
University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, October 2011

Migration of an on-premise application to the Cloud

Master of Science Thesis in Software Engineering and Management

PAVEL RABETSKI

The Author grants to Chalmers University of Technology and University of Gothenburg the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it
accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does not
contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants hereby
that he/she has obtained any necessary permission from this third party to let Chalmers University
of Technology and University of Gothenburg store the Work electronically and make it accessible
on the Internet.

Migration of an on-premise application to the Cloud

PAVEL RABETSKI

© PAVEL RABETSKI, October 2011.

Supervisor: GERARDO SCHNEIDER
Examiner: MIROSLAW STARON

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden October 2011.

1

Migration of an on-premise application to the Cloud
Pavel Rabetski

Department of Computer Science and Engineering
Chalmers and Gothenburg University

Gothenburg, Sweden
gusrabpa@student.gu.se

ABSTRACT

Cloud computing has recently became a widely discussed topic in the IT industry. More and more
organizations consider using the Cloud, because it enables an easy and cost efficient way of
hosting applications, with dynamic scaling and geographical distribution possibilities. Still, it is
not clear how and when cloud computing should be used. Existing application are often written in
a way that does not really fit a cloud environment well. Also, certain quality attributes (e.g.
performance, security or portability) can be affected. More studies are needed on how existing
systems should be plugged into the Cloud and what are the consequences of the migration. This
thesis aims to share experience and observations we gained from adopting cloud computing for an
on-premise enterprise application in a context of a small software company. Our study produced
several valuable results. First, main cloud computing opportunities and challenges were identified.
Second, biggest cloud platforms were studied and compared. Third, a cloud prototype was
developed based on the existing system. Finally, this prototype was used to evaluate the behavior
of similar systems in two environments (on-premise and the Cloud) and under different conditions
in the Cloud, addressing such concerns as performance and cost.

Keywords: cloud computing, public cloud platform, migration, enterprise application

2

Acknowledgements

First, I would like to thank my supervisor Gerardo Schneider for his useful guidelines and advice
he was giving me through the whole thesis writing. This work would have been impossible
without his help.

I am also grateful to Johan Johansson and Mats Svensson from InformaIT who initiated this
project and were facilitating it with innovative ideas. They were always open for discussion,
providing valuable information.

Finally, I would like to thank all my friends who were assisting me. Their reviews helped to
analyze the report from different perspectives.

3

TABLE OF CONTENTS

1. INTRODUCTION ... 4

2. BACKGROUND ... 5

3. RESEARCH METHOD ... 7

4. RELATED WORK .. 8

5. ADVANTAGES AND CHALLENGES ... 8

5.1. Advantages of cloud computing ... 9

5.2. Adoption challenges ... 11

6. PUBLIC CLOUD PLATFORMS .. 12

6.1. Amazon Web Services ... 13

6.2. Google AppEngine ... 14

6.3. Microsoft Azure ... 16

6.4. Summary .. 19

7. CASE STUDY: MIGRATING DC SYSTEM TO THE CLOUD ... 20

7.1. Current DC implementation ... 20

7.2. Suggested cloud DC architecture ... 23

8. EXPERIMENTS .. 27

8.1. Performance .. 28

8.1.1. Page rendering time .. 28

8.1.2. Session storing/retrieving time ... 29

8.1.3. Response time ... 30

8.2. Cost ... 32

8.2.1. Scenario 1: demo installation .. 32

8.2.2. Scenario 2: production installation without scaling .. 33

8.2.3. Scenario 3: production installation with scaling ... 34

9. CONCLUSION .. 35

REFERENCES .. 38

4

1. INTRODUCTION

Cloud computing refers to a utility-based provisioning of virtualized computational resources over
the Internet. Even though computing as a utility is not a new term [1], it became commercially
available owing to recent technological shifts in virtualization, distributed computing and
communication technologies. From a long-held dream cloud computing has turned into a new
promising trend of the IT industry that is about to change the way computational resources and
software are designed and purchased. Bottery et al [2] believes that the emergence of cloud
computing will fundamentally transform the economics of the multi-billion dollar software
industry. Market-research firm IDC estimates the market for public cloud products and services
growing to $42 billion by 2012 [3], while strategy consulting firm AMI-Partners predicts that
small business spending on cloud computing will hit $100 billion by 2014 [4].

Despite such promising predictions, there is a big confusion among potential adopters as cloud
computing is not mature enough. Indeed, it is not clear what cloud computing is and when it is
useful [5]. According to the Gartner report [6], cloud computing will become the preferred option
for application development only around 2015, despite initial growth. Moreover, the lack of
standards and keen competition on the new market has led to the variety of idiosyncratic cloud
platforms. Cloud giants like Amazon, Google, Microsoft, and SalesForce are trying to establish
their rules and promote their franchise. Choosing a proper cloud provider additionally complicates
the migration planning, especially for smaller companies that do not have resources for extensive
research on cloud computing. This thesis aims to reduce confusion among adopters and provide
valuable guidelines regarding migration of existing applications to the Cloud.

The main objective of this work is to analyze what is it to migrate an on-premise application to the
Cloud and what are the consequences of the migration. We perform our study on the example of
existing enterprise industrial application that is described later in the paper. The main
contributions of this work are:
1. A detailed study of the advantages and the disadvantages of cloud computing, and the effects of

migration of an on-premise application into the cloud.
2. An evaluation of existing public cloud platforms in order to make a rational choice of a specific

one suitable for our purposes.
3. The migration of an industrial enterprise web application to the Cloud.
4. The performance of experiments on the cloud version of our application. Based on our

experimental results we draw conclusions on the consequences of the migration and provide
suggestions on how to extrapolate our experience to other similar software systems.

The rest of the paper is organized as follows: Section 2 gives necessary background information.
Section 3 describes our research methods. Section 4 presents a brief overview of the related work.
Section 5 describes the opportunities and the challenges of cloud computing. Section 6 evaluates
existing cloud implementations. Section 7 describes the migration of an industrial enterprise
system to the chosen cloud provider. Section 8 describes performed experiments and the results.
Section 9 summarizes the results and suggests future research direction.

5

2. BACKGROUND

In this section we give a definition of cloud computing along with its key characteristics. In
addition, we describe existing cloud classifications depending on the deployment type and
provided capabilities.

Cloud computing

Cloud computing usually refers to a utility-based provisioning of computational resources over the
Internet. Widely used analogies to explain cloud computing are electricity and water supply
systems. Like the Cloud, they provide centralized resources that are accessible for everyone. Also,
in the Cloud you only pay for what you have used. And finally, it is usually consumed by those
who have difficulties to produce necessary resources by themselves or just do not want to do that.

Despite the description by analogy, it is difficult to give a unique and precise definition. One of
the main ambiguities to define cloud computing is the fact that it is still evolving and taking its
shape. The definitions proposed in the cloud computing community are often focused on different
perspectives and do not have common baselines. Analyzing existing sources in order to identify
common characteristics, Vaquero et al [7] observed no clear and complete definition in the
literature. Nevertheless, the authors proposed three features that most closely describe cloud
computing: scalability, pay-as-you-go utility model, and virtualization – and gave the following
definition:

“Clouds are a large pool of easily usable and accessible virtualized resources (such as
hardware, development platforms and/or services). These resources can be dynamically
reconfigured to adjust to a variable load (scale), allowing also for an optimum resource
utilization. This pool of resources is typically exploited by a pay-per-use model in which
guarantees are offered by the Infrastructure Provider by means of customized SLAs.”

This definition, similar to other descriptions [8], reveals the main cloud characteristics:
• Virtualization (abstracted infrastructure). Cloud computing became possible through a new

evolution of virtualization. Virtualization enables dynamic infrastructure utilization, resource
sharing, isolation and security. In contrast to a standard model when processing takes place on
specific hardware defined in advance, applications do not have any static computing place in a
virtualized cloud environment. Resources are allocated dynamically depending on the demand.
Thus, customers do not know the exact place and the type of hardware their applications are
running on. Cloud providers can only guarantee minimum performance or storage capacity for
the customer.

• A pay-per-use model. This is the key characteristic of cloud computing economics. All
resources in the Cloud are available on a utility basis, meaning that users are charged based on
the quantity consumed by them. This model allows entering the market with no upfront
investments into own hardware infrastructure.

• On-demand access. On-demand access means that resources like CPU time or storage can be
provisioned automatically when needed without any extra management effort.

• Elastic scalability. Elastic scaling signifies that computational resources, used by the
application, can be dynamically scaled up or down. In other words, virtualized hardware
resources can be resized easily and rapidly on demand. It makes a utility model even more
attractive, because consumers use only what they really need.

6

• Resource pooling. Computing resources of the provider are shared across multiple users.
Different resources are pooled in a multi-tenant way so that they can be dynamically assigned
and reassigned to serve consumers’ needs.

• Network access. Everything in the Cloud is connected via the network. End-users access
services via the Internet, developers deploy and monitor applications in the same way,
communication between different services in the Cloud occurs through the network. Cloud
computing platforms usually provide REST-based APIs to their services.

• Usability. Normally cloud computing platforms provide a simple externally managed
environment to hide deployment and operating details from the user. Cloud computing systems
provide APIs to interact with the environment, which simplifies the development.

Many of these characteristics are well-known from service oriented architecture (SOA),
distributed computing, peer-to-peer, etc.

Classifications of the Cloud

There are two widely used cloud computing classifications. The first one describes four cloud
types depending on the deployment location:

1. Public clouds. Public or external clouds are traditional clouds where resources are
dynamically provisioned via the Internet by the off-site third-party providers. These
resources are publically available to everyone. Cloud consumers are charged depending on
the quantity used. Examples are Microsoft Azure [9], Google App Engine [10], and Amazon
Web Services [11].

2. Private clouds. Private clouds usually refer to the emulation of a cloud computing
environment on private infrastructure. Since users still have to buy hardware and operating
equipment, private clouds are often criticized [12][13]. Many companies try this type of
cloud to verify their software locally before deploying it to public cloud.

3. Community clouds. Community clouds means a cloud environment established across
several organizations. Such clouds can be managed by the organizations or third-parties and
installed either on- or off-premise.

4. Hybrid clouds. This term refers to a composition of two or more clouds, including private
clouds and public clouds. This model can be used for different purposes. For example,
archiving or replicating local data in the public cloud, or dealing with peak loads when the
on-premise system uses the public cloud capacity only when needed.

Another widely used cloud ontology describes three cloud models depending on provided
capabilities [14]: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a
Service (SaaS). It is also called a cloud stack (Figure 1) because the cloud models are typically
built on top of each other. They can exist independently or in combination with each other.
Boundaries between them are still fuzzy due to the lack of standardization.

1. IaaS. The cloud infrastructure layer represents fundamental resources that compose the base

for upper layers. It is very similar to a regular virtual server hosting. IaaS is built directly on
the hardware, providing virtualized resources (e.g. storing and processing capacities) as a
service. These resources can be split, dynamically resized and assigned to consumers
depending on their demand. In the most common scenario, the consumers are Platform (PaaS)
or Application (SaaS) layers that use these resources to build new cloud software
environments or applications. IaaS is sometimes subcategorized into computational resources,

2.

3.

3.

We
the
com
on

Firs
ana
App
use
ent
beh
list

data stora
Web Serv

PaaS. The
where oth
programm
implemen
clear for d
balancing
speeds up
focus mor
PaaS.

