

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, January 2012

Status of Empirical Research in Component
Based Software Engineering

A Systematic Literature Review of empirical studies

Master of Science Thesis in Software Engineering and Management

BHARATH TEKUMALLA

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Status of Empirical Research in Component Based Software Engineering
A Systematic Literature Review of the empirical studies

BHARATH TEKUMALLA

© BHARATH TEKUMALLA, January 2012.

Examiner: ROBERT FELDT
Supervisor: SVEN-ARNE ANDRÉASSON

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden January 2012

 3

ACKNOWLEDGEMENTS

First, I would like to express my deepest gratitude to my supervisor Dr. Sven-Arne
Andréasson for his continuous support and guidance throughout my work.

Finally I’m grateful to my family and friends who were always there to attend my needs
and I’m happy for their care, best wishes and blessings.

4

Abstract

Objective: In this paper we present a systematic literature review of the empirical
research in Component Based Software Engineering (CBSE). CBSE has evolved as a
popular software development methodology since the introduction of Microsoft’s
Component Object Model (COM) in the early 90s. The purpose of CBSE is to develop
systems by incorporating various independent yet well-defined software pieces in the
name of components. The objective of this study is to identify the amount of empirical
research done, the types of empirical studies and the research topics that are being
discussed in the literature.

Method: We performed a systematic literature review of the papers that were published
between January 1995 and August 2011. CBSE attained much of the industry’s
attention only after the introduction of Microsoft’s COM, Sun Microsystems’s
JavaBeans and OMG’s CORBA in the early 90s which showed up after 1993, thus we
chose 1995 as the starting point for research on CBSE. We followed the guidelines of
Kitchenham in performing the review.

Results: We found 47 papers which is the amount of empirical research that has been
done during this period. Case study research and Experimentation were the most
prevalent and preferred research methodologies which constituted 40.5% and 42.5%
respectively. The research topics that were the most discussed among these papers are
Implementation of Components, Selection of Components and Quality of Components
which constituted 14.9%, 12.8% and 10.6% respectively.

Conclusion: From this study we found certain areas of CBSE (Integration, Testing and
Storage of Components) which we consider necessary to be researched through
Industrial Case Studies and Experiments as valuable insights of the current-state-of-
practice in the industry can be explored. Regarding the industrial empirical research we
observed that much of the studies were done in Europe where we highlight the need for
a more geographical prevalence of industrial research considering the benefits of a
socio-economic and business environment. Finally, we identified few interesting topics
or subjects regarding the CBSE process which were not focused in the empirical
research that has been done so far.

 5

Table of Contents

1. Introduction ... 7

2. Background .. 8

2.1 Software Components ... 8

2.2 Component Based Software Engineering process .. 10

3. Method .. 13

3.1 Research questions ... 13

3.2 Search process .. 14

3.3 Study selection .. 15

3.4 Process followed ... 15

3.5 Quality assessment ... 16

3.6 Data collection and analysis ... 18

4. Results ... 18

4.1 RQ1 – How much empirical research has been done 18

4.2 RQ2 – Types of empirical studies .. 20

4.3 RQ3 – Research topics being addressed ... 21

5. Discussion ... 23

5.1 Case Studies .. 23

5.2 Experiments .. 28

5.3 What’s missing? ... 32

6. Current state of CBSE ... 32

6.1 Implementation of Components .. 33

6.2 Selection of components .. 34

6.3 Quality of Components ... 36

6.4 Reusability of components .. 37

6.5 CBSD Process ... 39

6.6 Performance of components ... 40

6.7 Component Testing .. 41

6.8 Storage of components .. 42

6.9 Integration of components .. 43

6.10 Implementation and Maintenance of components 43

6.11 Design and Implementation of components ... 44

6.12 Component Architecture .. 44

6.13 Maintenance of components ... 45

6.14 Extensibility of components .. 45

6

7. Limitations of this study .. 46

7.1 Completeness .. 46

7.2 Data synthesis ... 46

7.3 Potential bias ... 46

8. Future work ... 47

9. Conclusion .. 47

10. References ... 48

 7

1. Introduction

In 1980 object oriented technology came into existence and that enabled software reuse
in a broader scope including the reuse of class analysis, design and implementation [1].
Many object oriented C++ class libraries were developed as reusable software packages.
Thus object oriented technology steered the evolution of component technology from
reusable functional libraries to object class libraries. In 1990 many large corporations
(IBM, HP, Lucent Technologies) launched enterprise oriented software reuse project to
develop domain specific business components for product lines using object oriented
technology [1]. At this point of time the Object Management Group (OMG) began to
standardize an open middleware specification for distributed middleware application
systems and developed Common-Object Request Broker Architecture (CORBA). The
object management group also specified a set of CORBA object services that defined
standard interfaces to access common distribution services, such as naming transactions
and event notification and all these are done to provide a high level reusable
components [1].

Component Based Software Development or Engineering (hereafter we use CBSD and
CBSE interchangeably) has evolved as a popular software development methodology
since the introduction of Microsoft’s Component Object Model (COM) in the early 90s.
CBSD is claimed to be a process that produces software of high quality and also a
process that reduces the product’s time-to-market, which are the characteristics that are
considered by the industry to be vital for a software product. In this development
methodology major emphasis is put on disintegration of the designed systems into
practical and logical reusable components. Apart from the characteristics mentioned just
before, reusability and reusable components are also the vital aspects which stand as the
backbone for the CBSD process. There has been an abundant amount of research done
on various aspects, phases and characteristics of the CBSD process since its inception in
the industry.

To this end, we wanted to review the literature that has been published on empirical
research of CBSD since 1995 through 2011. We were interested to explore the state of
empirical research on CBSD to see that if there are any areas of CBSD that are yet to be
touched in the research process. The reason for focusing particularly on the ‘empirical’
studies is that empirical studies are the proofs of the hypothesis such as the one that we
mentioned just before, about the industry’s perception of CBSD process.

Prior to our study we read some of the literature in Software Engineering to get a
complete understanding of how a literature review is to be performed and finally
followed Kitchenham’s guidelines for conducting a systematic literature review [2].

A significant work and the one that we mostly followed in our study was done by [3]
which is a literature review of empirical studies conducted in Software Engineering that

8

were published in the journal – Empirical Software Engineering. Other works that
motivated us were done by [4] and [5] as both the studies are purely based on the
guidelines proposed by Kitchenham.

The rest of the paper is structured as follows: section 2 provides the background of this
study which covers an overview of the process CBSD, section 3 explains the method we
followed for this study at length, section 4 presents the results of our study, section 5
presents a discussion of the results, section 6 presents a summarizing picture of the
current state of knowledge of CBSE, section 7 presents the limitations of this study,
section 8 presents the future work that could be done which will finally be followed by
the conclusion in section 9.

2. Background

In this section we present a general explanation of the CBSD process and its
characteristics. This covers the description of Software Components and different
phases of the CBSD process.

2.1 Software Components

The engineering practice of developing systems out of integrating individual parts that
have independently been standardized and defined has been with us for some time now.
This in fact dates back to the mechanization era and also the days of Henry Ford [6].
There are many pros associated with this form of engineering, among them including;
marketing takes a short time, the cost and time associated with maintaining these
systems is considerably low and most importantly these pieces can be reused across
different products [7]. CBSD finds its inspiration from the success achieved by this
engineering approach and with the aim of applying this engineering practice, the
component based software development is adapted to develop systems by incorporating
various independent yet well-defined software pieces in the name of components.

There is still some ambiguity when trying to virtualize the concept of components in
software engineering, whereas in the other engineering disciplines the various
components are touchable and therefore physical in sense and easier to grasp the
concept of components, in software engineering this is not clearly defined. It is evident
that the practice of components is really popular given the number of definitions one
can find. There are at least fifteen definitions trying to give meaning to components but
out of all we chose the definition provided by [8] as it gives out a small yet
comprehensive picture of a software component. According to [8] the concept of
components can best be approached from the perspective of its fundamental
characteristics in order to fully understand it. His definition goes as follows –

 9

“A software component is a unit of composition with contractually specified
interfaces and context dependencies only. A software component can be deployed
independently and is subject to composition by third parties”.

This definition also highlights the major properties of software components that are not
addressed in traditional software modules. The most important characteristics of any
component are its interfaces.

The interface specifies the entry point or the access point, to the functions of the
particular component. These functions in most cases comprise all the operations
contained in a component. However there is a distinction between two particular
interfaces; a required and provided interface. Whenever a component makes a request
for functionality for the purpose of accurate operation this interface is called as required
interface. On the other hand, whenever this component is describing its own
functionality this interface is called as a provided interface. From this we can see that
the purpose of an interface is to enable a component to interact with other components
and with that of the external environment which furthermore helps link these
components together.

Despite the fundamental character of component concept and interface, there is a notion
of component model. The component model provides a benchmark for which all the
properties and restraints of the component and their manipulation tools must fulfill. The
main concern for component model is towards the provision of component
characteristics specification rules and components composition mechanics and rules
with inclusion of properties. From this perspective it is therefore proper to say that the
standardization keystone for software development is defined in the component model.

Looking at what [7] view components as; they define them on the basis of component
model –

“A software component is a software facet that is conventional to the component
model and can be independently setup and composed with no amendment
according to a composition custom”.

The component based software development process is performed based on a well-
defined component model with consistent component standards and approaches to
support component interactions, customization, packaging and deployment. Before
beginning of the development process, component domain analysis and modeling is
performed first in order to come out with a domain-specific business model to support
the definition of the components requirements.

10

Figure 1 Component diagram in UML

Component oriented UML is used to define components by specifying component use-
cases object-oriented structure and dynamic behaviors. Figure 1 shows an example of a
university’s administrative system developed in UML’s component diagram. This
example is shown to give an understanding about the approach for domain modeling
and analysis. UML has been the most preferred way for modeling since the beginning of
the Object Oriented era. As we mentioned before that objected oriented technology has
paved the way for component oriented concept, the component oriented technologies
inherit the characteristics of object oriented technologies such as this example of
domain modeling and the use of UML for it.

