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T. Wright Signal detection in clinical visual electrophysiology

Introduction
The  human  visual  system  is  a  masterpiece  of  evolution  that  enables  us  to 
perceive the existence, form and location of objects in our local environment. 
The interaction of multiple cell  types in specialised structures and pathways 
allows visual perception over a huge dynamic range.  Human vision can operate 
both in very dim light (10-6 candela (cd)) and very bright (10 cd), a 14 log unit 
range (Hood & Finkelstein 1986). It is sensitive to wavelengths (colour) from < 
400nm to > 650nm and is able to differentiate changes of between 2 and 10 nm 
(Foley J.D. et al. 1996). The ability to differentiate between two lines positioned 
close together (visual acuity), has been shown to be < 1minute of arc (MAR) in 
emmetropic eyes with the potential for < 0.5 MAR (Rossi et al. 2007). 

Human  vision  is  much  more  than  the  simple  detection  of  the  presence  or 
absence of light. Multiple metrics can be used to measure visual performance 
and  experimentation  has  demonstrated  non-linear  relationships  between  the 
different measures. Visual information requires multiple stages of processing, 
both in the retina and the cortex, to allow us to form the rich representation of 
our environment that is referred to as visual perception. This processing takes 
place in a generally hierarchical manner, moving from simple to complex as the 
visual information is passed from the eye through the visual pathways in the 
brain.

Electrophysiology is the study of  electrical potentials generated by biological 
processes. The function of many cellular processes is dependent on the balance 
of  positive  and  negative  ions  across  cellular  membranes.  There  are  many 
techniques that have been used to record these changes in electrical potentials  
operating at a range of scales. Potentials have been recorded from single ion 
channels, single cells as well as entire organs. Clinical visual electrophysiology 
concentrates on non-invasive recordings of electrical  potentials  from the eye 
and the primary visual cortex. The relative accessibility of these organs aids the 
process of recording.

Clinical visual electrophysiology can be categorized into two main techniques. 

1



T. Wright Signal detection in clinical visual electrophysiology

Introduction
The  human  visual  system  is  a  masterpiece  of  evolution  that  enables  us  to 
perceive the existence, form and location of objects in our local environment. 
The interaction of multiple cell  types in specialised structures and pathways 
allows visual perception over a huge dynamic range.  Human vision can operate 
both in very dim light (10-6 candela (cd)) and very bright (10 cd), a 14 log unit 
range (Hood & Finkelstein 1986). It is sensitive to wavelengths (colour) from < 
400nm to > 650nm and is able to differentiate changes of between 2 and 10 nm 
(Foley J.D. et al. 1996). The ability to differentiate between two lines positioned 
close together (visual acuity), has been shown to be < 1minute of arc (MAR) in 
emmetropic eyes with the potential for < 0.5 MAR (Rossi et al. 2007). 

Human  vision  is  much  more  than  the  simple  detection  of  the  presence  or 
absence of light. Multiple metrics can be used to measure visual performance 
and  experimentation  has  demonstrated  non-linear  relationships  between  the 
different measures. Visual information requires multiple stages of processing, 
both in the retina and the cortex, to allow us to form the rich representation of 
our environment that is referred to as visual perception. This processing takes 
place in a generally hierarchical manner, moving from simple to complex as the 
visual information is passed from the eye through the visual pathways in the 
brain.

Electrophysiology is the study of  electrical potentials generated by biological 
processes. The function of many cellular processes is dependent on the balance 
of  positive  and  negative  ions  across  cellular  membranes.  There  are  many 
techniques that have been used to record these changes in electrical potentials  
operating at a range of scales. Potentials have been recorded from single ion 
channels, single cells as well as entire organs. Clinical visual electrophysiology 
concentrates on non-invasive recordings of electrical  potentials  from the eye 
and the primary visual cortex. The relative accessibility of these organs aids the 
process of recording.

Clinical visual electrophysiology can be categorized into two main techniques. 

1



T. Wright Signal detection in clinical visual electrophysiology

Electroretinography  (ERG)  records  the  electrical  potentials  generated  in  the 
retina in response to stimulation with light. Electrical potentials generated in the 
retina are conducted through the eye and are detected using an electrode placed 
on (or close to) the front of the eye (cornea). By modifying the adaptation state 
of the eye and the composition of the stimulus different retinal cell types can be 
targeted. As different cell types in the retina are activated a complex waveform 
can  be  recorded.  A  sub  type  of  the  electroretinogram  is  the  multifocal 
electroretinogram (mfERG), this involves stimulating, and isolating responses 
from  multiple  retinal  regions.  The  mfERG  allows  retinal  responses  to  be 
visualised as a topographic map of retinal function. Visual evoked potentials 
(VEP) record the electrical potentials generated in the primary visual cortex. 
Typically electrodes are placed on the surface of the scalp over the visual cortex 
(V1). The visual signal must be detected by the retina and then transduced via 
the optic nerves before reaching the visual cortex and being detected by the 
recording electrodes.  Abnormalities occurring anywhere in  this pathway will 
modify  the  final  recorded waveform.  In  addition  to  electroretinography and 
visual evoked potentials other techniques such as the electrooculogram (EOG) 
are used.

A common  problem  affecting  all  electrophysiological  techniques  is  that  of 
signal  detection.  Particularly in techniques used in clinical  electrophysiology 
the amplitude changes of the electrical potentials of interest are relatively small 
requiring  external  amplification  for  visualization.  When  the  amplification  is 
performed without using any prior knowledge about the signal of interest it is 
generic,  equally  amplifying  all  electrical  potentials  detected  by  the  sensing 
electrodes. Typically this will  include electrical potentials generated by other 
biological processes, such as muscle contractions or background brain activity, 
as well as any electrical potentials generated by sources external to the body.

This work examines how using prior knowledge about the expected response 
potentials  can be used to improve the identification and characterizations  of  
responses. Techniques are applied to both multifocal electroretinograms (Papers 
I & III) and visual evoked potentials (Paper II). A difficulty common to these 
types of studies is how to measure improvement in the absence of knowledge 
about  the  true  underlying  signal.  Methods  are  introduced  that  artificially 
manipulate the electrophysiological recordings in a well characterized manner 
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(Papers I & II) to determine the performance of signal detection techniques. 
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The visual pathway
The most obvious organs involved in vision are the eyes. Often represented as a 
simple  globe,  the  human  eye  is  made  up  from  multiple  structures.  These 
structures have many roles supporting and enhancing the ability of the retina to 
detect  light,  dark  and  form.  These  include  muscles  and  nerves  that  control 
motility, structures that can change the optical properties of the system such as 
the pupil, which controls the total amount of light being allowed to enter the 
eye, and the cornea and lens which can adjust the focal length. 

Arguably  the  most  fundamental  structure  of  the  eye  is  the  retina.  In  many 
simple  organisms  the  differentiation  of  light  and  dark  may  be  the  only 
perception possible. The only requirement for this purpose is a light sensitive 
neuron, which is exposed to the external environment (von Helmholtz 1909). In 
the human eye the structure of the retina is much more complex, thus allowing 
significant amounts of visual processing to take place. 

The retina forms a complex layered structure with multiple cell types (Figure 1). 
There  are  several  cell  types  involved  in  the  detection,  processing  and 
transmission of the visual signal. Other, non-neuronal cells, such as Müller cells 
support the function and regeneration of the retinal circuitry. 

The  mammalian  retina  is  supplied  with  blood from two main  sources.  The 
majority of blood flow comes from arteries in the outer choroid. This blood 
flow supports  the  outer  layers  of  the  retina  including  the  retinal  pigmented 
epithelium and the photoreceptors. A separate artery, the central retinal artery 
passes into the eyeball at the optic nerve head, this artery forms a network on 
the inner surface of the retina to supply the neural structures of the inner retina 
(Cioffi et al. 2003).
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Structure of the retina
The basal layer of the human retina is the retinal pigmented epithelium (RPE). 
This single layer of cells sits between the blood supply of the choroid and the 
outer  segments  of  the  photoreceptors.  The  cells  of  the  RPE  are  heavily 
pigmented and have a role in improving the optics of the eye by absorbing 
scattered light. There is a strong interdependence between the photoreceptors 
and RPE, the RPE is necessary to support the function of the photoreceptors. 
The next retinal layer is formed by the photoreceptors, in the human retina there 
are four types of photoreceptors. Cone photoreceptors are classified according 
to  the  wavelength  of  light,  short  (S-cones),  medium (M-cones)  or  long (L-
cones) that they are maximally sensitive too. The fourth type of photoreceptor 
(rods) are highly sensitive at low light levels. All photoreceptors have a similar 
structure consisting of two parts, an inner and an outer segment connected by a 
thin cilium.  The tips  of  the outer  segments  are  embedded in the RPE,  they 
contain a  stack of  flattened disks  of  membrane containing molecules  of  the 
visual pigments (opsins). The inner segment of the photoreceptor contains the 
structures  involved  in  maintaining  the  cell,  including  a  large  number  for 
mitochondria  to  generate  the  energy  required  for  photo-transduction.  The 
structure  of  the  outer  segment  differs  between  the  two  major  classes  of 
photoreceptor. In the rod photoreceptors the membrane disks are tightly packed 
in  a  long  column.  This  maximizes  the  change  of  a  photon  intercepting  the 
photo-pigment maximizing the sensitivity of this cell type to light. In the cone 
photoreceptor  the  membrane  disks  are  more  spread  out  providing  a  larger 
surface area and allowing faster transfer of substances required to regenerate the 
cell after stimulation by light. This difference in structure leads to a difference 
in  morphology  with  cones  appearing  shorter  and  fatter  than  rods (Burns  & 
Lamb 2004).
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to  as  bipolar  cells.  At  least  10  different  bipolar  cells  have  currently  been 
identified   (Dacey 1999), these cells differ in both morphology and function. 
Functionally the bipolars are classified according to whether they respond when 
the  stimulating  photoreceptors  detect  an  increase  in  light  intensity  (ON-
bipolars)  or  a  decrease  in  relative  light  intensity  (OFF-bipolars). 
Morphologically  the  bipolar  cells  are  classified  according  to  the  types  of 
photoreceptors, rods or cones that they connect to, the number of photoreceptors 
that they connect to and the depth in the retina of their terminal connections 
(Masland 2001). In general cone midget bipolar cells synapse with only a few 
cone photoreceptors, but in the fovea a midget bipolar cell will synapse with a 
single cone. Diffuse bipolar cells form synapses with multiple photoreceptors 
and  can  spread  over  relatively  large  retinal  areas.  The  receptive  fields  (the 
retinal area covered by a single bipolar cell) can vary greatly in size from < 1° 
visual  angle  to  >  10°.  That  diffuse  bipolar  cells  interface  with  multiple 
photoreceptors  allows  for  integration  of  the  stimulus  from  multiple 
photoreceptors.  Electrophysiological  recordings  performed  by  inserting  an 
electrode into a single cell have shown that bipolar cells have a centre surround 
organisation where stimulation of photoreceptors connecting to the periphery of 
a receptive field have an antagonistic response to the response to photoreceptors 
connecting  closer  to  the  centre (Lukasiewicz  2005).  This  centre  surround 
organisation provides a mechanism for basic visual  processing such as edge 
detection and colour perception (Jacobs 1969).

In  turn  the  bipolar  cells  interface  with  a  family  of  ganglion  cells.  20-25 
anatomically different types of ganglion cells have been identified and again 
these are classified according to the size of their  visual  field and the retinal 
depth where they synapse with the bipolar cells. The ganglion cells traverse the 
inner surface of the retina to where they exit the eye at the optic nerve head.  
From the eye these ganglion cells pass the retinal signals to multiple distinct 
targets in the midbrain and thalamus of the brain (Masland 2001). 

To  further  complicate  the  retinal  circuitry  the  interactions  between 
photoreceptors and bipolar cells are modulated by horizontal cells. Horizontal 
cells synapse with multiple photoreceptors and form gap junctions with each 
other. They provide a negative feedback signal to photoreceptors and as a result 
are important in generating the visual fields of both bipolar cells and ganglion 
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Figure 1: Retinal connectivity. Schematic diagram showing neuronal cell types  

of the mammalian retina. OPL  outer plexiform layer, IPL inner plexiform layer.  

Image modified with permission from  (Schiller 2010).

The inner segments of both rods and cones terminate in a synaptic junction. 
These synaptic junctions interface the photoreceptors with a complex neuronal 
network. The initial connection with this network is to a family of cells referred 
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cells.  The  connections  between  bipolar  cells  and  ganglion  cells  are  also 
modulated by another family of amacrine cells. It is estimated that there are at  
least 40 different types of amacrine cells in the primate retina (Dacey 1999).

As can be seen from the complex circuitry within the retina the common model 
of the retina as a photographic film is overly simple. Far from just detecting the 
presence  or  absence  of  light  the  retina  is  capable  of  considerable  visual 
processing.