SaaS. The
They are
layer can
available
web brow
for some f
has proven

RESE

e conduct ou
 required c

mparing orig
the quantita

st, we studi
alysis of ex
pEngine. L

ed in the cas
terprise web
havior in the
t of required

age, and com
vices and Go

e platform
her systems

ming-langua
nting and d
developers.
, and nume

p developme
re on the co

e services ex
usually inte
be built on
in the Clou

wsers or sma
fee. Micros
n to be attra

EARCH

ur research u
changes in
ginal on-pre
ative approa

ed potential
xisting clou
ater, we app
se study is p
b application
e cloud. We

d modificatio

mmunicatio
oGrid [15].

layer provid
s can run.
ge-level en
eploying Sa
In addition
rous service
ent, deploym
ore logic. M

xposed in th
eresting for
n top of Paa
ud. The appl
artphones. N
oft Office36

active to bot

H METHO

using the em
the origin

emise syste
ach [17].

l cloud com
ud platform
ply this kno
provided by
n. During t
e also sugge
ons and imp

on [14]. The

des a highe
This layer

nvironment
aaS applica

n to that, the
es for comm
ment and c

Microsoft Az

his layer rep
r a wide ma
aS or IaaS.
lication laye
Normally Sa
65 or Gmai
th providers

Figure 1

OD

mpirical rese
nal applicati
m with new

mputing adva
ms, namely,
owledge to

y InformaIT
the case stu
ested cloud
provements.

7

e examples

er level soft
r is usually

with a s
ations, whic
e platform l
munication,
onfiguration
zure and Go

present alter
arket, comp

They can a
er provides
aaS applicat
l are examp

s and consum

Cloud stack

earch metho
ion and th

w cloud-ena

antages and
, Amazon
perform a t
and based

udy we iden
based arch

.

of public I

tware platfo
y built on
set of lang
ch makes P
layer usuall
authenticat

n processes
oogle App E

rnatives to lo
pared to Iaa
also be com
interfaces f

tions are ac
ples of cloud
mers [14].

k

od [16]. We
e conseque

abled version

d challenges
AWS, Mic
thorough ca
on one of it

ntified factor
hitecture for

IaaS provid

orm with ex
top of IaaS

guage-integr
PaaS very c
ly has built-
tion, cachin
s because pr
Engine are

ocally runni
S or PaaS.

mposed from
for thin or t
cessed throu
d services. T

 are focusin
ences of th
n. So our re

and conduc
crosoft Azu
ase study an
ts products
rs that migh

r the system

ers are Am

xtended serv
S. It delive
rated APIs
comfortable
-in scaling,

ng, etc. It fu
rogrammers
the example

ing applicat
Services in

m other serv
thick clients
ugh web-po
The SaaS m

ng on identif
he migration
esearch is b

ct a compar
ure and Go
nalysis. All
– an on pre
ht affect sy

m and provid

mazon

vices
ers a
s for
e and

load
urther
s can
es of

tions.
n this
vices
s like
ortals

model

fying
n by
based

rative
oogle

data
emise
ystem
ded a

8

Finally, we performed an experimental research. The main goal of the research was to observe the
differences in system performance and cost under variable environment conditions. In order to do
the measurements a cloud based prototype of the application was developed. We used the
prototype to compare system behavior on-premise and in the cloud, and also against different
storage services, deployment location, scale and load in the Cloud.

4. RELATED WORK

Enterprises have to consider the benefits, challenges, and consequences of the cloud adoption
when moving to the Cloud. They also need to think over a proper platform for their systems. In
this section we present the related work in these areas.

Armbrust et al [5] described they vision of cloud computing, emphasizing elasticity as an
important economic benefit. Motahari-Nezhad et al [18] added that significantly reduced upfront
commitments and potentially reduced operational and maintenance costs are also important
benefits of cloud computing from business prospective. Chappel [19] elaborated on different
opportunities that cloud computing brings to ISV, including the potential for more sales and easier
customer upgrades. Kim et al [20] made and extensive research on cloud computing issues,
emphasizing security and availability as the most challenging ones. Security and privacy seems to
be one of the mostly discussed obstacles for cloud computing adoption [21][22].

We have found several papers that evaluated existing cloud implementations. Rimal et al [23]
made a comparative technical study of cloud providers and suggested taxonomy for identifying
similarities and differences among them. Later, Louridas [24] discussed the migration of
applications to the Cloud, examining key features of cloud offerings based on the taxonomy from
[23]. Li et al [25][26] suggested a set of metrics related to application performance and cost in a
cloud environment, comparing cloud providers based on these metrics. The authors concluded that
none of the cloud providers is clearly superior, even though they observed diverse performance
and cost across different platforms.

However, we have not observed many publications on the consequences of the migration that
would include for example cost, performance, or security comparison. Tran et al [27] provided a
simple cost estimation model for cloud applications, based on the identified influential cost
factors. Babar et al [28] shared experiences and observations regarding the migration of an
existing system to a cloud environment, which also included some guidelines and suggestions.
Still, none of the papers compared system behavior before and after the migration (or choosing
different migration strategies), like we do in our thesis.

5. ADVANTAGES AND CHALLENGES

Despite numerous advantages, cloud computing brings issues that slow down its adoption. We
believe that decision makers need a clear understanding of the advantages and the challenges in
order to make a rational decision whether or not to migrate an existing application. In this section
we summarize the information collected from different sources [2, 3, 5, 18, 19, 20, 22, 29, 30, 31,
32, 33]. The first part of the section is focused on the cloud computing benefits, and the second
part describes its challenges.

5.1

1.
Com
sys
coo
and
Fur
elim
clou
attr

2.
On
pre
und
bre
exp
cor
cap
actu
the
pro
min
cap

3.
The
app
run
add
com
stac

1. Advan

. No upfron
mpanies us

stems. In add
oling system
d equipment
rthermore,
minates mo
ud provider
ractive for s

. On-dema
-premise in

edicted whil
der the load
eaking even
perience, wh
rporate serv
pacity for on
ual load can
 system is

ovisioning, w
nutes (see
pacity at any

. Focus on
e applicatio
plication its
ntime (see F
ditional con
mpanies can
ck for IaaS

ntages of

nt investmen
sually have
dition to har

ms, uninterru
t should be
experienced
st of these
rs’ data ce
tartups or sm

and capacity
nstallations
le others can
d only durin
nts that are
hile surplus

vers are usua
n-premise sy
n be lower (
s starving).
when the re
Figure 2(b

y time. This

Figure 2

 core applic
on stack for
self, includi
Figure 3(a))
nfiguration
n be more f
. As we me

cloud com

nts
 to create
rdware for c
uptible pow

purchased
d personne
upfront inv
nters, payin
mall organiz

y
often stru

nnot. An ex
ng working

difficult to
s hardware
ally more th
ystems is al
which mean
Cloud com

esources de
)). Consequ
makes a clo

2 IT-capacit

cation
r standard p
ing networ
. Usually, s
and manag

focused on t
entioned in

mputing

their own
computing,

wer supplies
and installe

el are need
vestments. C
ng only for
zations beca

uggle with
xample of a

hours. A n
o forecast. A

is an ineff
han 80 perc
llocated in a
ns that hardw
mputing pr
edicated to t
uently, the
oud utility m

ty allocation

packaged so
rking, storag
system prov
gement effo
their primar
section 3,

9

data center
networking
(UPS), and

ed in advan
ded to man
Companies
r consumed
ause it can s

different lo
predictable

ews service
A lack of c
ficient capit
cent underu
advance to
ware is und
rovides mu
the applicat
users are

model even

n: (a) on-pre

oftware cons
ge, servers

viders manag
ort. Cloud
ry applicatio
IaaS provid

rs to reliab
g and storing
d other expen
nce to fulfill
nage data
can simply

d resources.
significantly

oad pattern
e pattern is a
e, however,
capacity can
tal allocatio

utilized [5].
meet the pr

derutilized) o
ch more fl
tion can be
able to co
more financ

emise, (b) in

sists of man
, operating
ge the whol
computing
ons. Figure
ders take ca

bly support
g data, these
nsive equip
l the expect
centers. Cl

y host their
. This mod
y reduce tim

ns. Some p
an enterpris
meets a he

n result in
on. Accordi
Figure 2(a)

redicted loa
or higher (w
flexible mod
 scaled up

onsume min
cially attrac

n the Cloud

ny compon
 system, m
le stack, wh
reduces th
3(b) shows

are of netw

t large soft
e centers req

pment. Hard
ted system
loud compu
application

del is espec
me to market

patterns can
se service th
eavy traffic
a bad custo
ing to statis
) shows tha

ad. However
which means
del of cap
or down w

nimum requ
tive.

ents beyond
middleware,
hich involve

his overhead
s the applica

working, stor

tware
quire

dware
load.
uting
ns on
cially
t.

n be
hat is
after
omer
stics,

at IT-
r, the
s that
acity

within
uired

d the
and

es an
d, so
ation
rage,

serv
dat
onl
nec

4.

Saa
Des
exp
Fur
adv
on-
sma
Clo
the
app

5.
Usu
ven
ass
env
num
Ser
sim
pro
info

6.

Clo
tech

vers, and v
ta and their
ly. Finally,
cessary serv

Figure 3 A

. Potential
aS applicati
sktop or s
pertise, and
rthermore,
vantage of S
-premise co
aller organi
oud capacity
 use of one

plications ca

. Easier cu
ually on-pr
ndors (ISV)
istance, up

vironment,
mber of use
rvice provid

multaneously
oduct versio
ormation sto

. Platform-
oud provide
hniques to a

virtualization
application
SaaS comp

vice availabl

Application

l for more sa
ions are m
server insta

technical p
cloud appli

SaaS applica
ommercial p
izations), be
y opens new
 CPU durin

an execute h

ustomer mai
remise pack
) have to w

pgrading, an
which mak
ers. In cont
ders can ea
y without an
ons. Moreo
ored in the C

-provided fe
rs apply the
address secu

n, while Iaa
ns. PaaS fur
pletely abst
le anytime f

stack for: (a

ales
more attracti
allations us
personnel, w
ications do
ations is tha
products. T
ecause they

w possibilitie
ng 1000 hou
hundreds or

intenance
kages are
work with
nd handling

kes it even
trast to that
asily deplo
ny down tim
over, devel
Cloud.

eatures
eir knowledg
urity, availa

1

aS users are
rther narrow
tracts end-u

from everyw

a) standard

ive to end-
ually requi

while SaaS
o not requir
at they usua
This model
y face much
es for high-p
urs costs the
thousands m

distributed
every cust

g issues. I
more diffic
t, cloud pla

oy their app
me. This m
lopers alwa

ge and expe
ability, and p

10

e responsib
ws down ve
users from

where on the

packaged so

-users comp
ire expensi
application
re any inst

ally have a p
can poten

h lower fin
performanc
e same as th
more tasks i

across ma
tomer perso
ISVs often
cult. The m
atforms allo
plications,

model also el
ays have u

erience to bu
performance

ble only for
endor’s focu
all listed c

e Internet.

oftware, (b)

pared to re
ive powerfu
ns basically
tallation or
pay-for-use

ntially bring
nancial com
e computing
he use of 10
in parallel.

any custom
onally, whe

do not ha
maintenance
ow centraliz
delivering
liminates th
unimpeded

uild their pl
e issues. Fo

OS, middl
us to data a
components

) IaaS, (c) P

egular on-pr
ful machine

need only
r regular up
licensing m

g new cust
mmitments. A

g (HPC) app
000 CPUs d

mers. Indepe
en it comes
ave access
e overhead
zed access
updates fo

he need of s
access to

latforms. Th
r example, h

leware, runt
and applica
s, providing

aaS, (d) Saa

remise syst
es, in-house
a web brow

pdates. Ano
model [5], un
omers (suc
And finally
plications. S
during one h

endent soft
s to installa

to a custo
grows with
to applicat
r all custo
supporting o
 the neces

hey use diffe
high availab

time,
ations
g the

aS

tems.
e IT
wser.
other
nlike

ch as
y, the
Since
hour,

tware
ation
omer
h the
tions.
mers
older
ssary

ferent
bility

11

is usually achieved through data redundancy and health monitoring. Cloud providers try to make
data replicas independent (including energy, connectivity and hardware independence). So the
application keeps running even in case of a natural disaster. Additionally, cloud providers offer
geographical data distribution and Content Delivery Network (CDN) services, which decreases
latencies and results in a better end-user experience. The same level of global data distribution and
redundancy would be very expensive or even impossible to achieve by independent software
vendors. There are many more features and integrated services offered in a cost efficient way by
public cloud providers, but they should be examined individually.

