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Abstract 

This paper examines the firm size-growth relationship using a balanced panel of 

surviving Swedish banks spanning the post-regulatory reform period (1995-2002). 

Univariate as well as multivariate tests of the law of proportionate effect (LPE) are 

performed, using a recently developed dynamic panel econometric method, i.e. the 

GMM-system estimator. Regardless of model specification (univariate, bivariate or 

multivariate) the LPE is always accepted. In the multivariate specification, all firm 

performance indicators turned out to be insignificant.  Hence stochastic rather than 

systematic factors determined growth performance during the period under 

consideration.   
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1. INTRODUCTION   

It is a well known fact that if a typical firm’s growth rate during a year is 

independent of its size and growth in previous years (or, equivalently, if logarithmic 

firm sizes are subject to sequences of purely random shocks), the firm size 

distribution within the industry will become increasingly skewed and dominated by a 

small number of large firms, eventually turning to the log-normal distribution. 

Whether this non-relationship between growth and size, referred in the literature to as 

Gibrat’s law or the law of proportionate effect (LPE), adequately describes intra-

industry firm size distributions has been the focus of empirical studies for many 

decades. However, a majority of these studies have concerned the manufacturing 

industry, while studies based on services such as banking are quite few in number. 

With reference to manufacturing, recent studies (e.g. …) consistently find an inverse 

size-growth relationship, thus contradicting the LPE. The evidence of such a 

relationship is convincing enough for Geroski (1995) to regard it as a stylized result, 

while Sutton (1997) concludes that the proportional rate of firm growth, conditional 

on survival, decreases with size. For services, however, Audretsch et al. (2004) 

present compelling theoretical reasons why the LPE could be expected to hold. For 

banking specifically, the empirical evidence concerning the LPE is somewhat mixed. 

On the whole, however, the existing evidence does not suggest either a strong or a 

consistent relationship between size and growth in banking, thus indicating that the 

LPE may indeed offer a reasonable description of the firm growth process (Goddard 

et al., 2001).  

 

The aim of this paper is to contribute to this strand of research by examining 

whether Sutton’s (1997) statistical regularities and Geroski’s (1995) stylized results 



 3 

for the validity of the LPE, based on evidence from the manufacturing industry, apply 

to the Swedish banking industry. This is accomplished by estimating a dynamic firm 

growth model, using firm-level data and recently developed dynamic panel data 

econometric methods, i.e. the GMM-system estimator. In addition to performing the 

widely used univariate test of the LPE, multivariate growth estimation is also 

conducted. The multivariate model is based on the notion that the univariate 

specification is the reduced form of an unspecified structural model. Accordingly, if 

the univariate test rejects the LPE, and for example, larger banks grow faster than 

smaller banks, they may do so for specific reasons which a multivariate model 

incorporating various bank performance indicators is able to control for. 

  

Due to the short time series dimension of the data set, the sample only considers 

banks which were in operation and survived during the whole period under 

examination (i.e. 1995-2002). The exclusion of banks due to insufficient data or banks 

which exited, entered or were taken over may create sample selection bias. However, 

the data set does represent a heterogeneous cross-section of banks, covering around 

90 % of the industry in terms of total assets.  

 

The paper is organized as follows. Section 2 reviews the evolutionary and 

stochastic literature on firm growth, as well as the empirical evidence concerning the 

LPE within banking. Section 3 presents the growth model as well as the methodology 

employed. Section 4 discusses the sample and presents some descriptive statistics. In 

addition, variables used in the analysis are defined. Section 5 presents the results and 

discusses their implications. Finally, section 6 concludes. 
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2. RELATED LITERATURE 

 

2.1 Evolutionary and stochastic firm growth theory: the law of proportionate 

effect (LPE)  

To date a large number of studies on the subject of firm growth theory has been 

undertaken.1 One important part of this research embraces theories which postulate 

certain outcomes for firm size distribution and industrial concentration, i.e. theories 

on stochastic and evolutionary growth.2  Stochastic firm growth theories emanate 

from Gibrat (1931), whose law of proportionate effect postulates that the 

proportionate growth rate of incumbent firms is completely randomly determined and 

hence independent of systematic factors such as initial size or previous growth rates.  

In other words, factors that influence firm growth, such as growth of demand, 

managerial talent, innovation, organisational structure and luck, are distributed across 

firms in a manner which cannot be predicted from information about firm’ s current 

size or its previous growth performance (cf. Goddard et al., 2001). As well-known, 

the implication of the LPE is a firm-size distribution which over time becomes 

increasingly skewed, and in the limit will approximate certain theoretical 

distributions, including the log-normal, Pareto and Yule distributions.3 Thus, the 

                                                
1 Hart (2000) provides an extensive review of the theoretical and empirical literature on firm growth. 
2 This literature is thoroughly reviewed by Sutton (1997). 
3 The formal demonstration below is based on Steindl (1965) and reproduced in Sutton (1997, 1998): 
Let tx  and tε   denote the size of a firm at time t and a random variable capturing the proportionate rate 
of growth between (t-1) and t so that: 

11 −− =− tttt xxx ε   [i] 
 implying  

).1()1)(1()1( 2101 tttt xxx εεεε +⋅⋅⋅++=+= −  [ii] 

Now, for short time intervals, it is reasonable to consider 
tε  as small, justifying the 

approximation tt εε ≈+ )1ln( .  Thus, taking logs, condition [ii] becomes: 

tt xx εεε ++++≈  ... lnln 210
.  [iii] 
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industry will tend to become more concentrated and dominated by a handful of large 

firms, despite the absence of systematic factors (e.g. scale economies or superior x-

efficiency) that would enable large banks to grow faster, implying increased 

dispersion in sizes.  

 

While Gibrat’ s theory had little immediate impact, the 1950s and 1960s saw a 

revival of stochastic firm growth theory.4 The new models retained the law to specify 

the size-growth relationship for surviving firms, but elaborated in particular on the 

assumptions made about entry and exit and their role in influencing the size-growth 

relationship (e.g. Hart and Prais, 1956; Ijiri and Simon, 1977). Meanwhile, a growing 

number of empirical tests of the LPE were conducted, which can be grouped into two 

main categorical approaches. The first category comprises studies which base their 

analysis on empirical firm size distributions, and which tests for the LPE using 

goodness-of-fit tests (Hart and Prais, 1956; Simon and Bonnini, 1958; Steindl, 1965; 

and Ijiri and Simon, 1977). The second category consists of studies which examine 

the size-growth relationship using more direct tests, based on regression analysis 

(Hart and Prais, 1956; Hart, 1962; Mansfield, 1962). As remarked by Goddard et al. 

