeen dioxins (PCDDs/PCDFs) 

and the 12 dioxin-like PCBs were measured in serum from 40 non-diabetic preg-

nant women. Three specific PCB congeners, PCBs 123, 126 and 169 (expressed 

as TEQs), were significantly associated with decreasing insulin sensitivity after 

adjustment for age and pre-pregnancy body mass index. Also, insulin sensitivity 

was predicted by the sum of TEQs for PCBs (mean value 5.2 pg TEQs/g lipid), 

but not by TEQs of PCDDs or PCDFs or total TEQs (adjusted by age and pre-

pregnancy body mass index) (62).  

In a 24-year follow-up study investigating type 2 diabetes of the Yu-Cheng co-

hort, the diabetes risk (compared to reference subjects) was significantly increased 

for women (OR 2.1, 95 % CI 1.1–4.5) but not for men after considering e.g. age 

and body mass index. Further, Yu-Cheng women diagnosed with chloracne had an 

adjusted OR of 5.5 (95 % CI 2.3–13.4) for diabetes compared to those who were 

chloracne free (406). Markedly elevated serum triglyceride levels were seen in the 

victims of Yu-Cheng and Yusho poisoning incidents. However, they were exposed 

to dioxin-like PCDFs in addition to PCBs (19).  

11.1.7 Some other endocrine/metabolic effects  

In a Slovakian study, 150 individual male blood samples from residents of a PCB 

contaminated area and from a reference area were collected. Seventeen PCBs 

were determined including the common congeners 138, 153 and 180 and dioxin-
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like congeners, e.g. PCBs 105, 118, 126 and 156. The total hexane/diethyl ether 

extracts of serum samples, containing both endogenous steroids and POPs, showed 

significant oestrogenic responses in the oestrogen receptor CALUX assay. Dioxin-

like activities measured in the POP fractions ranged from 0.2–2.9 pg TEQs/ml. 

Weak oestrogenic or antioestrogenic activities were found in the fractions of POPs 

but only in part of the samples. Antioestrogenic activity was detected more fre-

quently in the samples from the PCB-polluted region (in 17/75 samples). The total 

oestrogenic activity was moderately decreased, while the dioxin-like activity was 

increased in samples with high PCB levels (the 4
th

 quartile) ranging from 13.9 to 

175.5 µg/l serum (i.e. 1 866–32 509 ng/g lipid). The levels of 17β-oestradiol de-

creased (non-significantly) in the 4
th

 quartile (294).  

The relationship between serum concentrations of testosterone and levels of 

PCBs (12 individual PCBs, total PCBs, several groups of PCB congeners) or three 

chlorinated pesticides was studied in an adult Mohawk population. Serum samples 

from 257 men and 436 women were analysed for 101 PCBs, hexachlorobenzene, 

DDE and mirex. Testosterone concentrations in males were inversely correlated 

with total PCB concentrations, whether using wet weight or lipid-adjusted values. 

The OR (95 % CI) of having a testosterone level above the median was 0.17 (0.05– 

0.69) for adjusted total wet weight PCBs (highest vs. lowest tertile). Testosterone 

levels were significantly and inversely related (by use of logistic regression) to con-

centrations of PCBs 74, 99, 153 and 206 (ORs 0.15–0.33) but not to concentrations 

of PCBs 52, 105, 118, 138, 170, 180, 201 and 203. Inverse relations were also 

found for most PCB groupings (mono-, di-, tri/tetra-ortho-PCBs, dioxin-like PCBs 

(TEQs), ORs 0.30–0.35), but not for the group of non-persistent potentially oestro-

genic congeners (PCBs 31, 44, 49, 52, 70). Testosterone levels in females were not 

significantly related to serum PCBs. Hexachlorobenzene, DDE and mirex were 

not associated with testosterone levels neither in men nor in women. The mean 

(range) level of total PCBs in men was 5.9 µg/l (1.5–49) or 953 ng/g lipid (217–

7 908). The medians for serum testosterone in the highest PCB tertiles were around 

400–430 ng/dl. The normal reference values in men are 260–1 600 ng/dl (137) 

(see also Section 11.4.1).  

Hormonal status of 14–15-year old male adolescents (n = 887) was studied in 

relation to internal exposure to pollutants. Serum concentrations of testosterone, 

free testosterone, oestradiol and free oestradiol, and the aromatase index showed 

significant positive associations with serum levels of the sum of three marker 

PCBs. A doubling of serum concentrations of marker PCBs was associated with 

an increase of 16.4 % in serum testosterone concentration and with an increase  

of 7.4 % of 17β-oestradiol. The sum of marker PCBs (PCBs 138, 153 and 180) in 

serum as median (10
th

–90
th

 percentile) was 80 ng/g lipid (43–141). Associations 

between biological effects and internal exposures in terms of regression co-

efficients were stronger at exposures below the median than at exposures above 

the median. The authors stated that the results of this study differed from other 

published data (e.g. studies on adult men and on pubertal boys with prenatal ex-

posure to PCBs), and suggested that this might at least partly be due to the low 

serum PCB concentrations in this study (96). Later, data were presented regarding 

sexual maturation in relation to the levels of measured compounds in the 887 boys 
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and 792 girls. In boys, genital development (having reached at least stage 3) was 

significantly and positively associated with the sum of the three PCBs in serum 

after adjustment for the other pollutants (OR 2.2, 95 % CI 1.2–4.3, p = 0.011). In 

girls, the probability of having reached menarche was less (menarche later than 

the median) if serum concentrations of marker PCBs were higher. The sum of the 

three PCBs in girls as medians (10
th

–90
th

 percentile) was 53 (30–98) ng/g lipid 

(90). The results are in contradiction with previous findings as was acknowledged 

also by the authors. In earlier studies, either no effect on pubertal stages in boys 

was reported or serum PCB concentrations were associated with a delay in pubertal 

development. In girls, exposure to oestrogenic PCBs was associated with a greater 

probability of having reached menarche in one study (see below), whereas age at 

menarche was not related to total PCBs in some other studies (Section 11.4.2.5). 

Denham et al examined the relationship between menarche and levels of com-

mon environmental pollutants in blood of 138 Mohawk girls 10–16.9 years of  

age. The 16 PCBs with > 50 % rate of detection were included in the analysis and 

categorised into 3 groups (according to Wolff et al) (426), i.e. oestrogenic/neuro-

toxic (PCBs 52, 70, 101, 187), antioestrogenic/dioxin-like (PCBs 74, 105, 118 and 

138) and enzyme-inducing (PCBs 99, 153 and 180) PCBs. Also DDE, hexachloro-

benzene, mirex, lead and mercury were considered. Exposure to oestrogenic PCB 

congeners was associated with a greater probability of having reached menarche 

after adjustment for age, socioeconomic status and exposure to other toxicants. A 

100 % increase of oestrogenic PCBs above the geometric mean, from 0.12 to 0.24 

µg/l, was associated with 8.4 times greater odds of having reached menarche. As 

the levels of oestrogenic PCBs increased, the predicted probability of 12-year-old 

Mohawk girls having reached menarche increased from 52 % at the 25
th

 percentile 

to 69 % at the mean and to 86 % at the 75
th

 percentile. No relationship was observed 

between menarche and the other PCB groupings (i.e. antioestrogenic and enzyme-

inducing PCBs) (92).  

In a prospective study of a US cohort, time to menopause was investigated in 

relation to serum levels of PCBs and polybrominated biphenyls (PBBs) at enrol-

ment during the late 1970s. The menopausal status was assessed by telephone 

interviews in 1997 and 320 (302 analysed for PCBs) out of 791 participants were 

classified as postmenopausal. The serum PCB concentrations were measured as 

Aroclor 1254 (level of detection 5 µg/l) and were categorised as ≤ 5, > 5–11 and 

≥ 11 µg/l. The median PCB level was 5 µg/l (range: non-detectable to 78 µg/l). No 

association was found between PCB or PBB exposure and time to menopause (36). 

The urinary concentrations of 17-ketosteroids and 17-hydroxycorticosteroids 

were significantly lower in a group of 15 residents of a polluted area near a chemi-

cal factory producing organochlorine compounds including PCBs than in a control 

group. There was also significantly fewer sulphonated 17-hydroxycorticosteroids 

in the subjects exposed to PCBs as compared to the controls, while the percentage 

of sulphonated steroids was lower for both 17-ketosteroids and 17-hydroxycortico-

steroids in the PCB exposed subjects. The factory was in operation from 1930s to 

the 1980s. Totally 24 PCBs were determined in blood and the mean blood level in 

the exposed group was 61.9 µg/l (range 17.5–138) as compared to 3.2 µg/l (range 

0.8–10.4) in the control group (318).  
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A significant inverse correlation between adipose tissue PCB concentration and 

17-hydroxycorticosteroid excretion in urine was reported in the study by Emmett 

et al (100), possibly reflecting subtle metabolic effects of PCBs. Personal breathing 

zone samples showed PCB concentrations ≤ 60 µg/m
3
. TWAs (8-hour) of PCBs 

were 0.01–24 µg/m
3
. There was also PCB contamination of the hands. The PCB 

patterns in serum resembled Aroclor 1260 (19, 99-101). The measured total serum 

median values as reported in a later study (27 PCB peaks were quantified) were 

approximately 43 μg/l for currently exposed workers, 30 μg/l for formerly exposed 

workers and 13 μg/l for controls (114).  

11.1.8 Bone effects  

Recent epidemiological studies have yielded inconsistent results regarding whether 

environmental organochlorine exposure has an effect on bone properties (173). In 

153 peri- and postmenopausal Inuit women with high organochlorine exposure,  

no significant relationship between osteoporosis-related ultrasound bone measure-

ments and PCB 153 levels in plasma was seen after adjustment for potential con-

founding variables. Concentrations of PCBs 105 and 118 were not associated with 

the measured parameters in multivariate models, whereas significant associations 

were noted for PCB 156. The authors stated that this finding may be due to chance 

and needs to be replicated in another study. Fourteen PCB congeners (including 

PCBs 105, 118, 138, 153, 156 and 180) were measured and the sum of these was 

341–7 384 ng/g lipid (geometric mean 2 051 ng/g lipid). The geometric mean 

plasma levels for some of the PCBs were 23 (PCB 105), 122 (PCB 118), 579 (PCB 

153), and 77 ng/g lipid (PCB 156) (77).  

Glynn et al studied bone mineral density in 115 men from the general Swedish 

population. They measured ten PCBs and some other persistent organochlorines  

in serum. The mean serum levels of the most abundant PCBs were 42 (PCB 118), 

142 (PCB 138), 294 (PCB 153), 23 (PCB 156) and 216 (PCB 180) ng/g lipid, re-

spectively, and between 4.2 and 10 ng/g lipid for five other measured PCB con-

geners (PCBs 28, 52, 101, 105, 167). Multivariate regression analysis showed no 

significant associations between bone density variables and sum of PCBs. Also, 

no consistent concentration-dependent changes were found in adjusted means of 

bone variables when serum concentrations of single substances or the sum of PCBs 

were divided into quartiles (133).  

In another Swedish study (400), 196 fishermen and 184 fishermen’s wives from 

the Swedish east coast were investigated. Measurements of bone mineral density 

and biochemical biomarkers in serum of osteoblastic and osteoclastic functions 

were done. After adjustment for age and body mass index, no associations with PCB 

153 were shown. Median values for PCB 153 in serum were 370 and 240 ng/g 

lipid in men and women, respectively. The authors concluded that the results did 

not provide any support for the hypothesis that the current exposure levels to per-

sistent organochlorine compounds constitute a hazard for impaired bone meta-

bolism in the general Swedish population (400). Further, in a subset of 53 women 

(those with the highest and lowest bone mineral density), PCB 153, 4-hydroxy-

PCB 107, 4-hydroxy-PCB 146 and 4-hydroxy-PCB 187 were analysed in serum. 

No associations were found between bone mineral density or biochemical markers 
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of bone metabolism and the analysed compounds. PCB 153 represented about 25 % 

of total PCB, suggesting a total PCB serum concentration of 280–2 500 ng/g lipid 

in the cohort (415). 

In a recent study, Hodgson et al investigated a population with elderly (≥ 60 

years of age) men (n = 154) and women (n = 167) living near the Baltic coast, close 

to a river contaminated by PCBs. The mean levels of PCB 118 were 0.2 µg/l 

(range: < limit of detection–1.4) in men and 0.2 µg/l (< limit of detection–1.2) in 

women. The concentrations of the other four measured dioxin-like PCBs were 

lower. Expressed as TEQs, the mean blood concentrations of these mono-ortho 

PCBs (PCBs 105, 118, 156, 157 and 167) for men and women were 0.012 pg 

TEQs/ml (range 0.002–0.067) and 0.013 pg TEQs/ml (range 0.003–0.053), re-

spectively. The mean of the sum of PCBs 138, 153 and 180 was 2. 7 µg/l (range 

0.4–9.0) in men and 2.6 µg/l (range 0.7–7.0) in women. The corresponding mean 

levels for PCB 153 were 1.3 µg/l (range 0.2–4.4) and 1.3 µg/l (range 0.3–4.6). 

Multivariate linear regression analysis showed that none of the organochlorines 

studied was significantly associated with bone mineral density in men when en-

tered into the model individually, whereas PCB 118 was positively associated 

with bone mineral density in women. When the organochlorine variables were 

entered stepwise into the model, PCB 118 was inversely associated and the sum  

of PCBs 138, 153 and 180 was positively associated with bone mineral density  

in men. Dose-response relationships for risk of low bone mineral density were 

studied by dividing data into tertiles. In men, ORs (95 % CI) were 1.5 (0.5–4.0) 

and 2.1 (0.6–7.1) compared to the lowest tertile for PCB 118. When analysed as  

a continuous variable, the OR was 1.06 (1.01–1.12) for every 10 pg/ml (173).  

11.1.9 Neurological effects  

The main focus in human studies of nervous system effects following PCB ex-

posure has been on neonates and young children (19). There are also some studies 

that suggest such effects in workers occupationally exposed to PCBs. In these 

studies, the PCB exposure was very high and heating/explosion was sometimes 

mentioned, and thus, exposure to pyrolysis products such as PCDFs may have 

occurred. A sex difference for some effects on the nervous system was found in 

some of the studies (women seemed to be more sensitive than men) (7, 19, 352, 

356, 367, 370). Further, various neurological symptoms have been reported in 

adult victims of the Yu-Cheng and Yusho incidents and cognitive deficits in 

women were reported recently for one of these populations. However, these 

populations were also exposed to e.g. PCDFs (19, 240). Studies on the general 

population (e.g. fish eaters) do not allow firm conclusions regarding effects of 

PCBs on the nervous system, especially since there has been exposure to many 

other compounds as well. 

In a case report, three workers with considerable skin exposure to PCBs (in 

particular to Clophen A 30) while repairing or dismounting transformers (ex-

posure time 4–20 years) presented with distal-symmetrical sensorimotor poly-

neuropathy as well as encephalopathy. Two of the cases also suffered from chlor-

acne and irritation of mucous membranes (the PCB blood level of one case was 

4 500 µg/l). The standard of occupational hygiene was very poor and heating of 
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the equipment was reported. Clophen A 30 consists mainly of PCBs with a low 

degree of chlorine substitution (di-, tri- and tetrachlorobiphenyls) (7).  

Nerve lesions were also found in workers after PCB exposure (mainly di-, tri- 

and tetrachlorobiphenyls and/or their degradation products) during an accident 

when capacitors exploded and in the following cleaning work. The first air con-

centrations were measured about 5.5 hours after the explosion and the highest 

concentrations at that time were 8 000–16 000 µg/m
3
. Nausea, intense perspiration 

and headache were acute symptoms, which cleared quickly. Later, some of the 

workers complained of e.g. pin and prick sensations, itching or odd temperature 

feelings in their arms or legs. The 15 men with the greatest exposure were studied 

neurophysiologically 2 and 6 months after the explosion and the results were com-

pared to 30 unexposed workers. A reversible, slight impairment of the peripheral 

nerves was noted, mainly in the distal portions of sensory nerves where the con-

duction velocity and the amplitude of the sensory action potentials were decreased 

(356).  

Approximately 50 % of workers exposed to various Aroclors at a capacitor manu-

facturing plant for more than 5 years complained of headache, dizziness, depression, 

fatigue, memory loss, sleeplessness, somnolence and nervousness (the prevalence 

of the symptoms was not compared to a control group). Routine neurological ex-

amination did not reveal any remarkable prevalence of abnormalities. Extensor 

weakness was observed in 6 of the workers (1.8 %) and one worker presented tremor 

at physical examination. Other complaints from the workers in this study were e.g. 

chloracne, hyperpigmentation and irritation. Area concentrations were up to 11 000 

µg/m
3
. In addition to inhalation exposure, there was potential for skin contact and 

ingestion (19).  

In another study, a significant positive correlation between symptoms (question-

naire response) suggestive of altered peripheral sensation (tingling in the hands) 

and increasing concentrations of low-chlorinated PCBs in serum were reported. 

Overt clinical dysfunction was absent, but no further details were reported (only  

a brief physical examination was performed). The PCB components were quan-

titated as lower chlorinated and higher chlorinated biphenyls by comparing with 

Aroclors 1242 and 1254, respectively. Mean serum concentrations of the low-

chlorinated PCBs among workers at the electrical equipment manufacturing plant 

ranged from about 8 to 50 times background levels in the community. The mean 

serum levels of the high-chlorinated PCBs were about 2–4 times higher than back-

ground levels. Geometric mean serum levels of 502 µg/l (range 210–3 330) of low-

chlorinated PCBs (≤ 4 chlorine atoms) and 44 µg/l (20–250) of high-chlorinated 

PCBs (≥ 5 chlorine atoms) were found in 14 workers in an area of presumed high 

exposure. Community residents (n = 89) had geometric mean values of 11.6 and 

12.8 µg/l. TWA personal air sample concentrations of PCBs in some high-exposure 

areas were up to 264 µg/m
3 

(median 81 μg/m
3
). Also, skin contamination by PCBs 

was indicated (367).  

In a group of workers occupationally exposed to rather low air levels of Aro-

clors, frequent headaches, insomnia, and memory problems were significantly 

more prevalent compared to controls, as reported in a questionnaire, but the authors 

supposed that the symptoms were not related to PCBs. Breathing zone sample PCB 
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concentrations were ≤ 60 µg/m
3
 and 8-hour TWA concentrations of PCBs 0.01–24 

µg/m
3
 (in most cases below 13 µg/m

3
). Also, PCB contamination of workplace 

surfaces and of the hands was noted. The measured total serum median values (27 

PCB peaks were quantified) were approximately 43 μg/l for currently exposed 

workers, 30 μg/l for formerly exposed workers and 13 μg/l for controls. The PCB 

patterns resembled Aroclor 1260 (101, 114).  

A large retrospective mortality study of 17 321 PCB exposed workers investi-

gating neurodegenerative diseases has been published. The aim of the study was 

to determine whether mortality from Parkinson’s disease, amyotrophic lateral 

sclerosis (ALS) or dementia was elevated compared to the US population. All 

workers had at least 90 days employment in 1 of 3 electrical capacitor plants  

using PCBs from the 1940s to the 1970s. PCB serum levels from a sample of 

these workers in the 1970s were approximately 10 times the level of community 

controls and the most highly exposed workers had levels approximately 50 times 

higher than controls. No overall excess of Parkinson’s disease, ALS or dementia 

in the PCB exposed cohort was seen. However, sex-specific analyses revealed  

that women had an excess of ALS (SMR 2.3, 95 % CI 1.1–4.2, 10 deaths). Further-

more, among highly exposed women (defined by a job-exposure matrix) an excess 

of Parkinson’s disease (SMR 3.0, 95 % CI 1.1–6.4, 6 deaths) and dementia (SMR 

2.0, 95 % CI 1.1–3.4, 14 deaths) was seen. It was concluded that the data were 

limited due to small numbers and reliance on mortality rather than incidence data, 

but were suggestive of an effect of PCBs on neurodegenerative disease for women. 

It was also stated that a strong inverse relationship between current serum PCB 

levels and dopamine transporter density (a marker of substantia nigra neuronal 

death) was found among 12 female ex-workers, whereas no relationship among  

a larger number of male ex-workers was seen (370).  

Eighty-nine former capacitor workers (50 men and 39 women) underwent  

(
123

I) β-CIT SPECT (2β-carbomethoxy-3β-(4-iodophenyl)tropane single photon 

emission computerised tomography) imaging to estimate basal ganglia dopamine 

transporter density and the result was investigated in relation to serum PCB con-

centrations. This population represents one of the most highly exposed in the US 

and the majority of workers were exposed “only” to PCBs. In total, 27 PCB con-

geners and 9 organochlorine pesticides were determined in serum. Current total 

serum PCB concentrations (geometric mean) in men and women were 1 010  

and 950 ng/g lipid, respectively. An inverse relationship between lipid-adjusted 

total serum PCB concentrations and striatal dopamine transporter densities was 

found in female, but not male, workers in the absence of differences in serum  

PCB concentrations. Similar relations were also seen between total serum PCB 

concentrations and either putamen or caudate β-CIT densities. However, the  

data demonstrated a maximal reduction of between 20 and 25 % in striatal β- 

CIT binding in PCB exposed women and it was stated that a reduction of this 

magnitude is unlikely to be associated with clinical signs of parkinsonism (352).  

Subjects (n = 562) who had worked for an average of 14.7 years in a PCB con-

taminated building scored significantly higher complaint values on the 24-item 

GSCL-24 (subscales “exhaustion” and “limb complaints”) than the control group. 

Multivariate analysis confirmed that work in the contaminated building influenced 
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the intensity of complaints, although overall, thorough statistical analysis revealed 

no correlation between symptoms on the GSCL-24 scale and current PCB con-

gener plasma concentrations. The mean plasma concentrations in the exposed and 

control groups were 0.12 vs. 0.02 µg/l for PCB 28, and 0.02 vs. 0.004 µg/l for 

PCB 52. The mean value of PCB sum in plasma in the exposed group was 2.6 µg/l. 

The median sum of PCBs in air was 1.28 µg/m
3
. Several confounding variables 

(e.g. socioeconomic status, medication use) were left out in the study (46). 

No significant differences in subjective health complaints were seen in pupils 

attending a contaminated school using the GSCL for children/adolescents (e.g. 

exhaustion, pains in limbs and cold symptoms were assessed) compared to controls. 

Median concentrations in plasma for PCBs 28, 52 and 101 were 0.006, 0.009 and 

0.005 µg/l, respectively. The values for PCBs 138, 153 and 180 were much higher 

but not significantly different from controls. The total PCB level in plasma (95
th

 

percentile) was around 1 µg/l in both groups. Air levels of PCBs 28, 52 and 101 

were 0.004–0.6, 0.04–2.3 and 0.003–1.1 µg/m
3
, respectively. Total concentrations 

(sum of six indicator congeners × 5) ranged between 0.7 and 21 µg/m
3
 (median 

2.0 µg/m
3
) (237).  

Neuropsychological functioning of a group of 50–90-year-old fish-eaters (n = 

101) exposed to PCBs through fish consumption was assessed and compared to  

a group of non-fish-eaters (n = 78). No significant reduction of hand steadiness 

(Static Motor Steadiness Test) or significant effect on visual-motor coordination 

(the Grooved Pegboard Test) was revealed for PCBs or DDE. Indeed, scores on 

the hand steadiness improved slightly as PCB/DDE exposure increased. Serum 

levels of PCBs (16 vs. 6.2 µg/l) and DDE were significantly elevated in the fish-

eaters. Levels of lead and mercury were low in both groups but were slightly 

higher in the fish-eaters (19). 

In a later study, a battery of cognitive tests including tests of memory and 

learning, executive function and visual-spatial function was administered to 180 

subjects (101 fish-eaters, 79 non-fish-eaters). Blood were analysed for PCBs and 

10 other contaminants. Impairments in memory and learning were reported in the 

fish-eaters, whereas executive function was not impaired. After controlling for 

potential confounders, PCB but not DDE exposure was associated with lower scores 

on measures of memory and learning. These included the Weschler Memory Scale 

verbal delayed recall, the semantic cluster ratio, and list A trial 1 from the California 

Verbal Learning Test. In contrast, executive and visual-spatial function was not 

impaired by exposure to PCBs or DDE. The most striking effect of PCB exposure 

was the relationship between higher PCB exposure and delayed recall on the logical 

memory portion of the Weschler Memory Scale. Participants with serum PCB con-

centrations in the upper quartile (13.9–75 µg/l) scored on average about 2 points 

lower (9.67 vs. 7.66) than those in the lowest quartile (up to 4.6 µg/l). Still, the 

authors stated that it would be prudent to interpret the findings with caution until 

they had been replicated in another cohort (334).  