5.2. Adoption challenges

1. Security and privacy
Security and privacy are the most discussed issues of cloud computing. Even though security is
improved through data centralization and security-oriented components [34], there is still a
concern regarding sensitive information stored in the Cloud. Since users do not fully control their
data, they have to trust cloud providers in securing it. Also, the risk of a data leakage on the way to
the Cloud brings new challenges regarding secure transportation. VPN or encrypted data tunneling
between the local machine and a cloud environment are possible solutions. Private cloud
installations were partly motivated by security and privacy concerns.

2. Availability

Another cloud adoption issue is availability. Even though cloud providers offer a high level of
availability through SLAs, outages do occur in cloud platforms. There are two types of outages: a
permanent and a temporary outage. The first one means that the cloud provider goes out of
business. A temporary outage means service unavailability during a relatively short period of time
like several hours. The biggest cloud providers have experienced several serious outages for the
past several years [23]. There are some precautions that cloud consumers can take to mitigate the
risk. For example, they can use the Cloud for non-critical systems, keep on-premise backups, and
set up a service level agreement. In general, large cloud providers are usually more reliable than
small ones.

3. Performance

There are also some performance implications when adopting cloud computing. Virtualization and
resource sharing lead to performance unpredictability, especially for I/O resources. Cloud
platforms should guarantee a fair resource distribution across the applications running on the same
machine. Unlike on-premise systems that can keep their code and data in the same runtime
environment, cloud components communicate via the network. Since users cannot control the
exact deployment location, application components are usually spread across many servers. This
results in higher latencies and bandwidth limitations. Performance can become a serious problem,
especially when the number of requests and the amount of data increase. Cloud platforms often
provide special caching mechanisms and CDN services that can partly compensate these issues.

4. Compliance requirements

Many enterprises, especially in the US, are regulated by government policies regarding data
security and disclosure, like Sarbanes-Oxley Act for corporate accounting data and Health
Insurance Portability and Accountability Act (HIPPA) for people’s healthcare insurance data.
Most of these rules do not consider cloud services [20], so it is unclear whether or not cloud

12

computing services violate the regulations. Such issues are not analyzed in our report. However, it
should be taken into account when adopting the Cloud.

5. Vendor lock-in

Commercial cloud platforms have idiosyncratic implementations which imply different supported
programming languages, IDEs, tools, operating systems, integrated services, APIs and unique
persistent storages. Cloud platforms have poor interoperability and integration possibilities, so
applications become sticky to the provider they are designed for. It makes difficult to design
applications that can be easily plugged into several cloud platforms or deployed on-premise and in
the Cloud at the same time.

6. Multi-tenancy

Traditional on-premise software packages can usually be customized in various ways because they
are installed for each customer separately. In contrast to that, SaaS applications are multi-tenant,
meaning that a single copy of software is shared by all users. Customization of cloud systems is
very limited and requires an extra development effort.

7. Technological restrictions
Cloud platforms have different technological restrictions that complicate the application
migration. It can be runtime environment restrictions or a limited set of supported languages,
frameworks and data storages. For example, .NET applications cannot run on AppEngine, since it
supports only Java, Python and Go runtime environments. Also, Microsoft Azure does not support
any operating system other than Windows Server 2008. Technological limitations might require a
significant or a complete system reimplementation. Legacy systems are usually subject to the risk.
Moving these systems to a cloud environment is likely to be expensive due to a large number of
required changes.

8. Licensing
A regular software licensing model for commercial software does not match cloud computing,
because licenses commonly restrict the computers on which the software can run. It brings
ambiguities when using supporting commercial software for SaaS applications. Confusing
licensing terms and conditions is the biggest obstacle, especially for large organizations
considering the Cloud [31]. Even if a cloud-enabling system does not use any supporting software,
the system itself might not have a proper licensing model. Software vendors need to reconsider the
way they charge for their products in order to sell in the Cloud.

6. PUBLIC CLOUD PLATFORMS

Once ISV has decided to adopt cloud computing (here we consider only the public cloud case), the
next step is to choose a suitable cloud platform. In this section we describe three major public
cloud platforms, namely, Amazon AWS, Microsoft Azure and Google AppEngine. We emphasize
properties that are likely to affect the decision. For example, we describe supported languages and
frameworks, runtime environment restrictions, platform-provided services and features, and
pricing models.

13

6.1. Amazon Web Services

Amazon Web Services (AWS) represents a set of online services that form together a cloud
computing platform. Amazon has built large-scale, reliable and efficient IT infrastructure where
customers can host their applications. Currently Amazon has data centers in five regions: US East
(Northern Virginia), US West (Northern California), EU (Ireland), Asia Pacific (Singapore), and
Asia Pacific (Tokyo). Besides REST based APIs, AWS has recently released a set of direct
language-integrated APIs to access the cloud services.

Compute services

Amazon Elastic Compute Cloud (EC2) service allows renting virtual machines to run custom
applications on Amazon’s data centers. Virtual machines or “instances” function as virtual private
servers. Instances have different CPU resources, available memory, local storage space, and I/O
performance, depending on the instance size. The consumers are free to choose any size and
deployment region for their virtual machines. In order to instantiate a virtual machine, a user
should boot Amazon Machine Image (AMI) that contains operating system with required
middleware and configuration settings. It is possible to create custom AMIs or choose available
preconfigured images. EC2 is very flexible and supports many operating systems, a lot of
middleware, and any development platform or programming framework.

EC2 does not have built-in scaling. The users can manually change the number of instances
through administration console or provided APIs. Another possibility is to use Auto Scaling
service. Auto Scaling can scale applications up or down dynamically without an extra
management effort.

Storage services

AWS offers various durable and scalable storages for different purposes.

Simple Storage Service (S3) provides primary data storage for any type and amount of data. Data
is stored in special “buckets” that can be located in a specified region to reduce latencies or cost.
Moreover, AWS has a content delivery service for even better data distribution. The provided
authentication mechanism allows the protection of sensitive information. Also, S3 has built-in
redundancy support, but there is an optional Reduced Redundancy Storage (RRS) service at a
lower price.

Amazon SimpleDB is another service used for storing and querying over non-relational semi-
structured data. This storage service has a built-in replication, indexing and performance tuning
features. Https endpoints ensure a secure, encrypted communication with this service.

Developers can take advantage of Amazon Relational Database Service (RDS) to set up and
operate a relational database in the Cloud. RDS provides capabilities similar to ordinary databases.
In addition to that, it has an automatic replication and backup support. However, developers can
still install standard Oracle Database or Microsoft SQL Server on EC2 instances.

14

Other services

There are many other helpful AWS services for networking, monitoring and controlling,
messaging, etc. They can significantly enhance an application development and hosting.

Simple Queue Service (SQS) and Simple Notification Service (SNS) are examples of messaging
services. They offer reliable communication capabilities among application components and end-
users, enabling message-driven and event-driven workflows for large distributed systems. SQS
offers a reliable and scalable hosted queue for storing messages that are “polled” by application
components. SQS has built-in redundancy support and a special delivery mechanism to achieve
high reliability and availability. It fits well to organize communication across EC2 instances. SNS
delivers notifications to clients using a “push” mechanism. Potential uses for this service include
time-sensitive information updates, applications for monitoring, workflow systems or mobile
applications.

Elastic Load Balancer (ELB) is another useful service. It can balance a load for EC2 instances
even when the application dynamically scales up or down. ELB can be configured in many ways
including sticky load balancing, which means the user is stick to a particular EC2 instance.

CloudWatch is a very powerful monitoring service provided by Amazon. Besides a possibility to
track applications, developers and system administrators can configure systems behavior using
CloudWatch. For example, applications can be scaled in a scheduled manner or according to
certain metrics like CPU utilization. Moreover, CloudWatch can monitor application health and
boot new instances in case a failure is detected.

Pricing model and Service Level Agreements

The pricing model for AWS is quite complex. EC2 compute is billed per active instance hours.
The price depends on the type and configuration. The users can optionally reserve instances. In
this case they get a reduced hourly rate but have to pay in advance. Data storage is charged per GB
per month. Data transfer is charged per GB in and GB out. Usually the price is lower within the
same region and free within the same Availability Zone. Also, there are additional costs per
transaction for some services. Prices vary across different regions.

AWS service level agreements guarantee 99.95% availability of EC2 service, 99.999999999%
durability and 99.99% availability of S3 storage, and 99.99% durability and 99.99% availability of
RRS. Availability time is calculated for one year period. More detailed information about the
pricing model and SLAs is available on the official web site [11].

6.2. Google AppEngine

Google AppEngine is a PaaS offering for developing and hosting web applications on Google-
managed infrastructure. One of the biggest advantages of AppEngine is Google’s technologies and
services available for custom applications. Developers can use standard language-integrated APIs
to access most of these services. A set of SDKs and an Eclipse plugin enable full local
development support. SDKs can simulate AppEngine environment on a local machine.

15

Compute services

AppEngine provides a secure environment where applications can be deployed. It currently
supports Java, Python and Go runtime environments. Each environment provides standard
protocols and common technologies for a web application development. However, regular
AppEngine instances have many limitations. For example, access to other computers on the
Internet is allowed only through the provided URL fetch and email services; there is a write
protection for a local file system; code can be executed only in response to a web request or a task;
request has a 30 second limit. In addition to regular instance, developers can use Backends. The
Backend is an AppEngine instance running in the background. Also, it is more flexible than a
regular instance (e.g. it has a higher computational capacity limit and no request deadlines).
AppEngine takes care of load balancing and scaling. Applications are scaled based on the load
while data is scaled based on the size.

Storage services

AppEngine offers several options to manipulate data. The Datastore is used for non-relational data
with high read and query performance, auto scaling and transaction support. Unlike relational
databases, it supports "schemaless" entities with properties. Datastore offers two types of storage
with different availability and consistency.

The Blobstore is another storage service. Developers should use the Blobstore for large data
objects. These objects stored in Blobstore are called “blobs”. Blobs are usually created by
uploading a file through an HTTP request.

Other services

There are other useful services available for developers in AppEngine. Scheduled Tasks and Task
Queues are used to perform tasks outside of the web request. These tasks can be performed
according to a configured schedule on a daily or hourly basis; or directly when they are added.
The Memcache is a cache service that allows building high performance scalable web
applications. Memcache represents a distributed in-memory data cache in front of or in place of
persistent storage. Additionally, AppEngine has a nice built-in monitoring support. Developers
can check collected information for up to 30 days in Admin Console.

Pricing model and Service Level Agreements

Google AppEngine is free for the users up to a certain level of consumed resources. But in
general, resources like CPU, storage and bandwidth are billed based on the consumed amount
similar to AWS. However, compute services charge per CPU circles but not “per deployment
hour”. Since developers do not have a full control over the application scale, Google AppEngine
has a preconfigured cost limit of the application. SLA is currently only in a draft version that
offers 99.95% availability of custom applications. If Google fails to fulfill SLA, customers receive
credits for future AppEngine usage.