2.2 Component Based Software Engineering process

The life cycle of component-based software development flow seems to be a standard
waterfall development process but bear in mind that increments and iteration will occur.
Incremental development is a technique for identifying priorities and delivering high
priority items first. Iteration is a technique where a basic infrastructure is built upon,
here the infrastructure maps to software development as early versions of software
evolve over time. Figure 2 taken from [9] provides a clear picture of the CBSD when
incorporated into the traditional waterfall process.

[9] also presents a very comprehensive description of CBSD in regard to its various
phases of development. We present a summarizing description of their work with
respect to the phases of the process as follows –

 11

Figure 2 Component based Waterfall product lifecycle [9]

The component-based software engineering process consists of the following six
phases:

• Requirements Analysis

• Design

• Component identification and customization

• System Integration

• System Testing

• Software Maintenance

Requirements Analysis:

In this phase all the component requirements like functional and non-functional are
collected, analyzed and specified based on a well-defined methodology such as UML.
The result of this phase is a component specification document.

12

Design:

In this phase engineers design components based on the component requirements
specification from the previous phase. The component design includes three tasks. The
first task is to conduct component design for functional logic and data objects and make
trade-off decisions on technologies and operation environments. The second task is to
follow a selected component model and work on component realization by providing
data exchange mechanisms for component communication and interactions. The final
task is to define consistent approaches to support component packaging and
deployment. The outcome of this phase is the Design Specification Document.

Component identification and customization (Coding):

As we mentioned in the earlier sections that reusability and reusable components form
the backbone of the CBSD process, in this phase suitable components are identified and
are customized apart from specifying new components which is done in the previous
phases. Implementation of the components is performed using a specific technology and
programming language based on the design and targeted operating environments. The
focus is on composing and assembling components that are likely to have been
developed separately, and even independently. Component identification, customization
and integration are the crucial activities in the life cycle of component-based systems. It
includes two main parts:

• Evaluation of each candidate component, based on the functional and quality
requirements that will be used to assess that component.

• Customization of those candidate components which should be modified before
being integrated into new component-based software systems.

System- Integration:

It is possible for a component to be implemented for more than one operating
environment. Each implemented component depends on a specific technology set and a
targeted operating environment. Each component that is identified and customized are
integrated together to meet the specifications. Integration is to make key decisions on
how to provide communication and coordination among various components of a target
software system.

System-Testing:

In this phase the component is validated based on a given specification and design.
During this phase, component testers perform software testing such as white-box and
black-box testing to uncover various errors. Since software components are delivered as

 13

a final product, component testing plays an important role in the process and it includes
component usage testing, performance testing and deployment testing.

Software Maintenance:

This phase begins after shipping the first version of a software component or the
complete product to the customer. In this phase, Software components are updated and
enhanced to meet customer requests and to resolve discovered problems.

3. Method

In this section we describe the method we followed for our study in detail. This covers
the research questions of our study, the search process we followed in order to
accumulate the relevant literature, the selection criteria of the literature, quality
assessment of the selected literature and finally the procedure we followed for
extracting the data from the literature.

3.1 Research questions

The research questions for our study are

RQ1). How much empirical research has been done in CBSE since 1995?

RQ2). What types of empirical research has been done on CBSE?

RQ3). What research topics are being addressed by these empirical studies?

Regarding RQ1, it may be a concern for choosing the year 1995 to be as a starting point
for gathering the papers. The reason for this is that, we understood from [7] and [8] that
the evolution of CBSE/CBSD shows that since its inception in the form of Object
Oriented technology, much of the attention attained to it was only since the introduction
of component technologies like Microsoft’s COM, Sun Microsystems’s JavaBeans and
OMG’s CORBA in the early 90s. Hence we decided to start our search for papers that
were published after their introduction which shows up after 1993, thus we started at
1995.

Regarding RQ2, we were interested in knowing the types of empirical studies that were
conducted with respect to CBSD or CBSE or Component Based Software (CBS). We
adapted the classification of studies from [3] which is shown in Table 1. The table
shows different types of studies that were conducted in the field of software engineering
over all these years. For example, if a study consists of two methods such as a case
study and an experiment that follows it, then we consider the study as a case study.
Similarly if a study consists of literature review which is succeeded by other methods,
then we consider the study to be the latter method followed.

14

Table 1 Type of studies [3]

Study Definition

Case study
In-depth analysis of a particular project, event,

organization, etc.

Correlational study
Measuring variables and determining the degree of relationship
that exists between them.

Observational study
Observe, record and analyzing the results without the investigator’s
intervention into the setting.

Experiment Quantitative study to test cause-and-effect relationships.

Survey
Data is collected by interviewing a representative sample of some
population.

With respect to RQ3, we wanted to explore the areas concerning CBSD or CBSE or
CBS that were covered by the empirical studies, for instance, the number of studies that
were published on the issue of quality of the components.

3.2 Search process

We derived certain keywords from the research questions and we used them to extract
the papers from different databases. The keywords were –

CBSD, Software development, organization, CBSE, component, component based
software, empirical study, empirical research

Synonyms for the keywords –

 15

Company* OR Corporation* OR Inc.* AND empirical study OR survey OR case study
OR experimentation OR empirical research AND software component OR component
life cycle OR software development process OR component development

The databases we used for our search are SpringerLink, IEEE Xplore, ACM Digital
Library and Elsevier. These are the databases that contain much of the literature related
to Software Engineering that was published by various international conferences,
journals and notes by Special Interest Groups, SIGSOFT for instance.

3.3 Study selection

In this section we present in what follows are the criteria which we followed in
including and excluding the studies for our study.

Inclusion criteria

• Papers that were published from January 1995 to August 2011 were selected

• Papers that state their study as an empirical study in their titles or has at least one
type of empirical study as part of their study, for example, a study which has a
literature review as its primary study and validates the results obtained from the
literature review through an empirical study, were selected for our study.

• Studies that focus on aspects of CBSD, Component Based Software (CBS) or
CBSE were selected

• Papers containing the keywords ‘empirical’, ‘survey’, ‘case study’ or
‘experiment’ relating to CBSD, CBS or CBSE were selected

Exclusion criteria

• Opinion papers, “lessons learnt”, view point or position papers and studies that
are not empirical or does not contain an empirical study as part of their whole
study were excluded

• Papers that are external to CBSE or CBSD or CBS were excluded, for example,
a paper discussing about reusability but not in regard to software components.

• Duplicate reports of the same study were excluded

3.4 Process followed

Figure 3 shows an illustration of the process we followed in collecting the studies. We
initially searched for papers on CBSE without including the keyword ‘empirical’ or any
of its synonyms in the search string. This is in order to get the total number of studies on

16

CBSE which includes literature reviews, opinion papers, position papers, etc. from the 4
databases which resulted in 127,282 papers.

Figure 3 Selection of studies

Later we included the keyword ‘empirical’ and the other synonyms in the search and it
resulted in 69280 papers which contained studies that had the keyword ‘empirical’ in
their title, list of keywords or abstract. This number is shown in the figure as total
retrieved empirical studies and also the number of papers that were retrieved from each
of the database is also shown.

After applying the study selection criteria, which we explained in section 3.3, we were
left with a total of 74 studies which is shown in the figure. These included duplicate
studies, studies that contained the keyword ‘empirical’ and its synonyms in their titles,
list of keywords or abstracts. After doing a full text reading of these studies we removed
some of the studies that were duplicate, contained some of the search keywords but the
studies were actually not related to CBSE or CBSE and position papers and finally
ended up with 47 studies.

3.5 Quality assessment

We framed a set of quality assessment criteria which we extracted from [2] and
modified so as to make them adaptable for our study. Following is the criteria which is
based on four questions –

 17

QA1 – Is the research question (or hypothesis) stated clearly in the study?

QA2 – Is the type of research method (experiment, case study, survey) clearly
explained?

QA3 – Were the findings and analysis clearly presented?

QA4 – Are the authors’ claims about the conclusions justified by the data?

With QA1 we assessed whether the objective or aim of the study was clearly explained
either in the introduction or background sections of the paper. This includes the
presentation of the research questions or hypothesis that would be addressed by the
study. We evaluated the studies by reading and interpreting these two sections and
mainly depended on the text that implicitly or explicitly expressed the intention or
objective of the study.

With QA2 we assessed whether the method followed for the study was clearly
explained in terms of its repeatability and other parameters. The parameters we
considered mainly were:

• The type of study that would be followed – whether it would be a qualitative or
quantitative study

• Description of the study setting or context – whether it takes place in an
industrial setting or in an academic environment

• Description of the subjects involved in the study – whether humans or systems
were the subjects

• Description of the sample chosen if humans were the subjects – what type of
sampling strategy was considered for e.g. random sampling or purposive
sampling, etc.

With QA3 we assessed whether the results obtained from the study were clearly
presented in terms of sensibility and appropriateness. This means that if the study was
stated to be a qualitative one, then we considered the way the results were presented i.e.
whether they were explanatory or not. If the study was stated to be a quantitative one,
then we looked out for the results whether they were numerically or statistically
presented or not. Regarding the sensibility of the results, we checked whether the results
were answering the research questions stated for the study or validate the hypothesis
stated for the study by reading and interpreting the results. For papers with results of
hard-to-understand type, we read and interpreted only certain parts of those results and
assessed the quality, for example, papers with mathematical results or results with heavy
usage of various mathematical symbols, formulae, etc.

18

With QA4 we assessed whether the conclusions drawn from the study had a mapping to
the data presented in the results section or not. We evaluated this by reading the
conclusion section of all the studies where we mainly depended on the text that sounded
as a summary to the whole study referring to the data that has been dealt in the work.

3.6 Data collection and analysis

We followed a classification scheme as was followed by [3] in their study. The
classification is done based on the research topic being addressed, the method followed
and the source of data. Following are the steps we followed:

• Reading the abstract and conclusion or summary

• Writing down the issue or topic that the study presents

• Identifying the area associated with CBSD or CBSE or CBS that the issue
discusses

• Mapping the area associated with CBSD or CBSE or CBS to a traditional
development process like Waterfall process. For example if the paper discusses
about the subject of integration of components it would be mapped to the
implementation phase of Waterfall process.

• The type of empirical study performed.

4. Results

In this section we present the results of the study.

4.1 RQ1 – How much empirical research has been done

Forty-seven papers were identified as answering the question “How much empirical
research has been done with respect to CBSD or CBSE or CBS since 1995?”