(2001), Hart (1962) identified the following implications of the LPE: (1) large and 

small firms should have the same average proportional growth; (2) no 

heteroscedasticity in growth rates; (3) the firm size distribution should be log-normal; 

and (4) the relative dispersion of firm sizes should increase over time. Using these 

properties as a basis for regression-based tests, Hart (1962) found no evidence against 

                                                                                                                                       
By assuming the increments tε  to be independent variates with mean m and variance 2σ , we have that 

as ∞→t , the term 
0ln x  will be small compared to txln , so that txln  is approximated by a normal 

distribution with mean mt and variance t2σ . In other words, the limiting distribution is lognormal.   
 
4 See Steindl, (1965) for a review.  
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the LPE for various industries during the 1930s, 1940s and 1950s. As pointed out by 

Sutton (1997), the contribution of Mansfield (1962) is of particular interest. Mansfield 

points out that the previous inconclusive findings about the validity of the LPE 

emanates from using three different types of samples: (1) all firms (including those 

that fail to survive during the period); (2) surviving firms only; and (3) well-

established firms (i.e. firms which have reached the minimum efficient scale5 (MES) 

of operation, and thus have exhausted economies of scale). Overall, Mansfield 

concludes that smaller firms have higher and more variable growth rates than large 

firms, while there is support for the LPE for firms operating above the MES.  

 

A problem with tests based on empirical firm size distributions (category 1) is 

that they are essentially static, while regression based tests are able to incorporate 

dynamic influences on firm size distributions, such as persistence of growth or 

heteroscedasticity in growth rates. Following Chesher (1979), more recent regression-

based tests tend to be dynamic6 (i.e. allow for the effects of growth persistence on the 

model). 

 

In the late 1970s and 1980s, following a revival of empirical work in the area, a 

number of economic (i.e. not entirely stochastic) models of firm growth were 

introduced. These models introduced stochastic elements into conventional 

maximizing models (e.g. Jovanovic (1982); Sutton, (1991; 1997; 1998)). In Jovanovic 

(1982), each firm’ s cost curve is subjected to randomly distributed firm-specific 

shocks. Over time a firm learns about the effects of these shocks on its efficiency. 

Firms experiencing favourable shocks grow and survive. Others do not grow and may 
                                                
5 MES is defined as the output level at which a firms average cost curve stops falling. 
6 With reference to banking, see e.g. Tschoegl (1983), Vander Vennet (1999) and Wilson and 
Williams(2000). 



 7 

decline and even leave the industry (cf. Hart, 2000). Accordingly, larger firms are 

likely to be older than smaller firms, since they have benefit from learning economies 

of scale, enabling them to avoid making costly mistakes. The implication is that large 

firms’  growth is subject to less variation than that of smaller firms (cf. Goddard et al., 

2001). More recently, Sutton (1991, 1997, 1998) argues for the need of an integrated 

theory capable of explaining variations between industries in concentration and in the 

shape of their firm size distributions. In Sutton (1998), markets that tend to fragment 

into separate submarkets remain less concentrated than those that tend to remain 

homogeneous. For any given concentration ratio, firm size distributions are modelled 

as the outcome of a dynamic process in which there is a fixed probability that any 

submarket will be contested by an entrant, which may be either an established firm 

operating in other submarkets or a new firm. It is possible to derive a theoretical firm 

size distribution that would apply if the probability of successfully contesting a new 

submarket were the same for established and new firms. In Sutton’ s framework, this 

case is analogous to the LPE. Departures form this theoretical size distribution would 

occur if established firms enjoyed advantages over new firms, affording a higher 

probability of successfully contesting new submarkets as they arise (cf. Goddard et al. 

2001).   

  

Nelson and Winter (1982) propose an evolutionary model of firm growth. The 

evolutionary approach to firm growth implies that there is some serial correlation in 

growth: “success breeds success and failure breeds failure”. Thus this is in contrast to 

purely stochastic models of growth, such as the LPE, which postulate that the 

proportionate growth of surviving firms is random and hence independent of previous 

success (cf. Hart, 2000).  The model by Nelson and Winter (1982) avoids strict 
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maximizing assumptions in favour of weaker rationality assumptions, and raises some 

fundamental questions as to the appropriateness of making strong rationality and 

informational assumptions on agents who face continuing technological change (cf. 

Sutton (1998), p. 244). Instead of optimising, agents tend to react automatically to 

changes in the market environment using routines which are specific to the firm. 

Successful routines which have produced growth in the past, are likely to do so in the 

future. It is true that circumstances change, but successful firms have successful 

routines for changing previous methods to meet new market environments (cf. Hart, 

2000). 

 

The relative importance of systematic and stochastic factors in the growth 

model may be indicated by the degree of serial correlation in growth. Systematic 

factors are expected to produce persistent company growth and hence a high degree of 

serial correlation (ibid), in consistency with evolutionary theories of firm growth. This 

is in contrast to stochastic growth models such as the LPE which postulate that the 

proportionate growth of surviving firms is purely random.  

 

2.2 The LPE and banking – prior results  

The overwhelming majority of previous empirical tests of the LPE have been 

based on cross-sectional regressions of logarithmic growth over a certain time interval 

on initial log size, sometimes (more recently) including a term accounting for 

persistency of growth. The first researchers who tested for the LPE using banking data 

were Aldaheff & Aldaheff (1964), who compared growth rates for the 200 largest 

banks to the average of the whole sample, and obtained that the group of large banks 

tended to grow more slowly than average for the period 1930-1960. Rhoades & Yeats 
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(1974) deal with a sample of 600 US banks for the period 1960-71, where they also 

were able to distinguish between internal and external (merger) growth. The 

conclusion reached was that the group of medium-sized banks experienced the highest 

internal growth. Tschoegl (1983) tests the hypothesis of no size-growth relationship 

for a sample of the largest international banks during the span 1969-77. In addition, 

two other hypotheses relating to the LPE were tested: (2) variability of growth 

between banks is independent of initial size; and (3) growth does not persist from one 

period to the next. The acceptance of these three propositions implies that 

concentration will increase over time, and that the LPE is valid in its strongest form. 

