CHALMERS | UNIVERSITY OF GOTHENBURG

1891

 yakch: Component ... =4 % fib: Component Pa.. Y = E.'
AT = Lo
[== a] | =
Lt wereut
-
e 5 » = =
% by Component Pa.., F Data Aguesition: ... oo (3 Ll
~
e
= w
_ " brack log: Instan,.. 1 workout timer: In,.. 12 e] |
| 3 1
$ — WTIMR1: /_J(_\ |
i skart_stopy... 2. running
= entry/
T HInfolmessa... [fthis unredate should. .. |
¢ reset from,, = WITTME select one reset relat...]
I kel = : = ==
r; £ workout timer: In... &° running: Stake Ma... & 3 m|
: WTIMRL: //this unrelate should be AcT Al
start_stop 3.F select one reset related by self->LAPRESET[R4]:
entr 4if (not_empty reset)
unrelate self from reset across R4;

end if;

|£
self.seconds = self.seconds + 1:
create event instance cick of WTIMRZ:'tick' to sely
t = TIM::timer start({ microseconds:1000000, event :

LOG: : LogInfo (message: "timer tick"):
v

< I >

Executable System Design

Master of Science Thesis in software engineerirty an
technology/management

Amir M. Najafzadeh
Shohreh Farahani

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, June 2011

The Author grants to Chalmers University of Teclmggl and University of Gothenburg
the non-exclusive right to publish the Work elentoally and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the authoreédMork, and warrants that the Work does
not contain text, pictures or other material thatates copyright law.

The Author shall, when transferring the rights lué ¥#Work to a third party (for example a
publisher or a company), acknowledge the thirdypabout this agreement. If the Author
has signed a copyright agreement with a third paetarding the Work, the Author
warrants hereby that he/she has obtained any raggssrmission from this third party to
let Chalmers University of Technology and Universif Gothenburg store the Work
electronically and make it accessible on the Ir@ern

Executable System Design

Amir M. Najafzadeh
Shohreh Farahani

© Amir M. Najafzadeh, June 2011.
© Shohreh Farahani, June 2011.

Examiner: Gerardo Schneider
Supervisor: Rogardt Heldal

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:
The cover picture has been taken from Mentor gesphind illustrates the hierarchy of
different diagrams within an executable UML model.

Department of Computer Science and Engineering
Goteborg, Sweden June 2011

Abstract

Software models are important in building largetaaire systems. Even though these
models are used to simplify the software systemy ttan be in themselves, quite
complicated. It is not all clear how to build thesatware models in the best way. This
work tackles that problem. We show how one cant st&#h an abstract platform
independent model (PIM) and transform it into teenplete PIM. The complete PIM is
the one which can be translated into a platformc#pemodel (PSM). At each level of
the abstraction the PIM is executable and testa¥We. have done a case study within
Ericsson.

Acknowledgments

This research project would not have been possilileout the support of many people.
We wish to express our gratitude to our Chalmepesusor, Dr. Rogardt Heldal, who
has been abundantly helpful and offered invaluabtéstance, support and guidance.

Deepest gratitude is also due to our supervisdesiesson’s Baseband Research group,
Mr. Martin Lundqvist and Mr. Roland Carlsson, witlhiowhose knowledge and
assistance this study would not have been sucdessfu

We would like to thank the Baseband Research gapigicsson AB for welcoming us
to their inspiring work environment.

We would also like to convey thanks to PhD studdnt Hakan Burden for his kind
help and comments with the documentation.

Table of Contents

i [[(010 (U1 1To] o IR 2
I 1Y, [0 11V 2= 1o] (TR 2
2 | 1 o IO UPRPRTR 2
ST 00] 01 1¢1 0101 110] o [T TP 3
1.4. ReSearch APPrOaChoooiiiiiiiieiiieeeeeeee et e et e e e e e eeeeeeeeeeeees 3

P2 = - Tox 1o {0 U1 o S 4
P2 B Ao | L=\ = T a1 =] (o PP 4
2.2. Executable UML MOEISo e e 5

3. Executable System DeSIgN........cooviiiiieeeieeee et e e ra e e e e e 7

4. RESEAICH QUESTIONS.......evviieiiiie e s s e e e e e e e e e e e e aeeaeeeeeseesssmnnnnssnnnnnnn s 10

R O =T LU0 | 10
TR I 1Y =Y 1 a Lo T ISR 10
5.2, THE RLC DOMAIN ..ttt e e menae e eenns 10
TR T o = o1 U 1[0 IR 11

Lo IRCIN | (=] =1 1o] I OO 11
oGV | (=] =1 1o] o 12T 16
SR IRC I | (=] =110] IEC TP 18
TG I T | (=] = 1o] 1R F TR 22
SR R T 1 (=] =1 110 [YT TR 25
RGN T 1 (=] =1 1o] 1S TR 27
SR T | (=1 =\ 1o] I 2R 30
RIS T 1 (= =1 1o 1R S TR 34
RGN 1 (= =1 1o IR TR 37

. R BSUI S ... e e e e e 41

A R (oY1 (1o (o] LSRR 42

eI 10 1o [=] 11 (ST TPR 42
8.1. Choosing the appropriate level of abstraction...............cooevvvviiiiiiiiinnne 42
ST S (=) = ox (o | T P 43
8.3. Black box VS Gray boX teStingcoeeveeeiiiiiiiiiie e 43
o I o T] IF- L1 11T £ 1 [0 | AT TR 44

L I O] o [o] 1§13 o] 1T 45

FO. FULUIE WOTK . ..o e e e et e et e et e e e e e e e e e e e e meamn e e e e anaenaenns 45
APPENAIX A ..o aaaaaaaas 47
Y 0] 01T T [= 70

1. Introduction

Moving from more concrete and machine level langsalike assembly and C up to
object oriented languages like C++ and JAVA wasgniicant step to reduce the

complexity of systems. Now a new era has risencamaplex systems can be designed
and analyzed even on higher abstraction levels eth of software models.

Using platform independent models [7] (PIM) hasdme a way of handling the
complexity of building software systems. This isedio the fact that we can abstract
away from platform details. PIM is an abstracti@vdl within the Model-Driven
architecture (MDA) [5] [7]. It can be transformexto platform specific models [7]
(PSM). This provides a clear separation of conbetween PIM and PSM, since a PIM
does not contain any platform details which areiiregl by the PSM to be executed on
the particular platform.

Even though a PIM is an abstraction from platfortads, it can be hard to produce for
a complex system. Part of the solution can be ¢éoexecutable UML [15] that permits
building executable PIMs. This makes it possibleabidate the PIM. However this is
not enough, we also need a methodology to builsketleeecutable PIMs.

Our belief is that a complete PIM contains too mdekail to be produced in one go.
There are many ways of building a PIM, for instamee can build it iteratively using
well known agile methods [17] [21]. In this repeve present a methodology defined
within Ericsson and Chalmers which can be usedtain a complete PIM.

The key concept is to split the PIM itself into eeal abstraction levels. Thus we start
with an abstract PIM which will be refined in sealeiterations to produce the complete
PIM. The complete PIM is the one which can be fieed into a PSM.

1.1. Motivation

Today, complex software systems are emerging irowardomains of everyday life.
This is why software designers are looking for efiéint techniques to handle this
complexity. It seems quite feasible to create ptatfindependent model for a large
software system before jumping into the common gse®f the development.

As mentioned before the complexity of the softwsystems results in the complexity
of the PIM. It is therefore quite hard to creatmanplete PIM from scratch. This means
that a sufficient abstraction is needed to producemplete PIM.

Difficulties to create a complete PIM in various-ridlated companies have been a
motivation for this research.

1.2. Aim

The aim of this research is to investigate a newhodology to produce a complete and
fully tested PIM for a large and complex systeme Thain goal is to find a way to
make systems less complex by abstracting theiriggyes and then breaking them

2

down in an iterative manner. The methodology whglntroduced and validated in
this research goes from a complex problem to anraissolution and then adds
detailed complexities step by step during eaclatii@n until a complete PIM has been
reached.

Note that the main divergence between this metlgyohnd the common ways for
designing a platform independent model is thatcttramon ways of producing models
are valuable when the system is small or simplejrboases where you have a big and
complex system, creating a complete PIM would fiiffeculties.

Moreover we believe that by applying this methodyglseveral PIMs can be produced
for different entities in a system not only willettproduced PIMs be fully tested and
executable but they will else be integrated witthie entire scope of the system at the
end of each iteration. Thus the risk of error pggign caused by late integration of
newly added features should be reduced. The latisrnot been validated by this
research because we have only focused on one cemipoina system.

Furthermore, the introduced methodology is an dike process, because it follows
the same principles of agile processes and agnedbeoagile manifesto. For more
information see section 2.1.

1.3. Contribution

The idea for the methodology explained in this ihastially came from Dr. Rogardt
Heldal and the Ericsson’s researchers Martin Lursgand Roland Carlsson. They
were our supervisors and guided us through theeerdsearch. We, Shohreh Farahani
and Amir M. Najafzadeh, validated the methodologyai case study conducted at
Ericsson and created this paper with their assistafihe methodology is explained in
theory within sectiorB. Executable system designd it is also validated and applied
practically in sectiob. Case Study

1.4. Research Approach

The research started by defining the goals andvetadn for the project. During the
first meetings we discussed the problem that wetedhto solve. The idea and potential
problems which may arise during the developmermoofiplex systems that exist today
were identified and an initial idea for a methodpldo solve them was defined.

After defining the method we decided to validate tesearch by fulfilling a case study.
The case study chosen by Ericsson’s supervisorstieasadio link control protocol
which resembled a complex system. This case study @hosen because it is a
complex system that has been already implementthana complete specification.

After defining the case study, the research phdsieo thesis began. The research
focused on learning the specification. We spenfitseweeks of our research to study
the BridgePoint [8] tool. During the first phasetbé research, we read various papers
and books about model driven development, UML, aetedsle UML, agile processes,
QuickCheck testing etc.

The next step was to decide how to start the imetgation and modeling. Moreover,
the various ways to test the system properly wasudsed on the meetings. Thus, the
research extended in two different dimensions, teet framework and the
implementation part. We decided to follow a tesveln development [4] and use the
BridgePoint tool as a white box testing environmaamd then at the end of the iterations
perform an automatic black box test.

The process of producing the PIM followed afteritgtorming about the problem
domain. The starting point was to design mind mafsand to discuss the main
architecture of the case study. After defining thenber of components and their
interfaces we created a class diagram.

Each iteration of our process ended with an auticntest of the produced PIM. At the
end of each iteration, we presented our PIM tosupervisors and discussed the next
iteration activities. Generally we had regular dreur meetings at the end of each
iteration.

Our process of implementation was similar to tHa pilot and a copilot [13]. On each

occasion one of us was responsible for drawingnoaglels on the whiteboard and then
we discussed our solution. At the point of agreeie other person was responsible
for designing and programming the solution into teenputer. These responsibilities
were swapped each day.

The first month of the project we tried to tackhe tproblem using the common agile
ways for creating applications. Doing so made udident that this way of designing a
complete PIM for a complex and large system hasesdmaw backs. The produced
PIM was not a reliable product (for more informaticee section/.Reflectioi
Therefore, we changed our methodology, which isudised in sectio®.Methodology

In addition to our meetings with the supervisorg attended an online conference
which is organized by MentorGraphics. The confeeewas mainly about the power of

the model driven development. The discussions dedsi during the meetings were

gathered by us and used in the documentation\Maristarted to create the report from
the third month of the research. The documentgiltase was an iterative process that
improved section by section with the help of oyseswisors.

2. Background

In this section, two important techniques that He®n used in our research is
described. First, the summary of the well-known fiemto for agile software
development. Then, a brief explanation of ExecetdlVL as a modeling language for
platform independent system development.

2.1. Agile Manifesto

Agile [17] [21] approaches provide higher flexibjlin the development process, with
the aim to make the communication between devedoped customers easier in order

4

to be able to change the system according to stédets’ feedback. The changes
should be applied and verified in each iteratiomede small and rapid iterations assure
the quality of the system requirements.

All agile processes follow a set of principles agtee on the agile manifesto. As Kent
Beck et al explained the agile manifesto is:

* "Individuals and interactions over processes and tools
* Working software over comprehensive documentation
» Customer collaboration over contract negotiation

* Responding to changever following a plan”

That is, while there is value in the items on tlght; we value the items on the left
more. Our methodology is an agile process becasiseeationed in the manifesto, we
focus on the working and executable PIM which dias the ability to be used as a
complete specification rather than dedicating toacimtime on the documentation.
Also we have regular meetings with customer repitasiwe and other stakeholders
throughout the design process. Finally, by focusorg the PIM and testing the
executable product in an early phase and abstgactimplex requirements it is easier
for us to take the proper action when a changeésled.

2.2. Executable UML Models

According to [15], Executable UML (i.e. xtUML) isne of the major innovations in
software development and can be defined as a fdond&or the Model-driven
architecture. Its main goal is to create a comprsive model of the solution which is
independent from the implementation platform.

UML [1] [16] is not executable and although it isiseful modeling language, it cannot
close the gap between specification and implemientat herefore, xtUML evolved to
eliminate this gap by adding executable semantickeé UML'’s graphical notation. By
doing so, it made the specifications runnable. Addally, a model can be tested at a
high abstraction level and code can be generated the tested model.

An xtUML specification consists of various diagrathst define the real world under
study as models. The fundamental elements in exBleUUML are defined as follows:

Component Package Diagram:The component diagram is the highest abstraction
within the system that can specify the main archite of the system. This diagram
mainly illustrates different subsystems in the sgstand how they connect to each
other via different interfaces to form the wholestgyn. Notice that the only way for
communication between different components is bygdsg signals or messages
through these well-defined interfaceSigure 2.2.1 depicts a component package
diagram that consists of two components, narRé€ and TestFramework These
components are connected together through interfaB®CPInterface and
MACInterface

E PDCPInterface E

sl = |
2 Q,a 52
RLC MACInterface TestFramework
=l (7 e
£ @ 2]

Figure 2.2.1 - Component Diagram

Class Diagram: Each component of the system consists of set®mfaptual entities
that belong to that component. An abstraction eetof entities that shares common
characteristics and behaviors is called a classingle characteristic of an entity is an
attribute of the class and each behavior of thesdls defined as an operation. The main
difference in an xtUML class diagram is the clagy ketter which used by action
language. Each class may also have a state maéhriass diagram contains various
classes which relate to each other through vanielagionshipsFigure 2.2.2shows a
class diagram with three clas®®eC_TX, RLC_RXandRLC_DispatcherNotice that
RLC_TXandRLC_RXclasses are related to each other with relatiprizhi

[3.KEY} [4.RLC_T {3, RLC_RX}

3 RLC Dispatcher b 1} RLC TX .1} RLC_RX

current_statestate<State Model»
nextinteger
charRetransmissicnBuffer[S]:string
acknowledgementBuffer[5]:koclean

current_statestate<State Model»

Figure 2.2.2 - Class Diagram

State Machine: A class might have a state machine. The state imachpresents the
life cycle for instances of the class. A life-cyatentains different stages that an
instance of a class passes through over time. Tdrerthe instance may have different
behaviors at various stages. State machines aegarated intoinstance basednd
class basesstate machines (the icon containi@gletter in Figure 2.2.2shows class
based state machine and the icon witttter shows instance based state machine)

— - CI—
|/3.5_nd oPDCP RLCA: 1. Idle RLCL: 2. 5endToMAC \I

entry/ receiveSDU/.. entry/ sendSDU/.. (entry/
if[param.id==selfid_Recehs)
Generate RLC&receivesD. Generate RLC2isendPDU to self

else
generate RLCS:outofOrde.,
end if;

RLC3: RLC2:
receivePDU(id])/... sendPDU/..

/4. OutofOrder W

RLCS: _
outofOrder entry/

Figure 2.2.3 - State Machine

The major difference between them is that in instamased state machines there must
be an instance of the class created to use the si@thine, whereas class based state
machines does not require any object, in other svtind state machine will be created
as soon as the whole system is created. Furthermnstance based state machines per
definition points out their own instance’s attriesitand operations.

The main constituents of a state machine are [15]:

State: Representative of an object’s stage.

Event: Representative of a cause or an incidenfdhees the stage change.
Transition: Specify the stage change of an objeatfiorced by an event.
Procedure: Operations or activities that are peréat when an object enters or
exits a stage.

Different states and transitions among them argsho Figure 2.2.3

Action Language (Object Action Language):Action language is a textual language
that enhances graphical models. In order to mddeldynamic view of instances,
action semantics must be attached to the modelshniaally, this is the action
language that makes the models runnable by penfigrnoin attributes, invoking
operations, raising events and so on. The actiogulage is visible as written text on
different states ifrigure 2.2.3.

3. Executable System Design
Here, the new methodology to produce a complete BlWitroduced, but first let us
take a look at the common iterative ways for thiengre design.

Now, the development of software systems is usuwdhye in the way represented in
Figure 3.1 (vertically) Consider this example as a set of iterationsttias to build a

complete PIM for a complex system. As the figur@idis, each iteration starts with
some functionality and the complete feature willdedivered at the end of iteration.
Although the feature has been delivered howevdrag gone through an extreme
difficult phase with too much details that could @estracted away. Moreover, this
feature has been poorly tested due to the amouhetafls it includes. The point is that
one cannot be sure that the whole thing will ndlapse in presence of other features.

In order to clarify the problem let us compare aptex software system to a human
body. Human body is constructed by different orgdfech organ is constructed by
cells and further down a cell constitutes of molespatoms, and at the end we can say
an organ composed of billions of particles. Nownsider that we want to build a
complex system just like a human body. What if vanimo add a feature to this body
like a simple walking?

Then it is necessary to build legs for the body enthe mentioned way to build that

feature we have to consider about many details thack is no guarantee that the
resulted feature would behave as we wanted. Backitexample, did we test all the

details about elementary particles? In more genmaaé assume that everything has
been built and tested in a perfect manner, whathefwhole system at the end (i.e.