Retinal Function
When the photoreceptor is not stimulated by light there is a steady current, 'the 
dark current' of mainly sodium ions flowing through the cell membrane. The 
ions enter the cell through cyclic guanosine monophosphate (cGMP) channels 
in the outer segment membranes. In the dark this current holds the cell  in a 
partially depolarised state.  This leads to the constant  release of glutamate,  a 
neural transmitter. When a photon of light interacts with the opsin complex in 
the outer segment of the photoreceptor the opsin molecule is isomerised to an 
active form initiating a protein cascade that leads to the closing of the cGMP 
channels. As the positive charged sodium ions cannot enter the cell this leads to 
the photoreceptor hyperpolarising and the release of glutamate is stopped. 

The decrease in glutamate at the synapse between the photoreceptor and the 
bipolar cell can have differing effects according to the particular type of bipolar 
cell.  The  decrease  in  glutamate  causes  ON-bipolar  cells  to  become  more 
positive (depolarised) while the opposite response (hyper-polarisation) occurs in 
OFF-bipolar cells. These two opposite responses are mediated by two different 
types  of  glutamate  receptor.  OFF-bipolar  cells  express  direct  ionotropic 
glutamate receptors, two types of ionotropic receptors have been observed in 
bipolar cells; AMPA and kainate. Both these receptors form direct ion channels 
through the cell  membrane allowing the passage of cations such as calcium, 
sodium  and  potassium  when  the  receptor  is  activated  by  the  presence  of 
glutamate. Thus OFF-bipolar cells are held in a slightly depolarised state when 
glutamate is released by the photoreceptors (i.e. in the dark), once the glutamate 
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release is  reduced (i.e.  in the presence of light)  the influx of  cations to  the 
bipolar cell is stopped and the cell hyperpolarises (Smith 2006).

ON-bipolar  cells  show a  reversal  in  response,  becoming  depolarised  in  the 
absence  of  glutamate.  This  response  is  mediated  by  indirect  metabotrophic 
glutamate receptors. One such receptor that has been characterised in the retina 
is  the  2-amino-4-phosphonobutyric  acid  (APB)  receptor.  When  the  APB 
receptor  is  activated  in  the  presence  of  glutamate  an  intracellular  signaling 
cascade closes ion channels permeable to cations causing the bipolar cell  to 
hyperpolarise (Nelson & Connaughton 1995; Slaughter & Miller 1981). 

The horizontal cells mediate interactions between multiple photoreceptors. They 
consist  of  a  central  cell  body surrounded by  an  electrically  isolated  axonal 
arbour. The primary functional role of the horizontal cells is a negative feedback 
pathway suppressing the activation of connected cone photoreceptors. The exact 
mechanism  of  this  feedback  is  not  yet  clear,  initially  it  was  thought  to  be 
dependent on the release of GABA, however other studies have implicated a 
GABA independent  pathway  that  modulates  the  Ca2+ current  in  the  cone 
photoreceptors (Fahrenfort  et al.  2005; Kamermans & Spekreijse 1999). The 
horizontal cells show spatial organisation of their inputs, thus hyperpolarisation 
of  the  photoreceptors  synapsing  with  the  periphery  of  the  horizontal  cell 
modulates  the  Ca2+ flow  in  the  synapse  of  cones  synapsing  close  to  the 
horizontal  cell  body,  decreasing  their  sensitivity  to  changes  in  luminance 
(Kamermans & Spekreijse 1999; Verweij et al. 1996).

Like  the  photoreceptors,  the  bipolar  cells  also  release  glutamate  as  their  
neurotransmitter. The ON and OFF cone bipolar cells synapse directly with ON 
and  OFF ganglion  cells.  Rod  bipolar  cells  synapse  almost  exclusively  with 
amacrine cells. Input from rod ON-bipolar cells is passed via the amacrine cells 
to a  cone ON-bipolar,  ganglion cell  synapse.  The rod OFF signal  is  in turn 
passed via the amacrine cell, with a signal inversion, reducing glutamate release 
to a cone OFF-bipolar cell stimulating a cone OFF-ganglion cell (Nelson 1982; 
Kolb 1997). The amacrine cells are extensively coupled by gap junctions, these 
are highly dependent on the state of light or dark adaptation in the retina. The 
amacrine cells form feedback synapses with bipolar cells allowing them to act 
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in  a  similar  fashion  to  the  horizontal  cells,  mediating  lateral  interactions 
between  the  bipolar  cells.  Both  amacrine  and  ganglion  cells  respond  to 
excitation by forming action potentials.  The action potentials  from amacrine 
cells can either be sustained, responding to a change in light with a maintained 
discharge, or transient, firing at light onset or offset (Kolb 1997). 

As  can  be  seen,  unlike  the  majority  of  neurons  in  the  nervous  system,  the 
photoreceptor and bipolar cells act in an analogue manner showing a gradient of 
responses.  Once the bipolar cells  synapse with the retinal  ganglion cells  the 
retinal visual system takes on a binary nature. The action potentials of ganglion 
cells show complex patterns in response to stimulation. Some ganglion cells 
show a center surround organization of the receptive field, and On-centre retinal 
ganglion cell shows increased activity when light stimulates the centre of its  
receptive field, when light stimulates the periphery of the visual field it  will 
response by decreasing the rate of action potential generation, when both the 
canter and surround receptive fields are illuminated the effects cancel out and 
the rate of action potential generation remains unchanged. Other ganglion cells 
have been shown to be activated (or suppressed) by lights moving in a preferred 
direction,  or  by edges (sharp changes in light  intensity)  across the receptive 
field (Falk  &  Shells  2006).  Recent  research  has  identified  a  new  class  of 
ganglion cells, the intrinsically photosensitive retinal ganglion cells (ipRGC), 
which contain the photo-pigment melanopsin. These ipRGCs are not thought to 
be  involved  in  vision  but  instead  play  a  role  in  circadian  rhythms  and  the 
pupillary light reflex (Schmidt et al. 2011).
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Cortical Visual System

Figure 2: Schematic representation of the cortical visual pathways. Neurons 

from the nasal retina cross at the optic chiasm. The first synapse for retinal  

ganglion cells is in the Lateral Geniculate Nucleus. Inputs from each eye are  

segregated until they terminate in V1.
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The final cell type in the retina is the retinal ganglion cell. The axons of these 
neurons pass over the inner surface of the retina forming the retinal nerve fibre 
layer and converge at the optic nerve head, here they exit the retina forming the 
optic nerve. The optic nerves of the two eyes converge at the optic chiasm (OC). 
At the OC some of the axons from the two eyes undergo decussation, axons 
originating in the nasal retina cross sides so the left half of the visual field is  
perceived by the right cerebral hemisphere and vice versa. As axons originating 
in the temporal retina are carrying information about the opposite side of the 
visual field (i.e. Temporal retina in the left eye encodes information from the 
right side of the field of view) there is no need for these axons to cross over 
(Figure 2). The first synaptic terminal for the majority of the retinal ganglion 
cells  is  in  the  Lateral  Geniculate  Nucleus  (LGN)  in  the  thalamus.  After 
synapsing in the LGN the visual information passes, via the optic radiations, to 
the primary visual cortex. Connections have been identified from the primary 
visual cortex projecting to many distinct cortical regions involved in aspects of 
higher order visual processing (Figure 3). 
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Figure 3: Cortical regions involved in vision. Map showing connectivity  

between cortical areas of vision in the macaque. Reproduced with permission  

from  (Van Essen et al. 1992).

This should not be interpreted as indicating that the flow of visual information 
is linear and uni-directional. Even in the early parts of the visual pathway feed 
back connections form a significant proportion of the neural synapses. In the 
LGN it is estimated that only 10% of the neurons are afferent from the retina  
while 30% of the neurons are feed-back from other cortical regions (Sherman 
2001).
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The primary destination for visual information from the LGN is the primary 
visual cortex (V1), this is located in the posterior pole and along the Calcarine 
Fissure on the medial sides of the occipital lobes of the brain (Figure 4). Early 
anatomical studies recognized that the visual cortex was made up of several 
layers,  a commonly used numbering scheme was proposed by Brodmann in 
1909 (Garey 2006) which divided the visual cortex into 6 layers. Layer 1 (most 
dorsal) has very few neurons, layers 2 & 3 have many excitatory neurons that  
connect  to  other  cortical  areas  involved  in  visual  processing.  The  axons 
projecting from the LGN terminate in layer 4 of the visual cortex. Finally layers 
5  &  6  have  axonal  projections  that  provide  feedback  circuits  to  the  LGN. 
Studies injecting a radioactive marker, that is taken up by, and transported along 
neurons, showed that the axonal terminals in layer 4 segregate according to the 
eye  of  origin (Wiesel  et  al.  1974).  In  addition  to  the  formation  of  ocular 
dominance columns, axons from similar retinal areas project to similar locations 
in V1, leading to the formation of a retinotopic map with regions of the visual 
cortex  representing  regions  of  the  retina  (Figure  4).  As  the  density  of 
photoreceptors  and ganglion cells  is  greatest  in the centre of the retina (the 
fovea), the equivalent area of V1 is proportionally larger than that representing 
more peripheral retina.

Figure 4: Retinotopic map of the human visual cortex. Left: The striate area  

of the left hemisphere of the brain is shown with the Calcarine Fissure opened  

to reveal the internal portion. Right: The right half of one visual field. The  

markings represent the different segments of the visual field on the cortex.  

Reproduced from  (Holmes 1945).
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Visual Electrophysiological Methods

Retinal Electrophysiology
The  activation  of  neuronal  cells  in  the  retina  gives  rise  to  changes  in  the 
electrical potential of the eye. Using electrodes placed close to the eye these 
electrical  potentials  can  be  measured.  The  resultant  waveforms  of  electrical 
potential  against  time  are  complex  with  different  neuronal  generators 
overlapping  with  positive  and  negative  potentials.  An  early  analysis  of  the 
mammalian  ERG recorded  from  cats,  suggested  that  it  was  formed  by  the 
summation of three separate potentials termed PI, PII and PIII (Granit 1933) 
(Figure  5). Since  these  early  recordings  technological  developments  have 
allowed the identification of many smaller potentials (Figure 6).

Figure 5: Components forming the retinal action potential. Early recordings  

of the retinal action potential identified 4 components (termed a,b,c and d-

waves). It was suggested these were formed by the summation of 3 separate  

potentials (PI, PII and PIII). Components: broken lines, Composite curve  

drawn in full. The a-wave is broadened slightly out of scale to show its  

derivation more clearly. Reproduced from  (Granit 1933).
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Figure 6: Components of the human electroretinogram. An idealised ERG 

waveform showing the early receptor potential (ERP), the photopic and  

scotopic a waves (Ap and As), the photopic and scotopic b waves (Bp and Bs),  

the late negative response (afterpotential), and the C wave. Ripples occur  

throughout the entire response. Not all the components shown are seen in any  

single recording condition. Reproduced from  (Armington 1974).

The primary components of the ERG that are of interest in a clinical analysis  
are the a-wave and the b-wave. In a dark adapted eye the response to a low 
intensity flash does not have a significant a-wave component, however as the 
flash intensity increases the a-wave becomes more prominent. The negative a-
wave represents the leading edge of Granits PIII component and is due to the 
relative  increase  in  sodium  ions  in  the  extra-cellular  matrix  as  the 
photoreceptors  hyperpolarise  in  response  to  light.  As  the  visual  signal  is 
transmitted  along  the  retinal  pathway  to  the  bipolar  cells  they  depolarise,  
releasing potassium ions. These ions are taken up by Müller cells, which span 
the entire depth of the retina and it is thought that it is currents originating in the 
Müller cells that gives rise to the positive going b-wave (Kline et al.  1978). 
More recent research has indicated that current in the Müller cells may not be 
the  sole  origin  of  the  b-wave  and  that  ON-center  bipolar  cells  as  well  as 
ganglion  cell  activity  may  also  contribute (Lei  &  Perlman  1999).  High 
frequency oscillations can be observed on the rising edge of the b-wave, while 
the exact origins of these oscillatory potentials (OPs) is not clear, it is likely 
they do not have a single origin. The early OPs probably originate from the 
cone  pathway  while  the  later  OPs  represent  processes  of  the  rod  pathway 
(Rousseau & Lachapelle  1999).  Animal  studies  have  indicated  that  the OPs 
directly  represent  the  activities  of  the  neuronal  bipolar  and  amacrine  cells 
(Wachtmeister 1987). Other potentials that may have clinical use include the d-
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wave and photopic negative response (PhNR). The d-wave is visible only when 
the stimulus is of a long (>100 ms) duration and is thought to represent response 
of  the  off-bipolar  cells (Xu  &  Karwoski  1995).  The  PhNR  is  a  negative 
potential occurring after the b-wave. It can be optimized by using stimuli that  
preferentially target a single class of cone photoreceptor   (Rangaswamy et al. 
2007). The response is thought to represent the glial cell response to activation 
of the retinal ganglion cells (Viswanathan et al. 1999).