Our search with the keywords fetched around 69,280 papers from the four databases
that we mentioned in section 3.2. After applying the document selection criteria we
extracted only 74 papers, where the rest of the papers were mere instances with
occurrences of the keywords within them. When we started with the activity of data
retrieval from these papers, we noticed that 27 out of these 74 papers were literature
reviews (25) and position papers (2) and therefore we removed them. Thus the final list
consisted of 47 papers which present the gross figure for the amount of empirical
research done since 1995.

 19

We present the quality assessment of all the accepted papers in table 2. We used a 3-
point scale which consists of the points ‘Yes’, ‘Partially’ and ‘No’ to denote the
satisfactoriness of each of the criterion. If a study’s objective or aim was clearly
described then it would be rated with a ‘Y’ representing the point ‘Yes’. If the method
followed was not clear enough to be understood, then it would be rated with a ‘P’
representing the point ‘Partially’ and similarly with ‘N’ representing the point ‘No’ if
the description was not clear at all.

An example for grading a criterion as ‘Y’ is, the study [10] where it clearly specifies in
its introduction that the goal of this paper is to find a suitable heuristic to minimize
change during component system evolution through CDR. It was clear for us from the
text that the aim was to find something new from the study, therefore we graded the
criterion QA1 with a ‘Y’ in this case.

An example for grading a criterion as ‘P’ is, the study [11] in which it was stated that an
empirical study would be conducted to propose a security mechanism for CBS called
CASSIA (explained in section 6.6). However, it was not clear about the design, settings
and how the study was executed. Merely a hypothesis and the context of the study were
explained. Therefore we graded the criterion QA2 with a ‘P’ in this case.

Finally for grading a criterion as ‘N’ we present two example studies. In the study [12],
it was just stated that an experiment was conducted on some components to evaluate a
metric that was proposed in the same study and no further explanation about the design,
execution of the study and context was available. Moreover the results obtained from
the study were just presented in tables and some description was provided which we
found to be very difficult to understand. Therefore we graded the criterion QA2 and
QA3 with ‘N’ in this case. Similar is the case with [13] in which it was stated that an
experiment was conducted on a component to evaluate its quality based on a quality
model that has been proposed in the same study. However it lacks with explanation
about the design, execution and context of the study and also we found the results very
difficult to interpret. Therefore we graded QA2 and QA3 with ‘N’.

Table 2 Quality assessment of the accepted papers

 Description Yes (Y) Partially (P) No (N)

QA1
Is the research question (or hypothesis)
stated clearly in the study?

45 (~95.7%) 2 (~4.3%) 0

QA2
Is the type of research method clearly
explained?

36 (~76.6%) 9 (~19.1%) 2 (~4.3%)

20

QA3
Were the findings and analysis clearly
presented?

37 (~78.7%) 8 (~17.0%) 2 (~4.3%)

QA4
Are the authors’ claims about the
conclusions justified by the data?

40 (~85.1%) 7 (~14.9%) 0

4.2 RQ2 – Types of empirical studies

We present the result for the research question RQ2 i.e. “What types of empirical studies
have been done with respect to CBSD or CBSE or CBS?” in Figure 4.

Figure 4 shows 5 types of studies that are prevalent in the research on CBSD or CBSE
or CBS. The most preferred methodologies are Experiments and Case studies and they
constitute 42.5% and 40.5% of the total number of studies (47) respectively. Surveys
constitute 10.6%, Correlational studies constitute 4.3% and Observational studies
constitute 2.1% of the total number of studies.

Most of the experimental studies were conducted as part of their major studies where 12
out of the total 20 experiments employed humans as the subjects comprising students.
The remaining 8 were on technical aspects and in this case they were on Software
Components.

Figure 4 Types of empirical studies

0

10

20

30

40

50

Experiments Case studies Surveys Correlational
studies

Observational
studies

Pe
rc

en
ta

ge

Types of studies

 21

The case studies resulted in three types – 10 industrial, 6 qualitative and 3 quantitative
case studies. Industrial case studies are those which were conducted in an industrial
setting, for instance, conducting interviews with the employees of a company or using
the documentation associated with a system used in a company for analysis in the study.
Furthermore, the industrial case studies were divided as two types – qualitative and
quantitative. There were 7 qualitative and 3 quantitative industrial case studies. The
difference between them lies in their methodology followed.

Regarding the amount of the remaining empirical studies, the number of surveys
conducted were 5, Correlational studies were 2 and 1 observational study.

4.3 RQ3 – Research topics being addressed

We present the result for the research question RQ3 i.e. “What research topics are being
addressed by the empirical studies?” in Figure 4.

Figure 5 shows all the research topics that are being addressed by the empirical studies.
The most discussed topics are Selection of Components, Implementation of Components
and Quality of Components.

Implementation of Components constitute 14.9%, Selection of Components constitute
12.8% and Quality of Components constitute 10.6% of the total number of studies (47).
The next most discussed topics are Reusability of Components (10.6%), CBSD Process
(8.5%), Performance of Components (6.4%) and Component Testing (6.4%).

Figure 5 Research topics being addressed

0
2
4
6
8

10
12
14
16

Pe
rc

en
ta

ge

22

The two bars with different color towards the right side of the figure represent the topics
Design & Implementation and Implementation & Maintenance. These two constitute
4.3% each, of the total studies. The reason for showing them in different color is that
these topics were discussed jointly in the studies. For instance, the topics design and
implementation of components were both discussed in a single study therefore we
treated both of them together as a category in itself without splitting them into two.
Furthermore, there were 3 sub-topics viz. Configurability, Changeability and
Tailorability that were discussed under the category Implementation of Components.

Table 3 presents a frequency of the studies that were discussing all the above topics.

Table 3 Frequency of research topics

Topic Studies Frequency

Implementation of
components

[14] [15] [16] [17] [18] [19] [20] 7

Selection of components [21] [22] [23] [24] [25] [26] 6

Quality of components [27] [28] [29] [12] [13] 5

Reusability of components [30] [31] [32] [33] [34] 5

CBSD Process [35] [36] [37] [38] 4

Performance of components [11] [39] [40] 3

Component testing [41] [42] [43] 3

Storage of components [44] [45] 2

Integration of components [46] [47] 2

Implementation and [48] [49] 2

 23

Maintenance

Design and Implementation [50] [51] 2

Component architecture [52] [53] 2

Maintenance of components [54] 1

Extensibility of component
systems

[10] 1

5. Discussion

In this section we present our discussion based on the answers that we presented in the
previous section. We discuss about the three research methodologies that were most
prevalent in the empirical research of CBSD with respect to the topics that were
researched in the studies. We first present about case studies which will be followed by
our analysis on experiments.

5.1 Case Studies

Case study research has been quite prevalent in the field of Software Engineering
through all these years. According to [55] Case Study is a research methodology which
can either be qualitative or quantitative in nature with different characteristics such as
exploratory, explanatory, descriptive or improving. The method followed in a case study
depends on the setting or context in which the study takes place, industrial case study
for instance, that takes place in a company or organization. We present in what follows
is the analysis of the data that we gathered in this study.

We presented the total number of case studies in section 4.2 which was 19 out of which
the number of industrial case studies were 10. Table 4 presents the list of all case studies
that were conducted in the industry. The table presents the description or a summary of
the study and the area of the CBSD that has been the subject of the corresponding study.

Table 4 Industrial case studies

Paper ID Description Researched area of CBSD

P2 [48] Study of demands on development and maintenance of
Implementation and
Maintenance of reusable

24

reusable components components

P3 [35]
Human, social and organisational issues affecting the
introduction of Component-Based Development (CBD)
in organizations are presented

CBSD Process

P6 [49]
The issues and challenges encountered when
developing and using an evolving component-based
software system are discussed by doing a case study

Implementation and
Maintenance of
components

P14 [33]
Hypotheses about impact of reuse on defect density and
stability and impact of component size on defects and
defect density in the context of reuse are assessed.

Reusability of components

P18 [52]

The advantages and liabilities the

use of a component-based software architecture entails
for the development of an industrial control system are
presented through an industrial case study

Usage of component-
based software
architecture

P22 [16]

Tailorability should enable users to fit computer systems
to the application context. So tailoring options should
be meaningful for end-users in their respective domains.
This paper discusses how these design criteria can be
realized within the technical framework of component-
based tailorability.

Implementation of
components (tailorability)

P24 [37]

Although previous studies have proposed specific COTS-
based development processes, there are few empirical
studies that investigate how to use and customize COTS-
based development processes for different project
contexts. This paper describes an exploratory study of
state-of-the-practice of COTS-based development
processes.

CBSD Process

P35 [18]
To see whether the benefits associated with TDD can be
shown for reusable components

Implementation of
components

 25

P36 [19]

Development with OSS components faces challenges
with respect to component selection, component
integration, licensing compliance, and system
maintenance. Although these issues have been
investigated in the industry in other countries, few
similar studies have been performed in China.

Implementation of
components

P42 [26]

The actual industrial practice of component selection in
order to provide an initial empirical basis that allows the
reconciliation of research and industrial endeavours, is
investigated

Selection of components

From the table it is apparent that much of the research, that has been done, had focused
on the topics Implementation, Design and Maintenance of components. This gives us a
perception that the other areas such as Integration, Testing and Storage of components
which are also vital in the process of CBSD were less researched in an industrial setting.
Regarding the research on Integration of Components, we observed that the number of
industrial case studies is not adequate enough to cover various issues associated with it.
Some of the issues as discussed in the literature were the design trade-offs in component
integration, incompatibility between the components and interaction between them [56].
Therefore we would like to highlight that these issues can be brought under discussion
through industrial case studies as the methodology offers flexibility in organizing the
study and also the outcome of the studies would give a valuable insights of the industry.

Another point of observation we had is about the geographical distribution of these
industrial case studies. Table 5 shows the list of countries in which the case studies took
place.

Table 5 Geographical distribution of Industrial Case Studies

Paper ID Country

P2 [48], P6 [49], P18 [52] Sweden

P3 [35] UK

P14 [33], P24 [37], P35 [18] Norway

26

P22 [16] Germany

P36 [19] China

P42 [26] Spain, Norway and Luxemburg

From the table we can clearly notice that Norway and Sweden has more case studies
than other nations with 4 and 3 studies respectively. This shows a tendency that the IT
industry of Norway and its neighbor Sweden have about the collaboration with
academia in order to maintain a good technological, scientific and sustainable profile.