Body) rejects that entity (i.e. legs)?

Functional Domain
P I

[V
' .. . seee ‘

Iteration

Iteration 4

Iteration 1
Iteration 2
Iteration 3

- L Iteration N

Figure 3.1 — The current iterative way for the waite development

Now that you have grasped the problem let us tdkelaat our solution. As shown in
Figure 3.2horizontal bars show the iterations. Going horiathpy means that on each
iteration a certain amount of abstraction must basilered. By abstracting away
details, it is much easier to provide a fully tegpeoduct at the end of iterations.

Functional Domain

AN
AV

—~ g
c || > <P
(=}
=
f | | <> @OPh>vaaOTh>
1
[-P]
= .

[]

.

[]
0000000000000000

Figure 3.2 — The new methodology
(Segmented bars means that different task may e lolp different teams)

In order to compare this to the human body exanleys take a look at what we need
in order to add a particular feature. Let us cossithe “walking” feature one more
time. In the new way of producing the PIM, we cdsteact details about different
interacting muscles down to atoms and elementartycfgs. A good abstraction here
might be the skeleton of the body that can walke $iistem can be fully tested and
guarantee the behavior that we wanted at the enigeateration. Other iterations will
use the current abstract level and add other ddtathe latest product. For example the
next iteration can be dedicated to muscular framkewbthe body and be tested at the
end.

The crucial point of this methodology is the cotre@y of selecting the level of the
abstraction. It is important to know that the PIkdelf is an abstraction of the
underlying technology and with this method we wembring abstraction within the
PIM. This can be interpreted as an abstractionimwitn abstraction. Notice in our
example we do not want to think about the colothef leg’s skin before considering
bones for the leg.

We believe that this way of producing PIM is easiean common ways of producing
PIM. By applying this methodology, not only a coetel PIM will be produced, but at
the end of each iteration we can fully test theesysand gain a confidence that the
PIM is executing in the way that we have expected.plain words, the main
divergence between the common approach and themmethvodology is that the first
one focuses more on the feature increase whiles#eond one focuses on the
architectural view of the system.

Along with simplifying the complex solution via thabstraction of functional
requirements, this methodology reduces the costhef development process and
improves the quality of the final product. Thisbiscause an executable PIM which has
been tested step by step during the design progiissesult in reducing the error
propagation and further unexpected behaviors. Asnalusion, the final product has a

higher quality in terms of reliability and on thept of that because the PIM is
independent from the underlying platform it has pbetability feature.

The recommended testing for this methodology islackbbox testing of different
components which has a “generate and validate’epatand it is similar to the
QuickCheck approach [23]. The test framework isl@&xred in detail in sectio®.3
Execution.

4. Research questions

The goal of this research is to investigate a nulogy for designing platform
independent models in support of large and comptdtware systems. The following
question is answered after the case study hasdosepleted (see secti@ Results

 How should we model a complex system in order tachea complete and
executable PIM?

5. Case study

This section validates the research’s goal by apglthe suggested methodology on a
complex software system in industry. The followisgbsections explain how the

validation part initiated. Also the domain of thase study is briefly explained and

finally the main body of the development procegsusin plain words. In section 6, the

results of the research are presented which aigatedl by the case study.

5.1. Method

The findings that are presented in this researale weached by following the empirical
research method using the case study analysieggtafs mentioned, the process of
modeling follows the agile manifesto and it starbgdbrainstorming over the domain
specification.

The main body of the design and analysis was darté@whiteboard by using a graph
notation which is very convenient to analyze statehines. Similar to agile processes
we had regular meetings with stakeholders througtimuiterations where the analysis
and new ideas discussed amongst stakeholders. thema on, the analyzed results
were implemented via BridgePoint, a tool for cnegtéxecutable models.

In addition, we have followed a test-driven devehent [11] therefore; every iteration
was started by designing a test case before mapedinous features.

5.2. The RLC Domain

Radio link control (RLC) is a protocol layer in éebmmunication systems. The main
objective of this layer is the flow control and arrecovery. RLC works in three
different modes depending on how data needs tordresferred. TM (Transparent
mode) is more suitable for carrying voice becalmet is no header attached to the

10

data and data delivery is not guaranteed. UM (Unewkedged mode) is suitable for
streaming traffic because data can be segmented hadder will be added to the data,
but there is still no delivery guarantee. AM (Ackviedged mode) is the reliable data
transfer, because in addition to segmentation agaddrs this mode contains the
sequence delivery service. AM mode therefore isensmitable for TCP traffic. There
are two neighboring layers that RLC communicates wiem. The upper layer called
PDCP, which sends/receives SDU packets to/from RI@. lower layer called MAC
and it is responsible for delivering PDU packetsated by RLC to its peer. Bear in
mind that MAC sends a packet using the physicarland packets cannot be sent or
received by RLC unless MAC layer grants a transimisopportunity. For more
information about RLC see [22].

5.3. Execution

The RLC system was implemented in nine iteratiams] focused on the AM mode of

RLC which is more complex and challenging than othedes. Due to the lack of time

some functionalities of the AM RLC, such as segmagom and concatenation of

packets has not been implemented. However, theeimgattation of RLC was not the

main goal of the thesis and the remaining partddcba accomplished using the same
methodology in a few iterations.

The following subsections describe the implemeatapirocess along with some notes
and recommendations. Bear in mind that for the s#ksimplicity many attributes,
variables, flags and algorithms are omitted ingkplanation. For more information see
Appendix A which contains codes for the final intplented system.

5.3.1. Iteration 1

Duration: 4 Days
Goal: Define the structure of the test framework, RL@ arterfaces among them

The first iteration started by defining the badiucture of the system on component
level. As shown in figure 5.3.1.1, RLC defined aseparated component and both the
upper layer PDCP and the lower layer MAC are emdmbalithin aTestFramework

E PDCPInterface E
el (j\ [y
il i} ikl
RLC MACInterface TestFramework
[l (- [y
(=2 @ l

Figure 5.3.1.1 - Component package diagram

11

Bear in mind that each of the mentioned layers lmaraccessed only through their
specific interfaces. Therefore two different ingmds with set of various signals are
defined for each layer (Figure 5.3.1.2).

zinterfaces sinterfaces
POCPInterface MACInterface
signals signals
sendSDU() sendP DU
receivesDU recenveP DU}

Figure 5.3.1.2 - Interfaces between RLC and TesiEveork

Within the TestFrameworla class diagram is defined with three differeasses.

e Verifier: This class is the main test case of tlystem. In the upcoming
iterations, the name of the class is changed.

e Tracker. The main functionality of this class is keep track of test case
operations (e.g. number of runs, total run, aner i set up the entire system,
etc).

e Random: This class is used as a random generatch wéindomly generates
one of the outgoing signals from the test case.

Tracker
{5, Tracker}
counterinteger
mﬁ “erifier
{4, Verifier}
current_state:state<5State_Model>
counterinteger
Random
{2, Random}
®[5]:integer
seed:integer

rand():integer
srand(seed:integer):void
srandWithCurrentDate()void

Figure 5.3.1.3 - TestCases class diagram

12

Among the mentioned classégerifier has two state machines (notice the icons for
different state machine on clagsrifier shown in figure 5.3.1.3; the class based state
machine is represented by an icon with le@en it). The class based state machine is
responsible for catching signals from the other gonent (i.e. RLC) and binds them to
the relevant events (figure 5.3.1.4).

POCP_BLC_PortireceneSDUY...

(1. 1dle)
\ J

MAC_RLC_Port:zendPDLUY ...

Figure 5.3.1.4 - Verifier class based state machine

Note: Creating a class based state machine is a safasyation approach to create a
signal dispatcher. Here two signals namezkeiveSDUandsendPDUwhich are defined

in PDCPInterfaceand MACInterface respectively, are caught by class based state
machine and the relevant code to trigger the reseevents are placed here.

The instance based state machine of dlaesgier contained all the functionalities as a
test case. Although in the first iteration the teate is quite simple, but a general
pattern for the testing is developed. This patieciudes the following actions (for
more information see secti@3. Blackbox testing VS Gray Hhox

e Generating various signals @enerationstate

e Validating incoming signals iwalidation state

e Specifying correct or wrong behavior of the systentCorrect or Erroneous
states.

RLC component consists of three different subsystetmch are representing different
modes of RLC. As mentioned before, this case study focuses on AM mode.
Within AM subsystem a class diagram defined, whightains two classes (see Figure
5.3.1.5).

¢ RLC
¢ Random

13

nC] RLC Random
{1.RLC} {2.Randorm}

®x[5]:integer
seed:integer

rand():integer
srand(seed:integer):veid
srandWithCurrentDate():void

Figure 5.3.1.5 - RLC (AM) class diagram

The RLC class only has a class based state maakiskown in figure 5.3.1.5 by class
based state machine’s icon. By applying this dediggision there is no need to make
another class based state machine to handle ingosigmals. RLC’s state machine
(Figure 5.3.1.6) contains two simple states. RiéC state is a starting point for the

RLC, where RLC waits for an incoming signal fronsttease (i.e. other layers which
are encompassed BgstFramework

RLC_Ad:
RLC_SDU_PDCP/...

RLC_A3:
RLC_PDU_MAC/...

/1. ctherLayers)

PDCP_RLC_Portusel

MAC_RLC_Port:receivePDUY ...

Figure 5.3.1.6 - RLC class based state machine

14

When RLC got the signals from the test case, asifian bound to the incoming signal
makes RLC to pass froRLC state into the therLayersstate. In this state RLC use
random functions oRandomclass to choose between different events. Eachteve
sends a signal back to the test case through tpepmterface. No matter which event
has been chosen by the random function, RLC ends RhC state, where it is ready
for a next incoming signal.

Inside theTestFrameworkcomponent, besiddestCasesubsystem another package is
placed calledinitialization. This package is from typEunctionsthat may include
various global functions. Annit() function is defined to make the whole system
runnable and it is responsible for creating thedase by calling creation event of class
Verifier. When an instance of clas&rifier is created, test case generates outgoing
signals insidé&seneratestate (see Figure 5.3.1.7).

V2: create

1. Generate /2. Walidation

V3: validate_ReceiveSDU/ ...

Wa: validate_SendPDLUY...

V1: timeout/...
V1: timeout/... W5: error

d/ V4: correct

'/;1. Correct /3. Erroneus

W1: timeout/ ...

Figure 5.3.1.7 - Verifier instance based state nma&ch

In this iteration with the help of a random funatisendSDU()or rececivePDU()
signals were sent to RLC and also a timer has beernThe only possible way for the
system to show a wrong behavior is to send an &sgnous signal. This validation
will be done in theValidation state. By an asynchronous signal we mean getting a
unexpected signal from the RLC. Hence the test wab&ransit to theErroneousstate.

15

The Correct state is the place for deciding the number of sirttet the test case must
be run until designers gain confidence on the systeorrect functionality.

The test case successfully completes after paaticanount of runs determined by
checking the variableounterin Tracker class (see Figure 5.3.1.3). The test case will
instantiate another object of itself (i.e. anotimstance of the test case state machine)
until counterreaches a predefined value (e.g. 100).

5.3.2. Iteration 2

Duration: 2 Days
Goal: Detecting the right sequence of signals

The second iteration is started by creating thedase based on the pattern that was
implemented before. This time test case generatefotlowing signals to the RLC:

e sendSDU() - Through PDCP interface
e receivePDU() - Through MAC interface

V2: create/..

/1. Generate h r/?2. Validaticn)

V3: receiveSDU/L.

VB: zendPDU/...

V1: timeout/... V5: error
Vd: correct

'/4. Correct /3. Erroneus

Figure 5.3.2.1 - Verifier instance based state nm&ch

And by setting the timer, test case waits for tH&cCRcomponent to answer. On the
other component, as shown in Figure 5.3.2.2, Rla@stvorking only when it is on the
Idle state. By receiving the incoming signals (fromt tease) which are bound to
outgoing transitions, the RLC reach&gndingstate. Here is the place that RLC
randomly choose between three different actions:

16

e Sending SDU to upper layer (PDCP)
e Sending PDU to lower layer (MAC)
e Doing nothing and go back tdle state

RLC_Ad:
RLC_SDU_PDCP/...

RLC_AZ:
RLC_PDU_MAC/...

/2. Sending 1.Idle
RLC_AB:

nothing/...

PDCP_RLC_Portiser

MAC_RLC_PortureceivePDUY...

Figure 5.3.2.2 - Test case class based state neachin

The first two actions are tied to transitions whisénd signalgeceiveSDU()and
sendPDU()back to test case and arrive lffle state. The third action is a transition
called “nothing” that represents sending no sigmal go back tddle state.

Recall that test case is still in tBeneratestate and it can exit from that state and go
further by either getting signals (sendPDU or ree8DU) or wait until the timer
expires and consequently ttieoutevent raised (Figure 5.3.2.1).

In this iteration when the timer is expired, tess& goes to th€orrect state and
logically it means that RLC did not answer withigngl and has done nothing. This is a
correct behavior of the system when RLC shouldseoid back any signal (e.g. when
RLC buffer something and does not need to sencigmgal).

On the other hand if RLC has sent back a signealtdghkt case has to detect whether the
caught signal was the one that had to be receivadto Therefore with each signal that
test case receives, it goes Validation state and checks the incoming signal. The
validation performed by comparing values that staresignallD and catchSignallD
variables. BasicallyignallD variable stores the signal number that test casesént to
RLC andcatchSignallDstores the signal number that test case has szteiv

By assigning an ID to a signal, test case becomeseaof the right sequence of signals
that have arrived in RLC, and also the ones thatextracted from RLC. In other

17

words, RLC had to answer the incoming sigsahdSDUonly with sending the
outgoing signasendPDUand the same holds for incoming signe¢eivePDUwhich
must be answered only logceiveSDUsignal. If the wrong sequence has been chosen
randomly then test case would end upEmoneousstate, otherwise it goes to the
Correctstate.

Note: The test case might have separate validationsstatedifferent signals that it

receives from the target component (i.e. the corapbminder test). In this iteration
there is only one validation state due to the sititglof the system. This approach led
to define a variableatchSignallDthat would be assigned on the transition. Theegfor
some operations are hidden in the code and ndileisi the state machine.

Recommendation: Always try to trade off between hiding functionigls behind the
code and making them visible via state machinesid’'so, one may ask questions like,
how simple is it to understand the specificationethler using graphical images or
textual codes. Bear in mind that, if a designeroslgomore graphics, when the system
sends many signals back to the test case thentateefer each signal must be drawn.
This may cause the following problems when prodgi@ngraphical specification (i.e.
state machines) for a large system:

e Specification has lots of states which are hardottow and is not human
readable.
e Specification is not easily printable or represblda

On the other hand by hiding operations the follayjimoblems may emerge:

e The specification is not easily understandable dnyous stakeholders.

e To get a quick view of what is the goal on eachatien or how the system
fulfills the goals, one might be forced to followet code on every state or
transition.

5.3.3. lteration 3

Duration: 3 Days
Goal: Detecting the packet loss within the RLC

The packet loss within physical layer is a normaduwrence that might happen in real
systems. Therefore the RLC system has to detecpdbket loss and take a proper
action.

The third iteration began with evolving the tesse@ order to continuously expand the
test framework and suggest a proper pattern ftingesystems on high abstractions.

In this iteration, as shown in Figure 5.3.3.1, tbst case (i.eVerifier) is divided into
two different test case classes, nankmteiver TestCasand Transmitter TestCase
Doing so has the following advantages for designers

e The test case is much more object-oriented.

18

e Itis easier to focus on different activities o thystem one at a time. (e.g. in the
RLC case study, RLC’s transmitter side functiomeditcan be separated from
the RLC’s receiver side).

m ag Transmitter_Testcas g BE Recetver_Testcase
{7 Transmitter_Testcass) {8 Rzceiver_Testcass)
current_statsostats <3tats_Modshk current_statsstats <State_Modsk
timerinst_ref<Timer> zignalCHinteger
numberCf5igna linteger timerinst_ref<Timer>
catchSignalChinteger rurcinteger
totalRundinteger totalRurcinteger
random{hoicesinteger
signallCrinteger
Ramdom Tracker
{2 Random} 15. Tracked
x[h]Gimteger nr_Transmitter_TestCasedinteger
seadintager nr_Receiver_TestCassdinteger
randinteger totalRurcinteger
srand(zeedinteger)void set nr_Transmitter_TestCase{runl
srandWithCurrentDateJowoid set_nr_Recetver_TestCaze(runcinte_
get_nr_Transmitte {-inte_
get_nr_Receiver_TestCase(ldnteger
setup{lwoid

Figure 5.3.3.1 - TestCases class diagram

The mentioned approach might be applicable foredsfit systems where the main
functionalities of the system could be separated.

Now that the test case tests RLC separately agnamitter side and a receiver side,
only sendSDU(ignal could be sent frofransmitter_TestCaséccordingly the only
signal that is sent back to the test case from RLE&ndPDU(id) The same stands for
Receiver_TestCasetherefore the only outgoing and incoming signadse
receivePDU(id)andreceiveSDU().

Notice that MAC interface signalsendPDU(id)andreceivePDU(id)have a parameter
calledid. This parameter is defined to detect the packethaus (i.e. packet IDs).

Consider theTransmitter_TestCasgsee Figure 5.3.3.2), as mentioned before the only
outgoing signal from this test casesendSDU(therefore in théGenerate” state the
test case randomly chooses whether send this sigmak, and set the timer as well.