Tschoegl (1983) found no significant size-growth relationship. However, the 

variability of growth was found to decline with size, indicating that smaller banks 

exhibit more variable growth rates than larger banks, contradicting the LPE in its 

strongest form. Finally, the growth persistence was positive but insignificant. Vennet 

(2001) investigates growth patterns for the (aggregate) bank sectors in 23 OECD 

countries, including Sweden, for the time span 1985-94. For the sub-period 1985-89, 

size convergence was obtained, implying that smaller bank sectors were catching up 

with the larger ones. Enlarged access to revenue sources, growing internationalization 

of trade in financial services and increased competition were suggested as 

explanations for this finding. In contrast, the results for the period 1990-94 supported 

the LPE, indicating that the largest banks were reclaiming their dominance over world 

banking. Moreover, the results are robust to whether the conventional size measure 

(i.e. total assets) or the composite size measure (i.e. off-balance-sheet activities are 

included as well) is considered. 
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Wilson and Williams (2000), tested for the LPE using a sample of banks from 

four European countries for the period 1990-96. For the purposes of robustness, 

several definitions of size were considered (total assets, equity and off-balance sheet 

activities). With the exception for Italy, no significant size-growth relationship was 

found. Large banks were found to have less variable growth rates (in line with the 

results of Tschoegl (1983)), suggesting that large banks enjoyes diversification 

advantages (Singh and Whittington, 1968) and/or that they were able to benefit from 

learning economies of scale (Jovanovic, 1982).  

 

Hartwick and Adams (2002) examine the relationship between size and growth 

in the UK life insurance industry, using 1987-1996 data in a multivariate setting. With 

reference to the whole period, no significant size-growth relationship was obtained. 

However, more diversified life insurance firms experienced higher growth rates on 

average than more specialized life insurers. Other firm-specific determinants of 

growth, i.e. profitability, cost efficiency, company type and organisational form 

turned out to be insignificant. 

     

Goddard et al. (2002) investigated the size-growth relationship of US credit 

unions during the 1990s, using univariate and multivariate cross-sectional and panel 

estimation techniques. In general, larger credit unions were found to grow faster than 

their smaller counterparts. However, the authors were able to identify specific reasons 

why larger firms were able to grow faster, as most of the financial structure and 

performance characteristics used in the multivariate model were found to have a 

significant influence on the size-growth relationship. Thus, growth was not randomly 

driven but highly systematic.  



 11 

 

 3. METHODOLOGY 

 

3.1 Estimation technique 

This chapter describes the model framework and subsequently presents the 

empirical model to be estimated. It is assumed that performance measures such as 

firm profit rate and firm growth evolve according to first-order autoregressive-

distributed lag models of the form: 

TtNivxyy tiiti
T

titi  ..., ,2   ;  , ... ,1      ; )( ,,1,, ==+++= − ηβα     [1] 

where tiy ,  represents a firm-level performance observation in period t; tix ,  a vector 

of additional covariates; iη  an unobserved bank-specific time-invariant effect 

allowing for heterogeneity in the means of tiy ,  across banks; and tiv ,  is a disturbance 

term, assumed independent across individuals and serially uncorrelated. The error 

term is also assumed to satisfy  ( ) ( ) .0var and  0 2
,, >== vtiti vvE σ  

  

In dynamic panel models involving individual effects such as [1], the Ordinary 

Least Squares (OLS) estimator α̂  is known to be inconsistent, due to the correlation 

between the lagged dependent variable, 1, −tiy  (a regressor) and the individual effects 

iη . Moreover, this correlation and hence the inconsistency of α̂  still persists in 

panels where either the cross-sectional dimension (N) or time dimension (T) increases 

asymptotically towards infinity. Standard results for omitted variable bias indicate 

that, at least in large samples, the OLS levels estimator is biased upwards (cf. Bond, 

2002). 
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Through the transformation (first-differencing) of equation [1] which eliminates 

the individual effects iη  prior to estimation, the Within estimator eliminates this 

source of inconsistency, while simultaneously introducing a non-negligible 

correlation between the transformed lagged dependent variable and the transformed 

error term, unless T is very large. In micro panels (i.e. large N, fixed T) the Within 

estimator is consistent only in the extreme case where all regressors are strictly 

exogenous with respect to the error term )( ,tii v+η . Otherwise, standard results for 

omitted variables bias indicate that the Within estimator, at least in large samples, is 

inconsistent and biased in a dynamic panel data model (ibid.). Also the random effects 

GLS estimator is inconsistent and biased in such models (cf. Baltagi, 2001). 

 

Holtz-Eakin, Newey and Rosen (1988) and Arellano and Bond (1991) propose 

a consistent instrumental variable estimator for the first-order autoregressive panel 

data model, based on the generalized method of moments7 (GMM) approach. This 

two-stage, asymptotically efficient GMM estimator, referred to as the Arellano and 

Bond estimator or, alternatively,  the difference estimator (GMM-DIF), also extends 

naturally to autoregressive-distributed lag models, and so it is appropriate to use not 

only for performing reduced-form analysis but for estimating structural, multivariate 

models such as equation [1] as well. The GMM approach starts with transforming the 

model (through e.g. first-differencing or orthogonal deviations8) to get rid of the 

individual effects.  

                                                
7 See Hansen (1982). 
8 The orthogonal deviations transformation (Arellano, 1988; Arellano and Bover, 1995) is an 
alternative to first-differencing, which involves first-differencing followed by a GLS transformation to 
remove the resulting serial correlation induced by first-differencing. Although first-differencing and 
orthogonal deviations generate quite similar parameter estimates, the latter method has been shown to 
offer superior efficiency in models with predetermined variables (Maeshiro and Vali, 1988). Formally, 
the transformation involves subtracting from each observation the average of future observations in the 
sample for the same individual, followed by a weighting to standardize the variances: 
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The first-differenced model is given by: 

TtNivxyy titi
T

titi  ..., ,3   ;  , ... ,1     ;,,1,, ==∆+∆+∆=∆ − βα  [2] 

where ∆  denotes the first difference operator. 