Fitzgerald et al evaluated neuropsychological status and PCB exposure among 

253 adults (127 men and 126 women, age 55–74 years) living along a partly con-

taminated river. Thirty PCB congeners were measured and their sum calculated  

as total PCBs. In addition, 9 dioxin-like PCBs were measured in serum and TEQs 
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were calculated. The mean serum total PCB concentration was 3.6 µg/l (537 ng/g 

lipid) and the mean PCB TEQ concentration was 34.2 pg/g lipid. A neuropsycho-

logical test battery of 34 tests capable of detecting subtle deficits in memory and 

learning, executive function, visual and spatial recognition, reaction time, motor 

function, affective state and olfactory function was used. Few variables were 

affected and it is possible that the significant observations were due to chance 

because of multiple statistical comparisons. After adjustment for potential con-

founders, an increase in serum total PCB concentrations from 250 to 500 ng/g 

lipid was associated with a 6 % decrease in verbal learning (California Verbal 

Learning Test). The deficits were limited to the highest PCB quartile and were 

strongest among men 55–60 years of age. Also, a 19 % increase in depression 

symptoms (BDI, Beck Depression Inventory) was found (250–500 ng/g lipid). 

The scores rose in both the 3
rd

 and 4
th

 quartile and the correlation was strongest 

for women 55–60 years of age. On the contrary, performance improved by 9 %  

as serum PCBs increased from 250 to 500 ng/g lipid in a test of visual immediate 

recall (Weschler Memory Scale). For single congeners, significant inverse asso-

ciations were apparent for PCBs 105, 118, 138, 170, 180 and 194 in the verbal 

learning test, and for PCBs 153, 170, 180, 183, 187 and 194 as well as PCB TEQs 

in the test for depressive symptoms. The low-chlorinated PCBs 28, 74 and 99 were 

not correlated to any of the tests (121).  

A neuropsychological evaluation of native American adults (Mohawks, n = 336) 

who were exposed to PCBs by environmental contamination was recently reported 

(149). The median serum PCB concentration was 2.2 µg/l (range 0.2–25). The 

neuropsychological functioning was assessed by a battery of 18 tests (effective 

sample size: 275–283). The measured variables represented clusters of memory, 

motor behaviour and executive functioning. Different statistical analyses were per-

formed and spline regression models were fitted to the latent variables of memory, 

motor function and higher-order executive functioning. PCBs were significantly 

related to outcome variables in the domains of executive functioning, motor func-

tioning and memory. After adjusting for age, gender and education, the analyses 

revealed a threshold effect of PCBs at approximately 2 µg/l. An age-PCB-inter-

action effect was also observed for several variables, which suggest that the thres-

hold effect was largely confined to the age range 40–79 and was not observable in 

the 18–40 year-old group. However, mean performance scores across the entire 

spectrum of neuropsychological variables were well within normal limits compared 

to normative groups.  

Various neurological symptoms (numbness, weakness, neuralgia of limbs, hypo-

esthesia and headache) and reduction in sensory and motor nerve conduction velo-

cities were reported in adult victims of the Yusho and Yu-Cheng incidents (19, 188). 

Among elderly women in the Yu-Cheng cohort, dose-dependent neurocognitive 

deficits in certain aspects of attention, visual memory and learning ability were 

reported. In exposed men, all test results were similar to the reference group (240). 

Since the victims were also exposed to PCDFs and other chlorinated chemicals, 

the findings cannot be solely attributed to PCBs (19, 188). 
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11.2 Mutagenicity and genotoxicity 

Available information on in vivo genotoxic effects of PCBs in humans is scarce. 

Workers with a PCB exposure for over 10 years in a PCB production unit in 

Czechoslovakia had an increased frequency of aberrant peripheral lymphocytes 

(3.4 %). In the workers exposed to PCBs for less than 10 years, no significant in-

crease in numbers of aberrant cells was observed and sister chromatid exchanges 

in peripheral lymphocytes were at control levels (202). The control and exposed 

groups were matched regarding smoking and alcohol drinking habits, but the ex-

posed workers were also exposed to benzene, which is a known carcinogen (19).  

An association between the percentage of sperms showing DNA fragmentation 

(%DNA fraction index (DFI)) and serum levels of PCB 153 was seen in sperm 

samples from Swedish fishermen. A significantly lower %DFI was found in the 

lowest PCB 153 quintile (< 113 ng/g lipid) compared to the other quintiles (p < 0.001) 

and this effect remained when age was included in the model (p = 0.006). The  

four highest exposed quintiles (> 113 ng/g lipid) had 41 % (95 % CI 11–78) higher 

%DFI than the lowest exposed quintile. The %DFI did not differ from each other 

in these groups (312). In a cross-sectional study involving 707 adult males (four 

cohorts) including the Swedish fishermen, it was shown that %DFI values of 

sperms increased with increasing serum levels of PCB 153. By considering all 514 

European men, an increasing risk with increasing level of PCB 153 across all 

exposure ranges emerged, reaching statistical significance in the highest exposed 

group (> 401 ng/g lipid). However, no association between PCB 153 and %DFI 

was found among Inuit men (368) (see also Table 16, page 112). 

In a recent study, biomarkers for genotoxicity were investigated in relation to 

levels of PCBs (PCBs 99, 118, 156, 170 and the sum of PCBs 138, 153 and 180) 

and other pollutants in whole blood, serum and/or urine from residents from areas 

with different types of pollution in Belgium. Among the reported findings were 

significant positive correlations between levels of micronuclei and DNA strand 

breaks (comet assay) in peripheral blood cells and serum levels of PCB 118 (86).  

11.3 Carcinogenic effects 

Overall evaluations 

The overall evaluation of carcinogenicity of PCBs (based on human and animal 

studies) made by IARC in 1987 was “probably carcinogenic to humans” (Group 

2A), although the evidence for carcinogenicity to humans was stated to be “limited” 

(186). PCBs were classified without distinction between dioxin-like and non-dioxin-

like congeners. Information on the possible carcinogenic risk of human exposure 

to PCBs came from studies of occupational populations and of populations exposed 

accidentally. IARC concluded that the available studies suggested an association 

between cancer and exposure to PCBs and that the increased risk of hepatobiliary 

cancer emerged consistently in different studies. The evidence was considered to 

be limited since the numbers of cases were small, dose-response relationships could 

not be evaluated and the role of compounds other than PCBs could not be excluded 

(186). Recently, IARC classified PCB 126 as a human carcinogen (Group 1) on 
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the basis of mechanistic information and animal data. There is strong evidence for 

an Ah receptor-mediated mechanism and PCB 126 is a complete carcinogen in 

experimental animals (24).  

In 1997, US EPA stated that the human data regarding PCBs were inadequate 

but suggestive of carcinogenicity (399).  

ATSDR (2000) examined some 50 studies published since 1976. The carcino-

genicity of PCBs was investigated in retrospective occupational cohort studies 

(mainly capacitor workers) using cancer mortality as endpoint, and in case-control 

studies of the general population examining associations between serum or adipose 

tissue PCB levels and cancer risk (mainly breast cancer). Many of the studies had 

methodological limitations. Overall, it was concluded that the human studies pro-

vided some evidence that PCBs are carcinogenic. It was assessed that some data 

suggested that occupational PCB exposures were associated with site-specific ex-

cess of cancer, particularly in the liver, biliary tract, intestines and skin (melanoma), 

whereas there was no clear association for cancer in other tissues, including the 

brain, haematopoietic and lymphatic systems. Case-control studies of the general 

population were considered inconclusive with respect to associations between 

PCB exposure and risk of non-Hodgkin’s lymphoma (NHL) or breast cancer, al-

though there were preliminary indications that particular subgroups of women 

might be at increased risk for breast cancer (19).  

Based on the same data, IPCS (2003) concluded that epidemiological studies 

suggested PCB exposure-related increases in cancers of the digestive system, 

notably the liver, and of malignant melanoma. Due to limitations of the studies, 

the data were considered insufficient for a clear identification of exposure-response 

relationships. It was stated that no consistent picture emerged for any cancer site, 

that many studies were limited by the small numbers of observed deaths and in-

complete exposure assessments, and that confounding exposures were present in 

some studies (188).  

In 2005, NTP concluded that several mixtures of PCBs were reasonably anti-

cipated to be human carcinogens based on sufficient evidence of carcinogenicity 

in experimental animals (284). The conclusion was mainly based on the IARC 

evaluations. 

Selected studies/reviews 

The most important cohort mortality studies reported by ATSDR with focus on 

the cancers primarily considered related to PCBs are described below. Later studies 

of occupationally exposed workers, e.g. follow-up studies of these cohorts, are 

also included. Studies of the general population examining associations between 

serum or adipose tissue levels of PCBs and occurrence of cancers, mainly those 

cancer diseases discussed in the recent literature in connection with PCBs, are also 

described. Due to the large number of studies reporting on breast cancer, principal-

ly reviews were used to describe current knowledge. 

One of the studies (33) examined by ATSDR was a retrospective cancer mortality 

study of 544 male and 1 556 female workers employed in the manufacture of PCB-

impregnated capacitors at an Italian plant for ≥ 1 week during 1946–1978 and fol-

lowed through 1982. Three measurements (Aroclor 1254) from 1954 showed air 
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PCB concentrations of 5 200–6 800 µg/m
3
, whereas in 1977, concentrations (Pyra-

lene 3010) were 48–275 μg/m
3
. In 1977 and 1982, mean concentrations of PCBs 

(Aroclor 1254) in blood were 283 and 203 μg/l, respectively. In men, the mortality 

(SMR, 95 % CI) from all cancers (1.8, 1.04–3.0) and from cancer of the digestive 

tract (2.7, 1.1–5.7) (6 cases: 1 liver, 1 biliary tract, 2 pancreas, 2 stomach) were 

significantly elevated. In women, the mortality from malignant tumours (2.3, 1.2–

3.8) and from haematological cancer (3.8, 1.1–8.8) was significantly higher than 

expected. In a subsequent study adding 9 years of follow-up, none of the excess 

mortalities remained significant, but mortality from digestive system cancers was 

still increased (SMR 2.0, 0.9–3.6). Among the limitations of the two studies were 

questionable grouping of digestive system cancers (19, 188).  

Two cases of liver and bile duct cancer were observed (0.78 expected, standard 

incidence ratio (SIR) 2.6, 95 % CI 0.3–9.3) in a small retrospective cohort study  

of male workers (n = 242) employed for at least 6 months between 1965 and 1978 

at a Swedish capacitor manufacturing facility and followed up through 1991. The 

workers were exposed to PCBs by air, but also dermal exposure was common. The 

airborne PCB level measured at one occasion was 100 μg/m
3
 (146). 

A retrospective study of 887 male and 874 female Yusho victims demonstrated 

significantly increased mortality from liver cancer in males, but not in females. 

However, there was no significant increase in one of two locations, and the cancer 

could not be conclusively associated with Yusho exposure. No significantly in-

creased mortality from cancer of the liver and intrahepatic bile ducts was found in 

a retrospective mortality study of 1 940 Yu-Cheng cases. In the latter cohort, an 

increase in mortality from Hodgkin’s disease was reported in the males (19). 

Another study examined by ATSDR was a large retrospective cohort mortality 

study of 138 905 male electrical utility workers in five companies, employed at 

power plants for at least 6 months between 1950 and 1986 (250). The degree of 

exposure to insulating fluids containing PCBs during the average working week 

was estimated by industrial hygienists, safety personnel etc. Overall cancer mor-

tality and mortality from cancer of the liver or brain were not related to cumulative 

exposure to dielectric fluids containing PCBs. Significant increases in mortality 

from malignant melanoma were reported for the mid- and high-cumulative ex-

posure groups, lagging exposure by 20 years. Risk ratios (RRs) were 2.6 (95 % CI 

1.1–6.0) and 4.8 (1.5–15), respectively, for cumulative exposures of 2 000–10 000 

hours and > 10 000 hours. The study is limited by small numbers of subjects in the 

groups with higher exposure and longer latency and possibly by incomplete control 

of confounding due to exposure to sunlight (19, 188).  

In an update through 1998 of an Indiana capacitor-manufacturing cohort (n = 

3 569 of which 852 women) exposed to PCBs from 1957 to 1977, an excess in 

mortality (SMR, 95 % CI) from malignant melanoma (2.4, 1.1–4.6, 9 deaths) and 

possibly from brain cancer (1.9, 1.0–3.3, 12 deaths; if omitting 2 possible meta-

stases 1.6, 0.8–2.9) was reported (321). However, melanoma mortality was not 

associated with estimated cumulative PCB exposure, and brain cancer mortality 

did not demonstrate a clear dose-response relationship with estimated cumulative 

PCB exposure. Other cancers of a priori interest (e.g. in rectum, biliary passages, 

liver and gallbladder) were not in excess, nor was breast cancer (in men and women 
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combined). PCBs, mainly di- to tetrachlorobiphenyls, were used as dielectric  

fluid and sometimes there was extensive dermal contact. Serum from 221 Indiana 

workers was collected in 1977 and mean PCB levels of 546 and 111 µg/l serum 

for the most and least exposed workers, respectively, were reported (321).  

A recent case-control study included 80 cases of malignant melanoma (patients 

from the general population) and 309 control subjects. Life-time sun exposure in-

formation, data on pigmentation variables and sun sensitivity data were collected 

along with a blood sample. Concentrations of organochlorine compounds including 

14 PCBs were measured in plasma (six PCBs were later excluded). Strong associa-

tions were seen between risk of malignant melanoma and plasma levels of the 

sum of the non-dioxin-like PCBs (adjusted OR 7.0, 95 % CI 2.3–21 for highest vs. 

lowest quartile, and p for trend < 0.001) or several individual PCB congeners. The 

strongest association was observed for PCB 187 with an OR of 11.5 (95 % CI 3.3–

40) and p for trend < 0.001. The OR for the dioxin-like congeners (PCBs 118 and 

156) was 2.8 (95 % CI 1.01–8.0) and p for trend was 0.003. Positive associations 

were also seen for some organochlorine pesticides. Plasma levels in the highest 

quartiles were > 192 ng/g lipid for the group of non-dioxin-like PCBs and > 23 

ng/g lipid for the sum of the two dioxin-like PCBs. According to the authors,  

the study had good control for sun exposure, sun sensitivity and phenotypic 

characteristics known to affect risk of melanoma, but the results need to be con-

firmed in larger investigations (126).  

A retrospective update through 1982 of mortality in a cohort (n = 2 588, initially 

studied through 1975) of workers at two electrical capacitor manufacturing plants, 

employed for at least 3 months and considered highly exposed to PCBs (Aroclors 

1254, 1242, 1016) between 1940 and 1976, was published in 1987. Personal TWA 

air samples of Aroclor 1016 were 24–1 260 µg/m
3
 in 1977, but the levels had pro-

bably been higher earlier. A small excess risk of liver-related cancers was seen, but 

by excluding one of the liver cancers that was not a primary carcinoma the SMR 

lost statistical significance (19, 301). In a later study, mortality was updated through 

1998 for 2 572 workers. The SMR was 1.2 (95 % CI 1.0–1.4, 157 deaths) for 

cancer mortality in the update time period. Six new “liver cancers” were observed. 

Mortality from cancers of the biliary passages, liver and gall bladder (referred  

to as “liver cancer”) was significantly elevated in the cohort for the period 1940-

1998 (SMR 2.1, 95 % CI 1.05–3.8, 11 deaths). The SMRs for men and women 

were 1.9 (0.5–4.8, 4 deaths) and 2.3 (0.9–4.7, 7 deaths), respectively. Elevations  

in mortality from “liver cancer” did not increase with duration of employment. 

Further, among women, mortality from intestinal cancer (excluding rectum, ICD-9 

code 152-153) was elevated (SMR 1.9, 95 % CI 1.2–2.8, 24 deaths), but did not  

increase with duration of employment. The SMR for NHL (men and women) was 

1.3 (95% CI 0.6–2.4) and 9 of 10 deaths occurred in one of two plants. The 

highest NHL mortality was observed among workers with less than 10 years of 

employment (7 deaths). The SMR for prostate cancer was 1.1 (95% CI 0.5–2.4). 

Six of the seven deaths occurred in workers with 10 years or more of employment 

(SMR 1.6, 95% CI 0.6–3.4) (300). 

When the above mentioned cohort (19, 300) was expanded to include all workers 

with at least 90 days of potential PCB exposure during 1939–1977 (n = 14 458) 
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mortality was not elevated for liver-related cancer (biliary passages, liver, gall-

bladder) overall, but increased with cumulative exposure (p for trend 0.071). 

Among women, intestinal cancer (excluding rectum, ICD-9 code 152-153) mor-

tality was elevated (SMR 1.3, 95 % CI 1.02–1.7, 67 deaths), especially in higher 

cumulative exposure categories, but without a clear trend. Among men, stomach 

cancer mortality was non-significantly elevated (SMR 1.5, 95 % CI 0.98–2.3, 24 

deaths) and increased with cumulative exposure (p for trend 0.039). Mortality 

from NHL, malignant melanoma, rectal, breast and brain cancers was neither in 

excess nor associated with cumulative exposure. For malignant melanoma, the 

SMR was 1.3 (95 % CI 0.8–2.0, 19 deaths) for male and female workers combined 

and 1.7 (0.9–2.8, 14 deaths) for male workers only. Mortality from multiple mye-

loma was significantly increased (SMR 1.8, 95 % CI 1.2–2.7, 28 deaths) in workers 

of both sexes (combined) in the total cohort, but was primarily elevated among men 

and in one of two plants. Prostate cancer mortality was not elevated (SMR 1.0, 

95 % CI 0.7–1.4, 34 deaths), but increased with cumulative exposure (p for trend 

0.0001). RRs were calculated for three higher exposure categories relative to the 

lowest. Significantly increased RRs for prostate cancer were seen in the highest 

exposure category with no lag and in the two highest categories with a 10- or 20-

year lag. The RR was 5.2 (95 % CI 1.7–16) for the second highest and 10.3 (3.5–

31) for the highest category at a 20-year lag. According to the authors, this was the 

first occupational cohort study showing a strong exposure-response relationship 

between cumulative PCB exposure and mortality from prostate cancer. The workers 

were typically exposed to PCBs both dermally and by inhalation (19, 301). 

Suggestive evidence of an association between PCBs and prostate cancer mor-

tality was seen in a nested case-control study (387 cases, 5 controls for each case) 

based on a cohort of 138 905 men who were employees of five US electric utility 

companies between 1950 and 1986. The OR for prostate cancer mortality among 

those with the highest cumulative PCB exposure (36 cases, 109 controls) was 1.5 

(95 % CI 0.97–2.2) after adjustment for suspected confounding factors (61).  

Groups of PCBs were investigated in a hospital-based case-control pilot study 

of 58 prostate cancer cases and 99 controls. Serum samples were analysed for a 

total of 30 PCBs. In multivariate analyses, the ORs of prostate cancer among men 

with the highest concentrations (≥ 0.49 µg/l) of moderately chlorinated PCBs or 

PCBs that were phenobarbital-type inducers were about 2.4 (significant only as 

non-lipid-adjusted OR) compared to men with the lowest concentrations (≤ 0.23 

µg/l). Moreover, based on a test for trend, the risk of prostate cancer tended to 

increase with increasing concentrations. Dioxin-like PCB congeners were not 

found to be associated with prostate cancer (315).  

In a case-control study, Hardell et al reported an association between adipose 

tissue concentrations of certain POPs and prostate cancer, significantly so e.g.  

for enzyme-inducing PCBs and lower chlorinated PCBs at prostate specific anti-

gen (PSA) > 16.5 ng/ml (154). The ORs for PCB 153 were 30 (95 % CI 3.2–284, 

28 cases, 10 controls) in cases with PSA > 16.5 ng/ml and 7.9 (2.0–31) in cases 

with PSA > 10 ng/ml. However, the findings must be interpreted with caution, 

since the confidence intervals were wide (154). 
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The association between plasma organochlorine level and prostate cancer was in-

vestigated in a nested-case control study within a large prospective cohort study of 

14 203 men 40–69 years old followed from 1990 to 2005 (mean follow-up period 

of 12.8 years). In total, 201 participants with newly diagnosed prostate cancer were 

matched with 402 controls. Associations were analysed for total PCBs, 41 indivi-

dual PCBs, PCB groupings according to Wolff et al (see Section 9.2), as well as 

for many other organochlorine compounds. Median plasma levels of total PCBs 

were 425 and 448 ng/g lipid among cases and controls, respectively. No significant 

increase in total prostate cancer was seen for any organochlorine compound. Total 

PCBs in plasma was inversely associated with advanced prostate cancer but with-

out statistical significance. The authors concluded that the results suggested that 

exposure to organochlorines is not associated with prostate cancer in general 

populations (333).  

Similarly, a recent case-control study with 79 incident prostate cancer cases  

and 329 matched controls indicated that long-term low-level exposure to organo-

chlorine pesticides and PCBs in the general population does not contribute to in-

creased prostate cancer risk. Seven pesticides and nine PCBs (PCBs 99, 118, 138, 

153, 156, 170, 180, 183 and 187) were measured in plasma and included in the 

risk analysis (separately and for PCBs also as a group). The geometric mean of 

total PCBs in plasma was 572 and 640 ng/g lipid in cases and controls, respective-

ly (17). 

The risk of NHL in subjects with occupational exposure to solvents, metals, or-

ganic dust and PCBs was investigated in an Australian study (694 incident cases, 

694 controls). Exposure to PCBs did not seem to increase the risk of NHL overall 

(OR 1.1, 95% CI 0.5–2.4), but only 25 subjects were considered exposed to PCBs. 

Those judged to have “possible” exposure to PCBs had lower risk of NHL than 

those with “probable” exposure. ORs for those with possible and probable exposure 

were 0.4 (95% CI 0.1–1.3) and 4.5 (0.97–21), respectively. Yet, no significant 

dose-response relationships were seen for PCBs when level, years or frequency 

were used as metrics of exposure. However, occupational exposure to solvents 

seemed to be associated with NHL (124).  

A nested case-control study (74 cases, 147 matched controls), part of a prospec-

tive US study, showed a strong dose-response relationship between prediagnostic 

serum PCB concentrations and risk of NHL. Twenty-eight PCBs and DDT were 

among the measured compounds in serum. Median concentrations of PCBs in 

serum were 951 ng/g lipid in patients and 864 ng/g lipid among referents. Matched 

ORs (95% CI) of developing NHL (2
nd

 to 4
th

 quartile compared to 1
st
 quartile) were 

1.3 (0.5–3.3), 2.8 (1.1–7.6) and 4.5 (1.7–12), respectively (p for trend 0.0008). 

Serum DDT concentrations were not associated with risk of NHL. There was 

evidence suggesting that seropositivity for the Epstein-Barr virus early antigen 

potentiated the effects of serum PCBs. The authors concluded that the results 

should be regarded as hypothesis-generating and required replication (319). 

According to Carpenter (57), a later report from the same group did not find a 

relation between NHL and any of nine other measured chlorinated pesticides. 

A study focusing on specific PCB congeners (102) examined lipid-corrected 

PCB concentrations in prospectively collected serum or plasma from NHL cases 
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and controls in three cohorts (nested case-control studies), one cohort from Norway 

and two cohorts from the US (including the one mentioned above in Rothman et 

al (319)). The number of participants in the three cohorts were 190 cases and 190 

controls (Janus, Norway), 74 cases and 147 controls (CLUE 1, US), and 30 cases 

and 78 controls (Nurses’ Health Study, US), respectively. All blood samples were 

collected in the 1970s or 1980s and 36, 28 and 21 PCB congeners, respectively, 

were measured in serum/plasma (concentrations of 36, 7 and 18 PCBs, respective-

ly, were above the limit of detection in at least 50 % of subjects). Particular focus 

was on PCBs 118, 138 and 153, which were moderately to highly correlated with 

each other. There were exposure-response trends for all three PCBs (and for total 

PCBs) with risk of NHL in all three cohorts, especially among subjects diagnosed 

closer to the date of blood collection. DDE slightly to moderately confounded the 

PCB associations. In the two larger cohorts, serum concentrations were categorised 

into quartiles of the distributions and stratified analyses were done for the subgroups 

with shorter follow-up periods (≤ 16 years and ≤ 12 years, respectively). In these 

subgroups, adjusted ORs (95 % CI) for the risk of NHL for highest versus lowest 

quartiles of PCB 118 were 5.3 (1.5–19) with p for trend < 0.005 and 13 (1.6–107) 

with p for trend < 0.05. In the smallest cohort, the maximum follow-up period was 

5 years, and when exposure to PCB 118 was divided into tertiles, the adjusted OR 

(95 % CI) for the highest tertile compared to the lowest was 3.3 (0.9–12) and p for 

trend < 0.05. In the three cohorts, the corresponding ORs (95 % CI) for PCB 138 

were 2.5 (0.9–7.1) (p for trend < 0.005), 7.8 (1.8–34.6) (p for trend < 0.005) and 3.8 

(1.1–13) (p for trend < 0.05), and for PCB 153 3.6 (1.3–9.9) (p for trend < 0.005), 

2.7 (0.7–9.8) (p for trend < 0.05) and 3.2 (0.9–11.8) (p for trend not given). Simi-

larly, the ORs for total PCBs were 2.9 (1.0–8.2) (p for trend < 0.05), 14.2 (2.2–91) 

(p for trend < 0.005) and 4.7 (1.2–19) (p for trend < 0.05). Also, many other con-

geners, e.g. PCB 180, had exposure-response trends in one or two of the three 

cohorts. The medians of the highest and lowest quartiles for total PCBs in serum 

were 2 148 and 1 048 ng/g lipid (Janus) and 1 377 and 551 ng/g lipid (CLUE 1) 

(102).  