If the timer expires then the test case goe¥alidation state (i.e. timeout validation)
by timeoutevent and test case must validate two differeah@&gos. One scenario is
that, inGeneratestate if the test case has chosen sending nol siggmait is a normal
behavior of the system to answer with no signahckethe test case ends upPass
state. On the other scenario, if the test casemasersendSDU(kignal, then time out
in the test case shows that there is somethinggwwith RLC that could not send back
sendPDU(id)signal, and maybe it has crashed, hence thedsstands up iRail state.
Notice that if the test case wants to validatetitne out there is no way to do so unless

19

remembering the generated action (haredomChoices a variable defined to store the
generated action).

When the test case gosendPDU(id)signal back then in the validation step it checks
theid parameter and if it matches to what was expectad the RLC, then the test
case ends up in tlieassstate and contradictory for tiail state.

Transmitter_Testcased: Transmittes_Testcased: Transmitter_Testcased:
& eror

4.Fs

Trpnsmitter_Tectcasef: 1fansmitter_Testcasef:
et next

Figure 5.3.3.2 - Transmitter_TestCase instancedosts¢e machine

As shown in Figure 5.3.3.3 RLC’s state machinexjga@ded from two states into four
states.

R ™y - . ™ (= e AT bl A
(3.S_nd oPDCP ALCH: 1 1Idle RLEL: 2. 5endToMALC W
receivesDU/... sendsDU/...
RLGS: RLC2:
receivePDU(id)/,.. sendPDU/...
'/-”I.C)LtofOrder W
RLCS:
outofOrder

Figure 5.3.3.3 - RLC class based state machine

As before, RLC starts to operate from thke state but this time for different signals
that has been received it goes to different stdtethe signal has been sent by the
Transmitter_TestCasg.e. sendSDU(), then RLC goes t&endToMAGstate where it

sends sendPDU(id) signal back to the test cas@ufiter assigned to the id parameter
that stands for the packet number. Thus for eacbniing signal, packets in sequence

20

would be sent back to the test case. On the ot H the RLC got aeceivePDU(id)
from Receiver_TestCasewould pass througBendToPDCRtate and by checking the
id parameter takes the proper action. For expecteklepm RLC sends eeceiveSDU
signal and for unexpected ones it ends up irCtheOfOrderstate.

The Receiver_TestCass designed with a slightly different pattern trsatllustrated in
Figure 5.3.3.4. Th&alidation states are omitted and the correct and wrong mggo
signals are categorized in two different types ech#xpectedand unexpected.The
Generatestate is responsible for generating correct oeetqa order of the packet IDs;
which are incremented by one each time the sigmal been sent and also an
unexpected order of the package IDs which are simplemented by two.

Instead of thevalidation states, transitions namelgxpected()and unexpected(are
leading the test case to the statégpected_Waitingand Unexpected_Waiting
respectively. The test case waits there until it getime out or aeceiveSDUsignal If
the test case has generated expected behavioa @@&rect order of the packets) and
waiting forreceiveSDUsignal, then by catching that signal it goes ®Rhssstate and
with a time out it ends up in theail state. That is because RLC must send back a
receiveSDUright away after it gets the expected packet, milse the RLC might has
crashed. On the other hand by generating unexppeaiddts RLC will find out that the
packet is not the expected one therefore it goese@utOfOrderstate and stay there
until the timer of the test case expires. Hencehd test case got time out for
unexpected packets it is a correct behavior obyseem.

Recsiver Testcased: Recsiver_TestcassT: Receiver Testcssst: Receiver Testcasss:
receiveSDU et e timeout

Receiver_Testcasel:
im

Figure 5.3.3.4 - Receiver_TestCase instance bastdreachine

Recommendation 1:The latter pattern foReceiver_TestCasmight not always be
applicable, because in many situations unwantea olabehavior of the system could
not be distinguished easily; furthermore this pattmight lead to unnecessary states
that are not doing anything (eExpected_Waitingn figure 5.3.3.4).

21

Trarsmitter_Testcase_Afternatvel:
reateltotalfun, run)_

Transmitter Testeace Aftemnativel:

Tranzmitter_Testcsse_Alternatives: 1. Gensrats
- =A et s=ndPOUGE_

timeolt

Transmitter_Testease Alternatived:

Transmatter_Testcase, Tatived:
5 i comect/

comect/

Transmitter_ Testcase, Afternatived: S % Transmitter_Testcase-Afemnatived:
emor - Jutad exorf

Figure 5.3.3.5 - Alternative “Transmitter_TestCasestance based state machine

Recommendation 2:In Transmitter_TestCasstates with the identical operations, like
differentPassandFail states could be merged into exactly ®assand ond-ail state
as shown in Figure 5.3.3.5. If some informatioriagging needed for different passes
or fails, that information could be placed on transitions.

Note 1: Name of state€orrect and Erroneoushave changed to theassand Fail
respectively. The forme€orrect and Erroneousstates were representing the correct
behavior of the system. Even though the test cadeceup irErroneousstate the error
represented the correct behavior of the RLC acogrdo the specification and the
reason for the error was feeding the system witbngrdata. Hence from this iteration
the Passstate contained all the correct behaviors of fystesn including the correct
behavior of a system for unwanted data generatethéytest case. ThEail state
represents the actual failure of the system.

Note 2:In this iteration the test case was not recurredrbating a new instance of the
test case, and it loops arouR@dssto Generatestates via thanext() transition (see
Figure 5.3.3.2 and compare it with figure 5.3.2T)e reason behind this systematic
change was that if a new attribute or counter ng¢debe defined and had to store a
value then by creating a new instance of the tes¢ the stored data would be lost (i.e.
assigned to the default value).

5.3.4. lteration 4

Duration: 5 Days

Goal: Re-ordering packets

This iteration focused on the receiver side of Ri&C. As before, iteration begins by
developing the test framework and tReceiver_TestCasextended by keeping the

22

introduced pattern. The goal is to reorder packtessent by the test case as PDUs. To
simulate the packet loss through physical laydram coded string (e.g. HELLO) was
defined in the test case and each letter is ch@getomly by the test case and sent as a
PDU through asendPDU(id, charkignal. Theid parameter is the same variable that
was defined in previous iterations acitar is a new parameter that transfers the letters
to the RLC component. As mentioned above thesersettill be chosen randomly thus
the test case might send letters out of order wirephesents the natural behavior of the
physical layer. On the other side the receiverhekeé letters must catch and re-order
them, based on the packet IDs. Test case runsalhtiie letters sent by test case and
also received back from the RLC in a correct orttezrefore two Boolean arrays with
the exact same size as the hard coded string affi@yters was defined. Array named
sentkeeps track of the sent letters by setting thesitmpns totrue, and the other for
receiving letters calledeceived The test is completed when all elements of [setht
andreceivedarrays are assigned time.

After generatingsendPDU(id, char)with a random letter and id as the parameters in
Generatestate, test case waits until either the timer @gor receive a signal from the
test case (Figure 5.3.4.3).

Receiver_Testcasel: Receiver_Testcased: Recl_t'\e _LTestc azed
timeout receiveSDUchar) receiveSDlichar)

Receiver_Testeasel:
timeout

Receiver_Testcasell:
Receiver_Testcazell: Receiver_TestcaseS: Receiver_TestcaseS: emor
s comect comect

Receiver_Testcasel:

(i (= = = (=

Figure 5.3.4.3 - Receiver_TestCase instance bastdreachine

As you can see in Figure 5.3.4.2, when the RLCiveseasendPDU(id, char)kignal

first it goes to theBuffering state. This state is responsible to check if gweiving

packet was the expected one or not, based on tbketpad. If the packet was
unexpected then the RLC must buffer the packet Whs not already buffered) and go
back toldle state where it waits for other packets. Notice thesides the extended
functionality and new extra states, there are nattrédbutes defined in the RLC’s class
(Figure 5.3.4.1). For instance to form the bufierRLC, two arrays were defined in

23

RLC one for buffering letters and one for the paclls. Because each id is bound to
one letter, both arrays are indexed by a sameegrotatledbufferindex

RLCE: 5. Buffering
readyToSend RLC3: receivePDU(id, char)

RLCE:
nextPDU

[3. SendToPDCP [1Idle RLCIL: 2, SendTeMAC
sendSDU/ ..
RLC2:
6. CheckBuffer sendPDUY...
RLCB:
readyToSend
RLCS: RLCE:
check hextPDU

Figure 5.3.4.2 - RLC instance based state machine

maa RLC Random

{1,RLC} {2, Random}
id_Receiveinteger ®[5]:integer
current_state;state <State_Model - seediinteger
id_Transmitt:integer and{Jinteger
charBuffer[100]:string Ia_n JAnteget L
IDBuffer[100]:integer 5|andl_sged:lntegeﬂl:m:l_d .
bufferindexinteger srandWithCurrentDate[)veid
suppozedToSend_Charstring

Figure 5.3.4.1 - RLC class diagram

If the packet was the expected one, the RLC go#dstendToPDCRtate that has the
same functionality as it had before. In that stateletter is sent by sendSDU(charjo
the test case without buffering the letter. Butikenlformer iterations the RLC is not
directly going back to thé&dle state. Here RLC first checks that if there are ather
buffered packets which must be sent due to thetifi@attthey are the expected ids. Thus
the loop betwee®SendToPDCRndCheckBuffeistates. If there was no packet with the
current expected id in the buffer then RLC goeshwldle state and waits for other
sendPDU(id, charyignals.

After sending packets in tHeeceiver_TestCaséa receiveSDU(charkent back from
the RLC then the test case validates that wheteriricoming letter received in a
correct order. This is done by comparing thar parameter with theextcharacter that
theReceiver_TestCasmipposed to receive. If the comparison failedeans that RLC
didn’t sent back the correct character and faitedetorder packets. Consequently the
test case would end up in tkail state. Opposite to the former test case the sdedee

24

comparison inValidation_SDUdoes not lead to thBassstate. The reason is, there
might be other packets in the RLCs buffer that seet by moreeceiveSDU(char)
signals and should be validated in the same s&ftardo ending up in thPassstate.
Therefore if the validation of the signal succeetieltest case starts a timer to get all
receiveSDUsignals. After receiving all signals and comparatigincoming letters, the
timer expires and with Bmeoutevent test case goes to Waidation_TQ In that state,
test case must consider why the timer has beemeskgf the test case has sent a letter
throughsendPDU(char)n the wrong order, then getting a timeout is aext behavior

of the system and that means RLC caught the palsdffered it and went back to the
Idle state where it is waiting for the next signal. &sely if the test case has sent
letters in a correct order and got a time out tReC did not send back those packets
that needed no re-ordering. Based on the time alidation, test case ends up in the
Fail or Passstates.

Notes 1: In this iteration names of the validation stateBigire 5.3.4.3,
Receiver_TestCapehanged td/alidation_SDUandValidation_TQ This changing of
the state’s name was made to clarify differentdatlon actions in each state. It also
helps theBridgePointdebugger. (see 8.4)

Notes 2: The semantics of the loop dralidation_SDUthroughreceiveSDU(char)
transition could be implemented through a loop leetw thePass state and the
Validation_SDUbut then the time out validation might alter adlwe

5.3.5. Iteration 5

Duration: 3 Days
Goal: Status packets (ACK/NACK)

In the former iteration, RLC succeeded to receiM@UPpackets from a noisy
environment (Simulated by the test case) and redheen in case that they were out of
order.

The only functionality that added to the RLC in therent iteration was sending status
packets (i.e. ACK or NACK) back to the test cass. ghown in Figure 5.3.5.1, the
structure of the state machine is not altered laarad the mentioned functionality is
appended to theextPDUtransitions. While RLC buffered a packet and msdseto go

to theldle state, a NACK packet will be sent to test casevals Sending a NACK is
specified by astatus(ack, idsignal. Parameterck defined as a boolean type and False
value indicates on a NACK packet. Tideparameter shows the packet number that the
status has created for. Whenever RLC succeedeehtb SDU packets an ACK status
will be created and sent to the test case. ilhparameter for ACK status packets
indicates that, all PDUs up to that particular &k Heen received and corresponding
SDUs has been sent back.

25

RLCS: 5. Buffering i . - 1
redtEE RLC3: receivePDU(id, char)
~
RLCS:
nextPDU/..
3. SendToPDCP 1. Idle 2. SendToMAC
[[
RLC1:
sendSDU/ ..
RLC2:
sendPDU/...
6. CheckBuffer
RLC6:
readyToSend
RLCS: RLCE:
check nextPDU/...
Figure 5.3.5.1 - RLC instance based state machine
Receiver_Testcasel:
create(totalRun,
run)/...
Receiver_Testcased: 1.Generate h
next Receiver_Testcased:
receiveSDU(char)
Receiver_Testcased:
timeout
S Receiver_Testcased:
Receiver_Testcasell: e B
status(ack, id)/...
~, Rece iver_Testcase;. -~
[5.validation_TO timeout 8.Validation_5tatis Receiver_Testecasedf 2. Validation_5DU -\]

receiveSDU{char]

Receiver_Testcasel
status(ack, id}

Receiver_Testcase5:
timeout

Receiver_Testcasel(:
Receiver_Testcased: errar

correct 6. Pass -\] | 4 Fail w

Figure 5.3.5.2 - Receiver_TestCase instance bastdmeachine

As illustrated in Figure 5.3.5.2, theceiver_TestCadws changed due to the fact that
there are two incoming signals back to the test.cBear in mind that the focus is on
theReceiver_TestCadmecause the receiving side of RLC has been changed

26

The Generatestate remained unchanged and the same signaisagheced within that
state. As mentioned before if the pattern of tlet tase intended to be kept then for
each incoming signal a validation state must beeddd@hus an extra state has been
added to validate the incomistatus (ack, idsignal.

Note 1:In the recommended test case patteMaladation state must be added for each
incoming signal.

Since status packets are received from the MACrlayel passed through a noisy
physical layer, the test case could not be confidleat status packets are related to
incoming SDUs. Another issue that may arise is plaakets might be transformed into
wrong packets (e.g. NACK 2 status packet might tota ACK 3). Therefore in some
situations receiving status packets are not cooredipg to receiving SDUSs. In this
view test case would not determine the pass ahgr¢adf a signal without validating
related signals. Hence from thalidation_SDUa forwarding transition has defined to
validate the status as well. One problem thatilisremaining is the order of incoming
signals. Thus, the same semantics appliedvatidation_SDU can be applied to
Validation_Statusas well Finally when both signals are validated, Wedidation_TO
(i.e. time out validation) makes the final decisiabout failure or correctness of the
system.

Notes 2: When the order of incoming signals cannot be datexd, forwarding
transitions should be added among concurrent wamatates, to handle and visualize
the concurrency (Figure 5.3.5.2 shows the concayrdmetween status and SDU
packets).

5.3.6. Iteration 6

Duration: 3 Days
Goal: Re-transmission

As mentioned before the only functionality that vealkled to RLC was sending ACK
or NACK status back to the test case from the wereside of RLC. This iteration
focused on the transmitter side of RLC and the g@al that for each status signal that
RLC (the transmitter side of RLC) received, it neéal perform the correct action after
analyzing the type of the status. The correct aasoif the test case has sent a NACK
for a specific packet, then RLC must re-send timespacket again, otherwise if RLC
received an ACK with a specific id, then RLC woublel noticed that up to that id all the
packets are received.

As before the test case starts by sending sigad € within theGeneratestate. This
time, test case randomly chooses to send between different signals:

e sendSDU(charkignal: The parametahar represents one of the letters in the
word ‘HELLO’.

27

e statusTXtoRLC(ack: true, idgignal: In whichack parameter is assigned to
True, so that it represents ACK statigs parameter specify the packet id (e.g.
statusTXtoRLC(ack: true, id: 3 an ACK up to id = 5).

e statusTXtoRLC(ack: false, idgignal: Which is representing NACK for a
specific packet.

The Figure 5.3.6.1 shows the different states efRhC. If asendSDU(charhas been
sent, then RLC goes RetransmissionBuffestate where a copy of the packet (i.e. the
letter) will be kept incharRetransmissionBuffeBear in mind that another boolean
buffer calledacknowledgementBuffetefined within transmitter side of RLC with the
exact length ofcharRetransmissionBuffeThis buffer keeps track of packets which
RLC got the ACK for them.

After passing througiRetransmissionBuffestate, RLC sends back sendPDU(id,
char) signal to test case. Tlohar parameter is the sanchar that has been sent by test
case andd is assigned by a counter (Because test case sbadscters in sequence
throughPDCPInterfacg.

When a status signal (either ACK or NACK) receividten RLC analyze the status
type in a state calle@heck RetransmissionBuffeéince test case generates ACK or
NACK with random ids, RLC must discard those stapackets which have
inappropriate ids.

If the status signal was an ACK, RLC checks for itheif the packets before that id
have been sent back by RLC, then receiving an A@&ams all packets up to that id
correctly received by RLC’'s peer. Therefore RLC oem those packets from its
retransmissionBuffer

RLCE" readyToSend RLC3 recenePDU4, char) RLC1- sendSDLNchar) RLCL3: sendPDU, charl/—

RLCE: nextPOU/_

Lide

RIC11- nextSDU

RLCE: readyToSend RLCLZ: status(ack id)

RLCS: check RLCE: nextPDU/_ RLCL1: nextSDU RLC13: sendPDU, char/_

Figure 5.3.6.1 - RLC instance based state machine

On the other hand if the status was a NACK, thmsetiRLC checks two cases to
understand whether discard inappropriate NACK esard a packet. First it checks if
the packet with specified id has been sent befoyecbiecking the counter “next” for
packet ids which were sent for the first time) aheb it checks whether ACK for that
particular id has been received already or not (lmhecking the
acknowledgementBufier

28

In case of discarding the status, RLC goes badkedddle state and waits for the next
status or SDU signal, but if there was any prop&CK, RLC re-sends the packet
passing through theendToMAGtate.