From a global perspective, much of the industrial research on CBSD has been done only
in Europe with China as the only exception. From this we would like to generalize our
view and highlight that it is necessary that other developed nations like US, Canada,
Australia etc., and developing nations like India, China, etc., should also conduct
industrial research as it would be very helpful for the IT industry on the global stage
with such knowledge transfer mechanism from a socio-economic and business point of
view.

Apart from the 10 industrial case studies, 8 were simple case studies which are
presented in Table 6.

Table 6 Case studies

Paper ID Description Researched area of CBSD

P8 [50]

The best practices in designing and building a
web-based auction system by using UML and
components are presented through an empirical
study

Design and implementation of
components

P17 [15]
Comparison between Object-Oriented building
and Aspect-Oriented building of components in
regard to the changeability of the system

Implementation of components
(Focus on changeability)

P25 [28]
Most previous works on software quality
evaluation are focused on COTS-based software
or deliverable software products with quality

Quality of components

 27

model and metrics. However, this paper has
presented a quantitative quality evaluation
approach with respect to the Component Based
Development (CBD) methodology of Ministry of
National Defense of Republic of Korea.

P26 [11]
A scalable security mechanism named CASSIA, for
component based systems is proposed

Scalability and performance of
components

P27 [29]
Facilitating design decisions by making accurate
predictions of how failure-prone a component
will be – an empirical study on ECLIPSE Plugins

Quality of components

P28 [51]

Two critical aspects of component based systems in the
financial industry are addressed - Component based
design of systems and the mediation between the
components

Design and
implementation of
components

P29 [38]

CBD will improve globally distributed software
development practices by allowing each site to
take ownership of particular components,
resulting in reduced inter-site communication
and coordination activities. Such an approach
may indeed overcome breakdowns in inter-site
coordination efforts; however, it may also lessen
opportunities to share knowledge between sites
and may hamper opportunities to reuse existing
components. A case study approach, exploratory
in nature, was adopted to explore knowledge
aspects in global component-based software
development.

CBSD Process

P33 [34]

Discusses the modularity offered by Aspect-
Oriented Programming and its association with
obliviousness and the trade-offs between
modularity and obliviousness are presented with
respect to reusable components.

Reusability of components

P40 [25] Improving the selection of OSS components Selection of components

28

From the table we perceive that there has been good amount of research done through
case studies and these studies cover most of the areas or phases of CBSD process. 5 out
of these 8 studies were qualitative and the remaining 3 were quantitative in nature.

5.2 Experiments

Experimentation is one of the most preferred research methodologies in the field of
Software Engineering. According to [55], experimentation is a research methodology
which is quantitative by nature with an explanatory characteristic.

We differentiated between a Case Study and an Experiment by primarily considering
the text presented in the papers that clearly/explicitly mentioned or described whether
that study is a case study or an experiment. However there were certain cases for e.g. in
[14] where the study was stated to be a case study and the method followed was said to
be experimental i.e. the studying of the case, was carried out in the form of experiments.
Thus we considered even such studies as experiments as our focus was mainly on
empirical studies that were conducted in regard to CBSD or CBSE.

Table 7 presents a list of all the 20 experiments that were conducted with respect to the
process of CBSD. We evaluated the studies by full text reading and finally ended up
with this list.

Table 7 Experiments in the empirical research of CBSD

Paper ID Description Researched area
of CBSD

Subjects

P1 [30] Evaluation of published software metrics that
would measure the benefit of reuse of
components

Reusability of
components

Students

P7 [27] Study of consumers’ preferences and purchasing
behavior of software components regarding to the
quality attributes of the components

Quality attributes
of software
components

Students

P10 [32] An active reuse repository system called
CodeBroker is used to show that active repository
systems promote reuse by motivating and enabling
software developers to reuse components whose
existence is not anticipated, and reducing the cost
of reuse through the automation of the

Reusability Students

 29

component location process.

P11 [44] A scheme for classifying and describing business
components and the design of a knowledge-based
repository for their storage and retrieval is
proposed

Storage of
components

Students

P12 [14] Component software provides better productivity
and configurability by assembling software from
several components. This paper investigates
system configurations on a component-based
system and the side effects of the configurations.

Implementation
of components

Components

P13 [45] Different component indexing and retrieval
methods were tested and found that full-text
indexing and retrieval of software components is
better than controlled vocabulary indexing and
retrieval

Storage of
components

Students

P15 [57] A major challenge i.e. compositional reasoning
about the system Quality of Service is addressed by
proposing an empirical reasoning approach

Quality of Service
of components

Components

P16 [21] Proposal of metrics for measuring similarities
between component interfaces based on interface
refactoring

Selection of
components

Students

P19 [22] The rigorous specification of components is
necessary to support their selection, adaptation,
and integration in component-based software
engineering techniques. The specification needs to
include the functional and non-functional
attributes. The non-functional part of the
specification is particularly challenging, as these
attributes are often described subjectively, such as
Fast Performance or Low Memory. Here, the use of
infinite value logic, fuzzy logic, to formally specify
components is proposed

Specification and
selection of
components

Components

P20 [41] This paper addresses the issue of usability testing
in a component based software engineering
environment, specifically measuring the usability

Testing of
components

Students

30

of different versions of a component in a more
powerful manner than other, more holistic,
usability methods. Three component-specific
usability measures are presented: an objective
performance measure, a perceived ease-of-use
measure, and a satisfaction measure.

P23 [16] Describes a first empirical study comparing two
defect detection techniques – code inspections
and functional testing in the context of product
line development of reusable components

Inspection and
Testing of

components
Students

P30 [12] A metric called Component Complexity Metric is
proposed which may be used to limit the
complexity of the component

Quality of
components

Components

P32 [13] All the quality attributes may not be of prime
importance for a component application, thus a
new quality model is proposed with new
characteristics which may be very relevant to the
context of components

Quality of
components

Components

P34 [39] The actual effort required for developing a
performance prediction model is addressed by
proposing a component-based prediction model
named Palladio

Performance of
components

Students

P37 [24] Although a multiplicity of COTS selection method
have been proposed in literature, most developer
still select COTS products using ad hoc methods.
One of the main reason being, COTS selection
method do not provide all or most of the required
support and guidance required for carrying out the
COTS selection process. Therefore this study is
aimed to find out differences if any, between 3
selection methods and to determine the ability of
each of the methods to provide adequate COTS
selection support and guidance.

Selection of
components

Students

P38 [42] Proposal of a component testing approach and its Component Students &

 31

experimental evaluation for its efficiency testing Employees

P41 [54] An experiment investigating component
collaborations in the OSGi/Eclipse component
model is presented. The aim of the experiment is
to demonstrate the benefits of using a formal
contract language.

Maintenance Components

P43 [53] Component-based software development needs to
formalize a process of generation, evaluation and
selection of Composite COTS-based Software
Systems (CCSS), enabling software architects to
make early decisions; the Azimut approach and its
associated software tool were proposed to tackle
this problem. This article presents an experimental
study conducted to compare Azimut approach with
a Systematized Ad-Hoc approach, regarding
generated solutions quality, cost and effort.

Component
architecture

Students

P44 [10] Finding a heuristic to minimize change side-effects
during component system evolution through a
process called Component Dependency Resolution
(CDR)

Extensibility of
component

systems
Components

P45 [40] Relation between autonomy and qualities of the
system is studied by proposing an approach for
quantifying autonomy

Performance of
components

Components

From the table it is immediately apparent that the subjects involved in the experiments
are mostly students. This observation of ours is in-line with the observation made in the
study by [3] and therefore we would like to share his perception that, some important
experiments could be conducted with industry professionals which would improve the
generalizability of the results like as it was done by [42].

Another observation from the list is that though the experiments covered most of the
areas of CBSD with Selection of Components and Quality of Components being the
most researched, we would like to highlight other areas as well such as Integration of
Components and Design of Components which could be researched through
experimentation. For instance, evaluating the efficiency of a tool that supports the
process of integration or experimenting with the design of a component and its
interaction with others which could be done through controlled experimentation.

32

5.3 What’s missing?

Here we present our discussion on those topics that were missing in the empirical
research on CBSE. Each of the missing topics may either be considered as a part of one
of the areas that we identified or as another area of CBSE itself.

• We didn’t find any empirical study in the literature that has been done either
supporting or opposing the popular claim of CBSE or CBSD that is this engineering
practice ‘lowers development cost and the product’s time to market’. Few studies
like [15] used this claim as one of the motivating factors for their studies but never
had shown any interesting observation in this regard. Therefore it appears to us that
some empirical research on this topic would be very useful. Probably industrial case
studies or surveys can reveal the actual picture on how CBSE or CBSD reduces
development cost and product’s time to market thereby justifying the claim.

• There is no empirical research that we could find on the subject of ‘component
models’ like COM, CORBA, etc. Indeed these two are the only well known
component models so far since their inception and no new model have been
introduced until now. It appears to us that the industry is content with these existing
ones as of now but we predict that shortly in the future there will be a necessity for
new component models according to the needs then. Therefore we see that the
empirical research either on the existing ones or for introducing new ones would be
very helpful for the industry.

• The area Implementation of Components lacks research on the tools that support the
CBSE or CBSD process. We mean that there is no development environment or
CASE tool available that is specifically designed to facilitate this process. For
example, IBM’s Rhapsody is a tool that is used to generate code from different
UML models, which is an important characteristic of the latest software
development practice Model Driven Development. Similarly it would be helpful if
such a tool that can support the CBSE process be available and we believe that this
is possible only through empirical research that can focus on the current industrial
practices of CBSE which might lead to interesting ideas in this direction.

6. Current state of CBSE

In this section we present the current state of knowledge of CBSE with respect to all the
areas of CBSE that we identified in the literature. We summarize the work done in each
empirical study that has been done in each of the areas. We present our findings of each
area according to the order presented in Table 3 in section 4.3.

 33

6.1 Implementation of Components

This area of CBSE is the most researched through empirical studies which constituted
14.9% of the total number of empirical studies done. The focus of research was on the
development of components in regard to different factors. The following descriptions
are a summary of all the studies that were done in regard to the implementation of
components.