 

The resulting correlation between the transformed lagged dependent variable 

1, −∆ tiy  and the transformed error term tiv ,∆  necessitates the use of instrumental 

variables estimation. The GMM-DIF estimator utilizes the set of orthogonality 

conditions that exist between lagged levels of the dependent and independent 

variables (instruments) and the transformed (first-differenced) equations, given by [2]. 

At this stage, it is reasonable to assume (i) that the original time-varying component 

of the error term, tiv ,  is serially uncorrelated and (ii) that the regressors, tix ,  are 

weakly exogenous (predetermined) with respect to tiv , : 

[ ]
[ ] TtTtsvxE

TttsvxE

titi

titi

 ..., ,2 ; ..., ,1 for   0 

, ... 2,  ;, ... 1, for   0

,,

,,

=+=≠
===

     [3]  

 

Given the validity of these assumptions, Arellano and Bond (1991) propose to 

use all available lags of the dependent and the independent variables to form an 

optimal instrumental variable matrix of the form:  

 2 ... ,1for   ) ...   . . . ( diag 1,1,,1, −== + TtxxyyZ tiitiidi      [4] 

 

                                                                                                                                       

 .1 , ... ,1for      
1

... 2/1
,1,

,, −=






+−
−







−

++
−= +∗ Tt

tT
tT

tT
xx

xx Titi
titi

  

where 
tix ,
  denotes any variable (dependent and independent).  This transformation also preserves 

orthogonality among the transformed errors, that is, if the original errors are uncorrelated, so are the 
transformed errors. 
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where each row corresponds to the first-differenced equations for Tt  ... ,3=  for 

institution i. Given the assumption of predetermined explanatory variables, iZ  is of 

dimension { } 2/)1()1)(1()2()2( −++−−×− TTkTT (where k  denotes the number 

of explanatory variables including 1, −tiy ), and constructed according to the orthogonal 

moment conditions: 

 [ ] TtsvyE tisti ,...,3 ;2for    0)( ,, =≥=∆⋅−       [5] 

 [ ] TtsvxE tisti ,...,3 ;2for    0)( ,, =≥=∆⋅−      [6] 

 

These conditions may be compactly written as: 

 [ ] NivZE i
T
di  , . . . ,1for   0 ==∆       [7] 

where { }T
Tiiii vvvv ,4,3,  ., . . , , ∆∆∆=∆ ; T in superscript denotes the transpose. 

 

The corresponding sample moment conditions used to calculate the 

asymptotically efficient (as ∞→N , for fixed T ) GMM-DIF estimator δ  are given 

by: 

∑ =
− ∆= N

i i
T
diN vZNm

1
1)(δ        [8] 

The GMM-DIF estimator GMMδ̂  is then defined as the value of δ  which minimizes 

the criterion function: 

 )()()( δδδ NN
T

NN mWmQ =       [9] 

and the resulting estimator is given by: 

 ( ) yZWZxxZWZx T
dNd

TT
dNd

T
GMM ∆∆∆∆= − ’1δ̂    [10] 

where NW  is a stochastic positive definite weighting matrix, which is different in the 

first step and the second-step estimation (cf. Arellano and Bond, 1991). In the first 
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step, the error terms tiv ,  are assumed to be independent and homoscedastic across 

institutions and over time. In the second step, these assumptions are relaxed and the 

residuals from the first step are used to construct a consistent estimate of the variance-

covariance matrix, thus enabling the calculation of an asymptotically more efficient 

second-step estimator. 

   

A well-known problem with the GMM-DIF estimator is its poor finite sample 

properties (in terms of bias and efficiency) when the lagged levels of the variables 

used as instruments are only weakly correlated with subsequent first differences, so 

that the instruments available for the regression equations in first-differences are weak 

(cf. Alonso-Borrego and Arellano (1999) and Blundell and Bond (1998)). This 

problem is expected to occur in the presence of highly persistent explanatory variables 

(i.e. when series have unit root or near-unit root properties). If for example the 

variable tiy ,  contains a unit root, implying a “true” value of the autoregressive 

parameter α  equal to unity, the moment conditions stated in [4] are not sufficient to 

identify the autoregressive parameter α  (cf. Arellano and Bover, 1995) while if α  is 

high but less than unity, the GMM-DIF estimate of this parameter is expected to be 

biased downwards (in the direction of the Within estimator) and imprecisely estimated 

(cf. Blundell and Bond, 1998).  

  

In order to improve upon the finite sample properties associated with the 

standard GMM-DIF estimator when the instruments available for the first-differenced 

equations are weak, Arellano and Bover (1995) and Blundell and Bond (1998) 

introduce an extended GMM estimator, the so-called system estimator (GMM-SYS) 

which in addition to the lagged levels of the variables as instruments for the 
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differenced equations uses lagged first-differences of the variables as instruments for 

the untransformed (level) equations. Both Monte Carlo simulations and empirical 

experience have shown that the GMM-SYS estimator has much smaller finite sample 

bias and much greater precision when estimating autoregressive parameters using 

persistent series (cf. Blundell, Bond and Windmeijer (2000) and Bond (2002)). 

  

When (and if) the GMM-SYS procedure is employed, the following additional 

assumption is imposed: (iii) while correlation between the levels of the regressors and 

iη  is allowed for, it is assumed to be time-invariant (or put differently, each series of 

 ),( ,, titi xy is assumed to be mean-stationary). This implies there is no correlation 

between the differences of the regressors and iη , so that suitably lagged values of 

tiy ,∆  and tix ,∆  qualify as instruments for the level equations (cf. Bond, 2002). Given 

that all available lags of  ),( ,1, titi xy − are used as instruments in the differenced 

equations, only the most recent difference of these variables is used as an instrument 

in the level equations. Higher order lags become redundant in this situation (Arellano 

and Bover, 1995). Thus in addition to the moment conditions given by [6], the system 

estimator utlizes: 

 [ ] 1for    0)( ,, ==+⋅∆ − svyE tiisti η     [11] 

 [ ] 1for    0)( ,, ==+⋅∆ − svxE tiisti η     [12] 

or, in more compact notation: 

 [ ] NipZE i
T
si  , . . . ,1for   0 ==     [13] 

where   

 [ ]T
iii v  Yp =  and the “system instrumental matrix” siZ  is a block-

diagonal matrix given by: 
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






=

li

di
si Z

Z
Z

     0

0  
     [14] 

where liZ  is a block-diagonal matrix containing the non-redundant instruments 

available for the level equations (cf. Blundell, Bond and Windmeijer, 2000). 