According to the test framework pattefiiransmitter_TestCassaits for a signal from
RLC or a time out. Different states of the testecase depicted in Figure 5.3.6.2. If the
test case got aendPDU(id, char)then within theValidationPDU state, it checks
whether status signal (i.e. ACK or NACK) or a SDHcket has been sent before. In
case of a SDU packet, test case checks the Iéiérhias been sent and tblear
parameter that got back from RLC, and ends up edPtssstate if they were equal
(vice versa for thé-ail state). In case of ACK signal, the test case tlygmoes to the
Fail state. This means that test case has sent an AGHRAC responded by sending
back a PDU which is a wrong behavior of RLC. Ineca§ NACK signal, the test case
has to know about the functionality within RLC tectble a correct or wrong behavior.
The correct functionality of RLC is it must chedietacknowledgementBufférefore
re-sending a packet. Therefore test case need=eftkack oaicknowledgementBuffer
by defining an identical array calleshadowAcknowledgementBufférhis shadow
buffer is being maintained whenever the test caseigtes an appropriate ACK in the
Generatestate. Using this shadow buffer, the test case dimecks that if the packet has
been sent before and also no ACK for that partiquéeket received by RLC. Secondly
test case checks that whether re-sfatr from RLC is equal to the letter that test case
expected to be sent back. If all these conditionlsl then test case goes to tRass
state, otherwise it will end up in tikail state.

When the timer expired aft€eneratestate, if an ACK status has been sent then time
out is a correct behavior of the RLC. This is beseauhe RLC either has discarded an
inappropriate ACK or maintained tlaeknowledgementBuffand went back to thielle
state (Figure 5.3.6.1). In case of a NACK statug tiest case checks the
shadowAcknowledgementBuftand if there is nothing to be re-sent then the ¢ase
ends up in théassstate but if there is any packet that supposdiktee-sent the test
case must go to tHeail state (Figure 5.3.6.2).

The test is completed when all the characters am¢ as SDU packets, and RLC
receives an ACK status for each PDU packet (i.e.erwhall elements in
shadowAcknowledgementBuftaray are assigned to True).

29

Transmitter_Testcasel:
create(totalRun, runj/.

if—l.Generate N

Transmitter_Testcase2:

Transmitter_Testcases: | entry/ sendPDU(id, char)

timeout createobject instance rof Random:
rsrandWithCurrentDatefp

selfrandomChaoice = rrand (26100
selfrandomAck = rrandj%2:

fWeird thing about the Random f.
-\] ‘mfrarthird tine af e ane it anl e

(2.validationPDU)
entry/

fiStop Timer
st=TIM:timer_cancel{timer_inst_r.

(5. validationTo

entry/
* Check what has been sent befor..
ifiselfrandomChoice > 30)
/* We have sent ACK ar M.,
ifiselfrandomAck == 0}
/f We have sent ..
generateTrans..
alifcplframeomp ol — — 1)

Transmitter_Testcased:
next

* Check what we have sent to RL.
ifiselfrandomChoice > 30
have sent ACK or MACK

S el (F b rge gl Sy

fIWe

Transmitter_Testcase3: correct

Transmiﬁem Transmitter_Testcase3: corred|
|/?.Fail N] (5. Pass \]

entry/

selfrun = selfrun + 1;
fiDecidewhether test is completed
i=0

flagl=true

flag2=true
whilei<selfsent.length)
ficalfcantlil——falcal

entry/

selfrun = selfrun + 1;
LOG:LogInfo[message:" %% Erro..
LOG:LogInfo[message: Transmitt.

Transmitter_Testcased: errm

Figure 5.3.6.2 - Transmitter_TestCase instancedosts¢e machine

Note 1: While performing a black box test, the test congnhas no access to the
component under test except through defined intesfaln some cases the test case
might need some functionalities or data structdires the target component. On this
point, to use shadow structures is helpful in otdeteep track of the system under test.
For more information see section 8.3.

5.3.7. lteration 7

Duration: 2 Days
Goal: Refactoring

During the last iterations some unnecessary atggand variables were defined for
different classes and state machines. Furthernmme €rucial design changes must be
applied to the system before it grows larger andemmmmplex. Bear in mind that

following design changes have not forced new fumgiities to the system. Thus RLC

kept the same capabilities and refactor them tot ritee requirements in a realistic

manner.

30

T 244 TX Prime E¥ Prime

RLC RLC Prime

Figure 5.3.7.1 - RLC and RLC Prime structures

As shown in Figure 5.3.7.1, in a real telecommuiocasystems there are two RLC
layers that communicate with each other (e.g. Rb€RLC Prime).

The designed system up to now has mixed up twereéifit entities from different RLC
peers into one RLC. Therefore there was no cormedtetween the receiving side of
one RLC and the transmitting side of the same REQure 5.3.7.1 illustrates the
omitted entities within the current system (i.e.tteld sections in different RLC
components).

This iteration focused on the mentioned issue, @imdinated the short comes driven
from simplified design along with removing avoidahtlasses, attributes, variables,
algorithms and so on.

As shown in RLC’s class diagram (Figure 5.3.7.2Rtlass is divided into two parts
each representing a different side of the RLC. Eblistion also is more object-oriented
and helps designers to focus on one side, witHterirag the whole system.

Notice that the divided RLC does not have a clased state machine. Binding of the
incoming signals is now done in another class naRe@_Dispatcher

#3 RLC Dispatcher L] RLC_TX L] RLC_RX
{5,KEV) {4,RLC_TX) {3,RLC_RX)

current_state:state<State_Model>
nextinteger
charRetransmissionBuffer[5]:string
acknowledgementBuffer[5]:boclean

current_state:state <State_Model>

Randam m RLC_Prime_TX m RLC_Prime_RX
{2 Random} {6,RLC_Prime_Tx} {7.RLC_Prime_RX}
x[5L:integer current_state:state<State_Model > 1 R 1 current_state:state<State_Model>
seed:integer idBuffer[100]:integer

charBuffer[100]:string
supposedToSend_ICiinteger
supposedToSend_Charstring
id_Receiveiinteger
bufferlndex:integer

rand(}:integer
srand(seed:integer):void
srandWithCurrentDate()void

Figure 5.3.7.2 - RLC Class diagram

31

The last change in class diagram is definition edrpRLC named aRLC_Primeclass
(divided into the mentioned entities).

Now that the both peers are defined in the claagrdim, pre-existing state machine for
the receiving side is copied inRLC_Prime_R>and the transmitting side remained on
theRLC_TX

The omitted entities are filled with an instancedzh state machine that connects two
side of the RLC. According to the real RLC systeéhg transmitter side of the RLC
cannot receive any signal from the MAC interfacdsoAthe receiver side cannot
transmit any packet to the MAC interface. Therefarther realization requirement
injected to the system. From now on, the receisig is only responsible for the
incoming signals from MAC and packets deliveredhi® transmitter side in case that a
transmission is needed. Figure 5.3.7.3 illustréttesactions via state machines. Notice
that RLC operates as a transmitter peer and RLi@ePas a receiver peer.

/2. RetransmissionBuffer

RLC_TX2: sendPDU(id, char)/...
RLC_TX1:

sendSDU(char)

(L1dle M) (3. SendToMAC D

RLC_TX3:
nextSDU

RLC_Txd: -
catchStatus(ack, id) 4, CheckRetransmissicnBuffer

RLC_TX2: sendPDU(id, char)/...

RLC_TX3: nextSDU

Figure 5.3.7.3 - RLC_TX Instance based state machin
As shown in figure 5.3.7.4, tiRLC_RXstate machine is responsible for buffering the
received status packets and delivering them td@ ¥side.

Figure 5.3.7.6 shows that tHRLC_Prime_TXis responsible for transmitting status
packets which are created by the RX side of the Rithe. For more information
about refactoring step see 8.2.

32

- =, RLC_RK1: -
1. Idle receiveStatus(ack, 2. BufferStatus
id)
RLC_Rx2:
. - deliverStatusiack, .
id)f ...
Figure 5.3.7.4 - RLC_RX Instance based state machin
2. ReceptionBuffer)
RLC_Prime_R3X3:
readyToSend RLC_Prime_RX1: receivePDU(id, char
RLC_Prime_RX2: nextPDUY/...
[1.Idle
[3. SendToPDCP \]
RLC_Prime_RX3: 4, CheckReceptionBuffer N
readyToSend
RLC_Prime_RX2: nextPDU/...
RLC_Prime_R¥4: check
b
Figure 5.3.7.5 - RLC_Prime_RX Instance based statehine
RLC_Prime_Tx1:
catchStatus(ack,
'/—l. Idle h id) /2. BufferStatus
RLC_Prime_Tx2:
M A sendStatus(ack, M

id)/ ...

Figure 5.3.7.6 - RLC_Prime_TX Instance based statehine

33

5.3.8. lteration 8

Duration: 5 Days
Goal: Transmission opportunity (The receiver role of RLC

After refactoring the system, designers can foausading other functionalities to the
system. So far the receiver RLC (bear in mind ttiag does not mean the receiving
side) and transmitter RLC are divided into two eiént RLC systems. Each RLC
system has two classes calleX and TX which represent the receiving side and the
transmitting side respectively. But neither RX si@ TX side of the two different
RLC entities are identical. As a matter of fa&@¥ side of the RLC which has a receiver
role is more developed th&¥X side of RLC as a transmitter role. The same goethé

TX side of a different RLC with different roles. Algrwith defining transmission
opportunity, this iteration combined two RLCs widifferent roles into one RLC entity
that can handle both roles. Notice the class dmgnaFigure 5.3.8.1.

As always the iteration started by extending tist tase. Since this iteration focused
on the receiver role of the RLC, tReceiver_TestCaseas responsible for testing the
complete RLC.

A receiver entity of RLC is able to receive PDUsnfrits peer, and if the packets were
the expected ones then send SDU to the upper (agePDCP) along with making
status packets to inform the peer about incoming®But as formerly mentioned the
RX side of RLC gets PDUs and create status paeket,send it to sender (TX) since
only the TX side can send back status packetsat@der. Additionally TX side cannot
send any kind of packets unless there is a trassni®pportunity.

ﬁ RLC_Dispatcher Random
{5,RLC_Dispatcher] {2, Random)

x[5]:integer

initializeRLC()void ceediinteger

rand():integer
srand(seed:integer):void
crandWithCurrentDate()void

n RLC_TX R RLC_RX

{4,RLC_TX} {3,RLC_RX}
current_state:state<State_Model= 1 Rl 1 current_state:state<State_Model >
nextiinteger receptiocnBufferPDU
charRetransmissicnBuffer[3]:string index_recepticnBufferinteger
acknowledgementBuffer[5]:boolean expected_id:integer
receiveStatusBuffer:StatusBuffer pick_receptienBufferinteger

sendStatusBuffer StatusBuffer
index_receiveStatusBufferinteger

Figure 5.3.8.1 — RLC (AM) class diagram

34

A transmission opportunity is a signal from a MA&yér which specifies which entity
is allowed to send packets. MAC layer sends trassionm opportunity based on the
network’s traffic, bandwidth and size of packetsigh is estimated by RLC). Thus in
a real heterogeneous system, this given transmisgportunity might not exist after
the packet is prepared for sending by RLC, sinedfi¢rin lower layer might be
changed (for more info see Appendix B).

The Receiver_TestCassimulated the transmission opportunity in theneratestate,
by randomly sendingtx OP signals through the MAC interface. In addition
receivePDU(id, charkignals with random id and char parameters areasebefore.

As shown in figure 5.3.8.2 the RX side of RLC #drbm theldle and as soon as a
receivePDU(id, charkignal has been received packets are buffer&eaeptionBuffer
state. Later RLC checks the buffered packet anmwhs the expected one, the packet
would be sent to upper layer through PDCP interfatease of other packets existed
in buffer which are supposed to be sent, RLC s¢hes as well. Eventually status
packets must be created. RLC decides about crea@gor NACK in SendToPDCP
When expected packets existed in reception bufta€ BRends them one by one via
receiveSDU(charkignal and create an ACK status with id as a egpected packet,
otherwise a NACK status will be created for thereat expected packet. The created
status packets are bufferedsendStatusBuffexhich is a buffer in TX side of RLC and
remain there until the TX side gets a transmissigportunity. RLC ends up in thdle
state again after it passed throughBludferSendStatustate.

: RLC_RX2-
RLC_RAL: defverStatus(ack

receiveStatus(ack

(1 Idle 3. ReceptionBuffar 4. SendToPDCP
RLC_R¥4: buffered(id
RLC_RX3: receivePDLI char)

char)

RLC_RX7: statusCreated — — RLC_RH6: createStatusid, ack)

Figure 5.3.8.2 - RLC_RX instance based state machin

On the other hand if &_OP signal is raised by the test case, the TX sid®loC
checks if there is any created status sendStatusBufferwithin the state

35

Check_SendStatusBuffén case of existence RLC sends the first crestatiis which
has not been sent before.

As for iteration five,Receiver_TestCaselidates three different scenarios (states are
illustrated in Figure 5.3.8.3):

Receiver_Testcasel:
create(totalRun,
run}/ .

Receiver Testcasel: /1 Generate

next
Receiver_Testcased:
receiveSDU(char)
Receiver_Testcased:
timeout
Receiver_Testcasell:
statusfack, id)/...
(S.Validat\on_TC- W rS.\.faIidation_Status R (Z.V'alidat\on_SDU W
Receiver_Testcased
correct/... Receiver Testcasell:
error/..
/4. Fail N
Receiver_Testcasel(:
errar/.. Receiver Testcasel(:
EITor/ ...
Recerver Testcased:
receiveSDU(char)
Receiver_Testcasell:
status(ack, id)
/6. Pass N
Receiver Testcased:
correct/...

Receiver_Testcased:
correct/...

Figure 5.3.8.3 - Receiver_TestCase Instance baasdeachine

e Validation_SDU: When test case receivedegeiveSDU(char)signal, char
parameter is compared with the expected letterimmdse of equality test case
ends up irPassstate. Contrarily difference of letters means RBC has sent a
wrong SDU packet which leads the test cadedib state.

e Validation_Status: Beware that test case has anayarrcalled,
received_acknowledgemehat is used to keep track of received statugdoh
letter. If astatus(ack, idsignal received, test case first figures out wias the
status type. If it was a NACK, then first off, tesise checks the last packet id
that was sent before. If the NACK was not in scopsent packet ids, then test
case ends up iRail state. This means that RLC sent back inappropNa€K

36

back to test case (e.qg. if the last signal se&sdPDU(E, 1jetting astatus(false,
4) is a wrong behavior of system). On the other hitice NACK was a proper
one (e.g.status(false, Q) an element ofreceived_acknowledgemenhat
corresponds to the parameter id (e.g. index zem)ldvbe assigned to False.
This action specifies that there were no positiolenawledgements (i.e. ACK)
for that particular letter. If the status was ankAfdst like before the first thing
is checking the scope and if the ACK was a propee, call elements in
received_acknowledgemegntray would be set to True up to parameter. I bot
types of status packets after theceived_acknowledgemerdrray was
maintained, the test case goe®&ssstate.

e Validation_TO (time out): Whenever the timer exdiréest case ends up in
Passstate, either if all SDUs have been sent to RL@®SDU has been sent,
otherwise if an SDU has been sent, RLC must respoitd a status or
receiveSDU signals.

A test is considered complete only if all SDUs.(ledters defined in input strings) has
been sent, all SDUs has been received back inraact@equence and also ACKs for all
letter has been sent by RLC. If not, test casedaop generates more signals until all
the conditions have been fulfilled.

5.3.9. lteration 9

Duration: 2 Days
Goal: Transmission opportunity (the transmitter roldraiC)

The last iteration focused on the RLC with a traie&mrole; also as mentioned in the
previous iteration an extra functionality namé&dansmission opportunithas been
added.

The following shadow buffers are defined on Tmansmitter_TestCad®e keep track of
RLC'’s functionality in a black box testing:

e shadow_receiveStatusBuffer: Array from structureditad type named
StatusBuffewith two attributesack (boolean) andd

e shadow_retransmissionBuffer: Array from structuckata type namedPDU
with two attributesid andchar

e shadow_sduBuffer: String array to SDU letters

Since the test case acts like a peer receiver Rirt€e different signals might randomly
sent via th&Generatestate to the RLC under test. The signals are sy

e sendSDU(char): Thehar parameter represents letters in sequence (elg, H,
L, O). For each SDU that has been sent, test caspska copy in
shadow_sduBuffer

e receiveStatus(ack, id): After a status packet hasnbsent through MAC
interface, test case checks tideparameter to determine whether the status

37

packet was an appropriate one, and if it was, thels packet would be stored
in shadow_receiveStatusBuffén case of NACK status (i.e. ack = False) the
relevancy of the status determined by checking #&xact element in
shadow_retransmissionBuffawith an index equal tad parameter. If the
mentioned element was not empty, then a correct NA&s been sent and must
be buffered. In case of ACK the same approach iexp except that the
element with an indexl minus one would be checked (e.g. for ACK 4, tesec
checksshadow_retransmissionBuffer[id -)1]

tx_OP(): Transmission opportunity which is beingtdbdrough MAC interface.

The state diagram of the RLC TX is illustrated igufe 5.3.9.1. When RLC receives
sendSDU(char¥ignals from the test case (i.e. PDCP) the TX bidféers each packet
(e.g. letters in sequence) in treduBuffer The buffering process is done in
SDUBufferingstate.

Due to the fact that the RX side of RLC is respblesfor receiving packets from MAC
interface,receivePDU(char, idandreceiveStatus(ack, idignals are handled by the
RX side. Therefore each status packet that has dedrby test case caught by RX side
and then delivered to TX side to be bufferedreceiveStatusBufferThe process of
buffering is done vieReceiveStatusBufferingtate but before buffering all incoming
status packets, TX side checks ith@nd only appropriate packets would be buffered.

tx_OPis the only signal that passes through MAC intefand targets the TX side (for
more information see Appendix B). The TX side istjable to buffer packets until it
gets a transmission opportunity. Notice that thera priority for sending packet after
each transmission opportunity. The priority of sagdpackets after a transmission
opportunity and operations within each state aserileed below:

Check_SendStatusBuffer: As explained in iterationth@ state is responsible
for checking the created status packets by RX sfdeLC. Therefore created
status packets have the highest priority amongrqihekets and if there is any
status packets found in tsendStatusBuffe X passes througlmundtransition
and sends packets through MAC interface back toctese. In this iteration the
sendStatusBuffes empty (because no PDU have been sent to thetRlL<no
status created as well) andtfound()event would be raised.