Multifocal Electroretinogram
As described earlier the ERG uses an electrode placed on the cornea to record 
the gross retinal  response to stimulation by light.  Useful  information can be 
obtained  by  modifying  the  stimulus  intensity,  colour  and  frequency  and  by 
changing  the  adaptation  state  of  the  retina.  In  all  cases  however,  the  light 
stimulation is designed to give homogeneous illumination of the retina. Because 
there is only a single input (the light) and output is only recorded from a single 
electrode the full field ERG method it is not possible to infer any information 
about the topographic distribution of the ERG potentials from the retina and 
localised regions of retinal dysfunction can be obscured by the response from 
the rest of the healthy retina. This is particularly significant when the regions of  
retinal  dysfunction  are  localised  to  the  macular,  since  small  regions  of 
dysfunction  here  may  have  significant  effects  on  vision.  Before  the 
development of the multifocal ERG, information about the spatial distribution 
of retinal responses was obtained by using small, focal stimuli, as the generated 
retinal response is correspondingly small long recording times are required to 
derive  the  retinal  response.  These  long  recording  times  preclude  obtaining 
responses  from many  retinal  areas  using  this  method.  Comparing  responses 
from multiple  retinal  regions  becomes  difficult  due  to  variations  within  the 
recording session and between multiple sessions.

The multifocal electroretinogram (mfERG) technique was introduced in 1991 
by  E.  Sutter (Sutter  &  Tran  1992) to  address  this  problem.  The  multifocal 
technique depends on the simultaneous stimulation of  multiple  retinal  areas. 
The  gross  retinal  response  is  recorded  using  a  single  electrode.  Individual 
responses  from  each  stimulated  area  are  extracted  post  recording  using  a 
mathematical  algorithm.  In  order  for  this  extraction  to  be  successful  each 
individual stimulation element must be independent of all the others. A common 
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way  of  ensuring  this  independence  is  to  control  the  elements  of  the  visual 
stimulus, using a maximum length sequence (m-sequence). The m-sequence is 
simply a binary number of length 2n-1 where n > number of hexagons in the 
array (e.g. 1001110 is an m sequence of length 23-1). M-sequence numbers have 
properties that make them suitable for the purpose of driving a multifocal ERG 
stimulus. In particular they have a uniform distribution of the 1s and 0s through 
the sequence, also the values in the sequence are independent; no value can be 
predicted from the other values. If an m-sequence is shifted by any number of  
places the resultant sequence has zero correlation with the original m-sequence. 
This allows each element in the stimulus array to be controlled by the same m-
sequence  shifted  by  a  number  of  places.  The  response  from each  stimulus 
element can then be extracted by adding all  the trials in which the stimulus 
element was activated and subtracting all the trials in which the element was 
inactive. The extraction of responses from the mfERG is very flexible, the most 
normal extracted response is that of a single flash of each element (1st order 
kernel),  it  is  also  possible  to  extract  response  from  other  combinations  of 
element stimulation. For example responses in which a single element has been 
stimulated  twice  in  succession  (2nd order,  1st slice),  this  response  represents 
retinal adaptation to a preceding flash (Sutter 2001) (Figure 7).

There  are  several  different  commercially  available  multifocal 
electroretinography systems. All recordings in this work were performed using 
the Veris™ multifocal system (Electro-diagnostic Imaging, Redwood City, CA, 
USA). The stimulus for the Veris system consists of an array of hexagons, the 
experiments in this work used stimulus arrays of 61 or 103 elements but arrays 
with more or less elements are available. Optionally the stimulus hexagons can 
be scaled to approximate the size of the retinal response from different retinal 
areas, i.e. hexagons in the centre of the array are smaller than hexagons in the 
periphery; this allows greater detail to be gathered from the central retina where 
the cone density is highest. The stimulus is generated using a small 2” cathode 
ray tube (CRT), optical magnification is used so the stimulus subtends ~40º of 
the retina. Obviously a key requirement for accurate spatial mapping of retinal 
function is accurate placement of the stimulus on the retina. The Veris system 
aids  stimulus  placement  with  a  camera  operating  at  infra-red  wavelengths, 
which can visualize the fundus as the stimulus is presented. This fundus image 
can also be used to monitor fixation during recordings.
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Figure 7: Extracting responses from the multifocal m-sequence. Top shows a  

representation of m-sequence stimulation from 1 hexagon. The trace below  

represents the corresponding sequence from the same hexagon. The derivation  

of 1st and 2nd order responses is shown below. Reproduced with permission from 

(Sutter 2001).
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Electrode choice for electroretinograms
There are many different types of electrodes that have been used for recording 
ERGs and mfERGs.  All  electrodes  require  placing  a  conductive material  as 
close  as  possible  to  the  neural  elements  that  are  generating  the  electrical 
potentials of interest.  The electrical potentials are conducted from the retinal 
generator sites, through the intervening tissues to the conductive element of the 
electrode (Coupland 2006). Changes to the electrical  potentials  of the active 
electrode are detected by comparison with a  second electrode,  the reference 
electrode.  The  reference  electrode  is  positioned so  as  not  to  be  affected  by 
potentials  from  the  retinal  generating  sites  of  interest.  Often  the  reference 
electrode  is  placed  in  the  contra-lateral  eye  when  monocular  stimulation  is 
performed. Electrodes placed on the ear-lobes, the outer canthus or forehead are 
also used. Many studies have shown that the type and position of both the active 
and  recording  electrodes  can  have  a  significant  impact  on  the  recorded 
potentials (Odom et al. 1987; Mentzer et al. 2005). In the studies described in 
this  work  the  bipolar  Burian-Allen  (Hansen  Ophthalmic  Laboratories,  Iowa 
City) contact lens electrode was used. This electrode consists of a clear corneal 
contact lens that is held against the cornea by a spring assembly. The contact  
lens is surrounded by a circular silver wire that acts as the active electrode. The 
lens is mounted inside a speculum that holds the eyelids apart and contacts with 
the scleral surface. The outer surface of the electrode is coated with silver and 
acts as the reference electrode. Use of the Burian-Allen lens has a small risk of  
corneal abrasion and moderate discomfort; however it is tolerated well by most 
people. Due to the stable configuration of the active and reference electrodes it  
consistently gives a good signal-to-noise ratio (SNR) and consistent recordings 
(Lawwill & Burian 1966).

Visual Evoked Potentials
The location of the visual cortex is fortuitous for electrophysiologists interested 
in studying its electrical activity. The visual cortex is located close enough to 
the skull  that  electrodes can be placed on the scalp and electrical  potentials  
occurring in the cortex can be recorded. Due to the retinotopic layout of the 
visual cortex, however, inputs projecting from the macular region of the retina 
project to the occipital pole while inputs from more peripheral retina project to 
cortical  areas  deeper  inside the Calcarine fissure.  The position of  electrodes 
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placed  on  the  scalp  mean that  the  VEP is  dominated  by  stimulation  of  the 
central retina and is relatively insensitive to stimulation of the peripheral retina. 
Typically an active electrode is placed over the occipital cortex in location Oz 
defined by the International Standard 10-20 EEG System (Jasper 1958). The 
scalp location is cleaned using mild abrasion and the electrode is embedded in a 
conductive paste or gel to ensure a good connection. A reference electrode is 
placed in a separate location that will not be influenced by activity in the visual  
cortex. Location Fz or an earlobe is often used. If information is required about  
the differential  functioning of  the cortical  hemispheres,  additional  electrodes 
can be placed over each cortex. Locations O1 and O2 and PO7 and PO8 are 
often used for this purpose (Odom et al. 2010). 

The brain is  not  a  quiet  organ and electrical  potentials  are  constantly being 
generated.  Typically  the  electrical  potentials  evoked  in  the  visual  cortex  in 
response to visual stimulation are of a similar, or smaller, magnitude to the other 
concurrent  potentials,  thus  multiple  repetitions  of  the  visual  stimulation  is 
required and the signal is extracted using averaging. Clinical recommendations 
indicate  this  process  should be repeated  at  least  twice for  each response to 
demonstrate repeatability.

A system for  recording the VEP consists  of  a  stimulus  presentation system, 
often  a  computer  linked  to  a  colour  or  monochrome  monitor  and  a  signal 
amplifier and recording system, usually a computer with an analog to digital 
conversion  board.  A key requirement  of  the  recording  system is  that  it  can 
average together signals accurately time-locked to the stimulus presentation. All 
recordings  presented  in  this  work  were  performed  using  a  commercially 
available  NuAmps  system  with  Scan2  software  (Compumedics  Neuroscan, 
Charlotte, NC, USA) for recording, with a computer running StimulusMaker™ 
(Vision  Research  Graphics  Inc.,  Durham,  NH,  USA)  for  the  stimulus 
presentation.

Many  different  visual  stimuli  can  be  used  to  evoke  the  VEP.  Unstructured 
flashes of light can be presented either monocularly or binocularly to test the 
integrity of the visual pathway (flash VEP). Structured stimuli, such as checker-
board patterns, are also used to test the cortical response to stimuli at different 
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spatial frequencies (pattern VEP). Structured stimuli can be presented in either  
an onset / offset mode, where the stimulus is modulated between the appearance 
of a pattern and a blank screen, or in pattern reversal mode, when elements of 
the pattern are alternated (i.e. black checks become white and vice versa). Care 
needs to be taken with pattern stimulation to ensure that  there is  no overall  
change  in  luminance  between  the  stimulus  phases.  Recently  the  multifocal 
paradigm has been applied to the VEP, a complex, uncorrelated visual stimulus 
allows  the  extraction  of  multiple  VEPs  representing  cortical  function  from 
multiple retinal areas (Baseler et al. 1994).

There  are  many  factors  that  can  affect  the  morphology  of  the  recorded 
waveforms.  These include the type of  stimulation (flash vs  pattern onset  vs 
pattern reversal), the size and contrast of the stimulus components as well as the 
speed of presentation. When the stimulus presentation rate is slow (<2 cycles 
per  second)  a  complex  waveform emerges  consisting  of  multiple  peaks and 
troughs,  this  is  referred  to  as  a  transient  response.  As  the  rate  of  stimulus 
presentation  increases  the waveform becomes simpler  and by 12 cycles  per 
second it resembles a sine wave, this is referred to as a steady-state response. In 
addition  to  changes  caused  by  the  presentation  of  the  stimulus  there  is  
considerable variability between subjects. This is both an effect of ageing  and 
of  variation  within  the  population.  In  general,  however,  there  is  enough 
similarity  between the  responses  from individuals  to  the  same stimulus  that 
conclusions  can  be  drawn  with  regard  to  the  timing  (latency)  of  the  VEP 
response as well as the amplitude.
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Clinical Electrophysiology of Vision
Suggested minimal recording parameters for the clinical ERG (Marmor et al. 
2009),  mfERG (Hood  et  al.  2012),  VEP (Odom  et  al.  2004;  Odom  et  al. 
2010) and EOG (Marmor et al. 2011) are published by the International Society 
for  Clinical  Electrophysiology  of  Vision  (ISCEV).  Typically  visual 
electrophysiology recordings are represented with positive polarity toward the 
top of the y-axis; this is in contrast to most other electrophysiology traditions.

The normal electroretinogram
The ISCEV Standard suggests five retinal responses that test the retina under 
scotopic (dark adapted retina) and photopic (light adapted retina) conditions. 
Stimuli  are  presented  using  white  light  in  a  Ganzfeld  dome to  obtain  even 
retinal  illumination.  The  five  ISCEV responses  are  named  according  to  the 
conditions of adaptation and the stimulus luminance (flash strength in cd.s.m-2) . 
For  example  the  dark-adapted  0.01  stimulus  is  a  dim  (0.01  cd.s.m2)  flash 
presented to a dark adapted eye . Typical responses from a visually normal adult 
are shown in figure 8. The dark-adapted 0.01 stimulus (rod response) presented 
to a dark adapted eye is too dim to activate the cone photoreceptors, as such this 
response is considered as being dominated by the rod photoreceptor pathway. It  
consists of a slow forming wave (the b-wave) that represents the activity of the 
rod-bipolar cells (i.e. it is a response driven by, but not directly from the rod 
photoreceptors).  The dark-adapted 3.0 stimulus (mixed rod-cone response) is 
bright  enough to  stimulate  both  rod  and cone  photoreceptors.  The  response 
waveform  consists  of  an  initial  negative  peak  (the  a-wave)  representing 
photoreceptor  hyperpolarisation  potentially  overlayed  with  ON-bipolar  cell 
depolarisation and a slower positive wave (the b-wave). Superimposed on the 
rising edge of the b-wave are high frequency oscillations. These high frequency 
components can be separated from the lower frequency waveform components 
by using a high-pass filter that removes frequency components below about 75 
Hz,  these  extracted  oscillations  are  the  oscillatory  potentials  (OPs).  They 
represent the activity of the horizontal and amacrine cells. The light-adapted 3.0 
stimulus (cone response) stimulates only the cone pathway as the rod pathway 
has  been  desensitized  (bleached)  by  the  background  light.  The  response 
waveform is similar to the light adapted 3.0 response, with an a-wave, b-wave 
complex, but is slightly smaller and faster. Finally a light-adapted 3.0 flicker 
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stimulus presented at 30 Hz produces a steady-state flicker response.