In a population-based case-control study, 40 PCBs, 7 dioxins, 10 furans and 13 

pesticides or pesticide metabolites were measured in plasma of 100 untreated NHL 

cases and 100 control subjects (only 15 PCBs were included in the risk analyses). 

Significant exposure-response trends for an increased risk of NHL were reported 

for PCBs 156, 180 and 194. ORs (95 % CI) for highest quartiles versus lowest 

quartiles were 2.7 (0.97–7.5) (p for trend 0.03) for PCB 156, 3.5 (1.3–9.1) (p  

for trend 0.01) for PCB 180, and 2.7 (1.04–6.9) (p for trend 0.04) for PCB 194. 

Analyses of levels above the 95
th

 percentile showed slightly stronger associations 

for PCBs 180 and 194, but not PCB 156. No significant elevations of ORs or ex-

posure-response trends for increased risk of NHL were seen e.g. for PCBs 118, 

138/158 or 153. Total PCBs (non-coplanar PCBs) were associated with a non-

significant, increased NHL risk (OR 1.8, 95 % CI 0.7–5.1) for highest versus 

lowest quartile (p for trend 0.24). Corresponding ORs (95 % CI) for PCB TEQs 

and total TEQs were 1.5 (0.6–3.7) and 2.2 (0.8–6.2), respectively. Several furans 

were positively associated with NHL (87). 
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Plasma levels of dioxin-like PCBs 118 and 156 were significantly associated 

with increased risk of NHL with an OR of 1.8 for the highest versus lowest quartile 

in a Canadian population-based case-control study. Dioxin-like PCBs summed  

had an OR of 1.8 (95% CI 1.02–3.2) after adjustment for oxychlordane, although 

without a significant trend (p = 0.06). Some non-dioxin-like PCBs (PCBs 153, 

170, 180, 187) also showed significant associations. The PCB congener with the 

strongest association was PCB 180 (OR 1.9, 95 % CI 1.2–3.1). The OR for non-

dioxin-like PCBs summed was 1.6 (95 % CI 0.9–2.7) (p for trend 0.045) after 

adjustment for oxychlordane. In total, the study comprised 422 NHL cases and 

460 control subjects. The measured organochlorines included 14 PCBs, but only 

11 were included in the analyses. The sum of total PCBs in the highest quartile 

was > 220–6 571 ng/g lipid (369).  

In a prospective study, 205 NHL cases diagnosed 1982–2003 were compared  

to 409 matched control subject. DDE and PCB concentrations were measured in 

plasma samples collected in the early 1980s (14 916 men provided a blood sample). 

In total, 51 PCB congeners were assayed. Concentrations of PCBs were categorised 

in quintiles based on the distribution among controls and the lowest quintile was 

used as reference category. The risk of NHL was positively associated with the 

sum of 51 PCB congeners, the group of immunotoxic congeners (PCBs 66, 74, 

105, 118, 156 and 167), the individual PCB congeners 118, 138, 153 and 180, and 

the sum of the last four congeners. The simple OR for the highest versus lowest 

quintile for the sum of all PCBs was 1.9 (95 % CI 1.1–3.2, p for trend 0.001), with 

similar trends for individual congeners and groups. The median concentration for 

the sum of all PCBs in the highest quintile was 1 385 ng/g lipid (range > 1 121–

5 322) vs. 518 ng/g lipid (163–617) in the reference category. No association be-

tween DDE and NHL was observed. A comparison of the major NHL histologic 

subtypes and PCB exposure (across tertiles) indicated that the associations were 

somewhat stronger for the diffuse large B cell lymphoma and follicular lymphoma 

subtypes than for chronic lymphocytic leukaemia/small lymphocytic lymphoma 

(34).  

In a similarly performed study, no consistent evidence of an association between 

PCBs (total, immunotoxic or individual) and the risk of NHL was found. This case-

control study (145 NHL cases, 290 controls) was nested within the Nurses’ Health 

Study, a prospective cohort of US women. The median time to diagnosis for cases 

was 5.8 years. Women with a diagnosis of NHL before or within 6 months of blood 

collection and those with a prior diagnosis of cancer (other than non-melanoma 

skin cancer) were excluded. Median plasma levels for the sum of 51 PCBs were 

945 and 407 ng/g lipid in the highest and lowest quartiles, respectively (quartiles 

based on the distribution among controls) (218). 

In a recent Swedish study of 99 cases with NHL and 99 population based con-

trols, plasma concentrations of organohalogen compounds (including 35 PCBs) 

were measured. Median concentrations in the controls were used as cut-off. In  

the group with a sum of PCBs above the control median, the OR was 2.0 (95 %  

CI 0.99–3.9) for total NHL. For follicular NHL, significantly increased ORs were 

seen in groups with sum of PCBs (OR 5.9, 95 % CI 1.5–24), moderately chlorinated 

PCBs (5.8, 1.5–23) and highly chlorinated PCBs (9.6, 1.9–49) above the cut-offs. 
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An interaction with titres of antibodies to Epstein-Barr virus early antigen (IgG) 

was found. Increased ORs for total NHL and diffuse large cell NHL were observed 

in the groups with IgG > 40 (control median) combined with values predominantly 

above cut-offs for sum of PCBs, low-, moderately- or high-chlorinated PCBs, or 

“immunotoxic PCBs” (153). 

No evidence of an association between NHL risk and plasma levels of PCBs 

and organochlorine pesticides was found in a retrospective study in which nine 

PCB congeners (PCBs 28, 52, 101, 118, 138, 153, 170, 180, 194) and 17 organo-

chlorine pesticides were measured in plasma samples of 174 NHL cases and 203 

controls from France, Germany and Spain. Total PCBs, individual PCBs as well 

as functional PCB groups did not show an association with NHL or common sub-

types, namely diffuse large B cell lymphoma or chronic lymphocytic leukaemia/ 

small lymphocytic lymphoma, in the overall study population. When the Spanish 

study group alone was considered, the lack of an association with “immunotoxic 

PCBs (PCBs 138, 153, 180)” was confirmed with an OR for diffuse large B cell 

lymphoma of 0.7 (95 % CI 0.3–1.6) for plasma levels above the median, whereas 

the French and German subgroups combined had an OR of 3.2 (0.9–11.5) for plasma 

levels above the median and an OR of 6.1 (1.0–37.8) in the upper quartile. Half  

of the Spanish samples were taken after cytostatic treatment had been initiated. 

According to the authors, possible reasons for the heterogeneity included meta-

bolic interference by elevated blood concentrations of competing organochlorine 

pesticides and other PCBs, interaction with viruses and other pathogens, and 

genetic polymorphism (71). 

Colt et al showed that the relation between PCB 180 or TEQs in plasma and 

NHL risk may be modified by particular variants in immune genes. Thus, the asso-

ciations were limited to certain genotypes. The results suggested that interferon-γ 

and IL-4 broadly affected the relation between organochlorine exposure and NHL 

risk, whereas the effects of IL-8, IL-10 and IL-16 appeared to be limited to PCB 

180. Still, the results require replication in additional large studies and in pooled 

analysis (75). 

Regarding breast cancer risk among occupationally exposed, a review from 

2003 concluded that no increased risk for breast cancer had been found in retro-

spective cohort studies of workers exposed to PCBs (40). However, in a recent 

study, an increased risk of breast cancer among non-white female workers was 

suggested. In this study, 5 752 women employed for at least 1 year at any of three 

capacitor plants were followed through 1998. The overall exposure period for  

the cohort ranged from 1939 to 1977. In a sub-cohort of workers with complete 

questionnaire data regarding e.g. smoking, age at first live birth, breast cancer in 

female relative, and hormone use, the number of breast cancer cases by race were 

131 (white) and 14 (non-white). Among non-white women, the effects of increasing 

exposure were positive and statistically significant, whereas among white women, 

cumulative exposure and duration of exposure had little effect on breast cancer 

risk. Yet, the small number of non-white cases limits interpretation of the findings 

(360). 

In the general population, epidemiological evidence does not support the hypo-

thesis of an association between environmental exposure to PCBs in adulthood 
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and risk of breast cancer, although uncertainties remain for individual PCB con-

geners (e.g. oestrogenic short-lived PCB congeners) or selected subgroups of 

women. The vast majority of prospective and retrospective studies did not find 

any association between total PCB concentrations in serum, plasma or breast 

adipose tissue and breast cancer risk. A few studies have suggested that higher 

levels of PCBs possibly are related to increased risk of breast cancer recurrence  

or decreased survival (19, 47, 275, 325).  

The potential association between organochlorine exposure and breast cancer 

was investigated e.g. in the case-control study by Ward et al (2000). A total of 150 

controls were matched to 150 randomly selected cases by date of birth and date of 

sample collection, and stored pre-diagnostic sera from 1973 through 1990 from 

the Janus serum bank in Norway was used. Mean serum concentrations in cases 

and controls were compared for 26 PCB congeners with > 90 % of samples above 

the detection limits. Comparison was made for total PCBs and individual con-

geners, and the congeners were also grouped as proposed by Wolff et al (Section 

9.2) (no PCBs in group 1A). No significant positive associations for PCBs with 

breast cancer risk were shown. Total PCB mean serum concentrations were 4.8 

and 5.1 µg/l (776 and 807 ng/g lipid) in cases and controls, respectively (408).  

In recent years, a number of studies have investigated the influence of various 

genetic polymorphisms on the association between PCB levels and breast cancer 

risk. The most consistent evidence for a modifying effect of a polymorphism is  

for the CYP1A1 gene. Some studies have shown a higher breast cancer risk as-

sociated with higher PCB exposures among postmenopausal white women with 

the CYP1A1-m2 genetic variant (also referred to as CYP1A1*2B) (47, 134).  

11.4 Reproductive and developmental effects 

There are several studies concerning pregnancy outcome and other reproductive 

parameters in relation to PCB exposure, and the literature regarding, prenatal and/ 

or early life exposure to PCBs and effects on the foetus, child and young (or adult) 

is extensive. Some important studies and reviews are described in the sections 

below. For a more complete survey of this literature the reader is referred to re-

views by e.g. Bonde et al (2008), Boucher et al (2009), Schantz et al (2003) and 

Wigle et al (2008) (38, 41, 341, 420).  

11.4.1 Fertility and related effects 

11.4.1.1 Fertility and related effects: Men 

Occupational studies provide no clear indications of PCB-related reproductive 

effects in men. However, more recent epidemiological data on the general popula-

tion suggest an inverse association between PCB levels and sperm motility, al-

though no major impact on fertility has been shown (38, 158). In a review, Meeker 

and Hauser (2010) concluded that the associations on sperm motility were generally 

consistent across studies in different countries. The PCB exposure in these studies 

ranged from low to high “background” levels, the latter resulting from consump-

tion of contaminated fish, and to even higher “exposure” levels due to ingestion  

of contaminated rice oil. It was also stated that associations across studies were 
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fairly consistent with regard to an inverse association between PCBs and serum 

testosterone, though details of the findings varied (total testosterone, free or bound 

fractions) (269). Alternative explanations are possible, e.g. simultaneous exposures 

to other classes of chemicals with effects on male reproductive parameters (38, 

158, 269). Effects of PCBs on sperm counts are not generally supported by pub-

lished data, but results from a recent study suggest that men with specific poly-

morphisms in the androgen receptor gene might be more vulnerable (38, 325). 

In a study of transformer repair workers currently and previously exposed to 

PCBs from air and contaminated surfaces (predominantly Aroclor 1260), no dif-

ference in sperm counts was found between the 38 investigated subjects and 31 

unexposed workers, and no significant correlation with PCB concentration was 

seen. Eight-hour TWA concentrations of PCBs were 0.01–24 µg/m
3
 (sample con-

centrations up to 60 µg/m
3
) (100, 101). The measured total serum median values 

as reported in a later study (27 PCB peaks were quantified) were approximately 

43 μg/l for currently exposed workers, 30 μg/l for formerly exposed workers and 

13 μg/l for controls (114).  

An overview of the main results that emerged from INUENDO, a large-scale 

population-based epidemiological study evaluating xenobiotics as causes of sub-

fertility and other reproductive disorders (18 published core papers), was given by 

Bonde et al (38). The INUENDO studies combine four interview studies of time 

to pregnancy with four cross-sectional studies of male reproductive hormones and 

semen quality. Three study populations (Greenland, Warzaw, Poland and Kharkiv, 

Ukraine) included pregnant women and their male spouses. The fourth study pop-

ulation included Swedish fishermen and fishermen’s wives. Blood samples (PCB 

153, DDE) were obtained from 1 992 women and 1 172 men. The integrated xeno-

hormone (oestrogen receptor and androgen receptor) and dioxin-like (Ah receptor) 

activities in serum were evaluated by the CALUX assays and 5 male reproductive 

hormones in serum were measured. In addition, conventional semen characteristics 

were studied (participation rates 7–79 %, approximately 200 men at each site). The 

CALUX activities were only weakly correlated with PCB 153 and DDE, indicating 

that these organochlorines are not the important contributors to the measured xeno-

biotic serum activity. Across all study populations, none of the male reproductive 

hormone levels varied consistently with the serum concentrations of PCB 153 

(Table 16). Yet, in some (but not all) regions, several endocrine responses were 

associated with PCB 153 blood levels. The median serum concentrations of PCB 

153, as well as, DDE varied more than 10-fold between regions (38).  

Bonde et al (38) reported that progressive sperm motility was inversely related 

to serum PCB 153 levels among both Inuits and Europeans with consistent indica-

tions of exposure response relationships (Table 16). Sperm count and the proportion 

of morphologically normal sperm was not related to PCB 153 in any study group. 

However, among the subset of men with short androgen receptor polyglutamine-

encoding (CAG) repeat length, which makes up about one-fifth of the entire study 

population, high levels of PCB 153 were significantly related to low sperm counts. 

None of several seminal markers of epididymal and accessory sexual gland function 

varied consistently with PCB 153 serum levels across all regions. Damage of sperm  
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Table 16. Adjusted geometric mean values of male reproductive hormones in serum, 

semen characteristics and markers of epididymal and accessory sex gland function by 

categories of PCB 153 in serum (extracted from Bonde et al (38)).  

Male reproductive characteristics Inuits Europeans 

 Serum PCB 153 (ng/g lipid) Serum PCB 153 (ng/g lipid) 

 0–50 51–200 > 200 0–50 51–200 > 200 

No. of semen samples 

No. of blood samples 

10  

19 

8 

150 

104 

145 

300 

256 

182 

183 

87 

91 

Male reproductive hormones  

Follicle-stimulating hormone (IU/L) 4.2 4.1 4.5 3.9 4.3 4.8 

Luteinising hormone (IU/l) 3.1   3.9
 a
   4.1

 a
 3.7 4.0 3.7 

Inhibin B (ng/l) 160 170 182 184 182 165 

Sex hormone-binding globulin (mmol/l) 28 29 29 25  31
 a
  32

 a
 

Free testosterone 1.63 1.73 1.75 1.87 1.68
 a
 1.65

 a
 

Conventional semen characteristics 

Volume (ml) 4.3 3.4 3.0
 a
 3.1 3.6 3.3 

Concentration (million/ml) 58 52 53 46 53 64 

Count (million) 229 274 149 142 185 200 

Normal sperm (%) 8.0 5.9 5.9 6.2 5.8 5.3 

Progressive sperm (%) 65 57 53
 a
 60 57 51

 a
 

Sperm chromatin integrity 

DNA fraction index (%DFI) 8.0 7.6 7.5 9.9 12.8
 a
 15.4

 a
 

High DNA stainability (%HDS) 6.6 12.6
 a
 11.0

 a
 9.0 9.3 8.9 

DNA fraction index (TUNEL (%) 3.5 3.2 2.6 7.7 10.7
 a
 12.0

 a
 

Apoptotic markers 

Fas positivity (%) 22.3 16.6 17.6 17.3 16.3 21.6 

Bcl-xL positivity (%) 12.7 12.6 10.3 16.6 16.6 20.6 

Epididymal and accessory sex gland function 

Neutral α-glucosidase (mU/ejaculate) 25.0 16.6
 a
 15.7

 a
 18.5 26.8

 a
 24.8

 a
 

Prostate specific antigen (µg/ejaculate) 8.6   8.0
 a
   8.0

 a
 7.9   8.1

 a
 7.9 

Zinc (µmol/ejaculate) 6.6 4.8 4.2 4.5 5.9 5.1 

Fructose (µmol/ejaculate) 71 43 44 38 44 35 
a
 p-value < 0.05 (exposed versus reference group with PCB 153: 0-50 ng/g lipid). 

TUNEL: terminal deosynucleotidyl transferase dUTP nick end-labelling. 

 

chromatin integrity was considerably less frequent in Inuits compared to that in 

European groups, and only in the latter was impairment of sperm chromatin in-

tegrity related to PCB 153 levels (see also Section 11.2). Despite all these effects, 

fertility in terms of time to pregnancy was not related to PCB 153 except in Inuits 

for which this finding was of borderline significance and without obvious exposure-

response relationship. Also, there was a strong correlation between PCB 153 and 

DDE among Inuits and it has been suggested that the effect is most likely caused 

by DDE (see Axmon et al (23)). 

In an early study on PCBs and semen quality in the general population, analysis 

of the data by fertility status indicated that the seminal concentrations of PCBs 118, 

137 and 153 were inversely correlated with sperm motility in the subset of infertile 

men (19). Pines et al (1987) reported significantly higher blood levels of tetra- and 

penta- but not hexachlorobiphenyls or total PCBs in infertile males compared to 

the control population (19). However, levels of DDT and other organochlorine com-

pounds were also increased and because of these and other limitations in the two 

studies, possible effects on sperm counts and motility could not be solely attributed 

to PCB exposure (188). 
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In a study on 305 Swedish adolescent military conscripts (18–21 years), a weak 

but significant inverse correlation between PCB 153 in serum and the percentage 

of motile sperm cells assessed by computer-aided sperm motility analyser (CASA) 

was observed. An increase in PCB 153 levels by 10 ng/g lipid corresponded to 1 % 

decrease in the analysis. No such effect was seen for sperm concentration or total 

sperm count. Also, a reduced androgenic activity was implied (weak negative effect 

on free testosterone levels due to a positive correlation between PCB 153 and sexual 

hormone-binding globulin levels). The median PCB 153 level in serum was 65 ng/g 

lipid (309).  

In a study on 195 Swedish fishermen with a median PCB 153 serum level of 

193 ng/g lipid, the subjects in the highest quintile (range 329–1 460 ng/g lipid) 

tended to have a decrease in sperm motility compared to subjects in the lowest 

quintile (39–112 ng/g lipid), although not formally significant. Age-adjusted data 

for associations between PCB 153 and sperm concentration, total sperm count or 

hormone parameters were not significant. Neither were there any significant 

associations between DDE and reproductive hormones or semen characteristics  

in adjusted data (313). In a concomitant study, no associations between methyl 

mercury exposure and semen quality or quantity or synergistic effects between 

methyl mercury and PCB 153 were seen among Swedish fishermen (310).  

In a US study of men recruited from infertility clinics (n = 212), associations be-

tween semen parameters and 3 individual congeners (PCBs 118, 138 and 153) as 

well as the sum of 57 PCBs were explored. In addition, an analysis of the relation-

ship between semen parameters and groupings of PCBs, as proposed by Wolff et 

al (see Section 9.2), was conducted. There were significant inverse dose-response 

relationships in the adjusted analyses (ORs (95 % CI) per tertile) between PCB 138 

and sperm motility (ORs 1.7 (0.8–3.4) and 2.4 (1.1–5.0) with p for trend 0.03) as 

well as sperm morphology (ORs 1.4 (0.6–3.2) and 2.5 (1.06–6.0) with p for trend 

0.04). Also, there were inverse, although non-significant, relationships between 

the sum of PCBs and Group 3 PCBs (phenobarbital CYP1A and CYP2B inducers) 

with sperm motility and sperm morphology and weak evidence (non-significant) 

of an inverse association between DDE and sperm motility. The geometric mean 

levels of PCBs 118, 138 and 153 and the sum of PCBs in serum were 13, 34, 44 

and 226 ng/g lipid (159).  

Dallinga et al (81) recruited men with very poor semen quality (n = 34) and  

with normal semen quality (n = 31) from an infertility clinic. Blood concentrations 

of hexachlorobenzene, DDE, DDT, four PCBs and metabolites were determined. 

Mean blood concentrations of PCBs 118, 138, 153 and 180, and the sum of PCBs 

were 0.05, 0.37, 0.41, 0.33 and 1.17 µg/l, respectively. Overall, no relationship 

between the organochlorine levels and sperm count or progressive and overall 

motility was observed. Among men with normal semen quality, sperm count and 

sperm progressive motility were inversely related to the blood concentrations of 

combined PCB metabolites (81, 158). 

Higher percentage of sperm with abnormal morphology and a higher oligo-

spermia rate were seen in a study of 40 men from Taiwan who had ingested con-

taminated rice oil some 20 years earlier compared to 28 unexposed men. Reduced 

ability of sperm from exposed men to penetrate the hamster oocyte was reported. 
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No statistical adjustment for confounders was done, although age and percentage 

of smokers were similar in both groups (158).  

11.4.1.2 Fertility and related effects: Women  

Few data regarding fertility in occupationally PCB exposed women are available. 

In one study, no effect on number of pregnancies was observed in capacitor 

manufacturing workers (19). Results from studies of reproductive effects in females 

from the general population (including consumers of contaminated fish) are incon-

sistent. Regarding menstrual disturbances, it has been concluded lately that it is un-

likely that exposure to PCBs in the general population is a main cause, even at re-

latively high exposure levels (385). Studies of endometriosis do not clearly support 

or refute the possibility of an association with PCB exposure (160).  

As mentioned, very little information is available from the occupational ex-

posure situation. No apparent effect on number of pregnancies was observed in 

capacitor manufacturing workers exposed to Aroclors 1254, 1242 and/or 1016 for 

a minimum of 3 months between 1946 and 1975. Evaluation of birth data on 172 

high-exposure and 184 low-exposure workers showed no significant differences  

in the mean number of pregnancies (not adjusted for potential confounders). High-

exposure workers were directly exposed to Aroclors for at least 1 year prior to 

birth. Area air samples collected in 1977 showed geometric mean concentrations 

of 310 and 27 µg/m
3
 in the high- and low-exposure groups, respectively (19). 

An overview of 12 epidemiological studies assessing the relationship between 

endometriosis and organochlorine exposure was published by Heilier et al (160). 

Serum measurements included some/all dioxin-like PCBs, other dioxin-like com-

pounds and, in eight studies, non-dioxin-like PCBs. Only one of seven studies 

which took Ah receptor ligands into consideration demonstrated a significantly 

increased risk to develop deep endometriotic nodules associated with higher serum 

concentrations of dioxin-like compounds (PCDDs/PCDFs and all dioxin-like PCBs 

were measured). In a small study in which non-dioxin-like PCBs (marker PCBs) 

were measured, an OR of 3.1 (95 % CI 1.1–8.9) was reported for deep endometri-

otic nodules. None of the epidemiological studies demonstrated an association be-

tween dioxin-like compounds and peritoneal endometriosis, but one study reported 

a significant relationship with marker PCBs (PCBs 28, 52, 101, 105, 118, 138, 153, 

156, 167, 170 and 180). ORs were 6.5 (95 % CI 1.5–28) for levels of 250–360 ng/g 

lipid and 5.3 (1.3–23) for levels > 360 ng/g lipid compared to referents (< 250 ng/g 

lipid) (adjusted by age and smoking habits). According to the authors, the studies 

did not clearly support or refute a role for organochlorines in the etiopathogenesis 

of endometriosis. Still, they summarised that the deep nodular form of endometriosis 

appears to be associated with higher serum levels of both dioxin-like compounds 

(including PCBs) and marker PCBs (160).  