6.3

Mic
are
pla
det

Mic
emu
app
and
So
Azu

Co

Azu
bui
insi
Ma

The
Info
like
inc

The
to p
Rol

3. Micro

crosoft Azu
as: North a
tform cons

tailed view o

crosoft Azu
ulate a clo

plications be
d technologi
developers
ure.

mpute serv

ure Comput
ilt from diff
ide a virtua

achine Role.

e Web Rol
formation Se
e ASP.NET
luding Java

e Worker R
perform lon
le can be us

osoft Azur

ure is a rela
and Central
ists of Com
of the cloud

Figure

ure provides
oud environ
efore movin
ies like ASP
can use exi

vices

te provides
fferent roles
al server. A
.

le is intend
ervices (IIS)
T or WCF.
a or PHP.

ole serves f
ng running
sed for uploa

re

atively new
l America,
mpute, Netw
d services wi

e 5 Microsof

s SDKs and
nment on a
ng to the pu
P.NET, .NE
isting exper

a special e
s. Each role

Azure suppor

ded to run
) 7. IIS7 sim
It is also p

for more gen
tasks or ba
ading image

1

PaaS offeri
North and

working, S
ithin each c

ft Azure Pla

d tools for V
local mach

ublic cloud.
ET MVC, AD
rience to mi

execution e
e represents
rts three typ

frontend w
mplifies the
possible to

neral purpo
ackground p
es while a W

16

ing in the c
d West Euro

torage and
ategory.

atform produ

VS2010 to e
hine where
. Azure ext
DO.NET, V
igrate or dev

environment
s a compon
pes of role:

web applic
hosting of a
run unman

oses. It is de
processing f
Worker Role

cloud marke
ope, East a

Identity se

ucts and com

enhance loc
e developer
tensively us
Visual Studi
velop cloud

t for hosted
nent with un
: Web Role

ations. It h
applications
naged code

esigned to ru
for a Web
e does image

et. It has dat
and Southea
ervices. Fig

mponents

cal developm
s can run,

ses existing
o IDE, and

d application

d services.
nique functi
e, Worker R

has preconf
s based on w
 of virtuall

un a variety
Role. For e
e processing

ta centers in
ast Asia. A
gure 5 show

ment. SDKs
test and d
Microsoft
Microsoft S

ns for Micro

Services ca
ionality run

Role and Vi

figured Inte
web technolo
ly all langu

y of code m
example, a
g.

n six
Azure
ws a

s can
debug
tools
SQL.
osoft

an be
nning
irtual

ernet
ogies
uages

mostly
Web

The
ove
sys
are
app

An
com
cap
sho
rep

Ver
cha
rep
effi
pro
pro

Mic
bet
lev
app
of e

Sto

Azu
bas
any
aut
Tab

The
inte
sim

e Virtual M
er the runtim
stem. In con
 actually vir

plications to

y hosted s
mmunicate w
pacities for
ows five c
presents a vi

rtical scalin
anging the
presents the
icient way u

ovider has t
ogrammatica

crosoft Azu
tter perform
el of availa

plications ha
each role to

orage servic

ure Storage
sed service.
ywhere on t
thentication.
ble Storage,

e Blob stor
erface for st

milar to a file

Machine Rol
me environm
ntrast to We
rtual machin

o Windows A

service is u
with each o
different ro
ompute ins
rtual server

ng means c
number o

true power
using dynam
to change t
ally by using

ure has a bu
mance. Furth
ability. If a
ave no down
achieve off

ces

provides sc
. Data store
the Internet
. There are
, Queue Stor

rage is uns
toring any n
e system. Fi

le is design
ment. Howe
eb and Work
nes. VM Ro
Azure.

usually rep
other directly
ole instance
stance size
with a guar

Table 1 M

changing th
f instances
of cloud co

mic scaling.
the number
g provided A

uilt-in load b
hermore, the
any instance
n time durin
fered availab

calable, pers
ed in Azur
t through H
 four storag
rage, and W

tructured st
named file
ile size as w

1

ned to run u
ver, Azure
ker roles th
ole is useful

presented by
y or by usin
s, since eve
s provided
ranteed amo

Microsoft Az

he size of
s. Whereas
mputing. A
However, d

r of role in
APIs.

balancer. It
e platform
e fails, a n
ng upgrades
bility.

sistent, dura
re Storage

HTTP. The u
ge abstracti

Windows Az

torage that
along with

well as the nu

17

user-custom
supports on
at are runni
l when mov

y a combi
ng Storage
ery role run

d by Micro
ount of avail

zure Compu

a compute
vertical s

Azure allows
dynamic sca
nstances ma

distributes
is constantl
ew one is
s. Microsoft

able storage
can be acc
users can co
ions suppor
ure Drive.

resembles
its metadat

umber of fil

mized OS im
nly Window
ing inside a

ving entire o

nation of
Services. It

ns in its ow
osoft Azure
lable resour

ute instances

e instance.
caling is l

s dealing wit
aling for rol
anually in

the load ac
ly monitori
reinitialized
t suggests h

in the Clou
cessed from
onfigure ac
rted by Azu

a regular f
ta. It suppo
les are not li

mages, givin
ws Server 20

 virtual mac
on-premise W

different ro
t is possible

wn virtual m
e. Each co
rces.

s

Horizontal
limited, hor
th any load
les is not au
the manage

cross Web R
ing roles to
d automatic
aving at lea

ud. It is expo
m Azure Co
ccess policie
ure Storage

file system.
orts a hierar
imited.

ng more co
08 R2 opera
chine, VM
Windows Se

oles. Roles
 to use diffe

machine. Tab
ompute inst

 scaling m
rizontal sca
pattern in a
tomatic. Ser
ement porta

Roles to ach
 provide a

cally. Moreo
ast two insta

osed as a RE
ompute or
es using bu
e: Blob Stor

. It provide
rchical struc

ontrol
ating
roles
erver

can
ferent
ble 1
tance

means
aling

a cost
rvice
al or

hieve
high
over,
ances

EST-
from

uilt-in
rage,

es an
cture,

18

The Azure Drive represents a durable NTFS-formatted virtual hard drive (VHD) that uses Blobs as
underlying storages, where data is located persistently. This storage can significantly simplify the
migration of existing applications, because it allows simple NTFS API calls from the code.
However, Azure Drive can be mounted by only one role at a time. Furthermore, it cannot be
accessed from outside of Azure environment, meaning that users cannot access its data directly
over HTTP.

The Table Storage is used for structured or semi-structured data. It provides efficient mechanisms
for storing and querying over this data. However, Table Storage should not be mixed up with a
relational database. In a simple way, a table is a set of entities with properties. Entities are similar
to table rows, while properties are similar to table columns. Entities can have different properties
within one table because it has no defined schema. All tables in the storage have mandatory
PartitionKey and RowKey properties.

The Queue Storage is a special storage that is used to organize an asynchronous, loose coupled
workflow among roles. Roles can exchange text messages that are stored in Queues. One Queue
can be used by several roles and vice versa. Queue Storage also provides a special delivery
mechanism to guarantee high reliability. If any role fails to process a message, the message is
recreated in the Queue.

Azure Storage scalability model allows manipulating huge data amounts with fast concurrent
access. Frequently used data is cached in memory to meet dense traffic needs. Moreover, data is
partitioned across many physical nodes to distribute the load. Tables are partitioned based on the
PartitionKey property, and Blobs are partitioned according to their hierarchical structure.

The SQL Azure represents a robust relational database provided as a cloud service. It has rich
management, monitoring and reporting capabilities. SQL Azure Databases are automatically
partitioned across many nodes to distribute the load. Furthermore, SQL Azure supports bi-
directional synchronization and data sharing among multiple cloud and on-premise databases.
From the development perspective, SQL Azure is almost identical to a regular Microsoft SQL
Server.

All data in Azure storages is replicated three times to achieve high availability and fault tolerance.
Data replicas are distributed across different fault domains. If one of the replicas breaks, it is
automatically recreated from a healthy one. Windows Azure also takes care of data consistency
across replicas.

Other services

Most of the rest services provided by Microsoft Azure enhance network-related performance of
cloud applications or simplify the migration of existing on-premise solutions to the platform.

The AppFabric Cache represents a distributed in-memory cache for Windows Azure applications.
The Cache size can be dynamically configured on demand. Furthermore, the same cache model
can be used for both on-premises and cloud applications. AppFabric Caching can dramatically
reduce application latencies. It can be used as a session state provider or a regular storage cache
layer.

19

The Content Delivery Network (CDN) service allows distributing Blob or local content across
many more locations, providing minimum latencies and maximum data scale. CDN can
significantly improve application throughput. However, only public content can be used in CDN.
Also, it is highly discommended for volatile or dynamic data.

The Access Control service enables an easy authentication mechanism. It supports standard
identity providers including Active Directory, Window Live ID, Facebook, etc.

Pricing model and Service Level Agreements

The pricing model of Microsoft Azure is similar to other cloud offerings. The users pay only for
consumed resources without any upfront investments. Though, different subscriptions are
possible. Compute services are charged according to the VM instance size on hourly basis.
Compute hours is the amount of clock hours the application is deployed (regardless CPU
utilization). Both staging and production deployments are counted. Storage services are charged
per GB/month and a number of transactions. Storage capacity is calculated as average space used
by Blob, Table, Queue, and Driver storages during the billing period. That means 30 GB used only
for one day is billed as 1GB/month. More information with the detailed description of standard
rates is available in Appendix A.

Microsoft offers a set of SLAs for services including Windows Azure Compute, Windows Azure
Storage, Windows Azure CDN, etc. Most service level agreements guaranty minimum service
availability and, in some cases, performance. Availability of compute services is 99.95%, of
storage services – 99.9%. If these rules are violated, customers receive service credits in
compensation.

6.4. Summary

As we observed in this section, cloud platforms are unique in many ways. They not only represent
different layers of the cloud stack, but also have specific services and provided features.
Consequently, cloud platforms are suitable for performing the migration of existing applications in
different ways.

AWS is similar to a virtual private hosting where users can control almost the entire software
stack. It gives great flexibility for developers, but makes it difficult to offer automatic scalability,
load balancing and failover [5]. Nevertheless, AWS has a variety of integrated services for that. A
web service interface makes Amazon’s offering really platform and language independent. With
its level of flexibility and interoperability, AWS is suitable for the majority of existing
applications.

Google AppEngine offers a high level domain-specific platform, targeting traditional web
applications. AppEngine looks much like a cloud application framework. It allows automatic load
balancing, elasticity and integration with other Google services, but puts applications into a very
limited environment. AppEngine is a good choice for building new applications, but the migration
of existing systems is likely to require significant reimplementations.

Microsoft Azure intermediates between AppEngine and AWS. It resembles a lower lever
application framework, providing a language-independent managed runtime with certain

20

possibilities to control the environment. Weak points of Azure are the lack of monitoring
capabilities and no built-in scaling support. Thus, the users have to purchase external tool/services
or develop their own. In general, Azure fits well for the systems based on Microsoft technologies
and tools. A consistent development experience is an additional advantage in this case.

All cloud providers have well-developed core services for computing and storage. They offer
highly scalable and available persistent data storages where data is automatically replicated and
partitioned. Additionally, the platforms have special messaging services that help to organize
asynchronous lose-coupled workflow. However, current service level agreements are very weak.
In most cases they offer only availability of the service. None of the providers compensates
business losses if the agreement is breached. AppEngine has only a draft version of SLA.

Cloud-enabled systems are likely to have similar cost and performance across the platforms
[25][26]. However, there are some distinctions they might have. For example, Microsoft Azure
tends to be slightly more expensive, but it shows considerably better I/O performance. Also, the
scaling speed differs across platforms. The average time to provision an additional instance is
about ten minutes in Azure, and only about one minute in AWS. However, it is highly dependent
on the configuration (e.g. Windows OS boots much slower than Linux OS).