For  each step several  trials/responses  are  recorded and trials  with large and 
obvious  artefacts  are  manually  removed.  The  remaining  responses  are  then 
averaged and the resulting waveform used for analysis.  When analyzing the 
ERG, amplitude (normally trough to peak) and latency of the cardinal response 
components are measured and compared with age adjusted normal values. 

Figure 8: Electroretinogram from a visually normal adult. A) Scotopic 0.01  

response, B) Scotopic 3.0 response, C) Scotopic 3.0 response filtered to extract  

Oscillatory Potentials, D) Photopic 3.0 response, E) Photopic 3.0 30Hz flicker  

response. Note the different amplitude scales in C,D and E, and different time  

scales in D and E.
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The normal multifocal electroretinogram
The recording below (Figure 9) was recorded using a 103 hexagon stimulus 
array, scaled with retinal eccentricity and presented at 60Hz, mean luminance 
100 cd/m2/s. The recording consists of 103 responses, each response consists of 
a negative, positive, negative complex, the cardinal points are named N1, P1 
and N2.

Figure 9: multifocal electroretinogram from a visually normal adult. 

Responses are from a left eye. The responses are shown in topographic layout,  

which reflects the scaling of the stimulus hexagons. Central hexagons are  

smaller than peripheral hexagons to compensate for the increased cone density  

in the central retina. The dashed circle indicates the location of the optic disc.
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The normal visual evoked potential
Responses  from a visually  normal  adult  to  a  flash stimulus,  a  pattern onset 
stimulus and a pattern reversal stimulus are shown below (Figure 10). Pattern 
reversal responses are shown to a range of different check sizes. 

Figure 10: Visual evoked potentials from a visually normal adult. VEPs are  

recorded from a single electrode positioned at Oz, earlobe electrodes were used  

for ground and reference. A) VEP response to an unstructured flash stimulus. B)  

Response to 500 ms on, 500 ms off checker-board stimulus, check size was 30  

minutes of arc (MAR), C) Response to a pattern-reversal checker-board  

stimulus, responses are shown for a range of check sizes.
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Diseases of the retina
The ability of electrophysiological methods to give objective measures of visual 
pathway function means it has applications in the diagnosis and monitoring of 
many diseases.  The  purpose  of  this  section  is  not  to  give  a  comprehensive 
discussion  of  all  the  diseases  in  which  electrophysiology  can  give  useful 
information,  instead  it  is  to  demonstrate  some of  the  changes  that  occur  in 
electrophysiological recordings.

Rod photoreceptor dominated disease
Retinitis Pigmentosa (RP) is a large group of hereditary retinal degenerations 
with  characteristic  symptoms.  The  symptoms  include  night  blindness 
(nyctalopia), impaired dark adaptation, progressive visual field loss (Gerth et al. 
2007; Berson 1993; NIH n.d.).  Abnormal pigmentation can also be observed 
using ophthalmoscopy which gave the disease it's name (Birch 2006; Berson 
1996). RP affects about 1 in 4000 people and the progression of the disease 
shows a large amount of variability. Mutations causing RP have been identified 
in at  least  50 genes,  about 10% of patients with RP have a mutation in the 
rodopsin  gene (Berson  1996).  Although  patients  may  initially  appear 
asymptomatic,  reductions in the dark-adapted 0.01 ERG response have been 
demonstrated 10 years  before the onset  of  symptoms (Berson 1993).  As the 
disease progresses ERG responses become progressively more delayed in time 
and reduced in amplitude. At later stages of the disease the cone ERG responses 
may also be affected (Figure 11). The ERG is often non-recordable above noise 
by the third decade of patients with RP. Patients with the early stages of RP may 
have normal  mfERGs but  as  the  disease  progresses  the mfERG also  shows 
response reductions (Dolan et al. 2002). Although in patients with advanced RP 
the ERG responses may be indistinguishable from noise, responses can still be 
identified  in  the  mfERG (Gerth  et  al.  2007).  The  use  of  advanced  signal 
detection  techniques  has  a  role  in  increasing  the  sensitivity  of 
electrophysiological  tests  to  aid  in  the  early  diagnosis  of  RP as  well  as  to 
monitor remaining retinal function. This will become more important as novel 
therapies for RP are developed.
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Figure 11: Electroretinogram from an adult patient with autosomal dominant  

RP. A) Scotopic 0.01 response, B) Scotopic 3.0 response, C) Scotopic 3.0  

response filtered to extract oscillatory potentials, D) Photopic 3.0 response, E)  

Photopic 3.0 30Hz flicker response. Note the different amplitude scales in C,D  

and E, and different time scales in D and E.

Solid line = ERG performed when patient was 18 years, dashed line = same  

patient 5 years later. Light dotted line = healthy adult.
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Cone photoreceptor dominated disease
Stargardt Macular Dystrophy (STGD) is a hereditary disease characterized by a 
progressive  loss  of  central  visual  acuity.  The  onset  of  symptoms  varies 
considerably with 60% of patients presenting with impaired vision in the first  
two decades of life and 20% not experiencing decreased vision until the fifth 
decade. 

STGD is caused by mutations in the ABCA4 gene. This gene codes for an ATP 
binding  protein  (ABCR)  found  in  the  membranes  of  photoreceptor  outer 
segments. ABCR is normally involved in the recycling of retinol, one of the key 
proteins  involved in  photo-transduction.  Defective  ABCR protein  leads  to  a 
build-up of a protein N-retinylidine-PE (N-RPE) in the outer segment of the 
photoreceptor. Normally the photoreceptor outer segments are ingested by the 
retinal  pigment  epithelium  (RPE),  however  a  bi-product  of  N-RPE,  N-
retinylidene-N-reinl-PE (A2E),  accumulates as indigestible lipofuscin (Lodha 
2007; Jung et al.  2007). In vivo measurements of lipofuscin in patients with 
STGD demonstrate that the amount of lipofuscin is 2-5 times greater than in 
age-matched control subjects (Delori et al. 1995). Eventually the build up of 
lipofuscin proves toxic to the RPE cells and photoreceptor cells die secondary 
to loss of RPE support. The density of photoreceptors is greatest in the central 
retina  (fovea  and  macular),  leading  to  the  greatest  rate  of  accumulation  of 
lipofuscin and subsequent cell death occurring in this region.

The electroretinogram is a test of global retinal function, it is estimated that at  
least 20-30% of the retina needs to be affected before significant changes are 
observable in ERG recordings. As a result, in the early stages of STGD the ERG 
often appears normal. Because the mfERG is able to measure retinal function 
from much smaller areas of retina, abnormalities are often detected much earlier 
with the mfERG compared with the ERG (Figure 12).
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Figure 12: Multifocal electroretinogram of patient with Stargardt Macular  

Dystrophy. Recording is from the patient's right eye and shows reduced cone  

responses in the central 5-10o.

As with RP, techniques that increase the sensitivity to changes in the mfERG 
will enable the monitoring of the progression of STGD.

Middle retina disease: X-linked Congenital Stationary 
Night Blindness
Congenital  Stationary  Night  Blindness  (CSNB)  is  a  heterogenous  family  of 
hereditary disorders with similar phenotypes. The characteristic phenotype is 
abnormal  night  vision (nyctalopia)  from birth.  The phenotype  also  typically 
includes  variable  levels  of  reduced  visual  acuity,  myopia,  strabismus  and 
nystagmus (involuntary eye movements). Different forms of CSNB have been 
shown  to  have  X-linked,  autosomal  dominant  and  autosomal  recessive 
inheritance patterns (Audo et al. 2008; Miyake 2006). The X-linked inheritance 
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mode  is  associated  with  two  forms  of  CSNB,  CSNB1  (complete  x-linked 
CSNB) and CSNB2 (incomplete x-linked CSNB). Initially the two forms were 
distinguished based on electrophysiology and psychophysical testing (Miyake et 
al. 1986). More recently they have been confirmed as distinct diseases with the 
identification  of  two  separate  mutations (Bech-Hansen  et  al.  1998;  Bech-
Hansen et al. 2000). 

CSNB1  is  caused  by  mutations  in  the  NYX gene  that  encodes  the  protein 
nyctalopin. The nyctalopin protein is thought to play a role in the formation of 
synapses with the rod-bipolar and cone ON-bipolar cells (Bech-Hansen et al. 
2000).  CSNB2 is  caused by mutations  in  the CACNA1F gene,  this  gene is 
thought  to  have  a  role  in  regulating  the  release  of  glutamate  from  the 
photoreceptor (Bech-Hansen et al. 1998; Mansergh et al. 2005).

Both CSNB1 and CSNB2 show a typical, abnormal response to a 3 cd scotopic 
stimulus,  refered  to  as  a  Schubert-Bornschein,  or  electronegative  response 
(Schubert  & Bornschein  1952).  The  response  shows a  normal  (often  super-
normal) a-wave with a markedly reduced b-wave. The 0.01 cd scotopic flash 
(rod response) is indistinguishable from noise in CSNB1 while in CSNB2 it is 
reduced but still measurable. Responses to a 3 cd photopic flash (cone response) 
are relatively normal with CSNB1, although the a-wave shows a characteristic 
flattening of the a-wave trough. Cone responses from patients with CSNB2 are 
very attenuated, similarly the responses to the 3 cd 30Hz flicker responses are 
normal in CSNB1 and significantly reduced in CSNB2 (Figure 13). The use of a 
long duration (200 ms) flash stimulus allows separation of the ON and OFF 
responses in the ERG. The response to flash onset is not observable in CSNB1 
while the response to flash offset is. As expected neither response is detectable 
above noise in CSNB2.
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Figure 13: Electroretinogram from patients with Congenital Stationary Night  

Blindness. A) Scotopic 0.01 response, B) Scotopic 3.0 response, C) Scotopic 3.0  

response filtered to extract oscillatory potentials, D) Photopic 3.0 response, E)  

Photopic 3.0 30Hz flicker response. Note the different amplitude scales in C,D  

and E, and different time scales in D and E.

Solid line = Type 1 (complete) CSNB, dashed line = Type II (incomplete) CSNB,  

Light dotted line = healthy adult.
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The mfERG is not usually performed on patients with CSNB as there is little 
clinical value. However it has been shown, however, that the first order mfERG 
responses  are  delayed  globally  across  the  retina  with  normal  amplitudes  in 
patients with CSNB1. It  is  suggested that  the delays represent  abnormalities 
observed in the 2nd order mfERG kernels that represent the adaptation of the 
retina to repeated flashes (Kondo et al. 2001).

While the electrophysiological  features of patients with CSNB are clear,  the 
results may be complicated by the patient's inability to comply with the testing 
procedure. For example the associated nystagmus or a patients young age can 
greatly  increase  the  noise  in  the  recording  making  identification  of  the 
waveform changes harder to discern.