In a large epidemiological study from the US, self-reported menstrual cycle 

characteristics were assessed in relation to low-level exposure to DDE and PCBs. 

The mean PCB level in serum in the study population (2 314 pregnant women) 

was 3.1 µg/l (median 2.7 µg/l, samples collected in the early 1960s). An associa-

tion between increasing serum levels of total PCBs (11 congeners measured) and 

somewhat longer menstrual cycles was reported. The difference was 0.7 days in 
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the highest (≥ 5.0 µg/l) as compared to the lowest (< 1.2 µg/l) exposure group. 

Adjusted mean cycle length was not associated with DDE levels, and levels of 

PCB or DDE were not associated with bleeding duration, heavy bleeding or dys-

menorrhea (76).  

In another study, information on menstrual cycle characteristics were obtained 

by questionnaires, and PCB and DDE were measured in serum samples from a 

total of 1 494 women (from Greenland, Poland and Ukraine as well as Swedish 

fishermen’s wives). PCB 153 was used as a biomarker of PCB exposure. No con-

sistent effects of PCB exposure on menstrual cycle characteristics (cycle length, 

irregularity) were obtained across populations. The risk for short cycles (≤ 24 

days) increased markedly in the Swedish population with increasing PCB levels. 

The estimated PCB (and DDE) exposure in Sweden was higher than in the three 

other populations, but the differences in menstrual cycle characteristics between 

countries should be interpreted with caution. Since the observed effects in this 

study were not consistent, the authors considered it unlikely that PCBs are a main 

cause of menstrual disturbances, even in populations with relatively high levels of 

exposure (385).  

Findings for reproductive or developmental endpoints from a study of the  

population-based New York State Angler cohort have been detailed in several 

reports. Consumption of PCB-contaminated fish was associated with a slightly 

shorter length of menstrual cycle, but this was a preliminary finding and needs to 

be interpreted cautiously. No increased risk of conception delay in females was 

seen when time to pregnancy was used as the outcome measure of conception, but 

when the outcome measure was probability of conception in exposed versus un-

exposed during a given menstrual cycle (fecundability ratio), maternal consumption 

of fish for 3–6 years was associated with a reduction in fecundability. No increased 

risk for spontaneous foetal death was reported (19).  

The ability to become pregnant (time to pregnancy) was examined prospective-

ly in 83 women from the New York State Angler cohort. In total, 76 PCBs were 

quantified in serum and summed and further divided into three groupings according 

to Cooke et al, i.e. in relation to supposed oestrogenic and antioestrogenic effects 

(Section 9.2). The concentration of total PCBs was 16.2–32.8 µg/l in the 3
rd

 tertile 

and 10.6–14.5 µg/l in the 1
st
 tertile. No significant differences in PCB concentra-

tions (in tertiles) were observed by women’s ability to become pregnant. However, 

it was stated that oestrogenic and antioestrogenic PCB concentrations conferred 

reduced fecundability ORs (longer time to pregnancy) in fully adjusted models 

(OR 0.3, 95 % CI 0.03–3.9, OR 0.01, 95 % CI < 0.0–2.0), and the group of “other” 

PCBs increased fecundability OR (OR 1.4, 95 % CI 0.9–2.4) (52). 

Time to pregnancy (self-reported estimates) was studied by Law et al in 390 

pregnant women enrolled at 12 study centres in the US from 1959 to 1965. Mater-

nal serum samples (third trimester serum) were analysed for 11 PCB congeners, 

DDT and DDE after being frozen for more than 30 years. Evidence suggesting an 

association between increasing PCB levels and increased time to pregnancy was 

found when data were adjusted for e.g. DDE, age and smoking. Time to pregnancy 

increased in the highest (PCBs ≥ 5 µg/l) compared to the lowest (PCBs < 1.2 µg/l) 

exposure category with a fecundability OR of 0.65 and the same went for DDE. 
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When expressed on a lipid basis, increased time to pregnancy was attenuated 

slightly for women with higher serum PCB levels and was no longer associated 

with higher serum DDE levels. There were no PCB congener-specific associations 

with time to pregnancy, nor was there an association between DDT and time to 

pregnancy. The authors concluded that evidence of an association between PCB  

or DDE exposure and time to pregnancy was weak and inconclusive (225). 

No support for an inverse association between plasma concentrations of PCB 

153 and time to pregnancy was observed in Swedish east coast fishermen’s wives 

(n = 121) based on retrospectively estimated PCB 153 plasma concentrations at the 

time immediately preceding pregnancy. The subjects were categorised in a low-

(37–206 ng/g lipid), medium- (207–330 ng/g lipid) and high- (331–1 036 ng/g 

lipid) exposure group. Actual PCB 153 concentrations were available from plasma 

samples drawn in 1995 (median 144 ng/g lipid) (21). Fishermen’s sisters were 

investigated (n = 165) and these data as well as data for the combined group of 

fishermen’s wives and sisters (n = 286) were presented in a subsequent study (22). 

The median PCB 153 concentration in serum of the sisters was 115 ng/g lipid and 

estimated past PCB 153 concentrations in the low-, medium- and high-exposure 

groups were 45–148, 149–239 and 243–1 111 ng/g lipid, respectively (24–178, 

180–267 and 271–1 111 ng/g lipid, respectively, in the combined data set). A de-

crease in the time to pregnancy for the high-exposure groups was found among  

the fishermen’s sisters and was also present in the combined analysis (sisters and 

wives). Furthermore, the 16 fishermen’s sisters for whom the first planned preg-

nancy ended in a miscarriage had lower estimated past PCB 153 concentrations 

than the fishermen’s sisters with a live birth. The results were similar when the 

fishermen’s wives were included in the analysis. 

In a later study, time to pregnancy and exposure biomarkers in serum (e.g. PCB 

153) were obtained for 1 505 women in four cohorts, including 508 Swedish fisher-

men’s wives and women from Greenland, Poland and Ukraine. Exposure bio-

markers were also measured in 778 men (not in the Swedish cohort). The Swedish 

cohort had the highest serum concentrations of PCB 153 (median 150 ng/g lipid, 

95 % range 34–530). The main finding of the study was that in the Inuit population 

there may be a prolonged time to pregnancy associated with serum concentrations 

of PCB 153 and DDE, mainly for female exposure (still, the Inuit women had 

shorter time to pregnancy than women from Poland or Ukraine). The data from 

Sweden and Poland indicated no effect of PCB exposure on time to pregnancy, 

whereas a similar pattern as for the Inuits was seen for the cohort from Ukraine 

with respect to PCB 153, despite considerably lower exposure levels. However, 

the authors reported that previous studies indicated that the effect is most likely 

from serum concentrations of DDE (23). 

Menstrual irregularities (i.e. altered intervals, duration and flow) were observed 

in women exposed during the Yusho poisoning incident, but heating of the PCB-

contaminated rice oil also resulted in the formation of other contaminants of con-

cern, e.g. dibenzofurans and ter- and quarterphenyls (19). 
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 11.4.2 Effects in offspring 

11.4.2.1 Prenatal and childhood growth, sex ratio 

Few studies deal with birth weights of babies born to occupationally PCB exposed 

women. Epidemiological studies including new-born from women of the general 

population are conflicting (19, 98), although perinatal exposure to high con-

centrations of PCBs and structurally-related chemicals, as occurred in Yusho and 

Yu-Cheng, affects birth weight and growth during early life (19, 91). It was con-

cluded in the ATSDR review that no firm conclusions can be made regarding 

growth and development of children and environmental exposures to PCBs. Still, 

reduced birth weight from in utero exposure to some PCB mixtures or groups of 

congeners could not be excluded, at least at dose levels somewhat higher than 

those commonly occurring in the general population (19, 170, 274, 328). Further, 

a relationship between PCB exposure and developmental enamel defects of teeth 

has been suggested in a few studies on the general population, although the evi-

dence for maternal background PCB exposure was considered inadequate in a 

recent review (194, 195, 420).  

Women workers of two facilities that manufactured capacitors using Aroclors 

1242, 1254 and 1016 as their primary dielectric fluid were evaluated in two US 

studies (383, 384). Birth certificates and hospital/physician records for pregnancies 

between 1958 and 1975 were used to obtain information on e.g. birth weight and 

date of the last menses. The high-exposure workers were directly exposed to 

Aroclors for at least 1 year prior to birth. Infants (n = 51) born to 39 women with 

high exposure to PCBs had lower mean birth weights and shorter mean gestational 

ages than infants (n = 337) born to 280 women with low exposure to PCBs. After 

adjusting for gestational age, the difference in birth weight was markedly reduced. 

The infants born to high-exposure women were on average lighter than matched 

community controls, whereas those born to low-exposure women were heavier. 

However, as stated by the authors, there was no information on some important 

factors known to influence birth weight, e.g. tobacco use and maternal height (383). 

In a follow-up study by Taylor et al based on the same cohort, interviews were 

conducted with 405 women. A significant effect of estimated high-homologue PCB 

exposure on birth weight (decrease) was seen after adjustment for variables known 

to influence birth weight, but only in the absence of adjustment for gestational age. 

For gestational age, a small but significant decrease was also observed with an 

increase in estimated exposure. A total of 172 live births from pregnancies with 

direct-exposure and 184 births from pregnancies with indirect exposure were used 

in the analysis. Environmental monitoring had been performed at the facilities. The 

TWA of PCBs in personal air samples (n = 31) from workers in direct-exposure 

jobs in 1977 was 168 µg/m
3
 (geometric mean). Dermal contact with PCB occurred 

to some extent and there was exposure to other chemicals. Exposure statuses in 

1979 given as serum PCB concentration (geometric mean) for capacitor workers 

with direct-exposure jobs (n = 147) were 269 µg/l (low homologues), 33 µg/l (high 

homologues, as Aroclor 1254) and 302 µg/l (total PCBs). For 18 capacitor workers 

with indirect-exposure jobs, these figures were 50, 11 and 61 µg/l, respectively 

(384). Longnecker et al (248) stated that a large increase in exposure (20 µg/l high-



 

 118 

homologue PCBs in serum) in the study by Taylor et al (384) was associated with 

a small decrease in birth weight (33 g) and gestational length (1.1 days). 

The association between maternal occupational exposure to specific chemical 

compounds and birth of small-for-gestational-age infants was evaluated in a case-

referent study using data from a prospective cohort study of pregnant women in 

West Germany (1987–1988). No association was found with PCB exposure (12/ 

194 affected and 79/1 668 non-affected infants were considered to have PCB-

exposed mothers). Chemical exposure at the current workplace was assessed by 

a job-exposure matrix and PCB exposure categorised as low (353).  

Sagiv et al (2007) investigated birth outcomes in relation to cord serum PCB 

concentrations in 722 infants born 1993–1998. The mothers were residing for the 

duration of the pregnancy in towns adjacent to a PCB-contaminated harbour in 

Massachusetts. The sum of 51 PCBs, the sum of PCBs 118, 138, 153 and 180, the 

TEQs for the sum of 5 dioxin-like congeners (PCBs 105, 118, 156, 167 and 189) 

and for PCB 118 alone were studied. Weak inverse associations were observed 

between PCB levels and birth weight. Although imprecise and accompanied by 

wide CIs, mean birth weight was generally lower for higher quartiles of PCB ex-

posure across each congener grouping when the lowest quartile of exposure was 

used as referent (sum of 51 PCBs: range 0.07–0.24 µg/l serum in the reference 

group, ranges 0.24–0.38, 0.38–0.60 and 0.61–18.14 for quartiles 2–4). Weaker 

associations were detected for birth length and head circumference (328).  

Further, Sagiv et al reported four previous studies that supported an association 

between low-level PCB exposure and birth weight. In the Michigan study of 

mothers who consumed PCB-contaminated fish during 1980–1981, lower birth 

weight and head circumference were found among infants with maternal serum 

PCB levels ≥ 3 µg/l as compared to infants with maternal PCB levels < 3 µg/l. 

Overall, lower birth weight, smaller head circumference and shorter gestational 

age were positively correlated with total PCBs in cord serum (19, 328). In a Dutch 

study of births during 1990–1992, it was reported that infants with PCB cord plas-

ma levels of 0.8 µg/l weighed 165 g less than infants with 0.2 µg/l (no association 

was observed for birth length or head circumference). Similar effects were seen 

when using maternal plasma PCB levels as the exposure variable. Further, both 

cord and maternal plasma PCB levels were significantly associated with lower 

growth rates until 3 months of age in the formula-fed group. However, gender  

was not included as covariate in any of the linear regression models (19, 188, 328, 

429). Also the Child Health and Development Study of births between 1964 and 

1967 in the US California San Francisco Bay Area was positive (170) (described 

below). Another of the mentioned studies was a study of births during 1973–1991 

(Michigan anglers). In that study, lower birth weight was seen among those in the 

highest maternal serum PCB category. Six studies of birth weight not supporting 

an association with PCBs were mentioned by Sagiv et al as well. Among these 

were studies of the North Carolina cohort 1978–1982 and of the US cohort 1959–

1965. The latter study by Longnecker et al (248) is described below. According  

to Sagiv et al (328), studies that found associations with birth weight generally 

had greater levels of total PCBs than studies that found no associations with birth  
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Table 17. Median PCB 153 levels
 
in ten studies (adapted from Longnecker et al (249)).  

Location of  

population 

Years of specimen 

collection 

Number of 

specimens
 a
 

Median 

(ng/g lipid)
 b
 

US, 11 cities (CPP) 1959–1965 2 737 140 

US, California 1964–1967 399 130 

US, North Carolina 1978–1982 872 80 

US, Michigan 1980–1981 196 120 

The Netherlands, 2 cities 1990–1992 415 100 

US, New York 1991–1994 50 40 

Germany, Düsseldorf 1993–1995 126 140 

US, Massachusetts 1993–1998 160 30 

Denmark, Faroe Islands 1994–1995 173 450 

Canada, Northern Québec 1995–1998 159 100 
a 
Number of specimens on which reported or estimated PCB levels were based.  

b 
Data for maternal pregnancy serum (or plasma) or data for maternal milk re-expressed as levels  

in maternal serum.  

CPP: collaborative perinatal project, US: Unites States. 

 

weight, although the studies were not directly comparable because of different 

congener mixtures, biomarkers and analytical techniques.  

To compare exposure levels across 10 different study populations from the 

general population (including several of the cohorts described in this section), 

Longnecker et al compiled PCB levels as represented by PCB 153 (249) (Table 

17). By inspection of these data, no obvious correlation between effects on birth 

weight and median levels of PCB 153 in the different studies is seen. As an ex-

ample, the two studies (170, 248) published in 2005 analysing US exposure and 

birth outcome data from 1960s came to different conclusions despite similar 

median levels of PCB 153 (130 and 140 ng/g lipid). The study by Longnecker et 

al (248) examined births at 12 US study centres and found maternal serum PCB 

levels during pregnancy essentially unrelated to preterm birth, birth weight or 

length of gestation. An association of PCBs with small-for-gestational-age birth 

was observed, but the results were inconclusive and occurred in the absence of an 

overall decrease in birth weight. There was no suggestion that congeners differed 

in their relation to preterm birth or small-for-gestational-age birth (248, 377). 

Hertz-Picciotto et al investigated women in the US California cohort. This 

study found higher total in utero PCB exposure associated with reduced birth 

weight, smaller head circumference and reduced weight for gestational age in 

male infants. An increase from the 10
th

 to 90
th 

percentile of total maternal PCB 

serum concentration was related to 290 g lower (95 % CI -504 to -76) mean birth 

weight (adjusted) in males. Smaller head circumference and shorter gestation were 

present, but merely suggestive in girls. Total PCBs was calculated as the sum of 

PCBs 105, 110, 118, 137, 138, 153, 170, 180 and 187, and the concentrations were 

higher than most, but not all, populations under study today. The median levels of 

total PCBs were 616 (5
th

 and 95
th

 percentiles 378 and 1 115) ng/g lipid (170, 377).  

Recently, the same team reported that the RR of a male birth decreased by 33 % 

comparing women at the 90
th

 percentile of total PCBs to women at the 10
th

 per-

centile of total PCBs (RR 0.7, 95 % CI 0.5–0.9, p = 0.02) or by approximately 7 % 
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for each 1 µg/l increase in total PCB concentration. All nine PCB congeners with 

< 30 % of samples below the limit of quantitation showed the same direction of 

association. The authors concluded that maternal exposure to PCBs may be detri-

mental to the success of male sperm or to the survival of male embryos. Findings 

could be due to contaminants, metabolites or PCBs themselves (171).  

Tan et al assessed prenatal exposure to POPs (41 PCBs, 7 polybrominated 

diphenyl ethers, 9 pesticides) by determining umbilical cord blood levels in 41 

samples collected in Singapore and compared with quantitative neonatal variables. 

The median level for total PCBs was 30 ng/g lipid (range 5.7–138). It was in-

dicated that chlordanes and PCBs affected birth weight, length and head circum-

ference inversely, whereas other pesticides exhibited positive effects. The presence 

of PCBs in cord blood seemed to be related to a lowered Apgar score at 1 minute 

post-birth. Presence of inorganic lead and organic mercury was not investigated 

(381). 

A US study investigating prenatal exposure to PCBs and height and weight in 

children (n = 150) born 1959–1962 showed that maternal PCB levels were associ-

ated with reduced weight among girls, but not among boys. A doubling of maternal 

levels of mono-ortho-substituted PCBs was associated with an 11 % reduction in 

weight measured at 4 and 7 years. The magnitude of association was slightly less 

for PCBs with greater degrees of ortho-substitution. The results of the analyses 

using height as the outcome were more equivocal and had a much smaller magni-

tude of association than that seen for the weight analyses. Results of 21 congeners 

(PCBs 15, 28, 56, 66, 74, 99, 101, 105, 118, 138, 146, 153, 156, 167, 170, 174, 180, 

183, 187, 199, 203) measured in serum during pregnancy were used. The mean 

level of all PCBs in maternal serum was 9.2 µg/l (219).  

In a prospective study by Murphy et al, serum samples were collected from  

99 women (from a larger population-based cohort of New York anglers who pre-

viously participated in a study focusing on fish consumption and health) as they 

began trying to become pregnant (1996–1998, preconception) and after a positive 

pregnancy test (prenatal). The 52 women that gave birth represented the study 

cohort. PCB congeners were quantified and subsequently categorised by purported 

biological activity (total PCBs, antioestrogenic PCBs, oestrogenic PCBs and other 

PCBs). Mean total PCB concentrations were higher at baseline (preconception) 

than during the prenatal period (5.6 vs. 4.7 µg/l). Median preconception total PCB 

levels when grouped into tertiles were 4.6 (range 4.1–5.0), 5.3 (5.1–5.4) and 6.3 

(6.2–7.0) µg/l. The relation between preconception PCB concentrations and birth 

weight varied with PCB grouping. For antioestrogenic PCBs, a 471 g reduction 

in birth weight was reported for women in the highest compared to the lowest 

tertile of exposure when adjusting for study covariates (p = 0.048), whereas no 

such decrement was found for oestrogenic PCBs. Nor was there a significant 

decrease for total PCBs. Further, when exploring a possible interaction between 

PCBs and infant sex, no significant effects were observed (274).  

However, decreased male/female ratio following maternal exposure to PCBs 

from contaminated sport-caught fish was observed in a retrospective cohort study, 

whereas there was little evidence of an association with paternal exposure. Parental 

serum PCB concentration was examined in relation to the sex ratio of 173 children 
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of mothers and 208 children of fathers from the Great Lakes, US between 1970 and 

1995. The adjusted OR for having a male child was reduced by 82 % (OR 0.2, 95 

% CI 0.1–0.6) among mothers in the highest quintile of serum PCB concentration 

compared to the lowest quintile. No association was found between DDE con-

centration and sex ratio. The geometric mean of serum PCBs in mothers was 4.7 

µg/l (range 3.0–12.1) in the highest quintile compared to 0.7 µg/l (0.5–0.9) in  

the lowest quintile. Serum measurements were made several years after the birth 

(416). 

Decreased birth weight (and growth during early life) and nail malformations 

were commonly reported among children exposed in utero in the Yusho and Yu-

Cheng incidents, but it should be kept in mind that there was exposure to relative-

ly high concentrations of PCDFs and other structurally related chemicals in both 

poisoning episodes (19, 41, 91). No alterations of the sex ratio among children of 

exposed mothers were found following the poisonings (416). 

In a review by Wigle et al, some epidemiological evidence was presented showing 

that maternal high-level exposure to PCBs/PCDFs and related compounds (i.e. the 

Asian rice oil poisoning incidents) can produce developmental tooth abnormalities, 

including hypomineralised enamel defects of permanent teeth. However, the evi-

dence for maternal background PCB exposure was considered by the authors to be 

inadequate (420).  

In a Slovenian study (cited in the review), 202 children living in a PCB-con-

taminated region and 202 matched controls were investigated. TEQ-intake from 

food was estimated to be approximately 40 pg TEQs/kg bw/day in exposed children. 

The percentage of PCB exposed children and of controls with defects of enamel  

in at least one permanent tooth was 71 % and 50 %, respectively (p = 0.0019). The 

enamel was abnormal in 22 % and 13 % of the permanent index teeth of exposed 

and control children, respectively (p = 0.0001). No significant correlations were 

found between PCB exposure and developmental effects in deciduous teeth (195). 

A later study included 208 Slovakian children (8–9 years of age) living in an 

area where PCBs from a chemical plant had contaminated the surrounding district, 

and 224 children from a less exposed area. Mean TEQ levels of PCB in serum were 

40 times higher than background levels in samples from the heavily polluted area. 

The children were categorised into three groups according to their serum PCB con-

centration (< 200, 200–600, > 600 ng/g lipid). A dose-response relationship between 

PCB exposure and developmental enamel defects of permanent teeth in children 

was observed. PCB exposure was significantly associated with developmental 

enamel defects of deciduous and permanent teeth in bivariate analysis, but in multi-

variate linear regression analysis PCB exposure was significantly related to enamel 

defects of permanent teeth only (194).  

11.4.2.2 Neurodevelopment 

Significant associations between PCB exposure and child neurodevelopment and 

cognition have been found in some studies but not in others. A number of neuro-

behavioural functions have been reported to be associated with pre-/neonatal ex-

posure to polyhalogenated aromatic hydrocarbons, mainly PCBs, although dis-

crepancies exist in terms of the spectrum of effects (neuromotor vs. cognitive), per-
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sistence of effects and effective matrix (maternal vs. cord serum or breast milk) 

(424). Also, the laboratory procedures used for PCB exposure analysis vary across 

studies (cohorts). To facilitate a future comparison of studies of neurodevelopment, 

Longnecker et al (249) made an attempt to express the exposure levels from 10 

such studies of PCBs in a uniform manner using a combination of data from original 

investigators, laboratory reanalyses, calculations based on published data, and ex-

pert opinion. The mainstay of the comparison was the median level of PCB 153 in 

maternal pregnancy serum (Table 17, page 119). If the concentration of PCB con-

geners responsible for the toxicity is proportional to that of PCB 153, the latter is 

likely to give a useful indication of the relative exposure level across studies. Still, 

there are differences between the cohorts, e.g. in the ratio of median concentrations 

for PCB 118/PCB 153, which was 0.18–0.87 (249). Also, it was reported in a re-

cent review that the studies demonstrating the larger number of significant effects 

on cognitive functions were not the most highly exposed cohorts (41). Overall, 

EFSA came to the conclusion that there are indications that subtle developmental 

effects caused by non-dioxin-like PCBs, dioxin-like PCBs or PCDDs/PCDFs, 

alone or in combination, may occur at maternal body burdens only slightly higher 

than those expected from the average daily intake in European countries (98).  

The associations between biological markers of prenatal PCB exposure and per-

formance of cognitive tasks reported in studies from nine prospective longitudinal 

birth cohorts were summarised and classified  by Boucher et al (41). It was 

suggested that prenatal PCB exposure affects only certain cognitive functions 

rather than all aspects of cognitive functioning in children. The most consistent 

effects observed across studies were impaired executive functioning. Negative 

effects on speed of information processing, verbal abilities and visual recognition 

memory were also reported in most studies. It was suggested that all these detri-

mental effects could be responsible for the IQ effects observed in some cohorts.  