Also, we have noticed a rapid evolution of the platforms. They are expanding their data centers
and developing new services for cloud consumers. One year ago Amazon had only three data
center locations (two in US and one in Europe), compared to five locations now. Moreover, cloud
providers are competing in pricing. For example, Microsoft Azure has significantly reduced the
cost of SQL Azure and stopped charging for incoming traffic.

7. CASE STUDY: MIGRATING DC SYSTEM TO THE CLOUD

In this section we describe the migration of an enterprise system to the Cloud. We follow the
migration process provided in [27], presenting the most relevant information here. First, we
describe the current system implementation with a short background about the company. Then, we
describe the new cloud DC architecture along with identified compatibility issues. We also
suggest several system improvements to further leverage the cloud environment. And finally, we
outline concerns about the new architecture.

7.1. Current DC implementation

InformaIT company

InformaIT is a small ISV that focuses on document management systems. Most of the systems are
based on Microsoft technologies, so developers have rich experience in .NET framework, Visual
Studio development environment, SQL Server database system, and Windows Server OS. Being
an innovative company, InformaIT is very interested in modern technology and IT trends. Cloud
computing is also in the area of interest.

The Document Comparison system (DC) was selected as a candidate for migration. DC is a small
web-based enterprise solution that enhances document management processes. The main purpose
is to provide a fast and easy way to compare textual and graphical content of different digital
documents. The following section gives a detailed description of the system and its architecture.

DC

The
lan
com
file

The
pro
sett
stat
the

The
com
use
req

The
org
stor
uni
ima
file

The
exa
pos
app

The
aut
man
sma

C architectu

e system is
guages incl

mponents: f
e store (see F

e frontend
ovides web i
tings, analy
te to track p
 load on the

e backend i
mputational
ed to fasten
quires the reg

e file store
ganizes asyn
res uploade
it for the ba
ages in the
es that are sh

e cache lay
ample, the f
ssible. How
plications.

e database c
thentication.
ny docume
all and this

ure

s implemen
luding serve
frontend we
Figure 6).

is a simpl
interfaces fo
ze the resul
processed in
e server and

is implemen
tasks e.g.

n this proce
gistration of

serves as
nchronous
ed documen
ackend. The

correspond
hared among

yer keeps fre
frontend sto
wever, some

contains use
. The fronte
nt managem
data is used

nted using
er-side C# a
eb applicatio

e ASP.NET
or end-users
lt, and gener
nformation
improves u

nted as a W
the rasteriz

ess. The lib
f a COM co

a shared st
communica

nts and crea
e backend is
ding location
g all users o

equently us
ores user ses
e installatio

er personal
end uses the
ment system
d infrequentl

2

Microsoft
and C++, a
on, backend

Figure 6 DC

T web app
s, so they ca
rate reports
and a curre

usability.

Windows ser
zation of dig
brary access
omponent.

torage for s
ation betwe
ates XML ta
s checking f
n. The file
of the install

ed data, wh
ssion state t
ons require

information
e database m
ms, DC is n
ly.

21

.NET 2.0 f
and client-si
d engine, d

C componen

lication run
an upload di
. The fronte

ent user stat

rvice (also.N
gital docum
ses the files

system com
en the fron
ask files the
for new XM
system also

lation.

hich increas
there. A loc

a distribut

n. This infor
mostly durin
not database

framework
ide JavaScr
istributed c

nts

nning under
igital docum
end extensiv
tus. The cli

NET based)
ments. A spe
s via regula

mponents. It
ntend and t
ere. An XM
ML task file
o contains s

ses the perfo
cal in-memo
ted cache s

rmation is n
ng login and
e-centric. Th

and variou
ipt. DC con

cache, datab

r IIS on W
ments, chang
vely uses A
ent-side Jav

). It perform
ecial comm
ar file syste

t keeps per
the backend

ML task file
es, and then
some custom

ormance of
ory cache is
shared acro

needed for au
d logout pro
he amount

us programm
ntains five m
base, and sh

Windows O
ge configura

ASP.NET ses
vaScript red

ms long run
mercial libra
em API. It

sistent data
d. The fron

describes a
n stores rend
m configura

the system
s used when
oss several

uthorization
ocedures. Un
of data is q

ming
main
hared

S. It
ation
ssion
duces

nning
ary is

also

a and
ntend
a job
dered
ation

. For
never

web

n and
nlike
quite

Dep

DC
cus
am
sing
ma
Mic

An
are
is u
req
fron
the
req
end

Thi
phy
dat
wh
kee

Org
typ

Mo

Info
fac
ma

ployment m

C is deploye
stomers hav
ount of req
gle server
chines to r
crosoft SQL

 on-premise
 composed
usually loca

quire more p
ntend and b
 role of per

quire much s
d-users are a

is on-premi
ysically clos
ta never goe
en users nee

ep the transf

ganizations
pes of licens

otivation

formaIT beli
ed challeng
intenance.

model

ed on serve
ve to take c
quired hardw

is usually
run the sys
L Server.

e distributed
into a Web

ated on a se
powerful se

backend serv
rsistent file
space and h
also located

ise deploym
se. It result
es outside th
ed to access
ferred data p

are charged
es available

Figur

ieves that ad
ges. The m

ers located
care of the
ware depend

enough fo
stem. DC a

d deploymen
Server Farm

eparate serv
ervers for h
vers to achi
storage. M

heavy query
in the same

ment mode
s in very lo
he organiza
s the system
protected.

d per install
e, including

re 7 On-pre

doption of c
main trigge

2

in the data
 infrastruct
ds on the a

or small co
also require

nt model of
m. They sto
ver. Backen
heavy comp
ieve the requ
icrosoft SQ
ing, the dat
e environme

l gives sev
ow latencies
ation, which

m outside the

lation depen
a personal l

mise distrib

cloud comp
ers are the

22

a centers of
ture and tec
amount and
ompanies, w
es preinstall

f DC is show
ore frequent
nd engines a
putations. A
uired perfor

QL Server is
abase can b
ent where th

veral advan
s and no ba
h provides a
e organizati

nding on th
license and

buted deploy

puting will s
potential

f customer
chnical pers
the comple

while big o
led Window

wn in Figur
tly used data
are deploye

A customer
rmance. A s
s used as a
be installed
he system is

ntages. First
andwidth lim
a high level
on, a VPN

e number o
a concurren

yment mode

solve or mit
for more s

organizatio
sonnel to m
exity of pro
organization
ws Server 2

re 7. ASP.N
a in a distrib
ed separatel
can choose

shared netw
database. S
on a shared
running

t, it keeps
mitations. S
l of security
connection

of users. Th
nt license.

el of DC

tigate many
sales and e

ons. This m
maintain it.
ocessing dat
ns need sev
2003/2008

NET applica
buted cache
y as well. T

e the numbe
work folder p
Since it does
d server. Usu

data and
econd, sens

y. In some c
is establish

ere are diffe

of the curre
easier custo

means
The

ta. A
veral
with

ations
e that
They
er of
plays
s not
ually

code
sitive
cases
ed to

ferent

ently
omer

23

On-premise DC is oriented to big and medium organizations that have enough resources, own
infrastructure, and technical personnel to install and run the system. Furthermore, the license cost
is quite high. Potential customers such as small companies cannot afford DC, facing too big
financial commitments. Some of them would like to use the system inconstantly and pay only for
the amount of compared data. SaaS version of DC can bring the product to such customers.

Another opportunity is easer installation and upgrade procedures. The system is distributed across
many customers. InformaIT has to convince each customer to replace an on-premises package and
then assist during the actual upgrading. Some customers still run older versions of the system,
which brings an additional support overhead. Simple maintenance model of cloud computing will
help to distribute resources more efficiently, leading to cost savings and business agility.

Also, InformaIT rents several virtual private servers for demo installations. These servers cannot
be scaled dynamically, remaining underutilized most of the time. Moreover, the deployment
location is static, so remote customers experience very high latencies when trying the application.
The system can leverage technological edge of the Cloud, including dynamic scalability,
geographical distribution, and data replication. Being a small company, InformaIT cannot achieve
the same global scale and global reach by expanding own infrastructure. Cloud computing enables
these possibilities in a cost efficient way with no upfront commitments.

For now, a cloud version of DC will be used to replace the demo installations. This will help to
examine systems’ behavior in the Cloud. Meanwhile, InformaIT would like to keep an on-premise
DC version. Ideally, the system should be easily deployed in both environments with only few
changes.

7.2. Suggested cloud DC architecture

There are many ways to migrate the system to the cloud environment. Developers usually face a
range of alternatives when implementing cloud-based systems. In this section we describe the
chosen approach for our case and discuss different alternatives that can affect cost, architectural
qualities, and the amount of required changes.

Choosing a cloud provider

The first step when moving the system to the Cloud is to choose a proper cloud provider. A
properly chosen cloud provider can significantly decrease the effort and the cost of the migration.
We have already examined three major cloud providers in section 5. Based on our finding we can
conclude that Google AppEngine is the worst candidate for DC because it does not support .NET
applications, while Amazon AWS and Microsoft Azure both fit for the migration quite well. After
further analysis we prefer Windows Azure to Amazon AWS for several reasons: it requires less
configuration effort, has a faster deployment model, and allows consistent development
experience for applications that are well-versed in Microsoft technologies.

24

Cloud DC architecture

Once we have chosen a public cloud provider, we need to show how existing architectural
components are mapped to abstractions provided by the platform. In our case this platform is
Microsoft Azure.

1. The frontend. Azure Web Role is an obvious choice for our ASP.NET frontend. Web Role has

a preconfigured IIS and a built-in load balancer for web applications. Still, there are some
limitations to keep in mind. For example, Azure load balancer is not sticky, meaning that two
requests from the same user can be processed by different Web Role instances. Also, Web
Role supports only IIS 7.0 and requires .NET 3.5/4.0.

2. The backend engine. The backend maps to a Worker Role, since it suits perfectly for long

running background tasks. It is worth noting that roles do not have administrative privileges in
the environment. It restricts the execution of tasks that change OS configuration e.g.
registration of a COM component or changing OS registry.

3. The distributed cache. Microsoft Azure has only one service for distributed cache so far –

AppFabric Cache. Alternatively, cached data can be stored in either SQL Azure or regular
Azure Storage. As we have explained in section 5, AppFabric Cache is considered to have
better performance compared to the alternatives. However, it is quite expensive and limited in
size (4GB maximum). We choose AppFabric Cache under the assumption that the size of data
stored in cache will be significantly reduced. Otherwise we suggest using Table Storage.

4. The database. On-premise DC version uses a Microsoft SQL Server database. We find SQL
Azure as a perfect cloud alternative. In most cases switching to SQL Azure is as simple as
changing the connection string. In [35] authors argue that SQL Azure can become a
bottleneck for systems that concurrently operate large amounts of data. However, it is not the
case for DC.

5. The file store. We have found out that the local file storage is not persistent and cannot be
shared with other roles. All data stored locally gets lost if the role dies. The only persistent
option for Azure applications is Azure Storage. We suggest using Queue Storage messages
instead of XML task files and Blob Storage for the rest of the files shared among roles. This
approach leverages the cloud platform as much as possible. First, all data is automatically
replicated and scaled. Second, Azure Storage can be accessed directly via REST calls,
reducing the load on the frontend. Last but not least, Queue Storage provides a built-in
reliable communication mechanism.

There is another alternative for the file store: Azure Drive that represents a VHD located in
Blob Storage. This persistent drive can actually be shared with other roles using a Server
Message Block protocol (SMB) [36]. The advantage of using Azure Drive is that it supports a
regular file system API, eliminating any code modifications. However, the drive becomes
unavailable if the role that mounted this drive dies. Also, it can store maximum 1TB of data,
limiting scalability of the system. Moreover, stored data cannot be reached from outside via
REST API.