  

Thus the GMM-SYS estimator combines in a system the moment conditions 

given by [6] and [11]. In analogy with the difference estimator, the model is estimated 

in a two-step procedure which generates consistent and efficient estimates.  

 

As pointed out by Arellano and Bond (1991), an estimator that uses lags as 

instruments looses its consistency if the assumption of no serial correlation in the 

error terms fails to hold. It is thus essential to make sure that the instruments used are 

valid (i.e. test the assumption of no serial correlation). Two such tests proposed by 

Arellano and Bond (1991) are Sargan’ s (1958) test of over-identifying restrictions and 

a direct-test of no second-order serial correlation in the differenced error term, i.e. 

[ ] 02,, =∆∆ −titi vvE .9  The Sargan test tests the overall validity of the instruments based 

on the sample counterparts to the moment conditions [6] and [11]. Under the null 

hypothesis the instruments are uncorrelated with the residuals (and hence acceptable). 

The test statistic is asymptotically chi-squared distributed with degrees of freedom 

equal to the difference between the number of instruments and regressors. The serial 

correlation test is asymptotically standard-normal distributed under the null 

hypothesis of no serial correlation.  

 

                                                
9 Even if tiv ,  is serially uncorrelated, the differenced error term can be first-order serially 

correlated, i.e. [ ] 01,, =∆∆ −titi vvE , need not hold. However, the validity of [ ] 02,, =∆∆ −titi vvE  is 

crucial for the GMM estimator to be consistent. 
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Monte Carlo studies have shown that the estimated asymptotic standard errors 

of the two-step GMM estimator are severely biased in small samples (Arellano and 

Bond, 1991), while the one-step standard errors are virtually unbiased (cf. 

Windmeijer, 2000). On the other hand, the one-step coefficient estimates are not 

asymptotically efficient. Therefore, in accordance with common practice, the two-step 

coefficient estimates along with the one-step standard errors will be reported in the 

estimations below. 

 

3.2 Growth dynamics and tests of the LPE 

In section two it was shown that if the LPE is in operation, the industry 

structure will evolute in such a way that the within-industry firm size distribution 

becomes increasingly skewed and dominated by a small number of large firms. Or, 

put differently, if factors that influence the growth prospects of firms, such as growth 

of demand, managerial talent, organisational structure or luck (cf. Goddard et al., 

2001) are distributed completely randomly over time and across firms (i.e. if 

logarithmic firm sizes are subject to a sequence of purely random shocks) then the 

generated firm size distribution will be approximately lognormal in form. Two 

striking aspects of this well-known result are: (i) even in the absence of any consistent 

relationship between size and growth, concentration will tend to increase over time, 

and (ii) previous research have established that the predictions of the law are fairly 

consistent with the empirical firm size distribution observed in many industries. In 

light of these considerations, the very purpose of this section is to test if the highly  

concentrated banking industry indeed is a result of a pure random growth process 

(LPE), or if there are systematic factors (e.g. superior efficiency performance of large 
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banks) which have enabled larger banks to seize most of the growth / investment 

opportunities.  

 

Prior regression-based tests of the LPE have typically been based on an AR(1) 

model of the form: 

 titititiittiti vvvyy ,1,,,1,,      ; )()1( ερηδα +=+++−=∆ −−   [15] 

where tiy .  is the logarithmic size of institution i at time t; tiy ,∆  the logarithmic 

growth rate of firm i; tδ  allows for time effects; while )( ,tii v+η  is the composite error 

term discussed previously. The individual effects are assumed to be distributed with 

ηµη =)( iE   and  2)var( ηση =i . The parameter α  determines the size-growth 

relationship, while ρ  captures potential first-order serial correlation in the time-

varying part of the error term. Finally, ti ,ε  is a random disturbance, assumed normally 

and iid distributed with 0)( , =tiE ε   and   0)var( 2
, >= εσε ti . Model [15] is the 

logarithmic correspondence of the stochastic growth model proposed by Ijiri and 

Simon (1977). By applying the logarithmic transformation to the data, distortions 

arising from inflation and other influences on the chosen size measure common to all 

banks are effectively eliminated (cf. Goddard et al., 2001) so that size is adequately 

measured by e.g. the log of total assets. The analysis of the size-growth relationship 

amounts to testing the null hypothesis of 1=α , under which growth is non-explosive 

and unrelated to size (consistent with the LPE) vs. the alternative of a significant size-

growth relationship, i.e. 1<α  or 1>α . If 1<α , then small firms tend to growth 

faster than large firms, possibly as a result of superior flexibility or innovativeness of 

small banks. This suggests that over time, the size of all banks is reverting towards 

some long-run mean value, and so there is no tendency for industrial concentration to 
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increase. Under mean-reversion ( 1<α ) it is assumed that iη >0, and the average log 

size to which bank i tends to revert back to is given by )1( αη −i . If ηη =i  

( 02 =ησ ), there is a common long-term mean size for all banks, while if ηη ≠i  

( 02 >ησ ) there are heterogeneous, bank-specific long-term values. On the other hand, 

if 1≥α , there is no mean-reversion, implying increased concentration over time. 

If 1>α , larger banks tend to grow proportionately faster than smaller banks, possibly 

through superior efficiency due to scale or scope economies, x-efficiency, or through 

the exercise of market power (cf. Wilson and Williams, 2000). Growth trajectories are 

explosive implying rapidly increased size dispersion. This can go on for a finite 

period but is unlikely to last for long. If, on the other hand, 1=α , there is no size-

growth relationship. Nevertheless, as mentioned in section 2, size dispersion will tend 

to widen over time as some banks by chance will get slightly more than their fair 

share of growth opportunities while the opposite is true for “bad luck” banks. 

When 1≥α , the individual effects iη  have no interpretation in terms of mean-

reversion, and it is assumed that 0==ηη i .10  

 

In this paper, it is initially assumed that size follows the simple univariate data 

generating process described by [15]. Goddard et al. (2001) suggests a useful 

reformulation of [15] for the purposes of panel estimation: 

      )1()1( ,1,1,, tiittititi yyy ξρηδρα +−++∆+−=∆ −−   [16] 

                                                
10 As remarked by Goddard et al., (2002), 0≠iη  would allow for a deterministic trend specific to each 
bank, which could exist but which would be very difficult to identify unless the number of observations 
per bank is quite large. The possibility of a common deterministic trend is captured, however, through 
the time effects, tδ . 
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where 2,,, )1( −−+= tititi yαρεξ , implying titi ,, εξ =  under the null hypothesis of no 

size-growth relationship (α =1). 