A brief summary of the results from different cohorts are given in Table 18 (de-

tailed information on type of tests and test results are given in Boucher et al). The 

authors considered it unlikely that coexposure with another contaminant was re-

sponsible for the observed effects, since the results were converging, although 

there were different sources of PCB exposure (fish, dairy products, meat). How-

ever, it was also stated that executive functions are sensitive to several disorders 

such as attention deficit and hyperactivity disorder, autism and obsessive-com-

pulsive disorder, and exposure to other neurotoxicants e.g. lead (41). Some of  

the studies emerging from the cohorts are briefly described below. 

Neurodevelopmental effects were investigated in a prospective longitudinal 

study of 242 infants born to mothers who had consumed contaminated fish from 

Lake Michigan and 71 infants born to mothers who were non-consumers (the 

Michigan cohort). The mean PCB levels in maternal serum were 6.1 µg/l among 

the fisheaters and 4.1 µg/l among the non-consumers. Dioxins and dioxin-like 

PCBs were not measured. 

Consumption of contaminated fish and levels of PCBs in umbilical cord serum 

was positively correlated with lower birth weight, smaller head circumference and 

shorter gestational age. Also, fish consumption (but not cord serum PCB levels) 

was positively correlated with impaired autonomic function and increased number  
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Table 18. Neurobehavioural effects in children of prenatal PCB exposure (simplified scheme based on the review by Boucher et al, 2009 (41)). 

Cohort 

(birth year) 

Median 
a
 

serum PCB 

153 (ng/g lipid) 

MDI PDI IQ total Verbal 

functions 

Visual-

spatial 

functions 

Verbal  

and/or visual 

memory 

Attention Executive 

functions 

Auditory 

and/or visual 

functioning 

Motor 

function 

Japan, Hokkaido 

(2002–2004) 

23 ↔ ↔ − − − − − − − − 

US, Oswego
 b
 

(1991–1994) 

40 − − ↓ ↓ ↓ ↓ ↔ ↓ − − 

US, North Carolina 

(1978–1982) 

80 ↔ ↓ ↔ − − ↔ − − − − 

The Netherlands 

(1990–1992) 

100 ↔ ↓ ↓ ↓ ↔ ↓ ↓ ↓ − ↓ 

Canada, Nunavik
 c
 

(1995–1998) 

100 − − − − − − − − ↔ ↔ 

US, Michigan 

(1980–1981) 

120 ↔ ↔ ↓ ↓ ↔ ↓ ↓ ↓ − ↔ 

Germany 

(1993–1995) 

140 ↓ ↓ ↓ − − ↔ − − − − 

US, CPP
 
 

(1959–1965) 

140 ↔ ↔ ↔ − − − − − ↔ − 

Denmark, Faroe 

Islands (1986–1987) 

450 
d
 − − − ↔ ↔ ↔ ↔ − ↓

e
 ↔ 

a 
Estimated in maternal serum. 

b 
State of New York. 

c 
Cohort Northern Quebec. 

d 
Estimated from maternal serum specimens collected in a later Faroese birth cohort. 

e 
Hearing effect. 

CPP: collaborative perinatal project, IQ: intelligence quotient, MDI: mental development index, PDI: psychomotor development index, US: United States. 

−: not assessed, ↔: no significant effect, ↓: significant decreased performance on one or more of the measured parameters (tests). 
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of abnormally weak reflexes on neonatal behavioural assessment scale (NBAS) 

and significantly associated with decreased neuromuscular maturity measured on 

the Ballard Scale (19, 109, 188, 341). Cognitive functioning was assessed at 5 

months, 7 months, 4 years and 11 years of age. Neither maternal fish consumption 

nor cord serum PCB levels were related to scores on the Bayley Scales of Infant 

Development at 5 months. In contrast, both exposure measures were associated 

with less preference for the novel stimulus on Fagan test of infant intelligence (a 

measure of visual recognition memory) at 7 months and cord serum PCB levels 

were the stronger predictor. Visual recognition memory was unrelated to neonatal 

variables such as birth size, gestational age and NBAS performance and to post-

natal PCB exposure from nursing. At 4 years of age, cord serum PCB levels were 

associated with poorer performance on two tests involving short-term memory 

(McCarthy scales), whereas there was no indication of perceptive motor deficits or 

alterations of long-term memory. It was stated that the deficits were not attributable 

to exposure to polybrominated biphenyls, lead or seven other organochloride pesti-

cides, since these variables were controlled for (19, 188, 192, 341). A re-analysis 

of the 4-year assessment indicated that the McCarthy memory scale and the 

general cognitive index declines were associated with prenatal PCB exposure only 

in the most highly exposed children (19). 

At the follow-up at 11 years of age, the 30 most heavily exposed children (pre-

natal PCB exposure equivalent to at least 1 250 ng/g milk fat, 4.7 µg/l cord serum 

or 9.7 µg/l maternal serum) scored on average 6.2 points lower in full-scale intelli-

gence quotient (IQ) in revised Wechsler Intelligence Scales for Children (WISC) 

test than those of the other four groups. However, some of the children in this group 

were markedly affected, whereas others appeared to be spared. Also, prenatal ex-

posure to PCBs was associated with e.g. poorer word comprehension. The effects 

on word comprehension were largest in the two groups with the highest exposures 

(PCB ≥ 1 000 ng/g lipid in breast milk). Postnatal exposure to PCBs was not asso-

ciated with a poorer performance on any of the tests. The effects on IQ and related 

effects were stronger in the non-breast-fed than in the breast-fed children (19, 188-

190). Despite concerns about the design and analysis of the data from the Michigan 

Mother-Child studies, many of the findings in this cohort have been replicated in 

studies of other cohorts (19, 191). 

In the Oswego study (State of New York, babies born 1991–1994), the pregnant 

women were divided into three groups based on estimated consumption of con-

taminated fish. Data indicated that new-borns in the high-exposure group demon-

strated a greater number of abnormal reflexes and less mature autonomic responses 

(NBAS) compared to the other two groups (birth weight, head circumference and 

gestational age were unrelated to fish consumption) (19). In a subset of women 

(293 mothers: 141 who had and 152 who had not consumed contaminated fish), 

cord blood samples were collected for total PCBs and congener distribution pattern 

(68 PCB congeners) analysis. Dioxins, furans and coplanar congeners were not 

measured (341). The median total PCB concentration in cord serum was 0.52 µg/l 

(341, 375) and the median concentration of hepta- to nonachlorinated PCBs in 

cord blood was 0.05 µg/l (for values above the limit of detection) (373). The most 

highly exposed children showed significantly poorer performance on two clusters 
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of the NBAS. PCB exposed infants had more abnormal reflexes and tremors and 

were also over-reactive to stimulation failing to habituate to repeated auditory, 

tactile and visual stimulation. Only hepta- to nonachlorinated PCBs were correlated 

to NBAS performance, whereas PCBs of light (1–3 chlorines) or moderate (4–6 

chlorines) chlorination were unrelated to NBAS performance, as were DDE, mirex, 

hexachlorobenzene, lead and mercury (316, 375).  

In a subsequent study, linear trend analyses revealed a significant linear asso-

ciation between total PCBs in cord blood and declining Fagan test of infant intelli-

gence performance at 6 and 12 months of age after control for all covariates. For 

hepta- to nonachlorinated PCBs (cord blood), a significant linear association was 

not observed at 6 months but was found at 12 months and the proportion of variance 

explained by these highly chlorinated PCBs was 2.3 %. A significant influence  

of prenatal methyl mercury, DDE or lead exposure on infant performance on this 

particular cognitive task seemed to be ruled out. No associations between total PCB 

levels in breast milk and Fagan test of infant intelligence performance at 6 or 12 

months were observed, but the number of breast-feeders was small (85). At 38 and 

54 months of age, 212 children participated in a study assessing cognitive develop-

ment using McCarthy Scales of Children’s Ability. PCB exposure was significantly 

related to poorer performance at 3 years of age, although not on the motor subscale. 

The tertiles of the distribution of subjects with detectable levels of hepta- to nona-

chlorinated PCBs in cord blood were > 0, > 0.02 and > 0.09 µg/l. After control  

for covariates, including methyl mercury and DDE, linear trend analyses revealed 

a significant, dose-related decline in general cognitive index performance at 38 

months of age both for wet weight (p = 0.012) and lipid-adjusted (p = 0.008) values. 

Hepta- to nonachlorinated PCBs in cord blood were statistically significant pre-

dictors of small but measurable deficits in performance in the highest exposure-

group. No significant associations for PCBs on McCarthy Scales were found at 54 

months of age (316, 376). 

Additional testing at 54 months of age, however, showed an association between 

prenatal PCB exposure, corpus callosum and impaired response inhibition (373). 

PCBs were associated with poorer performance in the Michigan Catch-the-Cat test, 

a variant of a continuous performance test. The increase in errors across the three 

testing blocks was directly proportional to the exposure, with statistically significant 

differences from the control group beginning at the intermediate exposure group 

(hepta- to nonachlorinated PCBs in cord blood > 0.02 µg/l). Magnetic resonance 

imaging scans at approximately 7.8 years of age in the 30 most exposed children 

and 30 of those least exposed matched on sex and handedness showed that there 

was a larger association between PCBs and impaired response inhibition when the 

splenium was smaller (316, 373). The increase in error rate was not mediated by 

global cognition, and was found in PCB exposed children with otherwise normal 

McCarthy scores (373, 374). 

A follow-up assessment using the NES2 continuous performance test was con-

ducted at 8 years of age. These findings were then followed up at 9 1/2 years of 

age by a series of extended continuous performance tests designed to dissociate 

response inhibition from sustained attention. After taking into account more than 

50 measured covariables, including maternal IQ, maternal sustained attention and 
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maternal response inhibition, results revealed PCB-related associations with im-

pulsive responding at both testing ages. Significant increases in commission errors 

were seen in the highest exposure group (hepta- to nonachlorinated PCBs in cord 

blood > 0.09 µg/l). These results were significant after extensive and rigorous con-

trol for multiple potential confounders (374). 

The North Carolina cohort consisted originally of 880 pregnant women and 

assessed general population exposure. The median maternal serum PCB level at 

birth was 9.1 µg/l. PCB levels in milk averaged 1 800 ng/g lipid at birth and was 

used as indicator of prenatal exposure. However, other authors have stated that 

actual PCB concentrations were probably lower (19, 341) and as pointed out by 

the EU commission, dioxins and dioxin-like PCBs were not measured (109). The 

multiple regression analyses revealed no associations between birth weight or head 

circumference and PCB level. Neuropsychological outcome measures at birth in-

cluded scores on the NBAS. Infants born to mothers with PCB concentration 

above 3 500 ng/g lipid in breast milk had less muscle tone, lower activity levels 

and were hyporeflexive. Infant cognitive and motor development was assessed by 

administering the Bayley Scales of Infant Development at 6, 12, 18 and 24 months 

of age. Higher transplacental exposure to PCBs was associated with lower psycho-

motor scores (psychomotor development index) at 6, 12 and 24 months of age. 

The children in the two groups with the highest PCB exposure (> 3 500 ng/g lipid 

in breast milk at birth) had adjusted scores on the psychomotor development index 

scales that were about 8 points lower (significant) than the scores of the children 

in the lowest exposure category. There was no relationship between prenatal PCB 

exposure and scores on the mental development index, and postnatal exposure 

through breastfeeding was unrelated to performance on either scale. Further, the 

deficits were no longer apparent at 3, 4 and 5 years of age when tested at McCarthy 

scales. It should be noted that 88 % of the women breast-fed their infants (19, 317, 

341).  

A large prospective study was carried out on 418 mother-infant pairs from two 

areas (Rotterdam, Groningen) in the Netherlands (some assessments were made 

only on children from one area). Prenatal PCB exposure was estimated by the sum 

of congeners 118, 138, 153 and 180 in maternal third trimester plasma and cord 

plasma (341). The mean concentrations of these PCBs in plasma and cord plasma 

were 2.2 and 0.4 µg/l, respectively. Also, PCB exposure was assessed in breast 

milk samples as the sum of the four PCBs or the sum of 20 non-dioxin-like PCBs. 

Furthermore, the dioxin-like PCBs 77, 105, 118, 126, 156 and 169 as well as 

PCDDs and PCDFs were estimated in breast milk and the mean total TEQ level 

(including PCDDs and PCDFs) was 67 pg/g lipid. PCB levels in maternal and 

cord plasma were not associated with either the reflex or postural cluster scores 

during the neonatal period (Prechtl’s neurological exam), although breast milk 

PCBs and total TEQ at 2 weeks were associated with lower optimality score and 

hypotonia (Prechtl’s neurological exam). The birth weight of children exposed to 

high cord plasma PCB levels (0.8 µg/l) were lower than that of children exposed 

 to low levels (0.2 µg/l). Further, both cord and maternal plasma PCB levels  

were significantly associated with lower growth rates until 3 months of age in  

the formula-fed group (19, 188, 341, 429).  



 

 127 

At 3, 7 and 18 months of age, Bayley Scales of Infant Development were used 

and both mental and psychomotor development indexes were included in the as-

sessments. No relationship between neonatal thyroid hormone levels and mental 

or psychomotor development at any age was found. Prenatal exposure to PCBs 

(maternal blood) was significantly associated with a decrease in the psychomotor 

development index score at 3 months of age but not at 7 and 18 months of age. 

Postnatal TEQ exposure was associated with decreased psychomotor development 

index scores at 7 but not at 18 months. The mental development index scores were 

not significantly associated with either prenatal or postnatal PCB exposure. Neuro-

logical examination (motor functions) indicated that transplacental PCB exposure 

was associated with a small deficit in neurological condition at 18 months of age 

(PCB or dioxin exposure via breast milk was not). However, follow-up evaluations 

including both neurological and cognitive outcomes at the age of 42 months in-

dicated that the neurological condition was not affected by pre- or postnatal PCB 

exposure, whereas the cognitive abilities (Kaufman assessment battery for children 

scales) appeared to be related to prenatal PCB exposure (especially to sum of PCBs 

in maternal blood). These negative effects were highly significant in the formula-

fed subgroup, whereas none was significant in the breast-fed subgroup. In the group 

as a whole, a significant decline (p < 0.05) in scores on the scales was observed. 

Four point deficits in scales were reported, on average, for the highest exposure 

group (PCBs ≥ 3 µg/l maternal plasma) as compared to the lowest (< 1.5 µg/l). 

Cognitive performance was not related to either lactational exposure or current 

exposure to PCBs and dioxins (19, 188, 341, 429).  

At 6.5 years of age, cognitive and motor abilities were assessed with the Mc-

Carthy Scales of Children’s Abilities. Prenatal PCB levels were not related to 

general cognitive index, memory and motor skills after adjustment for covariables, 

although subtle negative effects of prenatal PCB and dioxin exposure were indicated 

when parental and home characteristics were less optimal. It was stated that it was 

uncertain whether the described effects of the sum of the four PCBs in plasma might 

also reflect effects of dioxins and other related organochlorine compounds. Post-

natal exposure to PCBs and dioxins through lactation was not significantly related 

to cognitive or motor skills (429). Re-examination of the Rotterdam part of the 

Dutch cohort at 9 years age, however, revealed that higher prenatal PCB levels were 

associated with longer and more variable reaction times and lower scores on an 

executive function test. The latter also appeared negatively affected by lactational 

exposure to PCBs, although breastfeeding was associated with better scores. Like-

wise, the latencies on event-related potentials of the brain were longer at higher 

PCB exposure levels, but breastfeeding was associated with a decrease (98, 341).  

In a similar study, the neurodevelopmental toxicity was investigated in 171 

mother-infant pairs in Germany. The PCB concentrations (sum of PCBs 138, 153 

and 180) were 0.55 µg/l (median 0.39) in cord plasma and 427 ng/g lipid (median 

404) in breast milk. No PCDDs/PCDFs were measured. Neurodevelopment was 

assessed at 7, 18, 30 and 42 months of age. Outcomes measured at 7 months of 

age included determination of mental and psychomotor development indexes, and 

the Fagan test of infant intelligence. After adjusting for confounders, the only sig-

nificant association was an inverse relationship between the sum of PCBs in milk 
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and mental development index scores. Significant inverse associations between 

maternal milk PCB concentrations 2 weeks after birth and scores on Bayley scales 

were observed at 30 months of age after adjustment for covariates, including scores 

on the HOME (home observation for measurement of the environment) scale. As 

PCB concentrations increased from the 5
th

 to the 95
th

 percentile, mental develop-

ment index scores decreased by 9.9 points (roughly half that associated with the 

HOME score). Also, deficits on the Bayley psychomotor scales, which assess both 

fine and gross motor skills, were noted. Further, at 42 months of age, an inverse 

association between PCBs in breast milk at 2 weeks (index of prenatal exposure) 

and the mental processing composite index of the Kaufman ABC was observed. 

Also, a significant inverse association between postnatal PCB exposure and 

Kaufman ABC scores at 42 months of age was reported (11, 19, 188, 316, 341). 

The mental and psychomotor development of 1 207 children, whose mothers 

were enrolled in the Collaborative Perinatal Project between 1959 and 1965 (from 

12 centres across the US), was assessed at about 8 months of age using the Bayley 

Scales of Infant Development. The mean total PCB level (PCBs 28, 52, 74, 105, 

118, 138, 153, 170, 180, 194 and 203) in maternal third trimester serum was 3.1 

µg/l (range 1.24–16.3) and 95 % of the PCB concentrations were < 6.25 µg/l. No 

association between maternal serum PCB level and children’s mental development 

index was detected. Neither did this study demonstrate any significant relation 

overall between prenatal PCB level and children’s psychomotor development 

index, although the relation varied among study centres. None of the individual 

congeners were related to the mental or psychomotor development index when 

evaluated in separate models that combined all study sites (83). At 7 years of age, 

prenatal PCB exposure was evaluated in relation to cognitive tests (n = 894). The 

PCB-IQ association was examined in multivariate models and the results showed 

no association between in utero exposure to PCBs and lower IQ. The fully adjusted 

mean WISC full-scale IQ score was 93.6 among children in the lowest exposure 

category (< 1.25 µg PCB/l maternal 3
rd

 trimester serum) and 97.6 among those in 

the highest exposure category (≥ 5 µg PCB/l). There was no indication that any 

congener was especially associated with IQ or that the association differed among 

congeners (140). At 8 years of age, 195 children with sensorineural hearing loss 

and 615 children selected at random, all in the Collaborative Perinatal Project US 

cohort, were compared. Nearly all the results were consistent with no association 

between in utero PCB exposure and performance on audiometric examination. 

Based on the average hearing threshold across the frequencies essential for speech 

recognition in the ”worst ear”, the maternal serum PCB level was unrelated to the 

adjusted odds of sensorineural hearing loss or to adjusted mean hearing threshold. 

The median exposures among the children with sensorineural hearing loss and 

those selected at random as reflected by the mother’s third trimester serum total 

PCB concentration were 2.5 and 2.8 µg/l, respectively (247). Sensory measure-

ments were also made in one Faroese cohort. No associations of PCB exposure 

with visual function were noted, but cord blood PCB concentrations were a sig-

nificant predictor of increased auditory thresholds. However, only two frequencies 

were affected and the deficits were present only on the left side (341).  
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In a recent prospective study, the relation between prenatal exposure to PCBs 

and DDE and behaviours was investigated in children born to mothers residing 

near a PCB-contaminated harbour. The behaviour was assessed by using the 

Conners’ Rating Scale for Teachers (CRS-T), where 4 of the 13 subscales are con-

sidered measures of behaviours associated with ADHD. Participants were born 

1993–1998 in Massachusetts and umbilical cord blood samples were collected  

at birth. In total, 51 PCB congeners were measured (data available for 573/590 

children). In the covariate-adjusted model, there was a consistent positive as-

sociation between organochlorines and increased ADHD-like behaviours. For 

example, higher risk of atypical behaviour on the subscale Conners’ ADHD index 

was seen for the highest versus lowest quartile of the sum of four PCBs (PCBs 

118, 138, 153 and 180) (RR 1.76, 95 % CI 1.06–2.92). An increase in the sum of 

four PCBs in umbilical cord serum from the 5
th

 to the 95
th

 percentile resulted in  

an estimated 2.4-point increase in the index score. The other two PCB categories 

(sum of 51 PCBs and the computed TEQs for the sum of five dioxin-like PCBs) 

and DDE were associated with smaller effect estimates than the sum of four PCBs. 

The dose-response data indicated non-linearity and the authors stated that a 

threshold of effect was observed at the highest exposure quartile (327).  

In the assessment of the cognitive development and behaviour of children born 

to Yu-Cheng parents, many findings have indicated that prenatal exposure to PCBs 

and their heat-degradation products, mainly PCDFs, produced long-lasting cogni-

tive and behavioural damage as well as impairment in body control, large muscle 

coordination and skills of the hands. Slower mental and psychomotor development 

(Bailey Scales of Infant Development), cognitive impairment including lower IQ 

(Stanford-Binet test, revised WISC) and deficit in spatial ability (boys) have been 

reported. Further, prolonged latencies of auditory event-related potentials have 

been shown in some of the children. Also, some studies have indicated higher activ-

ity level, attention deficits and behavioural problems in Yu-Cheng children (144, 

316, 341). Still, no correlation between the degree of deficit and the PCB levels of 

the mothers were seen (e.g. for lower IQ and behavioural disorders) (424). 

11.4.2.3 Immune effects in offspring 

ATSDR concluded that available data support a possible association between 

PCBs and immune effects in infants exposed in utero and/or by breast feeding. 

Although the studies are insufficient for determining which specific chemical(s) 

may be responsible for the observed alterations, the available data indicate a 

possible association between PCBs and immune effects that may be manifested  

as compromised ability to overcome infections (19).  

EFSA reported that the number of infectious illnesses during the first 4 months 

of life was positively correlated with maternal serum PCB levels in children whose 

mothers had consumed contaminated fish. Likewise, associations were reported be-

tween risk of acute otitis media and increasing exposure to PCBs and other organo-

chlorine compounds during the first year of life in infants of Inuit women (98).  

In a Dutch study, effects of pre- or postnatal PCB/dioxin exposure were in-

vestigated in 105 breast-fed and 102 bottle-fed infants. The sum of PCBs 118,  

138, 153 and 180 in maternal plasma and the total TEQ level (17 dioxins and 8 



 

 130 

“dioxin-like” PCBs, including PCBs 170 and 180) in human milk (collected the 

second week after delivery) were used to estimate prenatal exposure. Postnatal 

exposure was calculated as a product of the total TEQs in human milk multiplied 

by the weeks of breast-feeding. The mean PCB plasma sum in the total group  

was 2.2 µg/l, and the mean total TEQ level was 66.6 pg/g lipid. There were no 

significant correlations between the number of periods with infections (otitis, 

rhinitis, bronchitis, tonsillitis) or plasma concentrations of antibodies to child-

hood vaccines during the first 18 months of life and pre- and postnatal PCB/dioxin 

exposure. In a subgroup of infants, white blood cell counts and immunological 

marker analyses in cord blood at 3 and 18 months of age were done. Prenatal PCB/ 

dioxin exposure was associated with increases in T cell subpopulations in the blood, 

mainly at 18 months of age. The only significant association for the sum of four 

PCBs was for the number of CD8
+
 T-cells (increase at 18 months). For total TEQs, 

significant increases were seen for the numbers of TcRγδ
+
 T cells at birth, and 

TcRαβ
+
 T-cells and CD8

+
 T-cells at 18 months. Further, a higher prenatal expo-

sure (total TEQs) was associated with lower monocyte and granulocyte counts at  

3 months of age. Postnatal exposure was significantly associated with a decrease 

in B cell marker CD 19/20
+
 and lower monocyte and granulocyte counts at 3 months 

of age. However, the results of the immunological marker analyses and of the 

white blood cell counts were all within the normal ranges of age-matched children 

(413). 