Fig
com
rep

Ide

Eve
com
in T

Com
Cur
tha
The
ver
The
com
env

A
Azu
Sto
are
cur

We prefer
complexit

gure 8 prese
mplexity to
plication, glo

entified com

en though
mpatibility i
Table 2.

mpatibility
rrent solutio
t are not su
e platform
rsions.
e system
mponents d
vironment li

local folde
ure roles. F

orage and Q
 not compa

rrently used

r the first o
ty, and prov

ents a prop
o Azure se
obal scale an

mpatibility

Microsoft
issues that r

issue
on uses .NE
upported by

m uses th

cannot
directly fro
imitations.

er cannot
Furthermore

Queue Stora
atible with
by DC.

option beca
ides higher

Figure 8

posed deplo
ervices, tak
nd global re

issues

Azure fits
require chan

ET 2.0 and V
y Microsoft
he latest p

register
om code

be shared
e, suggeste

age have AP
regular fil

2

ause it has
availability

 Cloud depl

yment mod
king advant
each, applica

well for t
nges in the c

R
VS2005

Azure.
product

Th
V
fu

COM
due to

Th
co
Fr
us
so

across
ed Blob
PIs that
le APIs

C
st
A
ch
lo

25

easier depl
y.

loyment mo

del of the s
tage of bu
ation’s healt

the migratio
current impl

Required mo
he system s

VS2010. Thi
ull backward

here are som
omponents
ree COM [3
sing startup
olution.
hange the

torage to u
APIs. Since
hanged, req
ocally every

loyment pro

odel of DC

system in th
uilt-in effici
th monitorin

on of DC,
lementation

dification
should be m
is modificat
ds compatib

me workarou
for Azure

37] and role
p scripts b

code for a
use Blob St
e commerc
quired files
y time befor

ocedure, ca

he Cloud. D
ient data p
ng and load

we have
. These issu

migrated to .N
tion is quite

bility of .NE

unds that al
application
 startup scri
because it

accessing d
torage and
cial librari

should any
re processin

an scale wit

DC offloads
partitioning
d balancing.

identified s
ues are descr

NET 3.5/4.0
e simple du

ET 4.0 and 2

llow using C
ns: Registra
ipts. We sug

is the ea

data in the
Queue Sto

ies cannot
yway be st
ng. Azure D

thout

s the
and

some
ribed

0 and
ue to
2.0.

COM
ation-
ggest
asiest

e file
orage
t be
tored
Drive

Sta
not
In-P
stat
inst
bec

In w
inc

1.
As
Ho
Azu
to i
dat
dep

2.
Lar
add
Sto
cur
am
web
app

3.
Log
env

andard ASP
t suit Azur
Process mo
te storage) i
tance, it i
cause of a no

what follow
rease portab

Separate d
stated earl

wever, this
ure Storage
increase por
ta access lay
pending on t

Become as
rge amount
ditional 1GB
orage cost. T
rrently store
ount of cach
b applicatio
plications.

Extensivel
gging is ve
vironment. L

.NET sessio
e environm

ode (local i
is an option
is useless
on-sticky lo

ws, we recom
bility, and m

data layer fr
ier, Informa
is not easy
 API. We su
rtability. In
yer interface
the deploym

s stateless a
of cached d
B of AppFa
The bigger

es megabyte
hed data, m
on that exte

ly use loggin
ery importan
Logging he

on state mo
ment. Even
in-memory
n for one We

for severa
oad balancer

Table 2

mmend som
make the mig

from busines
aIT wants t
to achieve b
uggest sepa
other words
e. This loos

ment environ

Figure 9

as possible
data will not
abric cache
the session
s of data pe

making DC a
ensively use

ng
nt for clou

elps develop
2

is
ch

odes do
though
session
eb Role

al roles
r.

Th
or
(o
of
cu

2 Identified

me design m
gration as sm

ss logic laye
the system
because of t

arating a dat
s, instead of
e coupling
nment (see F

9 DC design

t only degra
e costs arou
n size, the m
er a session,
as stateless a
es session d

d applicatio
pers to trac

26

 an altern
hanges.

he system
rder to scale
or optionall
ffers an ea
ustom sessio

compatibili

modifications
mooth as po

er
to by easil

the need to
ta access lay
f using APIs
allows usin
Figure 9).

n to increase

ade the perf
und 100$, w
more time r

which is a
as possible.
data. Abuse

ons, since d
ce the behav

native solut

needs distr
e. We sugg
ly Table S
asy way of
on storage p

ity issues

s in order to
ossible.

ly portable
switch from

yer from a b
s directly, a

ng regular fi

e portability

formance bu
which is 10
equired to s
big overhea
This sugges

e of session

debugging
vior of the

tion that e

ributed ses
est using A

Storage). M
f using the

providers.

o tune syste

across both
m regular fil
business log
a business lo
ile system o

ut also incre
00 times m
serialize/de-
ad. We sugg
stion can be

n is a bad d

is impossib
system and

eliminates t

ssion storag
AppFabric C
Microsoft A
ese storage

em performa

h environm
le system A
gic layer in o
ogic layer ca
or Azure Sto

ease the cost
more than A
-serialize it

gest reducin
e applied for
design for c

ble in the c
d determine

these

ge in
Cache
Azure
es as

ance,

ments.
API to

order
alls a
orage

t. An
Azure
. DC
g the
r any
cloud

cloud
e the

27

reason of system failures. Furthermore it might be useful for identifying the level of resource
utilization or just collecting statistical information.

Concerns

InformaIT still has some concerns regarding new cloud architecture.

First, there is a performance concern. Unlike an on-premise deployment, a cloud environment
entails higher latencies, because all components communicate over HTTP. This might be
particularly harmful when frequently storing and retrieving session data. Another potential
bottleneck is CPU performance. Heavy algorithms used in DC system consume a lot of CPU
resources. We need to examine the application’s behavior in the cloud in order to make a final
decision upon the feasibility of cloud adoption.

Another concern is the cost of the application, because it is not really transparent in the Cloud. The
price model is based on different metrics that are difficult to measure for all system components in
common. InformaIT would like to have at least approximate cost estimation for DC running on
Microsoft Azure platform.

It would also be interesting to see how a deployment location can affect latencies and bandwidth,
because InformaIT is interested to leverage this cloud platform advantage. In the next section we
investigate these concerns by doing performance experiments and cost estimations.

8. EXPERIMENTS

In this section we investigate the main concerns of running DC in the cloud environment. These
concerns are cost and performance. Based on our estimations and experiments, we compare DC
behavior in two environments (on-premise and the Cloud) and under different conditions in the
Cloud. This helps us to determine whether cloud-based DC is feasible, which is the main goal of
the investigation. Other potential concerns, such as security and privacy, fall outside the scope of
this thesis and remain as future work.

Testing environment

Experiments and measurements are done for North Europe deployment location of Microsoft
Azure. This is the geographically closest location to the client testing environment located in
Sweden (Gothenburg). All Azure compute instances have a small size, which provides 1.75 GB
memory, 225 GB local disk space, moderate I/O performance, and CPU performance equivalent to
one 1.6GHz core. We use small instances as a part of Azure free trial subscription, which gives
necessary resources to perform our experiments for no fees. Testing on the client side is executed
in a non-virtualized environment, external to the Cloud, with a direct connection to the Internet via
a high-speed wired Ethernet. However, the cloud deployment location and the client environment
are changed for some experiments. All experiments are performed at least 100 times to confirm
that the results are stable.

28

8.1. Performance

As we identified earlier, a cloud environment entails increased latencies and unknown hardware
underneath. Therefore, DC can have the following performance bottlenecks in the Cloud: the
execution of heavy computational tasks (like digital document rendering) that require efficient
hardware; and session handling that is latency sensitive. These operations represent the highest
risk when moving DC to the cloud environment, because they might lead to significant system
performance degradation.

8.1.1. Page rendering time

We use “seconds per page” metric for measuring page rendering speed. This is a natural metric
that represents the time required to create an image from a digital document page. To suggest a
page standard, we have analyzed a production set of documents and classified two main types:

1. Textual documents with little graphic. They usually contain many (up to 40) A4 format
pages that are rendered fast. We refer to this type as A4 page.

2. Graphical documents with little text. They usually contain one or two A3-A2 format pages
that are rendered considerably slower. We refer to this type as A3 page.

We pick up one A3 page and one A4 page for our experiments. The size of the A3 page is 25Kb,
with a 495Kb corresponding rendered image. The size of A4 page is 2Mb, with a 1.4Mb
corresponding image.

The rendering library gets regular file system paths as input parameters. Since the original on-
premise system keeps all documents in a regular file system, it calls this library directly. However,
as we described in section 6.2, cloud DC uses Azure Storage. This requires some pre-processing
and post-processing steps to render a page:

1. Download a required document from Blob Storage to local file storage
2. Call the rendering library
3. Upload rendered images to Blob Storage
4. Cleanup local storage

So the total rendering time in the Cloud can be decomposed into these four steps. Figure 11
illustrates the observed time for A3 and A4 pages in the cloud environment.

Figure 11 Page rendering time in the Cloud

0

2

4

6

8

10

12

14

16

18

A4 A3

Pr
oc
es
si
ng

 ti
m
e
(s
ec
on

ds
)

Delete local files

Upload image to blob

Library execution

Download document
from blob

29

As shown in Figure 11, pre-processing and post-processing steps for A3 page take about 0.5
seconds, which is only 3% of the total time (16.7 seconds). For A4 page these steps take 0.28
seconds, which is 13% of the total time (2.15 seconds). Cleaning local storage takes <1ms in both
cases, so we can ignore this value. It is worth noting that downloading time is much shorter for A4
page, while uploading time is almost the same in both cases. This is because the difference in size
between documents is much bigger than between output images. Anyway, library execution takes
overwhelming majority of the time (>87%). This means CPU performance is still the most
important factor for page rendering in the Cloud.

Figure 12 Page rendering time comparison for cloud and non-virtualized environment

As the next step, we compare page rendering time for cloud and on-premise DC versions. For a
cloud version we use a small Azure compute instance (that has CPU performance equivalent to
1.6GHz), while on-premise installations have Core2Duo P7350 2.0GHz M x86 (laptop),
Core2Duo E7500 2.93GHz x86 (workstation), Core i3 540 3.07GHz x64 (dedicated local server).
Figure 12 illustrates the results of our experiments. We have observed notably worse performance
of DC in the Cloud rather than on the dedicated server with powerful Intel Core i3 CPU (16.1
seconds compared to 4.9 seconds to render A3 page). This means the system needs about three
times more instances of the backend engine in the Cloud to achieve the same throughput.

In order to verify that our results are reliable, we also run inferential statistics on the test data. We
found that the standard deviation is <2% of the mean for all cases, due to a low variance for a big
sample size. That makes t value to be very big (>100 for all cases), meaning that the probability of
having an “error” is tiny (<0.0005). In our case the “error” implies that different test samples
actually have the same mean while we have observed the opposite.

8.1.2. Session storing/retrieving time

In this section we compare on-premise and cloud DC session handling performance and also test
two alternatives in Azure platform. For on-premise installation we evaluate standard ASP.NET in-
process and state server modes. In-process mode stores session state data in memory, while state
server mode uses a special process (separate from the ASP.NET worker process) for it. For cloud
installation we evaluate AppFabric Cache, and a custom session handler that uses Azure Table.

0

5

10

15

20

25

30

35

40

Cloud (Equivalent of
1.6GHz)

Core2Duo P7350
2.0GHz M x86

(laptop)

Core2Duo E7500
2.93GHz x86
(workstation)

Core i3 540 3.07GHz
x64 (server)

Re
nd

er
in
g
tim

e
(s
ec
on

ds
)

A4

A3

30

Session handling is very important for the frontend ASP.NET application, because it retrieves and
stores session data on every page load as a part of the ASP.NET application lifecycle [38].