 

In accordance with model [16], we say that the LPE is satisfied if ( 1−α ) is not 

significantly different from zero, and violated otherwise. Serial correlation in the error 

term will be reflected in a positive value of the growth persistence parameter ρ . As 

pointed out by Chesher (1979), a proper test of the LPE requires the model to 

incorporate a term capturing growth persistence, since otherwise (as long as ρ  is non-

zero) the estimate ofα  will be inconsistent and biased (towards unity). Accordingly, 

to consider the LPE as a reasonable description of the bank growth process, we need 

to test both ( 1−α ) = 0 and the hypothesis of no persistence in growth rate ( ρ  = 0).11 

 

A weakness with the univariate model is that it is purely stochastic and thus 

suffers from a lack of economic foundation. Although frequently applied in the 

empirical literature, it has been criticised by e.g. Geroski et al. (1997), who argue that 

the acceptance of the law may be more a consequence of the overly simplicity of the 

model. In this context, Goddard et al. (2004) point out that the univariate specification 

can be regarded as the reduced-form of a larger, but often unspecified, structural 

model. In light of this insight, the following augmented, multivariate growth model is 

considered: 

     )1()1( ,
2

2
1
,11,1,, tiiti

T
ti

T
tititi xxyyy ξρηδββρα +−++++∆+−=∆ −−

       [17] 

where 1
,tix  and 2

ix  denote, respectively, a vector of time-varying and time-invariant 

systematic influences (i.e. bank performance indicators) on firm growth.  All variables 
                                                
11 Tschoegl (1983) proposes a third test – that of independence between size and variability in growth 
rates.  
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in 1
,tix  are assumed to be potentially correlated with the iη , and predetermined with 

respect to the disturbance term. The time-invariant covariates (when included), are 

also assumed to be potentially correlated with iη .12 

  

Models [16] and [17] are estimated using the GMM technique described above. 

Because size follows a unit-root process under the null,  the extended GMM estimator 

(i.e. GMM-SYS) is considered as appropriate, while the usual panel estimators or the 

GMM-DIF estimator are all expected to perform poorly. Thus although several 

estimators are considered (for comparison purposes), the interpretations will be based 

on the most reliable results, i.e. those produced by the GMM-SYS estimator.  

 

4. DATA  

 

4.1 Variable definitions and determinants of bank growth  

Following Tschoegl (1983), this paper adopts (the log of) total assets as a 

measure of size.13 Both total assets and total equity represents widely accepted 

measures of bank size ever since, and total assets has subsequently been employed in 

empirical tests of the LPE within the financial industry by e.g. Wilson and Williams 

(2000); Vennet (2001); Hardwick and Adams (2002); Goddard, McKillop and Wilson 

(2002); and Goddard, Molyneux and Wilson (2004).  

 

                                                
12 These assumptions maintain consistency with the instrumental matrix defined above. 
13 Some recent empirical tests of the LPE within a banking context also tries to accommodate for the 
shift in banking activities towards increased engagement in off-balance-sheet business activities (e.g. 
Vennet, 2001; Goddard et al., 2001; 2004).  Without referring to banking in particular, other size 
measures frequently applied are value-added, the log of employment or the log of sales.   
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With reference to the structural bank growth model given by [17], it should be 

emphasised that the banking literature on determinants of growth is still in its 

infancy.14 The present paper examines some plausible bank-specific determinants, 

defined in table 1. The time-varying variables (all except STATUS) are allowed to 

enter subject to a time lag.  

 

 

 

Table 1 – Bank performance indicators 

Control variable 

(sign prediction) 
Definition 

ROA   (+) Profitability; Return on total assets 

EFFIC    (-) Total operating costs / total revenues 

INT_MIX   (?) Total non-interest revenues / Total revenues  

STATUS  (?) Ownership status, i.e. Commercial or Savings banks 

 

 

First, high profits (ROA) are expected to contribute positively to growth, since 

the higher the level of retained profits, the more capital available. Second, the variable 

EFFIC intends to capture operational efficiency. A high cost-income ratio indicates 

suboptimal performance and should impact negatively on growth. These variables 

were also used by e.g. Vennet (2001) and Goddard, McKillop and Wilson (2002). The 

variable INT_MIX attempts to control for the degree of diversification of the business 

                                                
14 Possible determinants of growth (apart from size) for banking have been examined by Cyree, 
Wansley and Boehm (2000), Vennet (2001) and Goddard et al., (2004); for the life insurance industry 
by Hardwick and Adams (2002);  and for the credit union industry by Goddard, McKillop and Wilson 
(2002).  



 24 

portfolio, although the a priori relationship with growth is not unambiguous. On the 

one hand, a more diversified bank could be expected to operate more efficiently in the 

presence of scope economies, and hence be able to achieve higher average growth 

rates. On the other hand, increased diversification lowers risk, and therefore permits 

banks to settle for a lower return on capital, with adverse effects for growth as a 

consequence. Finally, it seems likely that ownership characteristics may have an 

impact on profitability and hence on growth performance, since commercial banks are 

profit maximizing institutions while savings institutions may pursue other objectives 

(cf. Goddard et al., 2004).  

  

4.2 The sample  

The data set used consists of annual observations (account data) for banks 

which were in operation during the whole period, i.e. 1995-2002 (hence, a balanced 

panel). The short maximum time series dimension of the data set necessitates the use 

of a balanced panel, although this may create a potential problem with sample 

selection bias. In particular, banks that were formed during the period, as well as 

foreign banks which operate as subsidiaries or branches, have been excluded. 

Anyway, the remaining 79 commercial and savings institutions represent a 

heterogeneous cross section of banks, covering around 90 % in terms of total assets of 

the whole market. Sample statistics for the included banks are reported in Table 2. 