• In the study [14], the side effects of the system configurations on a component based
system are investigated. A component based java virtual machine has been
implemented by modifying an existing virtual machine for the study. Some
problems have been identified in order to use the system after such configuration as
the study pointed out the dependencies among the components as the problem which
needed a clear understanding of their behaviours.

• The study [15] is about investigating the claims of Aspect-Oriented Programming
(AOP) in the context of COTS based systems. According to [15] the claims are such
that AOP makes it easier to reason about, develop and maintain certain kinds of
application code. In order to investigate these claims a case study was performed by
comparing object oriented version and aspect oriented version of an application with
respect to its changeability. Results of the study showed that heterogeneous glue
code does not bring benefits in the context of AOP and to integrate COTS
components using AOP, the tools that support this process are needed to be
investigated.

• [16] is a study which states that tailorability should enable users to fit computer
systems to the application context. So tailoring options should be meaningful for
end-users in their respective domains. Thus a case study has been done to show how
these design criteria can be realized within the technical framework of component-
based tailorability. The study shows that a specific preparatory activity is required
before following any tailoring activities. It also shows that a domain-specific
requirement analysis of tailoring needs is necessary to solve the trade-off
tailorability and complexity of the system.

• The study presented in [17] is about the effects of Open Source Software (OSS)
components reuse on the development economics with respect to cost, productivity
and quality. The study states that organizations can benefit from reusing OSS
components in terms of productivity and product quality if they implement the
components reuse adoption in a systematic way. The study was a qualitative
exploratory study involving interviews of industry professionals. It has been stated
in the study that a lesson learned during the study was that OSS components are of
highest quality provided the company follows good practices when implementing
them.

34

• The study presented in [18] is about investigating the benefits of Test Driven
Development (TDD) in using reusable components. The study investigated defect
and change density in relation to the use of TDD vs. test-last approaches on a
framework of reusable components. The study finally discusses both benefits and
drawbacks of using TDD. The results of the study showed that the relative change in
mean defect and change density as 35.86% and 76.19% respectively.

• In the study [19], a survey has been done in China to investigate the challenges
associated with software development with OSS components with respect to
component selection, integration, licensing compliance and system maintenance.
The results were stated as follows:

- The main motivation behind using OSS components was their modifiability
and low license cost. Using a web search engine was the most common
method of locating OSS components.

- Local acquaintance and compliance requirements were the major decisive
factors in choosing a suitable component.

- To avoid legal exposure, the common strategy was to use components
without licensing constraints.

- The major cost of OSS-based projects was the cost to learn and understand
OSS components. Almost 84% of the components needed bug fixing or
other changes to the code. However, close participation with the OSS
community was rare.

• According to [20], software is often built from pre-existing, reusable components,
but there is a lack of knowledge regarding how efficient this is in practice.
Therefore, qualitative results from an industrial survey on current practices and
preferences, highlighting differences and similarities between development with
reusable components, development without reusable components, and development
of components for reuse were presented. The results of the study are that the reuse
of components does not make permanent design decisions, the verification of
components was not being done to a sufficient extent and known good practices for
component selection and evaluation were implemented in some organizations but
not all. As a conclusion it has been stated that the state of practise of component
reuse in industry was that the components were built for reuse and those
components were in fact being reused.

6.2 Selection of components

In this section we present the summary of all the studies that focused their research on
the area selection of components of CBSE or CBSD. The research mostly focuses on
the specification, selection and evaluation of the components before their
implementation.

 35

• Metrics for measuring similarity between component interfaces were defined in
[21]. As stated in the study the important contributions of the study are:

- The introduction of software component interface refactorings, i.e.,
transformations working on IDL-style (i.e., signature-list based) component
interfaces. These refactorings are used to define a similarity metric for
signature-list based component interfaces.

- The definition of efficiently computable metrics measuring the similarity of
software component protocols (i.e., valid call sequences to component
services).

• [22] is a study about the challenges that are involved in specifying the non-
functional attributes for components e.g. in terms such as fast, slow, very fast, etc.
The study describes the usage of infinite value logic called Fuzzy logic in formally
specifying such linguistic variables or hedges. In the study, data was collected from
components which was fuzzified and represented as membership functions.

• A study has been done on why project decision makers use COTS components
instead of OSS components or vice versa [23]. The study was conducted in the form
of a survey and data was gathered from international companies in the countries
Norway, Germany and Italy. The results were stated as that both COTS and OSS
components were used by small, medium and large software companies. It was also
stated that the users of COTS components believed that the components should be
of good quality, have technical support and follow market trend. On the other hand,
OSS components users were stated to be more concerned about the ownership and
openness of the source code. Other results stated were that projects using COTS
components had more difficulties in estimating selection effort, following customer
requirement changes, and controlling the component’s negative effect on system
security. On the other hand, OSS user had more difficulties in getting the support
reputation of OSS component providers.

• Although a multiplicity of COTS selection method have been proposed in literature,
most developer still select COTS products using ad hoc methods. One of the main
reason being, COTS selection method do not provide all or most of the required
support and guidance required for carrying out the COTS selection process.
Therefore the study presented in [24] was aimed to find out differences if any,
between 3 selection methods and to determine the ability of each of the methods to
provide adequate COTS selection support and guidance.

• A study has been conducted to investigate how research can be useful in the process
of selection of components [25]. The study is an interview of developers from 16
Norwegian companies which integrate OSS components into their systems. The
study reports two results which were stated to be key findings which are:

36

- Project specific constraints are much more decisive in the selection of OSS
components than the general evaluation criteria suggested by existing
evaluation schema.

- Software developers employ the principle of ’first fit’ as the principle of
evaluation, whereas existing research on evaluation and selection methods
employs ’best fit’. Rather than identifying a set of components to evaluate,
software developers evaluate individual OSS components sequentially.
Knowledge gained in rejecting one component is fed back as new evaluation
criteria in the evaluation of the next.

• According to [26] there is limited knowledge about the industrial OTS components
selection practices, therefore the study investigated the actual industrial practice of
component selection in order to provide an initial empirical basis that allows the
reconciliation of research and industrial endeavours. The results of the study were
stated as that the component repositories were hardly used in the industry whereas
the literature claims the repositories are important. Other results were suggestions
for researchers to focus their research on the selection practices based on reality
instead of assumptions and for software intensive organizations to consider the
results of this study which would help them increase their awareness in implication
of factors such as experience and knowledge in their selection practices.

6.3 Quality of Components

In this section we present the summary of all the studies that focused their research on
the area quality of components of CBSE or CBSD. The research didn’t focus only on
one or few specific aspects of quality of components instead the focus was on discrete
aspects.

• [27] is a study of consumers’ preferences and purchasing behaviour of software
components regarding to the quality attributes of the components. The study
involved a simulation of an artificial marketplace for selling and buying components
online. The sellers (producers) and buyers (consumers) were students as the study
was conducted as an experiment where the producers had a technical background
and the consumers were non-technical. An interesting result, as was stated, was that
the popularity of the producer was one of the important preferences of the
consumers. Other results were that the consumers preferred components with highly
represented functions and sophistication and also pricing and discounts were part of
their preferences.

• A study was conducted on software quality evaluation in Korea for its Ministry of
National Defence [28]. According to the study, most previous works on software
quality evaluation were focused on COTS-based software or deliverable software
products with quality model and metrics. However, this study had presented a

 37

quantitative quality evaluation approach with respect to the Component Based
Development (CBD) methodology. The approach was such that weights were
assigned to quality characteristics based on a questionnaire survey and were
processed through a technique called Analytic Hierarchical Process. The result was
stated as that the quality evaluation approach was viable and found that the approach
is practically possible for use in real projects.

• A study was conducted to predict how failure-prone a component will be in order to
facilitate the design decisions [29]. The prediction was based on the components’
past failure history and usage relationships. The study was conducted on 52
ECLIPSE plug-ins and the results of the study were stated to support a hypothesis
that one can predict future post-release failures by using imported components of a
file or package.

• A metric called Component Complexity Metric is proposed which may be used to
limit the complexity of the component [12]. According to the study not much work
has been done in evaluating quality metrics for components and CBS. An
assumption made in the study was that the complexity of a system can be reduced if
the components used in the system are not complex. The study was conducted on
JavaBeans components and proposed a metric to measure the complexity of those
components which was evaluated theoretically by standard Weyuker’s properties.

• All the quality attributes may not be of prime importance for a component
application, thus a new quality model was proposed in [13] with new characteristics
which may be very relevant to the context of components. Similar to the study in
[28], this study too had Analytical Hierarchical Process for assigning weights to the
quality characteristics and evaluated the quality of a component through an
experiment considering a real life example. The result of the study was a quality
model with additional quality attributes which can be used for comparison and
selection of the best suitable components for the system.

6.4 Reusability of components

In this section we present the summary of all the studies that were conducted in regard
to the reusability of components. Most of the studies focused on the quality
characteristics of the components with reusability as the backdrop of their works.

• The objective of the study [30] was to evaluate published software metrics that
would measure the “time, money and quality” benefits of reuse of components. The
study was conducted in two ways – analytically and empirically. For analytical
evaluation, some desirable properties of reuse benefit measures were proposed and
evaluated the metrics in terms of their compliance with the properties. The result of
this analytical evaluation was stated to be that none of the properties satisfied all the
properties proposed. For empirical evaluation of the metrics, a toolset was

38

constructed to gather data on all published reuse metrics from C++ code and finally
verified statistically the correlation between the metrics and the quality factors of
productivity and defect density. The result of this empirical evaluation was stated to
be that different reuse metrics can be used as predictors of different quality
attributes. An example was stated for this as, reuse ratio and size/frequency reuse
metric each appeared to be well correlated with productivity and error density, but
this size/frequency metric did not show any significant result with regard to fault
density.

• Component Reuse Metrics, CRM, was a new effort estimation method, which
considers software development as a series of tasks of assembling software
components. CRM adds assessments of project and human effects of the
development project to the component-based effort estimates. The approach of this
study was empirical and the main result of this paper [31] was an evaluation of the
CRM method by a survey and by case studies. The result was stated to be that the
case studies has confirmed that component-based development creates an acceptable
component structure for CRM calculations. It was stated that the assessment of
project and human effects proved to be difficult at least without experience and
historical data.