After putting an object into session, we measure the time it takes to load and save the session
when handling an http request. We perform this experiment against different storages and different
object sizes: 1Kb, 1Mb, and 10Mb (assuming that session should not exceed 10Mb). Every object
contains randomly generated binary data. It is worth noting that serialization time depends on the
number of objects stored in session. In our case there is only one object. We also use the local
Web server for state server mode, while a remote Web server would considerably increase session
handling time. Experiment observations are presented in Table 3.

Session size
On-premise DC installation Cloud DC installation

In-process State server AppFabric Cache Table Storage
1Kb 0.0/0.0 0.0/0.0 0.004/0.008 0.094/0.113
1Mb 0.0/0.0 0.008/0.009 0.098/0.143 0.292/0.548
10Mb 0.0/0.0 0.161/0.173 0.435/0.583 1.167/1.861

Table 3 Storing/retrieving time for session data

As we can see in Table 3, on-premise DC requires significantly less time for session handling
compared to the cloud installation. In-process mode is obviously the fastest. Since all data is kept
in memory, the application needs to store and retrieve only a pointer to the memory location.
However, when data is stored in another location like AppFabric Cache, it should also be
serialized and de-serialized accordingly. We have observed that AppFabric Cache shows
considerably better performance than Table Storage, especially for small amounts of data. It is
approximately 3 times faster for 1Mb and 10Mb cases, and 17 times faster for 1Kb case (4/8ms
compared to 94/113ms). Consequently, DC can have close to on-premise performance in the
Cloud when operating smaller data amounts (kilobytes) stored in AppFabric Cache. Table Storage
increases response time by 1.167+1.861 ≈ 3 seconds when storing 10Mb of data in session. On the
other hand, it is much cheaper and has no capacity limits. Table Storage also shows a lower
correlation between the time and session size. Apparently, this is caused by HTTP latencies to
transfer the data.

8.1.3. Response time

In this section we test response time of the frontend web application against different deployment
locations and different scale. We try to reflect the actual time from the end-user perspective,
because perceived response time dictates user-friendliness of the service. For our case response
time includes the latency to send a request from a client, the time to redirect the request by a load
balancer (if there are several role instances), the time to process it by the application, and the
latency to get a response back from the server (see Figure 13). Even though these factors depend
on network locality and traffic congestion, the main purpose is to show the difference in response
time depending on different conditions. In our experiments these variable conditions are
deployment location, number of role instances (scale), and load. In order to measure response time
purely for a Web Role, we use a stateless .aspx page that does not include any external factors like
session handling or document page rendering.

The
pag
nee
per
con
on
the
stab

Fig
inc
glo
dec
setu

The
dep
doc
ban

e first expe
ge makes so
eded to ensu
rform the e
ncurrently. I
a Web Test
 Load Test
ble.

gure 14 show
reasing num

ows linearly
creases resp
up performs

e main goal
ployment lo
cument to D
ndwidth in

riment eval
ome calcula
ure that the p
experiment
In order to m
t that simpl
for a period

ws observed
mber of con
y with differ
ponse time,
s 400ms fast

l of the seco
ocations. To
DC that is
a better wa

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Re
sp
on

se
 ti
m
e
(s
ec
on

ds
)

Figure 13
luates page
ations and th
page is not
with a va

measure res
ly requests t
d of five min

Figure 1

d response t
ncurrent use
rent angula
especially

ter than a si

ond experim
o do so, w
running in

ay. We hav

10

1 R

3

3 Page respo
response ti

hen generat
cached by a

ariable num
sponse time,
the page. A
nutes and pe

14 Cloud DC

time for bot
ers. Page tim
ar coefficien
for a heavy

ingle instanc

ment is to sho
we execute

the cloud
ve picked u

50 10
Number

Role instance

31

onse time de
ime for a di
tes dynamic
any CDN se

mber of sim
, we use Vi

All testing is
erform it ma

C page resp

th single ins
me starts at
nts. Results
y load. For
ce setup.

ow the diffe
Visual Stu
environmen

up three ran

00 150
of concurrent

2 Role

ecompositio
ifferent num
c output con
ervice or in
mulated clie
sual Studio
 done from

any times to

onse time

stance and d
t about 80 m
show that
250 concu

erence in res
udio 2010
nt. This sce

ndom files o

200
t users

e instances

on
mber of role
ntent. This
the client en

ents access
2010 Load
outside the

o confirm th

dual instanc
ms for both
an addition

urrent users

sponse time
Web Test

enario refle
of different

250

e instances.
dynamic da
nvironment
ing the ser
Test [39] b

e Cloud. We
at the result

e setups wit
h cases and
nal role inst

a dual inst

e across diffe
that uploa

ects latency
t sizes from

 The
ata is
t. We
rvice

based
e run
ts are

th an
then

tance
tance

ferent
ads a
y and
m the

32

production document set: 0.28Mb, 1.25Mb, and 5.13Mb. The experiment is executed for two
deployment locations: North America and North Europe, with testing performed in Sweden
(Gothenburg). We repeat the experiment multiple times to confirm that the results are stable. The
observed response time is presented on Figure 15.

Figure 15 Response time for file uploading

All three cases show approximately twice faster uploading time for North Europe zone compared
to North America zone. The biggest file (5.13 MB) is uploaded to the first zone for 10 seconds,
while the second zone requires almost 24 seconds. Consequently, a proper deployment location
can significantly improve user experience by reducing interaction latencies.

8.2. Cost

In this section we estimate the cost of DC in the Cloud. For this purpose we model three real life
scenarios that describe how cloud DC can be used. The cost for every scenario is estimated based
on the Microsoft Azure pricing model.

8.2.1. Scenario 1: demo installation

In Scenario 1 cloud-enabled DC is used as a demo installation. We have estimated the load and
required capacities based on the statistics from current virtual private servers with demo
installations. According to our estimations, we need three small compute instances: one for a Web
Role and two for Worker Roles. The system needs a storage capacity of 100 GB and twice more
(200 GB) for the outgoing traffic. We perform all calculations for a 30 days period which is
equivalent to one month. So we totally need 30*24*3 = 2160 compute hours that costs 2160*0.12
= 259 US dollars. Data storage costs 100*0.15=15$; outgoing traffic – 200*0.15 = 30$; 1 million
transactions cost only 1$; and 1 GB SQL Azure is 9.99$. The overall cost is presented in Table 4.
Figure 16 shows the cost distribution among different services. The total cost in brackets
represents an upfront payment case (using a subscription). For more information see the official
Microsoft Azure page.

0

5

10

15

20

25

30

0.28MB 1.25MB 5.13MB

U
pl
oa

d
tim

e
(s
ec
on

ds
)

North America

North Europe

33

Figure 16 Cost distribution for Scenario 1

Service Used capacity Cost per month ($)
Compute Instance 3 small instances (2160 hours) 259
Relational database 1 GB 9.99
Storage 100 GB 15
Storage transactions 1000k transactions 1
Data transfer 200 GB 30
 Total: 314.99 (214.99)

Table 4 DC estimated cost for Scenario 1

8.2.2. Scenario 2: production installation without scaling

In Scenario 2 DC is used as a production installation with throughput equivalent to one dedicated
server (without elastic scale). For this scenario we require DC to show the same throughout as the
on-premise installation that is running on a server with Core i3 540 3.07GHz x64 processor, 500
GB available local storage and 4GB of memory. It uses three out of four cores for the Backend
and the rest one for the Frontend. As we observed earlier, the backend engine shows three times
worse performance in the Cloud. That means we need nine small compute instances for the
Backend. The frontend application requires two small compute instances, since we do not expect
big performance degradation for the ASP.NET application. We also include 512MB AppFabric
Cache. The cost calculation is the same as for the previous case. Table 5 presents the total cost for
this scenario, and Figure 17 illustrates the cost distribution.

Service Used capacity Cost per month ($)
Compute Instance 11 small instances (7920 hours) 950
Relational database 1 GB 9.99
Storage 500 GB 75
Storage transactions 5000k transactions 5
Data transfer 1000 GB 150
Cache 512 MB AppFabric Cache 75
 Total: 1264.99 (1084.99)

Table 5 DC estimated cost for Scenario 2

Compute
Instance
82%

Relational
database

3%

Storage
5%

Storage
transactions

0%

Data
transfer
10%

Cache
0%

Scenario 1

34

Figure 17 Cost distribution for Scenario 2

8.2.3. Scenario 3: production installation with scaling

In Scenario 3 DC is used as a production installation with throughput equivalent to one dedicated
server (using elastic scale). In this scenario we use the same capacities as in Scenario 2, but
leveraging cloud elastic scalability. We assume DC has a typical enterprise system load pattern:
high load during working hours (10 hours from 8AM to 6 PM) and almost no load during the rest
time. That means we can scale our system down when the load is very low. We scale it down to
three small instances like in Scenario 1 to keep the system available. Also, the cache service is not
needed when we have one Web Role. Assuming that there are 22 working days during a month we
will need 30*24*3 + 22*10*8 = 3920 hours. The first term means that we need 3 instances all the
time, and the second term means that we add 8 more instances during high load periods. The cache
will cost 75*(22/30) = 55. However, using elasticity does not affect storage and outgoing traffic.
The estimated cost is presented in Table 6. Figure 18 shows the cost distribution among different
services.

Service Used capacity Cost per month ($)
Compute Instance 3-11 small instances (3920 hours) 470
Relational database 1 GB 9.99
Storage 500 GB 75
Storage transactions 5000k transactions 5
Data transfer 1000 GB 150
Cache 0-512 MB 55
 Total: 764.99 (664.99)

Table 6 DC estimated cost for Scenario 3

Compute
Instance
75%

Relational
database

1%

Storage
6%

Storage
transactions

0%

Data transfer
12%

Cache
6% Scenario 2

35

Figure 18 Cost distribution for Scenario 3

Based on our estimations we can conclude that compute services dominate in all scenarios. It
makes up 82%, 75%, and 61% of the total cost for Scenario 1, 2, and 3 accordingly. On the other
hand, storage transactions have the least cost. SQL Azure also has a small cost share: 1% for
Scenario 2 and 3 and 3% for Scenario 1. However, this is because DC is not database centric. We
found that the cost of DC can drop by 40 percent (764.99$ compared to 1264.99$) when
leveraging elastic scalability. Even though choosing a proper scaling strategy is pretty
straightforward for enterprise applications like ours, it might not be so trivial for other systems.

9. CONCLUSION

In this thesis we have taken an in-depth look at the current state of cloud computing. This
technology is not mature yet, which brings difficulties in giving definitions and making
classifications. Nevertheless, pay-as-you-go utility model, scalability and virtualization can be
emphasized as the main cloud computing characteristics. Cloud computing is evolving and taking
its shape rapidly, which is also reflected on cloud platforms dynamic. Thus, early adopters should
be ready for a changeable weather in the Cloud.

Apart from cloud computing in general, we have made an extensive research on the opportunities
and the challenges of cloud adoption. We have found that cloud computing enables a cost-efficient
way of hosting highly available and geographically distributed applications that can de
dynamically scaled based on the demand. On the other hand, cloud computing brings some
challenges, including security, privacy, availability, and performance. We predict that many of
these challenges will be solved or mitigated along with cloud computing maturing.

Furthermore, we have evaluated three leading IaaS and PaaS providers: Amazon AWS, Microsoft
Azure, and Google AppEngine. Our findings support the argument that existing cloud
implementations are idiosyncratic. We conclude that Amazon AWS is the most flexible platform
that suites the widest range of applications, while Google AppEngine has the most limitations that
are likely to complicate the migration. Microsoft Azure is an intermediate platform, particularly
suitable for systems that are well-versed in Microsoft technologies.