Diseases affecting the cerebral visual system

Ocular Albinism
Albinism is a group of diseases caused by mutations in genes that control the 
production of melanin or the formation of melanosomes (intracellular vesicles 
that manufacture and hold melanin). Melanin is a pigmented protein involved in 
skin colour, hair colour and tanning (Levin & Stroh 2011). In addition melanin 
is  found in the iris,  choroid and retinal  pigment  epithelium of  the eye.  The 
typical phenotype of people with albinism is often thought to be complete hypo-
pigmentation leading to light  skin,  white hair  and pink-eyes.  Often however 
mutations  causing  albinism  are  phenotypically  normal,  with  dark  skin  and 
brown  or  black  hair.  In  contrast  some  ethnic  groups  (e.g.  those  from 
Scandinavia)  naturally  appear  very  lightly  pigmented.  The  determination  if 
albinism is present depends on the presence of ocular abnormalities (Levin & 
Stroh 2011).  A reduction  in  the  amount  of  pigmentation in  the RPE causes 
several problems in the development of the eye and visual pathway.  Macular 
(or  foveal)  hypoplasia  is  pathognomonic  for  albinism,  blood vessels  can  be 
observed in the normally avasular macular zone and the foveal pit is shallow or 
absent. This often leads to reduced visual acuity and nystagmus. When albinism 
occurs in conjunction with hypo-pigmentation of the skin it  is referred to as 
oculocutaneous albinism (OCA), when only ocular phenotype is present it is 
referred  to  as  ocular  albinism (OA).   Albinism is  also  related  to  abnormal 
neurogenesis of the optic pathway. It is unclear if this is a direct result of the 
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Although the ERG of patients with albinism is often difficult to record due to 
eye  movements,  it  is  usually  normal  or  super-normal.  This  increase  in 
amplitudes is caused by the increased scattering of light caused by the hypo-
pigmented  RPE.  The  chiasmal  misrouting  can  be  measured  using  a 
multichannel VEP. The VEPs recorded, in response to monocular stimulation, 
from electrodes placed over each hemisphere of the visual cortex (rather than 
over  the  mid-line)  demonstrate  contra-lateral  hemispheric  response 
lateralization. That is to say the response recorded from the left cortex is larger  
in amplitude and earlier in timing than that from the right cortex when the right 
eye is stimulated. The reverse is true for left eye stimulation. The detection of 
the response lateralization is complicated both by the high variability of VEP 
amplitudes and by the developmental changes to VEP morphology that occur 
during the first years of life. Several methods have been proposed for detecting 
this lateralization, these include the asymmetry index where amplitude at each 
electrode location is measured (as area under the curve) and amplitudes from 
left and right eye stimulation compared (Apkarian et al. 1983). Soong et.  al. 
recommended  calculating  an  inter-hemispheric  difference  potential  by 
subtracting the response recorded from the left hemisphere from that recorded 
from the  right  hemisphere.  Pearson's  measure  of  correlation  is  then  used  to 
quantify the amount of lateralization (Figure 15). This method was shown to 
have a sensitivity of 86% with specificity of 81%. The imperfect  sensitivity 
value  was  ascribed  to  variations  in  the  amount  of  misrouting,  while  the 
imperfect specificity may have been due to difficulties in testing children or to 
the presence of undiagnosed carriers of an albinism gene (Soong et al. 2000).
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reduction of melanin or if it related to other factors involved in the melanin 
pathway (Mason & Erskine 2004). In the presence of melanin retinal ganglion 
cells from the nasal hemisphere of the eye (proximately 50% of the total) cross 
at  the  optic  chiasm before  passing  to  the  LGN in  the  contra-lateral  cortex. 
Fibres from the temporal retina project to the LGN in the ipsilateral hemisphere 
(Figure 14).  When the eye develops in the absence of melanin an increased 
proportion of fibres cross at the optic chiasm. Despite this misrouting of fibres 
from the temporal visual fields visual field testing can be normal demonstrating 
the  remarkable  plasticity  of  the  visual  system  in  patients  with  albinism 
(Apkarian & Bour 2006).

Figure 14: Schematic diagram showing chiasmal misrouting in Ocular 

Albinism.
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imperfect specificity may have been due to difficulties in testing children or to 
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Figure 15: Visual evoked potentials demonstrating chiasmal misrouting. 

Waveforms are inter-hemispheric difference potentials (O2 – O1). Solid lines =  

Right eye stimulation, dashed lines = Left eye stimulation. 

The reduction of information involved in using a single calculated number to 
determine the degree of lateralization can be problematic. A correlation measure 
can  be  calculated  on  any  two  waveforms  and  gives  no  indication  of  the 
magnitude of the responses. Thus it is possible that misleading results could be 
obtained in situations in which recordings are noisy, or the response is reduced. 
Whenever this type of data reduction analysis is performed, care must be taken 
to consider other metrics of waveform quality.

Assessing Visual Acuity with the visual evoked 
potential
Clinical  measurement  of visual  acuity often uses  psychophysical  techniques, 
these include reading letters or identifying symbols of progressively decreasing 
size or Preferential Looking tasks. Many patients lack the necessary abilities to 
comply  with  these  forms  of  testing  due  to  immaturity,  learning  difficulties, 
motor  and  intellectual  impairment (Mackay  et  al.  2008).  The  VEP  is  an 
objective  testing  method  that  has  been  used  with  a  high  success  rate  in 
populations with neurological and developmental delay (Skarf & Panton 1987). 
Relatively early it was determined that VEP amplitude was dependent on both 
the stimulus size and visual acuity (Harter & White 1970). Transient VEPs are 
recorded to a series of varying spatial frequencies and visual acuity is reported 
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as the highest spatial frequency where a repeatable response can be recorded 
(figure 10). The accurate recording of VEPs depends on many factors not least 
of which is the behavioural state. Inattention can lead to unreliable recordings. 
Recently  a  more  rigorous  approach  to  threshold  determination  for  transient 
VEPs was proposed using a successive approximation algorithm (Mackay et al. 
2008),  this  technique  was  able  to  reduce  recording  times  significantly.  The 
sweep VEP method has  also  been  used  to  reduce  recording  times  and thus 
reduce the problem of patient inattention. Here a steady-state VEP response is 
recorded to a fast reversing stimulus, the stimulus can be quickly swept through 
a range of spatial frequencies. It has been shown that this technique can reduce 
the  recording  time to  a  period  of  several  (10-20)  seconds (Almoqbel  et  al. 
2008). 

Although VEP estimates of visual  acuity have been shown to correlate with 
other psychophysical measures, estimates of visual acuity have been found to 
differ  by  up  to  132  fold,  with  the  amount  of  difference  being  inversely 
proportional  to  the  visual  acuity (Mackie  et  al.  1995).  This  may  reflect 
differences in what is being measured. The VEP is testing the visual pathway up 
to the primary visual cortex, while behavioural measures are also testing higher 
cortical  processing.  Many  neurological  disorders,  such  as  nystagmus  and 
seizure disorders, increase the background 'noise' of the VEP, making accurate 
detection of the VEP more difficult (Hoyt 1984). Signal detection algorithms are 
able to improve the speed and quality of transient VEP recordings. The ability to 
identify  smaller  VEP responses,  such  as  those  produced  by  higher  spatial 
frequency stimuli, will improve the accuracy of visual acuity estimates.

Optic Neuritis
Optic Neuritis (ON) is the term given to a demyelinating neuropathy affecting 
the  optic  nerve.  The  neuropathy  can  be  present  either  on  its  own  or  in 
association with other infectious  or  inflammatory diseases such as  Lupus or 
Multiple Sclerosis (Pau et al. 2011). Typical symptoms of ON include a sudden 
loss  of  vision  (usually  monocular),  a  loss  of  colour  vision,  changes  in  the 
pupillary reactions to light and pain on moving the eye (Zieve & Lusby 2011). 
Often the symptoms are temporary and vision will return to normal within 2-3 
weeks. The cause of ON is presumed to be an inflammatory process leading to 
neuronal cell death and axonal degeneration. The pattern-reversal VEP is the 
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current  test  of  choice for confirming clinical  and subclinical  ON.  The P100 
component shows a significant delay in 60-80% of cases after an episode of ON 
(Frederiksen & Petrera 1999; Naismith et al. 2009). Since the VEP is dominated 
by the macular response it  has been suggested that  the multifocal  VEP may 
increase  this  sensitivity  by  allowing  responses  from more  peripheral  retinal 
areas to be extracted (Klistorner et al. 2008).

Summary
The effects of disease on the retina and visual pathways can be observed by 
electrophysiological methods. Careful modification of stimulus, recording and 
analysis parameters can help elucidate where a lesion is located. Changes to the 
ERG and mfERG can manifest as reductions in amplitude and / or delays in 
timing.  Changes  may  affect  the  complete  response  or  just  individual 
components. It is worth noting that changes to an early element of the visual 
pathway will often be reflected in later elements. For example a reduced a-wave 
caused by loss of photoreceptors will often lead to a reduced b-wave, although 
the  underlying  disease  does  not  affect  the  middle  retinal  cells.  Amplitude 
changes in the ERG are often thought to represent a reduction in the number of 
functioning cells, while delays in response timing are often thought to represent 
reduced sensitivity in phototransduction and inter-cell signalling. 

VEP latency changes, normally representing demyelination of the optic nerve, 
are  usually  the  most  important  finding.  VEP amplitudes  are  highly  variable 
between individuals and as a result quantitative analysis of amplitudes is rarely 
used. Comparisons of amplitude can be made within the same subject, as when 
using the VEP to test  visual  acuity,  or  in  special  cases  when optic  pathway 
changes are studied.

All electrophysiological responses undergo developmental changes, in the case 
of the VEP these changes can last well into adolescence (Dustman et al. 1977). 
There is also evidence that VEP responses have shorter latencies in females, it  
has been suggested that this is related to head size (Emmerson-Hanover et al. 
1994; Gregori et al. 2006; Malcolm et al. 2007). The ERG reaches adult values 
around 5 years  of  age (Westall  et  al.  1999).In later  life  the development  of 
opacities in the optic media can also have an effect on the recorded responses. 

38

T. Wright Signal detection in clinical visual electrophysiology

As such the age of the subject needs to be considered when interpreting results. 
Finally electrophysiological recordings are very sensitive to the behaviour of 
the patient, and any difficulties with compliance also need to be considered in 
the interpretation.

The  application  of  signal  identification  techniques  and  the  use  of  objective 
measures of signal quality will probably improve the accuracy of clinical visual 
electrophysiology  testing.  Advanced  multivariate  analysis  methods,  which 
consider the total recorded waveform instead of requiring data reduction, may 
be able to identify novel features that reveal more information about the disease 
process or aid in diagnosis.
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Signal Analysis
Many  of  the  problems  involved  in  recording  electrophysiological  evoked 
potentials are common to all testing modalities. The primary problem reducing 
of the massive amount of recorded data into an amount that allows practical 
conclusions to  be drawn. To do this  the data must  be sifted to separate  the 
components of interest (the signal) from everything else (the noise). As has been 
pointed out elsewhere this sifting process risks excluding or ignoring potentially 
useful information (Regan 1989). 

Typically  the  potentials  of  interest  have  relatively  small  amplitudes  which 
require them to be amplified before they can be recorded, often amplification 
factors  of  104 to  105 are  used.  While  some  effort  can  be  made  to  exclude 
potentials  from  this  amplification  based  on  their  frequency  much  of  the 
background noise falls within the same frequency bands as the signal of interest 
so  cannot  be  excluded.   While  this  problem  is  less  pronounced  for 
electroretinographic recordings, VEPs typically have 100x less power (10x less 
amplitude) than the background noise. As noise is defined as any changes to the 
recorded electrical potential  that are not related to the visual stimulus it  can 
come from a  variety of  sources.  These can  include  unrelated  brain activity, 
electrical  potentials  generated  by  muscle  contractions  as  well  as  external 
sources of noise such as electrical mains current oscillations. 

Signal analysis can be grouped into 3 areas, artifact rejection, averaging and 
component  selection.  Typically  the analysis  performed in  most  clinical  (and 
many research) visual electrophysiological recordings is relatively basic. 

Artifact rejection can be performed in real-time, as the responses are recorded, 
or post-hoc. Real-time artifact rejection is performed by filtering the incoming 
signal  to  isolate  only  the  frequency  bands  of  interest.  Threshold  rejection 
algorithms are often used, these identify responses thought to contain electrical  
potentials  that  are  too large to  be generated by the physiological  process of 
interest. Typically the threshold rejection algorithms are relatively simple, for 
example all  responses with potentials  >  ±100  µV may be rejected.  Post-hoc 
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rejection  usually  involves  a  human  examining  the  recorded  waveforms  and 
manually excluding responses. In addition to being a time-consuming process, 
this subjective analysis is open to observer bias.

When averaging is performed it is typically a basic algorithm in which all the 
responses remaining after the artifact rejection step are given equal weighting in 
the final average. 

Component  selection  is  probably  the  most  important  part  of  the  analysis.  
Normally the waveform to be analysed consists of one or more features (troughs 
and / or peaks) that are conserved across subjects. These features are identified 
either by simple algorithms (minimum/maximum amplitude within a specified 
time window) or by human experts (peak picking). The timing and amplitude of 
these cardinal features are then used in the interpretation of the waveform. This 
peak  picking  process  has  many disadvantages.  Often  the  troughs  and peaks 
formed  by  different  physiological  processes  overlap  each  other  or  are 
contaminated  with  noise  potentials  making  identification  of  the  true  peak 
ambiguous.  The  reduction  of  the  waveform  to  a  few  cardinal  features  of 
necessity means a lot of potentially valuable, information is disregarded.