• An active reuse repository system called CodeBroker was used to show that active
repository systems promote reuse by motivating and enabling software developers to
reuse components whose existence is not anticipated, and reducing the cost of reuse
through the automation of the component location process [32].

• Hypotheses about impact of reuse on defect density and stability and impact of
component size on defects and defect density in the context of reuse were assessed
in [33]. The results were stated as follows:

- Reuse and defect-density – The result was that the reused components have
lower defect density than non-reused ones and the difference was less for
modified code. An observation mentioned was that the reused components
had more severity A defects than expected from the total distribution, but
fewer post-delivery defects.

- Number of defects and component size – The result was that no relation was
observed between number of defects and component size.

- Defect density and component size – The result was stated as that the plots
and regression analysis did not show any relation between defect density and
component size.

- Reuse and stability – The result was stated to be that when the components
were reused across several products, they got more fragile.

• [34] discusses the modularity offered by Aspect-Oriented Programming and its
association with obliviousness and the trade-offs between modularity and

 39

obliviousness. The study presents a refactoring of exception handling concern for
three real-life Java applications to use explicit joint points (EJPs) instead of
oblivious aspects. The empirical differences between this version and an equivalent
oblivious version were analyzed. By using EJPs the obliviousness from an aspect-
oriented implementation of a cross-cutting concern was removed, and then the
resulting effects on software quality and modularity were studied. The results were
stated to be as follows:

- The use of an explicit interface to model cross-cutting concerns facilitates
the creation of reusable aspect libraries.

- The parameterization of aspects made possible by these explicit interfaces
can increase code reuse and reduce point-cut complexity.

- Explicit cross-cutting interfaces must be carefully designed to be as minimal
as possible or overall application modularity may actually decrease.

- The greatest application modularity is achieved when a combination of
explicit join points and oblivious aspects are applied. When pointcuts can be
written in a stable fashion they are favored over explicitness in the base
code, but in the remaining cases using EJPs result in better code quality.

6.5 CBSD Process

In this section we present the summary of all those studies that were conducted in
regard to the CBSD or CBSE process.

• Human, social and organisational issues affecting the introduction of Component-
Based Development (CBD) in organizations were presented in [35]. The result of
the study was stated to be as follows:

- Encouraging customer or user participation

- Encouraging interaction of users and developers

- Educating all stakeholders about the whole CBD process

- Using incremental approach

An important lesson learnt, as was stated in the study, was that integrating
organizational issues in the CBD process was a difficult problem requiring different
strategies depending on the organizational context. However, social–technical
approaches could help to incorporate and resolve organizational obstacles by
encouraging user participation in CBD.

• The work described in this paper is an investigation of the COTS-based software
development within a particular NASA environment, with an emphasis on the
processes used [36]. Fifteen projects using a COTS-based approach were studied
and their actual process was documented. This process was evaluated to identify
essential differences in comparison to traditional software development. A new

40

process and set of guidelines for COTS based development were developed and
briefly presented.

• Although previous studies have proposed specific COTS-based development
processes, there are few empirical studies that investigate how to use and customize
COTS-based development processes for different project contexts. This paper
describes an exploratory study conducted in 16 Norwegian IT companies through
structured interviews, of state-of-the-practice of COTS-based development
processes [37]. The results were stated as that the COTS-specific activities can be
successfully incorporated in most traditional development processes (such as
waterfall or prototyping), given proper guidelines to reduce risks and provide
specific assistance. 4 COTS-specific activities were identified – The build vs. buy
decision, COTS component selection, learning and understanding COTS
components, and COTS component integration – and one new role, that of a
knowledge keeper. 2 component selection processes were also discovered –
familiarity based and combining Internet search with hands-on trials

• According to [38] CBD will improve globally distributed software development
practices by allowing each site to take ownership of particular components, resulting
in reduced inter-site communication and coordination activities. It was stated that
such an approach may indeed overcome breakdowns in inter-site coordination
efforts; however, it may also lessen opportunities to share knowledge between sites
and may hamper opportunities to reuse existing components. A case study approach,
exploratory in nature, was adopted to explore knowledge aspects in global
component-based software development. The result stated was that the true potential
of CBD, which mainly relates to reuse of components, can be achieved through
sharing of expertise of the teams irrespective of their geographical location. Finally
some guidelines to managers and engineers were presented.

6.6 Performance of components

In this section we present the summary of all studies that were conducted with respect to
the performance of components of a CBS.

• A scalable security mechanism named Component Adaptive Scalable Secure
Infrastructure Architecture (CASSIA), for component based systems is proposed
[11]. The result of the study was stated as that 80% of the components in real world
CBS are used in a protected security perimeter. A case study was performed to
confirm the scalability of CASSIA and a protocol named Secure COmponent
Protocol (SCOP) was proposed which uses CASSIA inside a Large-Scale
component infrastructure.

 41

• The actual effort required for developing a performance prediction model is
addressed by proposing a component-based prediction model named Palladio in
[39]. An experiment was conducted comprising 19 computer science students to
apply the Software Performance Engineering method and the Palladio method to
predict the performance of two example systems. The result was stated as that the
effort for applying Palladio on the whole task was in average 1.25 times the effort
for applying SPE. It was suggested to put more focus on research about creating
reusable models as their creation can quickly yield results.

• Relation between autonomy and qualities of the system was studied by proposing an
approach for quantifying autonomy in [40]. The approach was such that a
mathematical model was built and a Traffic Control Simulation System was built
based on the mathematical model and comprising autonomous components. An
experiment was conducted on this system to explore the relationship between the
autonomy of these components and their quality characteristics. The results were
stated as that –

- Certain autonomy is necessary for the system

- The relation between autonomy and quality property is not monotonic i.e.
increase in autonomy of the component may decrease its quality

- Different environments are associated with different level of autonomies,
which eventually impact the quality property. With less complex
environment autonomy has low correlation with quality which means the
autonomy could be raised for user’s convenience.

6.7 Component Testing

In this section we present the summary of all the studies that were conducted with
respect to component testing.

• [41] addresses the issue of usability testing in a component based software
engineering environment, specifically measuring the usability of different versions
of a component in a more powerful manner than other, more holistic, usability
methods. Three component-specific usability measures were presented: an objective
performance measure, a perceived ease-of-use measure, and a satisfaction measure.
The result in the study confirms the possibility of testing the usability of individual
components, which can be applied in a CBSE environment.

• [42] presents an approach to support component testing aiming to reduce the lack of
information between component producers and consumers. Two workflows were
presented describing necessary activities to be conducted by producers to prepare a
component to be tested by third party; and the activities performed by component
consumers to elaborate and execute test cases to support the decision of integrating
candidate components to a system under development. A formal experimental study

42

was performed in order to evaluate the viability of applying the proposed component
testing approach, as well as its tool support.

• [43] describes a first empirical study comparing two defect detection techniques –
code inspections and functional testing in the context of product line development of
reusable components. The primary goal of the study was to initially investigate the
defect finding potential of the techniques on reusable software components with
common and variant features. The major findings of the study are that the two
techniques identified different types of defects on variants of a reusable component.
The study not only investigated the efficiency and effectiveness of the two
techniques but also found that what types of defects can be detected in common and
product-specific parts of a reusable component. The result of an experiment
conducted in the study was stated to support the hypothesis that different techniques
identify different types of defects and have different efficiency and effectiveness.

6.8 Storage of components

In this section we present the summary of all the studies that were conducted with
respect to storage of components.

• The study [44] proposed a new scheme for classifying and describing business
components and the prototype version of the knowledge based repository for storage
and retrieval of components. The study consists of an experiment that has been
conducted with an average age group of participants. The results of the experiment
confirm that a formal mechanism for classifying, coding & storing components in
knowledge based repository enhances analysts (assemblers) ability to find the
required business components.

• In study [45] different component indexing & retrieval methods were tested and
found that full text indexing and retrieval of software components is better than
controlled vocabulary indexing and retrieval. The study attempted to bring two
kinds of methods to a level playing field by addressing the cost issues and using a
realistic experimental setting which includes realistic evaluation measures. In this
study there were total of three experiments trying out different ideas and comparing
approaches. The results showed that the aspects of the pre-processing involved in
controlled vocabulary methods that they automated were of poor quality that were
not used and the fully automatic free text search performed better than the fully
manual controlled vocabulary based indexing and retrieval of components.

 43

6.9 Integration of components

In this section we present the summary of all the studies that were conducted with
respect to integration of components.

• In this study [46] the process of glue code generation and the process of integration
of components were discussed through software simulation that provides a method
for checking the understanding of the real world process. This study also reports
simulation results showing how different concurrency profiles affect staffing levels
and how various starting points of glue code development have an effect on system
integration processes. It also suggests another effective strategy from a schedule
reduction point of view and illustrates both utility and limitations of modelling in
general.

• The study [47] reports results of an industrial survey conducted among system
integrators to understand role of component documentation in the CBS integration
phase. The survey investigates whether the presence of component documentation
helps a system integrator and its correlations with typical integration success factors.
The results indicate that available component documentation class help in
integrating selected components. The participants of the survey found that available
component documentation was useful in early component evaluation and
discovering new features. However, on an average they have found that component
documentation does not provide enough information to overcome the two most
common CBS integration challenges – incorrect integration effort estimation and
integration testing.

6.10 Implementation and Maintenance of components

In this section we present the summary of all the studies that were conducted with
respect to Implementation and Maintenance of components.

• In this study [48] different level of components reuse and certain aspects of
component development like component generality and efficiency, compatibility
problems, the demands on development environment and maintenance were
discussed. The evolution of requirements for products generates new requirements
for components if components are not enough general and mature. This dynamism
determines the component life cycle where the component first reaches its stability
and later degenerates in an asset that is difficult to use, difficult to adapt and
maintain. When reaching this stage, the component becomes an obstacle for
efficient reuse and should be replaced. Questions related to use of standard and de-
facto standard components are addressed specifically and this study also presents a
successful implementation of a component-based system which is widely used for
industrial process control. The case study was done in ABB with an advent control

44

system as an example for component-based system. It was stated that the success of
this system on the market has been primarily the result of appropriate functionality
and quality. The study found that the organization was successful because of its
systematic approach in design planning, development & maintenance.