Check_ReceiveStatusBuffer: In case of no creatatust the opportunity of
transmission is given to packets that have to bsenel. Therefore TX side
checks theeceiveStatusBuffan search of received status packets. If there was
an ACK inreceiveStatusBuffeRLC should not send any packets back, instead
the ACK indicates that all packets that has beett before from RLC, are
received by its peer correctly. Thus RLC removdsPDU packets from
retransmissionBuffeup to theid parameter designated by status packet and
hands in the opportunity to the next state. WheNACK was founded in
buffer, RLC checks thestransmissionBuffefor the designated status id, and if
it was not empty then RLC expends the opportumity Be-sends the particular

38

PDU back to test case withiRe-SendToMAGtate. On the other hand if no
status existed in buffer, transmission opportumiyuld be consumed by next
state. (Notice that only proper ACK or NACK packbts/e been buffered)

e Check SDUBuffer: The last buffer that TX checksthe sduBuffer If a SDU
packet founded in this buffer, RLC makes a PDU cbpyn the packet (i.e.
form a PDU), and place it on the retransmissiorfdsufithin the state called
CopyToRetransmissionBufferWhen the PDU packet is created, the
corresponding SDU packet will be removed from thdfdy. Finally in the
SendPDUToMACSstate PDU packet is sent back to the test case via
sendPDU(id, charyignal.

ALC T naxt OF |

RLETT:
cund

ALCTXS: e RLETX:
otizund naticund cund

notfound/

Figure 5.3.9.1 - RLC_TX instance based state machin

According to RLC’s functionality, there are two MHtion phases in the test case
(Figure 5.3.9.2). One for tleendPDU(id, char¥ignal and the other for time out.

Whenever the test case receiveseadPDU(id, charkignal it goes td&/alidationPDU
state. The first thing that the test case mustidenss what has been sent to RLC. If no
transmission opportunity was sent then, the test emds up in thEail state. That is
because; RLC should not send any signal back with@myving a transmission
opportunity. In case that the opportunity is giterRLC, test case must go through the
priority of packets based on its shadow buffersmentioned the first priority was re-
transmission of packets (Notice that the creatatlistpackets are omitted here due to
the fact that RLC has a transmitter role). Thust temse searches in
shadow_receiveStatusBuffelf a NACK is found in buffer, test case checks th
corresponding element in thehadow_retransmissionBuffemd if the element was
empty, test case ends up in “Fail” state. Sinceeteas nothing in the retransmission
buffer but RLC has sent back a PDU packet. Othertvie packet that was received by
a sendPDU(id, char)signal is compared to the packet which supposdaetoe-send
and if they match the test will be passed.

39

Finally if there were no status packetsshmmdow_receiveStatusBufféeest case checks
the shadow_sduBuffeas a next priority level. In case there is a SDatket in
shadow_sduBuffetest case maintains ttehadow_retransmissionBuff¢re. make a
PDU copy in the shadow buffer). Then the PDU pathat has been received would be
compared with the PDU packetshadow_retransmissionBuffand if they match then
test case ends up Hassstate.

When there were no packets on all buffers then DO Packet should be received at
all, thus in this situation receiving a packet frédhC is a wrong behavior of the
system and test case goes toRh# state.

On the other hand, in the time out validation sttite test case ends up in P&ssstate
until an opportunity has been sent. Because RLiisallowed to transmit any packet
and might only buffer receiving packets therefdralivays waits for an opportunity in
the Idle state. As soon as a transmission opportunity le@s Isent to RLC, and the
timer expired in the test case then all shadowensifvill be checked (considering the
priority) to see if there was any packet that siggoloto be sent/re-sent back to test case.
Consequently the test case ends upadit state if a packet has been founded in buffers
and goes to thPassstate contrarily.

I et ol

Tranzmitter_Testcasel: Transmitter_Testcazed:
timeout sendPDUG. char)

| L. ValidationTC |2 ‘alidationPDU

Transmitter_Testcased:
next

Transmitter_Testcased: conmrect)

'\l-‘ [Transmitter_Testcazed: comect/]

Tranzmitter_Testcased:

|"=a | |E:‘ass |

Transmitter_Testcased:

Figure 5.3.9.2 - Transmitter_TestCase instancedosts¢e machine

The test is completed when all SDU packets have Beat and all the corresponding
PDU packets received by the test case. Bear in thiastdonly those PDU packets that

40

have got an acknowledgment signal are considerede@sved packets (i.e. their
relevant flags imeceivedarray assigned to True).

6. Results

The suggested methodology was applied successinlithe modeling process of the
RLC domain and reusability and reliability of theseem has been validated by the case
study.

The research question has been answered whenshestcaly was accomplished. As an
answer to the research question we can claim tlhbugh there are various
methodologies to develop a complete PIM, the sugdesiethodology facilitates the
creation of the platform independent models.

Furthermore we can claim that this methodologypigliaable and also feasible to use
in real world systems. Technically we have used waalttated the methodology to
produce a complete PIM for an RLC protocol whichaigsomplex entity of existing
telecommunication systems.

Moreover, we experienced that applying this methmgio

1. Reduced the difficulties to create a complete FDifficulties that are forced by
a complex system. This result is the main targehefsuggested methodology.

2. Avoid designers to get stuck in the implementatietails. The common agile
iterations are focused on adding functionalitied test them in a rapid manner
[10]. This may cause designers to concentrate ranrdetailed problems and
consume too much time coping with specific probleatber than delivering a
workable system.

3. Avoid missing deadlines and employ better time nganzent. Going deep into
details may cause lack of time and missing deaslito@sequently.

4. Keeps the abstraction level as high as possibleoasecutive iterations and the
amount of added concrete functionalities as lowassible. Thus it makes the
daily meetings short. Moreover, the necessity fug presence of different
stakeholders with different fields of expertise daily meetings has been
reduced.

5. Makes the system reusable. Reusability is one efgiteatest benefits when
applying the suggested methodology. Unlike othdegayocesses which mainly
focus on hacking new functionalities to the systémg methodology has more
systematic vision for adding new features bothhte test case and the target
system. Therefore on new iterations many featufgistwhave been added can
be reused (e.g. a general pattern for the tesj.case

41

7. Reflections

The first part of the research was dedicated ta@timemon way for developing software
systems in an iterative manner. Thus the processookling the case study was begun
by defining the architecture of the system andrafit@t we tried to add different
functionalities as agile as possible in differeietrations and test the updated system
using a unit testing for different features.

Following this approach made us going deep intaitdet features and therefore we
focused more on the domain specific problems. Gyuresgly for some requirements a
huge amount of time has been consumed in order eielop those specific

requirements without considering the testing andgration of various features within
the system. This leads to producing an incompl#é tRat is poorly tested and might
be error prone when translated to a PSM.

Another drawback that we often experienced was fdoe that not only applying
changes to the existing features but also addivg fleatures to other parts of the
system is quite hard; due to the late integration.

Furthermore for many domain specific issues we twadonsult with the domain
experts who might not be available all the time.

Several industrial experts commented that lategmatéon of different components in
the system or a product line is a major problent t@mpanies face during the
development of different systems. By applying thggested methodology, the effect
of this problem has been substantially reduceda®/s in this case study.

8. Guidelines

This section mainly focuses on providing some dinds based on the experiences that
we gained during the research along with some cammites and design patterns
within the software community. Although most of #gpects of this section have been
covered within the software community but they aatuable for Ericsson and those
who want to use or perform more research on thibogelogy.

8.1. Choosing the appropriate level of abstraction

Perhaps, the most important subject for applyirgsinggested method is choosing the
right level of abstraction for consecutive iterago As discussed before the main
divergence of the suggested methodology from comagle processes is that, new
features are added by considering an abstractiom fietails. Therefore we avoid
detailed problems that are difficult to add in @oeand cannot be fully tested during a
certain iteration.

It is not clear how much details should be addedne iteration. Based on the number
of teams and designers, their skills, the domasmpetitive vendors and so forth the
length and duration of an iteration might vary asliwBut the crucial point is that,

42

according to the time plan and dedicated time fréonan iteration, features that take a
long time to be implemented and cannot be handigdnithe specific time frame must
not be added.

Another point that one must be aware of is thatgbwone should try to reuse features
that has been added on former iterations rather ith@lementing functionalities that
must be changed a lot in upcoming iterations.

In our case study it seems feasible to choose etstunctionalities as little as possible
for each iteration step.

8.2. Refactoring

As the system evolves and modified with new reaquésts, the created models of the
system become more complex. This may cause lowdh@gyuality of the design in
terms of readability maintainability, extensibilitynodularity, reusability [3] [20].
Refactoring technique is a remedy to improve guatithe mentioned aspects [20].
The main activities that designers must considendta refactoring step are as follows
[20]:

Identify which parts of model should be refactored

Guarantee that the applied refactoring preservesctitnal behaviors
(consequently, refactored models should be tesidttive same test cases as
before)

Apply the refactoring

Maintain the consistency between the refactoredainadd the rest of system
models

Note that the refactoring step has some effectproductivity, cost, and amount of
effort that has been put on the development prd@ss

In general as discussed withiaration 5.3.7refactoring can be applied as:

e Changing of names of attributes, variables, classgsso forth to make them
more understandable.

Removing unnecessary attributes, operations, asablasses etc.

Enhancing algorithms within action language.

Introducing new design patterns (e.g. Definingspdicher class on iteration 7)
Changing design decisions that has been made ier aa simplify the
requirements

8.3. Black box VS Gray box testing

According to [18] “...as the complexity and sizesoftware grow, the time and effort
required to do sufficient testing grow”. Thus,stnot feasible to apply manual testing
on large systems. A remedy to this issue is autednaimd random testing.

As mentioned in théterationssection, the technique that we used for testiegdiget
system was aimed to be black box testing [19].Un ersion all the possible inputs

43

including the proper and evil data will be randorféyg to the system through well-
defined interfaces and expected or unexpected mahaivthe system will be evaluated
according to the outputs. The main advantages aethiby applying black box testing
were:

e Simplicity: Testers do not need to understand thkerinal structure and
algorithms of the target system.
Clarity: Based on agreed interfaces and unambigusesases.
Reducing the time for test case development: Testex not concerned about
identifying every possible path within the targgstem.

However, this case study was performed by a grédumly two persons, and therefore
the design of both the system and the test was llptiee same group. This might have
caused us to neglect some of the potential errbenwnodeling the test case. Therefore
as discussed iheration 5.3.6 to gain more confidence on correctness of theesya
mixture of black box testing and gray box testidg@][has been applied where data
structures of the system were needed.

In general, we realized that black box techniquéctwiyenerates completely random
inputs is feasible for testing large systems. To@ itself offers the possibility of
performing white box testing [18] during the modeliprocess.

As a recommendation, test cases should be modgladdam other than the same team
modeling the system under test. In case that thisot possible gray box testing
methods might be applied.

8.4. Tool assessment

Using BridgePoint as a tool for creating executabtelels has some limitations. These
limitations forced us to reconsider some of the atind designs and solutions when
we realized our design into BridgePoint. The maapectations and features that
designers want from BridgePoint (at the time oftwwg this report) are as follows:

e Ability to define Function Package for the entigstem which is not limited to

a specific component.

Improve shortcomings while working with arrays.

Improve shortcomings of timer instances

Improve and extend built in data types

Ability to instantiate multiple components from iagle component (analogous

to class instantiation)

e Make graphical lines (e.g. transitions, interfaces)ationships) straight
keyboard shortcuts

e Remove the existing bugs such as, debugger toah whkiag timers, inability to
undo formalization of components and interfacesrdtirmalizing them, so that
one can rename components.

e Ability to copy array elements into other arrayshndifferent dimensions.

44

9. Conclusions

In this research, we followed MDA while modelinglarge and complex system.

Subsequently, the suggested methodology helped m®del the system in an iterative

manner, so that at the end of each iteration acutable and fully tested PIM, was

delivered. Additionally, we provided some guideSnen how to start the process of
modeling along with different patterns such asrttentioned test pattern that not only
can be reused on different iterations within thisndin, but also used as a pattern in
various product lines.

Generally, based on the analysis of the case stndyesults, it is feasible to apply the
suggested methodology on complex systems in ordereduce the development
complexity and cost along with improving the quabf the system.

Finally, we focused on providing an executable nhodelependent of different
deployment platforms (i.e. PIM) rather than othdvantages of MDA. Nevertheless, in
practice, model driven architecture and executabtelels are not mature enough
currently, but we strongly believe, this might be future of the software development
that more research and effort needs to be deditated

10. Future work

This thesis has not covered other modes of the RIM and UM) along with other
layers in telecommunication systems. It would Hergsting to design and model other
layers in order to test and integrate the whol¢esys

Investigation of different tools for creating exé&hle UML models could be done later
on to compare them with BridgePoint.

Also, this thesis has not covered the evaluatioth@fgenerated code, therefore another
interesting area is the evaluation of the generabel and its performance compare to
manual programming within the telecommunication dom

Additionally, considering that this process of mitig was performed in a domain that
had a well-defined specification, it would be challing if the same methodology was
applied in another domain with incomplete speciimas, from the scratch.

45

References

[1] G. Booch, J. Rumbaugh, I. Jacobson,“The Unifidddeling Language User
Guide”, Addison Wesley2005

[2] M. Fowler, “Refactoring: Improving the Desigm Bxisting Code” Addison Wesley
1999

[3] S. W. Ambler, P. J. Sadalage, “The Proceddaihbase Refactoring: Strategies for
Improving Database QualityAddison Wesley2006

[4] K. Beck, “Test Driven Development: By Exampl&ddison Weslgy2002

[5] http://www.omg.org/mda/

[6] http://www.ibm.com/developerworks/rational/ldry/3100.html#notes

[7] S. J. Mellor, K. Scott, A. Uhl, D. Weise, “MDAMistilled: Principles of Model-
Driven Architecture” Addison Weslgy004

[8] http://www.mentor.com/products/sm/model_devehgmt/bridgepoint/

[9] M. Fowler, K. Scott, “UML Distilled: A Brief Gude to the Standard Object
Modeling Language”Addison Wesleywolume 3, 2003

[10] M. Cohn, “Agile Estimating and Planning?yentice Hall PTR2005

[11] L. Crispin; J. Gregory, “Agile Testing: A Pracal Guide for Testers and Agile
Team$, Addison Wesley2008

[12] K. Beck, C. Andres, “Extreme Programming Expél: Embrace Change”
Addison Wesley008

[13] L. Williams, R. Kessler, “Pair Programminguthinated”,Addison Weslgy2002
[14] J. Shore, S. Warden, “The Art of Agile Devatognt”, O'Reilly Media 2007

[15] S. Mellor, M. Balcer, “Executable UML: A Fouation for Model-Driven
Architecture”,Addison Wesley2002

[16] G. Booch, J. Rumbaugh, I. Jacobson, “The WdifModeling Language User
Guide”, Addison Wesley2005

[17] Scott W. Amble, “Agile Modeling: A Brief Overgw”, Workshop of the pUML-
Group held together with the «UML»2001 on PractiddML-Based Rigorous
Development Methods - Countering or Integratingahéremists2001

[18] Wang Linzhang Et al, “Generating Test CasesiftUML Activity Diagram based
on Gray-Box Method”,Proceedings of the 11th Asia-Pacific Software Eegrng
ConferencelEEE, 20009.

[19] British Computer Society, “Standard for SoftwaComponent Testin“SIGIST
2001

[20] Mens, T., Tourwe, T., “A Survey of SoftwarefRetoring”, IEEE Transactions on
software engineering2004

[21] http://agilemanifesto.org/

[22] http://www.3gpp.org/specifications

[23] Koen Claessan, John Hughes, “QuickCheck: l@weight tool for random testing
of Haskell programs”lCFP '00 Proceedings of the fifth ACM SIGPLAN ingional
conference on Functional programmingplume 35 Issue ,BSept. 2000

46

Appendix A

Object Action Language

Here are listings of all of the OAL activies in thmdel.