The  current  situation in  the clinical  visual  electrophysiology domain,  where 
complex waveforms are often reduced to a few cardinal features, identified by 
observers  with a  range of  experience,  is  obviously susceptible  to  subjective 
interpretation. The naive analysis of poor quality waveforms can often lead to 
inaccurate  and  misleading  results.  The  data  reduction  involved  potentially 
excludes  important  information  that  can  aid  in  the  interpretation  of  the 
electrophysiological  signal.  These  problems  are  common  to  many  fields 
requiring  the  analysis  of  electrophysiological  signals  including  visual 
electrophysiology,  electroencephalography  (EEG),  electromyography  (EMG) 
functional magnetic resonance imaging (fMRI), electrocardiography (ECG) and 
others. Techniques have been developed that improve the quality and sensitivity 
of recordings by improving signal detection e.g.   (Cuypers & Thijssen 1995; 
Harris  & Woody 1969;  Ihrke et  al.  2009;  Lange et  al.  2000;  Vincent  1992; 
Zhang  & Hood  2004),  reduce  subjectivity  by  introducing  metrics  of  signal 
quality e.g.  (Simpson et al. 2009; Meigen & Bach 1999; Victor & Mast 1991; 
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requiring  the  analysis  of  electrophysiological  signals  including  visual 
electrophysiology,  electroencephalography  (EEG),  electromyography  (EMG) 
functional magnetic resonance imaging (fMRI), electrocardiography (ECG) and 
others. Techniques have been developed that improve the quality and sensitivity 
of recordings by improving signal detection e.g.   (Cuypers & Thijssen 1995; 
Harris  & Woody 1969;  Ihrke et  al.  2009;  Lange et  al.  2000;  Vincent  1992; 
Zhang  & Hood  2004),  reduce  subjectivity  by  introducing  metrics  of  signal 
quality e.g.  (Simpson et al. 2009; Meigen & Bach 1999; Victor & Mast 1991; 
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Young & Kimura 2010; Zhang et al. 2002) and ameliorate the effects of data 
reduction (Fisher et al. 2007; Haig et al. 1995; Hood & Li 1997; McIntosh et al. 
1996; Najafabadi et al. 2006; Masic & Pfurtscheller 1993; Zhou et al. 2007).

The application of new signal identification and analysis techniques promises to 
greatly enhance the applicability of visual electrophysiology. Before any new 
analysis  techniques  can  be  applied  it  is  important  to  characterise  their 
performance. Often this characterization is expressed in terms of sensitivity and 
specificity. Accurate calculation of sensitivity and specificity relies on knowing 
the underlying truth (a gold-standard), e.g. presence or absence of disease. In 
the  medical  field  this  information  is  often  not  as  clear  cut,  for  example  a 
particular  disease  may  have  differential  effects  on  electrophysiological 
responses in different patients or over time. While it is possible to characterise 
the new technique in terms of another established technique this is an imperfect 
solution. An alternative is the artificial simulation of diseases on otherwise well 
characterised recordings. Care needs to be taken that the simulation techniques 
used are in fact representative of the changes observed in real life.

Signal extraction in the frequency domain
The primary tool  for  the analysis  of  waveforms in the frequency domain is 
Fourier decomposition. The Fourier Theorum demonstrates that any waveform 
can  be  broken  down  into  a  series  of  sine  waves  of  appropriate  phase  and 
frequency.  This  means that  any waveform can be represented as  a  series of  
frequencies  with  different  power.  Any  waveform  can  be  either  periodic 
(repeating in time from -infinity to +infinity) or aperiodic. Since the Fourier 
decomposition of an aperiodic waveform requires an infinite number of sine 
waves it is not practical to perform a Fourier analysis on an aperiodic wave. As 
it  is not  possible to sample any wave stretching to infinity this limitation is  
usually overcome by imagining the sample as repeating.

As has been discussed already regarding VEPs, as the frequency of the stimulus 
increases  the  complexity  of  the  recorded  waveform  decreases  eventually 
approximating  a  sinusoidal  wave.  The  same  holds  true  of  retinal  evoked 
potentials.  The power spectrum of the steady-state waveform shows that  the 
power is concentrated in very narrow frequency bands based around the primary 
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frequency of the stimulus and its harmonics. This transfer from the transient 
response to a steady-state response has many advantages for signal analysis. 
Since, by definition, noise is any recorded response not related to the stimulus it 
becomes possible to analyse only waveform components that fall into frequency 
bands that are harmonics of the stimulus. Unfortunately a draw-back of steady-
state responses is that much of the underlying physiological complexity is lost. 
As a result most clinical visual electrophysiology relies on the more complex 
transient waveforms. As most transient waveforms contain both slow and fast 
components their power is spread out over a much greater range of frequencies. 
Power spectral analysis of VEP waveforms generated by a moderately fast 4 Hz 
stimulus indicated that they contained power in frequencies up to around 50 Hz 
(Trick et al. 1984) and it has been demonstrated that ERG recordings contain 
significant power at frequencies > 100 Hz (Lachapelle & Benoit 1994). Because 
many of the potentials that contribute to the noise in an electrophysiological 
recording  fall  within  the  same  frequency  band  as  the  signals  of  interest, 
excluding noise is difficult by using frequency based filtering.

A  major  disadvantage  of  studying  electrophysiological  potentials  in  the 
frequency domain is the loss of any information about the timing of any of the 
frequency components. Information about the exact timing of the components 
forming the recorded waveform is often useful in determining the underlying 
physiological processes. 

Another  method for  decomposing an arbitrary waveform into its  constituent 
frequencies is the wavelet transform. A wavelet is a wave-like oscillation with 
an amplitude that starts at 0 and oscillates at a specific frequency and ends after 
a specific time at 0. The wavelet transform compares the recorded waveform 
with a series of different  wavelets with different  frequencies.  By sliding the 
wavelets along the recorded waveform it  is possible to build a map of how 
much a particular frequency contributes to the waveform at a particular time.  
While wavelet analysis has been applied to visual electrophysiological signals 
(Thie et al. 2012) it is limited by the relationship between time and frequency. 
As the frequency of the wavelets decreases, the accuracy with which they can 
be located in time also decreases. This makes wavelet analysis for the slower 
waveform components particularly insensitive to changes in time.
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Signal extraction in the time domain
An early attempt to separate the signal from the noise was the superimposition 
technique (Dawson  1947).  This  involved  triggering  the  sweep  of  an 
oscilloscope synchronously with the onset of the stimulus. The displays of the 
oscilloscope  from  multiple  trials  were  then  superimposed  on  the  same 
photographic plate. Features of the response occuring at a constant time after  
stimulus onset become more clearly defined on the photographic plate after a 
number  of  sweeps.  While  this  technique  does  not  lend  itself  to  the  precise 
quantitative measurement of the evoked potential it has the advantage of giving 
a direct visual indication of the variability between trials (Regan 1989).

The  superimposition  technique  is  basically  an  additive  process;  waveform 
components occurring at the same time after the stimulus are 'added' together. A 
development of this process is signal averaging. In signal averaging recorded 
trials  are  summed together  then  divided  by  the  number  of  trials.  The  main 
advantage of this over superimposition techniques is that waveform components 
that do not consistently occur at the same time after the stimulus are reduced. 
While signal averaging is often a successful technique in practise there are some 
underlying assumptions that have been questioned.

1. The recorded waveform is the sum of two independent waveforms, the 
signal waveform and the noise waveform.

2. The signal  waveform is stationary (i.e.  stays the same over multiple 
trials).

3. The noise waveform is random with a mean amplitude of 0.

If these conditions hold true,  signal  averaging can be shown to be the most 
efficient  method for  improving the SNR giving a reduction in  noise  of  √N, 
where N is the number of trials. Unfortunately all these assumptions have been 
called into doubt.  It  is  unclear if  the principle of independence between the 
visually evoked signal and other brain activity is true. Some researchers have 
found that the alpha waves in the brain can be modulated by a visual stimulus 
e.g. (Arieli et al. 1996), other research has found no effect e.g. (Risner et al. 
2009).  The  stationarity  of  the  signal  waveform  has  also  been  called  into 
question. In a study of individual trial responses to a flash stimulus Möcks and 
Gasser found that 11.5% of participants had significant amounts of variation in 
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trial amplitude, 29.5% showed a significant change in latency over the duration 
of the recording session (drift) and 28.2% showed significant change of latency 
between trials (jitter)  (Möcks et al. 1987). Finally, because the size of electrical 
potentials  generated  by  muscle  artifacts  are  much  greater  than  those  from 
cortical activity it is easy for average of the noise to move from 0 amplitude. 

Many methods have been used to address these limitations. Both manual and 
automatic algorithms have been used to eliminate trials that are contaminated by 
large artifacts such as muscle potentials. An adaptive averaging algorithm was 
proposed in 1967 to address the effect  of  latency shifts  between trials.  This  
algorithm worked by shifting the individual trials in time so as to maximize the 
correlation between the trials (Woody 1967). 

Other  component  extraction methods,  such as  principle  component  analysis, 
(PCA)  and  independent  component  analysis  (ICA)  have  been  applied  to 
electrophysiological recordings (Zhang & Hood 2004; Vincent 1992; Knuth et 
al. 2006; Ihrke et al. 2009; Velde 2000). Both these algorithms are examples of 
blind source separation. The underlying assumption is that the recorded signal is 
a linear mix of signals from a set  of  independent sources.  If  the underlying 
sources  are  sampled  from  different  locations  (e.g.  different  electrodes)  the 
underlying sources contribute differently to the recorded signal. PCA attempts 
to estimate the different sources by minimising the correlation between them, 
while ICA attempts to estimate the sources by making the estimated sources as 
non-Gaussian as possible. A key requirement for both PCA and ICA is that the 
number  of  sources  be  equal  to  or  less  than  the  number  of  samples.  This 
precludes their  use on ERG recordings which are normally recorded from a 
single channel. VEP recordings, however, are performed often using more than 
one electrode,  making VEPs a  potential  candidate  for  these techniques.  The 
multifocal  techniques  can  also  be  considered  as  recording  information  from 
multiple  channels,  although in  this  case  the multiple  channels  are  the  input 
rather than the output, and PCA has been successfully applied to extract signals 
from multifocal visual evoked potentials (Zhang & Hood 2004). A disadvantage 
of  source  separation  methods,  such  as  PCA  and  ICA,  is  the  identified 
components can rarely be directly linked to underlying physiological processes 
and the selection of components for further analysis is largely subjective (James 
& Hesse 2005).
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The signal averaging methods described above have the advantage of assuming 
no prior  knowledge about  the morphology of  the waveform.  Often previous 
knowledge about the waveform is unavailable, if for example there is too much 
variation  between  subjects  or  if  the  disease  process  is  unknown.  In  other 
situations  however  the  morphology  of  the  waveform  is  relatively  constant. 
Several algorithms have been suggested that use this prior knowledge. A recent 
development is the use of expert systems such as neural networks for signal 
identification.  These  systems  are  trained  to  recognise  a  known  underlying 
waveform from data that has been contaminated with noise. These systems have 
been shown to be successful in signal identification (Simpson et al. 2009).

Analyzing waveforms in the time domain
Once the underlying waveform has  been suitably estimated there is  still  the 
requirement to reduce it to a form suitable for comparison. Often this is done by 
identifying  typical  peaks  and  troughs,  which  are  highly  conserved  across 
multiple subjects and recording the timing and / or amplitude of these. While 
this  method  is  very  successful  when  the  features  are  clearly  defined,  slow 
frequency components may not form clear peaks or troughs. Since the analysis 
is based on the location of a single time point, often relatively small amounts of 
noise  can  obscure  the exact  location  of  the  feature.  If  multiple  features  are 
superimposed on each other, the peaks and troughs can be obscured. 

A technique that has shown considerable applicability to the analysis of mfERG 
data is template based analysis (Hood & Li 1997). This technique uses a well 
characterised template  waveform that  is  modified  (e.g.  stretched in  time,  or 
amplitude) to match the recorded waveform. This technique has the advantage 
that  the  complete  recorded  waveform  can  be  considered  in  the  analysis, 
however the description of changes to the recorded waveform are limited to the 
modifications chosen by the experimenter.

Partial  least-squares  (PLS)  analysis  is  similar  to  PCA analysis  in  that  the 
variation in the analysed data is partitioned into different sources, however, in 
the case of PLS analysis the solutions are constrained to those attributable to 
experimental manipulation (Friston et al. 1993; Moeller et al. 1987; Krishnan et 
al.  2011).  PLS analysis  has  been  used  to  identify  patterns  of  brain  activity 
related to behavioural responses and other experimental stimulation as well as  
between individual  brain regions and the rest  of  the brain.  PLS analysis has 
been adapted for use on spatial-temporal data such as event evoked response 
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potentials (ERPs) (st-PLS) (Itier et al. 2004; McIntosh & Lobaugh 2004). In this 
context st-PLS identifies the specific combination of waveform differences that 
distinguish experimental conditions. A key advantage of st-PLS is that it can 
provide  a  statistically  rigorous  analysis  of  waveform  differences  without 
requiring the compression of the spatial or temporal information in the data. We 
have  applied  st-PLS to  identify  patterns  of  change  to  retinal  responses  that 
occur in patients with Type 1 Diabetes.