Follow-up evaluations at 42 months of age showed that prenatal exposure to 

PCBs was associated with subtle decreases in antibody levels to mumps and 

rubella and increased T cell numbers. Antibody levels to mumps were inversely 

correlated with the sum of four PCBs (PCBs 118, 138, 153 and 180) in maternal 

plasma, and antibody levels to rubella inversely correlated with the sum of four 

PCBs in cord plasma. No significant correlations between antibody levels (mumps, 

rubella, measles) and the dioxin, planar and mono-ortho PCB TEQ levels (in 

human milk) separately or with the sum of four PCBs at 42 months of age were 

seen. White blood cell counts and immunological marker analyses of the lympho-

cytes at 42 months of age were available for a subgroup. The results were all with-

in the normal ranges for age-matched children. Positive correlations (significant in 

the formula-fed subgroup) were found between prenatal PCB exposure (maternal 

and/or cord plasma) and the number of lymphocytes, T cells and subpopulations 

(CD3
+
CD8

+
, CD4

+
 CD45RO

+
, TcRαβ

+
,
 
CD3

+
 HLA-DR

+
) in blood. The median 

PCB level in maternal plasma was 2.1 (0.6–7.4) µg/l in the whole study group (n = 

175) and 1.8 (0.6–4.8) µg/l in the subgroup (n = 85). Further, higher prevalences  

of recurrent middle-ear infections and of chicken pox, and a lower prevalence of 

allergic reactions were reported (parent questionnaire) to be associated with current 

PCB body burden in children (i.e. the sum of four PCBs in plasma at 42 months  

of age). However, no differences in the prevalences were seen between formula-

fed and breast-fed children (median for sum of PCBs at 42 months was 0.2 vs. 0.8 

µg/l). No significant associations were seen for these conditions in relation to pre-

natal PCB exposure (sum of four PCBs in maternal plasma). In breast milk, the 

mono-ortho and planar PCB TEQs were significantly associated with recurrent 

middle-ear infections (412). In a further follow-up study, a higher postnatal PCB 
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exposure through lactation was significantly associated with a higher prevalence  

of recurrent middle ear infections as assessed by parent questionnaire (414).  

A decreased antibody response to vaccination was found among children in two 

Faroese birth cohorts exposed to high levels of PCBs early in life. The vaccinations 

started at 3 or 5 months of age and antibody analysis was done at 18 months (n = 

119) and 7.5 years (n = 129), respectively. The antibody response to diphtheria 

toxoid decreased at age 18 months by 24 % for a doubling of the combined pre-

natal PCB exposure variables, whereas the tetanus toxoid antibody response was 

affected mainly at 7.5 years, decreasing by 16 % for each doubling of the prenatal 

exposure. However, the confidence intervals were wide. Geometric mean PCB 

concentrations in maternal serum (pregnancy) were about 1 200–1 300 ng/g lipid 

and were similar in serum of children at 18 months and 7.5 years of age (but did 

not correlate clearly). PCB burden in the early postnatal period was considered as 

the most important predictor of a decreased vaccination response. It could not be 

excluded that the measured PCBs were indicators of effects of other congeners or 

compounds. The effects of PCBs and DDE could not be separated (161).  

In a Swedish study, it was suggested that background exposure to PCBs (and 

DDE) early in life modulate immune system development. Prenatal exposure was 

estimated from maternal serum samples (10 PCB congeners) donated in late preg-

nancy (1996–1999, 325 women). Infant health during the first 3 months was in-

vestigated by the use of a questionnaire and interviews. White blood cell counts  

(n = 86) and lymphocyte subset (n = 52) were analysed in a subgroup of infants at 3 

months of age. The median prenatal exposure of the sum of PCBs 28, 52 and 101 

was low (4 ng/g lipid, range 3–427). The infants with the highest prenatal exposure 

of these PCBs had significantly higher mean numbers of lymphocytes and mono-

cytes than infants in the reference category. These infants also had an increased 

risk for respiratory infections (OR 3.4, 95 % CI 1.4–7.8) during the study period (3 

months). On the contrary, prenatal exposure expressed as mono-ortho-PCB TEQs 

(PCBs 105, 118, 156 and 167) and di-ortho-PCBs (PCBs 138, 153, 180) were 

rather associated with decreased ORs for infection. The authors pin-pointed that 

the study was small and that the results should be interpreted with caution (132).  

High prenatal PCB exposure has been associated with a decreased thymus size 

among neonates born in an area with high environmental load of both non-dioxin-

like and dioxin-like PCBs in Eastern Slovakia. The thymus was measured on the 

third or fourth day after birth in 982 neonates. Maternal serum was obtained after 

delivery (2002–2004, n = 1 076). Fifteen PCB congeners were determined and 6 of 

these were included in the PCB sum (PCBs 118, 138, 153, 156, 170 and 180). The 

mean, median, 10
th

 and 90
th

 percentiles of the PCB sum were 620, 440, 190 and 

1 170 ng/g serum lipid. The median level of PCBs 118, 138, 153 and 180 was 3.7 

µg/l (288).  

Children born to mothers accidentally exposed to PCBs (Yu-Cheng) had higher 

prevalences of bronchitis or pneumonia at 6 months of age, respiratory tract in-

fections at 6 years of age and middle-ear infections at 6–14 years of age (19). 

However, it has been reported that the middle ear findings were associated with 

children’s serum levels of PCDFs, but not of PCBs, suggesting stronger immuno-

logical effects of PCDFs than of PCBs (144). 
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11.4.2.4 Thyroid effects in offspring 

Hypothyroid alterations in association with neonatal PCBs/polyhalogenated aro-

matic hydrocarbons at background environmental levels of exposure were reported 

in some early developmental studies in infants. However, in these studies, thyroid 

hormone levels were in the normal range (424). In the prospective Dutch study 

carried out on 418 mother-infant pairs (see Section 11.4.2.2), higher PCB/dioxin 

levels, expressed as TEQs, correlated significantly with lower plasma levels of 

maternal (during pregnancy and/or postdelivery) total T3 and total T4, and with 

higher plasma levels of TSH in infants in the 2
nd

 week and 3
rd

 month after birth. 

The mean total TEQ level (17 dioxins and 8 dioxin-like PCBs) in breast milk was 

67 pg/g lipid (19, 188). 

The association between transplacental exposure to various dioxin and PCB con-

geners and thyroid hormone status in 118 mother-newborn pairs from the general 

Taiwanese population was investigated in a more recent study. Data included 

dioxin/PCB levels (e.g. the 12 dioxin-like PCB congeners and PCBs 28, 52, 101, 

138, 153 and 180) in the placenta and thyroid hormone status in the cord serum. 

Multivariate analysis showed independently and significantly decreased free T4 × 

TSH levels with increasing non-ortho PCBs, most noteworthy in female infants, 

but the concentrations were within the normal range for cord blood (405). 

The relationship between neonatal TSH levels and PCB congeners measured in 

mothers during pregnancy was investigated in a Mexican-American birth cohort 

(1999–2000, 285 women). The median PCB 153 concentration was very low (5.4 

ng/g lipid). The geometric mean was 60 ng/g lipid for the sum of maternal PCBs 

based on 19 congeners and 0.9 pg/g lipid for TEQs. TSH levels were within the 

reference range for all children. Yet, a positive association between the sum of 

congeners suspected to be UDP-GT inducers (CYP2B inducers) and neonatal 

TSH levels was found. In individual congener analyses, PCBs 99, 138, 153, 180, 

183, 187, 194 and 199 were positively associated with neonatal TSH levels after 

adjustment for covariates (PCBs 194 and 199 remained significant after adjust-

ment for multiple hypothesis testing). No association was found with the sum of 

all PCBs or with dioxin-like PCBs (TEQs). However, PCBs 126 and 169 were not 

measured (63). 

In a study of young Mohawks, the thyroid hormone profile was affected by ex-

posure to a group of persistent PCBs (PCBs 74, 99, 105, 118, 138/163/164, 153, 

180, 187). The PCB grouping was positively associated with TSH and inversely 

related to free T4. Still, mean levels of total T4, free T4, T3 and TSH were within 

the laboratory reference ranges. A group of non-persistent PCBs (PCBs 52, 70,  

84, 87, 95, 101/90, 110, 149/123) was significantly and inversely related to free  

T4 only. Additionally, the data on breast-feeding indicated that the effects for the 

group of persistent PCBs were primarily restricted to youth who had not been 

breastfed, but breastfed had higher levels of persistent PCBs and DDE (342, 343). 

In a follow-up study (n = 115), the relationship between POP levels in blood and 

thyroid peroxidase antibodies, a biomarker of autoimmune disease, was examined 

(autoantibodies to thyroid peroxidase can impair thyroid function). Fifteen per cent 

of the samples had antibody levels above the normal laboratory reference range. 

After stratifying by breast-feeding status, participants who were breastfed showed 
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significant, positive relationships between antibody levels and all PCB groupings 

(two groupings according to Wolff et al (see Section 9.2), mono-, di-, tri/tetra-

ortho-PCBs, UDP-GT inducing-based grouping) except the group of non-per-

sistent PCBs (PCBs 52, 87, 95, 101/90, 110) and Wolff group 1 (PCBs 52, 70, 

101/90, 187). Among the non-breast-fed group, no significant relationship was 

found with any of the toxicants (344).  

In a recent study, TSH, total T4, total T3, free T4 and free T3 were measured in 

serum samples of pregnant women (n = 117–119) and in cord serum samples (n = 

78–84), and dioxins, dioxin-like PCBs and six indicator PCBs were analysed in 

maternal blood during pregnancy and in maternal milk. The authors concluded 

that the study supports the view that exposure to PCDDs/PCDFs, dioxin-like 

PCBs and indicator PCBs, in total, at the current lower dose levels does not de-

crease serum thyroid hormone concentrations in pregnant women and new-borns 

(421).  

No significant association between TSH in blood of new-borns and umbilical 

cord serum level of PCBs 118, 138, 153 and 180, and their sum, was reported in 

another recent study including 453 infants (251). 

11.4.2.5 Other endocrine-related effects in offspring  

In a study of mother-infant pairs in Germany (Duisburg cohort) PCDDs/PCDFs, 

dioxin-like PCBs and the sum of six indicator PCBs (PCBs 28, 52, 101, 138, 153, 

180) were measured in maternal blood during pregnancy and in maternal milk. 

Testosterone and oestradiol concentrations were measured in cord serum (and 

maternal serum). The median concentration of indicator PCBs in maternal blood 

was 149 ng/g lipid. Some effects were seen on the hormone levels in babies, but 

the impact of PCDDs/PCDFs, and, to a lesser extent, that of structurally related 

PCBs, appeared to be more pronounced than that of indicator PCBs. Typically, 

testosterone reduction was more pronounced in cord serum of female babies and 

oestradiol reduction more pronounced in that of male babies. The authors stated 

that causal inferences can only be drawn with caution (55). 

In a review by den Hond and Schoeters (91), epidemiological research on effects 

of endocrine disrupters on human puberty was summarised. Age at menarche or 

pubertal stages in girls was not related to PCBs in any of three referred studies 

with prenatal or prenatal and lactational exposure or in a fourth study with pubertal 

exposure. However, only total PCBs or a few single PCBs in serum were measured. 

All studies included different groups of the general population (e.g. the Michigan 

angler cohort, North Carolina cohort). In a later study by the same authors (90),  

a delay in timing of menarche in Flemish girls was reported. Exposure to oestro-

genic PCBs was associated with a greater probability of having reached menarche 

in a study of young Mohawk girls (see Section 11.1.7). 

In girls exposed prenatally (PCDFs/PCBs) during the Yu-Cheng incident, serum 

levels of oestradiol and follicle-stimulating hormone were increased at puberty. 

The girls also showed a shorter duration of menstrual bleeding and irregular men-

struation as compared to controls (151). 

The review by den Hond and Schoeters also summarised studies in boys. No 

effect on pubertal stages or testicular volume was shown in boys exposed to PCBs 
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prenatally or prenatally and during lactation (North Carolina cohort, Faroese birth 

cohort). However, in a study of villages in Belgium with pubertal PCB exposure 

of boys, there was an inverse association between serum PCBs and pubertal stages. 

Testicular volume was significantly lower in areas with higher PCB exposure but 

was not related to pubertal exposure to PCBs. It was speculated that this might be 

more closely associated with maternal exposure to endocrine disrupters during 

pregnancy (91). In a later study (90), higher serum levels of PCBs were associated 

with earlier sexual maturation in Flemish boys (see Section 11.1.7). 

Risk of hypospadias and cryptorchidism in male offspring in relation to maternal 

pregnancy levels of PCBs was investigated in a study with nested case-control de-

sign. Third-trimester serum samples from the mothers of 230 sons with cryptorchi-

dism and 201 sons with hypospadias and 593 sons with neither condition were 

analysed. The mothers were enrolled in the Collaborative Perinatal Project cohort 

between 1959 and 1965 (11 US cities, see Table 17, page 119). Serum levels of  

11 congeners (PCBs 28, 52, 74, 105, 118, 138, 153, 170, 180, 194, 203) were 

measured and analysed separately and in different groups (i.e. Wolff groupings 

(see Section 9.2), low-/high-molecular weight groups, TEF group). The median 

for sum of PCBs in the three groups of mothers were 2.8 (cryptorchidism), 2.9 

(hypospadias) and 2.7 (controls) µg/l. No notable associations with individual 

PCBs or with functional groupings of PCBs were found. For the sum of PCBs, the 

ORs (95 % CI) associated with hypospadias in the 2
nd

 to 4
th

 exposure categories  

(2–2.9, 3–3.9, ≥ 4 µg/l) were as follows: 1.6 (1.1–2.3), 1.4 (0.9–2.3) and 1.7 (1.1–

2.7), with a p-value for trend of 0.08. The authors concluded that, given the large 

number of associations examined, these findings do not strongly support the 

hypothesis that PCBs are associated with cryptorchidism or hypospadias. Further 

according to the authors, no relationship between PCB levels in cord blood and 

cryptorchidism was found in a study of 196 Faroe Island boys born 1986–1987, 

and a study in Greenland indicated that PCBs might be inversely associated with 

risk of hypospadias (266).  

In a prospective French case-control study on cryptorchidism, a somewhat 

higher (not significant) median level of sum of PCBs (PCBs 28, 52, 101, 118, 138, 

153, 180) in maternal breast milk (colostrum) for cases than for controls (56 cases, 

69 controls) was reported. A significant association between cryptorchidism and 

PCB level in milk was observed when the degree of exposure for cases and con-

trols was divided into categories (unquantifiable values or values below or above 

the median). The OR in the highest category of PCB exposure was 2.7 (95 % CI 

1.1–6.5, p < 0.022). However, when the analysis was restricted to the boys who 

remained cryptorchid at 3 months of age, the relationship with breast milk was no 

longer significant. Further, no significant associations were seen between PCBs  

in cord blood (67 cases, 84 controls) and cryptorchidism. The authors assessed 

that higher concentrations of selected xenobiotics in cryptorchid boys could be  

a marker of a higher global exposure and/or of a decreased capacity to metabolise 

and eliminate xenobiotics in general and that it is unlikely that a single compound 

is responsible for cryptorchidism (50).  

In a recent case-control study, no significant increase in risk for hypospadias in 

offspring was reported for mothers whose serum PCB concentration was above the 
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median. The adjusted ORs (95 % CI) were 1.8 (0.5–6.4) for PCB 118, 1.2 (0.3–

4.4) for PCB 138, 1.9 (0.5–7.1) for PCB 153, 3.9 (0.9–17) for PCB 180 and 1.9 

(0.5–6.9) for the sum of PCBs. Still, the mean concentration of PCB 118 in maternal 

serum (0.07 vs. 0.04 ng/g) differed significantly (p = 0.023) between the 37 cases 

and 21 controls (131).  

Hardell et al reported in a case-control study that mothers of patients with testi-

cular cancer had an increased PCB body burden compared to mothers of controls 

(p = 0.0006). The sum of PCBs, and 19 of 37 analysed PCB congeners in blood 

were significantly increased among the case mothers. Case mothers also showed 

highly significant increased concentrations of cis-nonachlordane and hexachloro-

benzene. A priori decided grouping of PCBs (according to Wolff et al (see Section 

9.2); TEQs according to Ahlborg et al (1)) yielded for potentially oestrogenic and 

weak phenobarbital inducers an OR of 2.4 (95 % CI 0.95–6.0), for phenobarbital, 

CYP1A and CYP2B inducers an OR of 2.6 (95 % CI 1.03–6.5) and for dioxin-like 

PCBs an OR of 3.3 (95 % CI 1.3–8.4). Adjustment was made for body mass index 

and age in the mothers. It cannot be excluded that the real etiological agent was 

something unknown. As the mothers’ blood samples were obtained many years 

after their sons were born it is unclear to what extent the mothers’ PCB levels re-

flected the levels during pregnancy. No differences were found between the con-

centrations of PCBs in cases and controls (155, 156).  

Decreased semen quality was seen in a small study on men exposed prenatally 

to high levels of PCBs and PCDFs after maternal ingestion of contaminated rice 

oil (Yu-Cheng). Increased per cent abnormal sperm morphology and decreased 

percentage of motile and rapidly motile sperm was seen in the 12 exposed men 

compared to 23 unexposed controls. Reduced ability of sperm from exposed men 

to penetrate the hamster oocyte was shown. No statistical adjustment for con-

founders was done in these studies, although age and percentage of smokers were 

similar in exposed and unexposed groups (158). Also, decreased serum testo-

sterone levels together with increased oestradiol and follicle-stimulating hormone 

levels at puberty have been reported in boys previously exposed prenatally to 

PCDFs/PCBs during the Yu-Cheng accident (151). Further, boys born in the early 

years after the Yu-Cheng accident had reduced penile length compared to con-

trols, but it should be kept in mind that there was exposure to relatively high con-

centrations of PCDFs and other structurally related chemicals (19, 91). 

12. Dose-effect and dose-response relationships 

12.1 Animal data 

Animal studies with inhalation exposure to PCB mixtures are scarce and are con-

sidered inadequate for identifying dose-effect/dose-response relationships. At oral 

administration, many different effects have been shown in studies of PCB mixtures 

or PCB congeners. Species differ in sensitivity, e.g. monkeys seem to be more 

sensitive than rodents.  

Many of the effects reported in animals exposed to PCB mixtures are hallmarks 

of dioxin-like compounds. The dioxin-like PCBs are considered to be the most 
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toxic PCB congeners, although the potency differs considerably within the group. 

The most toxic congener, PCB 126, occurs at very low levels in PCB mixtures. The 

non-dioxin-like PCBs may have effects on the same organ systems as the dioxin-

like, albeit generally at higher doses. For neurobehavioural effects in offspring, 

some data indicate that the non-dioxin-like PCBs might be of importance.  

The effects occurring at the lowest dose levels of PCB mixtures (5–7.5 µg/kg 

bw/day) are effects on skin/nails and eyelids, immune system, reproduction and 

development (Table 19).  

Dermal and ocular effects, including nail changes and inflammation and/or en-

largement of the tarsal glands, as well as decreases in IgM and IgG antibody re-

sponses to sheep red blood cells and increased plasma triglyceride levels were 

reported in adult female rhesus monkeys at long-term daily ingestion of 5 µg/kg 

bw Aroclor 1254 (the lowest dose studied) (15, 29, 386, 387). In addition, re-

sorptions, foetal and post-partum death occurred for 6/10 impregnated monkeys 

dosed similarly with Aroclor 1254 before and during gestation (and during part of 

the lactation). Nail bed prominence was seen at birth and other slight toxic effects 

i.e. ocular, dermal and immunological effects developed later in the infants (13). 

Hyperpigmentation during nursing and increased locomotor activity at 12 

months of age were reported in infants of female rhesus monkeys given Aroclor 

1248, corresponding to approximately 6.3 and 13 µg/kg bw/day, before and during 

gestation and lactation (6, 43, 336), but without a clear dose-effect relationship. 

Mild effects on the immune system (e.g. reduction over time of IgM and IgG 

antibodies to sheep red blood cells) were shown in monkeys dosed from birth  

to 20 weeks of age with 7.5 µg/kg bw/day of a PCB mixture with a composition 

similar to that found in human breast milk. The weakly dioxin-like PCBs 105, 118, 

156, 157 and 189 contributed to almost one fourth of the mixture. Changes were 

observed in neurobehavioural tests performed at 2.5–5 years of age suggesting  

a learning deficit and difficulties in adaptively changing response pattern, e.g. in-

ability to inhibit inappropriate responding (14, 308).  

Some hyperpigmentation was observed in neonates of rhesus monkeys given 

approximately 7.5 µg/kg bw/day Aroclor 1016 in the diet, before and during 

gestation and lactation. At daily doses of 30 µg/kg bw, decreased birth weight was 

also observed as well as effects on learning in infants tested at 14 months and at 4 

years of age. However, a significant decrease in performance at 4 years of age was 

observed only when compared to the low-dose group and not compared to controls 

(27, 235, 335, 336).  

Thyroid effects manifested as changes in serum T3 and/or T4 levels have been 

observed in rats. Levels were increased following a 30-day exposure of 33 µg/kg 

bw/day of Aroclor 1242, whereas long-time exposure to 90 and 100 µg/kg bw/day 

of Aroclor 1254 resulted in decreased levels. In rat offspring, depressions in both 

serum total T4 and T3 concentrations were seen at a similar dose level. Dams were 

dosed with about 100 µg/kg bw/day Aroclor 1254 during gestation and lactation, 

and pups also via diet through postnatal day 30 (19, 54, 59, 141, 303).  

Decreased spermatogenesis was seen in 1 of 4 monkeys fed a diet providing 

approximately 100 µg/kg bw/day of Aroclor 1248 for one year (6, 19). 
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PCB mixtures are known tumour promotors and considered as animal carcino-

gens. Several studies have shown that PCB mixtures induce tumours in rodents, 

especially in the liver, but these data do not indicate that PCBs are multiorgan 

carcinogens. Cancer has occurred only at PCB dose levels far in excess of those 

inducing other effects. Data indicate that total TEQ-doses (associated with dioxin-

like constituents within the technical mixtures) rather than total PCB doses, are 

mainly, if not exclusively, responsible for the development of liver neoplasms in 

female rats (19, 49, 98, 185, 186, 264). Overall, the results of in vitro and in vivo 

genotoxicity studies indicate that technical PCB mixtures are not directly muta-

genic, but indirect genotoxic mechanisms of PCBs involving oxidative DNA 

damage have been described (19, 49, 98, 196, 280). However, there are studies 

suggesting that some single PCB congeners/metabolites are mutagenic (98, 122, 

234, 432). The most potent dioxin-like PCB congener, PCB 126, is considered a 

complete carcinogen in experimental animals (24, 280). 

12.2 Human data 

Several epidemiological studies investigating health effects of occupational PCB 

exposure are old or studies on formerly exposed cohorts. In these studies, many 

workers were exposed to high PCB levels as compared to present occupational 

PCB levels in the Nordic countries. Also exposure scenarios and, to some extent, 

analytical methods and endpoints studied differ from today’s situation. More em-

phasis is therefore put on studies on more recent, low-level exposures.  

Studies of workers involved in removal of PCB-containing sealants or employed 

at waste disposal plants indicate that exposure levels nowadays, assessed as blood 

PCB concentrations, are within the range of that of the general population (Tables 

8–12 in Chapter 6, and Table 20). Still, compared to pre-exposure values or control 

groups, total PCB levels in plasma/serum seem to be slightly elevated in occupa-

tionally exposed. This may, at least in part be due to historical occupational ex-

posure. Studies on health effects in workers occupationally exposed to low con-

centrations of PCBs are few (Table 20), whereas there is an extensive body of 

literature concerning health effects in groups of the general population.  

For the general population as well as the occupationally exposed, food ingestion 

is a major route of PCB exposure. This exposure is particularly to the more per-

sistent higher chlorinated PCBs. In subgroups, there is also exposure to airborne, 

mainly low-chlorinated PCBs, originating e.g. from PCB-contaminated buildings. 

In Sweden, the calculated median daily intake via food of non-dioxin-like PCBs 

(sum of 23 congeners) in adults during the late 1990s was 5.5–12 ng/kg bw. How-

ever, in Baltic Sea fishermen, the corresponding intake from fish could reach 80 

ng/kg bw or even more. In many European countries, the daily PCB intake by 

breastfed infants is significantly higher (per kg bw) than that by adults (98).  

A comparison between studies is difficult, e.g. because of differences in the 

number of PCB congeners measured and the variable presence of contaminants in 

technical PCB mixtures (dioxin-like substances, e.g. PCDFs). It is also difficult to 

distinguish the impact of the PCBs in relation to other environmental pollutants, 

especially since the concentrations of several compounds correlate with each other. 
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Nonetheless, some concluding remarks on possible associations between PCB 

exposure and health effects, mainly at low or rather low exposure, are given 

below. In some studies, the plasma/serum level of one of the dominating PCBs, 

the hexachlorinated PCB 153, was used as a marker of the total PCB exposure. 