Compute
Instance
61%

Relational
database

1%

Storage
10%

Storage
transactions

1%

Data transfer
20%

Cache
7%

Scenario3

36

Finally, we have implemented a cloud version of the on-premise enterprise application for
Microsoft Azure platform. High DC compatibility with Azure and easy deployment were the main
reasons for choosing this platform. The application cloud prototype was used to evaluate the
performance and the cost of the system in a cloud environment. We have investigated the behavior
of DC against different deployment locations, testing materials, scale and load. Our finding helped
InformaIT to make a final decision regarding cloud adoption. Together with partners from
InformaIT we have concluded that DC cloud implementation is feasible, despite degraded
performance. We also found the estimated cost reasonable, especially when the system is
dynamically scaled based on the load.

Extrapolation of the results

To our best knowledge there is no a unique metric that defines how well an application fits a cloud
environment. The decision should be made separately for every system, based on the tradeoff
between advantages and challenges. Existing systems are likely to face more challenges than new
applications, due to the technological constraints of cloud platforms. In general, existing systems
that are based on service oriented architecture with a focus on statelessness and low coupling fit
the Cloud pretty well. Still, applications might require certain changes before being able to fully
leverage a cloud environment. These changes are usually caused by environment limitations or the
singularity of cloud storages.

Based on our observations, the cloud version of a system is likely to show worse performance
because of higher latencies and inferior computing hardware underneath. In order to tune system
performance, we suggest eliminating unnecessary transfers between different system components,
meaning both the amount of data and the number of calls. In particular, web applications should
reduce the amount of data stored in session or become completely stateless; data intensive
applications should also consider using local cache to store frequently used data. HPC applications
will usually require more CPU cores (compute instances) in the Cloud to show the same
throughput. Thus, such applications are likely to be costly.

Last but not least, we suggest leveraging dynamic scalability in order to reduce the cost of a cloud
application. This is especially important for systems with a changeable load. For example,
enterprise application should scale up only during working hours; university web sites should
scale up during application periods. However, monitoring is necessary when the load does not
have a particular pattern. Furthermore, it might be ambiguous what metrics are the most relevant
to monitor.

Future work

We have discussed many questions regarding the migration of applications to the Cloud. Still,
there are some concerns of running applications in the cloud environment that we haven’t
investigated. For example, we did not evaluate security, privacy, and availability of cloud-enabled
services. Also, we did not test the scalability of cloud persistent storages.

Furthermore, it would be interesting to examine application behavior in other cloud platforms –
like Amazon AWS – that also fit our case. Later, the results observed across different cloud
environments could be analyzed and compared giving more comprehensive knowledge about the
consequences of the migration.

37

We will also continue examining the DC system in the cloud environment in order to compare the
estimated and the real costs. In addition to that, load and performance will be monitored so that we
can suggest a better scaling strategy for DC.

38

REFERENCES

[1] D. F. Parkhill, “The Challenge of the Computer Utility”, Addison-Wesley Educational Publishers Inc., US, 1966

[2] P. Botteri, D. Cowan, B. Deeter, A. Fisher, D. Garg, B. Goodman, J. Levine, G. Messiana, A. Sarin, and S. Tavel,
“Bessemer’s Top 10 Laws of cloud computing and SaaS”, Bessemer Venture Partners, www.bvp.com, 2010

[3] N. Leavitt, “Is Cloud Computing Really Ready for Prime Time?”, Computer, vol.42, no.1, pp.15-20, Jan. 2009

[4] Andrew R Hichkey, “SMB cloud spending to approach $100 billion by 2014”, CRN, at
http://www.crn.com/news/cloud/226700149/smb-cloud-spending-to-approach-100-billion-by-2014.htm, August 2010

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “A View of cloud computing”, Communications of the ACM, vol. 53, no. 4, pp. 50-58, Apr. 2010.

[6] M. Driver, “Cloud application infrastructure technologies need seven years to mature”. Research report
G00162990, Gartner Inc., Stamford, USA, 2008

[7] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the clouds: towards a cloud
definition”, ACM SIGCOMM Computer Communication Review, vol. 39, no. 1, pp. 50–55, 2009.

[8] Jeremy Geelan, “Twenty one experts define cloud computing”, Virtualization, Electronic Magazine, available at
http://virtualization.sys-con.com/node/612375, Jan. 2010

[9] Microsoft Azure, http://www.microsoft.com/windowsazure/

[10] Google App Engine, http://code.google.com/appengine/

[11] Amazon Web Services, http://aws.amazon.com/

[12] Gordon Haff, “Just don’t call them private clouds”, CNET News, at http://news.cnet.com/8301-13556_3-
10150841-61.html, Jan. 2009

[13] Andrew Conry Murray, “There is no such thing as a private cloud”, at
http://www.informationweek.com/blog/229207922, InformationWeek, Jan. 2009

[14] L. Youseff, M. Butrico, and D. da Silva, “Toward a unified ontology of cloud computing”, Grid Computing
Environments Workshop, 2008. GCE '08 , pp.1-10, 12-16 Nov. 2008.

[15] GoGrid, http://www.gogrid.com/

[16] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslen, “Experimentation in Software
Engineering: An Introduction”, Kluwer Academic Publishers, 2000

[17] J. W. Creswell, "Research Design", "Qualitative and Quantitative Approaches", Sage, 1994

[18] H.R. Motahari Nezhad, B. Stephenson, and S. Singhal, “Outsourcing Business to cloud computing Services:
Opportunities and Challenges”, technical report, http://www.hpl.hp.com/techreports/2009/HPL-2009-23.pdf, 2009

[19] D. Chappell, “Windows Azure and ISVs: A guide for decision makers”, whitepaper at
http://www.microsoft.com/windowsazure/Whitepapers/AzureAndISV/, Jul. 2009

[20] Wom Kim, Soo Dong Kim, Eunseok Lee, Sungyoung Lee, “Adoption issues for cloud computing”, Proceedings
of the 11th International Conference on Information Integration and Web-based Applications & Services, pp. 3-6,
ACM, 2009.

[21] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and J. Molina, “Controlling data in the cloud:
outsourcing computation without outsourcing control”, Proceedings of the 2009 ACM workshop on Cloud computing
security, pp. 85-90, ACM, 2009.

[22] M.A. Vouk, “Cloud computing – Issues, research and implementations”, 30th International Conference on
Information Technology Interfaces, pp. 31-40, Jun. 2008

[23] B. Rimal, E. Choi, and I. Lumb. “A Taxonomy and Survey of cloud computing Systems”, in INC, IMS and IDC,
2009. NCM’09. Fifth International Joint Conference on, pages 44–51. IEEE, 2009.

[24] P. Louridas, “Up in the Air: Moving Your Applications to the Cloud”, IEEE Computer Society Press Los
Alamitos, CA, USA, vol. 27, pp. 6-11, 2010.

39

[25] Ang Li , Xiaowei Yang , Srikanth Kandula , Ming Zhang, “CloudCmp: comparing public cloud providers”,
Proceedings of the 10th annual conference on Internet measurement, November 01-30, 2010.

[26] Ang Li , Xiaowei Yang , Srikanth Kandula , Ming Zhang, “Comparing Public-Cloud Providers”, IEEE Internet
Computing, vol. 15, pp. 50-53, Mar. 2011.

[27] Van Tran, Jacky Keung, Anna Liu, and Alan Fekete, “Application Migration to Cloud: A Taxonomy of Critical
Factors”, Proceeding of the 2nd international workshop on Software engineering for cloud computing, pp. 22-28,
ACM, 2011

[28] Muhammad Ali Babar, Muhammad Aufeef Chauhan, “A Tale of Migration to Cloud Computing for Sharing
Experiences and Observations”, Proceeding of the 2nd international workshop on Software engineering for cloud
computing, pp. 50-56, ACM, 2011

[29] B. Golden, “The Case Against cloud computing”, at http://www.cio.com/article/477473/, CIO, Jan. 2009

[30] R. Sean, “Cloud optimization – expanding capabilities, while aligning computing and business needs: A
framework for making business decisions about cloud computing”, whitepaper at
http://www.microsoft.com/windowsazure/Whitepapers/CloudOptimization/, Jun. 2010

[31] B. Glick, “IT leaders are ready for the cloud – but are their suppliers?”
http://www.computerweekly.com/blogs/editors-blog/2011/02/it-leaders-are-ready-for-the-c.html,
ComputerWeekly.com, 2011

[32] D. Durkee, “Why cloud computing Will Never Be Free”, Queue, vol. 8, pp. 20–29, ACM, 2010

[33] “Cloud computing survey: Exclusive research from CIO magazine”,
http://www.cio.com/documents/whitepapers/CIOCloudComputingSurveyJune2009V3.pdf, CIO, Jun. 2009

[34] J. Hughes, “Encrypted Storage and Key Management for the cloud”,
http://www.cryptoclarity.com/CryptoClarityLLC/Welcome/Entries/2009/7/23_Encrypted_Storage_and_Key_Manage
ment_for_the_cloud.html, 2009.

[35] Zach Hill, Jie Li, Ming Mao, Arkaitz Ruiz-Alvarez, and Marty Humphrey, “Early observations on the
performance of Windows Azure”, Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing, pp. 367-376, ACM, 2010.

[36] “Shared Folders (SMB) Server”, http://technet.microsoft.com/en-us/library/cc734393 , 2011

[37] D. Templin, “Simplify App Deployment with ClickOnce and Registration-Free COM”, MSDN Magazine, at
http://msdn.microsoft.com/en-us/magazine/cc188708.aspx, 2005

[38] “ASP.NET Application Life Cycle Overview for IIS 7.0”, at http://msdn.microsoft.com/en-
us/library/bb470252.aspx, 2011

[39] “Running Web and Load Performance Tests”, at http://msdn.microsoft.com/en-us/library/ee923688.aspx, 2011

40

Appendix A: Microsoft Azure pricing model

Windows Azure

• Compute*
o Extra small instance: $0.05 per hour
o Small instance (default): $0.12 per hour
o Medium instance: $0.24 per hour
o Large instance: $0.48 per hour
o Extra large instance: $0.96 per hour

• Virtual Network**
o Windows Azure Connect - No charge during CTP

• Storage
o $0.15 per GB stored per month
o $0.01 per 10,000 storage transactions

• Content Delivery Network (CDN)
o $0.15 per GB for data transfers from European and North American locations
o $0.20 per GB for data transfers from other locations
o $0.01 per 10,000 transactions

SQL Azure

• Web Edition
o $9.99 per database up to 1GB per month
o $49.95 per database up to 5GB per month

• Business Edition
o $99.99 per database up to 10GB per month
o $199.98 per database up to 20GB per month
o $299.97 per database up to 30GB per month
o $399.96 per database up to 40GB per month
o $499.95 per database up to 50GB per month

Windows Azure AppFabric

• Access Control***
o $1.99 per 100,000 transactions

• Service Bus
o $3.99 per connection on a “pay-as-you-go” basis
o Pack of 5 connections $9.95
o Pack of 25 connections $49.75
o Pack of 100 connections $199.00
o Pack of 500 connections $995.00

• Caching
o 128 MB cache for $45.00
o 256 MB cache for $55.00
o 512 MB cache for $75.00
o 1 GB cache for $110.00
o 2 GB cache for $180.00

41

o 4 GB cache for $325.00

Data Transfers

• North America and Europe regions
o $0.10 per GB in
o $0.15 per GB out

• Asia Pacific Region
o $0.10 per GB in
o $0.20 per GB out

• Inbound data transfers during off-peak times through June 30, 2011 are at no charge.

*Compute hours are calculated based on the number of hours that your application is deployed.
**The Windows Azure Connect service is available in Community Technology Preview (CTP).
***No charge for billing periods before January 1, 2012.

	Pavel Rabetski - Masters Thesis v4.pdf
	thesis