1. State Actions

1.1. RLC_Dispatcher

select any rlc_tx from instances of RLC_TX;

if(lempty rlc_tx)

/I Initialization

create object instance rlc_tx of RLC_TX;
create object instance rlc_rx of RLC_RX;
relate rlc_rx to rlc_tx across R1;

/lInitialize TX Indices (0 means there is nothingpuffer yet)
rlc_tx.index_sendStatusBuffer = 0;
rlc_tx.index_receiveStatusBuffer = 0;
rlc_tx.index_sduBuffer = 0;

rlc_tx.pick_send_status = 0O;

rlc_tx.pick_receive_status = 0O;
rlc_tx.index_retransmissionBuffer = O;

rlc_tx.pick_sdu = 0;

/Nnitialize sendStatusBuffer

i=0;

while(i < rlc_tx.sendStatusBuffer.id.length)
rlc_tx.sendStatusBuffer.id[i] = 999;
rlc_tx.sendStatusBuffer.ack]i] = false;
i=i+1;

end while;

llnitialize receiveStatusBuffer

i=0;

while(i < rlc_tx.receiveStatusBuffer.id.length)
rlc_tx.receiveStatusBuffer.id[i] = 999;
rlc_tx.receiveStatusBuffer.ack]i] = false;
i=i+1;

end while;

/lInitialize sduBuffer

i=0;

while(i < rlc_tx.sduBuffer.length)
rlc_tx.sduBuffer[i] = "%";
i=i+1;

end while;

/lInitialize retransmissionBuffer

i=0;

while(i < rlc_tx.retransmissionBuffer.id.length)
rlc_tx.retransmissionBuffer.id[i] = 999;
rlc_tx.retransmissionBuffer.charl[i] = "%";
i=i+1;

end while;

a7

else

end if;

/lInitialize RX Indices (0 means there is nothinduffer yet)
rlc_rx.index_receptionBuffer = 0;
rlc_rx.pick_receptionBuffer = O;

rlc_rx.expected_id = 0;

/lInitialize receptionBuffer

i=0;

while(i < rlc_rx.receptionBuffer.id.length)
rlc_rx.receptionBuffer.id[i] = 999;
rlc_rx.receptionBuffer.char[i] = "%";
i=i+1;

end while;

generate RLC_TX1:sendSDU(char: param.char) toxjc_t

generate RLC_TX1:sendSDU(char: param.char) toxjc_t

1.2. RLC_Dispatcher

select any rlc_rx from instances of RLC_RX;

if(lempty rlc_rx)

/I Initialization

create object instance rlc_tx of RLC_TX;
create object instance rlc_rx of RLC_RX;
relate rlc_rx to rlc_tx across R1;

/lInitialize TX Indices (0 means there is nothingduffer yet)
rlc_tx.index_sendStatusBuffer = 0;
rlc_tx.index_receiveStatusBuffer = 0;
rlc_tx.index_sduBuffer = 0;

rlc_tx.pick_send_status = 0O;

rlc_tx.pick_receive_status = 0O;
rlc_tx.index_retransmissionBuffer = O;

rlc_tx.pick_sdu = 0;

/Nnitialize sendStatusBuffer

i=0;

while(i < rlc_tx.sendStatusBuffer.id.length)
rlc_tx.sendStatusBuffer.id[i] = 999;
rlc_tx.sendStatusBuffer.ack]i] = false;
i=i+1;

end while;

/lInitialize receiveStatusBuffer

i=0;

while(i < rlc_tx.receiveStatusBuffer.id.length)
rlc_tx.receiveStatusBuffer.id[i] = 999;
rlc_tx.receiveStatusBuffer.ack]i] = false;
i=i+1;

end while;

/lInitialize sduBuffer

i=0;

while(i < rlc_tx.sduBuffer.length)
rlc_tx.sduBuffer[i] = "%";
i=i+1;

end while;

48

/lInitialize retransmissionBuffer

i=0;

while(i < rlc_tx.retransmissionBuffer.id.length)
rlc_tx.retransmissionBuffer.id[i] = 999;
rlc_tx.retransmissionBuffer.charl[i] = "%";
i=i+1;

end while;

/lInitialize RX Indices (0 means there is nothinguffer yet)
rlc_rx.index_receptionBuffer = 0;
rlc_rx.pick_receptionBuffer = O;

rlc_rx.expected_id = 0;

/lInitialize receptionBuffer

i=0;

while(i < rlc_rx.receptionBuffer.id.length)
rlc_rx.receptionBuffer.id[i] = 999;
rlc_rx.receptionBuffer.char[i] = "%";
i=i+1;

end while;

generate RLC_RX3:receivePDU(id: param.id, char:parhar) to rlc_rx;
else
generate RLC_RX3:receivePDU(id: param.id, char:parhar) to rlc_rx;

end if;
1.3. RLC_Dispatcher

select any rlc_rx from instances of RLC_RX;

if(lempty rlc_rx)
/I Initialization
create object instance rlc_tx of RLC_TX;
create object instance rlc_rx of RLC_RX;
relate rlc_rx to rlc_tx across R1;

/lInitialize TX Indices (0 means there is nothinguffer yet)
rlc_tx.index_sendStatusBuffer = 0;
rlc_tx.index_receiveStatusBuffer = 0;
rlc_tx.index_sduBuffer = 0;

rlc_tx.pick_send_status = 0O;

rlc_tx.pick_receive_status = 0;
rlc_tx.index_retransmissionBuffer = O;

rlc_tx.pick_sdu = 0;

/lnitialize sendStatusBuffer

i=0;

while(i < rlc_tx.sendStatusBuffer.id.length)
rlc_tx.sendStatusBuffer.id[i] = 999;
rlc_tx.sendStatusBuffer.ack]i] = false;
i=i+1;

end while;

/lInitialize receiveStatusBuffer

i=0;

while(i < rlc_tx.receiveStatusBuffer.id.length)
rlc_tx.receiveStatusBuffer.id[i] = 999;
rlc_tx.receiveStatusBuffer.ack]i] = false;

49

i=i+1;
end while;

/lInitialize sduBuffer

i=0;

while(i < rlc_tx.sduBuffer.length)
rlc_tx.sduBuffer[i] = "%";
i=i+1;

end while;

/lInitialize retransmissionBuffer

i=0;

while(i < rlc_tx.retransmissionBuffer.id.length)
rlc_tx.retransmissionBuffer.id[i] = 999;
rlc_tx.retransmissionBuffer.charl[i] = "%";
i=i+1;

end while;

/lInitialize RX Indices (0 means there is nothinduffer yet)
rlc_rx.index_receptionBuffer = 0;
rlc_rx.pick_receptionBuffer = O;

rlc_rx.expected_id = 0;

/lInitialize receptionBuffer

i=0;

while(i < rlc_rx.receptionBuffer.id.length)
rlc_rx.receptionBuffer.id[i] = 999;
rlc_rx.receptionBuffer.char[i] = "%";

i=i+1;
end while;
generate RLC_RX1:receiveStatus(ack: param.ackaignp.id) to rlc_rx;
else
generate RLC_RX1:receiveStatus(ack: param.ackaidnp.id) to rlc_rx;
end if;

1.4. RLC_Dispatcher

select any rlc_tx from instances of RLC_TX;

if(lempty rlc_tx)
/I Initialization
create object instance rlc_tx of RLC_TX;
create object instance rlc_rx of RLC_RX;
relate rlc_rx to rlc_tx across R1;

/lInitialize TX Indices (0 means there is nothingduffer yet)
rlc_tx.index_sendStatusBuffer = 0;
rlc_tx.index_receiveStatusBuffer = 0;
rlc_tx.index_sduBuffer = 0;

rlc_tx.pick_send_status = 0O;

rlc_tx.pick_receive_status = 0;
rlc_tx.index_retransmissionBuffer = O;

rlc_tx.pick_sdu = 0;

/lInitialize sendStatusBuffer

i=0;

while(i < rlc_tx.sendStatusBuffer.id.length)
rlc_tx.sendStatusBuffer.id[i] = 999;
rlc_tx.sendStatusBuffer.ack]i] = false;

50

else

end if;

i=i+1;
end while;

/lInitialize receiveStatusBuffer

i=0;

while(i < rlc_tx.receiveStatusBuffer.id.length)
rlc_tx.receiveStatusBuffer.id[i] = 999;
rlc_tx.receiveStatusBuffer.ack]i] = false;
i=i+1;

end while;

/lInitialize sduBuffer

i=0;

while(i < rlc_tx.sduBuffer.length)
rlc_tx.sduBuffer[i] = "%";
i=i+1;

end while;

/Nnitialize retransmissionBuffer

i=0;

while(i < rlc_tx.retransmissionBuffer.id.length)
rlc_tx.retransmissionBuffer.id[i] = 999;
rlc_tx.retransmissionBuffer.char[i] = "%";
i=i+1;

end while;

/lInitialize RX Indices (0 means there is nothinduffer yet)
rlc_rx.index_receptionBuffer = 0;
rlc_rx.pick_receptionBuffer = O;

rlc_rx.expected_id = 0;

/lInitialize receptionBuffer

i=0;

while(i < rlc_rx.receptionBuffer.id.length)
rlc_rx.receptionBuffer.id[i] = 999;
rlc_rx.receptionBuffer.char[i] = "%";
i=i+1;

end while;

generate RLC_TX6:tx_OP() to rlc_tx;

generate RLC_TX6:tx_OP() to rlc_tx;

1.5. RLC_RX State[2]:DeliverReceiveStatus

/I Here RLC RX receives status signals from the MAC

I

and send it away RLC TX to transmitt it

generate RLC_RX2:deliverStatus(ack: param.ack, icapad) to self;

1.6. RLC_RX State[3]:ReceptionBuffer

/ICheck whether this PDU(id, char) have alreadytegisn the buffer or not

i=0;

flag = false;

while(i < self.index_receptionBuffer)

if(self.receptionBuffer.id[i] == param.id)
flag = true;

51

break;
end if;
i=i+1;
end while;

if(flag == false)
/IBuffer received PDUs
self.receptionBuffer.id[self.index_receptionBufferparam.id;
self.receptionBuffer.char[self.index_receptionBuffeparam.char;
self.index_receptionBuffer = self.index_receptioBuf 1;

end if;

/I go to create status

generate RLC_RX4:buffered(id: param.id, char: parhar)cto self;

1.7. RLC_RX State[4]:SendToPDCP

/I Check whether ACK or NACK have to be created
if(self.expected_id == param.id)
/ICheck if we have more PDUs that we should crag& for them
i=0;
while(i < self.index_receptionBuffer)
if(self.receptionBuffer.id[i] == self.expected)id
PDCP_RLC_Port::receiveSDU(char:
self.receptionBuffer.charfi]);
/ILOG
LOG::Loglnfo(message: "RLC send SDU to Port: " +
self.receptionBuffer.charf[i]);

/ILOG
self.expected_id = self.expected_id + 1;
i=-1;

end if;

i=i+1;

end while;

generate RLC_RX6:createStatus(id: self.expectedck,true) to self;
LOG::LogInfo(message: "Creating ACK");
LOG::LogInteger(message: self.expected_id);

else
generate RLC_RX6:createStatus(id: self.expectedcid,false) to self;
LOG::Loglnfo(message: "Creating NACK");
LOG::Loglnteger(message: self.expected_id);

end if;

1.8. RLC_RX State[5]:BufferSendStatus

/[create ACK or NACK
select one tx related by self->RLC_TX[R1];
if(not empty tx)
tx.sendStatusBuffer.id[tx.index_sendStatusBuffeparam.id;
tx.sendStatusBuffer.ack[tx.index_sendStatusBlffgrzaram.ack;
tx.index_sendStatusBuffer = tx.index_sendStatusBuffl;

else
LOG::Loginfo(message: "No object of RLC_TX exists")
end if;
// Back to idle
generate RLC_RX7:statusCreated() to self;

52

1.9. RLC_RX

/[Delivering status to RLC_TX
select one tx related by self->RLC_TX[R1];
if(not empty tx)

generate RLC_TX4:catchStatus(ack: param.ack, idrpad) to tx;
else

LOG::Loglnfo(message: "No object of RLC_TX exists");
end if;

1.10. RLC_TX State[2]:SDUBUuffering

/I Buffer receiving SDUs
self.sduBuffer[self.index_sduBuffer] = param.char;
self.index_sduBuffer = self.index_sduBuffer + 1;

LOG::LoglInfo(message: "RLC: Buffered " + param.chdrin sduBuffer");

/I Back to idle
generate RLC_TX5:buffered() to self;

1.11. RLC_TX State[3]:SendStatusToMAC

/I Send Status Signal to MAC and increment pickustat
if(self.pick_send_status < self.sendStatusBuffdeidth)
send MAC_RLC_Port::status(id: self.sendStatusBuéffeilf.pick_send_status],
ack: self.sendStatusBuffer.ack[self.pick_sendusiat
/I LOG
if(self.sendStatusBuffer.ack[self.pick_send_statisjrue)
LOG::LogInfo(message: "RLC: send status ACK");
LOG::Loginteger(message: self.sendStatusBuffeselflpick_send_status]);

else
LOG::Loglnfo(message: "RLC: send status NACK");
LOG::LogInteger(message: self.sendStatusBuffeseifipick_send_status]);
end if;
/I LOG

self.pick_send_status = self.pick_send_status + 1;
else
LOG::LogInfo(message: "sendStatusBuffer is overéadi);
end if;
/I Go back to idle
generate RLC_TX8:next_OP() to self;

1.12. RLC_TX State[4]:Check_SendStatusBuffer

/I Check if there is any status in sendStatusBulffer inust be sent

if((self.index_sendStatusBuffer > 0) and
(self.sendStatusBuffer.id[self.pick_send_statas)99))
generate RLC_TX7:found() to self;

else
generate RLC_TX9:notfound() to self;

end if;

1.13. RLC_TX State[5]:ReceiveStatusBuffering

/I Check if it is a crapy Status or not (avoid buffgerflow attacks)
if(param.ack == true)

53

if(param.id > 0)
if(self.retransmissionBuffer.char[param.id - 1] “4")
/I Crapy Status discard it
LOG::LogInfo(message: "RLC: Discard crapy ACK");
generate RLC_TX5:buffered() to self;
else
/I Buffer Status that we get from the peer
self.receiveStatusBuffer.id[self.index_receivéBtBuffer] =
param.id;
self.receiveStatusBuffer.ack[self.index_receiat&tBuffer] =
param.ack;
self.index_receiveStatusBuffer =
self.index_receiveStatusBuffer + 1;
LOG::LogInfo(message: "RLC: Buffered ACK");
LOG::LogInteger(message: param.id);
/l Back to idle
generate RLC_TX5:buffered() to self;

end if;

else
/I Crapy Status discard it (ACK 0)
LOG::LogInfo(message: "RLC: Discard crapy ACK");
generate RLC_TX5:buffered() to self;

end if;

elif(param.ack == false)
if(self.retransmissionBuffer.char[param.id] == "%")
/I Crapy Status discard it
LOG::Loglnfo(message: "RLC: Discard crapy NACK");
generate RLC_TX5:buffered() to self;
else
/l Buffer Status that we get from the peer
self.receiveStatusBuffer.id[self.index_receiveStBuffer] = param.id;
self.receiveStatusBuffer.ack[self.index_receivaiuffer] = param.ack;
self.index_receiveStatusBuffer = self.index_ree8tatusBuffer + 1;
LOG::LogInfo(message: "RLC: Buffered NACK");
LOG::Loginteger(message: param.id);
// Back to idle
generate RLC_TX5:buffered() to self;
end if;
end if;

1.14. RLC_TX State[6]:Check_ReceiveStatusBuffer
/ICheck the received status buffer to determine whatild we re-send

/l we have to check if there is any status inénesdStatusBuffer" or not
/I This cannot be simply checked by "index_recetatusBuffer > 0" because
/I after first time that we received an status ttiadex_receiveStatusBuffer”
/l won"t be zero again
tempAckID = self.receiveStatusBuffer.id[self.pickceive_status];
tempAck = self.receiveStatusBuffer.ack[self.pick eige_status];
/I We check temp!=999 because if there was an eSiatiyis on cell (pick_receive_status)
// then we get array out of bound in retransmiBidfer.char[999]
if(tempAckID != 999)
/I if we have NACK in buffer
if(tempAck == false)
if(self.retransmissionBuffer.char[tempAckID] == "Y%
generate RLC_TX9:notfound() to self;
else

54

generate RLC_TX7:found() to self;
end if;
elif(tempAck == true)
/[If it is an ACK delete all PDUs in retransmisssbuffer until the ackID
if(self.retransmissionBuffer.char[tempAckID - H 1%")
j = self.receiveStatusBuffer.id[self.pick_receistatus];

i=0;

while(i < j)
self.retransmissionBulffer.id[i] = 999;
self.retransmissionBuffer.char[i] = "%";
i=i+1;

end while;

LOG::LogInfo(message: "RLC: maintaining
retransmissionBuffer for ACK");

LOG::Loglnteger(message: j);

self.pick_receive_status = self.pick_receivelusta 1;

else
LOG::Loglnfo(message: "RLC: Wrong ACK has been
buffered");
end if;
generate RLC_TX9:notfound() to self;
end if;
else
generate RLC_TX9:notfound() to self;
end if;

1.15. RLC_TX State[7]:Re-sendPDUTOMAC

if(self.pick_receive_status < self.receiveStatus@uii.length)
/I 1f the picked status is a NACK find it in Retramssion Buffer and re-send it again
if(self.receiveStatusBuffer.ack[self.pick_receiviatgs] == false)
i = self.receiveStatusBuffer.id[self.pick_receistatus];
send MAC_RLC_Port::sendPDU(id: self.retransmissiofédl[i],
char: self.retransmissionBuffer.charfi]);
LOG::LogInfo(message: "RLC: re-send " + self.resaissionBuffer.charfi]);
LOG::Loglnteger(message: self.retransmissionBLidfg});
self.pick_receive_status = self.pick_receive ustat 1;
end if;
else
LOG::Loglnfo(message: "receiveStatusBuffer is oeeved!");
end if;
// Back to idle
generate RLC_TX8:next_OP() to self;

1.16. RLC_TX State[8]:Check_SDUBuffer

/I Check if sduBuffer is empty
if(self.index_sduBuffer > 0)
i=0;
flag = false;
while(i < self.sduBuffer.length)
if(self.sduBuffer[i] = "%")
flag = true;
break;
end if;
i=i+1;
end while;
if(flag == true)

55

generate RLC_TX7:found() to self;

else
generate RLC_TX9:notfound() to self;
end if;
else
generate RLC_TX9:notfound() to self;
end if;

1.17. RLC_TX State[9]:CopyToRetransmissionBuffer

/I Copy the SDU that is ready to send in Re-Transsies Buffer and increment pick_sdu
self.retransmissionBuffer.char[self.index_retransiisBuffer] = self.sduBuffer[self.pick_sdu];
self.retransmissionBuffer.id[self.index_retransnissuffer] = self.pick_sdu;
self.sduBuffer[self.pick_sdu] = "%";

self.pick_sdu = self.pick_sdu + 1;