 

Table 2:  Variables used in the analysis – Sample statistics 

Variable Mean Std. Dev Median Min Max 

SIZE 6.767      1.992      6.387       3.279      13.76        

GROWTH 0.06486   0.1472     0.04563    -1.228      1.153        
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ROA 0.01742   0.01120 0.01612    -0.04125   0.08261    

EFFIC 0.4877      0.1306      0.4794       0.1419      1.096        

INT_MIX 0.1426      0.06501 0.1423 0 0.4763        

 

 
5. RESULTS  

The first part of this section presents the estimation results, while the second 

part interprets the results. For the purposes of comparison, the dynamic growth 

equation has been estimated using several techniques, although we know that only the 

GMM estimators are consistent, and that GMM-SYS provides efficiency gains as long 

as the additional level moment conditions given by [13] are valid.  In particular, if the 

model involves highly persistent series (so that lagged levels of the corresponding 

variables constitute weak instruments) then the standard difference GMM estimator is 

likely to be subject to serious finite sample bias in the direction of the Within 

estimator (i.e. downwards), while the system GMM estimator has much smaller finite 

sample bias and much greater precision. This outcome was shown by Blundell and 

Bond (1998) for simple AR (1) models but is also likely to be true in multivariate 

models (Blundell, Bond and Windmeijer, 2000). If the first-differenced GMM 

estimates are close to the Within estimates but differ substantially from the system 

GMM estimates, this is an indication of weak instrument bias of the differenced 

estimator, i.e. lagged levels of the variables used as instruments only weakly identify 

the parameters. In order to detect and avoid potential problems with finite sample bias 

due to weak instruments, Bond (2002) suggests investigating the series individually, 

as well as comparing the consistent GMM estimators with other panel estimators 

which are known to be biased in opposite directions. Accordingly, Table 3 reports 
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simple AR(1) specifications for the different series, where the panel OLS and the 

Within estimator are included for comparison.  

 

Starting with size, the system GMM estimate of the autoregressive parameter is 

very close to unity and estimated with great precision. By contrast, the differenced 

GMM estimator is not only seriously biased downwards and similar in magnitude to 

the Within estimator, but also inefficient. This is as expected since the series is highly 

persistent. The panel OLS estimate, which is unbiased under the null of 1=α , while 

upward biased under the alternative of 1<α  (cf. Bond, Nauges and Windmeijer, 

2002), is very similar in magnitude to that of the system GMM, and indicates that size 

indeed is an integrated variable, in accordance with the LPE. By contrast, the other 

individual series appear to be either stationary but highly persistent (efficiency and 

output mix), or stationary and not highly persistent (profits). Thus since three out of 

four series are highly persistent, the standard GMM estimator is expected to suffer 

from serious finite sample bias while the system GMM technique should give 

reasonable results, given the validity of the level moment conditions. 

 

Table 3:  AR(1) Model estimates (Unit root test) 

 Panel OLS Within GMM-DIF  GMM-SYS 

Size   

Sizei,t-1 1.00*** (241.) 0.315** (3.31) 0.248 (1.10) 0.984*** (50.2) 

AR(2) test [0.305] [0.550] [0.785] [0.334] 

Sargan test _ _ [0.001] [0.005] 
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Profitability      

Roa i,t-1 0.586*** (9.78) 0.149** (3.02) 0.294*** (5.03) 0.283*** (3.92) 

AR(2) test [0.915] [0.000] [0.370] [0.373] 

Sargan test _ _ [0.085] [0.189] 

 

Efficiency      

Eff i,t-1 0.883*** (24.7) 0.340*** (6.51) 0.384** (2.41) 0.774***  (16.5) 

AR(2) test [0.336] [0.010] [0.412] [0.619] 

Sargan test _ _ [0.190] [0.378] 

     

Output mix      

Mix i,t-1 0.977*** (26.7) 0.604*** (4.49) 0.149 (1.03) 0.884*** (5.19) 

AR(2) test [0.028] [0.010] [0.713] [0.576] 

Sargan test _ _ [0.002] [0.007] 

Note: Two-step coefficient estimates are reported together with t-ratios based on finite sample corrected 

standard errors (in brackets); p-values in square brackets. Year dummies included. 

 

Table 4 reports dynamic growth estimation results for the GMM system 

estimator15, which, for reasons outlined above, are considered as the most relevant, 

while the results for the other estimators are added for comparison and presented in 

the appendix. With reference to the GMM estimators, it is assumed that all 

explanatory variables are predetermined, in consistency with the instrumental matrix 

given by [14]. In the estimations however not all available instruments were used, 

                                                
15 All dynamic panel estimation results are obtained using the DPD package for OX ( Doornik et al., 
2002). 
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since despite the fact that additional instruments increase efficiency of the GMM 

procedure, they may also increase the downward bias in small samples (Kiviet, 1995).  

 

Table 4:  Growth model estimates – GMM-SYS estimation results 

DepVar = Growi,t Univariate Bivariate Multivariate 

Sizei,t-1 -0.0157 

(-1.36) 

-0.0233 

(-1.56) 

-0.00541 

 (-0.254) 

Grw i,t-1 0.00795 

(0.252) 

0.00246 

(0.122) 

-0.0187 

(-1.45) 

Roa i,t-1 
_ 

-0.0557 

(-0.236) 

-0.0817 

(-0.0391) 

Mix i,t-1 
_ _ 

0.396 

(1.60) 

Eff i,t-1 
_ _ 

-0.0691 

(-0.512) 

Type 
_ _ 

0.0549 

(0.598) 

Time dummies [0.000] [0.000] [0.000] 

Wald joint (F2) [0.422] [0.413] [0.241] 

Sargan’s test [0.003] 

(21) 

[0.040] 

(43) 

[0.179] 

(59) 

AR(2) test [0.692] [0.658] [0.451] 
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Matrix of 

instruments 

sze(2,5); 'sze(1,1) 

 

sze(2,5), roa(2,5); 

'sze(1,1), 'roa(1,1)  

 

sze(2,3), roa(2,3,), 

eff(2,3), mix(2,3); 

'sze(1,1), 'roa(1,1), 

'eff(1,1),  'mix(1,1)  
  Note: two-step coefficient estimates are reported together with t-ratios based on  

finite sample corrected standard errors (in brackets); p-values in square brackets. 