Thyroid effects 

In the general population, the relationships between PCB exposure and thyroid 

hormone status have been investigated in a number of studies. A lack of con-

sistency in reported correlations between studies has been found (150). Part of  

the inconsistency of the epidemiological study results might be explained by ex-

posure to other endocrine disrupting chemicals. Some studies indicate an inverse 

association between PCB serum/plasma concentrations and mainly T3 and/or T4 

levels (329). Mean/median levels of PCBs in serum/plasma in these studies were 

220–850 ng/g lipid, but the number of measured PCB congeners differed (Table 

15, page 86).  

In a recent occupational study, no evidence for effects on thyroid function was 

found in Swedish male workers with at least 6 months experience of removing old 

elastic PCB-containing sealants in the two previous years (2000–2001). The mean 

plasma PCB level as sum of 19 congeners was 2.3 µg/l (580 ng/g lipid) in exposed 

workers as compared to 0.9 µg/l (260 ng/g lipid) in controls. The mean plasma con-

centration of PCB 153 in exposed workers was 0.51 µg/l (130 ng/g lipid) (354). 

As the data on thyroid effects are inconsistent, no definite conclusions can be 

drawn.  

Diabetes 

Studies on the general population suggest that persistent organochlorine com-

pounds including PCBs may contribute to especially type 2 diabetes and that a 

high dioxin burden might be associated with an increased risk of type 2 diabetes 

or modified glucose metabolism (62, 72, 97, 110, 111, 222, 228-230, 232, 292, 

311, 314, 323, 391-395, 406, 410). However, data are insufficient to allow any 

firm conclusions. The possibility of a reverse causality or that both PCB levels 

and diabetes are independently related to fat turnover cannot be ruled out. 

In occupational studies (with high exposure levels), one study reported on ele-

vated blood glucose levels among capacitor workers (226). Apart from that there 

is little support for a relationship between PCBs and diabetes, but other studies 

were crude in that only mortality was addressed (209, 246, 250, 300, 301).  

Immunological effects 

An association between PCBs and immune effects in adults of the general 

population has been suggested. Interpretation of the data is, however, complicated 

since responses were generally subtle and exposures included a number of other 

potentially immunotoxic persistent substances. Still, there are some data suggesting 

slight immune effects in infants exposed in utero and/or via breast feeding (see 

Developmental effects below) (19).  

Information on immunological endpoints in occupationally PCB exposed is 

scarce. Weak dose-response relationships between plasma levels of PCBs 101, 
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138, 153 and 180 and some immune parameters were seen in patients who had 

been occupationally exposed to PCBs. Most of the patients had been exposed to 

PCBs for more than 20 years, but also to other chemicals suspected to induce im-

munological impairments. Blood levels of the various compounds were strongly 

correlated with one another. The patients had various symptoms including fre-

quent common cold diseases and bronchitis, but it is unclear if these were related 

to PCB exposure. Mean plasma levels of PCBs 138, 153 and 180 were 0.7, 1.0 

and 0.6 µg/l, respectively (82).  

In a recent Swedish occupational study, no evidence of effects on the immune 

system was found in male workers removing old elastic PCB-containing sealants 

(study described above under thyroid effects). The mean plasma concentrations 

were 2.3 µg/l for the sum of 19 congeners and 0.46, 0.51 and 0.35 µg/l for PCBs 

138, 153 and 180, respectively (354).  

Hepatic effects 

Although a positive correlation between serum PCB and γ-glutamyl transferase 

levels was reported in a study of people exposed to PCBs and other chlorine com-

pounds via contaminated fish (19, 214), there is no clear indication that environ-

mental low-level exposure to PCBs has caused adverse liver effects in humans.  

In an old study of transformer repairmen with a rather low exposure to PCBs, 

subtle metabolic effects were indicated. Serum γ-glutamyl transferase levels were 

not different from that of controls but were significantly positively correlated with 

serum PCB levels, possibly indicating enzyme induction. An inverse correlation 

between urinary 17-hydroxycorticosteroid and adipose tissue PCB concentration 

was also reported. The PCB patterns resembled Aroclor 1260. Breathing zone 

sample concentrations of PCBs were ≤ 60 µg/m
3
 and 8-hour TWAs of PCBs were 

0.01–24 µg/m
3
, but there was also PCB contamination of the hands (99-101).  

The measured total PCB serum median values as reported in a later study were 

approximately 43 μg/l for currently exposed workers, 30 μg/l for formerly ex-

posed workers and 13 μg/l for controls (114).  

Significant positive associations between plasma levels of PCBs 138 and 153 

and γ-glutamyl transferase were reported in patients who had been occupationally 

exposed to PCBs. However, confounding factors such as alcohol consumption 

were not controlled for and plasma levels of PCBs were strongly correlated with 

those of other chlorinated compounds. Mean plasma levels of PCBs 138, 153 and 

180 were 0.7, 1.0 and 0.6 µg/l, respectively (82) (study described above under 

immunological effects).  

Cardiovascular effects 

Some studies of the general population suggest an association between PCBs and 

hypertension. The authors emphasise that their results must be interpreted with 

caution because of the cross-sectional study design (112, 113, 136, 148, 393). The 

inherent problem associated with such study design is that the sequence in time of 

disorder and exposure is unknown, which precludes causal interpretations. 
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The possible relationship between PCB exposure and ischaemic heart disease 

has been investigated in a number of occupational cohort studies, but the results 

are inconsistent and dose-estimates are crude (146, 208, 250, 258, 300, 301, 321).  

Cancer 

The evidence from epidemiological studies for carcinogenicity of PCBs is in-

sufficient and do not allow definite conclusions.  

In the general population, epidemiological evidence is conflicting concerning 

increased cancer risks associated with PCBs. Nevertheless, several studies suggest 

a relationship between increased risk of NHL and increased PCB levels in serum/ 

plasma, although the causality has not been clarified (34, 71, 87, 102, 153, 218, 

319, 369).  

Studies of highly exposed occupational cohorts have not consistently shown 

elevations of the same type of cancer and are thus of limited use in defining risk. 

Still, a few studies suggest a correlation between PCBs and increased risks of 

prostate cancer and possibly cancer of the liver and biliary tract, and malignant 

melanoma (19, 61, 146, 300, 301, 321), but the results must be corroborated in 

other studies.  

The most potent dioxin-like PCB congener, PCB 126, was recently classified  

by IARC as a human carcinogen in Group 1 on the basis of animal cancer data  

in combination with mechanistic information (24).  

Effects on male fertility 

Some data suggest that PCBs may interfere with male reproductive function, but 

alternative explanations are possible. In some studies of the general population,  

an inverse association between serum PCB levels and sperm motility was shown, 

whereas there is generally no support for effects on sperm counts. Significantly 

decreased progressive sperm motility was observed across populations at serum 

PCB 153 concentrations above 200 ng/g lipid with a slight (non-significant) de-

crease already at 50–200 ng/g lipid (Table 16, page 112). Yet, no major impact  

of PCBs on fertility has been shown (38, 81, 158, 159, 269, 309, 313).  

In the occupational studies, no clear indications of PCB-related reproductive 

effects in men have been reported, but these endpoints have not been extensively 

studied (100, 101, 114).  

Developmental effects  

Epidemiological data on prenatal growth and birth weight in the general population 

are conflicting (19, 98). However, some studies indicate an association between 

PCB levels in maternal or cord serum/plasma and a reduction in birth weight, at 

least at dose levels somewhat higher than those commonly occurring in the general 

population (170, 274, 328). Further, data on the general population indicate that 

subtle developmental effects involving neurobehavioural functions are associated 

with pre-/neonatal exposure to PCBs. Yet, discrepancies between studies exist, 

e.g. in terms of the spectrum of effects (neuromotor vs. cognitive) and persistence 

of effects. There is also a lack of dose-response relationships regarding cognitive 

functions using PCB 153 as a marker, but the levels of PCB congeners responsible 
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for the toxicity might not have been proportional to those of PCB 153. Other con-

taminants (including other dioxin-like compounds) may also have contributed to 

the effects. Assessed median PCB 153 levels in maternal serum were 40–140 ng/g 

lipid in the most affected cohorts (Table 18, page 123). Such concentrations are at 

the same level as, or slightly higher than, those commonly reported in the general 

population in recent years (41, 424).  

There are also some data suggesting a sensitivity of the immune system to 

PCBs in infants exposed in utero and/or via breast feeding. Increases in lympho-

cytes (T-cells and subpopulations) in blood, decreased antibody response to 

vaccination and higher occurrence of infections have been reported. However, the 

specific chemical(s) responsible for the observed alterations cannot be identified 

(19, 161, 412-414). 

13. Previous evaluations by national and international bodies  

According to US EPA (1997), there is sufficient evidence for cancer from PCBs 

from animal studies. The human evidence were considered inadequate but 

suggestive of carcinogenicity (399).  

The PCBs were evaluated by IARC in 1978 and 1987 (185, 186) and the evi-

dence of carcinogenicity in laboratory animals was considered sufficient. IARC 

concluded that the available human studies suggested an association between 

cancer and exposure to PCBs and that the increased risk of hepatobiliary cancer 

emerged consistently in different studies. The evidence was, however, considered 

to be limited. Taking the combined evidence from human and experimental animal 

studies, the IARC group concluded that PCBs are probably carcinogenic to humans 

(Group 2A). PCBs were classified without distinction between dioxin-like and non-

dioxin-like congeners (186). Recently, the dioxin-like PCB 126 was classified by 

IARC as a human carcinogen (Group 1) on the basis of mechanistic information 

and animal data. PCB 126 is a complete carcinogen in experimental animals (24).  

WHO/IPCS (2003) stated that adverse health effects, including immunological, 

developmental and reproductive effects and effects on liver and body weight, were 

observed in experimental animals exposed to PCBs. Several studies consistently 

reported an increase in liver cancer incidence among rodents exposed to different 

PCBs. Further, IPCS concluded that human studies have identified associations 

between exposure to PCB mixtures and adverse immunological, reproductive  

and dermatological effects and cancer (mainly cancers of the digestive system, 

especially liver cancer, and malignant melanoma), but that limitations of the studies 

made it impossible to use them as a basis for quantitative risk estimations. It was 

mentioned that effects on sperm motility, foetal growth rate, development (e.g. 

neuromuscular immaturity) and neurological functions of the offspring (e.g. lower 

IQ scores and attention deficits) have been observed in studies on humans exposed 

to PCBs (188). 
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Table 19. LOAELs in animal studies of PCB mixtures at oral administration including dose levels up to 100 µg/kg bw/day.  

PCB mixture Species (strain),  

no. of animals 

Daily dose 

(µg/kg bw) 

Exposure duration Effect Reference 

Aroclor 1254 Monkey (Rhesus),  

16 females 

5 
a
 37 mo 

 

 

 

 

23 and 55 mo 

Dermal and ocular effects: Finger and toenail changes and inflamed and/or 

prominent tarsal glands (all effects also seen at 20, 40 and 80 µg/kg bw in a 

dose-related manner).  

Hepatic effects: Increased plasma triglycerides (also seen at 20 and 80 µg/kg 

bw).  

Immunological effects: Reduced IgM and IgG antibody response to SRBCs 

(also seen at 20, 40 and 80 µg/kg bw in a dose-related manner).  

(15, 29, 

386, 387) 

Aroclor 1254  Monkey (Rhesus),  

16 females  

(same as above) 

5
 a
 37 mo pre-mating 

to 7 weeks post-

parturition 

Reproductive and developmental effects: Resorptions, foetal or post-partum 

death in 6/10 impregnated monkeys (effects seen also at 20, 40 and 80 µg/kg 

bw). Nail bed prominence at birth, inflammation or enlargement of tarsal 

glands, nail lesions, gum recession and reduced IgM antibody levels to 

SRBCs in infant offspring (effects also seen at 40 µg/kg bw, no surviving 

pups 2 weeks post-partum in the 20 and 80-µg/kg dose groups). 

(13) 

Aroclor 1248 Monkey (Rhesus), 

8 females 

6.3
 a, b

 Pre-mating  

to 4 mo post-

parturition 

Developmental effects: Hyperactivity in offspring (also seen at 13 µg/kg bw/ 

day, but no clear dose-effect relationship). Hyperpigmentation developed 

during nursing in offspring (also seen at 13 µg/kg bw). 

(6, 43) 

Aroclor 1016 Monkey (Rhesus), 

8 females 

7.5
 a
 22 mo (7 mo pre-

mating to 4 mo 

post-parturition)  

Reproductive and developmental effects: Some hyperpigmentation at birth 

(also seen at 30 µg/kg bw). 

(27, 235, 

336) 

15 PCBs 

resembling the 

composition in 

human milk  

Monkey (Rhesus  

and Cynomolgus),  

3/sex and 8–10 

males, respectively  

7.5
 a
 5 mo 

(1–140 days  

of age) 

Developmental effects: Minimal reduction in IgM and IgG antibodies to 

SRBCs, reduced level of the cell surface marker HLA-DR and transient 

decrease in B lymphocytes. Deficits on delayed spatial alternation, fixed 

interval and differential reinforcement of low rate performance.  

(Only dose tested). 

(14, 308) 
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Table 19. LOAELs in animal studies of PCB mixtures at oral administration including dose levels up to 100 µg/kg bw/day.  

PCB mixture Species (strain),  

no. of animals 

Daily dose 

(µg/kg bw) 

Exposure duration Effect Reference 

Aroclor 1254  Monkey (Rhesus),  

16 females  

20 37 mo Haematological effects: Decreased mean platelet volume (also seen at 80 

µg/kg bw). 

(12) 

Aroclor 1254 Monkey (Rhesus), 

15 females 

20 37 mo pre-mating 

to 7 weeks post-

parturition 

Reproductive and developmental effects: Reduced conception rate (also seen 

at 40 and 80 µg/kg bw). 

(13) 

Aroclor 1016 Monkey (Rhesus),  

8 females 

30 22 mo 

(7 mo pre-mating 

to 4 mo post-

parturition) 

Reproductive and developmental effects: In offspring, reduced birth weight, 

decreased performance in spatial discrimination reversal learning and (com-

pared to low-dose group) in delayed spatial alternation test. Improved per-

formance on a shape discrimination-reversal problem. 

(27, 235, 

335, 336) 

Aroclors  

1242, 1248, 

1254, 1260 

Rat (Osborne Mendel), 

6 males/mixture 

30
 a
 4 weeks Hepatic effects: Microsomal enzyme induction. (245) 

Aroclor 1242 Rat (Sprague Dawley), 

8 males 

33
 a
 30 days Immunological effect: Thymic atrophy. 

Neurological effects: Slowed exploratory behaviour in open field test. 

Endocrine effects: Increased serum total T3 and T4 levels.  

(Only dose tested). 

(59) 

Aroclor 1254 Monkey (Rhesus),  

16 females 

40 37 mo Hepatic effects: Decreased serum cholesterol (also seen at 80 µg/kg bw).  (12, 29) 

Aroclor 1016 Mouse (CD-1),  

females 

50
 a
 Gestation days 

16–18  

Reproductive and developmental effects: Increased anogenital distance in 

male (but not female) offspring. Decreased epididymal weight, increased 

prostate weight and increased androgen-receptor binding activity in prostate 

in offspring.  

(Only dose tested). 

(145) 

Aroclor 1254 Rat (Sherman),  

10 males, 20 females 

60
 a
 2 and 6 mo pre-

mating, during 

mating, gestation 

and lactation  

Reproductive and developmental effects: Increased relative liver weights in 

male pups in F1 generation. 

(244) 
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Table 19. LOAELs in animal studies of PCB mixtures at oral administration including dose levels up to 100 µg/kg bw/day.  

PCB mixture Species (strain),  

no. of animals 

Daily dose 

(µg/kg bw) 

Exposure duration Effect Reference 

Aroclor 1254 Monkey (Rhesus),  

16 females 

80 37 mo, 72 mo Haematological effects: Decreases in red blood cell count, haemoglobin 

concentration and haematocrit. 

Hepatic effects: Increased relative liver weights attributed to hyperplasia. 

Decreased serum levels of total bilirubin. 

(12, 16) 

Aroclor 1254 Rat (Sprague Dawley), 

10 females 

90
 a
 5 mo Endocrine effects: Decreased serum total T3 and T4 levels. (54) 

Aroclor 1254 Rat (Sprague Dawley), 

16 females 

100
 a
 Gestation day 1 

to 30 days post-

parturition  

Reproductive and developmental effects: Decreased serum total T4 (not 

significant) and T3 levels in pups at 30 days, increased choline acetyl-

transferase activity in hippocampus and basal forebrain in pups at 15 days 

and decreased activity at 30 days.  

(19, 303) 

Aroclor 1254 Rat (Fischer 344),  

30 males 

100
 a
 15 weeks Bone effects: Increased femur density. 

Endocrine effects: Decreased serum T4 levels. 

(9, 141) 

Aroclor 1248 Monkey (Rhesus),  

9 females 

100
 a
 8 mo Dermal and ocular effects: Acne, alopecia, erythema and swelling of the 

eyelids. 

Hepatic effects: Lipid accumulation, focal necrosis, increased serum GPT 

activity and decreased albumin/globulin ratio. 

Systemic: Body weight loss, 1 death. 

(19, 26) 

Aroclor 1248 Monkey (Rhesus),  

8 females  

(same as above) 

100
 a
 16–21 mo (pre-

mating to 3 mo 

post-parturition) 

Reproductive and developmental effects: In dams, increased menstrual dura-

tion and bleeding, and signs of PCB intoxication. Resorptions/abortions in 

3/8. In offspring, decreased birth weight, a small stature and decreased body 

weight gain, hyperpigmentation at birth, and signs of PCB intoxication (acne, 

loss of eye lashes) within 2 months. Later, death of 2 infants, changes in 

thymus, spleen, bone marrow and liver. Impaired learning and hyperactivity.  

(5, 6, 19, 26, 

42, 43) 

Aroclor 1248 Monkey (Rhesus),  

4 males 

100
 a
 18 mo Reproductive effects: Decreased spermatogenesis in 1 of 4 animals.  (6, 19) 

a
 Lowest dose tested. 

b 
Administration 3 times/week, but recalculated to an average dose 7 times/week. 

GPT: glutamic pyruvic transaminase, Ig: immunoglobulin, LOAEL: lowest observed adverse effect level, SRBC: sheep red blood cell, T3: triiodothyronine, T4: thyroxine. 
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Table 20. Dose-response relationships in some occupational studies with low/rather low exposure to PCBs.  

Population PCB content  Serum/plasma PCB levels (µg/l) Results  Reference 

  Exposed Controls   

55 transformer 

repairmen,  

56 controls 

PCB patterns 

resembled 

Aroclor 1260  

in all groups 

(27 PCBs 

quantified) 

Serum
 a
  

Median (mean) (range)  

Current exposure (n = 35) 

42.6 (53.7) (4.3–253) 

Past exposure (n = 17) 

29.9 (38.6) (1.5–143) 

 

Median (mean) 

(range)  

12.8 (20.0) 

(0.5–181)  

Hepatic effects: Positive correlation between serum PCB and serum GGT 

levels; GGT not significantly different from controls. Inverse correlation 

between adipose tissue PCBs and 17-hydroxycortico-steroid excretion in 

urine. 

Thyroid effects: Slightly lower mean value for T4 in serum, but no correla-

tion between serum PCB levels and effect after adjustment for age. Neither 

was there a correlation with adipose tissue PCB levels. 

Few significant correlations between PCBs and the studied endpoints (serum 

liver function tests, thyroid function tests, haemoglobin and white blood cell 

counts, sperm count etc.).  

(99-101, 

114) 

141 teachers, 

construction 

workers, tele-

communicatio

n technicians 

etc. (patients) 

 

PCB 28 

PCB 52 

PCB 101 

 

PCB 138 

 

PCB 153 

 

PCB 180 

Plasma, mean 

< 0.01
 

< 0.01
 

0.031  

0.066 (95 % quantile)
 

0.71 

1.44 (95 % quantile) 

1.03 

2.22 (95 % quantile)  

0.6 

1.07 (95 % quantile) 

 

< 0.01
 b 

< 0.
01 b 

< 0.1
 b
 

 

< 0.5
 b 

 

< 0.6 
b 

 

< 0.3
 b
 

Immunological effects: Weak dose-effect relationships between blood PCB 

levels and cellular and humoral immune parameters (in vitro lymphocyte 

stimulation, numbers of lymphocyte subpopulations, immunoglobulin auto-

antibodies). Undetectable IL-4 blood levels more frequent in patients with 

PCB 138 above the mean (> 0.7 µg/l) than below the mean. Low DR+ cell 

counts in blood more often in patients with PCB 101 above the mean (> 0.03 

µg/l) than below the mean.  

Hepatic effects: Significant positive associations between PCB 138 and  

153 plasma levels and GGT plasma levels (alcohol consumption was not 

controlled for). 

Different symptoms (e.g. frequent common cold diseases, bronchitis, irrita-

tion of mucous membranes of the throat and nose), but unclear if any of 

them were related to the PCB exposure. Also exposure to other chemicals 

suspected to induce immunological impairments. Blood levels of PCBs were 

strongly correlated with those of other chlorinated compounds. 

(82) 
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Table 20. Dose-response relationships in some occupational studies with low/rather low exposure to PCBs.  

Population PCB congener no. Plasma PCB level, µg/l  Plasma PCB level, ng/g/lipid Endpoints studied and results Reference 

  Exposed
 c
 

GM (range) 

Controls  

GM 

 Exposed 

GM (range) 

Controls  

GM 

  

36 workers 

removing old  

PCB-containing 

sealants,  

33 controls 

PCB 28 

PCB 44 

PCB 47 

PCB 52 

PCB 56/60 

PCB 66 

PCB 70 

PCB 74 

PCB 87 

PCB 95 

PCB 99 

PCB 101 

PCB 105 

PCB 110 

PCB 118 

PCB 138 

PCB 153  

PCB 180 

PCB 182/187 

 
∑ 7 PCBs 
∑ 19 PCBs 

0.052 (0.0029–0.39) 

0.013 (< 0.001–0.16)  

0.015 (0.0029–0.087) 

0.023 (0.001–0.20) 

0.036 (< 0.001–0.40) 

0.065 (0.0041–0.76) 

0.0087 (< 0.001–0.17) 

0.096 (0.014–0.56) 

0.010 (< 0.001–0.076) 

0.028 (0.0018–0.19) 

0.053 (0.011–0.20) 

0.038 (0.0044–0.32) 

0.034 (0.066–0.21)
 d
 

0.028 (0.0002–0.24) 

0.11 (0.018–0.59) 

0.46 (0.10–1.5) 

0.51 (0.13–1.6) 

0.35 (0.097–1.4) 

0.086 (0.018–0.34) 

 

1.6 (0.40–4.9) 

2.3 (0.56–7.8) 

0.011 

0.0010 

0.0036 

0.0037 

0.0012 

0.0028 

0.0014 

0.012 

0.0012 

0.0024 

0.018 

0.0055 

0.0061 

0.0025 

0.033 

0.21 

0.29 

0.24 

0.041 

 

0.80 

0.90 

 13 (0.7–110) 

3.1 (< 0.2–35) 

3.7 (0.6–18) 

5.5 (0.1–43) 

8.4 (< 0.1–115) 

16 (1.1–220) 

2.1 (< 0.2–41) 

24 (3.0–160) 

0.92 (0.27–16) 

6.9 (0.65–52) 

13 (3.4–59) 

9.3 (0.8–70) 

8.4 (1.7–61) 

6.9 (0.54–52) 

28 (5.2–170) 

110 (29–640) 

130 (37–540)  

87 (28–330)  

16 (5.1–110) 

 

410 (120–1 800) 

580 (160–2 200)  

3.2 

0.26 

1.0 

1.0 

0.31 

0.8 

0.38 

3.5 

0.30 

0.70 

5.2 

1.6 

1.8 

0.71 

9.4 

59 

84 

70 

11.8 

 

230 

260 

Thyroid effects: No evidence of 

effects on thyroid function, as 

measured by serum levels of total 

T3, free T4 and TSH.  

No significant correlation with 

thyroid function parameters for 

individual PCBs (PCBs 28, 52, 

101, 118, 138, 153, 180) or for the 

sum of 7 or 19 PCBs.  

 

Immunological effects: No 

evidence of immune system 

involvement, as expressed by  

a set of cytokines. 

(354) 

a 
Reported as total PCBs. The PCB pattern resembled Aroclor 1260. 

b 
Background blood levels were determined by calculating the 95 % quantile in 2 941 randomly selected individuals without a history of exposure to the chemicals. 

c
 The higher total serum values among the abatement workers were suggested by the authors to be secondary to historical occupational exposure. 

d
 GM and range are incompatible but are stated like this in the reference. 