/I Go to SendPDUToMAC State and increment indexanstmissionBuffer

generate RLC_TX2:sendPDU(id: self.retransmissionBudfiself.index_retransmissionBuffer],
char:

self.retransmissionBuffer.char[self.index_retransiisBuffer]) to self;

self.index_retransmissionBuffer = self.index_retraissionBuffer + 1;

1.18. RLC_TX State[10]:SendPDUToMAC

/I Send Signal to the Port

send MAC_RLC_Port::sendPDU(id:param.id , char: paraam)c
LOG::LogInfo(message: "RLC: send PDU " + param.char)
LOG::LogInteger(message: param.id);

//Back to Idle and wait for next TX_OP

generate RLC_TX8:next_OP() to self;

1.19. RLC_TX
LOG::LoglInfo(message: "RLC: There is nothing to sg¢nd
1.20. Receiver_Testcase State[1]:Generate

/1 50 percent chance for sending TX_OP or sendidg P
create object instance r of Random;
r.srandWithCurrentDate();
self.randomtx_OP = r.rand()%2100;
if(self.r-andomtx_OP <= 50)
/lsend TX_OP
MAC_RLC_Port::tx_OP();
LOG::LogInfo(message: "Testcase sent tx_OP");
elif(self.randomtx_OP > 50)
//send PDU
delete object instance r;
create object instance r of Random;
r.srandWithCurrentDate();
/I Send PDU(id, char) which ids can be numbera/&en 0 to 4 randomly
self.randomPDUid = r.rand()%?5;
send MAC_RLC_Port::receivePDU(id:self.randomPDUidrch
self.inputString[self.randomPDUid]);
self.sent[self.randomPDUid]=true;// The flag foetsent character should set to True

/ILOG
LOG::Loglnfo(message: "TestCase sent: " + selfiSming[self.randomPDUid]);

56

LOG::LogInteger(message: self.randomPDUid);
/ILOG
delete object instance r;

end if;

/Iset the timer
create event instance timeout of Receiver_Testdasedut to self;
self.timer = TIM::timer_start(microseconds: 5000080ent_inst: timeout);

1.21. Receiver_Testcase State[2]:Validation_SDU

//Stop timer
st = TIM::timer_cancel(timer_inst_ref: self.timer);

/Icheck if received character is the same as wasibleen sent before
if(self.inputString[self.next] == param.char)
self.received[self.next]=true;
self.next=self.next+1;
generate Receiver_Testcase9:correct() to self;
else
generate Receiver_Testcasel0:error() to self;
end if;

1.22. Receiver_Testcase State[4]:Fail

self.run = self.run + 1;
LOG::LoglInfo(message:"%%% Error occured -- wromgpdviour of system");

1..23. Receiver_Testcase State[5]:Validation_TO
llcheck if we received next(expected one) and weived Timeout as well then Error

if(self.next == self.sent.length) //Avoid array aftbound
generate Receiver_Testcase9:correct() to self;

else
if(self.sent[self.next] == true)
generate Receiver_Testcasel0:error() to self;
else
generate Receiver_Testcase9:correct() to self;
end if;
end if;

1.24. Receiver_Testcase State[6]:Pass
self.run = self.run + 1;

//IDecide whether test is completed
i=0;
flagl=true;
flag2=true;
flag3=true;
while(i<self.sent.length)
if (self.sent[i]==false)
flagl=false;
break;
end if;
i=i+1;
end while;
i=0;

57

while(i<self.received.length)
if (self.received[i]==false)
flag2=false;
break;
end if;
i=i+1;
end while;

i=0;
while(i<self.received_acknowledgement.length)
if (self.received_acknowledgement[i]==false)
flag3=false;
break;
end if;
i=i+1;
end while;

if ((flagl==true) and (flag2==true) and (flag3==¢)
LOG::Loglnfo(message: "---------- Test Completed—");
else
generate Receiver_Testcase8:next() to self;
end if;

1.25. Receiver_Testcase State[8]:Validation_Status

//Stop timer
st = TIM::timer_cancel(timer_inst_ref: self.timer);

if(self.ack == false)
/I we get NACK
if(self.acklD <= self.next)
generate Receiver_Testcase9:correct() to self;
/I Save the NACK status results on received_acledyement
if(self.acklD == self.received_acknowledgememigi)
i=0;
while(i < self.ackID)
self.received_acknowledgement][i] = true;

i=i+1;
end while;
else
self.received_acknowledgement[self.ackID] =dals
end if;
else
generate Receiver_Testcasel0:error() to self;
end if;

elif(self.ack == true)
if(self.ackiD <= self.next)
generate Receiver_Testcase9:correct() to self;
/I Save the ACK status results on received_ackedgdment
i=0;
while(i < self.ackID)
self.received_acknowledgement][i] = true;
i=i+1;
end while;
else
generate Receiver_Testcasel0:error() to self;

58

end if;
end if;

1.26. Receiver_Testcase

/I Keep track of how many times this testcase shbelrun
self.run = param.run;
self.totalRun=param.totalRun;

[l Initialize the input array
self.inputString[0] = "H";
self.inputString[1] = "E";
self.inputString[2] = "L";
self.inputString[3] = "L";
self.inputString[4] = "O";

/I Initialize the Sent and Received arrays

i=0;

while(i <5)
self.sent[i] = false;
self.received]i] = false;
self.received_acknowledgement]i] = false;
i=i+1;

end while;

self.next=0;

self.ack = true; self.ackID = -1;

1.27. Receiver_Testcase

LOG::LoglInfo(message: "Error --- Time out");

1.28. Receiver_Testcase

LOG::LogInfo(message: "State Pass - Time out vitdé);
1.29. Receiver_Testcase

/I save the parameters

self.ack = param.ack;
self.acklD = param.id;

1.30. Receiver_Testcase

LOG::LoglInfo(message: "Error --- ReceiveSDU Validatl);
1.31. Receiver_Testcase

LOG::LoglInfo(message: "Error --- Status Validatign"
1.32. Receiver_Testcase

LOG::LoglInfo(message: "State Pass - Status vatidai
1.33. Receiver_Testcase

LOG::LoglInfo(message: "State Pass - receiveSDWda#bn");

59

1.34. Receiver_Testcase

select any rTest from instances of Receiver_Testcase
if (empty rTest)

LOG::Loglnfo(message:"No Object of Receiver_Testaassts");
else

Generate Receiver_Testcase4:receiveSDU(char: pdramnto rTest;
end if;

1.35. Receiver_Testcase

select any rTest from instances of Receiver_Testcase
if (empty rTest)
LOG::Loglnfo(message:"No Object of Receiver_Testaassts");
else
Generate Receiver_Testcasell:status(ack: parartdaplyam.id) to rTest;
end if;

1.36. Transmitter_Testcase State[1]:Generate

create object instance r of Random;
r.srandWithCurrentDate();

self.randomChoice = r.rand()%100;

self.randomAck = r.rand()%2;

delete object instance r;

//Weird thing about the Random function

/I after third time of usage it only produced evemmbers

create object instance r of Random;
r.srandWithCurrentDate();
self.randomAckID = r.rand()%6;
delete object instance r;

/l Randomly choose between sendSDU or status oRx_O
if(self.r-andomChoice <= 40)
if(self.next < self.inputString.length) // Avoidray out of bound
/I send characters in sequence
nextCharacter = self.inputString[self.next];

LOG::Loglnfo(message: "Transmitter_Testcase: SDtgextCharacter + ")");
send PDCP_RLC_Port::sendSDU(char: self.inputgseignext]);

/I maintain shadow_sdubuffer and sent buffer
self.sent[self.next] = true;
self.next = self.next + 1,

self.shadow_sduBuffer[self.index_shadow_sduBuffenpxtCharacter;
self.index_shadow_sduBuffer = self.index_shadowBsdfer + 1;

end if;
elif((self.randomChoice > 40) and (self.r-andomChgi@&0))
/I randomly send ACK or NACK with random IDs
if(self.r-andomAck == 0)
LOG::LogInfo(message: "Transmitter_Testcase: ACK")
LOG::LogInteger(message: self.randomAckID);

send MAC_RLC_Port::receiveStatus(ack: true, id:seiflomAckID);

/I Maintain shodow_receiveBuffer
if(self.r-andomAckID > 0)
/l Buffer the ACK if it was proper

if(self.shadow_retransmissionBuffer.char[selfd@mAckID -

1] 1= "%")

60

self.shadow_receiveStatusBuffer.id[self.index_shadeceiveStatusBuffer] = self.randomAckID;

self.shadow_receiveStatusBuffer.ack[self.index_sthadeceiveStatusBuffer] = true;
self.index_shadow_receiveStatusBuffer =
self.index_shadow_receiveStatusBuffer + 1;
end if;
end if;
elif(self.randomAck == 1)
LOG::LogInfo(message: "Transmitter_Testcase: NACK
LOG::LogInteger(message: self.randomAckID);
send MAC_RLC_Port::receiveStatus(ack: false, id:rapidomAckID);
/I Maintain shodow_receiveBuffer
if(self.shadow_retransmissionBuffer.char[self.ramé\ckID] != "%")
/I Avoid buffering crapy status

self.shadow_receiveStatusBuffer.id[self.index_skadeceiveStatusBuffer] = self.randomAckID;

self.shadow_receiveStatusBuffer.ack[self.index_shadeceiveStatusBuffer] = false;
self.index_shadow_receiveStatusBuffer =
self.index_shadow_receiveStatusBuffer + 1;
end if;

end if;
elif(self.randomChoice >= 60)

/I send tx_OP

LOG::LogInfo(message: "Transmitter_Testcase: 3gn@P");

send MAC_RLC_Port::tx_OP();
end if;

//Set timer
create event instance timeout of Transmitter_Tesf&dimeout to self;
self.timer = TIM::timer_start(microseconds: 7000080ent_inst: timeout);

1.37. Transmitter_Testcase State[2]:ValidationPDU

/I Stop Timer
st = TIM::timer_cancel(timer_inst_ref: self.timer);

/I Check what we have sent
if(self.r-andomChoice <= 40)

/I SDU has been sent, and we get PDU without tx_OP

generate Transmitter_Testcase4:error() to self;
elif((self.randomChoice > 40) and (self.r-andomChai@&9))

/l Status has been sent, and we get PDU witho@Rx

generate Transmitter_Testcase4:error() to self;
elif(self.randomChoice >= 60)

/l We have sent tx_op

/I First check if we have anything to re-send dawme shadow_receiveStatusBuffer
1l (check shadow_receiveStatusBuffer and shadovanshisssionBuffer)

if(self.shadow_receiveStatusBuffer.id[self.pick_dtna_receiveStatusBuffer] != 999)

/I There is something in shadow_status_bufferyNbeck retransmissionBuffer

tempAck =
self.shadow_receiveStatusBuffer.ack[self.pick_shadewaeiveStatusBuffer];

tempAckID =
self.shadow_receiveStatusBuffer.id[self.pick_shadeweeiveStatusBuffer];

if(tempAck == false)

/I Picked status was a NACK, increment the

61

pick_shadow_receiveStatusBuffer

self.pick_shadow_receiveStatusBuffer =
self.pick_shadow_receiveStatusBuffer + 1;

if(self.shadow_retransmissionBuffer.char[tempAzkl=

")
/I There was something to be re-sent
if(param.id ==

self.shadow_retransmissionBuffer.id[tempAckID])

/I Check if PDU we get

(param.id) is equal to what we had to re-send

self.received[param.id] =
true;
generate

Transmitter_Testcase3:correct() to self;

else
generate
Transmitter_Testcase4:error() to self;
end if;
else
/I Nothing in retransmissionBuffer (No PDU
should be sent)
generate Transmitter_Testcase4:error() to
self;
end if;

end if;
else
/[There is no PDU to be re-sent, Check SDU Buffer
if(self.index_shadow_sduBuffer > 0)
/I Maintain shadow_retransmissionBuffer

self.shadow_retransmissionBuffer.char[self.indeadshv_retransmissionBuffer] =
self.shadow_sduBuffer[self.pick_shadow_sduBuffer];

self.shadow_retransmissionBuffer.id[self.index_sivadetransmissionBuffer] =

self.pick_shadow_sduBuffer;

self.pick_shadow_sduBuffer = self.pick_shadow Badter +
1

self.index_shadow_retransmissionBuffer =
self.index_shadow_retransmissionBuffer + 1;

/ICheck if the PDU we got(param.id) is equal to
1l the PDU that we have to send for the finsteti

if(param.id ==
self.shadow_retransmissionBuffer.id[self.index_shadetransmissionBuffer - 1])
/IMaintain shadow_sduBuffer and received

buffer
self.shadow_sduBuffer[self.pick_shadow_sduBuffe} = "%";
generate Transmitter_Testcase3:correct() to
self;
else
generate Transmitter_Testcase4:error() to
self;
end if;

else
/I There was nothing to send at all but we gotP
generate Transmitter_Testcase4:error() to self;

62

end if;
end if;
end if;

1.38. Transmitter_Testcase State[5]:ValidationTO

I/l Check what has been sent before (tx_OP or SDAGH or NACK)

if(self.r-andomChoice <= 40)

/l We have sent SDU, RLC buffered it and we get dinte

generate Transmitter_Testcase3:correct() to self;

elif((self.r-andomChoice > 40) and (self.r-andomChei&9))
/I We have sent Status (ACK or NACK), RLC bufferedrit we get timeout

generate Transmitter_Testcase3:correct() to self;

elif(self.randomChoice >= 60)

Il We have sent tx_OP and got timeout

/I Check if RLC had any received status to re-send(®&arch shadow_receiveStatusBuffer)

haveRetransmission = false;

haveSDU = false;

tempAck = self.shadow_receiveStatusBuffer.ack[sielf. shadow_receiveStatusBuffer];
tempAckID = self.shadow_receiveStatusBuffer.id[patk_shadow_receiveStatusBuffer];

if(tempAckID != 999)

/I There is something on receiveStatusBuffer
if(tempAck == true)
/I We picked an ACK, nothing should be re-send

/I Maintain received Buffer and retransmissionBuff

999;

"o

self.pick_shadow_receiveStatusBuffer + 1;

else

"%%")

that must be re-sent for that NACK

self;

self;

end if;

i=0;

while(i < tempAckID)

end while;

self.shadow_retransmissionBuffer.id[i] =
self.shadow_retransmissionBuffer.char[i] =

self.received]i] = true;
i=i+1;

self.pick_shadow_receiveStatusBuffer =

/I We picked a NACK
if(self.shadow_retransmissionBuffer.char[tempAzkl=

else

end if;

/I There is a PDU on retransmissionBuffer

haveRetransmission = true;
generate Transmitter_Testcase4:error() to

generate Transmitter Testcase3:correct() to

/I Check if RLC had any SDU to send (search shadowBsifer)
elif(self.index_shadow_sduBuffer > 0)

i=0;

while(i < self.shadow_sduBuffer.length)
if(self.shadow_sduBufferfi] != "%")

63

haveSDU = true;
break;
end if;
i=i+1;
end while;
if(haveSDU == true)
generate Transmitter_Testcase4:error() to self;
end if;
end if;
if((haveRetransmission == false) and (haveSDU atse))
generate Transmitter_Testcase3:correct() to self;
end if;
end if;

1.39. Transmitter_Testcase State[6]:Pass

//Decide whether test is completed
i=0;
flagl=true;
flag2=true;
while(i<self.sent.length)
if (self.sent[i]==false)
flagl=false;
break;
end if;
i=i+1;
end while;
i=0;
while(i<self.received.length)
if(self.received[i]==false)
flag2=false;
break;
end if;
i=i+1;
end while;

if ((flagl==true) and (flag2==true))

LOG::Loglnfo(message: "---------- Test Completed—");
else

generate Transmitter_Testcase6:next() to self;
end if;

1.40. Transmitter_Testcase State[7]:Fail

LOG::Loglnfo(message:"%%% Error occured -- wromgpdviour of system");
self.run = self.run + 1;

1.41. Transmitter_Testcase

/I Keep track of how many times this testcase shbelrun
self.run = param.run;
self.totalRun = param.totalRun;

/I Initialize the inputString array
self.inputString[0] = "H";
self.inputString[1] = "E";
self.inputString[2] = "L";
self.inputString[3] = "L";

64

self.inputString[4] = "O";

/I Initialize the shadow_receiveStatusBuffer, shad@iransmissionBuffer
/I and shadow_sduBuffer arrays

i=0;

while(i < self.shadow_receiveStatusBuffer.id.length)
self.shadow_receiveStatusBuffer.id[i] = 999;
self.shadow_receiveStatusBuffer.ack[i] = false;
self.shadow_retransmissionBuffer.id[i] = 999;
self.shadow_retransmissionBuffer.char[i] = "%";
self.shadow_sduBuffer[i] = "%";
i=i+1;

end while;

/I Initialize the sent arrays

i=0;

while(i < self.sent.length)
self.sent[i] = false;
self.received(i] = false;
i=i+1;

end while;

/I inputString array index (points to next charactesend)
self.next = 0;

/I Shadow Buffers indeces (0 means buffers are mpty
self.index_shadow_sduBuffer = 0;
self.index_shadow_receiveStatusBuffer = O;
self.index_shadow_retransmissionBuffer = 0;
self.pick_shadow_sduBuffer = 0;
self.pick_shadow_receiveStatusBuffer = 0;

1.42. Transmitter_Testcase

LOG::LoglInfo(message: "Time-out validation Error");

1.43. Transmitter_Testcase

LOG::LogInfo(message: "Testcase: State pass (Tidatadin)");
1.44. Transmitter_Testcase

LOG::LoglInfo(message: "Testcase: State pass (PDidatan)");
1.45. Transmitter_Testcase

LOG::LoglInfo(message: "PDU validation Error");

1.46. Transmitter_Testcase

select any tTest from instances of Transmitter_Ceest;

if(lempty tTest)

LOG::LoglInfo(message: "There is no object of Traiter_Testcase exists");
else

generate Transmitter_Testcase2:sendPDU(id: pataahar: param.char) to tTest;
end if;

65

2. Class Operations
2.1. RLC:AM:RLC_Dispatcher: initializeRLC

create object instance rlc_tx of RLC_TX;
create object instance rlc_rx of RLC_RX;
relate rlc_rx to rlc_tx across R1;

/lInitialize TX Indices (0 means there is nothimgouffer yet)
rlc_tx.index_sendStatusBuffer = 0;
rlc_tx.index_receiveStatusBuffer = 0;
rlc_tx.index_sduBuffer = 0;

rlc_tx.pick_send_status = 0O;

rlc_tx.pick_receive_status = 0;
rlc_tx.index_retransmissionBuffer = O;

rlc_tx.pick_sdu = 0;

/lInitialize sendStatusBuffer

i=0;

while(i < rlc_tx.sendStatusBuffer.id.length)
rlc_tx.sendStatusBuffer.id[i] = 0;
rlc_tx.sendStatusBuffer.ack]i] = false;
i=i+1;

end while;

/Nnitialize receiveStatusBuffer

i=0;

while(i < rlc_tx.receiveStatusBuffer.id.length)
rlc_tx.receiveStatusBuffer.id[i] = O;
rlc_tx.receiveStatusBuffer.ack]i] = false;
i=i+1;

end while;

[Nnitialize sduBuffer

i=0;

while(i < rlc_tx.sduBuffer.length)
rlc_tx.sduBuffer[i] = "%";
i=i+1;

end while;

lnitialize retransmissionBuffer

i=0;

while(i < rlc_tx.retransmissionBuffer.id.length)
rlc_tx.retransmissionBuffer.id[i] = 0;
rlc_tx.retransmissionBuffer.char[i] = "%";
i=i+1;

end while;

/lInitialize RX Indices (0 means there is nothinguffer yet)
rlc_rx.index_receptionBuffer = 0;
rlc_rx.expected_id = 0;

/lInitialize receptionBuffer

i=0;

while(i < rlc_rx.receptionBuffer.id.length)
rlc_rx.receptionBuffer.id[i] = 0;
rlc_rx.receptionBuffer.char[i] = "%";

66

i=i+1;
end while;

2.2. TestFramework:TestCases:Random: rand

I*

/I * C style rand() function.