• This study [49] is a part of the previous study. In this study the issues and challenges
that are encountered when developing and using an evolving component-based
software system were discussed by doing a case study. The results of the study
presents many practical issues that were noticed while designing the components
and incorporating them in to the system.

6.11 Design and Implementation of components

In this section we present the summary of all the studies that were conducted with
respect to design and implementation of components.

• In this study [50] the best practices in designing and building a web based auction
system by using UML and components were presented through an empirical study.
The study describes a case study in which a web auction system using UML and
components was implemented. The rigorous design and analysis phase and the
robust component based implementation enabled them to achieve a minimal defect
rate in the final product. The defect rate of the reused code was 0.9 units per 1
KLOC. The scope of implementation and identification of entities that could be
coded as reusable components was done with the help of UML. The implementation
with its basis in component based programming enabled them to develop a highly
maintainable system with a number of reusable components.

• In this study [51] two critical aspects of component based systems in the financial
industry were addressed. Component based design of systems and the mediation
between the components were the two aspects. This study uses examples in the
industry to demonstrate component-based implementation and semantics mediation.
To investigate the fundamental mechanism for further understanding of the meaning
of semantics mediation benchmarking was executed by using both empirical
experiments and theoretical modelling. The observations show that a significant
enhancement can be achieved by using the mediation strategy in semantic metadata.

6.12 Component Architecture

In this section we present the summary of all the studies that were conducted with
respect to Component Architecture.

• [52] presents a case study from a global company developing a new generation of
programmable controllers to replace several existing products. The study also

 45

presents that advantages and liabilities, the use of a components based software
architecture entails for the development of an industrial control system are
presented. The results from the study showed that the effort required adding support
for communication protocols in the controller product has been considerably
reduced due to the adoption of new architecture (component –based software
architecture).

• According to [53] Component-based software development needs to formalize a
process of generation, evaluation and selection of composite COTS- based software
system (CCSS), enabling software architects to make early decisions; the Azimut
approach and its associated software tool were proposed to tackle this problem. This
article presents an experimental study conducted to compare Azimut approach with
a systematized Ad-hoc approach, regarding generated solutions quality, cost &
effort. It also serves a frame-work for validating approaches, process & tools for
generating & evaluating component-based software systems. The results suggest
that Azimut generated better quality solutions at lower cost, although not
statistically significant in three samples, but also there is strong statistically
significant evidence showing that the effort required is higher than for Ad-hoc. Re-
sampling methods were applied to reinforce these conclusions and yielded the same
results. Results concerning effort are aligned with a post experiment survey
answered by the participants where they suggest various ideas for improving the
usability of Azimut tool user interface.

6.13 Maintenance of components

[54] is an experiment investigating component collaborations in the OSGI/ Eclipse
component model. The main aim of the experiment was to demonstrate the benefits of
using a formal contract language for dynamically composed systems. According to the
study, these systems are no longer assembled, but instead they evolve while deployed.
Components of such systems are replaced while system remains operational making it
an important task of the maintenance routine. For this study, the data was obtained by
measuring metrics for these contracts and by verifying a large eclipse distribution
against these contracts. The outcome of this study supported the claim that it is useful to
employ a formal contract language.

6.14 Extensibility of components

According to [10], it’s not an easy task to identify the minimal changes required in an
evolving or extensible CBS and mitigate the possible side-effects caused by those
changes. This study focused on three heuristics and compared their properties on an
evolving GNU/Linux distribution. The aim was to find a heuristic to minimize change
by following a process called Component Dependency Resolution. The results of the
study were stated as follows:

46

- There is a high probability a set of user-requests is not satisfiable.

- Most user-requests cause little change, however a few requests require
significant change to the system.

- Complex heuristics (like PageRank) have little difference from greedy,
simple heuristics (like Hamming) and take longer to and a solution.

7. Limitations of this study

7.1 Completeness

We have thoroughly extracted most of the empirical studies that were published
between 1995 and August 2011 that were conducted on CBSD or CBSE or CBS.
However, we still feel that we might have missed few studies because of the reason that
they might have been published in journals or conferences or research articles which
may had not gained much attention from the research community. Therefore we
considered this as one of our limitations.

7.2 Data synthesis

We gathered all the studies and tabularized the data from these studies such as the year
of publication, the authors, the description, etc. for assessing quality and finally
answering our research questions. We were simply guided by this table in the analysis
process in which we identified the topics that were less researched with respect to the
methodologies that were followed in the respective studies. The literature mostly
discussed the research topics as a combination of the topics such as the one done in
[33]. This study discusses the topic of reusability of components and also the issue of
defect density at the same time. We grouped this type of studies under the category or
the topic that is given much attention or is the core issue that was being discussed in that
respective study. In the example of [33] we grouped it under the category of reusability
of components though it discusses another issue in parallel. From this we would like to
say that we might have missed some studies which might have come under a new
category which means that a new category would have been added to the existing ones
and group the studies under the new one.

7.3 Potential bias

Since this study has been conducted by a single researcher, there is always scope for the
researcher’s bias in the quality assessment of the studies and also in the discussion of
the answers for the research questions.

 47

8. Future work

The future work to this study could possibly be done towards extracting more analytical
information from all the studies by attempting to reduce the limitations mentioned so
far. This could be done in such a way that another two to four researchers could join the
work and repeat the procedure mentioned in the method section of this study. This
would finally lead to more unbiased results and produces more analytical information
thereby adding additional value to the existing data presented in the discussion section.

9. Conclusion

We have presented a systematic literature review of all the empirical studies done with
respect to CBSD process. We have reviewed all the studies that were published between
January 1995 and August 2011. We found that the empirical studies have covered most
of the phases of CBSD in their research.

We extracted 47 studies which is the amount of empirical research that has been done
on CBSD through the period that is mentioned above. Case studies and Experiments
were the most preferred research methods which constitute 42.5% and 40.4% of the
total number of studies respectively. About the research topics that were discussed,
Implementation of Components, Selection of Components and Quality of Components
were highly discussed with the frequency of 7, 6 and 5 studies respectively.

We found that, among case studies, industrial case studies were the most prevalent and a
preferred research methodology. There were 10 industrial case studies out of the total 19
case studies. Regarding the geographical distribution of the industrial research, much of
it has been done in Europe with 9 studies and 1 study in China. We highlight that the
industrial research as a factor that could be improved in terms of its global persistence
keeping in mind the benefits of a socio-economic and business environment.

Regarding experiments, we presented the observation of [3] about the student subjects
in experiments that which could be improved by choosing professionals or industry
practitioners as the subjects so that the results can be made more generalizable.

Apart from the above observations we had identified certain topics or subjects that were
not focused in the empirical studies. No empirical studies were available:

- justifying the claim of CBSE or CBSD process that it reduces development
costs and also the product’s time to market

- presenting new knowledge about component models either on existing ones
like COM, CORBA or proposing new models

- showing the current-state-of-practice on the usage of CASE tools or
development environments that facilitate the CBSE or CBSD practice

48

Finally, we presented a comprehensive summary of all the collected studies according
to the research topics they discussed.

10. References

1. Jerry Gao, H.-S.J.T.Y.W., Testing and Quality Assurance for Component-Based
Software. 2003, Norwood, MA, USA: Artech House Publisher.

2. Barbara Kitchenham, S.C., Guidelines for Performing Systematic Literature Reviews in
Software Engineering. 2007, Keele University: Keele, UK.

3. Höfer, A. and W. Tichy, Status of Empirical Research in Software Engineering
Empirical Software Engineering Issues. Critical Assessment and Future Directions, V.
Basili, et al., Editors. 2007, Springer Berlin / Heidelberg. p. 10-19.

4. Kitchenham, B., et al., Systematic literature reviews in software engineering – A
systematic literature review. Information and Software Technology, 2009. 51(1): p. 7-
15.

5. Beecham, S., et al., Motivation in Software Engineering: A systematic literature review.
Information and Software Technology, 2008. 50(9-10): p. 860-878.

6. Karam, F.T.O., Essentials of Software Engineering. 2009, Sudbury, MA, USA: Jones
and Bartlet Publishers.

7. Councill, G.T.H.W.T., Component-Based Software Engineering: Putting the pieces
together. 2001, Boston, MA, USA: Addison-Wesley.

8. Clemens Szyperski, D.G.S.M., Component Software: Beyond Object-Oriented
Programming. 2nd ed. 2002, London: Addison-Wesley and ACM Press.

9. Crnkovic, I., M. Chaudron, and S. Larsson. Component-Based Development Process
and Component Lifecycle. in Software Engineering Advances, International Conference
on. 2006.

10. Jenson, G., et al., An empirical study into component system evolution, in Proceedings
of the 14th international ACM Sigsoft symposium on Component based software
engineering. 2011, ACM: Boulder, Colorado, USA. p. 189-192.

11. Grechanik, M., D.E. Perry, and D. Batory. A security mechanism for component-based
systems. in Commercial-off-the-Shelf (COTS)-Based Software Systems, 2006. Fifth
International Conference on. 2006.

12. Sharma, A., R. Kumar, and P.S. Grover, Empirical evaluation and critical review of
complexity metrics for software components, in Proceedings of the 6th WSEAS
International Conference on Software Engineering, Parallel and Distributed Systems.
2007, World Scientific and Engineering Academy and Society (WSEAS): Corfu Island,
Greece. p. 24-29.

 49

13. Sharma, A., R. Kumar, and P.S. Grover, Estimation of quality for software components:
an empirical approach. SIGSOFT Softw. Eng. Notes, 2008. 33(6): p. 1-10.

14. Ishikawa.H, N.T. A Case study on a Component Based System and its Configuration. in
In proceedings of SCOPES 2003. 2003.

15. Kvale, A.A., J. Li, and R. Conradi, A case study on building COTS-based system using
aspect-oriented programming, in Proceedings of the 2005 ACM symposium on Applied
computing. 2005, ACM: Santa Fe, New Mexico. p. 1491-1498.