Measuring signal quality
A problem closely related to signal extraction is measuring the quality of the 
extracted signal. If the recorded waveform is considered a mixture of a signal  
waveform and unrelated noise then a key measure of quality is the ratio of the 
SNR in the extracted waveform.  Key to accurate  calculation of  the SNR is 
obtaining an accurate measurement of the noise. When recordings are analysed 
in the frequency domain it is often assumed that signal components must exist 
in frequencies that are harmonics of the stimulus frequency, thus noise can be 
accurately estimated using power from frequencies that are not harmonics of the 
stimulus. In the time domain noise is often taken as the recorded waveform in 
the absence of a stimulus. Unfortunately there is considerable evidence that the 
brain responds differently when a stimulus is not present, for example occipital 
alpha activity increases when the eyes are closed. An alternative is to separate  
the recorded waveform into an epoch containing the signal and another epoch 
separated  in  time  which  is  not  affected  by  the  signal  potentials  (the  noise 
epoch); often an epoch before stimulus onset is chosen for this. Care needs to be 
taken with this approach that no slow potentials influence the noise epoch. A 
better estimate for noise is provided by the plus-minus method, where multiple 
trials  are  alternately  added  and  subtracted  to  form a  resultant  waveform in 
which any repeating components are cancelled out (Schimmel 1967). 

When multiple trials to the same stimulus are recorded it is possible to test the 
consistency of the recorded waveform. In the frequency domain the circular T 
statistic is used to test the consistency of the phase and power of the response at 
a particular frequency (Victor & Mast 1991). Recently a technique has been 
published for testing if a single waveform is significantly different from noise.  
This technique works by using a noise sample as a template to simulate multiple 
different  estimates of  the potential  noise (Young & Kimura 2010),  the peak 
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amplitude of the recorded waveform is then tested to see if it is greater than the 
maximum amplitudes of the estimated noise.
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Objectives
To  investigate  objective  methods  of  identifying  changes  in  visual 
electrophysiological recordings.

Can objective methods be used to detect electrophysiological signals?

What  metrics  can  be  used  to  quantify  the  performance  of  different  signal 
detection methods?

Specific objectives and aims

Paper I
To  optimise  an  objective  method  for  detecting  multifocal  electroretinogram 
responses that have been reduced due to disease.

Aim 1:  Simulate  the  effects  of  disease  by  artificial  modification  of  healthy 
mfERG recordings.

Aim 2: Measure the performance of 3 automated signal detection algorithms 
and compare performance to that of expert human observers.

Paper II
To develop real-time signal detection methods that can be used to improve the 
quality,  and  reduce  the  recording  time of  the  pattern-reversal  visual  evoked 
potential.

Aim 1: Develop objective measures of signal quality.

Aim 2: Compare the performance of 4 different signal identification algorithms.

Paper III
To demonstrate a novel application of a multivariate analysis technique, spatio-
temporal partial least squares analysis.

To elucidate changes to retinal function that occur with Type 1 Diabetes before 
the onset of clinical retinopathy.
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Methods

Recording protocols

Multifocal Electroretinogram (mfERG) Paper I & III
Recordings  were  recorded  monocularly  on  an  eye  chosen  randomly.  The 
subject's  pupil  was  dilated  using  topical  application  of  1% tropicamide  and 
2.5% phenylephrine hydrochloride. Standard mfERG's were recorded using the 
Veris™ system (Electro-Diagnostic Imaging, Redwood City,  CA, USA). The 
stimulus consisted of 103 hexagons controlled using an m-sequence of length 
215-1, the stimulus rate was 75 Hz for paper I (~7 minutes recording time) and 
for paper III 60 Hz (~9 minutes recording time). Mean stimulus luminance was 
100 cd.s.m2. The stimulus was presented using the FMS II Stimulator, this unit  
contains a through-pupil fundus camera operating in the infra-red, which allows 
simultaneous monitoring of fixation. The recording sessions were split into 16 
segments  and any segments  with excessive  fixation  loss,  or  increased  noise 
were  repeated.  Bipolar  Burian-Allen  contact  lens  electrodes  (Hansen 
Laboratories, Coralville, IA, USA) were used with a gold-cup Grass electrode 
(Grass Technologies, West Warwick, RI, USA) placed on the forehead for the 
ground electrode. Analog bandpass filtering (10-300 Hz) was applied using a 
Grass Telefactor TCP511 A.C. Amplifier (Grass Technologies, West Warwick, 
RI, USA) and the signal was amplified 50,000x. 

The subjects in paper III undertook a second multifocal protocol, the slow flash 
multifocal  electroretinogram  (sf-mfERG).  In  this  protocol  the  stimulus  was 
slowed by inserting 5 frames in which all the hexagons were dark after each 
multifocal stimulus frame. The inserted blank frames slowed the stimulus rate to 
10 Hz, allowing a more complex response waveform to develop. An additional 
75 Hz digital filter was applied to these recordings, allowing the extraction of  
high  frequency  oscillatory  components  thought  to  represent  the  function  of 
inner  retinal  components (Kurtenbach  et  al.  2000).  This  protocol  always 
followed the standard mfERG protocol.
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Visual Evoked Potentials (VEP) Paper II
VEPs  were  recorded  using  Neuroscan  Acquire  (Compumedics  Neuroscan, 
Charlotte,  NC,  USA)  system.  Stimuli  were  generated  using  VisionWorks™ 
StimulusMaker™ software (Vision Research Graphics, Durham, NH, USA) and 
presented on a CRT monitor. The monitor subtended approximately 20o of the 
visual field. The stimulus consisted of a black and white checker-board pattern 
(mean luminance 80 cd.s.m2,  Michelson contrast  80%) presented in  pattern-
reversal mode at 0.5 Hz (2 reversals per second). Each black and white check 
filled  approximately  15  minutes  of  arc  (MAR).  Three  gold  cup  electrodes 
(Grass Technologies, West Warwick, RI, USA) were placed over the occipital 
cortex (positions O1, Oz and O2 of the International 10-20 System (Klem et al. 
1999)). Ground and reference electrodes were placed on the earlobes. Only the 
Oz channel was used in the analysis.

Signals were recorded in continuous mode and a 1-300 Hz bandpass digital 
filter was applied using the Acquire software. An artefact rejection algorithm 
was used to exclude trials with potentials >±100 µV.  The recorded waveforms 
were further filtered using a 1-40 Hz bandpass digital filter and then split into 
500 ms. epochs timed to start at stimulus onset. A minimum of 200 trials were 
acquired under each viewing condition.

Simulating the effects of disease
A key problem in determining the performance of signal detection algorithms 
using clinical data is uncertainty about the true effect the disease has on the 
recording. One of the most common effects of disease on the mfERG is the 
attenuation  of  responses.  For  example  patients  with  advanced  Retinitis 
Pigmentosa may appear to have recordings that are indistinguishable from noise 
to human examination but other algorithms may identify preserved responses 
(Gerth et al. 2007). Similarly VEP signals may be reduced due to the effects of 
disease, poor attention or accomodation. Equally poor compliance may increase 
the background noise of the recordings making signal detection more difficult.
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filled  approximately  15  minutes  of  arc  (MAR).  Three  gold  cup  electrodes 
(Grass Technologies, West Warwick, RI, USA) were placed over the occipital 
cortex (positions O1, Oz and O2 of the International 10-20 System (Klem et al. 
1999)). Ground and reference electrodes were placed on the earlobes. Only the 
Oz channel was used in the analysis.

Signals were recorded in continuous mode and a 1-300 Hz bandpass digital 
filter was applied using the Acquire software. An artefact rejection algorithm 
was used to exclude trials with potentials >±100 µV.  The recorded waveforms 
were further filtered using a 1-40 Hz bandpass digital filter and then split into 
500 ms. epochs timed to start at stimulus onset. A minimum of 200 trials were 
acquired under each viewing condition.

Simulating the effects of disease
A key problem in determining the performance of signal detection algorithms 
using clinical data is uncertainty about the true effect the disease has on the 
recording. One of the most common effects of disease on the mfERG is the 
attenuation  of  responses.  For  example  patients  with  advanced  Retinitis 
Pigmentosa may appear to have recordings that are indistinguishable from noise 
to human examination but other algorithms may identify preserved responses 
(Gerth et al. 2007). Similarly VEP signals may be reduced due to the effects of 
disease, poor attention or accomodation. Equally poor compliance may increase 
the background noise of the recordings making signal detection more difficult.
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Paper I
In this paper we used two methods to modify mfERG responses recorded from 
visually normal adult volunteers to simulate the effects of disease. Complete 
signal loss was simulated by replacing the portion of the recorded waveform 
that  contains  significant  retinal  responses  (the signal  epoch)  with a  separate 
portion of the recorded waveform that was considered to contain only responses 
uncorrelated  with  the  stimulus  (the  noise  epoch).  Signal  attenuation  was 
simulated  by combining a  signal  epoch with a  noise  epoch multiplied by  a 
factor, the resultant combined epoch was then scaled to approximate the original 
root mean square (RMS) amplitude of the original wave (Figure 16).

Figure 16: Post processing of an individual mfERG recording. A) The raw 

mfERG recording. B) Recording after removal of signal from 95 hexagons. C)  

The same recording after attenuation by a factor of 5. Note the difference in  

amplitude scales.
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Paper II
In this paper we attempted to simulate both the effects of vision loss and poor 
compliance on VEP recordings.  Vision loss  was simulated by obscuring the 
stimulus with an opaque screen. A variety of techniques were used to simulate 
poor compliance, these included increasing noise due to movement and muscle 
artefacts  as  well  as  decreased  attention  by  forcing  the  subjects  to  hold  a 
conversation during the recording process.

Signal detection algorithms

Paper I
Four  signal  detection  methods  were  compared.  Three  methods  were  fully 
automated while the fourth was manual. For the manual method, the mfERG 
recordings  were  analysed  by  four  electrophysiologists  who  were  asked  to 
identify any stimulus areas that they thought contained a response. Of the three 
automated scoring algorithms, two were based on template matching and the 
third on a measure of the SNR. The two template matching algorithms relied on 
matching an idealised template waveform to each of the artificially modified 
recordings. The template was scaled in amplitude and either linearly slid along 
the time axis (additive scaling),  or stretched on the time axis (multiplicative 
scaling). A good match between the scaled template and the target waveform 
was taken to indicate a signal was present while a poor match was taken as 
indicating the signal has been removed. The SNR was calculated as the root 
mean square (RMS) amplitude of the signal epoch / RMS of the noise epoch.

Paper II
Three signal identification algorithms were compared in this study. Instead of 
the  response  being  classified  as  present  or  absent  as  it  was  in  Paper  I,  the 
algorithms used in this study generated a probability that the trial contained a 
response.  A weighted  average  was  then  calculated  that  assigned  a  higher 
weights to trials thought more likely to contain a response. A template matching 
algorithm, similar  to that  described for Paper I,  used a template based on a  
published ideal VEP response. A coherence algorithm, similar to that suggested 
by Woody (Harris & Woody 1969) measured the similarity between different 
waveforms.  Trials  with  very  similar  responses  were  considered  as  likely  to 
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contain a signal, while those with a low degree of feature conservation were 
considered as likely containing only noise. The final algorithm used a neural 
network.  The  network  was  trained  to  recognize  trials  containing  the  VEP 
response and assigned a probability that the trial contained a response. 

Measuring Performance

Paper I
The artificial modification of multifocal recordings means that the presence or 
absence of a particular signal could be known with certainty. Coupled with the 
boolean nature of the identification problem (either a signal is present or it is  
absent)  allows  the  performance  of  the  signal  detection  algorithms  to  be 
compared using measures of sensitivity and specificity.

Paper II
The use  of  probabilities  for  the signal  identification  algorithms used in  this 
study precludes  the  use  of  sensitivity  and  specificity  as  outcome  measures.  
Instead a variety of outcomes that would be useful in recording clinical VEPs 
were  considered.  These  included  the  amplitude  and  SNR  of  the  resultant 
waveform as well as a measure of the time taken for the resultant waveform to 
become significantly different from noise (Young & Kimura 2010). This later 
outcome measure overcomes the subjectivity required of human observers when 
identifying waveforms and could be of particular use when recordings are made 
by less experienced technicians or from less cooperative subjects.

Identifying changes to retinal function occurring as a 
result of disease

Paper III
The problem addressed in Paper III was the identification of subtle, sub-clinical, 
changes caused by Type 1 Diabetes before the onset of retinopathy. Multifocal 
electroretinograms were recorded from a population with Type 1 Diabetes and 
an age similar control population. The mfERG data were analysed using the 
template  fitting  technique  described  earlier,  and  the  sf-mfERG  data  were 
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analysed using SNR. In this case the SNR was calculated as 

SNR = (RMSsignal + RMSnoise)/ RMSnoise 

Responses from individual hexagons, as well as responses formed by averaging 
the  data  from  equivalent  eccentricities  and  from  retinal  quadrants,  were 
compared between the two populations to investigate the spatial distribution of 
any identified changes. 