GGT: γ-glutamyl transferase, GM: geometric mean, IL: interleukin, T3: triiodothyronine, T4: thyroxine, TSH: thyroid-stimulating hormone.  
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14. Evaluation of human health risks  

14.1 Assessment of health risks 

Polychlorinated biphenyls (PCBs) comprise 209 compounds (congeners) of which 

12 are dioxin-like. Commercial PCBs are liquid mixtures consisting of ~ 70–100 

congeners with the dioxin-like PCBs as minor or trace constituents. PCBs are non-

volatile, although low-chlorinated congeners have a much higher vapour pressure 

than high-chlorinated. All PCBs are lipophilic and some are very persistent and 

accumulate in the food chain. Food of animal origin (e.g. fatty fish) is a main 

source of PCB exposure for the general population as well as for occupationally 

exposed. Nowadays, PCB production and use is banned or restricted worldwide, 

but occupational exposure to PCBs may still occur, e.g. during renovation work 

and handling of waste, and in PCB-contaminated buildings such as schools and 

offices.  

Some studies from the Nordic countries indicate that total PCB plasma/serum 

concentrations in occupationally exposed are slightly elevated as compared to pre-

exposure values or to control groups. The increase compared to controls may at 

least in part be due to historical occupational exposure. The PCB levels in workers 

are still within the range of those measured in the general population during the 

last two decades. For workers as a whole, the health risk is therefore expected  

to be similar to that for the general population. Subgroups at increased risk due  

to higher PCB loads may be identified among both occupationally exposed (in-

sufficiently protected workers, workers exposed some decades ago) and the 

general population (heavy fish consumers, residents in PCB polluted areas).  

The aim of this document was to focus on health effects from occupational  

PCB exposure of today. Therefore, mainly human and animal studies with low  

or relatively low PCB exposure levels were included.  

In humans, the major important effects to consider from low-level PCB expo-

sure are effects on reproduction and development and possibly cancer. However, 

data do not allow definite conclusions. A comparison between studies is com-

plicated, e.g. because of differences in the number of PCB congeners measured 

and the presence of contaminants in technical PCB mixtures (dioxin-like sub-

stances such as PCDFs). It is also difficult to distinguish the impact of PCBs in 

relation to other environmental pollutants. The large animal data base indicates  

an overall LOAEL of 5 μg/kg bw/day in monkeys at oral administration, but does 

not allow the identification of a NOAEL.  

The developing foetus and infant seem to be vulnerable to PCB exposure and 

there is a growing body of evidence from studies on the general population that 

PCBs may contribute to slight neurobehavioural alterations, including impairment 

of cognitive functions. In humans, also subtle immunological effects in infants and 

possibly reduced birth weights have been indicated. Animal data support these 

findings. Increased locomotor activity was indicated in 12-month old infants of 

monkeys given Aroclor 1248 at a dose corresponding to approximately 6.3 µg/kg 

bw/day before and during gestation and lactation. A learning deficit and neuro-

behavioural changes were suggested in monkeys dosed from birth to 20 weeks of 
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age with 7.5 µg/kg bw/day of a PCB mixture. Resorptions, foetal and post-partum 

death occurred in impregnated monkeys dosed with 5 µg/kg bw/day of Aroclor 

1254 before and during gestation. Mild immunological effects in infant monkeys 

were shown from 5 μg/kg bw/day (dosing of dams only) and at 7.5 μg/kg bw/day 

(dosing of infants only) with different PCB mixtures.  

No major impact of PCBs on human male fertility has been demonstrated, but 

some studies of the general population indicate that PCBs might contribute to ad-

verse effects on sperm motility, although alternative explanations are possible. In 

monkeys, decreased spermatogenesis was seen in 1 of 4 males after exposure for 

one year to approximately 100 μg/kg bw/day of Aroclor 1248.  

Subtle alterations in thyroid hormones have been reported in some, but not all, 

of the studies of the general population and no definite conclusions can be drawn. 

In rats, increased levels of thyroid hormones were observed after a 30-day expo-

sure to Aroclor 1242 at 33 µg/kg bw/day, whereas long-time exposure to 90 µg/kg 

bw/day of Aroclor 1254 resulted in decreased levels.  

Adverse dermal and ocular effects (including chloracne) have not been reported 

in PCB exposed subjects in the general population, except in poisoning incidents. 

Thus, in humans such effects seem to be related to high-dose exposure to PCBs 

and/or exposure to PCDFs. In contrast, dermal and ocular effects in monkeys are 

sensitive indicators of toxicity of the studied PCB mixtures and have been ob-

served at 5 μg/kg bw/day of Aroclor 1254. 

For diabetes, no firm conclusion can be drawn. PCBs have been associated with 

diabetes in a number of studies on the general population, but the possibility of a 

reverse causality or that both PCB levels and diabetes are independently related to 

fat turnover cannot be ruled out. No obvious support for a relationship between 

PCB exposure and diabetes was found in mortality studies of highly exposed 

occupational cohorts. On the other hand, mortality is a crude measure of diabetes.  

Overall, the results of in vitro and in vivo genotoxicity studies indicate that tech-

nical PCB mixtures are not directly mutagenic, but indirect genotoxic mechanisms 

have been described.  

Regarding cancer, results from epidemiological studies are conflicting and do 

not allow a definite conclusion. In some of the occupational studies, an association 

between PCB mixtures and increased risks for prostate cancer and possibly cancer 

of the liver and biliary tract, and for malignant melanoma is suggested. Several 

studies of the general population have indicated a positive relationship between 

PCB levels and risk of non-Hodgkin’s lymphoma (NHL). 

PCB mixtures are carcinogenic in animals and are known as tumour promotors. 

Mainly liver tumours are induced. Cancer has occurred only at PCB dose levels 

exceeding those inducing other effects. PCBs were classified as a carcinogen  

in Group 2A (probably carcinogenic to humans) by IARC in 1987 without dis-

tinction between dioxin-like and non-dioxin-like congeners. Recently, PCB 126 

(the most potent of the dioxin-like PCBs) was classified by IARC as a human 

carcinogen in Group 1 on the basis of animal data and mechanistic information. 

PCB 126 was considered a complete carcinogen in experimental animals and 

cancer was induced predominantly in the liver and lung.  
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In addition to cancer, chloracne and effects on immune function, thyroid and 

liver have been linked to dioxin-like PCBs and other dioxin-like compounds, even 

though non-dioxin-like PCBs may also contribute to some of these effects. The 

effects of non-dioxin-like PCB congeners are less well known, although they occur 

in blood at much higher levels. Some data suggest that non-dioxin-like PCB con-

geners are important for the neurobehavioural effects seen in offspring. 

14.2 Groups at extra risk  

The foetus and new-born are especially vulnerable to PCBs. Among the effects 

that at least partly have been attributed to prenatal and postnatal PCB exposure are 

those affecting neurobehavioural functions and the immune system. 

14.3 Scientific basis for an occupational exposure limit  

Studies on health effects of occupational low-level PCB exposure are few, but  

as plasma/serum PCB levels in occupationally exposed seem to be in the same 

range as those of the general population, their health risks are presumably similar. 

Studies on the general population suggest that PCB mixtures may slightly affect 

sperm motility and possibly contribute to an increased risk for non-Hodgkin’s 

lymphoma in adults. In offspring, PCB exposure may contribute to subtle de-

velopmental changes including effects on neurobehavioural functioning, immune 

system and, possibly, birth weights. No threshold levels can be estimated based on 

current knowledge. Co-exposure to other pollutants hampers interpretation of the 

data. However, many of the effects seen in humans have also been reported in 

animals.  

In animals, the overall LOAEL at oral administration of PCB mixtures is 5 µg/ 

kg bw/day at which ocular/dermal, immunological, reproductive and develop-

mental effects were observed in monkeys. No animal NOAEL can be identified.  

PCBs mixtures are carcinogenic in animals, although cancer occurred only at 

dose levels far in excess of the LOAELs for other effects. Mainly liver tumours 

were induced. 

Overall, it may be suspected that any occupational exposure to PCBs increases 

the risk for adverse health effects. Elevated blood levels of non-dioxin-like PCBs 

due to occupational exposure can be assessed by measuring certain marker PCBs. 

The potential health risk of the dioxin-like PCBs can be estimated from the TEQ 

concentration for PCBs using the TEF approach.  

15. Research needs 

- Epidemiological studies in the general population relating PCB levels to  

various health outcomes (including thyroid function, cardiovascular disease, 

hypertension, diabetes and endocrine effects). 

- Exposure measurements during work with suspected PCB exposure.  

- Occupational studies addressing the importance of different exposure routes. 
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16. Summary 

Lindell B. The Nordic Expert Group for Criteria Documentation of Health Risks 

from Chemicals. 146. Polychlorinated biphenyls (PCBs). Arbete och Hälsa 2012; 

46(1):1-181. 

 

Polychlorinated biphenyls (PCBs) are a class of 209 synthetic compounds (con-

geners), in which 1–10 chlorine atoms are attached to biphenyl in different com-

binations. PCBs are non-volatile, although low-chlorinated congeners have a much 

higher vapour pressure than high-chlorinated. All PCBs are lipophilic and some 

are very persistent. For environmental reasons, PCB production and use is nowadays 

banned or restricted worldwide. PCBs were produced as mixtures with very dif-

ferent compositions, consisting of ~ 70–100 congeners with dioxin-like PCBs as 

minor constituents. They were used e.g. as hydraulic oils, as cooling liquids in 

electrical equipment and in building materials including elastic sealants. 

Food of animal origin (e.g. fatty fish) is the main source of environmental PCB 

exposure. Occupational exposure to PCBs may occur e.g. during renovation work 

and handling of waste but also in PCB-contaminated buildings such as schools and 

offices. Limited data indicate that occupationally exposed in the Nordic countries 

have slightly elevated total PCB plasma/serum levels as compared to pre-exposure 

values or to control groups. The increase compared to controls may at least in part 

be due to historical occupational exposure. The total PCB levels in workers are 

still within the range of those measured in the general population during the last 

two decades. The plasma/serum concentrations of certain PCB congeners can be 

used as markers of occupational exposure.  

As total PCB plasma/serum levels in occupationally exposed seem to be in the 

same range as those of the general population, their health risks are presumably 

similar. Studies on the general population suggest that PCB mixtures may slightly 

affect sperm motility and possibly contribute to an increased risk for non-Hodgkin’s 

lymphoma. In offspring, PCB exposure may contribute to subtle developmental 

changes including neurobehavioural effects (e.g. on cognition), effects on im-

mune system, and, possibly, birth weight. Yet, co-exposure to other pollutants 

hampers interpretation of the data.  

Many of the effects seen in humans have also been reported in animals. The 

effects of PCB mixtures in animals occurring at the lowest dose levels (5–7.5 µg/ 

kg bw/day) are effects on reproduction (resorptions/foetal death) and development 

(e.g. neurobehavioural effects), immune system, skin/nails and eyelids. Thyroid 

effects and effects on male fertility have been reported at higher doses, and cancer 

only at much higher doses. Many of the effects have been attributed primarily to 

dioxin-like congeners. The most potent dioxin-like PCB congener, PCB 126, has 

been classified by IARC as a human carcinogen based on animal and mechanistic 

data. Some data suggest that the non-dioxin-like PCB congeners are important for 

the neurobehavioural effects in offspring. 

Keywords: Aroclor, cancer, developmental, diabetes, fertility, immunotoxicity, 

non-Hodgkin’s lymphoma, occupational exposure limit, PCB, polychlorinated 

biphenyls, reproductive, review, risk assessment, thyroid, toxicity 
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17. Summary in Swedish 

Lindell B. The Nordic Expert Group for Criteria Documentation of Health Risks 

from Chemicals. 146. Polychlorinated biphenyls (PCBs). Arbete och Hälsa 2012; 

46(1):1-181.  

 

Polyklorerade bifenyler (PCB) är en ämnesgrupp som omfattar 209 syntetiska 

föreningar (kongener) bestående av en bifenyl med 1-10 kloratomer i olika kom-

binationer. De är icke flyktiga ämnen, men lågklorerade kongener har mycket 

högre ångtryck än högklorerade. Alla PCB-kongener är lipofila och vissa är 

mycket persistenta. Av miljöskäl är tillverkning och användning av PCB numera 

förbjuden eller begränsad världen över. De kommersiella PCB-blandningarna hade 

mycket varierande sammansättning och bestod av 70–100 PCB-kongener, varav 

dioxinlika kongener utgjorde en liten del. PCB användes t.ex. som hydrauloljor, 

kylvätskor i elektrisk utrustning samt i byggnadsmaterial, bl.a. fogmassor.  

Animalisk föda (t.ex. fet fisk) utgör den största källan till omgivningsexpone-

ring för PCB. Yrkesmässig exponering för PCB kan förekomma t.ex. vid reno-

veringsarbeten och avfallshantering men också i PCB-kontaminerade byggnader 

som skolor och kontor. Begränsade data antyder att yrkesexponerade i de nordiska 

länderna har något förhöjda totala PCB-nivåer i plasma/serum jämfört med nivåer 

före aktuell exponering eller vid jämförelse med kontrollgrupper. Förhöjningen 

jämfört med kontroller kan åtminstone delvis bero på historisk yrkesmässig expo-

nering. De totala PCB-halterna hos arbetare är dock i nivå med de som uppmätts 

hos allmänbefolkningen de senaste 20 åren. Halterna av vissa PCB-kongener i 

plasma/serum kan användas som markörer för yrkesmässig exponering.  

Eftersom de totala PCB-nivåerna i plasma/serum hos yrkesexponerade tycks 

vara i samma storleksordning som hos befolkningen i övrigt är också hälsorisker-

na troligen likartade. Studier på allmänbefolkningen antyder att PCB-blandningar 

kan påverka spermierörligheten något, möjligen bidra till en ökad risk för non-

Hodgkins lymfom hos vuxna samt bidra till subtila utvecklingsförändringar, t.ex. 

påverkan på beteende, kognitiv förmåga, immunsystem och möjligen födelsevikt. 

Samtidig exponering för andra miljöföroreningar försvårar dock tolkningen av data. 

Många av de effekter man sett hos människa har också observerats hos djur. De 

effekter av PCB-blandningar som setts vid lägst doser på djur (5–7,5 µg/kg kropps-

vikt/dag) är effekter på reproduktion och utveckling (t.ex. missfall, beteende-/in-

lärningsstörningar), immunsystem, hud/naglar och ögonlock. Effekter på sköld-

körtel och fertilitet hos handjur har setts vid högre doser och cancer endast vid 

mycket högre doser. Många effekter anses bero främst på dioxinlika kongener. 

Den mest potenta dioxinlika PCB-kongenen, PCB 126, har av IARC klassats  

som carcinogen för människa baserat på djurdata och mekanistiska data. Vissa 

data antyder att icke dioxinlika PCB-kongener har betydelse för beteende- och 

inlärningsstörningar hos avkomman. 

 

Nyckelord: Aroclor, cancer, diabetes, fertilitet, hygieniskt gränsvärde, immuno-

toxicitet, non-Hodgkins lymfom, PCB, polyklorerade bifenyler, reproduktion, 

riskbedömning, sköldkörtel, toxicitet, utvecklingseffekter, översikt  
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19. Data bases used in the search for literature 

As a basis for this document we have used previously published reviews, primarily 

those by ATSDR (19), ICPS (188) and EFSA (98) published in 2000, 2003 and 

2005, respectively. Other data were mainly obtained from the database PubMed.  

The initial literature search was performed in June 2005. Several updating searches 

were done, mainly with focus on human data, with a final search performed in 

November 2010. 
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Appendix 1. Occupational exposure limits 

Occupational exposure limits (mg/m
3
) for PCBs in different countries as TWAs. 

Country  All PCBs With 42 % chlorine With 54 % chlorine Reference 

(organisation) 8-hour STEL 8-hour STEL 8-hour STEL  

Denmark 0.01 0.02 - - - - (1) 

Finland  0.5 1.5 - - - - (2) 

Norway 0.01 0.03 - - - - (3) 

Sweden 0.01 0.03 - - - - (4) 

The Netherlands - - - - - - (5) 

Germany (DGF) - - 1.1 8.8 0.70 5.6 (6) 

United Kingdom 0.1 - - - - - (7) 

US (ACGIH) - - 1 - 0.5 - (8) 

US (NIOSH) 0.001 - 0.001 - 0.001 - (9) 

US (OSHA) - - 1 - 0.5 - (9) 

EU  - - - - - - (10-12) 

STEL: Short-term exposure limit (15-min TWA), TWA: time-weighted average (8 hours or for 

NIOSH up to 10 hours). 
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Appendix 2. Previous NEG criteria documents 

NEG criteria documents published in the scientific serial Arbete och Hälsa (Work and 

Health): 
Substance/Agent Arbete och Hälsa issue 

Acetonitrile 1989:22, 1989:37* 

Acid aerosols, inorganic 1992:33, 1993:1* 

Acrylonitrile 1985:4 

Allyl alcohol 1986:8 

Aluminium and aluminium compounds 1992:45, 1993:1*, 2011;45(7)*D 

Ammonia 1986:31, 2005:13* 

Antimony 1998:11* 

Arsenic, inorganic 1981:22, 1991:9, 1991:50* 

Arsine 1986:41 

Asbestos 1982:29 

Benomyl 1984:28 

Benzene 1981:11 

1,2,3-Benzotriazole 2000:24*D 

Boric acid, Borax 1980:13 

1,3-Butadiene 1994:36*, 1994:42 

1-Butanol 1980:20 

γ-Butyrolactone 2004:7*D 

Cadmium 1981:29, 1992:26, 1993:1* 

7/8 Carbon chain aliphatic monoketones 1990:2*D 

Carbon monoxide 1980:8 

Ceramic Fibres, Refractory 1996:30*, 1998:20 

Chlorine, Chlorine dioxide 1980:6 

Chloromequat chloride 1984:36 

4-Chloro-2-methylphenoxy acetic acid 1981:14 

Chlorophenols 1984:46 

Chlorotrimethylsilane 2002:2 

Chromium 1979:33 

Cobalt 1982:16, 1994:39*, 1994:42 

Copper 1980:21 

Creosote 1988:13, 1988:33* 

Cyanoacrylates 1995:25*, 1995:27 

Cyclic acid anhydrides 2004:15*D 

Cyclohexanone, Cyclopentanone 1985:42 

n-Decane 1987:25, 1987:40* 

Deodorized kerosene 1985:24 

Diacetone alcohol 1989:4, 1989:37* 

Dichlorobenzenes 1998:4*, 1998:20 

Diesel exhaust 1993:34, 1993:35* 

Diethylamine 1994:23*, 1994:42 

2-Diethylaminoethanol 1994:25*N 

Diethylenetriamine 1994:23*, 1994:42 

Diisocyanates 1979:34, 1985:19 

Dimethylamine 1994:23*, 1994:42 

Dimethyldithiocarbamates 1990:26, 1991:2* 

Dimethylethylamine 1991:26, 1991:50* 

Dimethylformamide 1983:28 

Dimethylsulfoxide 1991:37, 1991:50* 

Dioxane 1982:6 

Endotoxins 2011;45(4) *D 

Enzymes, industrial 1994:28*, 1994:42 

Epichlorohydrin 1981:10 

Ethyl acetate 1990:35* 
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Substance/Agent Arbete och Hälsa issue 

Ethylbenzene 1986:19 

Ethylenediamine 1994:23*, 1994:42 

Ethylenebisdithiocarbamates and Ethylenethiourea 1993:24, 1993:35* 

Ethylene glycol 1980:14 

Ethylene glycol monoalkyl ethers 1985:34 

Ethylene oxide 1982:7 

Ethyl ether 1992:30* N 

2-Ethylhexanoic acid 1994:31*, 1994:42 

Flour dust 1996:27*, 1998:20 

Formaldehyde 1978:21, 1982:27, 2003:11*D 

Fungal spores 2006:21* 

Furfuryl alcohol 1984:24 

Gasoline 1984:7 

Glutaraldehyde 1997:20*D, 1998:20 

Glyoxal 1995:2*, 1995:27 

Halothane 1984:17 

n-Hexane 1980:19, 1986:20 

Hydrazine, Hydrazine salts 1985:6 

Hydrogen fluoride 1983:7 

Hydrogen sulphide 1982:31, 2001:14*D 

Hydroquinone 1989:15, 1989:37* 

Industrial enzymes 1994:28* 

Isoflurane, sevoflurane and desflurane 2009;43(9)* 

Isophorone 1991:14, 1991:50* 

Isopropanol 1980:18 

Lead, inorganic 1979:24, 1992:43, 1993:1* 

Limonene 1993:14, 1993:35* 

Lithium and lithium compounds 2002:16* 

Manganese 1982:10 

Mercury, inorganic 1985:20 

Methacrylates 1983:21 

Methanol 1984:41 

Methyl bromide 1987:18, 1987:40* 

Methyl chloride 1992:27*D 

Methyl chloroform 1981:12 

Methylcyclopentadienyl manganese tricarbonyl 1982:10 

Methylene chloride 1979:15, 1987:29, 1987:40* 

Methyl ethyl ketone 1983:25 

Methyl formate 1989:29, 1989:37* 

Methyl isobutyl ketone 1988:20, 1988:33* 

Methyl methacrylate 1991:36*D 

N-Methyl-2-pyrrolidone  1994:40*, 1994:42 

Methyl-tert-butyl ether 1994:22*D 

Microbial volatile organic compounds (MVOCs) 2006:13* 

Microorganisms 1991:44, 1991:50* 

Mineral fibers 1981:26 

Nickel 1981:28, 1995:26*, 1995:27 

Nitrilotriacetic acid 1989:16, 1989:37* 

Nitroalkanes 1988:29, 1988:33* 

Nitrogen oxides 1983:28 

N-Nitroso compounds 1990:33, 1991:2* 

Nitrous oxide 1982:20 

Occupational exposure to chemicals and hearing impairment 2010;44(4)* 

Oil mist 1985:13 

Organic acid anhydrides 1990:48, 1991:2* 

Ozone 1986:28 

Paper dust 1989:30, 1989:37* 
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Substance/Agent Arbete och Hälsa issue 

Penicillins 2004:6* 

Permethrin 1982:22 

Petrol 1984:7 

Phenol 1984:33 

Phosphate triesters with flame retardant properties 2010;44(6)* 

Phthalate esters 1982:12 

Platinum 1997:14*D, 1998:20 

Polyethylene,  1998:12* 

Polypropylene, Thermal degradation products in the 

processing of plastics 

1998:12* 

Polystyrene, Thermal degradation products in the 

processing of plastics 

1998:12* 

Polyvinylchloride, Thermal degradation products in the 

processing of plastics 

1998:12* 

Polytetrafluoroethylene, Thermal degradation products in 

the processing of plastics 

1998:12* 

Propene 1995:7*, 1995:27 

Propylene glycol 1983:27 

Propylene glycol ethers and their acetates 1990:32*N  

Propylene oxide 1985:23 

Refined petroleum solvents 1982:21 

Refractory Ceramic Fibres 1996:30* 

Selenium 1992:35, 1993:1* 

Silica, crystalline 1993:2, 1993:35* 

Styrene 1979:14, 1990:49*, 1991:2 

Sulphur dioxide 1984:18 

Sulphuric, hydrochloric, nitric and phosphoric acids 2009;43(7)* 

Synthetic pyretroids 1982:22 

Tetrachloroethane 1996:28*D 

Tetrachloroethylene 1979:25, 2003:14*D 

Thermal degradation products of plastics 1998:12* 

Thiurams 1990:26, 1991:2* 

Tin and inorganic tin compounds 2002:10*D 

Toluene 1979:5, 1989:3, 1989:37*, 2000:19* 

1,1,1-Trichloroethane 1981:12 

Trichloroethylene 1979:13, 1991:43, 1991:50* 

Triglycidyl isocyanurate 2001:18* 

n-Undecane 1987:25, 1987:40* 

Vanadium 1982:18 

Vinyl acetate 1988:26, 1988:33* 

Vinyl chloride 1986:17 

Welding gases and fumes 1990:28, 1991:2* 

White spirit 1986:1 

Wood dust 1987:36 

Xylene 1979:35 

Zinc 1981:13 

* in English, remaining documents are in a Scandinavian language.  

D = collaboration with the Dutch Expert Committee on Occupational Safety (DECOS).  

N = collaboration with the US National Institute for Occupational Safety and Health (NIOSH).  
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