16. Stevens, G., G. Quaisser, and M. Klann, Breaking It Up: An Industrial Case Study of
Component-Based Tailorable Software Design End User Development, H. Lieberman,
F. Paternò, and V. Wulf, Editors. 2006, Springer Netherlands. p. 269-294.

17. Ajila, S.A. and D. Wu, Empirical study of the effects of open source adoption on
software development economics. Journal of Systems and Software, 2007. 80(9): p.
1517-1529.

18. Slyngstad, O.P.N., et al. The Impact of Test Driven Development on the Evolution of a
Reusable Framework of Components – An Industrial Case Study. in Software
Engineering Advances, 2008. ICSEA '08. The Third International Conference on. 2008.

19. Chen, W., et al., A Survey of Software Development with Open Source Components in
Chinese Software Industry Software Process Dynamics and Agility, Q. Wang, D. Pfahl,
and D. Raffo, Editors. 2007, Springer Berlin / Heidelberg. p. 208-220.

20. Land, R., et al., Reuse with Software Components - A Survey of Industrial State of
Practice Formal Foundations of Reuse and Domain Engineering, S. Edwards and G.
Kulczycki, Editors. 2009, Springer Berlin / Heidelberg. p. 150-159.

21. Kratz, B., R. Reussner, and W.-J.v.d. Heuvel, Empirical Research Similarity Metrics
For Software Component Interfaces. J. Integr. Des. Process Sci., 2004. 8(4): p. 1-17.

22. Cooper, K., et al., An Empirical Study on the Specification and Selection of Components
Using Fuzzy Logic Component-Based Software Engineering, G. Heineman, et al.,
Editors. 2005, Springer Berlin / Heidelberg. p. 18-20.

23. Li, J., et al., An empirical study on decision making in off-the-shelf component-based
development, in Proceedings of the 28th international conference on Software
engineering. 2006, ACM: Shanghai, China. p. 897-900.

24. Far, T.W.B.H., An Empirical Study to Compare Three Methods for Selecting Cots
Software Components International Journal of computing & ICT Research, 2008. 2 NO
1: p. 34-46.

25. Hauge, O., et al. An empirical study on selection of Open Source Software - Preliminary
results. in Emerging Trends in Free/Libre/Open Source Software Research and
Development, 2009. FLOSS '09. ICSE Workshop on. 2009.

26. Ayala, C., et al., Selection of third party software in Off-The-Shelf-based software
development—An interview study with industrial practitioners. Journal of Systems and
Software, 2011. 84(4): p. 620-637.

50

27. Hong, S.-J. and F.J. Lerch, A laboratory study of consumers' preferences and
purchasing behavior with regards to software components. SIGMIS Database, 2002.
33(3): p. 23-37.

28. Lee, K. and S. Lee, A Quantitative Evaluation Model Using the ISO/IEC 9126 Quality
Model in the Component Based Development Process Computational Science and Its
Applications - ICCSA 2006, M. Gavrilova, et al., Editors. 2006, Springer Berlin /
Heidelberg. p. 917-926.

29. Schr\, A., et al., Predicting component failures at design time, in Proceedings of the
2006 ACM/IEEE international symposium on Empirical software engineering. 2006,
ACM: Rio de Janeiro, Brazil. p. 18-27.

30. Devanbu, P., et al., Analytical and empirical evaluation of software reuse metrics, in
Proceedings of the 18th international conference on Software engineering. 1996, IEEE
Computer Society: Berlin, Germany. p. 189-199.

31. Virtanen, P. Empirical Study Evaluating Component Reuse Metrics. in Proceedings of
the ESCOM 2001. 2001.

32. Ye, Y., An Empirical User Study of an Active Reuse Repository System, in Proceedings
of the 7th International Conference on Software Reuse: Methods, Techniques, and
Tools. 2002, Springer-Verlag. p. 281-292.

33. Mohagheghi, P., et al., An Empirical Study of Software Reuse vs. Defect-Density and
Stability, in Proceedings of the 26th International Conference on Software Engineering.
2004, IEEE Computer Society. p. 282-292.

34. Hoffman, K. and P. Eugster, Towards reusable components with aspects: an empirical
study on modularity and obliviousness, in Proceedings of the 30th international
conference on Software engineering. 2008, ACM: Leipzig, Germany. p. 91-100.

35. Kunda, D. and L. Brooks, Assessing organisational obstacles to component-based
development: a case study approach. Information and Software Technology, 2000.
42(10): p. 715-725.

36. Morisio, M., et al., COTS-based software development: Processes and open issues.
Journal of Systems and Software, 2002. 61(3): p. 189-199.

37. Li, J., et al., An empirical study of variations in COTS-based software development
processes in the Norwegian IT industry. Empirical Software Engineering, 2006. 11(3):
p. 433-461.

38. Julia Kortlarsky, I.O., Jos van Hillegersberg, Kuldeep Kumar, Globally distributed
component-based software developement:an exploratory study of knowledge
management and work division. Information Technology, 2007. 22(2): p. 161-173.

39. Martens, A., et al., An Empirical Investigation of the Effort of Creating Reusable,
Component-Based Models for Performance Prediction Component-Based Software
Engineering, M. Chaudron, C. Szyperski, and R. Reussner, Editors. 2008, Springer
Berlin / Heidelberg. p. 16-31.

 51

40. Tingxun, S., et al. An Empirical Study on the Impacts of Autonomy of Components on
Qualities of Software Systems. in Engineering of Autonomic and Autonomous Systems
(EASe), 2011 8th IEEE International Conference and Workshops on. 2011.

41. Brinkman, W.-P., R. Haakma, and D. Bouwhuis, Empirical Usability Testing in a
Component-Based Environment: Improving Test Efficiency with Component-Specific
Usability Measures Engineering Human Computer Interaction and Interactive Systems,
R. Bastide, P. Palanque, and J. Roth, Editors. 2005, Springer Berlin / Heidelberg. p.
880-880.

42. Silva, F.R.C., E.S. Almeida, and S.R.L. Meira, An approach for component testing and
its empirical validation, in Proceedings of the 2009 ACM symposium on Applied
Computing. 2009, ACM: Honolulu, Hawaii. p. 574-581.

43. Denger, C. and R. Kolb, Testing and inspecting reusable product line components: first
empirical results, in Proceedings of the 2006 ACM/IEEE international symposium on
Empirical software engineering. 2006, ACM: Rio de Janeiro, Brazil. p. 184-193.

44. Vitharana, P., F.M. Zahedi, and H. Jain, Knowledge-based repository scheme for
storing and retrieving business components: a theoretical design and an empirical
analysis. Software Engineering, IEEE Transactions on, 2003. 29(7): p. 649-664.

45. Mili, H., et al., An experiment in software component retrieval. Information and
Software Technology, 2003. 45(10): p. 633-649.

46. Baik, J., N. Eickelmann, and C. Abts. Empirical software simulation for COTS glue
code development and integration. in Computer Software and Applications Conference,
2001. COMPSAC 2001. 25th Annual International. 2001.

47. Mahmood, S. and A. Khan, An industrial study on the importance of software
component documentation: A system integratorʼs perspective. Information Processing
Letters, 2011. 111(12): p. 583-590.

48. Crnkovic, I. and M. Larsson, A case study: demands on component-based development,
in Proceedings of the 22nd international conference on Software engineering. 2000,
ACM: Limerick, Ireland. p. 23-31.

49. Crnkovic, I. and M. Larsson, Challenges of component-based development. Journal of
Systems and Software, 2002. 61(3): p. 201-212.

50. Sheldon, F.T., et al. Case study: implementing a web based auction system using UML
and component-based programming. in Computer Software and Applications
Conference, 2002. COMPSAC 2002. Proceedings. 26th Annual International. 2002.

51. Wu, R., An industry case study of micro component design and semantic mediation. Int.
J. Metadata Semant. Ontologies, 2007. 2(4): p. 223-234.

52. Lüders, F., I. Crnkovic, and P. Runeson, Adopting a Component-Based Software
Architecture for an Industrial Control System – A Case Study Component-Based
Software Development for Embedded Systems, C. Atkinson, et al., Editors. 2005,
Springer Berlin / Heidelberg. p. 232-248.

52

53. Victor Sagredo, C.B.G.V. (2010) Empirical Validation of Component Based Software
Systems Generation and Evaluation Approaches. Clei. electronic. jounal 13, 13.

54. Dietrich, J. and L. Stewart, Component Contracts in Eclipse - A Case Study
Component-Based Software Engineering, L. Grunske, R. Reussner, and F. Plasil,
Editors. 2010, Springer Berlin / Heidelberg. p. 150-165.

55. Runeson, P. and M. Höst, Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering, 2009. 14(2): p. 131-164.

56. Yakimovich, D., Travassos, G. H., and Basili, V., A classification of software
components incompatibilities for COTS integration. 2000.

57. Sun, C., Empirical reasoning about quality of service of component-based distributed
systems, in Proceedings of the 42nd annual Southeast regional conference. 2004, ACM:
Huntsville, Alabama. p. 341-346.

	1. Introduction
	2. Background
	2.1 Software Components
	2.2 Component Based Software Engineering process
	Requirements Analysis:
	Design:
	Component identification and customization (Coding):
	System- Integration:
	System-Testing:
	Software Maintenance:

	3. Method
	3.1 Research questions
	3.2 Search process
	3.3 Study selection
	3.4 Process followed
	3.5 Quality assessment
	3.6 Data collection and analysis

	4. Results
	4.1 RQ1 – How much empirical research has been done
	4.2 RQ2 – Types of empirical studies
	4.3 RQ3 – Research topics being addressed

	5. Discussion
	5.1 Case Studies
	5.2 Experiments
	5.3 What’s missing?

	6. Current state of CBSE
	6.1 Implementation of Components
	6.2 Selection of components
	6.3 Quality of Components
	6.4 Reusability of components
	6.5 CBSD Process
	6.6 Performance of components
	6.7 Component Testing
	6.8 Storage of components
	6.9 Integration of components
	6.10 Implementation and Maintenance of components
	6.11 Design and Implementation of components
	6.12 Component Architecture
	6.13 Maintenance of components
	6.14 Extensibility of components

	7. Limitations of this study
	7.1 Completeness
	7.2 Data synthesis
	7.3 Potential bias

	8. Future work
	9. Conclusion
	10. References1. Jerry