  # of firms= 79; # of obs= 395 (balanced panel) 

 

Starting with the univariate estimation results16, a slightly negative size 

coefficient is obtained, indicating that smaller banks were growing faster than larger 

ones during the period under examination. However, the coefficient is insignificant at 

any reasonable level. The coefficient of growth persistence takes a positive value, 

although insignificant as well. Consequently the Wald joint test (i.e. test of joint 

significance of the independent variables, excluding time dummies), is not able to 

reject the null hypothesis that all the corresponding coefficients are equal to zero. 

Furthermore, the two tests of instrument validity give inconsistent results – the 

acceptance of the autocorrelation test indicates validity of instruments and hence 

consistency of the GMM estimator while the overidentification test of instruments 

(Sargan) does not.  

 

Tables A1-A3 display the corresponding results for the panel OLS, fixed 

effects, and the standard GMM estimator. As expected, the magnitude of the panel 

OLS lagged size estimate exceeds the system GMM, while the other estimators are 

biased downwards. The coefficient of this variable is significant in all cases, while the 

coefficient of growth persistence is always insignificant except in the standard GMM 

regression.  

                                                
16 All reported results refer to the whole cohort of banks.  
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In the bivariate estimation, where profits (ROA) are allowed to have an impact 

on growth subject to a time lag, the GMM-SYS estimations of lagged size and lagged 

growth are insignificant, thus consistent with the univariate results and the LPE. 

Unexpectedly, the coefficient on ROA is negative, although insignificant. In the 

multivariate estimations, the coefficients of lagged size and growth are again 

insignificant. Except for ROA, the coefficients of the control variables have their 

expected signs although they are all insignificant. Accordingly, the null hypothesis of 

joint insignificance (Wald test) is accepted also for the bivariate and the multivariate 

case. Furthermore, while the two tests of instrument validity give mixed results for the 

bivariate estimation (like the univariate case), they are both accepted in the 

multivariate case, as reflected by the relatively large p-values reported in table 4.  

 

Thus on the whole the results are consistent with a firm growth process driven 

by stochastic rather than systematic factors. The obtained findings of an essentially 

randomly determined firm growth process are in line with what Goddard et al. (2001, 

p 190) concludes in their review chapter on banking and the LPE, i.e. that there is 

little empirical evidence to suggest either a strong or consistent relationship between 

size and growth in banking, and that, on the whole, the LPE may indeed offer a 

reasonable description of the growth process.    

 

6. CONCLUDING REMARKS  

 
This paper has examined the size-growth relationship using a balanced panel of 

surviving Swedish banks spanning the post-regulatory reform period (1995-2002). 

Univariate as well as multivariate tests of the law of proportionate effect (LPE) have 
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been conducted using recently developed dynamic panel econometric methods 

(GMM-system estimator). Regardless of model specification (univariate, bivariate or 

multivariate) the LPE is always accepted. In the multivariate specification, all firm 

performance indicators turned out to be insignificant.  Hence stochastic rather than 

systematic factors determined growth performance during the period under 

consideration.   
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APPENDIX: 

 

Table A1:  Growth model estimates – Panel OLS results 

DepVar = Growi,t Univariate Bivariate Multivariate 

Szei,t-1 0.00528**  

(2.10) 

0.00584** 

(2.36) 

0.00113 

(0.251) 
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Grw i,t-1 -0.0131  

(-0.697) 

-0.0121 

 (-0.632) 

-0.0120 

(-0.696) 

Roa i,t-1 
_ 

0.949 

(1.29) 

1.24 

(1.45) 

Mix i,t-1 
_ _ 

0.0244 

(0.182) 

Eff i,t-1 
_ _ 

0.0442 

(0.525) 

Type 
_ _ 

0.0445 

(1.19) 

Time dummies [0.000] [0.000] [0.000] 

Wald joint (F2) [0.092] [0.060] [0.330] 

AR(2) test [0.479] [0.486] [0.464] 

Note: t-ratios in brackets and p-values in square brackets.  # of firms= 79;  

# of obs= 474 (balanced panel) 

 

 

 

 

 

Table A2:  Growth model estimates – Fixed effects estimation results 

DepVar = Growi,t Univariate Bivariate Multivarate 

Szei,t-1 
-0.384*** 

(-9.79) 

-0.387*** 

(-9.51) 

-0.400*** 

(-11.6) 

Grw i,t-1 -0.0194 -0.0194 -0.0219 
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(-1.15) (-1.15) (-1.31) 

Roa i,t-1 _ 
-0.430 

(-0.323) 

-0.912 

(-0.585) 

Mix i,t-1 _ _ 
0.431*** 

(2.89) 

Eff i,t-1 _ _ 
-0.127 

(-1.01) 

Type _ _ _ 

Time dummies [0.000] [0.000] [0.000] 

Wald joint (F2) [0.000] [0.000] [0.000] 

AR(2) test [0.020] [0.031] [0.046] 

Note: t-ratios in brackets and p-values in square brackets.  # of firms= 79;  

# of obs= 474 (balanced panel) 

 

 

 

 

 

 

 

 

 

Table A3:  Growth model estimates – GMM-DIF estimation results 

DepVar = Growi,t Univariate Bivariate Multivariate 

Szei,t-1 -0.812*** -0.816*** -0.671*** 
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(-4.56) (-6.02) (-4.58) 

Grw i,t-1 -0.0447** 

(-2.05) 

-0.0383* 

(-1.85) 

-0.0306 

(-1.59) 

Roa i,t-1 
_ 

-2.27* 

(-1.73) 

-2.00 

(-1.09) 

Mix i,t-1 
_ _ 

0.187 

(0.596) 

Eff i,t-1 
_ _ 

-0.258 

(-1.33) 

Type 
_  

-0.0232 

(-0.857) 

Time dummies [0.000] [0.000] [0.000] 

Wald joint (F2) [0.000] [0.000] [0.000] 

Sargan’s test [0.000] 

(12) 

[0.007] 

(31) 

[0.250] 

(63) 

AR(2) test [0.059] [0.106] [0.105] 

Matrix of 

instruments 

sze(2,5) 

 

sze(2,5), roa(2,5) 

 

 

sze(2,4), roa(2,4), 

eff(2,4), mix(2,4) 

 
Note: two-step coefficient estimates are reported together with t-ratios  

based on finite sample corrected standard errors (in brackets) ;  

p-values in square brackets.  # of firms= 79; # of obs= 395 (balanced panel) 

 

 

 
 