Data were also analysed using a multivariate analysis, spatio-temporal partial 
least  squares  (st-PLS) (Krishnan  et  al.  2011).  This  interesting  analytical 
technique enables the detection of changes in waveform shape without requiring 
reduction of either the spatial distribution or temporal distribution of the data. 
The type of st-PLS analysis used (Mean-centered task PLS) (Krishnan et al. 
2011) has been used in ERP studies of memory (Bergström et al. 2007; West & 
Wymbs 2004; West & Krompinger 2005) as well as fMRI studies (McIntosh & 
Lobaugh 2004; Martínez-Montes et al. 2004; Protzner et al. 2009).
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Results and Discussion

Signal detection algorithms
The studies  described  in  Papers  I  and  II  demonstrate  that  automated  signal 
detection algorithms can increase the sensitivity and reduce the subjectivity of 
clinical visual electrophysiological recordings. The results of paper I show that 
even  when  mfERG  signals  are  not  attenuated  artificially there  is  a  large 
variation in the sensitivity of human observers. The best performing automated 
signal detection algorithms had a higher sensitivity than the highest performing 
human observer.

Effect of increasing noise
Not  surprisingly  the  performance  of  all  the  signal  detection  algorithms 
decreased as the proportion of noise in the recorded waveforms increased. In 
Paper I the amount of noise was modified systematically. When the amount of 
noise  was increased by a  factor  of  2,  the sensitivity  of  the best  performing 
algorithm (template sliding) was reduced by 9% whereas the sensitivity of the 
worst performing algorithm (SNR) reduced by 47%. The average reduction for 
human observers was 20% (Table 1 & Table 2). When the amount of noise was 
increased  by  a  factor  of  5  the  algorithms  based  on  template  matching  still  
performed better than chance, the SNR algorithm was unable to separate the 
responses  containing  signal  from  those  containing  only  noise.  Human 
performance at this noise level was not tested but unpublished, preliminary data 
indicated  that  performance  was  no  better  than  chance.  Previous  work  has 
demonstrated the an SNR based algorithm was able to detect highly attenuated 
signals in clinical  mfERGs recorded from patients with advanced RP. When 
hexagons identified by the SNR metric were averaged together the distinctive 
mfERG waveform morphology emerged, averaging hexagons with a low SNR 
resulted in a waveform with a noise only morphology (Gerth et al. 2007). It 
would be interesting to see how well template based algorithms perform on this 
type of data. 
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Scorer Attenuation

0 2

Sensitivity Specificity Sensitivity Specificity

1 0.37 1 0.2 1

2 0.94 0.99 0.74 1

3 0.68 0.99 0.48 0.99

4 0.69 1 0.49 1

Table 1: Sensitivity and specificity for identifying signals in modified 

mfERG recordings for 4 human scorers.

Method Attenuation

0 2

Template (additive scaling) 0.95 0.86

Template (multiplicative scaling) 0.66 0.60

SNR 0.53 0.06

Table 2: Sensitivity for automated signal detection algorithms for detecting 

signals in modified mfERG recordings. Sensitivity shown at 0.99 specificity 

level.

Although in Paper II the noise levels were not modified in a systematic manner 
it is still possible to draw conclusions about the performance of the template and 
coherence  algorithms at  separating  signals  that  are  contaminated  with  noise 
(condition 2) from those not containing any signal (condition 3). In this study 
the  template  matching  algorithm  performed  almost  as  well  at  identifying 
contaminated trials as it did identifying trials recorded under ideal conditions. 
Interestingly the coherence algorithm failed to identify the contaminated trials 
and actually  gave heavier  weights  to  the noise  only trials  (Figure 17).  This 
probably indicates that the variation in amplitude of the noise-only trials was 
smaller than for the trials contaminated with muscle artifact. It is not possible to 
draw any conclusions about the performance of the neural network algorithm 
since the networks were only trained to recognize the trials from condition 1.
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Figure 17: Weights assigned to VEP trials by automated signal detection  

algorithms. Weight distributions were pooled across patients. Left column 

shows frequency distributions, the right column shows the same data as a  

cumulative probability plot. Black solid line = signal epochs, gray lines = noise  

epochs. Dotted lines = trials with signals contaminated with noise, dashed lines  

= trials with no VEP response.
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Effect of prior knowledge
The different signal identification algorithms all  make assumptions about the 
waveforms. The assumptions are summarised in the table below.

Algorithm Papers used in Assumptions

SNR II & III Responses will have larger RMS 
amplitude than noise

Coherence II Underlying response is conserved 
between trials.
More similarity between responses 
than noise

Template 
(additive 
scaling)

I Morphology of response will be 
similar to the chosen template.
Changes in timing will affect all 
response components identically.

Template 
(multiplicative 
scaling)

I, II & III Morphology of response will be 
similar to chosen template.
Changes in timing will affect later 
response components more than 
earlier response components.

Neural Network II Responses will have similar 
morphology to those used to train the 
networks.

Human scoring I Responses will be recognizable, the 
exact range of recognized response 
morphologies will be dependent on 
the experiences of the observer.

Table 3: Summary of assumptions made by different signal identification 

algorithms.

The performance of the different signal detection algorithms is dependent on the 
changes  that  occur  in  the  recorded  waveforms,  for  example  in  Paper  I  we 
showed that  the SNR algorithm is  more  affected  by  signal  attenuation than 
either  of  the  template  algorithms.  In  general  as  the  signal  becomes  more 
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attenuated  the  algorithms  that  employ  the  most  prior  knowledge  about  the 
morphology of the response perform better. While this observation can be used 
to  improve  the  performance  of  the  different  algorithms  when  the  expected 
changes  to  the  response  are  known (for  example  multiplicative  scaling  was 
found  to  better  represent  the  changes  to  the  mfERG  due  to  Diabetes  than 
additive  scaling (Schneck  et  al.  2004)),  often  the  underlying  changes  are 
unknown and preliminary investigations will be necessary. 

When  a  template  waveform  is  required  it  is  important  that  the  template 
waveform be representative of the expected response. Since the morphology of 
the waveforms change as the underlying physiological systems mature (Westall 
et al. 1999; Taylor & McCulloch 1992; Seiple 2003) it is important that the age 
of the subject is taken into account when selecting the template. The ISCEV 
Standards for Clinical Multifocal Electrophysiology suggest the template should 
be  generated  from  age-matched  normal  data (Hood  et  al.  2012),  there  is 
however a possibility that the template could be over specified, becoming less 
sensitive  to  variations  in  waveforms  caused  by  population  variation  or  by 
disease. Other template based analyses have shown success using templates that 
are much less specific to the expected waveform (Simpson et al. 2009). It is 
interesting to note that the template analysis used in Paper III, used templates 
specific for each stimulated area in the mfERG. As a result the analysis was  
insensitive  to  the  variations  of  the  waveform  that  occur  across  the  retina 
(Baseler et al. 1994).

Identifying changes due to disease
In  Paper  III  patients  with  Type  1  Diabetes,  before  the  onset  of  clinical 
retinopathy,  were  studied  to  identify  changes  in  the  mfERG responses.  The 
multiplicative  scaling  template  matching  technique  identified  a  delay 
corresponding to a 0.2 ms delay in the P1 component of the waveform. The 
same delay was identified when individual hexagon responses, ring averaged 
responses  and  quadrant  averaged  responses  were  analysed.  This  finding  is 
similar to that of other groups (Schneck et al. 2004), however, it has not been 
possible to localise this delay to any particular retinal area. The SNR analysis of 
the sf-mfERG recordings was not able to identify any difference between the 
two groups although these differences have been observed using other analysis 
techniques (Bearse et al. 2004; Kurtenbach et al. 2000).
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The multivariate st-PLS analysis was also able to identify a significant delay in 
the  responses  of  the  subjects  with  Diabetes.  Examination  of  the  response 
waveforms indicated that  this delay spread across the whole retina, with the 
least amount of delay being observed in the inferior nasal retinal quadrant. The 
st-PLS analysis also indicated that both the leading and falling edge of the main 
P1 component were affected (Figure 18). While it is unclear why different parts 
of the waveform should be affected in different retinal areas, it is known that the 
rising edge represents the interaction of depolarising ON-bipolar cells and the 
recovery of the OFF-bipolar cells, while the trailing edge is the interaction of 
depolarisation of the OFF-bipolar cells and the recovery of the ON-bipolar cells 
(Hood et al. 2002). It is possible that the temporal distribution of the identified 
changes may give clues about the retinal cell types that are affected.

The st-PLS analysis was more sensitive than the SNR analysis and was able to 
identify a significant difference in the sf-mfERG results.  Examination of the 
distribution of the differences showed that the difference manifested as a delay 
in the response, to which the SNR analysis was not sensitive. Although previous 
studies have also observed this delay, they have used spatial averaging of the 
mfERG data and in order to draw conclusions about the distribution of these 
delays the averaging scheme, which matched the distribution of the changes had 
to  be  selected (Kurtenbach  et  al.  2000).  As  st-PLS  does  not  require  any 
reduction of the spatial distribution of the data it was able to study the response 
delays on an individual hexagon basis. While the delays are distributed across 
the whole tested retinal area, they seemed to concentrate in a parafoveal ring 
which is where the nerve fibre layer is thickest.
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Limitations
While the artificial simulation of disease promises to be a powerful approach 
for measuring the performance of novel analysis techniques, it is important that 
the techniques used replicate the expected disease processes. The techniques 
used in Paper I were limited to modifying the relative amplitudes of signal and 
noise, there was no attempt to alter the timing of the response. While changes to 
mfERG  amplitude  are  common,  delays  in  mfERG  timing  have  also  been 
observed. It is possible that if timing delays are present the relative performance 
of the algorithms may change. 

In Paper II the effect of a non-compliant patient was simulated. The techniques 
used simulated the effect of increased artifactual noise and decreased signal due 
to inattention. While these are realistic problems encountered in clinical testing, 
diseases, such as seizure disorders, may have other effects on the underlying 
brain activity or response morphology, which were not tested in this study. The 
most common changes to the VEP, due to disease, are changes in the timing of 
the response. So long as the gross morphology of the waveform does not change 
the algorithms used should be equally effective.

The metrics used to measure the performance of the algorithms used in Papers I 
and II concentrated on their  ability to detect electrophysiological signals,  no 
attempt  was  made  to  quantify  their  ability  to  determine  the  response 
morphology.  Other  studies  have  shown  that  automated  algorithms  can  out 
perform human observers in describing the underlying response in the presence 
of noise accurately (Fisher et al. 2007).

The st-PLS analysis pools the data with groups and uses this pooled data to 
determine the statistical significance of any changes. It is not possible to use 
this method to determine statistically significant changes occurring in a single 
recording from a single patient. This limits the clinical applicability. However 
the additional information about the morphology and spatial distribution of the 
changes can be used to guide the choice of other analysis techniques that are 
more suitable for use on single sample data.
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Figure 18: Partial least-squares analysis of mfERGs. a) Group average 

standard mfERG waveforms. Average mfERG waveforms from 103 retinal areas  

are shown. Red lines are the average waveform from subjects with Diabetes and  

blue lines are the average from control subjects. Circles above the waveforms  

indicate time points that are significantly different between groups. b)  close-up 

from a hexagon in the inferior retina (c093) with significant time points on the  

rising edge of P1. c) retina response scores for LV1 associated with the 2  

groups.
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The difficulties encountered in accurately simulating the effects of disease only 
strengthen the argument that metrics of signal quality and reliability should be 
incorporated into visual electrophysiology testing.
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Conclusions

Paper I
Automated algorithms can be used for signal detection in mfERG recordings.

Automated algorithms could outperform human experts in terms of sensitivity 
and specificity for signal detection. 

Algorithms  with  better  prior  knowledge  of  expected  waveform  shape 
outperformed naive algorithms.

The optimal algorithm (Template with additive scaling) achieved a sensitivity of 
86% at  99% specificity  for  detecting  attenuated  responses.  The  best  human 
observer achieved sensitivity of 74% using the same data.

Paper II
Automated signal detection algorithms coupled with weighted averaging were 
able to improve the quality and reduce the time required for recording VEPs.

A neural network algorithm, on average, gave trials containing VEP responses a 
14% higher weighting than trials that contained no VEP response.

All the automated algorithms reduced the time taken to obtain a statistically 
significant  algorithm  compared  with  traditional  ensemble  averaging.  A 
coherence algorithm that looked for similarity between trials required only 25% 
of the trials to achieve a significant response.

Paper III
Changes to retinal  function,  occurring in a population with Type 1 Diabetes 
before  clinical  retinopathy,  were  identified  both  by  a  template  matching 
(multiplicative scaling) and by multivariate st-PLS analysis.  Spatial-temporal 
PLS analysis was able to identify changes to the slopes of the responses that are 
usually lost  with other  analysis  techniques.  This  additional  information may 
provide clues to the underlying physiological processes that are disturbed in the 
retinae of patients with Type 1 Diabetes.
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Summary
The use of advanced algorithms for signal  identification and analysis shows 
promise  for  both  increasing  the  sensitivity  and  reducing  the  subjectivity  of 
visual  electrophysiological  recordings.  The  reduced subjectivity  may aid the 
sharing of results between electrophysiology laboratories and with other related 
disciplines.
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