/I * Outputs a random unsigned integer.

/I * 1dea from: http://www.agner.org/random/

/I * -->"Uniform random number generators in C++"
I *

/I * This is a multiply-with-carry type of randomumber generator
/I * invented by George Marsaglia.

I *

/I * 1t sort of works the same way. Although OAL

/I * limits certain things, like casting betweeifferent

/I * bit sizes. Although this implementation seeimsvork
/I * good enough for this little Hotel Project :)

)

sum = 2111111111 * self.x[3] +
1492 * self.x[2] +
1776 * self.x[1] +
5115 * self.x[0] +
self.x[4];

self.x[3] = self.x[2];

self.x[2] = self.x[1];

self.x[1] = self.x[0];

l/self.x[4] = sum * ::pow(a: 2, n: 32);

self.x[4] = sum * (1073741824); /| * 2730, 2"32 aflews, this is the carry anyway

self.x[0] = sum; /I Lower 32 bits of the sum

if(self.x[0] < 0)

return (-self.x[0]);
else

return self.x[0];
end if;

2.3. TestFramework:TestCases:Random: srand

I*

/I * srand(seed)

/I * Initiates the random function with

/I * the specified seed.

/I * 1dea from: http://www.agner.org/random/

/I * -->"Uniform random number generators in C++"
)

i=0;
s = param.seed;

/l Make random numbers and put them into the bsiffer

while(i<5)
S =s *28843829 - 1,
self.x[i] = s;
i =i+1;

end while;

67

/l Randomize some more

i=0;

while(i<19)
n = self.rand();
i=i+1;

end while;

2.4. TestFramework:TestCases:Random: srandWithCurrerDate

)
/Il Seeds the random generator with the curreet da
/)

d = TIM::current_date();

t = TIM::get_year(date: d) +
TIM::get_month(date: d) +
TIM::get_day(date: d) +
TIM::get_hour(date: d) +
TIM::get_minute(date: d) +
TIM::get_second(date: d);

self.srand(seed: t);

2.5. TestFramework:TestCases:Tracker: set_nr_ReceiveTestCase
self.nr_Receiver_TestCase=param.run;

2.6. TestFramework:TestCases:Tracker: get_nr_Transmitte TestCase
return self.nr_Transmitter_TestCase;

2.7. TestFramework:TestCases:Tracker: get_nr_ReceivellestCase
return self.nr_Receiver_TestCase;

2.8. TestFramework:TestCases:Tracker: setup

/Isetting up the system

// Initializing the number of running testcases
self.nr_Transmitter_TestCase = 0;
self.nr_Receiver_TestCase = 0;

//ISS-Comented because just work on Receiver side
/IRun testcases randomly

/[create object instance r of Random;
[Ir.srandWithCurrentDate();

[ltemp=r.rand()%?2;
[lif (temp==0)

Generate Transmitter_Testcasel:create(totalRurtosgRun, run: self.nr_Transmitter_TestCase)
to Transmitter_Testcase creator;
[lelif(temp==1)

/IGenerate Receiver_Testcasel:create(totalRurtosaliRun, run: self.nr_Receiver_TestCase) to
Receiver_Testcase creator;
/lend if;

LOG::LoglInfo(message: "Testcases are instantiated")

68

2.9. TestFramework:TestCases:Tracker: set_runs
self.runs[param.run] = param.result;

2.10. TestFramework:TestCases:Tracker: get_runs
return self.runs[param.run];

3. Domain Functions

3.1. TestFramework: init

create object instance t of Tracker;
t.setup();

69

Appendix B

3GPP (3rd Generation Partnership Project) Radi& Gantrol Sub Layer:
RLC (Radio Link Control) Architecture:

An RLC entity receives RLC SDUs from upper layed aends them to lower layer,
and vice versa. The RLC could be a Control PDU atalPDU. Data PDU can either
be AMD PDU or AMD PDU segment, while Control PDUresents STATUS PDU.
RLC communicates with upper layer (PDCP) througtglei SAP and after forming
PDU, it sends it to lower layer (MAC). RLC entitpramunicates with its peer RLC
entity via logical channel. RLC entity could be @igared to work in three different
modes: TM, UM and AM. This research will focus oMARLC mode.

RLC SDUs are exchanged }

upper layer {ie. RRC layer or PDCP sub layer) W}th upper |a\,-‘Ei’5
| { |
.___[, (—'— — —— —— —— B SAP between _|

{ ¥ — 7 —— 1 upper layers

¥ | ¥ | ¥
tranar;itﬁn?g recanng trn‘nsmtttmg sz eNB
T™ RLC entity TH ALC entity UM RLE entity UM RLC entity
A
— i ,_#_ logical |
- B Fy | channel
lower layers
(i MAG sub layer and physical

radio interfaca

lower layers

(ie. MAGC sub layer and physical layer) ‘

s — —L =Y logical |
| ‘T’ N——ti # | '(_ﬁ channel
¥ k. J L J
receivi transmitti raceiving transmitti .
TMRLE ersity ™ mcm UM RLO antity LM L antity oL etay UE
F Y A F Y
"‘!_CE —l—\ /—é—\ ,—l— ,—l—\ l SAP between _|
et — — " upper layers
! | v [y

upper layer {i.e. RRC laver or PDCP sub layer) = RLC SDUS are exchanged
with upper layers

AM (Acknowledge Mode) RLC entity:
How AM RLC works:

An AM RLC consists of transmitting and receivinglesi Transmitting side receives
SDUs from upper layer and, after forming PDUs, settém to its peer AM RLC via
lower layer. Receiving side receives PDUs frompégr RLC via lower layer. After
reassembling SDUSs, it delivers them to upper layer.

These points apply to RLC entities:

1. RLC SDUs are supposed to support byte aligned blarsizes.
2. RLC PDUs are formed only when notified by transmeissopportunity from
lower layer.

70

An AM RLC can be configured to communicate via tlegical channels: DL/UL
DCCH or DL/UL DTCH)

AM mode is suitable because it is:
1. Reliable for sequence delivery service
2. Suitable for carrying TCP traffic

AM RLC is illustrated in the following chart:

Receive From Copy SDU Retransmission
PCDP Buffgr (Sbu
T
wn
o
C
= =

Transmission Buffe

<32!s

MAC handels this se*

Send this PDU

@ again Send to PCD
< TT

Reassemble SC

Segmentatipn & T
Concatanation(SDU) Remove Head
J L 1rC
Add Heade Is it complete PDU
J L 1rC
Pass PDU to Mz Receive PDU to Me

The transmitting side supports transmission of RRDUs using ARQ(Automatic

Repeat Request). It means that, when Transmittidg sreates PDU for each
opportunity, it should be re-segmented by RLC isecBRDU doesn't fit notified size.

The number of re-segmentation is not limited. Ithbmases, PDU formed from SDU or
PDU segment formed from PDU should contain relevaaider.

Receiving side, as soon as PDU has been receihiedks whether it is received as
duplication, and then reorders RLC PDUs in casg Hre received out of sequence,
detect the loss of RLC PDUs at lower layer, requésinsmission to its peer AM RLC
entity, reassembles RLC SDUs from reordered RL@ &&Us and delivers SDUs to
upper layer following the Sequence Number order.

An Overview on Data transmission in transmittingesof AM RLC:

71

1.Receive SDU From PD(

2. Add SDU To transmit Buffi

3. Segmentation and Concatenation when the
MAC scheduler permits transmission.

4. keep a copy for retransmiss

5. Add RLC Header to the RLC PI

6. Pass to MAC sub layer in order to transfer oyer
air by MAC

Services which exist in this domain:

RLC

provides a service for upper layer called dedasfer. Lower layer provides two

services: data transfer and notification, in otdestnnounce transmission opportunity.

Functions which are supported by RLC layer:

Transfer of upper layer PDUs

Error correction through ARQ

Concatenation, segmentation and reassembly of RRTsS
Re-segmentation of RLC data PDUs

Reordering of RLC data PDUs

Duplicate detection

RLC SDU discard

RLC re-establishment

Protocol error detection and recovery

The amount of data available for transmission:

First,

MAC requests from RLC information about dabie data for transmission, in

order to estimate size of PDU. Then, RLC calculaies according to these buffered

data:

1.
2.
3.

SDUs which are not yet formed as PDUSs.

PDUs and PDU segments which are pending for retreasson.

In case of STATUS PDU is triggered but t-Statusiriolis not running or has
expired, RLC should estimate the size of STATUS PiDUWext transmission
opportunity.

Finally, MAC estimates PDU size according to resulf RLC size calculation, and
lower layer traffic.

72

At re-establishment time, receiving side shouldbfelthe following steps:

1. Reassemble RLC SDUs from the RLC data PDUs, whiehreceived out of
sequence, and deliver them to upper layer.

2. Discard any remaining data PDU which is not usi&fuleassembling.

3. Initialize relevant state variables and stop rehvaners.

Abbreviations:

VT (A): Acknowledged State Variable

VT (MS). Maximum Send State Variable

VT(S): Send State Variable

VR(R): Receive State Variable

VR (MR): Maximum Accepted Receive State Variable
VR(X): Reordering State Variable

VR (MS): Maximum STATUS Transmit State Variable
VR (H): Highest Received State Variable

AM Data transfer: (Transmit operations)

Transmitting side:

A) The transmitting side should prioritize data fiansmission according to this:

1. Control Data PDU
2. Data PDU pending for Retransmission
3. Data PDU

B) The transmitting side should maintain window ti@nsmission:

If VT (A) <= SN< VT(S), SN falls in transmission mdows. Otherwise it falls outside.
Transmitting side should not send any PDUs withtls falls outside of this window.
C) After delivery, transmitting side should set 8&\VT(S) and then increment VT(S).

D) If PDU is successfully received by its peer Rltkis transmitter RLC will receive a
positive acknowledgement as STATUS PDU from it pdeC entity.

E) When receiving positive acknowledgement, reogvside will set SN=VT(S),
where VT (A) <= SN< VT(S), and set VT (A) = SmalleSN awaiting
acknowledgement.

73

VT (A) <= SN< VT(S)

SN=VT(S) VT(S) = VT(S) +:

VT (A) = Smallest SN awaiting
acknowledgement

Deliver SDU to upper layer (if positive
acknowledgement has been received for al
parts of SDU)

AM Data transfer: (Receive operations)

Receiving side:

A) The Receiving side should maintain window aslasgltransmitting:

If VR(R) <= SN< VR (MR), SN falls in Receive wind@wvOtherwise it falls outside.
Receiving side should not send any PDUs with SNfdis outside of this window.
B) After Receiving PDU, receiving side should de thllowing:

1) Discard received PDU

2) Place PDU in reception buffer

3) Update state variables

4) Reassemble SDU and send it to upper layer

5) Start/stop t-Reordering (in case t-Reordering espistate variable should be
updated and t-Reordering started)

An Overview on Data transmission in Receiving &M RLC:

1. Receive PDU from MAC sub lay

2. Remove RLC Head

3. Mark for positive Acknowledc

4. Reassemble SC

5. Pass to PCL

74

An Overview on receiving positive acknowledgement:

Receive posive Acknowledaq

Remove from Retransmission Qu

Update the receive SN to allow further
transmission

ARQ (Automatic Repeat Request) works in the followingy: When Transmitting
side of AM RLC receives negative acknowledgementieimands from transmitting
side, having in mind that it saved a copy of allURDn re-transmission buffer, to send
that PDU again. In case if Mac cannot handle the, $i should make re-segmenting.

An Overview on receiving Negative acknowledgement:

Receive Negative Acknowled

Extract PDU (needs to retransmiss

Retransmit the buffer (Re-segment, in case of
Mac cannot handle that size)

Forming PDU from SDU:
There are two types of PDUs:

1. Data PDU
2. Control PDU (STATUS PDU)

1. Data PDU:

Data PDU consists of 2 parts: pure data which lvéglfetched from SDU and header for
each SDU, which consists of fixed and extended. fpéxed part additionally contains

some specifics fields. A set of E and LI comes freach data element which is
complete SDU or a portion of it.

AMD PDU Specific Fields:

D/C field: indicates whether the RLC PDU is a RLC dai2U or RLC control PDU (1
bit).

RF field: indicates whether the RLC PDU is an AMD PBLAMD PDU segment. Re-
segmentation Flag (1 bit)

P field: indicates whether the transmitting side asf AM RLC entity requests a
STATUS report from its peer AM RLC entity .(Polling bit (P) — 1 bit)

75

SN field represents the sequence number of the qgameling AMD PDU (For an AMD
PDU segment, the SN field represents the sequamober of original AMD PDU from
which the AMD PDU segment was constructed from).

The sequence number is incremented by one for &My PDU.

If we take different data elements from differemil% and put them in one PDU, one
set of E and LI will exist for each data elementewhE indicates that the following
fixed header has one data element with length LI.

For estimating the size of PDU header, the follgnagorithm has been suggested:

oc[RE[P] B TET] SN Oct 1
SN Oct 2

E \ Ll Oct 3
LI, | E [LLike=3) Oct 4

L, Oct 5

Present if

o 3 E | [Oct [2.5+1 5+K-4]

Llce [E] Ly Oct [2.5+1 5+K-3]

[Ot [2.5+1 5%K-2]

E | Li Oct [2.5+15+K-1]
Ll | Padding Oct [2.5+1 5+K]

Data Oct [2.6+15%K+1]

Oct N

Algorithm for Header size:
X=Number of elements -1
Each AM PDU consists of:

1. Header: which consists of two parts(fixed part aatlof Es and LIs) =1.5
X
2. Data
1. fixed ; Size 6 hits =2 bytes
2. Extension ; Size=15X
3. padding: ; Size = (rbcase of X is odd)

If (X) is ‘odd’

TherHeader size =2.5 + (X) *1.5
Else Header size = 2+ (X) *1.5

2. Control PDU (STATUS PDU)

When transmitter sends PDU to its peer via lowgerareceiver should send back
Status PDU to indicate whether it received comptigtia. So, STATUS PDU is used to
send acknowledgement for received PDUs. It congibtpayload and RLC control
PDU header.

The ACK_SN field shows SN of the next not received RLC DalbdJP which is not
reported lost in the STATUS PDU.

NACK SN, SOstart, SOend indicate PDU which is lost.

76

The CPT Field represents type of RLC control PDU.

SOstart : The SOstart field represents portion of AMD PRlith SN = NACK_SN
that has been detected lost at the receiving dideecAM RLC entity. For estimating
the size of STATUS_PDU, the following algorithm Heeen suggested:

I | | | | | | I I
I T I T T T I I 1

[Dic] cPT | ACK SN | Oct 1
ACK SN | E1] Oct 2

NACK SN Oct 3

EEREE NACK SN Oct 4
NACK SN [E] B] Oct 5

SOstart Oct 6

SOstart | SCend | Oct7

SOend Oct 8

SOend | NACKSN Oct 9

Each STATUS PDU consists of:
1. Header : fixed part including D/C and CPT ; Siz4 bits

2. Payload: consists of Ack-SN, Nack-SN, E1, E2, gugs$Ostart , SOend
1. Fixed part (D/C and CPT); Size = 4 bits

2. Ack SN + E1 ' Size=10+1
""""""" Fiedpat :Size = 15 bits

3. Nack SN + E1 + E2 +SOstart+ SOend :

; Size: either (10+2) or (10+2+15+15))

Variable part ; Size = N_whole_SNL®2) + N_segment * (10+2+15+15))

Status_PDU_size = Round_up to_full_byte(15 + N_wh8N * (10+2) + N_segment
* (10+2+15+15))

Status_PDU_size = RoundUp((15 + N_whole_SN 6+) + N_segment *
(10+2+15+15)) /8) *8

77

